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A geometric graph is a combinatorial graph, endowed with a geometry that is inherited 
from its embedding in a Euclidean space. Formulation of a meaningful measure of (dis-
)similarity in both the combinatorial and geometric structures of two such geometric 
graphs is a challenging problem in pattern recognition. We study two notions of distance 
measures for geometric graphs, called the geometric edit distance (GED) and geometric 
graph distance (GGD). While the former is based on the idea of editing one graph to 
transform it into the other graph, the latter is inspired by inexact matching of the graphs. 
For decades, both notions have been lending themselves well as measures of similarity 
between attributed graphs. If used without any modification, however, they fail to provide 
a meaningful distance measure for geometric graphs—even cease to be a metric. We have 
curated their associated cost functions for the context of geometric graphs. Alongside 
studying the metric properties of GED and GGD, we investigate how the two notions 
compare. We further our understanding of the computational aspects of GGD by showing 
that the distance is NP-hard to compute, even if the graphs are planar and arbitrary cost 
coefficients are allowed.
As a computationally tractable alternative, we propose in this paper the Graph Mover’s 
Distance (GMD), which has been formulated as an instance of the earth mover’s distance. 
The computation of the GMD between two geometric graphs with at most n vertices 
takes only O (n3)-time. The GMD demonstrates extremely promising empirical evidence 
at recognizing letter drawings.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Graphs have been a widely accepted object for providing structural representation of patterns involving relational 
properties. The framework of representing complex and repetitive patterns using graphical structures can facilitate their 
description, manipulation, and recognition. While hierarchical patterns are commonly reduced to a string [1] or a tree rep-
resentation [2], non-hierarchical patterns generally require a graph representation. One of the most important aspects of 
such representation is that the problem of pattern recognition becomes the problem of quantifying (dis-)similarity between 
a query graph and a model or prototype graph. The problem of defining a relevant distance measure for a class of graphs 
has been looked into for almost five decades now and has a myriad of applications including chemical structure matching 
[3], fingerprint matching [4], face identification [5], and symbol recognition [6]. All these applications demand a reliable 
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and efficient means of comparing two graphs. A meaningful graph distance measure is expected to yield a small distance 
implying similarity, and a large distance revealing disparity.

Depending on the class of graphs of interest and the area of application, several methods have been proposed. If the use 
case requires a perfect matching of two graphs, then the problem of graph isomorphism can be considered [7]; whereas, 
subgraph isomorphism can be applied for a perfect matching of parts of two graphs. These techniques are not, however, 
lenient with (sometimes minor) local and structural deformations of the two graphs. To address this issue, several alternative 
distance measures have been studied. We particularly investigate edit distance [8,9] and inexact matching distance [10]. The 
former makes use of elementary edit transformations (such as deletion, insertion, relabeling of vertices and edges), while 
the latter is based on partially matching two graphs through an inexact matching relation (Definition 11). And, the distance 
is defined as the minimum cost of transforming or matching one graph to the other. Although these distance measures have 
been battle-proven for attributed graphs (i.e., combinatorial graphs with finite label sets), the formulations seem inadequate 
in providing meaningful similarity measures for geometric graphs.

A geometric graph belongs to a special class of attributed graphs having an embedding into a Euclidean space Rd , where 
the vertex and edge labels are inferred from the Euclidean locations of the vertices and Euclidean lengths of the edges, 
respectively. In the last decade, there has been a gain in practical applications involving comparison of geometric graphs. 
Examples include road-network or map comparison [11], detection of chemical structures using their spatial bonding geom-
etry, etc. In addition, large datasets like [12] are being curated by pattern recognition and machine learning communities.

Despite a rich literature on the matching of attributed graphs and a fair count of algorithms benchmarked by both 
the database community and the pattern recognition community, most of the frameworks become untenable for matching 
geometric graphs. They remain oblivious to the spatial geometry such graphs are endowed with, consequently giving rise to 
very artificial measures of similarity for geometric graphs. This is not surprising at all—geometric graphs are a special class 
of labeled graphs after all! For a geometric graph, the significant differences include:

(i) Edge relabeling is not an independent edit operation, but vertex labels dictate the incident edge labels.
(ii) Vertex relabeling amounts to its translation to a different location in the ambient space, and additionally incurs the cost 

of relabeling of all its adjacent edges.

1.1. Our contribution

We study two distance measures, the geometric edit distance (GED) and geometric graph distance (GGD), in order to pro-
vide a meaningful measure of similarity between two geometric graphs. For attributed graphs the corresponding distance 
measures are equivalent as shown in [13, Proposition 1]. In contrast, we show in Section 2.3 they are not equivalent for 
geometric graphs. In addition to bounding each distance measure by a constant factor of the other in Proposition 18, we 
provide polynomial-time computable bounds on them.

We mention here the contribution of [14] for introducing GGD as well as discussing different definitions of edit distance 
in the context of geometric graphs. The authors also prove certain complexity results for GGD, which we improve upon in 
this paper. One of the major contributions of our study is to further our understanding of the computational complexity of 
GGD. In [14], the authors show that computing GGD is NP-hard for non-planar graphs, when arbitrary cost coefficients 
CV , CE (as defined in Definition 13) are allowed. For planar graphs, NP-hardness is proved under a very strict condition 
that CV << CE . We show in Proposition 21 that computing the GGD is NP-hard, even if the graphs are planar and arbitrary 
CV , CE are allowed. The paper is organized in the following way. In Section 2.1 and Section 2.2, we formally define the two 
distances GGD and GED, respectively, and explore some of their important properties. We then compare the two distances 
in Section 2.3. Section 3 is devoted to our findings on the computational complexity of the GGD.

We define and study the graph mover’s distance (GMD) in Section 4. The GMD has been shown to render a pseudo-
metric on the class of (ordered) geometric graphs. Finally, we apply the GMD to classify letter drawings in Section 5. Our 
experiment involves matching each of 2250 test drawings, modeled as geometric graphs, to 15 prototype letters from the 
English alphabet. For the drawings (with low distortion), the correct letter has been found among the top 3 matches at a 
rate of 98.93%, which is extremely promising.

2. Two distances for geometric graphs

A geometric graph is a combinatorial graph that is also embedded in a Euclidean space. We begin with the formal 
definition.

Definition 1 (Geometric graph). A (finite) combinatorial graph G = (V G , EG) is called a geometric graph of Rd if the vertex set 
V G ⊂ Rd and the Euclidean straight-line segments 

{
ab | (a,b) ∈ EG

}
intersect (possibly) at their endpoints.

We denote the set of all geometric graphs of Rd by G(Rd), and the subset of geometric graphs without any isolated 
vertex by G0(Rd). Two geometric graphs G = (V G , EG) and H = (V H , EH ) are said to be equal, written G = H , if and only 
if V G = V H and EG = EH . We make no distinction between a geometric graph G = (V G , EG) and its geometric realization as 
2
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Table 1
Allowed edit operations on a geometric graph and associated costs.
Operation Cost

delete (isolated) vertex u 0
insert vertex u ∈Rd 0
add edge e between existing vertices CE |e|
delete edge e CE |e|
translate a vertex at u ∈ Rd to vertex at v ∈Rd CV |u − v| + ∑

(s,u)∈E
CE
∣∣|su| − |sv|∣∣

a subset of Rd; an edge (u, v) ∈ EG can be identified as the line-segment uv in Rd , and its length by the Euclidean length 
|uv|. We denote by Vol(G) the sum of the edge lengths of G .

2.1. Geometric edit distance (GED)

Given two geometric graphs G, H ∈ G(Rd), we transform G into H by applying a sequence of edit operations. The allowed 
edit operations and their costs are

(i) inserting (and deleting) a vertex costs nothing,
(ii) inserting (and deleting) an edge costs CE times its length, and
(iii) translating a vertex costs CV times the displacement of the vertex plus CE times the total change in the length of all

its incident edges.

The operations and their costs are summarized in Table 1. Throughout the paper, we assume that the cost coefficients CV

and CE are positive constants. In order to denote a deleted vertex and a deleted edge, we introduce the dummy vertex εV

and the dummy edge εE , respectively. While computing edit costs, we follow the convention that |εE | = 0, |a − εV | = 0 for 
any a ∈ Rd , and (u, v) = εE if either u = εV or v = εV . For each operation o listed in Table 1, note that its inverse, denoted 
o−1, is also an edit operation with the same cost.

Definition 2 (Edit path). Given two geometric graphs G, H ∈ G(Rd), an edit path P from G to H is a (finite) sequence of edit 
operations {oi}ki=1 that satisfies the following:

(a) (ok ◦ . . . ◦ o2 ◦ o1)(G) = H , i.e., P (G) = H , and
(b) oi+1 is a legal edit operation on (oi ◦ . . . ◦ o2 ◦ o1)(G) for any 1 ≤ i ≤ k − 1.

Note that we do not require for an intermediate edit operation to yield a geometric graph. The set of all edit paths 
between G, H ∈ G(Rd) is denoted by P(G, H). For an edit path P = {oi}ki=1, the edit path {o−1

i }ki=1 from H to G is called 
its inverse path, and is denoted by P−1. For any vertex u ∈ V G (resp. edge e ∈ EG ), we denote by P (u) (resp. P (e)) the end 
result after its evolution under P . If P deletes the vertex u (resp. edge e), we write P (v) = εV (resp. P (e) = εE ). We now 
define the cost, Cost(P ), of an edit path P to be the total cost of the individual edits.

Definition 3 (Cost of edit paths). The cost of an edit path P ∈ P(G, H), denoted Cost(P ), is the sum of the cost of the 
individual edits, i.e.,

Cost(P )
def=
∑
oi∈P

Cost(oi).

It is not difficult to note that Cost(P ) = Cost(P−1). Then, GED(G, H) is defined as cost of the least expensive edit path.

Definition 4 (Geometric edit distance). For geometric graphs G, H ∈ G(Rd), their geometric edit distance, denoted GED(G, H), 
is defined to be the infimum cost of the edit paths, i.e.,

GED(G, H)
def= inf

P∈P(G,H)
Cost(P ).

In Proposition 10, we prove that GED is, in fact, a metric on the space of geometric graphs without any isolated vertex. 
As also observed in [14], the following example demonstrates that the distance may not be attained by an edit path, unless 
an infinite number of edits are allowed: Consider G, H ∈ G(R2), where G has only one edge (u1, u2) and H has only one 
edge (v1, v2) as shown in Fig. 1. For any fixed k ≥ 1, consider the edit path Pk = {oi}2ki=1, where oi translates the left vertex 
of G up by a distance 1/k and then oi+1 moves the right vertex by the same distance for any odd i. So, for any i
3
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Fig. 1. Left: the edit path Pk alternatively moves the left and right vertices of G by distance 1/k. Consequently, GED(G, H) = 2CV . Right: The inexact 
matching π between G and H has been shown to attain the same distance for GGD(G, H).

Cost(oi) = CV
1

k
+ CE

[√
(1/k)2 + 12 − 1

]
= CV

1

k
+ CE

1
k2√

1
k2

+ 1 + 1
, and therefore

GED(G, H) ≤ Cost(Pk) =
2k∑
i=1

Cost(oi) = 2CV + CE

2
k√

1
k2

+ 1+ 1

k→∞−−−−−−→ 2CV .

Now, if we assume that CE > CV , then any edit path with an edge deletion costs more than 2CV from the inequality (2) on 
the next page. Therefore, GED(G, H) = 2CV . However, there is no edit path that attains this cost.

In Definition 3, the cost of an edit path P is defined as the aggregated cost from the individual edits involved in P . 
Another perspective of the cost of P is the total amount paid by P for the evolution of each vertex and edge of G and H . 
We make this notion more precise by tracking the evolution of vertices and edges through their orbit.

Definition 5 (Orbit of a vertex). Let P ∈ P(G, H) be an edit path and u a vertex of G . The orbit of u under P = {oi}ki=1 is 
the sequence of vertices {ui}ki=0, where u0 = u and ui = (oi ◦ oi−1 ◦ . . . ◦ o1)(u) for i ≥ 1. And, the cost of the orbit, denoted 
CostP (u), is defined by

CostP (u)
def= CV

k∑
i=1

∣∣ui − ui−1
∣∣.

The ith summand above is positive only if oi is a translation of the vertex. Using the triangle inequality, we can imme-
diately note the following fact.

Lemma 6 (Cost of vertex orbit). For a vertex u ∈ V G and P ∈P(G, H), we have

CostP (u) ≥ CV |u − P (u)|.

We similarly define the orbit of an edge and its cost.

Definition 7 (Orbit of an edge). Let P ∈ P(G, H) be an edit path and e an edge of G . The orbit of e under P = {oi}ki=1 is the 
sequence of edges {ei}ki=0, where e0 = e and ei = (oi ◦oi−1 ◦ . . .◦o1)(e) for i ≥ 1. And, the cost of the orbit, denoted CostP (e), 
is defined by

CostP (e)
def= CE

k∑
i=1

∣∣|ei | − |ei−1|
∣∣.

We note that deletion of the edge or translation of an incident vertex are the only edit operations in P that can po-
tentially contribute to a positive summand in the cost function above. Again, the triangle inequality implies the following 
lemma.

Lemma 8 (Cost of edge orbit). For an edge e ∈ EG and P ∈P(G, H), we have

CostP (e) ≥ CE
∣∣|e| − |P (e)|∣∣.

In particular, CostP (e) ≥ CE |e| if P eventually deletes e, i.e., P (e) = εE .
4
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Fig. 2. Two graphs G, H ∈ G(R2) have been shown on the left and right, respectively. In the middle, the evolution of G under an edit path P =
{o1, o2, o3, o4, o5, o6} is demonstrated. The edit o1 deletes the edge (u1, u2), o2 deletes the vertex u1, then o3 translates u2 to v3, after that o4 trans-
lates u3 to v2, o5 inserts the vertex v1, and finally o6 inserts the edge (v1, v2). The orbit of the vertex u2 is {u2, u2, v3, v3, v3}, whereas the orbit of 
(u2, u3) is {(u2, u3), (u2, u3), (v3, u3), (v3, v2), (v3, v2)}.

For examples of vertex and edge orbits see Fig. 2. In order to describe Cost(P ) in terms of the costs of individual orbits, 
we note that Cost(P ) accounts for the costs of the orbits of:

(a) vertices u ∈ V G that end up as a vertex of H , i.e., P (u) 
= εV
(b) vertices u ∈ V G with P (u) = εV
(c) vertices v ∈ V H that have been inserted, i.e., P−1(v) = εV
(d) edges e ∈ EG that end up as an edge of H , i.e., P (e) 
= εE

(e) edges e ∈ EG with P (e) = εE

(f) edges f ∈ EH that have been inserted, i.e., P−1( f ) = εE

(g) vertices and edges that have been inserted at some point and have also been deleted eventually.

Moreover, we observe that two vertex (resp. edge) orbits {xi} and {yi} intersect at the i0th position only if xi = yi = εV
(resp. xi = yi = εE ) for all i ≥ i0. As a consequence, the positive summands in the costs of two orbits are necessarily distinct. 
Accumulating the costs for all orbits of type (a)–(f), we can, therefore, write

Cost(P ) ≥
∑
u∈V G

P (u) 
=εV

CostP (u)

︸ ︷︷ ︸
vertex translations

+
∑
u∈V G

P (u)=εV

CostP (u)

︸ ︷︷ ︸
vertex deletions

+
∑
v∈V H

P−1(v)=εV

CostP−1(v)

︸ ︷︷ ︸
vertex insertions

+
∑
e∈EG

P (e) 
=εE

CostP (e)

︸ ︷︷ ︸
edge translations

+
∑
e∈EG

P (e)=εE

CostP (e)

︸ ︷︷ ︸
edge deletions

+
∑
f ∈EH

P−1( f )=εE

CostP−1( f )

︸ ︷︷ ︸
edge insertions

.
(1)

Equation (1) together with Lemma 6 and Lemma 8 readily imply the following useful result.

Lemma 9. For any edit path P ∈P(G, H), it holds that

Cost(P ) ≥
∑
u∈V G

P (u) 
=εV

CV |u − P (u)| +
∑
e∈EG

P (e) 
=εE

CE
∣∣|e| − |P (e)|∣∣+ ∑

e∈EG

P (e)=εE

CE |e| +
∑
f ∈EH

P−1( f )=εE

CE | f |. (2)

Proposition 10 (GED is a metric). The GED defines a metric on G0(Rd), the space of geometric graphs without any isolated vertex.

Proof. Non-negativity. Since the cost of edit paths is non-negative, Definition 4 implies that GED(G, H) is non-negative for 
any G, H ∈ G0(Rd).

Separability. If GED(G, H) = 0, we claim that G = H , i.e., V G = V H and EG = EH . In order to show that V G = V H , it suffices 
to show that the Hausdorff distance r := dH (V G , V H ) between the vertex sets is zero. Fix

2ξ =
{
CE min{lG , lH }, if r = 0

min{CV r,CElG ,CElH }, if r 
= 0
5
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where lG and lH denote the smallest edge lengths of G and H , respectively. Since ξ > 0, the definition of GED implies that 
there is an edit path P ∈P(G, H) with Cost(P ) ≤ ξ . Consequently, each of the four summands in (2) is no larger than ξ . We 
immediately see that there is no edge e ∈ EG such that P (e) = εE . Otherwise, the third summand in (2) would be at least

CE |e| ≥ CEl
G ≥ 2ξ > ξ,

leading to a contradiction. The last inequality above is due to the observation that ξ > 0. Similarly using the fourth summand 
in (2), we conclude there is no edge f ∈ EH such that P−1( f ) = εE . In other words, P does not delete any edge of G or H , 
i.e., |EG | = |EH |. As a result, we can further say that no vertex of G can be removed and no vertex of H can be inserted, 
since the input graphs do not have any isolated vertices. Since H = P (G), the graphs G and H must be isomorphic. Lastly, 
we show that V G = V H , i.e., r = 0. If not, i.e., r 
= 0 and u0 ∈ V G such that all the vertices of H are at least r distance away 
from it, then

CV |u0 − P (u0)| ≥ CV r ≥ 2ξ > ξ.

This is a contradiction, because the first term in (2) exceeds ξ . So, r = 0. Therefore, G = H .

Symmetry. Each elementary edit operation can be reversed at exactly the same cost. Given an edit path P ∈ P(G, H), we 
can reverse the operations to get an edit path P−1 ∈ P(H, G) with Cost(P ) = Cost(P−1). By Definition 4, for an arbitrary 
ξ > 0 there exists P ∈P(G, H) such that Cost(P ) ≤ GED(G, H) + ξ . On the other hand,

GED(H,G) ≤ Cost(P−1) = Cost(P ) ≤ GED(G, H) + ξ.

Since ξ is arbitrary, this implies GED(H, G) ≤ GED(G, H). By a similar argument, one can also show GED(H, G) ≥ GED(G, H). 
Together, they imply GED(H, G) = GED(G, H).

Triangle inequality. Fix an arbitrary ξ > 0 and G, H, I ∈ G0(Rd). By Definition 4, there must exist edit paths P1 ∈ P(G, H)

and P2 ∈P(H, I) such that Cost(P1) ≤ GED(G, H) + ξ/2 and Cost(P2) ≤ GED(H, I) + ξ/2. If we define P to be the concate-
nation of the edit operations from P1 and P2 in the same order, then P ∈P(G, I). Moreover, Cost(P ) = Cost(P1) +Cost(P2). 
Now,

GED(G, I) ≤ Cost(P ), from the Definition of GED

= Cost(P1) + Cost(P2)

≤
[
GED(G, H) + ξ

2

]
+
[
GED(H, I) + ξ

2

]
= GED(G, H) + GED(H, I) + ξ.

Since the choice of ξ is arbitrary, we get GED(G, I) ≤ GED(G, H) + GED(H, I). �
2.2. Geometric graph distance (GGD)

The definition of GED is very intuitive but not at all suited for computational purposes. Firstly, there could be infinitely 
many locations a vertex is allowed to be translated to. Secondly, there are infinitely many edit paths between two graphs—
even if the vertices are located on a finite grid. Due to the infinite search space, it is not clearly understood how to compute 
the GED. As a feasible alternative we study the GGD. The definition is inspired by the concept of inexact matching first 
proposed in [10] for attributed graphs, and later introduced for geometric graphs in [14]. We follow the notation of [10] in 
order to define it. We first define an (inexact) matching.

Definition 11 (Inexact matching). Let G, H ∈ G(Rd) be two geometric graphs. A relation π ⊆ (V G ∪ {εV }) × (V H ∪ {εV }) is 
called an (inexact) matching if for any u ∈ V G (resp. v ∈ V H ) there is exactly one v ∈ V H ∪ {εV } (resp. u ∈ V G ∪ {εV }) such 
that (u, v) ∈ π .

The set of all matchings between graphs G, H is denoted by �(G, H). Intuitively speaking, a matching π is a relation that 
covers the vertex sets V G , V H exactly once. As a result, when restricted to V G (resp. V H ), a matching π can be expressed 
as a map π : V G → V H ∪ {εV } (resp. π−1 : V H → V G ∪ {εV }). In other words, when (u, v) ∈ π and u 
= εV (resp. v 
= εV ), it 
is justified to write π(u) = v (resp. π−1(v) = u). It is evident from the definition that the induced map

π : {u ∈ V G | π(u) 
= εV } → {v ∈ V H | π−1(v) 
= εV }
is a bijection. Additionally for edges e = (u1, u2) ∈ EG and f = (v1, v2) ∈ EH , we introduce the short-hand π(e) :=
(π(u1), π(u2)) and π−1( f ) := (π−1(v1), π−1(v2)).
6
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Another perspective of π is discerned when viewed as a matching between portions of G and H , (possibly) after applying 
some edits on the two graphs. For example, π(u) = εV (resp. π−1(v) = εV ) encodes deletion of the vertex u from G (resp. v
from H), whereas π(e) = εE (resp. π−1( f ) = εE ) encodes deletion of the edge e from G (resp. f from H). Once the above 
deletion operations have been performed on the graphs, the resulting subgraphs of G and H become isomorphic, which are 
finally matched by translating the remaining vertices u to π(u). Now, the cost of the matching π is defined as the total 
cost for all of these operations:

Definition 12 (Cost of a matching). Let G, H ∈ G(Rd) be geometric graphs and π ∈ �(G, H) an inexact matching. The cost of 
π , denoted Cost(π), is defined as

Cost(π) =
∑
u∈V G

π(u) 
=εV

CV |u − π(u)|

︸ ︷︷ ︸
vertex translations

+
∑
e∈EG

π(e) 
=εE

CE
∣∣|e| − |π(e)|∣∣

︸ ︷︷ ︸
edge translations

+
∑
e∈EG

π(e)=εE

CE |e|

︸ ︷︷ ︸
edge deletions

+
∑
f ∈EH

π−1( f )=εE

CE | f |

︸ ︷︷ ︸
edge insertions

. (3)

Definition 13 (GGD). For geometric graphs G, H ∈ G(Rd), their geometric graph distance, denoted GGD(G, H), is defined as 
the cost of a least expensive inexact matching, i.e.,

GGD(G, H)
def= min

π∈�(G,H)
Cost(π).

The minimum cost matching between two graphs along with their GGD has been illustrated in Fig. 1. The above defini-
tion readily yields the following result.

Lemma 14. Let G, H ∈ G(Rd) be geometric graphs. For any π ∈ �(G, H), we have

Cost(π) ≥
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| + CE |Vol(G) − Vol(H)| + 2min

{ ∑
e∈EG

π(e)=εE

CE |e|,
∑
f ∈EH

π−1( f )=εE

CE | f |
}
.

Proof. Without any loss of generality, we assume that∑
e∈EG

π(e)=εE

CE |e| ≤
∑
f ∈EH

π−1( f )=εE

CE | f |. (4)

From (3), we have

Cost(π) =
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| +
∑
e∈EG

π(e) 
=εE

CE
∣∣|e| − |π(e)|∣∣+ ∑

e∈EG

π(e)=εE

CE |e| +
∑
f ∈EH

π−1( f )=εE

CE | f |

=
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| +
∑
e∈EG

π(e) 
=εE

CE
∣∣|π(e) − |e||∣∣+ ∑

f ∈EH

π−1( f )=εE

CE | f | −
∑
e∈EG

π(e)=εE

CE |e| + 2
∑
e∈EG

π(e)=εE

CE |e|

=
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| +
∑
e∈EG

π(e) 
=εE

CE
∣∣|π(e) − |e||∣∣+ ∣∣∣∣ ∑

f ∈EH

π−1( f )=εE

CE | f | −
∑
e∈EG

π(e)=εE

CE |e|
∣∣∣∣

+ 2
∑
e∈EG

π(e)=εE

CE |e|, from (4)

≥
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| +
∣∣∣∣ ∑

e∈EG

π(e) 
=εE

CE(|π(e)| − |e|)
∣∣∣∣+
∣∣∣∣ ∑

f ∈EH

π−1( f )=εE

CE | f | −
∑
e∈EG

π(e)=εE

CE |e|
∣∣∣∣

+ 2
∑
e∈EG

CE |e|, by the triangle inequality
π(e)=εE

7
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≥
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| +
∣∣∣∣ ∑

e∈EG

π(e) 
=εE

CE(|π(e)| − |e|) +
∑
f ∈EH

π−1( f )=εE

CE | f | −
∑
e∈EG

π(e)=εE

CE |e|
∣∣∣∣

+ 2
∑
e∈EG

π(e)=εE

CE |e|, by the triangle inequality

=
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| + CE

∣∣∣∣ ∑
e∈EG

π(e) 
=εE

|π(e)| −
∑
e∈EG

π(e) 
=εE

|e| +
∑
f ∈EH

π−1( f )=εE

| f | −
∑
e∈EG

π(e)=εE

|e|
∣∣∣∣+ 2

∑
e∈EG

π(e)=εE

CE |e|

=
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| + CE

∣∣∣∣
( ∑

e∈EG

π(e) 
=εE

|π(e)| +
∑
f ∈EH

π−1( f )=εE

| f |
)

−
( ∑

e∈EG

π(e)=εE

|e| +
∑
e∈EG

π(e) 
=εE

|e|
)∣∣∣∣+ 2

∑
e∈EG

π(e)=εE

CE |e|

=
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| + CE

∣∣∣∣ ∑
f ∈EH

| f | −
∑
e∈EG

|e|
∣∣∣∣+ 2

∑
e∈EG

π(e)=εE

CE |e|

=
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| + CE
∣∣Vol(H) − Vol(G)

∣∣+ 2
∑
e∈EG

π(e)=εE

CE |e|.

This proves the result. �
The follow proposition provides a lower and upper bound for the GGD that are computable in polynomial-time.

Proposition 15 (Bounding the GGD). For geometric graphs G, H ∈ G(Rd), we have

CE |Vol(G) − Vol(H)| ≤ GGD(G, H) ≤ CE |Vol(G) + Vol(H)|.

Proof. For any arbitrary matching π ∈ �(G, H), from Lemma 14 we get

CE |Vol(G) − Vol(H)| ≤ Cost(P ).

Since π is arbitrary, we conclude CE |Vol(G) − Vol(H)| ≤ GGD(G, H).
For the second inequality, we choose the trivial matching π0 ∈ �(G, H), where π0(u) = π−1

0 (v) = εV for all u ∈ V G and 
v ∈ V H . So,

GGD(G, H) ≤ Cost(π) = CE [Vol(G) + Vol(H)]. �
As also shown in [14], the GGD is also a metric. We present a proof here, using our notation, for the sake of completion.

Proposition 16 (GGD is a metric). The GGD defines a metric on G0(Rd), the space of geometric graphs without any isolated vertex.

Proof. Non-negativity. Since the cost of any matching in �(G, H) is non-negative, Definition 13 implies that GGD(G, H) is 
non-negative for any G, H ∈ G0(Rd).

Separability. If GGD(G, H) = 0, then there is π ∈ �(G, H) with Cost(π) = 0. So, all the four summands in (3) are identically 
zero. In particular, the third and fourth summands imply that no edge has been deleted from G or H by π , i.e., |EG | = |EH |. 
Since the graphs do not have any isolated vertex, this implies that π(u) 
= εV , π(v) 
= εV for all u ∈ V G and v ∈ V H . As a 
result, |V G | = |V H |. Moreover, the first summand of (3) implies that π(u) = u for all u ∈ V G . Therefore, G = H .

Symmetry. We conclude that GGD(G, H) = GGD(H, G) due to the fact that any matching in �(G, H) induces a matching in 
�(H, G) with exactly the same cost and vice versa.

Triangle inequality. For the triangle inequality, let us assume that Cost(π1) = GGD(G, H) and Cost(π2) = GGD(H, I) for 
some π1 ∈ �(G, H) and π2 ∈ �(H, I). For any u ∈ V G and v ∈ V I , define π ∈ �(G, I) such that:

π(u) =
{
π2 ◦ π1(u), if π1(u) 
= εV

εV , otherwise
8
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Fig. 3. The graphs G (top) and H (bottom) are embedded in the real line, where u2 − u1 = v2 − v1 = L and v2 − u2 = v1 − u1 = x.

and

π−1(v) =
{
π−1
1 ◦ π−1

2 (v), if π−1
2 (u) 
= εV

εV , otherwise

Using the triangle inequality, it can be easily seen from (3) that Cost(π) ≤ Cost(π1) + Cost(π2). So,

GGD(G, I) ≤ Cost(π), from the Definition of GED

≤ Cost(π1) + Cost(π2)

= GGD(G, H) + GGD(H, I).

Therefore, we get GGD(G, I) ≤ GGD(G, H) + GGD(H, I) as desired. �
2.3. Comparing GED and GGD

As we now have the two notions of distances under our belts, the question of how they compare arises naturally. We 
have already pointed out that the analogous notions for attributed graphs yield equivalent distances. To our surprise, they 
are not generally equal for geometric graphs, as the following proposition demonstrates.

Proposition 17. Given any D > 0, there exist graphs G, H ∈ G(R) such that

GGD(G, H) = D and GED(G, H) =
(
1+ CE

CV

)
D.

In particular, GGD(G, H) < GED(G, H).

Proof. We take two graphs G, H ∈ G(R) as shown in Fig. 3. In each graph, the two vertices are separated by a distance L, 
whereas the second graph is a copy of the first but shifted by x. We also choose

x = D

2CV
and L =

(
1+ 2CV

CE

)
x.

To see that GGD(G, H) = D , we consider the matching π(ui) = vi for i = 1, 2. The cost of the matching is

Cost(π) = CV

2∑
i=1

|ui − vi| = CV

2∑
i=1

x = 2CV x = D.

It is worth noting here that a matching π ′ that is not bijective on the vertex sets has cost

Cost(π ′) ≥ CE L > CE × 2CV

CE
x = D = Cost(π).

Since L > x, the cost of π is also (strictly) smaller that 2CV L, which is the cost of the other possible bijective matching. So, 
we have GGD(G, H) = D .

In order to compute GED(G, H), we consider the edit path P0 that moves the vertex u1 to v1, then moves u2 to v2. The 
cost of P0 is

2CV x+ 2CEx = 2CV x

(
1+ CE

CV

)
=
(
1+ CE

CV

)
D.

We now claim that the cost of any edit path P is at least (1 + CE/CV )D . Consider the following two cases:
Case I. If P (u1, u2) = εE , then from (2), we have

Cost(P ) ≥ 2CE L = 2(CE + 2CV )x = 2(CE + 2CV )
D = (2 + CE/CV )D > (1 + CE/CV )D.
2CV

9
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Case II. For this case, we assume that P (u1, u2) 
= εE . So, P contains only vertex translations. Let O  = {oi}ki=1 be the subse-
quence of P containing only those translations that do not flip the order of the endpoints of the incident edge. Due to the 
position of G and H , it is evident that O is non-empty. Moreover, the vertices must travel at least x distance each under 
O . When an endpoint u is moved to a location w ∈ R by such an oi , the associated cost of translating the edge becomes 
CE |w − u|. Therefore, the cost

Cost(P ) ≥ Cost(O ) ≥ 2CV x+ 2CE2x = 2(CE + CV )
D

2CV
= (1+ CE/CV )D.

Considering the above the cases, we conclude that GED(G, H) = (1 + CE/CV )D . �
More generally, we prove that following result to compare the two distances.

Proposition 18. For any two geometric graphs G, H ∈ G(Rd), we have

GGD(G, H) ≤ GED(G, H) ≤
(
1+ �

CE

CV

)
GGD(G, H),

where � denotes the maximum degree of the graphs G, H.

Proof. Take an arbitrary edit path P ∈P(G, H). Let us define a matching πP ∈ �(G, H) such that

πP
def= {(u, P (u)) | u ∈ V G} ∪ {(P−1(v), v) | v ∈ V H }.

This definition of πP implies that P (u) = πP (u) for all u ∈ V G , P (e) = πP (e) for all e ∈ EG , and P−1( f ) = π−1
P ( f ) for all 

f ∈ EH . From (3) and Lemma 9 it follows that Cost(πP ) ≤ Cost(P ). The definition of GGD(G, H) then implies that

GGD(G, H) ≤ Cost(πP ) ≤ Cost(P ).

Since P is chosen arbitrarily, the definition of GED(G, H) then implies the first inequality.
For the second inequality, we take an arbitrary π ∈ �(G, H). From π , we define an edit path Pπ to be the sequence 

(DE , DV , TV , IV , I E) of edit operations, where

(i) DE is a sequence of deletions of edges e ∈ EG with π(e) = εE

(ii) DV is a sequence of deletions of vertices u ∈ V G with π(u) = εV ,
(iii) TV is a sequence of translations of vertices u ∈ V G with π(u) 
= εV to π(u),
(iv) IV is a sequence of insertions of vertices v ∈ V H with π−1(v) = εV , and
(v) I E is a sequence of insertions of edges f ∈ EH with π−1( f ) = εE .

Each of the above sequences (i)–(v) is unique up to the ordering of the operations. Also in Pπ , the edges are deleted in 
DE before deleting their endpoints in DV , and the edges are inserted in I E only after inserting their endpoints in IV . 
Consequently, Pπ defines a legal edit path from G to H , i.e., Pπ ∈P(G, H). We claim that

Cost(Pπ ) ≤
(
1+ �

CE

CV

)
Cost(π).

To prove the claim, we note that Pπ does not insert any vertex or edge that will be later deleted. As a result, the item (g) 
above (1) has a zero cost. So, (1) is, in fact, an equality:

Cost(Pπ ) =
∑
u∈V G

π(u) 
=εV

CostPπ (u) +
∑
u∈V G

π(u)=εV

CostPπ (u) +
∑
v∈V H

π−1(u)=εV

CostP−1
π

(v)

+
∑
e∈EG

π(e) 
=εE

CostPπ (e) +
∑
e∈EG

π(e)=εE

CostPπ (e) +
∑
f ∈EH

π−1( f )=εE

CostPπ ( f )

Moreover, a deleted (resp. inserted) vertex has never been translated, yielding a zero cost for its orbit. So, the second and 
the third summands are identically zero. We can then write

Cost(Pπ ) =
∑
u∈V G

π(u) 
=εV

CostPπ (u) +
∑
e∈EG

π(e) 
=εE

CostPπ (e) +
∑
e∈EG

π(e)=εE

CostPπ (e) +
∑
f ∈EH

−1

CostPπ ( f )
π ( f )=εE

10
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=
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| +
∑
e∈EG

π(e) 
=εE

CostPπ (e) +
∑
e∈EG

π(e)=εE

CE |e| +
∑
f ∈EH

π−1( f )=εE

CE | f |

=

⎡
⎢⎢⎢⎣
∑
u∈V G

π(u) 
=εV

CV |u − π(u)| +
∑
e∈EG

π(e)=εE

CE |e| +
∑
f ∈EH

π−1( f )=εE

CE | f |

⎤
⎥⎥⎥⎦+

∑
e∈EG

π(e) 
=εE

CostPπ (e)

≤ Cost(π) +
∑
e∈EG

π(e) 
=εE

CostPπ (e)

In order to get upper bound on the last term, we observe for any edge e = (u1, u2) ∈ EG with π(e) 
= εE that its orbit under 
TV is {(u1, u2), (u1, π(u2)), (π(u1), π(u2))}. The cost of the orbit of each e then is

CE
(∣∣|u1 − π(u2)| − |u1 − u2|

∣∣+ ∣∣|π(u1) − π(u2)| − |u1 − π(u2)|
∣∣)≤ CE(|u2 − π(u2)| + |u1 − π(u1)|).

So,

Cost(Pπ ) ≤ Cost(π) +
∑
e∈EG

π(e) 
=εE

CostPπ (e)

≤ Cost(π) +
∑

e=(u1,u2)∈EG

π(e) 
=εE

CE(|u2 − π(u2)| + |u1 − π(u1)|)

≤ Cost(π) + �
∑
u∈EV

π(u) 
=εV

CE |u − π(u)|

= Cost(π) + �
CE

CV

∑
u∈EV

π(u) 
=εV

CV |u − π(u)|

≤ Cost(π) + �
CE

CV
Cost(π) =

(
1+ �

CE

CV

)
Cost(π).

By the definition GED, it is implied that GED(G, H) ≤
(
1+ � CE

CV

)
Cost(π). Since π is chosen arbitrarily, we then conclude 

from the definition of GGD that GED(G, H) ≤
(
1+ � CE

CV

)
GGD(G, H). �

We remark that the configuration in Fig. 1 and Proposition 17 show that the bounds presented in Proposition 18 are, in 
fact, tight.

3. Computational complexity

In this section, we discuss the computational aspects of the GGD. The computation is algorithmically feasible, since the 
there are only a finite number of matchings between two graphs. However, it has been already shown in [14] that the 
distance is generally hard to compute. We define the decision problem as follows.

Definition 19 (PROBLEM GGD). Given geometric graphs G, H ∈ G(Rd) and τ ≥ 0, is there a matching π ∈ �(G, H) such that 
Cost(π) ≤ τ?

We remark here that CV , CE , and τ can be chosen as arbitrary positive real numbers. In [14], the authors show that 
PROBLEM GGD is NP-hard for non-planar graphs. For planar graphs, however, its NP-hardness is proved under the very 
strict condition that CV << CE . In both cases, the problem instances seem non-practical. In Proposition 21, we prove a 
stronger result that the problem is NP-hard, even if the graphs are planar and arbitrary CV , CE are allowed. Our reduction 
is from the well-known 3-PARTITION problem.

Definition 20 (Problem 3-PARTITION). Given positive integers N > 1, B and a multiset of positive integers S = {a1, a2, . . . , a3N}
so that B

4 < ai < B
2 and 

∑3N
i=1 ai = NB , does there exist a partition of S into N multisets S1, S2, . . . , SN such that |Si | = 3

and 
∑

a∈S a = B for all 1 ≤ i ≤ N?

i

11
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Fig. 4. Left: A typical blob B of size k is shown. Right: The shorthand for such a blob is depicted.

Fig. 5. Encoding an instance of 3-PARTITION into planar graphs G, H .

The problem is known to be strongly NP-complete [15]. We reduce an instance I := (N, B, S) of 3-PARTITION to an 
instance of PROBLEM GGD.

Proposition 21 (Hardness of PROBLEM GGD). The PROBLEM GGD is NP-hard to decide. This result holds even if

(i) the input graphs are embedded in R2, and
(ii) the cost coefficients CE , CV are arbitrary.

Proof. Given an instance I := (N, B, S) of 3-PARTITION, we construct two planar graphs G, H such that the existence of a 
3-PARTITION of S implies GGD(G, H) ≤ τ , otherwise GGD(G, H) > τ .

We now describe the construction of G and H . Each of them will have a certain number of connected components, 
which we call blobs. A blob of size k is a connected block of k vertices {u1, u2, . . . , uk} in the upper row and k vertices 
{l1, l2, . . . , lk} in the lower row. The two rows are separated by distance L, and the consecutive vertices in each row are 
equidistant. The choice of L will be made explicit later on. Except for u1, each vertex u j in the upper row is connected to 
l j−1 and l j in the bottom row, making the blob path-connected. The configuration of such a typical blob and its shorthand 
are depicted in Fig. 4.

We define G as the graph with 3N many blobs G1, G2, . . . , G3N of size a1, a2, . . . , a3N , respectively, placed side-by-side 
so that they do not overlap. Now, H is defined as the graph with N many blobs H1, H2, . . . , HN of size B each placed 
side-by-side so that they do not overlap. Now, G and H are placed side-by-side in a bounding-box of width x and height L, 
where

x = τ

2CV (N + 1)NB
, and L = τ

2CE(N + 1)
.

We remark that appropriately small inter-vertex and inter-blob distances can always be chosen to fit them in the bounding-
box, keeping the length of all the vertical (resp. slanted) edges the same. See Fig. 5 for the configuration of the graphs.

Let us first assume that I is a YES instance, and that {S1, S2, . . . , SN} is a partition of S . A (bijective) matching π ∈
�(G, H) can be defined in the following way. For any i ∈ {1, 2, . . . , N}, if Si = {ai1 , ai2 , ai3 } then the upper and lower 
vertices of the blobs Gi1 , Gi2 , and Gi3 of G are mapped, consecutively, to the corresponding upper and lower vertices of the 
ith blob Hi of H . We argue that Cost(π) ≤ τ . In light of (3), the cost is the total contribution from the following two types:

(a) There are (2NB −3N) many edges in G , whereas there are (2NB −N) many in H . So, there are exactly 2N many vertical 
edges e in H such that π−1(e) = εV . The resulting cost is at most CE · 2N · L.
12
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(b) Since no vertex in the upper row is mapped to a vertex in the lower row and vice versa, we have

|u − π(u)| ≤ x for all u ∈ G.

There are 2(
∑3N

i ai) = 2NB many vertices in G , so the total cost for vertex translation is at most CV · x · 2NB .

As a result, the total cost is

Cost(π) ≤ 2CENL + 2CV NBx = 2CEN
τ

2CE(N + 1)
+ 2CV NB

τ

2CV (N + 1)NB
= τ .

Hence, GGD(G, H) ≤ τ .
For the other direction, we assume that GGD(G, H) ≤ τ , i.e., there is a matching π ∈ �(G, H) such that Cost(π) ≤ τ . We 

observe that π(V G) 
= {εV }. Otherwise, from (3) the cost of π would be

Cost(π) ≥ CEVol(G) + CEVol(H) ≥ CE(4NB − 4N)L = 4CEN(B − 1)
τ

2CE(N + 1)
= 2N(B − 1)τ

N + 1
> τ.

The above volume estimates use the fact that there are (2NB −3N) edges in G and (2NB −N) edges in H , and the length of 
each edge is at least L. Also, the last inequality above is strict because 2N > N+1 for any N > 1. Since this is a contradiction, 
there must be some u0 ∈ V G with π(u0) 
= εV .

Moreover, we claim that π : V G → V H must be a bijection. Let us assume the contrary, i.e., there is u1 ∈ V G such that 
π(u1) = εV . Since there is at least one edge (of length at least L) incident to u1, we then have from Lemma 14,

Cost(π) ≥ CV |u0 − π(u0)| + CE [Vol(H) − Vol(G)] + 2CE L

≥ CV |u0 − π(u0)| + CE · 2N · L + 2CE L

= CV |u0 − π(u0)| + 2CE(N + 1)L

= CV |u0 − π(u0)| + 2CE(N + 1)
τ

2CE(N + 1)

= CV |u0 − π(u0)| + τ .

Since the graphs are non-overlapping, |u0−π(u0)| > 0. Hence, Cost(π) > τ . This is a contradiction, so π must be a bijection. 
Finally, we show that π defines a partition of S by arguing that a blob Gr of G cannot split into two blobs Hs and Ht of H
when mapped by π . If it did, there would an edge e0 of Gr with π(e0) = εE , since the blobs Hs and Ht are not connected. 
This would lead to a contradiction using the exact same argument just presented. Therefore, π defines a partition of the 
blobs of G , so a partition of S . This completes the proof. �
4. Graph mover’s distance (GMD)

We define the Graph Mover’s Distance for two ordered geometric graphs. A geometric graph is called ordered if its vertices 
are ordered or indexed. In that case, we denote the vertex set as a (finite) sequence V G = {ui}mi=1. Let us denote by GO (Rd)

the set of all ordered geometric graphs of Rd . The formulation of the GMD uses the framework known as the earth mover’s 
distance (EMD).

4.1. Earth mover’s distance (EMD)

The EMD is a well-studied distance measure between weighted point sets, with many successful applications in a variety 
of domains; for example, see [16–19]. The idea of the EMD was first conceived by Monge [20] in 1781, in the context 
of transportation theory. The name “earth mover’s distance” was coined only recently, and is well-justified due to the 
following analogy. The first weighted point set can be thought of as piles of earth (dirt) lying on the point sites, with the 
weight of a site indicating the amount of earth; whereas, the other point set as pits of volumes given by the corresponding 
weights. Given that the total amount of earth in the piles equals the total volume of the pits, the EMD computes the least 
(cumulative) cost needed to fill all the pits with earth. Here, a unit of cost corresponds to moving a unit of earth by a unit 
of “ground distance” between the pile and the pit.

The EMD can be cast as a transportation problem on a bipartite graph, which has several efficient implementations, e.g., 
the network simplex algorithm [21,22]. Let the weighted point sets P = {(pi, wpi )}mi=1 and Q = {(q j, wq j )}nj=1 be a set of 
suppliers and a set of consumers, respectively. The weight wpi denotes the total supply of the supplier pi , and wq j the total 
demand of the consumer q j . The matrix [di, j] is the matrix of ground distances, where di, j denotes the cost of transporting 
a unit of supply from pi to q j . We also assume the feasibility condition that the total supply equals the total demand:

m∑
wpi =

n∑
wq j . (5)
i=1 j=1

13
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A flow of supply is given by a matrix [ f i, j] with f i, j denoting the units of supply transported from pi to q j . We want to 
find a flow that minimizes the overall cost

m∑
i=1

n∑
j=1

f i, jdi, j

subject to:

f i, j ≥ 0 for any i = 1, . . . ,m and j = 1, . . . ,n (6)
n∑
j=1

f i, j = wi for any i = 1, . . . ,m (7)

m∑
i=1

f i, j = w j for any j = 1, . . . ,n. (8)

Constraint (6) ensures a flow of units from P to Q , and not vice versa; constraint (7) dictates that a supplier must send all 
its supply—not more or less; constraint (8) guarantees that the demand of every consumer is exactly fulfilled.

The earth mover’s distance (EMD) is then defined by the cost of the optimal flow. A solution always exists, provided 
condition (5) is satisfied. The weights and the ground distances can be chosen to be any non-negative numbers. However, 
we choose them appropriately in order to solve our graph matching problem.

4.2. Defining the GMD

Let G, H ∈ GO (Rd) be two ordered geometric graphs of Rd with V G = {ui}mi=1 and V H = {v j}nj=1. For each i = 1, . . . , m, 
let EG

i denote the (row) m–vector containing the lengths of (ordered) edges incident to the vertex ui of G . More precisely, 
the

kth element of EG
i =

{
|eGi,k|, if eGi,k := (ui,uk) ∈ EG

0, otherwise.

Similarly, for each j = 1, . . . , n, we define EH
j to be the (row) n–vector with the

kth element of EH
j =

{
|eHj,k|, if eHj,k := (v j, vk) ∈ EH

0, otherwise.

In order to formulate the desired instance of the EMD, we take the point sets to be P = {ui}m+1
i=1 and Q = {v j}n+1

j=1 . Here, 
um+1 and vn+1 have been taken to be a dummy supplier and dummy consumer, respectively, to incorporate vertex deletion 
into our GMD framework. The weights on the sites are defined as follows:

wui = 1 for i = 1, . . . ,m and wum+1 = n .

And,

wv j = 1 for j = 1, . . . ,n and wvm+1 =m .

We note that the feasibility condition (5) is satisfied: m + n is the total weight for both P and Q . An instance of the 
transportation problem is depicted in Fig. 6.

Finally, the ground distance from ui to v j is defined by:

di, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CV |ui − v j|+ CE‖EG
i Dm×p − EH

j Dn×p‖1,
if 1 ≤ i ≤m,1 ≤ j ≤ n

CE‖EH
j ‖1, if i =m + 1 and 1 ≤ j ≤ n

CE‖EG
i ‖1, if 1 ≤ i ≤m and j = n + 1

0, otherwise.

Here, p = min{m, n}, the 1–norm of a row vector is denoted by ‖ · ‖1, and D denotes a diagonal matrix with all the diagonal 
entries being 1.
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Fig. 6. The bipartite network used by the GMD is shown for two ordered graphs G, H with vertex sets V G = {u1, u2, u3} and V H = {v1, v2}, respectively. 
The dummy nodes u4 for G and v3 for H , respectively, have been shown in gray. Below each node, the corresponding weights are shown. A particular 
flow has been depicted here. The gray edges do not transport anything. A red edge has a non-zero flow with the transported units shown on them. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 7. For the geometric graph G, H ∈ GO (R2), the GMD is zero. The optimal flow is given by the matching π(u1) = v2, π(u2) = v1, π(u3) = v4, π(u4) =
v3, and π(u5) = v5.

4.3. Metric properties

We can see that the GMD induces a pseudo-metric on the space of ordered geometric graphs GO (Rd). Non-negativity, 
symmetry, and triangle inequality follow from those of the cost matrix [di, j ] defined in the GMD.

In addition, we note that G = H (as ordered graphs) implies that di, j = 0 whenever i = j. The trivial flow, where each 
ui sends its full supply to vi , has a zero cost. So, GMD(G, H) = 0. The GMD does not, however, satisfy the separability 
condition on GO (Rd).

For the graphs G, H as shown in Fig. 7, we have GMD(G, H) = 0. We note that G and H have the following adjacency 
length matrices [EG

i ]i and [EH
j ] j , respectively:⎡

⎢⎢⎢⎢⎣
0 0 0 2

√
2

0 0 2 0
√
2

0 2 0 0 0
2 0 0 0 0√
2

√
2 0 0 0

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

0 0 2 0
√
2

0 0 0 2
√
2

2 0 0 0 0
0 2 0 0 0√
2

√
2 0 0 0

⎤
⎥⎥⎥⎥⎦ .

It can be easily checked that the flow that transports a unit of supply from u1 �→ v2, u2 �→ v1, u3 �→ v4, u4 �→ v3, u5 �→ v5, 
and five units from u6 �→ v6 has total cost zero. So, GMD(G, H) = 0. However, the graphs G and H are not the same 
geometric graph.

One can easily find even simpler configurations for two distinct geometric graphs with a zero GMD—if the graphs are 
allowed to have multiple connected components.

4.4. Computing the GMD

As pointed out earlier, the GMD can be computed as an instance of transportation problem—using, for example, the 
network simplex algorithm. If the graphs have at most n vertices, computing the ground cost matrix [di, j] takes O (n3)-
time. Since the bipartite network has O (n) vertices and O (n2) edges, the simplex algorithm runs with a time complexity of 
O (n3), with a pretty good constant. Overall, the time complexity of the GMD is O (n3).

5. Experimental results

We have implemented the GMD in Python, using network simplex algorithm from the networkx package. We ran a 
pattern retrieval experiment on letter drawings from the IAM Graph Database [12]. The repository provides an extensive 
collection of graphs, both geometric and labeled.

In particular, we performed our experiment on the LETTER database from the repository. The graphs in the database 
represent distorted letter drawings. The database considers only 15 uppercase letters from the English alphabet: A, E, F, H,
15
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Fig. 8. The prototype geometric graph of the letter A is shown on the left. On the right, a (MED) distorted letter A is shown.

Table 2
Empirical result on the LETTER dataset.

correct letter in first k models (%)

Distortion k = 1 k = 3 k = 5

LOW 96.66% 98.93% 99.37%
MED 66.66% 85.37% 91.15%
HIGH 73.73% 90.48% 95.51%

I, K, L, M, N, T, V, W, X, Y, and Z. For each letter, a prototype line drawing has been manually constructed. On the prototypes, 
distortions are applied with three different levels of strengths: LOW, MED, and HIGH, in order to produce 2250 letter graphs 
for each level. Each test letter drawing is a graph with straight-line edges; each node is labeled with its two-dimensional 
coordinates. Since some of the graphs in the dataset were not embedded, we had to compute the intersections of the 
intersecting edges and label them as nodes. The preprocessing guaranteed that all the considered graphs were geometric; a 
prototype and a distorted graph are shown in Fig. 8.

We devised a classifier for these letter drawings using the GMD. For this application, we chose CV = 4.5 and CE = 1
heuristically for best results. For a test letter, we computed its GMD from the 15 prototypes, then sorted the prototypes in 
an increasing order of their distance to the test graph. We then check if the letter generating the test graph is among the 
first k prototypes. For each level of distortion and various values of k, we present the rate at which the correct letter has 
been found in the first k models. A summary of the empirical results has been shown in Table 2. Although the graph edit 
distance (GED) based k-NN classifier still outperforms the GMD by a very small margin, our results have been extremely 
satisfactory. One possible reason why the GMD might fail to correctly classify some of the graphs is that it lacks the 
separability property as a metric.

6. Discussions and future work

We have studied two notions for a similarity measure between geometric graphs. In addition to the metric properties of 
GED and GGD, we also establish tight bounds in order to compare them. Although the distance measures induce equivalent 
metrics on the space of geometric graphs, it is not clear which one is better performant in practical applications. We have 
also shown the hardness of computing the GGD even for planar graphs. This naturally provokes the question of the hardness 
of its polynomial-time approximation. We conjecture that for any α > 1, an α-approximation is also NP-hard, i.e., PROBLEM 
GGD is generally APX -hard. One can also investigate an alternative version of the GED that is algorithmically feasible to 
compute. This can probably be achieved by putting the graphs on a (Euclidean) grid and avoiding redundant edit operations 
in an edit path. It also remains unclear how to adjust the definitions of the proposed distances to incorporate merging and 
splitting of vertices and edges.

We have successfully introduced an efficiently computable and meaningful similarity measure for geometric graphs. 
However, the GMD lacks some of the desirable properties, like separability. It will be interesting to study the exact class of 
geometric graphs for which the GMD is, in fact, a metric.
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