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Topological interfaces crossed by defects and textures of continuous and discrete
point group symmetries in spin-2 Bose-Einstein condensates
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We systematically and analytically construct a set of spinor wave functions representing defects and textures
that continuously penetrate interfaces between coexisting, topologically distinct magnetic phases in a spin-2
Bose-Einstein condensate. These include singular and nonsingular vortices carrying mass or spin circulation that
connect across interfaces between biaxial- and uniaxial nematic, cyclic and ferromagnetic phases, as well as
vortices terminating as monopoles on the interface (“boojums”). The biaxial-nematic and cyclic phases exhibit
discrete polytope symmetries featuring non-Abelian vortices and we investigate a pair of noncommuting line
defects within the context of a topological interface. By numerical simulations, we characterize the emergence
of nontrivial defect core structures, including the formation of composite defects. Our results demonstrate the
potential of spin-2 Bose-Einstein condensates as experimentally accessible platforms for exploring interface
physics, offering a wealth of combinations of continuous and discrete symmetries.
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I. INTRODUCTION

When topologically distinct phases coexist in a contin-
uous and coherent ordered medium, a topological interface
may form at the phase boundary where the different bro-
ken symmetries of their order parameters connect smoothly.
Such interfaces were first discussed in the context of domain
walls in the early universe [1–3], where they may form the
termination points of cosmic strings [4], and later in brane
models in superstring theory [5–7]. They appear universally
across many areas of physics, from the A−B phase boundary
in superfluid liquid 3He [8–13], via atomic Bose-Einstein
condensates (BECs) [14–19], to quantum chromodynamics
[20–22]. The different order-parameter symmetries imply that
the bulk medium on either side of the interface supports
different families of topological defects and textures, which
therefore cannot cross the interface unchanged. Consequently,
defects and textures penetrating through the interface must
either terminate at the interface or continuously transform into
different defects and textures of the corresponding phases.
Due to the ubiquitous nature of topological interfaces, their
study in controlled experiments becomes of general impor-
tance, inspiring the use of laboratory systems as emulators
for interface physics in contexts otherwise not amenable to
experimental observations, such as the simulation of brane-
collision processes [12].
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Topological-interface physics becomes especially intrigu-
ing when the medium on either or both sides of the interface
exhibits discrete polytope point-group order-parameter sym-
metry [23], leading to defects whose charges depend on the
presence of other defects in the system and whose dynamics
is highly constrained [24,25]. Such order-parameter symme-
tries arise in particular phases of spin-2 and spin-3 BECs
[23,26–36], which have consequently been proposed, e.g., as
candidates for quantum-computation applications using non-
Abelian vortex braiding [37].

Optically trapped spinor BECs [38,39], where the internal
spin-degrees of freedom are not frozen out by strong magnetic
fields [40], provide an ideal testing ground for investigat-
ing interface physics with different bulk regions exhibiting
different magnetic phases and defects [16–18]. Topological
interfaces can also form at vortex cores in spinor BECs when
the singularity of the bulk order parameter with one symmetry
is accommodated by filling the defect core with atoms in a
different magnetic phase and symmetry [41], as experimen-
tally realized in spin-1 [42,43] and spin-2 [23] BECs. Here
we consider engineering of spatially extended topological
interfaces between coexisting bulk regions of distinct spin-2
magnetic phases that are analogous to topological bulk inter-
faces studied in high-energy physics, superfluid liquid 3He,
and in spin-1 BECs. Both sides of the interface may then har-
bor defects and textures with continuous and discrete polytope
symmetries that terminate at or cross the interface.

The phase diagrams of spinor BECs [38] exhibit a
rich variety of magnetic phases with different order-
parameter symmetries, supporting different families of topo-
logical defects [44]. These include singular vortices car-
rying both integer [23,30,35,41–43,45–49] and fractional
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[23,30,34–36,41,43,49–53] charges, as well as nonsingular
vortices (2D skyrmions) [42,54–62]—whose corresponding
objects in magnetic solid-state systems have attracted re-
cent interest [63,64]—wall-vortex complexes [65,66], and
monopoles [67–75]. In addition, spinor BECs support 3D
skyrmions [76–83]—topologically nontrivial textures first
proposed in nuclear physics [84]—and knotted solitons
[85,86] with parallels in classical field theories [87–89] and
even magnetic materials [90]. It has recently been theoreti-
cally proposed that these complex topological objects can be
generated in atomic systems through optical excitation [91].

Here we analytically construct spinor wave functions rep-
resenting continuous connections of defects and textures
across topological interfaces in spin-2 BECs and numerically
simulate their core structure for illustrative examples. Rad-
ically different symmetry properties of the magnetic phases
mean that their defects and textures exhibit distinct and gen-
erally incommensurate topologies that can inhibit connections
across the interfaces. We systematically identify and explicitly
construct a set of allowed connections for interfaces between
biaxial nematic (BN), uniaxial nematic (UN), cyclic (C), and
ferromagnetic (FM) phases. These include singular and non-
singular vortices carrying mass circulation as well as spin
vortices. Numerical simulation reveals the appearance of com-
plex defect-core structures, including nonaxisymmetric cores
at the UN-BN interface and composite cores [62] of C-BN
spin vortices. Defects may also terminate at the interface,
either with a vortex-free state on the opposite side, or as
a monopole on the interface, similar to “boojums” on the
A-B phase boundary in superfluid liquid 3He [13,92]. We
demonstrate that monopole solutions exist on C-BN, C-FM,
and UN-BN interfaces as the termination point of singular
vortices, and numerically show the formation of half-quantum
Alice rings [69,75] from singular point defects due to dis-
sipation. With techniques for controlled creation of vortices
in several phases with different internal symmetries having
recently been developed [23], our analytical and numeri-
cal results highlight how spinor-BEC systems are poised as
immediate candidates for the realization of topological inter-
faces. Spin-2 topological interfaces offer the potential even
for non-Abelian defect physics, which we numerically sim-
ulate here by constructing a pair of singular noncommuting
fractional BN vortices that terminate at an interface.

This article is organized as follows: Section II provides a
brief overview of the mean-field theory and magnetic phases
and order-parameter symmetries of spin-2 BECs, as well as
establishes defect nomenclature. In Sec. III, we then present
continuously interpolating spinors across topological inter-
faces and construct interface-crossing defects and textures.
Numerical results are in Sec. IV before concluding remarks
and experimental discussion in Sec. V.

II. SPIN-2 BECs MEAN-FIELD THEORY

In the Gross-Pitaevskii mean-field theory, the spin-2
BEC is described by a five-component wave function � =√
n(ζ2, ζ1, ζ0, ζ−1, ζ−2)T, where n(r) is the condensate den-

sity, which together with the normalized spinor ζ (r) gives the
field in the m = +2,+1, 0,−1,−2 magnetic sublevels. The

Hamiltonian density reads [38,93]

H = H0 + c0

2
n2 + c1

2
n2|〈F̂〉|2 + c2

2
n2|A20|2, (1)

with the single-particle contribution

H0 = h̄2

2M
|∇�|2 +

(
1

2
Mω2r2 − p〈F̂z〉 + q

〈
F̂ 2
z

〉)
n, (2)

where M is the atomic mass and ω is the angular frequency
of the harmonic trap, which we, for simplicity, assume to
be isotropic. The term p = −gμBB is a linear Zeeman shift
arising from a uniform magnetic field B oriented along z,
where g = 1/2 is the Landé factor for F = 2 and μB is the
Bohr magneton. A quadratic Zeeman shift q also arises from
such a magnetic field, and its exact form is obtained by means
of the Breit-Rabi formula [94]. Besides magnetic fields, the
values of q and p can be experimentally controlled by ac Stark
shifts induced by microwaves or lasers [95,96].

Interaction terms in Eq. (1) arise from the three pos-
sible s-wave scattering channels of colliding spin-2 atoms
with scattering lengths a f , corresponding to total angular
momentum f = 0, 2, and 4, respectively. These combine to
form three interactions terms in Eq. (1): First, a contribution
of strength c0 = 4π h̄2(3a4 + 4a2)/7M that depends only on
the atomic density. A second interaction term of strength
c1 = 4π h̄2(a4 − a2)/7M also depends on the magnitude of
the local condensate spin vector 〈F̂〉 = ζ †F̂ζ , constructed
from the vector of spin-2 angular momentum operators F̂ ≡
(F̂x, F̂y, F̂z ). In addition to the density- and spin-dependent
interactions, a third interatomic interaction term arises that is
proportional to

|A20|2 = 1

5

∣∣2ζ2ζ−2 − 2ζ1ζ−1 + ζ 2
0

∣∣2
, (3)

where A20 is the spin-singlet duo amplitude. The strength of
this interaction is c2 = 4π h̄2(4a4 − 10a2 + 7a0)/7M.

We consider magnetic phases as stationary solutions to
the Gross-Pitaevskii energy functional (1) when we ignore
the harmonic trapping potential. The steady-state spinors are
found as optimal points of the mean-field density functional.
These satisfy the general condition δH/δζ ∗

m = 0, i.e.,[
−pF̂z + qF̂ 2

z + c̃0 ζ †ζ + c̃1 〈F̂〉 · F̂ + c̃2

5
(T̂ ζ )† ζ T̂ − μ

]
ζ

= 0, (4)

where c̃0,1,2 = n c0,1,2, μ is the chemical potential, and the
time-reversal operator T̂ is defined by the action (T̂ ζ )m =
(−1)mζ ∗

−m on the spinor components. The definition in Eq. (3)
can then be written A20 = (T̂ ζ )†ζ/

√
5 [33]. Equation (4) gen-

erally results in a homogeneous, nonlinear, algebraic system
for the unknowns ζm [97], which may be solved to find the
stationary states. Spinor-BEC experiments [23,43,61,72,86]
frequently rely on dynamically stable stationary solutions
(i.e., robust with respect to small dynamical perturbations)
that are long-lived on the experimental time scale. A sub-
set of the stationary solutions may also be energetically
(meta)stable, corresponding to local energetic minima.

In the absence of Zeeman shifts (p = q = 0), the uni-
form spin-2 BEC exhibits five distinct magnetic phases, of
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FIG. 1. Spherical-harmonic representations [Eq. (5)] of the magnetic phases of a spin-2 BEC. (a) FM2 and (b) FM1 whose order-parameter
spaces represent spatial rotations (here 〈F̂〉/|〈F̂〉| = ê(0,0,1)). (c) The C phase combines the discrete symmetry of a tetrahedron with the
condensate phase. (d) The UN phase, whose order parameter is given by an unoriented, nematic axis d̂ = ê(0,0,1), together with the condensate
phase. (e) The BN phase combines the discrete symmetry of a square with the phase.

which four also appear as uniform ground states for different
values of the interatomic interactions c0,1,2 [26,38,97]. They
are characterized by the symmetries of the corresponding
order parameter, which are illustratively visualized using a
spherical-harmonics representation of the spinor (see also
Ref. [23] for a detailed discussion),

Z (θ, ϕ) =
2∑

m=−2

ζmY
m
F=2(θ, ϕ), (5)

where Ym
F (θ, ϕ) denotes the spherical harmonic of degree F

and order m. For each phase we state a representative spinor,
from which any other may be reached by application of a
gauge transformation together with a spin rotation, defined by
three Euler angles, such that

ζ → eiτÛ (α, β, γ ) ζ ,

Û (α, β, γ ) = exp(−iF̂zα) exp(−iF̂yβ ) exp(−iF̂zγ ). (6)

The family of states thus generated forms the order-parameter
spaceM of each magnetic phase as a subset of the full G =
U(1) × SO(3) symmetry group of the Hamiltonian density at
zero level shifts.

The spin-2 FM (FM2) phase, exemplified by

ζ FM2 = (1, 0, 0, 0, 0)T, (7)

is characterized by |〈F̂〉| = 2 and |A20|2 = 0. The order-
parameter space MFM2 = SO(3)/Z2 [23,98] is characterized
by a continuous spin-gauge rotation symmetry [Fig. 1(a)]. A
further FM phase with |〈F̂〉| = 1 (FM1), exemplified by

ζ FM1 = (0, 1, 0, 0, 0)T (8)

also forms a stationary state with an MFM1 = SO(3) order-
parameter space [98] similar to the FM phase in spin-1 BECs
[Fig. 1(b)] [42,54,55].

The C phase, exemplified by

ζ C = 1

2

(
1, 0, i

√
2, 0, 1

)T
, (9)

by contrast, has a discrete polytope order-parameter symme-
try [Fig. 1(c)] where the tetrahedral subgroup of rotations
combined with the condensate phase, collectively Tτ,F, gives
rise to the manifoldMC = [SO(3) × U(1)]/Tτ,F [30,99], with
spinors characterized by |〈F̂〉| = 0 as well as |A20|2 = 0. In the

C phase, trios of atoms combine to form a spin-singlet state.
The amplitude of singlet-trio formation reads

A30 = 3
√

6

2

(
ζ 2

1 ζ−2 + ζ 2
−1ζ2

) + ζ0
(
ζ 2

0 − 3ζ1ζ−1 − 6ζ2ζ−2
)
,

(10)

such that for any C spinor, |A30|2 = 2 [38,93].
The remaining two stationary solutions at zero field are

nematic phases with |〈F̂〉| = 0 and |A20|2 = 1/5. In the UN
phase, represented by

ζ UN = (0, 0, 1, 0, 0)T, (11)

the order-parameter manifold isMUN = U(1) × (S2/Z2), i.e.,
parametrized by an unoriented vector, the nematic axis d̂ cor-
responding to a local symmetry axis, and a condensate phase
[99,100] as illustrated in Fig. 1(d). The BN phase exemplified
by

ζ BN = 1√
2

(1, 0, 0, 0, 1)T, (12)

by contrast, exhibits a discrete, fourfold dihedral symme-
try that combines with π shifts of the condensate phase
[Fig. 1(e)], denoted (D4)τ,F. The order-parameter space is thus
MBN = [SO(3) × U(1)]/(D4)τ,F [35,99,100]. In addition to
the different order-parameter symmetry, the two nematic
states can also be distinguished by the spin-singlet trio am-
plitude, where |A30| = 1 in the UN phase and |A30| = 0 for
the BN.

The UN and BN phases compete as the likely ground-state
phase for spin-2 BECs of 87Rb [97,101,102], 85Rb [101], and
23Na [97], though uncertainties overlap with the C phase. The
two nematic phases are energetically degenerate at the mean-
field level for p = q = 0. Beyond mean field, the degeneracy
may be broken by quantum fluctuations through order-by-
disorder processes [100,103], but it can also be lifted already
at the mean-field level [35] through a quadratic level shift.

When p 	= 0 and q 	= 0 in Eq. (2), the expressions for
the magnetic phases as stationary solutions to the Gross-
Pitaevskii energy functional (1) become considerably more
complex. These solutions and their dynamical and energetic
stability have been investigated for both spin-1 and spin-2
BECs [97,104–107]. In particular, the stationary solutions
of the magnetic phases no longer follow the straightforward
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classification and the Zeeman shifts can, e.g., cause the
condensate to adopt the properties of a FM phase even when
nematic or C phases are favored by the interactions, and vice
versa. The magnetic phases are then described by spinors
where each component is a function of the Zeeman shifts and
interatomic interactions, continuously interpolating between
magnetic phases that would exist for p = q = 0.

The symmetries of the order parameter determine the topo-
logical properties of defects and textures [25]. The nontrivial
elements of the first homotopy group π1(M) represent singu-
lar line defects. These include singly and multiply quantized
vortices defined by a winding of the condensate phase τ in
Eq. (6), and also vortices that arise purely from spin rotations
and therefore carry spin circulation but no superfluid mass
current (spin vortices). Mass and spin circulation may also
combine such that a fractional 2πw winding of τ is com-
pensated by a simultaneous spin rotation through 2πσ (about
some symmetry axis of the order parameter). We may thus
denote vortex charges by (w, σ ) whenever these are uniquely
defined [38]. For convenience, vortices with integer w defined
by winding of the condensate phase alone will in the follow-
ing be referred to as phase vortices. Singular vortices with
w = 1/2 are referred to as half-quantum vortices (HQVs)
and appear in the BN phase [35]. By analogy, spin vortices
with w = 0 (hence carrying no mass circulation) and σ = 1/2
are called spin-HQVs and appear in the UN [38], BN [35],
and C phases [30,98]. The C phase also supports 1/3- and
2/3-quantum vortices (i.e., |w| = 1/3 or 2/3) [30,34,98]. Ad-
ditionally, spin-2 phases support nonsingular vortices, which
are textures that carry mass and/or spin circulation. Such vor-
tices are trivial in π1(M), but may be topologically classified
by the second homotopy group π2(M) when the boundary
conditions on the texture are fixed.

The nontrivial elements of π2(M) also correspond to the
topological charges of singular point defects (monopoles)
[25]. The UN phase is the only example of a spin-2 order
parameter manifold where the second homotopy group is non-
trivial [99], and thus supports topologically stable monopoles,
in which the nematic axis forms a radial hedgehog texture,
i.e., d̂ = (cos ϕ sin θ, sin ϕ sin θ, cos θ ), where (θ, ϕ) are the
spherical coordinates centered on the point singularity. De-
spite π2(M) = 0 in the remaining magnetic phases, radial
hedgehog textures can still exist, albeit with at least one as-
sociated line singularity extending away from the monopole.
In the FM phases, these are the generalizations of the spin-1
Dirac monopoles [68,71], where the radial hedgehog appears
in the condensate spin 〈F̂〉, while in the BN and C phases,
the monopole can be formed by a chosen order-parameter
symmetry axis.

III. TOPOLOGICAL INTERFACES AND DEFECT
CONNECTIONS IN SPIN-2 BECs

In a spinor superfluid, magnetic phases with different
order-parameter symmetries can coexist. For example, this
situation arises spontaneously due to energy relaxation of
defect cores [35,41,49,69,108], as also observed in detailed
experiments [23,42,43]. The size of the defect core can then
be understood from the healing lengths arising from the con-
tributions to the interaction energy. There are consequently

three such length scales in the spin-2 BEC,

ξd = �

√
h̄ω

2nc0
, ξF = �

√
h̄ω

2n|c1| , ξa = �

√
h̄ω

2n|c2| , (13)

where � = (h̄/Mω)1/2 is the harmonic oscillator length. These
describe, respectively, the distance over which perturbations
of the superfluid density, condensate spin, and singlet duo am-
plitude heal to the bulk value. Typically, we have ξF , ξa > ξd
in current experimental realizations, allowing the core of a
singular defect to reduce its energy by expanding and filling
with a different superfluid phase [69]. The condensate wave
function then smoothly interpolates between the coexisting
phases in the bulk and the defect core, establishing a topo-
logical interface between them.

An extended topological interface may also be purpose-
fully engineered to create spatially separate bulk regions
with different order-parameter symmetries within the same,
continuous superfluid. This can be achieved through spatial
variation of interaction strengths in the Hamiltonian (1), such
that different regions exhibit the characteristics of different
magnetic phases [16,17]. The s-wave scattering lengths could
be manipulated, e.g., using optical or microwave Feshbach
resonances [109,110]. Alternatively, it is possible to exploit
stationary solutions in the presence of nonvanishing Zeeman
shifts, in which case the BEC with spatially varying p or q
can continuously interpolate between magnetic phases that
would exist for p = q = 0 [18]. Both approaches can result
in stable stationary wave functions that interpolate between
the bulk phases of different order-parameter symmetries for
defects and textures, separated by a coherent topological inter-
face. Here we use these to explicitly construct wave functions
that smoothly connect vortices, other defects or nonsingular
textures in the limiting phases.

From a representative spinor interpolating between chosen
bulk phases, spinor vortices can typically be constructed by
defining how the complex argument χm = Arg(ζm) = kmϕ,
with km ∈ Z, of each component winds as a function of the
azimuthal angle ϕ about the vortex line. Moreover, textures
and defects that occupy several spin components are con-
structed by the symmetry-group transformation of Eq. (6),
where the Euler angles can be spatially dependent. Provided
that a single transformation yields well-defined, single-valued
states in both sides of the interface, a continuous connection
across an interface is generated. Examples of this are shown
in Secs. III A–III D. Similar solutions can also describe filled
vortex cores [41] and composite defects [62] when the in-
terpolation parameter varies with the radial distance from a
singular defect line.

A. Uniaxial to biaxial nematic (UN-BN)

We first focus on stationary spinors satisfying Eq. (4) and
interpolating between UN and BN phases. Since we therefore
require 〈F̂〉 = 0 and constant A20, the five equations in the
steady-state system (4) can be treated as two independent
2 × 2 linear systems corresponding to m = ±2 and m = ±1,
respectively, and a single equation for m = 0 [38]. We choose
to work in the three-component limit with ζ±1 = 0, resulting
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FIG. 2. Spin-singlet duo and trio amplitudes |A20|2 (a) and |A30|2
(b), obtained in Eqs. (15) and (16) as functions of the interpolating
parameter η and the relative phase difference χ . Along χ ≈ 0, η in-
terpolates between the UN and BN phases. Crossover to the C phase
is realized within the regions corresponding to π/2 � χ � 3π/2
and −0.5 � η � 0.9.

in the spinor parametrization

ζ UN−BN = 1
2 (eiχ2

√
1− η, 0, eiχ0

√
2(1+ η), 0, eiχ−2

√
1− η)T,

(14)

where χm are arbitrary phase coefficients that can assume
fixed values or be spatially wound in defects and textures.
Crucially, η ∈ [−1, 1] now forms an interpolating parameter
between UN and BN magnetic phases: for η = 1, only the
ζ0 component is nonzero, representing the familiar UN phase
in Eq. (11), with the nematic axis aligned with the z axis.
Similarly, for η = −1, we retrieve the familiar BN phase in
Eq. (12). However, the interpolating region harbors additional
complexity, revealed by the variation of the spin-singlet duo
and trio amplitudes as a function of η and χm. Calculating
these using Eq. (14) gives

|A20|2 = 1

10
[(1 − η2) cos (χ2 + χ−2 − 2χ0) + 1 + η2],

(15)

|A30|2 = 1 + η

4
[3(η2 − 1) cos(χ2 + χ−2 − 2χ0)

+ η (5η − 8) + 5]. (16)

Hence, we can study the behavior of Eqs. (15) and (16)
in the parameter space (χ, η), where χ = χ2 + χ−2 − 2χ0,
as shown in Fig. 2. First consider χ = 0. We then notice
from the variation of |A30|2 in Fig. 2(b) that instead of a
monotonic growth from the minimum |A30|2 = 0 (BN), to
|A30|2 = 1 (UN), the BN phase reappears around η = 0.5. If
instead χ = π , the C phase arises in the vicinity of η = 0,
where |A20|2 = 0, |A30|2 = 2 and the spinor (14) coincides
with Eq. (9). For all values of χ , the UN and BN limits at
η = ±1 remain unchanged.

The mean-field energy, calculated for a uniform spin-2
BEC in the state (14), reads (c̃0,1,2 = nc0,1,2)

EUN-BN = H[
�UN-BN

] − c̃0

2
= 2q(1 − η) + c̃2

2
|A20|2, (17)

where |A20|2 is given in Eq. (15). The convexity of |A20|2 as
a function of (η, χ ) means that for q = 0, the energy (17) is
minimized along the χ = 0, 2π and η = ±1 edges in Fig. 2(a)
when c̃2 < 0 (the case c̃2 > 0 will be discussed in Sec. III B).

TABLE I. Singular vortex connections across a UN-BN in-
terface, characterized by the phase windings χm in Eq. (14).
Generalizations to multiple quantization are given by k ∈ Z.

UN-BN: Vortices from spinor-component phase winding

UN limit BN limit χ2/ϕ χ0/ϕ χ−2/ϕ

Phase vortex Phase vortex k k k
Vortex-free Phase vortex k 0 k
Phase vortex Vortex-free 0 k 0
Vortex-free Spin vortex −k 0 k
Phase vortex Spin vortex −k k k
Vortex-free Half-quantum vortex 0 0 1
Phase vortex Half-quantum vortex 0 ±1 1

This corresponds to the UN-BN degeneracy at zero level
shifts. In the presence of an external field such that q 	= 0,
the q-dependent contribution (linear in η) in Eq. (17) shifts
the symmetry axis such that the value of η that minimizes
Eq. (17) now depends on q. EUN-BN is minimized in the BN
limit (η = −1) for q � 0, and in the UN limit (η = 1) for
q � 0. The state (14) thus represents a stationary solution such
that one nematic phase is energetically favored over the other
depending on the sign of the quadratic level shift, while also
providing a smooth interpolation between these limits.

Now letting the interpolating parameter η = η(z) vary be-
tween separated bulk regions along the z axis, the solution
provides a smooth UN-BN topological interface. This may
be stabilized by varying q = q(z), such that the BN and UN
phases are favored on either side of the interface. Numeri-
cal examples of such interface engineering are provided in
Sec. IV A. We are now ready to construct vortex states that
cross a UN-BN interface, generated by different azimuthal
phase windings χm. These are summarized in Table I.

Phase vortices penetrating the interface. We first consider
a phase vortex in both UN and BN limits, obtained from
Eqs. (11) and (12), with k winding

ζ UN
pv = exp(ikϕ)ζ UN, ζ BN

pv = exp(ikϕ)ζ BN. (18)

These two solutions continuously connect across the interface
according to the interpolating spinor in Eq. (14) with χ0,±2 =
kϕ 1

ζ UN-BN
pv = eikϕ

2
(D−, 0,

√
2D+, 0,D−)T, (19)

representing a singular, interface-penetrating, k-quantized
phase vortex, carrying mass circulation. Here we have also
introduced the shorthand

D± ≡
√

1 ± η. (20)

Phase vortices terminating at the interface. Phase vortices
may also terminate at the UN-BN interface. Such states are
constructed by choosing χm in Eq. (14) to introduce circula-
tion in one limit of the interface only. For example, the choice

1This is equivalent to choosing τ = kϕ and constant Euler angles
in Eq. (6), acting on a uniform spinor ζ UN-BN on the form Eq. (14)
with χm = 0.
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χ±2 = kϕ, χ0 = 0 yields phase vortices in the BN limit ter-
minating to a vortex-free state in the UN while the spinor
superfluid remains continuous and coherent everywhere,

ζ UN-BN
vf-pv = 1

2 (eikϕD−, 0,
√

2D+, 0, eikϕD−)T. (21)

Conversely, azimuthal winding of the phase χ0 only, i.e., χ0 =
kϕ, χ±2 = 0 results instead in a phase vortex in the UN limit,
and a vortex-free state in the BN,

ζ UN-BN
pv-vf = 1

2 (D−, 0, eikϕ
√

2D+, 0,D−)T. (22)

In addition to describing terminating vortices, Eqs. (21) and
(22) can also parametrize the superfluid UN core of a BN
phase vortex and vice versa, where the interface forms part
of the vortex core structures [23].

The terminating vortices break axisymmetry at the inter-
face. This follows immediately from the χ dependence of
|A30|2 at η = 0 shown in Fig. 2. For Eqs. (21) and (22) with
k = 1, χ = ±2ϕ, respectively, χ takes all values 0 to ±4π on
any closed loop around the vortex. Thus, the termination of a
phase vortex implies the appearance of C-phase regions at the
interface, where D± ≈ 1 in Eq. (19) (see also Sec. IV A).

Connections involving half-quantum vortices. HQVs form
in the BN phase by combining a π winding of the condensate
phase with a compensating spin rotation to keep the wave
function single valued. We can immediately infer from the
order-parameter symmetry shown in Fig. 1(e) that an HQV
can be formed either through a π/2 spin rotation about the
ê(0,0,1) symmetry axis to yield a (1/2, 1/4) vortex, or through
a π spin rotation about ê(1,1,0) resulting in a (1/2, 1/2) vortex.
More generally, vortices with any half-integer quanta of mass
circulation can be constructed in a similar way. (1/2, 1/4)
vortices connecting smoothly to a vortex-free UN limit are
obtained from Eq. (14) by choosing χ2 = χ0 = 0, χ−2 = ϕ

[equivalent to γ = ϕ/4, τ = 2γ in Eq. (6)], to yield

ζ UN-BN
vf-hqv = 1

2 (D−, 0,
√

2D+, 0, eiϕD−)T. (23)

The same BN (1/2, 1/4) vortex can also smoothly connect
to a singly quantized UN phase vortex by instead choosing
χ0 = ±ϕ as the complex argument of the ζ0 component in
Eq. (23).

Connections involving spin vortices. Spinor BECs addition-
ally support the nondissipative flow of spin, which can lead
to vortices carrying spin circulation only: Spin vortices. An
example of a singular case is given by the combination χ±2 =
∓kϕ, χ0 = 0 in Eq. (14), where a BN spin vortex terminates
at the interface, connecting to a vortex-free UN state. This can
equivalently be constructed through the action in Eq. (6), e.g.,
by choosing the winding α = kϕ/2. Both constructions result
in the spinor

ζ UN-BN
vf-sv = 1

2 (e−ikϕD−, 0,
√

2D+, 0, eikϕD−)T. (24)

Note that for k = ±1, the BN limit of Eq. (24) describes a
vortex where the order parameter rotates by π around the
ê(0,0,1) axis as depicted in Fig. 1(e). The vortex is a spin-HQV,
analogous to π disclinations in nematic liquid crystals. Spin
vortices may also penetrate the interface, connecting to a cor-
responding spin vortex in the other phase. In the presence of
a UN-BN interface, these can be obtained by applying Eq. (6)
with α = kϕ/2, and constant β = π/2 to the interpolating

spinor in Eq. (14). The resulting state reads

ζ UN-BN
sv-sv = 1

4

⎛
⎜⎜⎜⎜⎝
e−ikϕ (D− + √

3D+)
0√

6D− − √
2D+

0
eikϕ (D− + √

3D+)

⎞
⎟⎟⎟⎟⎠. (25)

When k = 1, Eq. (25) contains a spin-HQV in the UN limit,
where the nematic director exhibits a radial disgyration in the
x, y plane. In the BN limit, the spin-HQV is instead formed
by a π rotation of the order parameter around the ê(1,0,0) axis
[see Fig. 1(e)] along any closed loop around the vortex line.

Nonsingular textures and monopoles. So far we have
considered only singular line defects. However, the nematic
spin-2 phases can also form nonsingular spin vortices. We
construct a fountain-like texture of the nematic axis d̂ in the
bulk UN phase [cf. Fig. 1(d)]. Starting from Eq. (11), we apply
the transformation (6), where the Euler angles are chosen such
that the nematic axis, d̂ = (cos α sin β, sin α sin β, cos β ),
bends away from the vortex line with increasing radial dis-
tance ρ, i.e., with α = ϕ. The resulting spinor reads

ζ UN =
√

3

8

⎛
⎜⎜⎜⎜⎝

e−2iϕ sin2 β

−e−iϕ sin 2β
1√
6
(1 + 3 cos 2β )
eiϕ sin 2β

e2iϕ sin2 β

⎞
⎟⎟⎟⎟⎠, (26)

and the nonsingular texture is obtained by taking β = β(ρ) to
be a monotonically increasing function of the radial distance
ρ from the vortex line, with β(0) = 0.

Instead applying the same transformation to the BN spinor
(12), however, results in a singular spin vortex, albeit together
with a fountain texture formed by the ê(0,0,1) symmetry axis
[cf. Fig. 1(e)]. The vortex is described by

ζ BN = 1√
8

⎛
⎜⎜⎜⎜⎝
e−2iϕ (cos2 β + 1)

e−iϕ sin 2β√
6 sin2 β

−eiϕ sin 2β

e2iϕ (cos2 β + 1)

⎞
⎟⎟⎟⎟⎠. (27)

Since Eqs. (11) and (12) are exactly the UN and BN limits,
respectively, of the UN-BN interpolating spinor (14) with all
χm = 0, it follows immediately that the nonsingular UN spin
vortex in Eq. (26) can connect smoothly across the interface
to the singular spin vortex in Eq. (27) on the BN side. The
corresponding wavefunction is given by

ζ UN-BN = 1√
2

(D+ζ UN + D−ζ BN), (28)

where D±(z), defined in Eq. (20), parametrize the spatial
interpolation between the bulk regions.

On a topological interface, monopoles may form as termi-
nation points of singular vortex lines, similar to “boojums” in
superfluid liquid 3He [13,92]. The construction is analogous to
that connecting the BN singular spin vortex to the UN nonsin-
gular spin vortex. The spinor is again given by Eqs. (26)–(28),
only now taking β = θ , independent of radial distance to form
the required monopole configuration in the UN limit. In the
BN limit, the spinor still represents a singular spin vortex.
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As the spinor interpolates across the interface, however, this
vortex line now terminates on the UN point defect.

It is also possible for a singular UN vortex to terminate as
a BN monopole, constructed such that the vortex coincides
with the associated line singularity [which always exists since
π2(MBN) = 0]. As in Ref. [35], we construct the monopole
by applying Eq. (6) with α = −γ = ϕ and β = θ to the BN

spinor ζ BN = (1, 0,
√

6, 0, 1)T/
√

8 [itself obtained applying
a β = π/2 rotation to Eq. (12)]. The line singularity is then
aligned with the negative z axis. On a topological interface, a
BN monopole may then be oriented such that the line defect
is “hidden” on the opposite side. For example, constructing
an interpolating spinor on the form (28), where the monopole
forms the BN limit for z > 0 and interpolating to the UN
phase for z < 0, we find the limits

ζ UN =
√

3

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−2iϕ (cos θ cos ϕ + i sin ϕ)2

2e−iϕ sin θ cos ϕ (cos θ cos ϕ + i sin ϕ)
1

2
√

6
(6 sin2 θ cos 2ϕ − 3 cos 2θ − 1)

−2eiϕ sin θ cos ϕ (cos θ cos ϕ − i sin ϕ)

e2iϕ (cos θ cos ϕ − i sin ϕ)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

ζ BN = 1

4
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2e−4iϕ sin4 θ
2 + 3e−2iϕ sin2 θ + 2 cos4 θ

2

e−3iϕ sin θ [e4iϕ (cos θ − 1) − 6e2iϕ cos θ + cos θ + 1]√
3
2 (2 sin2 θ cos 2ϕ + 3 cos 2θ + 1)

2e−iϕ sin θ [cos θ (cos 2ϕ − 3) + i sin 2ϕ]

2e4iϕ sin4 θ
2 + 3e2iϕ sin2 θ + 2 cos4 θ

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

The spinor interpolating between these limits then represents a
UN singular spin vortex, which terminates as a BN monopole
on the interface. The states obtained in Eqs. (25)–(30) are
summarized in Table II. Both examples of nematic spin vor-
tices terminating as monopoles on the UN-BN interface are
simulated numerically in Sec. IV A.

B. Cyclic to nematic (C-UN/BN)

As shown in Sec. III A, the steady-state family of phase-
mixing spinors in Eq. (14) includes a crossover from both
nematic phases to the C phase if we ensure a constant π/2
phase difference between the components ζ0 and ζ±2, equiv-
alent to restricting ourselves to the subset of solutions given

TABLE II. Singular and nonsingular spin vortices and
monopoles connecting across a UN-BN interface, constructed by
azimuthal dependence of Euler angles α, γ (given as multiples of the
azimuthal angle ϕ), and β (given as a multiple of the polar angle θ

or, for nonsingular vortices, as a monotonically increasing function
of the transverse radius ρ), with τ = 0.

UN-BN: Vortices, textures and monopoles from Euler angles

UN limit BN limit α/ϕ γ /ϕ β

Spin half-quantum
vortex

Spin half-quantum
vortex

1/2 0 π/2

Nonsingular spin
vortex

Spin vortex 1 0 β(ρ )

Monopole Spin vortex 1 0 θ

Spin vortex Monopole 1 −1 θ

by

ζ C−UN/BN

= 1
2 (eiχ2

√
1 − η, 0, ieiχ0

√
2(1 + η), 0, eiχ−2

√
1 − η)T,

(31)

where χ2 + χ−2 − 2χ0 = 0. Thus, the C spinor in Eq. (9),
with tetrahedral symmetry combined with the condensate
phase, is obtained for η = 0. Conversely, when η = ±1, we
once again retrieve UN or BN states, respectively. The uni-
form mean-field energy of ζ C−UN/BN in Eq. (31) reads

EC-UN/BN = 2q(1 − η) + c̃2

10
η2, (32)

and is minimized by the value η = 10q/c̃2 when c̃2 > 0, i.e.,
we now have a q-dependent interpolating parameter.

We can then construct interface solutions interpolating be-
tween C and UN/BN magnetic phases for |q| � c̃2/10, as
numerically demonstrated in Sec. IV C. We focus here on a
C-BN interface only, where the Zeeman shift q varies spatially
from q = 0 (C) to q = −c̃2/10 (BN).

Phase and spin vortices penetrating the interface. The
defect connections involving phase and spin vortices dis-
cussed in Sec. III A for the UN-BN case are retrieved
here with the simple replacement rule D+ → iD+ in
Eqs. (19), (24), and (25), where the C limit is given by
D± = 1. For example, spin vortices in both C and BN phases
connecting across the interface are given by the wave function

ζ C-BN
sv-sv = 1

2 (e−ikϕD−, 0, i
√

2D+, 0, eikϕD−)T, (33)

obtained from the interpolating spinor in Eq. (31) by choos-
ing χ±2 = ∓kϕ, χ0 = 0. For k = 1, both limits represent
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TABLE III. Vortex connections across a C-UN/BN interface,
characterized by the phase windings χm in Eq. (31).

C-UN/BN: Vortices from spinor-component phase winding

C/BN limits UN limit χ2/ϕ χ0/ϕ χ−2/ϕ

Phase vortex Phase vortex k k k
Spin vortex Vortex-free −k 0 k

spin-HQVs. The vortex connections across a C-BN interface
constructed from the phase windings χm are represented in
Table III. Note that, despite the similar forms of Eqs. (14) and
(31), solutions with χ2 + χ−2 − 2χ0 	= 0 in Eq. (31) do not
produce well-defined defect states in the C limit.

The symmetries of the C and BN order parameters also
allow a further connection between quantized spin vortices,
distinct from Eq. (33). We now construct the vortex state
from spin rotations about the ê(1,1,0) = (ê(1,0,0) + ê(0,1,0))/

√
2

in Fig. 1(c) and 1(e), given by the operator2

Û (ê(1,1,0), δ) = exp

(
−i

F̂x + F̂y√
2

δ

)
, (34)

in the axis-angle representation. Whenever δ winds by an
integer multiple of 2π on a closed loop around the vortex
line, this defines a spin vortex with integer quantization in
both C and BN phases. Applying Eq. (34) with δ = ϕ to the
interpolating spinor ζ C-BN [Eq. (31) with χm = 0] leads to a
spinor of the form of Eq. (28) with D+ → iD+ and

ζ UN
sv =

√
3

8

⎛
⎜⎜⎜⎜⎜⎝

−i sin2 ϕ

−e− iπ
4 sin 2ϕ

1√
6
(1 + 3 cos 2ϕ)

e
iπ
4 sin 2ϕ

i sin2 ϕ

⎞
⎟⎟⎟⎟⎟⎠, ζ BN

sv = 1√
2

⎛
⎜⎜⎜⎜⎝

cos ϕ

e
iπ
4 sin ϕ

0
e

3iπ
4 sin ϕ

cos ϕ

⎞
⎟⎟⎟⎟⎠.

(35)

This state corresponds to singular, singly quantized spin vor-
tices in all C, UN, and BN limits, and thus in particular
represent a continuous connection between C and BN phases.

Nonsingular textures and monopoles. Line defects that
terminate as monopoles or connect to nonsingular nematic
textures in the UN limit can similarly be defined through con-
structions paralleling those discussed in Sec. III A, with the
replacement D+ → iD+. The states thus obtained, together
with the connecting spin vortices given by Eq. (35), are sum-
marized in Table IV.

C. Cyclic to ferromagnetic (C-FM)

Thus far, we have considered interfaces that can be induced
by a spatially varying quadratic Zeeman shift q. Now turn-
ing our attention to an interface between C and FM phases,
we consider instead engineering of a linear Zeeman shift p.
When the longitudinal magnetization is allowed to adapt, p

2The same spin rotation can also be written on the form of Eq. (6)
with Euler angles α = −γ = π/4, β = ϕ. This is, however, less
intuitively instructive here than the axis-angle representation.

TABLE IV. Spin vortices and monopoles connecting across a
C-UN/BN interface, constructed by azimuthal dependence of Euler
angles α, γ (given as multiples of the azimuthal angle ϕ), and β

(given as a multiple of the polar angle θ or, for nonsingular vortices,
as a monotonically increasing function of the transverse radius ρ),
with τ = 0.

C-UN/BN: Vortices, textures and monopoles from Euler angles

C/BN limits UN limit α/ϕ γ /ϕ β

Spin vortex Spin vortex α = π

4 γ = −α kϕ
Spin vortex Nonsingular spin vortex 1 0 β(ρ )
Spin vortex Monopole 1 0 θ

can stabilize population imbalances, inducing net longitudi-
nal magnetization, and can act as an interpolation parameter,
similarly to the spin-1 case [18]. A topological interface can
be formed by a spatially inhomogeneous p even when the
total magnetization is conserved. We consider states for which
〈F̂〉 = (0, 0, 〈F̂z〉)T and ζ0 = 0, resulting in distinct families
of interpolating spinors satisfying Eq. (4) and the following
(mutually exclusive) conditions:

ζ2ζ1 = ζ−1ζ−2 = 0, (36)

ζ1 = ζ−1 = 0 or ζ2 = ζ−2 = 0. (37)

We defer Eq. (37) to Sec. III D, and concentrate on spinors
satisfying Eq. (36). We then obtain a one-parameter family of
steady-state spinors interpolating between C and FM phases,

ζ C-FM = 1√
3

(eiχ2
√

1 + η, 0, 0, eiχ−1
√

2 − η, 0)T, (38)

where the interpolating parameter η = 〈F̂z〉. For η = 0,
Eq. (31) reduces to the C limit

ζ C = 1√
3

(1, 0, 0,
√

2, 0)T, (39)

which is related to Eq. (9) via a spinor rotation. For η = −1
and η = 2, we obtain the FM1 and FM2 limits with |〈F̂〉| = 1
and |〈F̂〉| = 2, respectively. Since |A20|2 = 0 for all η, the
uniform mean-field energy (1) of ζ C-FM depends only on η

and is independent of the phases χ2, χ−1,

EC-FM = 2q − (p− q) η + c̃1

2
η2. (40)

It is minimized when η = (p− q)/c̃1 for c̃1 > 0. We can then
construct a C-FM interface in Eq. (38) for q = 0 by letting p
interpolate from p = −c̃1 (FM1) or p = 2c̃1 (FM2) to p = 0
(C). Alternatively, when p = q = 0 in Eq. (40), the C phase
is favored for c̃1 > 0 and FM2 for c̃1 < 0, The interface in
Eq. (38) may therefore also be formed by a spatially varying
c̃1. These are numerically examined in Sec. IV D.

Phase and spin vortices penetrating the interface. As in
Secs. III A and III B, the vortices connecting C and FM mag-
netic phases are constructed by windings of χ2 and χ−1 in
Eq. (38), where χ2 = χ−1 = kϕ results in phase vortices in
both C and FM limits, while χ2 = −2kϕ, χ−1 = kϕ yields a
spin vortex (in C) connecting to a phase vortex (in FM).
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TABLE V. Singular vortex connections across a C-FM interface,
characterized by the phase windings χm in Eq. (38).

C-FM: Vortices from spinor-component phase winding

C limit FM2 limit χ2/ϕ χ−1/ϕ

Phase vortex Phase vortex k k
Spin vortex Phase vortex −2k k
1/3-vortex Phase vortex 1 0
2/3-vortex Vortex-free 0 1

C limit FM1 limit χ2/ϕ χ−1/ϕ

Phase vortex Phase vortex k k
Spin vortex Phase vortex −2k k
1/3-vortex Vortex-free 1 0
2/3-vortex Phase vortex 0 1

Connections involving fractional vortices. Introducing
winding of the complex argument in only one of the spinor
components in Eq. (38) results in the vortex states (for
χ2 = ϕ, χ−1 = 0, and χ2 = 0, χ−1 = ϕ)

ζ C-FM
1
3

= 1√
3

(eiϕD2, 0, 0,D−1, 0)T, (41)

ζ C-FM
2
3

= 1√
3

(D2, 0, 0, eiϕD−1, 0)T, (42)

with D±m ≡ √|m − 1| ± η. These correspond to τ =
ϕ/3, γ = −τ for Eq. (41) (1/3-vortex) and τ = 2ϕ/3, γ =
τ/2 for Eq. (42) (2/3-vortex), when expressed using Eq. (6)
[30,34,111]. Since mass circulation is determined by τ , the
C limit of Eqs. (41) and (42) represent vortices with 1/3 and
2/3 quanta of circulation, respectively. Due to the spin-gauge
symmetry of the FM phases, these states connect to phase
vortices or vortex-free states in the FM limit, resulting in
different mass circulation between the magnetic phases.
Specifically, Eq. (41) represents an interpolating solution
from a singly quantized phase vortex (FM2) to a vortex-free
state (FM1) via a (1/3,−1/3) vortex (C), and Eq. (42)
from a vortex-free state (FM2) to a singly quantized phase
vortex (FM1) via a (2/3, 1/3) vortex (C). The C-FM vortex
connections are summarized in Table V.

Nonsingular textures and monopoles. By considering
Eq. (6), we obtain the interpolating solutions determined by
the symmetry group G acting on Eq. (38)

ζ C-FM = 1√
3

(
D2ζ

FM+
2 + D−1ζ

FM−
1

)
, (43)

where ζ FM±
1,2 represent the parametrizations of the states with

Fz = ±1, 2

ζ FM+
2 = ei(τ−2γ )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−2iα cos4 β

2

2e−iα cos3 β

2 sin β

2√
6 cos2 β

2 sin2 β

2

2eiα cos β

2 sin3 β

2

e2iα sin4 β

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (44)

ζ FM−
1 = ei(τ+γ )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2e−2iα cos β

2 sin3 β

2

e−iα sin2 β

2

(
3 cos2 β

2 − sin2 β

2

)
√

6
(
cos β

2 sin3 β

2 − cos3 β

2 sin β

2

)
eiα cos2 β

2

(
cos2 β

2 − 3 sin2 β

2

)
2e2iα cos3 β

2 sin β

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (45)

In the FM phases, angular momentum can be carried by
nonsingular (coreless) vortices. The best known examples ex-
hibit a fountain-like spin texture where the spin density aligns
with ẑ at ρ = 0, and tilts away as ρ increases, corresponding
to a monotonically increasing Euler angle β = β(ρ). In the
FM2 case, the order parameter is kept nonsingular everywhere
by any choice of phase and Euler angles such that

τ − 2γ = ±2α = ±2ϕ, (46)

whereas the FM1 case requires

τ + γ = ±α = ±ϕ. (47)

Substituting these into Eqs. (44) and (45) results in nonsingu-
lar FM vortices connecting across the interface to singular C
vortices. The latter include phase (γ = 0), spin (τ = 0), and
fractional (τ = ϕ/3 and 2ϕ/3) vortices.

Moreover, analogously to spin-1 BECs [16,68], the FM1,2

generalizations of the Dirac monopoles can be defined by
taking β = θ in Eqs. (44) and (45). The condensate phase and
the remaining Euler angles are chosen according to Eq. (46)
for FM2 and Eq. (47) for FM1. This yields the characteristic
hedgehog texture of 〈F̂〉, embedding a singular vortex line ter-
minating on the monopole. Similarly to nonsingular vortices,
FM2 Dirac monopoles can connect continuously to phase,
spin, and fractional vortices in the C limit.

All interpolating spinors constructed in this way from
Eqs. (43)–(45) are summarized in Table VI for the C-FM
interfaces, with a discussion of the analogous constructions
for a FM-BN interface to follow in Sec. III D.

D. Ferromagnetic to biaxial nematic (FM-BN)

We now return to the steady-state spinors with zero
transverse magnetization (and arbitrary longitudinal magne-
tization) that satisfy Eq. (37). These can form solutions that
interpolate between the FM2 and BN phases,

ζ FM2−BN = 1√
2

(eiχ2
√

1 + η, 0, 0, 0, eiχ−2
√

1 − η)T, (48)

where η = 〈F̂z〉/2, providing the BN phase at η = 0, and FM2

at η = ±1. The uniform mean-field energy of Eq. (48) reads

EFM2-BN = 4q − 2pη +
(

2c̃1 − c̃2

10

)
η2 + c̃2

10
, (49)

and is minimized by η = p/(2c̃1 − c̃2/10), provided that
the spin-dependent and spin-singlet interactions satisfy c̃1 �
c̃2/20 at fixed p, q. We construct a topological interface be-
tween the FM2 and BN phases in Eq. (48) with a linear
Zeeman shift varying spatially between p = ±(2c̃1 − c̃2/10)
(FM2), and p = 0 (BN). Additionally, in the absence of Zee-
man shifts, Eq. (49) shows that the BN phase is energetically
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TABLE VI. Singular and nonsingular vortices and monopoles
connecting across a C-FM interface constructed through spatial de-
pendent τ , α, and γ (given as multiples of the azimuthal angle ϕ),
and β (given as a multiple of the polar angle θ or, for nonsingular
vortices, as a monotonically increasing function of the transverse
radius ρ).

C-FM: Vortices, textures and monopoles from Euler angles

C limit FM2 limit τ/ϕ α/ϕ γ /ϕ β

Phase vortex Nonsingular vortex 2 1 0 β(ρ )
Spin vortex Nonsingular vortex 0 1 ±1 β(ρ )
2/3-vortex Nonsingular vortex 2/3 1 -2/3, 4/3 β(ρ )
Phase vortex Dirac monopole 2 1 0 θ

Spin vortex Dirac monopole 0 1 ±1 θ

2/3-vortex Dirac monopole 2/3 1 -2/3, 4/3 θ

C limit FM1 limit τ/ϕ α/ϕ γ /ϕ β

Phase vortex Nonsingular vortex 1 1 0 β(ρ )
Spin vortex Nonsingular vortex 0 1 ±1 β(ρ )
1/3-vortex Nonsingular vortex 1/3 1 -4/3, 2/3 β(ρ )
Phase vortex Dirac monopole 1 1 0 θ

Spin vortex Dirac monopole 0 1 ±1 θ

1/3-vortex Dirac monopole 1/3 1 -4/3, 2/3 θ

favored for c̃1 > c̃2/20, and the FM2 limit otherwise. Thus,
FM-BN interfaces are also obtained with spatially varying c̃1.
These are numerically illustrated in Sec. IV E.

Connections among phase, spin, and half-quantum vor-
tices. The spin-gauge symmetry of the FM2 limits in Eq. (48)
allows further varieties of vortex connections, identified by
combinations of winding of the phase coefficients χ±2. The
cases of interest here read

ζ FM2−BN
pv-sv = 1√

2
(e−ikϕD+, 0, 0, 0, eikϕD−)T, (50)

ζ
FM2−BN
pv-hqv = 1√

2
(D+, 0, 0, 0, eiϕD−)T, (51)

corresponding to χ±2 = ∓kϕ, and χ2 = 0, χ−2 = ϕ, where
D± is defined in Eq. (20). Equation (50) yields phase vortices
in the FM2 limits (D+ = 0 or D− = 0), connecting to a spin
vortex in the BN (D± = 1), identified by γ = ϕ/2 only. In
Eq. (51), fractional (1/2, 1/4) BN vortex connects to a vortex-
free state or phase-vortex in the FM2. The vortex connections
identified through winding of χ±2 are shown in Table VII.

TABLE VII. Singular vortex connections across a FM2-BN in-
terface, characterized by the phase windings χm in Eq. (48).

FM-BN: Vortices from spinor-component phase winding

FM2 limit BN limit χ2/ϕ χ−2/ϕ

Phase vortex Phase vortex k k
Phase vortex Spin vortex −k k
Phase vortex Half-quantum vortex 1 0
Vortex-free Half-quantum vortex 0 1

TABLE VIII. Singular and nonsingular vortices and monopoles
connecting across a FM2-BN interface, constructed through spatial
dependent τ , α, and γ (given as multiples of the azimuthal angle ϕ),
and β (given as a multiple of the polar angle θ or, for nonsingular
vortices, as a monotonically increasing function of the transverse
radius ρ).

FM-BN: Vortices, textures and monopoles from Euler angles

FM2 limit BN limit τ/ϕ α/ϕ γ /ϕ β

Nonsingular vortex Phase vortex 2 1 0 β(ρ )
Nonsingular spin vortex Spin vortex 0 1 ±1 β(ρ )
Nonsingular vortex Half-quantum

vortex
1/2 1 -3/4 β(ρ )

Dirac monopole Phase vortex 2 1 0 θ

Dirac monopole Spin vortex 0 1 ±1 θ

Dirac monopole Half-quantum
vortex

1/2 1 -3/4 θ

Nonsingular textures and monopoles. Applying Eq. (6) to
Eq. (48) yields

ζ FM2−BN = 1√
2

(
D+ζ FM+

2 + D−ζ FM−
2

)
, (52)

where ζ FM+
2 is defined in Eq. (44), and ζ FM−

2 is similarly
obtained by applying Eq. (6) to ζ = (0, 0, 0, 0, 1)T. Following
the procedure outlined in Sec. III C, we can construct spinors
representing FM nonsingular vortices connecting to singular
BN vortices, and Dirac monopoles that form the termination
point of vortices at the FM-BN interface. By choosing the
condensate phase and Euler angles as in Eq. (46), we obtain
states of the form (52) with the FM2 limits

ζ FM+
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−4iϕ cos4 β

2

2e−3iϕ cos3 β

2 sin β

2√
6e−2iϕ cos2 β

2 sin2 β

2

2e−iϕ sin3 β

2 cos β

2

sin4 β

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (53)

ζ FM−
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−4iϕ sin4 β

2

−2e−3iϕ sin3 β

2 cos β

2√
6e−2iϕ cos2 β

2 sin2 β

2

−2e−iϕ cos3 β

2 sin β

2

cos4 β

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (54)

In the BN limit, D± = 1 in Eq. (52), the spinor yields
phase-, spin-, and HQVs, depending on the choice of winding
τ = 2, 0, 1/2 respectively. For example, when β = θ , ζ FM+

2 ,
and ζ FM−

2 represent a FM2 monopole with an associated line
singularity along z > 0 and z < 0, respectively. The interpo-
lating spinor then connects the monopole to a singular vortex
in the BN limit. We summarize the interpolating states ob-
tained in this manner in Table VIII.

Non-Abelian vortex pair at the interface. The BN and
C magnetic phases support non-Abelian vortices. The BN
(1/2, 1/4) and (1/2, 1/2) vortices belong to different conju-
gacy classes and do not commute [35]. A spinor representing
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parallel (1/2, 1/4) and (1/2, 1/2) vortices terminating on the
FM2-BN interface can be constructed starting from Eq. (51),
where the azimuthal angle ϕ = ϕ1 determines the (1/2, 1/4)
vortex line. When the (1/2, 1/2) vortex is added, the trans-
formations of the BN order parameter that correspond to the
spin-rotation charges of the vortex lines combine nontrivially.
For a pure BN condensate, this vortex combination was con-
structed in Ref. [35] (with technical details in its Supplemental
Material). Applying the same construction to Eq. (51) results
in an interface spinor on the form (52), with the FM±

2 limits
given by

ζ FM+
2 = ei

ϕ2
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos4 ϕ2

4
1
2e

i π
4 ei

ϕ1
4 sin ϕ2

2

(
1 + cos ϕ2

2

)
i
√

3
8e

i ϕ1
2 sin2 ϕ2

2

1
2e

i 3π
4 ei

3ϕ1
4 sin ϕ2

2

(
1 − cos ϕ2

2

)
−eiϕ1 sin4 ϕ2

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (55)

ζ FM−
2 = ei

ϕ2
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sin4 ϕ2

4
1
2e

i π
4 ei

ϕ1
4 sin ϕ2

2

(
1 − cos ϕ2

2

)
−i

√
3
8e

i ϕ1
2 sin2 ϕ2

2

1
2e

i 3π
4 ei

3ϕ1
4 sin ϕ2

2

(
1 + cos ϕ2

2

)
eiϕ1 cos4 ϕ2

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (56)

where ϕ2 is the azimuthal angle determining the (1/2, 1/2)
vortex line. Note, however, that this construction yields a
well-defined defect state only in the BN limit. The addition
of the (1/2, 1/2) vortex results in a discontinuous semiplane
at ϕ2 = 0, where the FM2 order parameter jumps from Fz = 2
to Fz = −2. Despite this, Eqs. (55) and (56) approximate the
desired defect combination and the discontinuity corresponds
only to a rapidly relaxing excitation, as illustrated by numeri-
cal simulation in Sec. IV E.

IV. NUMERICAL SIMULATIONS OF CORE STRUCTURES

We study the dynamics and energy relaxation for il-
lustrative examples of interface-crossing defect states, as
constructed in Sec. III, by numerically propagating the cou-
pled Gross-Pitaevskii equations derived from the Hamiltonian
density (1) using a split-step method [112]. Simulations
are performed on a 1283-point grid, and we choose 87Rb
interaction parameters [101] with Nc0 = 1.32 × 104 h̄ω�3

(corresponding to N = 2 × 105 atoms in an ω = 2π ×
130 Hz trap). The UN-BN and C-BN topological interfaces
are stabilized through spatial variations of level shifts, while
the C-FM and the FM2-BN interfaces by spatially varying
the interaction strength c1 along the z direction. A weak
phenomenological damping, t → (1 − iν) t with ν ≈ 10−2,
accounts for dissipation in time-evolution simulations. Energy
relaxation is determined using imaginary-time propagation.

A. Phase vortex crossing the UN-BN interface

As our first example of evolution of interface-crossing
defects, we consider a singly quantized phase vortex that
perforates the UN-BN topological interface. The continuously

FIG. 3. Complex-time evolution of singly quantized phase vor-
tices connecting across the UN-BN interface. (a) Longitudinal cut
of |A30|2 and spherical harmonics in the z, x plane, showing the
vortex core structure of two vortices terminating at the interface that
originate from an initial line at ρ = 0. The locations of the two cores
are indicated. (b) Transverse cuts of |A30|2 and spherical harmonics
at both sides of the interface, where the filled core structures lead to
a mixture of phases including UN (|A30|2 = 1), C (|A30|2 = 2), and
BN (|A30|2 = 0). The C regions penetrate the interface as illustrated
by red isosurfaces at |A30|2 = 2.

interpolating initial state is given by Eq. (19), with k = 1 and
η = η(z) reaching D− = 0 for z > ξa, and D+ = 0 for z <

−ξa. The interface is stabilized by choosing the quadratic level
shift such that q = ±|qmax|, with qmax = 0.1 h̄ω, away from
the interface at z = 0, around which q interpolates smoothly
over the region smaller than the singlet healing length ξa.

Figure 3(a) shows the resulting vortex state after time
propagation to t = 100 ω−1. An azimuthal instability at the
interface results in a local separation of the vortex lines,
which terminate at displaced points on the interface within
an extended core region whose size is determined by ξa and
where the UN, BN and C phases mix [Fig. 3(b)]. On the line
singularity itself, the vortex on the BN side of the interface
fills with the UN phase, while on the UN side, the singularity
is accommodated by excitation to the BN superfluid.

B. Singular vortices terminating as monopoles on the UN-BN
interface

In Sec. III A, we constructed spinors representing singular
vortices terminating as monopoles on the UN-BN interface.
Here we numerically simulate their energy relaxation at zero
Zeeman shifts to reveal the dissipative deformation of the
defect core. In the analogous spin-1 case, an isolated nematic
point-defect core is energetically unstable against deformation
into a singular HQV ring [69,75], called an Alice ring in
analogy with similar objects in high-energy physics.

We first consider a (0,1) spin vortex in the BN phase along
the negative z axis terminating as a UN monopole on the inter-
face at the origin. The initial state is given by Eqs. (26)–(28)
with β = θ and the parameter D±(z) chosen such that D− = 0
for z > ξa, and D+ = 0 for z < −ξa. The spin vortex rapidly
develops a UN superfluid core, reducing its energy. However,
the point defect cannot do the same without deforming to a
vortex ring due to the “hairy ball” theorem [69]. This happens
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FIG. 4. Energy relaxation of spin vortices terminating as
monopoles on the UN-BN interface. [(a), (b)] A BN spin vortex ter-
minating as a UN monopole. Cuts of |A30|2 and spherical harmonics
show the UN monopole for z > 0 attached to a vortex for z < 0 in the
BN phase. [(c), (d)] Analogous representation for an initial singular
UN spin vortex in z < 0 terminating as a BN monopole in z > 0.
Energy relaxation leads to Alice rings at the interface, illustrated by
isosurfaces at |A30|2 = 1/2 and longitudinal cuts of |A30|2. In both
(b) and (d) the spherical harmonics show the nematic hedgehog and
the continuous winding of the order parameter around the spin-HQV
rings.

within one trap period of imaginary-time evolution, shown in
Figs. 4(a) and 4(b). The ring appears parallel to the interface
and encircles the BN spin vortex around its termination point.
It is readily identified as a (0, 1/2) BN spin-HQV (a “spin-
Alice ring” [35]). The BEC away from the defect core retains
the topological asymptotics of the point defect.

As outlined in Sec. III A, we may also construct a spinor
where the roles of the BN and UN regions are switched, such
that a UN spin vortex terminates as a BN monopole on the
interface, forming a different boojum. The initial state has the
form (28), with the single-phase limits Eqs. (29) and (30).
The numerics in this case leads to a more complex geometry
of an Alice-ring threaded by a pair of spin-HQVs, shown in
Fig. 4(c). Energy relaxation causes the core of the UN spin
vortex (here appearing in z < 0), initially connected to the
monopole, to develop a composite-defect structure with a BN
outer core, shown in Fig. 4(d).

C. Spin vortices crossing the C-BN interface

We can also form interfaces using interpolating solutions
for energetically excited states that decay due to energy
relaxation when they exhibit sufficient dynamical stability.
A topological interface between C and BN phases for the

FIG. 5. Complex-time evolution of spin-vortices penetrating a
C-BN interface. (a) Spin-HQV crossing the interface. Transverse
cuts of |A30|2 on both sides of the interface together with the
spherical-harmonic representation of the order parameter show a
UN core, highlighted by the isosurface |A30|2 = 1. (b) Singly quan-
tized spin vortices connecting across the interface developing a
composite-defect structure with FM outer core, shown by |〈F̂〉| on
transverse cuts on both C and BN sides and isosurface |〈F̂〉| = 1.
The spherical-harmonics representation shows the spin rotation of
the order parameter, defined in Eq. (34), about the ê(1,0,0) axis.

parameters of 87Rb clearly represents such a case. Similarly
to recent experimental observations [23], the C-BN interface
relaxes into a uniform BN state over timescales sufficiently
slower than the relevant vortex core dynamics, allowing for
characterizations of vortex stability properties. We consider
the C-BN interpolating spinor in Eq. (31) when c2 < 0. In the
numerics we take q(z) such that q = −0.1 h̄ω for z < −ξa,
and q = 0 for z > ξa, continuously interpolating between the
two values.

The BN and C order parameters allow for different spin
vortices to connect across the topological interface, as shown
in Sec. III B and summarized in Tables III and IV. We examine
a spin-HQV of Eq. (33) that penetrates the interface, repre-
sented by the spatially dependent D±(z), such that D+ = 0 for
z < −ξa, and D± = 1 for z > ξa. The dynamics is shown in
Fig. 5(a), where the spherical-harmonics representation after
two trap periods highlights the characteristic spin winding
around z on both sides of the interface.

For singly quantized spin vortices given by Eq. (35),
dissipation rapidly develops a composite vortex core, charac-
terized by a FM cylindrical structure across the interface and
illustrated by an isosurface at |〈F̂〉| = 1 in Fig. 5(b). This con-
figuration is unstable and eventually decays into vortices with
FM2 cores. Interestingly, in a pure BN phase, the same vortex
instead develops a FM1 core, highlighting how the presence
of the interface can strongly influence core dissipation.

D. Fractional and nonsingular vortices at the C-FM interface

The interface between C and FM2 phases allows the
smooth connection of fractionally quantized vortices with sin-
gular and nonsingular vortices as well as vortex-free states on
the FM2 side (Sec. III C and Tables V and VI). We simulate
the dynamics of two example defect states: a C (1/3,−1/3)
vortex connecting to a singly quantized FM2 vortex, and a C
(2/3, 1/3) vortex connecting to a vortex-free FM2 state.
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FIG. 6. Defect-core structures after complex-time evolution of
initial configurations containing a fractional vortex on the C side
of a C-FM2 interface. Transverse cuts of |〈F̂〉| on both sides of the
interface are shown together with the spherical-harmonic represen-
tation of the order parameter. (a) (1/3, −1/3) vortex in the C phase
connecting to a singly quantized FM2 phase vortex, forming a FM1

core that penetrates the interface, as highlighted by the isosurface
|〈F̂〉| = 1. (b) (2/3, 1/3) vortex in the C phase terminating at the
interface. The FM2 phase penetrates the interface, forming the core
of the C vortex.

The initial spinor wave functions are given by Eq. (41)
in the former example, and (42) in the latter, with spatially
dependent D±m(z) interpolating between D2 = 1,D−1 = √

2
for z < −ξF , and D−1 = 0 for z > ξF . For our numerical
simulation, we stabilize the interface by introducing a sign-
changing spin-dependent interaction c1, such that c1 > 0 on
the C side, assumed for z < −ξF , and c1 < 0 on the FM side
for z > ξF .

Figure 6 shows the core structures emerging after approx-
imately ten trap periods of complex-time evolution. The spin
magnitude as the overlaid spherical-harmonics representation
of the order parameter show that the core of the (1/3,−1/3)
vortex [Fig. 6(a)] fills with the FM1 phase, extending also
throughout the FM2 region to form the outer core of a com-
posite defect. By contrast, the (2/3, 1/3) vortex forms a FM2

core that smoothly connects to a vortex-free state on the FM2

side of the interface [Fig. 6(b)].
As an additional illustrative example, we also consider

a singular, doubly quantized C phase vortex connecting to
a nonsingular vortex in the FM2 limit. This state was con-
structed in Eq. (43), choosing β = β(ρ) to be a function of
the radial distance such that β(0) = 0 on the vortex line and
β(ρ) = π/2 far away, forming a Mermin-Ho texture [113]
on the FM side. Figure 7 shows the rapidly forming defect
core (half a trap period of energy relaxation). The FM2 phase
quickly intrudes on the C side to fill the core of the singular C
vortex. The spherical-harmonics representation shows the 4π

winding of the condensate phase about the C vortex, coupled
to a spin rotation. The doubly quantized vortex line is, how-
ever, not stable and quickly decays via an azimuthal instability
under further energy relaxation.

E. Non-Abelian vortex pair terminating on a FM-BN interface

Intriguingly, the order-parameters with discrete polytope
symmetries in spin-2 BECs exhibit non-Abelian vortices

FIG. 7. Energy relaxation of a doubly quantized phase vortex
in the C phase connecting to a FM2 nonsingular vortex. (a) Trans-
verse cuts of |〈F̂〉| on both sides of the interface together with the
spherical-harmonic representation of the order parameter. The C
vortex develops a FM2 core that forms an interface-penetrating con-
tinuation of the nonsingular FM2 vortex, as shown by the isosurface
at |〈F̂〉| = 1. (b) Longitudinal cut of |〈F̂〉| and spherical-harmonic
representation, showing the fountain-like spin texture on the FM2

side.

[30,34,35]. As our final example, we examine a pair of non-
commuting BN (1/2, 1/4) and (1/2, 1/2) vortices, a distance
2� apart, terminating on a BN-FM2 interface. The initial
spinor was constructed in Eqs. (55) and (56) to approximate
Eq. (52), with the discontinuity in the FM2 limit rapidly dis-
appearing after short energy relaxation. Similarly to the C-FM
case (Sec. IV D), the interface is stabilized in the numerical
simulation by spatially varying the c1 interaction strength
along the z axis, such that c1 > 0 on the BN side at z < −ξF
and c1 > 0 on the FM side at z > ξF , at fixed c2.

Figure 8 shows the defect core relaxation after one trap
period of imaginary-time propagation. Both noncommuting
BN HQVs terminate to a nonsingular FM2 spin texture. For

FIG. 8. Energy relaxation of a pair of noncommuting BN
(1/2, 1/4) and (1/2, 1/2) HQVs terminating on the C-FM2 interface.
(a) Transverse cuts of |A20|2 at the interface and both sides, together
with the spherical harmonics representation of the order parameter.
Both initial HQVs develop C cores, as shown by the isosurface at
|A20|2 = 1/10 and order-parameter representation. (b) Longitudinal
cut of |A20|2 together with spherical harmonics, showing the con-
tinuous FM2-C transition occurring at the termination point of the
(1/2, 1/4) vortex [similar transition in the (1/2, 1/2) vortex core not
shown].
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the chosen interaction strengths c1,2, the HQV cores surpris-
ingly rapidly relax to the C phase {consistent with the core
structure of a single BN (1/2, 1/4) vortex [35]}, resulting in
a spontaneous C-FM2 interface between the vortex cores and
the FM2 phase, as illustrated in Fig. 8(b).

V. CONCLUDING REMARKS AND EXPERIMENTAL
PROSPECTS

To summarize, we have demonstrated the potential of spin-
2 BECs as rich laboratories for topological-interface physics
by systematically constructing spinor wave functions for de-
fects and textures connecting across the interfaces between
UN, BN, C, and FM2 phases. These wave functions are de-
rived from continuously interpolating steady-state solutions to
the spin-2 Gross-Pitaevskii equations, and include connecting
singular vortices carrying mass and/or spin circulation as
well as vortices that terminate at the interface to a vortex-
free state or as monopoles. For a selection of examples, we
have simulated their time evolution and energy relaxation,
demonstrating the appearance of nontrivial core structures that
include the formation of composite defects as well as the
deformation of point defects into Alice-ring structures at the
interface. The discrete, polytope order-parameter symmetries
of the spin-2 BN and C phases also open the possibility of
using spin-2 BECs to explore non-Abelian interface physics
both theoretically and experimentally. We have demonstrated
an example by numerically simulating a pair of noncommut-
ing HQVs that terminates on the FM2-BN interface.

Defects and textures with a nonzero topological charge
are topologically stable, meaning that they cannot dissolve
through purely local changes to the order parameter. In a
trapped BEC, however, they will eventually escape through
the edge of the cloud due to the density gradient, unless a
stabilising mechanism, such as rotation or a shallow density
minimum that inverts the density gradient [79], is applied.
However, even without such measures, the time scale for a
vortex leaving can be slow even compared with experimental
timescales. Defects can also decay into other defects while
preserving the total topological charge, such as the deforma-
tion of a point defect into an Alice ring [69] or splitting of a
singly quantised vortex into HQVs [49]. With the exception of
monopole deformation, also these decays are generally slow
for the states in Tables I–V, and VII, while those in Tables VI
and VIII decay more rapidly. In addition, e.g., Fig. 3, connect-
ing UN, BN, or C phase vortices may separate at the interface
but remain intact as terminating vortices.

The experimental creation of magnetic-phase interfaces in
BECs has thus far been restricted to vortex cores [23,42,43].
Creating extended interfaces and populating them with the
desired topological excitations poses significant additional
technical challenges. Nevertheless, we can sketch possible
creation methods by combining relatively straightforward ex-
tensions of existing technologies, which have already been
shown to adjust ground-state magnetic phases and control-
lably generate vortex excitations.

Topological interfaces can be created by engineering spa-
tial variation in interaction strengths, as discussed earlier.
This could in principle be achieved by controlling microwave
Feshbach [110] resonance conditions with optical ac Stark

shifts, or by using optical Feshbach resonances [114]. How-
ever, here we have focused on interfaces that are obtained
through spatially varying Zeeman shifts p, q that could be
generated by ac Stark shifts of lasers or microwaves [95].

For example, the value of q in the system Hamiltonian (1)
can be modified by applying a linearly polarized microwave
field detuned from the ground-state hyperfine transition [95],
as realized for both 87Rb [115] and 23Na [53] in the spin-
1 manifold. The spin-2 case is conceptually straightforward
where the presence of the additional levels provides additional
useful degrees of freedom that are conventionally expressed in
terms of dynamical scalar, vector, and tensor polarizabilities
[116], extending the description beyond the single parameter
q. Another intriguing possibility is to mimic microwave-
induced level shifts with stimulated Raman dressing between
the two ground-state hyperfine levels. Such transitions are
highly state selective and, with proper choice of polarization,
intensity, and frequency, can differentially dress selected Zee-
man sublevels in a spatially dependent fashion.

For example, UN-BN interface could be achieved by illu-
minating half of the condensate with light that depresses the
energy of the m = 0 state with respect to the others, and the
other half with light that depresses the energy of the m = ±2
states. It remains to populate these two regions with atoms in
the appropriate magnetic phases, which could be achieved by
magnetic phase exchange [43] in a spatially selective fashion.
Ideally, the resulting condensate would change smoothly from
its ground-state UN phase to the ground-state BN phase at the
boundary between the beams.

Vortices can currently be introduced through a variety of
methods, including direct phase imprinting through optical
[117,118] or magnetic [119] means, as well as by stirring
[120,121]. These techniques have been employed in recent
spinor experiments to create some of the defects and tex-
tures that form the basis for our considerations, e.g., HQVs
[53], nonsingular vortices [60,61], singular vortices through
controlling the instabilities of nonsingular vortices [42], and
monopoles [71,72]. One possible approach is to use a com-
bination of magnetic phase imprinting [42,119] followed by
magnetic phase conversion [23,43], using optical fields in-
stead of microwaves to achieve the requisite spatial selectivity.
For example, a phase vortex crossing a UN-BN interface
could be generated from a phase vortex in a spin-1 polar con-
densate (F = 1, m = 0) followed by optical pulse sequences
to convert the spin-1 polar phase into spin-2 BN and UN
phases [23] in the two regions. Similarly, a vortex-free to
phase vortex interface could be created by using magnetic
phase imprinting techniques on a spin-1 mixed polar and
FM condensate (F = 1, m = 0, and m = 1), where the phase
imprinting yields two vortices in the m = −1 spinor compo-
nent and no vortices in the m = 0 spinor component. Initially
displaced from one another spatially by a magnetic field gradi-
ent, one of these components could subsequently be optically
converted to the UN phase (F = 2, m = 0) and the other to
the BN phase (F = 2, m = ±2), leading to the desired topo-
logical configuration in the milieu of ground states described
previously. Approaches such as these can be envisioned for
creating spin vortices and HQVs.

Data used in this publication available at [122].
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