GLOBAL DYNAMICS FOR THE STOCHASTIC KDV EQUATION
WITH WHITE NOISE AS INITIAL DATA

TADAHIRO OH, JEREMY QUASTEL, AND PHILIPPE SOSOE

ABSTRACT. We study the stochastic Korteweg-de Vries equation (SKdV) with an additive
space-time white noise forcing, posed on the one-dimensional torus. In particular, we
construct global-in-time solutions to SKdV with spatial white noise initial data. Due to
the lack of an invariant measure, Bourgain’s invariant measure argument is not applicable
to this problem. In order to overcome this difficulty, we implement a variant of Bourgain’s
argument in the context of an evolution system of measures and construct global-in-time
dynamics. Moreover, we show that the white noise measure with variance 1 4+ ¢ is an
evolution system of measures for SKdV with the white noise initial data.
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1. INTRODUCTION

1.1. Main result. The main objective of the present paper is to explain how techniques
developed to study invariance of certain measures (in our case, a spatial white noise) under
the flow of Hamiltonian partial differential equations (PDEs) can be combined with the
analysis of stochastic perturbations of these equations to construct global-in-time solutions
in a probabilistic setting.

In particular, we consider the following Cauchy problem for the stochastic Korteweg-de
Vries equation (SKdV) on the one-dimensional torus T = R/(27Z):

{&u + O3u+ udpu = €

u|t:0 = Uup.

(1.1)

Here, ¢ denotes an additive (Gaussian) space-time white noise forcing whose space-time
covariance is (formally) given by

El¢(@1,t1)&(w2, t2)] = 0(x1 — x2)6(t1 — t2) (1.2)

for x1,29 € T and t1,t2 € Ry with § denoting the Dirac delta function. In particular, we
study (1.1) with a spatial white noiseE| on T, independent of the forcing &, as initial data.
More concretely, we take ug = ug of the formﬂ

(@) =3 galw)e™, (1.3)
neZ
where {g, }nez is a family of independent standard complex-valued Gaussian random vari-
ables conditioned that g_, = g,, n € Z. The main difficulty of this problem comes from the
roughness of the noise and the white noise initial data, such that the solution u(t) to
belong to H*(T) \ Hfé(']l‘), s < —3, almost surely. Here, H*(T) denotes the L?-based
Sobolev space defined by the norm:

lullae = ( S m>am)P)’
= (oo
where () = /14|

The well-posedness issue of SKdV with an additive forcing:
Ou + O2u + udyu = ¢E, (1.4)

where ¢ is a bounded operator on L?, has been studied both on the real line and on the
torus [20} 2] 51}, 22) 37]. In the periodic setting, de Bouard, Debussche, and Tsutsumi [22]
proved local well-posedness of on T when ¢ is a Hilbert-Schmidt operator from L?(T)
to H*(T) for s > —%, barely missing the case of an additive space-time white noise. This
local well-posedness result in [22] was obtained via a contraction argument, based on the
Fourier restriction norm method (namely, utilizing the X *’-spaces) adapted to the Besov
space, utilizing the endpoint Besov regularity of the Brownian motion [13, 54, [I]. With

LAsit is customary in the literature, with a slight abuse of notation, we use the term ‘white noise’ to refer
to both the distribution-valued random variable ug in and its law g1 = Law(u§), when there is no
confusion. Here, Law(X) denotes the law of a random variable X. For clarity, we may refer to u1 = Law(ug)
as the white noise measure.

2By convention, we endow T with the normalized Lebesgue measure (27) ' dz.
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an additional assumption that ¢ is Hilbert-Schmidt from L?(T) to L*(T), they also proved
global well-posedness of in L2(T). In [37], the first author improved this result and
proved local well-posedness of even when ¢ = Id (thus reducing to ), thus handling
the case of an additive space-time white noiseE| We point out that the argument in [37] is
based on an approximation argument, in particular, not based on a contraction argument.
Below, we will describe the approach in [37] more in detail; see Section [3| Our main goal
is to construct global-in-time dynamics for with the spatial white noise uj in as
initial data.

Before proceeding further, let us go over the known well-posedness results for the (de-
terministic) KdV on T:

Oy + O3u + udyu = 0. (1.5)

In [4], Bourgain introduced the so-called Fourier restriction norm method, utilizing the
X*b-spaces defined by the norm:

1wl x5 rxry = [1{n)*(T — n*)ai(n, 7)|le2 £z (zxr), (1.6)

and proved local well-posedness of in L?(T) via a fixed point argument, immediately
yielding global well-posedness in L?(T) thanks to the conservation of the L?-norm. Subse-
quently, Kenig, Ponce, and Vega [31] (also see [14]) improved Bourgain’s result and proved
local well-posedness of in H™3 (T) by establishing the following bilinear estimate:

10 (uo) || x50 S [l s l[0]l e (1.7)

for s > —% and b = } under the (spatial) mean-zero assumption on u and v. In [I4],
Colliander, Keel, Staffilani, Takaoka, and Tao then proved the corresponding global well-
posedness result in H _%(T) via the I-method. The KdV equation is also known to
be one of the simplest completely integrable PDEs, and there are well-posedness results
for , exploiting the completely integrable structure of the equation. In [6], Bourgain
proved global well-posedness of in the class M(T) of finite Borel measures A on T,
assuming that its total variation ||A|| is sufficiently small. His proof was based on partially
iterating the Duhamel formulation of and establishing bilinear and trilinear estimates,
assuming an a priori uniform bound of the form:

supsup |u(n,t)| < C (1.8)

teER neZ
on the Fourier coefficients of the solution u. Then, he established the global-in-time a priori
bound , using the complete integrability. In [30], Kappeler and Topalov proved global
well-posedness of in H~!(T) via the inverse spectral method. See also [33].

For SKdV with a random perturbation, such an integrable structure is destroyed and
thus the approaches based on the complete integrability of KdV are no longer applicable.
Nonetheless, in [37], the first author adapted Bourgain’s approach [6], based on a partial
iteration of the Duhamel formulation (= the mild formulation) of , and proved local
well-posedness of . In particular, he bypassed the assumption by employing the

Fourier restriction norm method adapted to the “Fourier-Besov” space by ,(T) introduced

3Note that ¢ = Id is a Hilbert-Schmidt operator from L?(T) to H*(T) for s < — but not for s > —1.
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in [36], defined by the norm:

-~

171, _ = 1l = sup [[n) Fllen

jEZZO ‘”lNQj
R % (1.9)
;M(wawﬁ7
]EZzo |’I’L|N2]

which captures the spatial regularity of the space-time white noise when sp < —1; see
Proposition 3.4 in [36]E| Here, Z>o = NU {0}, and {|n| ~ 27} means {27! < |n| < 27}
when 7 > 1 and {|n| < 1} when j = 0. Note that, by taking p > 2 (but close to 2), we
can take s > —%, still satisfying sp < —1, which is crucial in establishing relevant nonlinear
estimates. In Section [3] we go over some aspects of the local well-posedness argument
from [37].

We now state our main result, which extends the solution constructed in [37] globally in
time in the case of the white noise initial data. We say that u is a solution to (L.1f) if it
satisfies the following Duhamel formulation (= the mild formulation):

u(t) = S(t)ug — ;/Ot S(t — t")opu?(t)dt + /Ot St —t)dW (t), (1.10)

where S(t) = —193 denotes the linear KAV propagator (= the Airy propagator) and W
denotes a cylindrical Wiener process on L?(T):

W(t) = Ba(t)e™, (1.11)
neZ
where {8, }nez is defined by 8,(t) = (§, 104 - €n)ae- Here, (-, )21 denotes the duality
pairing on T x R;. As a result, we see that {3, }nez is a family of mutually independent
complex-valued Brownian motions conditioned that 3_, = 3,, n € Z. In particular, 3 is
a standard real-valued Brownian motion, and we have

Var(ﬁn(t)) = E[<§a 1[0,t] : €n>m,t<£v 1[0,t] : en)x,t] = H]-[O,t] : enH%i,t =1 (1'12)

for any n € Z. Note that the space-time white noise £ in is a distributional time
derivative of the cylindrical Wiener process W in . The third term on the right-hand
side of is the so-called stochastic convolution, representing the effect of the stochastic
forcing.

In the following, we set

1
5:—5—{—(51 and p =246 (1.13)

for some small d1,d2 > 0 such that sp < —1. Given a > 0E| we say that a distribution-
valued random variable X on T (and its law, denoted by ) is a (spatial) white noise on T

4In other words, ¢ = Id is a v-radonifying operator from L?(T) to /l;f,,oo(ﬂl‘) when sp < —1, which is a
suitable generalization of the notion of Hilbert-Schmidt operators in the Banach space setting; see [8] 59].
See also [29, Chapter 9].

5By convention, we have X = 0 when a = 0. Namely, o = 6o, where Jg is the Dirac delta distribution
at the trivial function.
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with variance a if
po = Law(X) = Law(v/auf), (1.14)
where u§ is the white noise (with variance 1) in (1.3)).

Theorem 1.1. The stochastic KdV equation with an additive space-time white noise
forcing is globally well-posed with white noise initial data. More precisely, there exist small
01,09 > 0 such that, with probability 1, there exists a unique global-in-time solution u
to (L1)), belonging to the class C(RJ’»;/b\;’oo(T)) with s and p as in ([1.13), with the white
noise initial data uf in . Moreover, for any t > 0, we have

Law(u(t)) = p14¢- (1.15)

Namely, u(t) is a white noise with variance 1 + t.

The proof of Theorem is based on a variant of Bourgain’s invariant measure argu-
ment [5] in the context of an evolution system of measures [19} 18], which is a natural gener-
alization of the concept of invariant measures for an autonomous dynamical system. Let us
give a somewhat formal definition of an evolution system of measures. Let @, 1, = ®f 4,
ta > t; > 0, be a solution map for a given autonomous (random) dynamical system, send-
ing the data ¢ at time ¢; to the solution ®;, ;,¢ at time t2. Then, we define the transition
semigroup P, ¢, by

B F(p) = E[F(PF, 1,0)] (1.16)

for a bounded measurable function F' on the phase space M. Then, we say thatﬁ a family
{pi}ier, of probability measures on M is an evolution system of measures indexed by R
if

/ F(‘P)Ptz (d@) _/ Ptl,tQF((P)ptl (d(p) (1‘17)
M M

for any bounded continuous function ' on M and to > t; > 0. Note that is equivalent
to
Pta = Ptﬁ,tgptl

for any to > t; > 0. If there exists an invariant measure p, then by setting p = p, t € Ry,
the family {p;}¢cr, is obviously an evolution system of measures. It is in this sense that the
notion of an evolution system of measures is a generalization of the notion of an invariant
measure.

Given t € Ry, let p14+ be the white noise of variance 1 + ¢ defined in . Then, the
following corollary follows from and the flow property

iyt = Proyts © Pty (1.18)
for tg > to > t1 > 0 of the solution map to SKdV (/1.1)) constructed in Theorem

Corollary 1.2. Let pi14¢ be the white noise measure with variance 1+t as in (1.14). Then,
the family {p14¢}eer, is an evolution system of measures for SKdV (L.1|) with the white
noise initial data uf in (|1.3)).

6Strict1y speaking, an evolution system of measures is the mapping t € R4 — p; € P(M), where P(M)
denotes the family of probability measures on M. However, we simply refer to the family {p:}icr, of
measures as an evolution system of measures.
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Furthermore, we have the following corollary to Theorem [1.1

Corollary 1.3. (i) Given o > 0, let ug o be a white noise on T with variance o given by

g o () = V) gn(w)e™,
neL
where {gn}nez is as in (1.3). Then, with probability 1, there exists a unique global-in-time
solution u to (1.1)), with ul—g = ug o Moreover, for any t > 0, we have

Law(u(t)) = pa+ts (1.19)
where pia1¢ 18 as in (1.14). Namely, u(t) is a white noise with variance o + t.

(ii) Let wo be a deterministic function in L*(T) and o > 0. Then, with probability 1, there
exists a unique global-in-time solution u to (L1 with ul=0 = wo + /aug ,, where u is
the white noise on T with variance o as in (|1.3)).

Part (i) of Corollary |1.3| directly follows from Theorem [1.1| together with the flow prop-
erty and the time translation invariance (in law) of SKAV (L.1]). See also Remark [1.5]
Part (ii) of Corollary [1.3|follows from Corollary [1.3|(i) and the Cameron-Martin theorem [9]
by noting that L?(T) is the Cameron-Martin space of i, = Law(y/au). See [42] for a fur-
ther discussion.

Thanks to the time reversibility of the KdV equation, Theorem [I.1] and Corollary [I.3]
also hold for negative times (where the variances 1 + ¢ in and o + ¢ in are
replaced by 1+ |t| and a + [¢], respectively. For simplicity of the presentation, however, we
only consider positive times in the remaining part of the paper. Moreover, in the following
discussion, in considering a stochastic flow on a time interval [t1, t2], it is understood that
random initial data at time ¢; and a stochastic forcing on [t1, t2] are independent (which is

justified by (1.2))).

1.2. Outline of the proof. Let us now describe some aspects of the proof of Theorem
Except in the small data regime (including a small perturbation of a known global solution),
one usually needs to exploit conservation laws in order to construct global-in-time solutions
to nonlinear dispersive PDEs. A remarkable intuition by Bourgain in [5] was to use (formal)
invariance of a Gibbs measure as a replacement of a conservation law to construct global-in-
time solutions with the Gibbsian initial data. More precisely, he used the rigorous invariance
of the truncated Gibbs measures for the associated truncated dynamics and combined
it with a PDE approximation argument to construct the desired global-in-time invariant
Gibbs dynamics. This argument, known as Bourgain’s invariant measure argument, has
been applied to many dispersive PDEs with random initial data (and stochastic forcing), in
particular over the last fifteen years. See the survey papers [38, 3, 58] for a further discussion
on this topic and the references therein. See also [26], 39] 40] for more recent results in the
context of stochastic dispersive PDEs. We point out that Bourgain’s invariant measure
argument has also been applied to globalize solutions to stochastic parabolic PDEs; see, for
example, [28] 46 [45].

In the current problem at hand, due to the lack of a damping term, there is no invariant
measure for SKdV , and thus Bourgain’s invariant measure argument is not applica-
ble. It is, however, easy to see, at a formal level, (as explained below) that SKdV
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with the white noise initial data (1.3)) possesses a (formal) evolution system of measures
{p14¢}eer,, where 144 is a white noise measure with variance 1 + ¢ defined in . See
also Proposition Our main strategy is then to use this (formal) evolution system of mea-
sures {{114¢}ter, as a replacement of a (formal) invariant measure in Bourgain’s invariant
measure argument (and hence as a replacement of a conservation law in the deterministic
setting).

Before proceeding further, let us provide a heuristic argument for the claim that
{m14:}ier, is an evolution system of measures for SKdV with the white noise ini-
tial data. First, view the SKdV dynamics as a superposition of the deterministic

Kdv and
Owu = ¢& (1.20)

(at the level of infinitesimal generators). On the one hand, the white noise (with any
variance) is known to be invariant under the flow of the deterministic KAV (L.5)); see
52, 36, 38, 43, B2]. On the other hand, the stochastic flow with a white noise
initial data (with any variance) increases the variance by the length of the time interval
under consideration. Then, the claim follows, at least at a purely formal level, from these
observations together with the Lie-Trotter product formula [53, Section VIIL.S8]:

O N (1.21)

n—oo

(which holds, for example, for finite-dimensional matrices A, B). We point out that the Lie-
Trotter product formula is not directly applicable to our problem, and the core of
the proof of Theorem consists of justifying this heuristic argument by an approximation
argument, which we explain next.

e Truncated SKAV dynamics. Given N € N, let Py denotes the Dirichlet projection

on (spatial) frequencies {|n| < N}. Then, consider the following truncated SKdV equation:
ouN + 32uN + Py(Pyu - 0,PyulY) = ¢
N (1.22)

u |t=0 = Ug,

where ug is the white noise given in ([1.3)). Note that the truncation appears only on the
nonlinearity, but not on the noise or the initial data. With PJJ\-, =1Id—Py, set

uy = Pyul’ and uy = Prul.
Then, the truncated SKdV dynamics ((1.22]) decouples into the finite-dimensional nonlinear

dynamics for the low frequency part uy = Pyu'V:

Owun + O3uny + Py (unOzun) = Pyé
" (1.23)
un|i=o = Pnug,
and the linear dynamics for the high frequency part uJN = PJNuN :
Oy + Ouxy = P& (1.24)
uyle=o = Pyug. '

It is easy to see that both ([1.23]) and ((1.24)) are globally well-posed (which implies that (|1.22])

is globally well-posed); see Section For to > t; > 0, we denote by @i\fiw and @ggg the

low

solution maps for (1.23]) and ([1.24) sending data ¢ at time ¢; to the solutions @g 't, ¢ and
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@ggghgo at time to. We let Pgtlsw and P;Xf;igh denote the transition semigroups for (1.23))

and , respectively, defined as in , where the expectation is taken over the noise
restricted to the time interval [t1,t3]. We also use @{Yh and Ptzl\{ ¢, to denote the solution
map and the transition semigroup for the truncated SKdV .

Given o > 0, let 1o be the white noise measure (with variance ) as in (1.14)). Then, we
can write o as

N,low N,high
Pa = g ™" @ frq "

— (P)tte ® (PE)uste =

where pd"Y = (Pxn)sjta and po ™" = (PL).pa the pushforward image measures of i,

under Py and Pﬁ, respectively. Note that MaN low ond Mg,high

are nothing but the white
noise measures (with variance a) on Ey = span{e™® : |n| < N} and E3 = span{e™® :
|n| > N}, respectively, where the latter span is taken over the space D'(T) of distributions
on T.

The high frequency dynamics ([1.23)) is linear and it is easy to verify that

N highv#  Nhigh N high
(Ptl,tglg )*M1+t11g = :“1+t;g . (1.26)

By writing it on the Fourier side, we see that the low frequency dynamics ([1.23]) is nothing
but a finite-dimensional system of SDEs, which can be viewed as the superposition of the
finite-dimensional KdV dynamics:

orun + 82’[”\/ +Prn(unOyun) =0 (1.27)
and the linear stochastic dynamics:
Oiuny = PNE. (1.28)

While the former (1.27) preserves the white noise ,uév low (with any variance), the lat-
ter (1.28) increases the variance of the white noise initial data by the length of the time
interval under consideration. Then, in view of the Lie-Trotter product formula (1.21]), we
see that

Nlowys Nl N1
(P ) g, = M, - (1.29)

Putting (1.26]) and ((1.29) together, we then obtain the following proposition.

Proposition 1.4. Let N € N. Then, for any ts > t1 > 0, we have

N * .
(P ty) M1ty = Mltty,

where PY, is the transition semigroup for the truncated SKAV (L.22). Namely, {pi1+¢}rer,
is an evolution system of measures for the truncated SKdV (1.22]).

We present the proof of Proposition [I.4]in Section[2} As for the low frequency part of the
claim, instead of decomposing the low frequency dynamics (1.23) into (1.27) and (1.28)) and
applying the Lie-Trotter product formula , we verify by directly showing that
,uﬁ’rlf " is the unique solution to the Kolmogorov forward equation (= the Fokker-Planck

equation).
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Remark 1.5. Let a > 0. A straightforward modification of the proof of Proposition [1.4
yields

N \*
(Ptl,tQ) Mo = :u‘Oé-‘r(tQ—tl)?
which is the key ingredient for proving Corollary (i), replacing Proposition

Once we obtain Proposition [1.4] we use ideas from Bourgain’s invariant measure argu-
ment [5] together with the nonlinear analysis in [37], and establish a probabilistic uniform
(in N) growth bound on the solutions to the truncated SKAV (1.22)). See Proposition
Finally, Theorem follows from a PDE approximation argument and this probabilistic
uniform growth bound. See Section

e Mean-zero assumption: Recall that the bilinear estimate holds only for (spatial)
mean-zero functions, namely, the spatial means of u(t) and v(t) are zero for any ¢t € R. In
the case of the deterministic KdV , if initial data wg has non-zero mean «g, then the
following Galilean transformation:

u(z,t) — u(x + apt, t) — ap

as in [I5] together with the conservation of the (spatial) mean under KdV transforms
KdV with a non-zero mean into the mean-zero KdV (so that the bilinear estimate
is applicable). In the case of SKAV with an additive noise, the spatial mean of a solution
is no longer conserved. Nonetheless, in [22, [37], a similar transformation was employed to
reduce SKdV with an additive noise to the mean-zero case. The transformation in this case
depends not only on the mean of the initial condition but also on the Brownian motion 3y
at the zeroth frequency in (L.11)). See [22, [37] for details.
For conciseness of the presentation, we impose the following mean-zero assumption in
the remaining part of the paper.
e We assume that the white noise initial data ug in and the space-time white
noise £ in and have spatial mean-zero. This means that the random
initial data is now given by

ug (@) = Y gn(w)e™, (1.30)
NELx
where Z, = Z\ {0}, and the stochastic forcing & is given by the distributional time
derivative of
W(t)= > Bult)e™. (1.31)
NELx
Namely, we have £ = P_o§, where P is the projection onto the non-zero (spatial)
frequencies. This assumption together with the presence of the derivative on the

nonlinearity u0,u = %aﬂﬂ implies that a solution u to SKdV (|1.1)) has spatial mean
zero as long as it exists.

It is understood that all the functions/distributions have spatial mean zero in the following.
The required modifications to handle the general case (i.e. with the white noise u§ in (|1.3])
and the space-time white noise { without the projection P) are straightforward and hence
we omit details. See [37] for details.
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We conclude this introduction by stating several remarks.

Remark 1.6. The usual application of Bourgain’s invariant measure argument provides a
growth boundﬂ on a solution by /logt for ¢t > 1, where the implicit constant is random. In
the current SKdV problem, we instead obtain a growth bound on a solution by (something
slightly faster than) y/flogt for t > 1, where the extra factor v/t comes from the fact that
the variance of the white noise at time ¢ grows like ~ ¢. See Remark

Remark 1.7. (i) As mentioned above, by applying the I-method, Colliander, Keel, Staffi-
lani, Takaoka, and Tao [14] proved global well-posedness of the deterministic KdV in
H 7%(1?). It would be of interest to apply the I-method to study global well-posedness of
SKdV with general deterministic initial data. In [11], the first author with Cheung
and Li adapted the I-method to the stochastic setting and proved global well-posedness,
below the energy space, of the stochastic nonlinear Schrédinger equation (SNLS) on R3
with additive stochastic forcing, white in time and correlated in space. On the one hand,
the I-method is suitable for controlling an L?-based Sobolev norm. On the other hand, the
only known local well-posedness result of SKdV is in the Fourier-Besov space /5;700
(at this point), and thus there is a non-trivial difficulty in adapting the I-method to this
problem.

(ii) In [34], Killip, Visan, and Zhang exploited the complete integrable structure of the
deterministic KdV and established a global-in-time a priori bound for solutions to
KdV in H*(T), s > —1. This a priori bound was given by a sum of suitable rescaled
perturbation determinants, (each of which is given as an infinite series). It would also be
of interest to investigate if their approach can be adapted to the current stochastic setting
(and moreover to the Fourier-Besov setting, using the ideas in [49]).

Remark 1.8. Consider the following SNLS on T:
i0pu — % + |ul*u = €, (1.32)

where ¢ is a complex-valued space-time white noise on T x Ry, with the complex-valued
white noise initial data:

ug (z) = Zgn(w)emx, (1.33)

ne”

where {g, }nez is a family of independent standard complex-valued Gaussian random vari-
ables. (Here, we do not impose the condition g_,, = g,.) Due to the low regularity of
the initial data and the forcing, we need to renormalize the nonlinearity in to that
considered in [12] 27, 25| [50]. In the following discussion, we suppress this renormalization
issue.

Let us first consider the (deterministic) nonlinear Schrodinger equation (NLS) on T:

i0pu — 0%u + ul*u = 0. (1.34)

TAt least in the setting of [5]. In the singular setting, we have a growth bound by a suitable power of
logt. See, for example, Section 5 in [44].
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Given a > 0, let po = Law(y/aud) with uf as in (1.33) be the (complex) white noise

measure with variance . Formally, we have
1 -1 2
dpte = Z'e 2a Jplulde gy,

See [38, 43]. Then, in view of the conservation of the L?-norm under and the fact
that NLS is Hamiltonian, we expect that the white noise measure pu, is invariant
under the NLS dynamics. In [43], the first two authors with Valké proved formal invariance
of the white noise measure under NLS in the sense that the white noise measure is a
weak limit of invariant measures for NLS . In the same paper, they also conjectured
invariance of the white noise under NLS . This conjecture remains as a challenging
open problem to date, in particular due to the critical nature of the well-posedness issue
for (and also for (1.32))) with white noise initial data; see [25, 23]. See also [48] for
invariance of the white noise measure under the fourth order NLS on T, where —9? in
is replaced by (—02)2.

Let us now turn our attention to SNLS . Asin the SKdV case, by viewing asa
superposition of the deterministic NLS and the stochastic flow i0yu = £ together with
the conjectural invariance of the white noise under NLS , we arrive at the following
conjecture.

Conjecture 1. The family {p14:}icr, of the white noise measures with variance 1+t
is an evolution system of measures for SNLS (1.32) with the white noise initial data ug

in (L53).

This conjecture is of importance not only from the viewpoint of mathematical anal-
ysis but also from the viewpoint of applications due to the importance of SNLS
(and NLS ([1.34)) in nonlinear fiber optics. A straightforward modification of the proof of
Proposition shows that, for any N € N, the family {{14¢}+er, is an evolution system
of measure for the following truncated SNLS:

iy — ?ulN + Py (|Pyu PP yu?N) = ¢

with the white noise initial data ug in (1.33). The main obstacle for proving Conjecture
is the local well-posedness issue as in the case of NLS (1.34)) with the white noise initial
data.

2. FINITE-DIMENSIONAL APPROXIMATIONS AND THEIR DISTRIBUTIONS

In the remaining part of the paper, we work on a probability space (2, F,P) supporting
e A family {gy}nen of independent standard complex-valued Gaussian random vari-
ables:

gn, = Regn +iImg,, n € N. (2.1)

Here, {Regy,Im g, }nen is a family of independent real-valued Gaussian random
variables with mean 0 and variance % We then set g_,, = gn, n € N. The random
variables g, are used to define the spatial white noise ug on T in ((1.30)) which we

use as initial data for (L.1]) and (1.22]).
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e A family {5,}nen of independent complex-valued Brownian motions, satisfy-
ing :
Bn(t) = Re By (t) + i Im B, (t), n €N,
which is also independent of {g, }nen. We then set 3_,, = 3, n € N. The Brownian
motions [, serve to define the driving space-time white noise appearing in as
well as its truncated version .

We emphasize that we only work with (spatial) mean-zero functions/distributions in the
following. Given o > 0, let vy, be a white noise on T with variance « given by

ug o (z) = Vaug(z) = va Yy gow)e™, (2.2)

NELx
where {g, }nez is as in (2.1)), and set
po = Law(u,) (23)
to be the (mean-zero) white noise measure with variance a. With this version of o, we set
PV = (PN)upta and  pdiME = (Py)apta.

Then, ((1.25) holds in the current setting.

In this section, we study the truncated SKdV ((1.22]) and present the proof of Proposi-
tion In view of the discussion in Section |1} it suffices to prove ([1.26)) and (1.29) for the

high and low frequency dynamics, respectively.
We first consider the high frequency dynamics ((1.24)):
oy + Buxy = Pyé. (2.4)

By working on the Fourier side, we see that (2.4) is a system of decoupled linear SDEs for
each frequency. In particular, (2.4) is globally well-posed and the solution to (2.4)) is given
by

—

s to
uk(n, t) = e uk (n, 0) + / =% g5 (¢, In| > N,
0

for general initial data uy(0) = Pyux(0). In particular, when the initial data is given by
vau‘é’ with uf in (1.30), we have

—

t
ux(n,t) = e’ g, —l—/ el(tft/)”:)’dﬁn(t') =1, +1,, In| > N,
0

Note that Law(I,) = Law(g,) (see Lemma 4.2 in [47]) and Law(Il,,) = Law(v/ g). Then,
from the independence of I,, and II,,, we conclude that

N,highy« N high N,high
(Po,t ® ) Hyq o= M1+tlg . (2.5)

Therefore, from (2.5)) and the flow property of the solution map @i\f :?Qigh for ([2.4)) (analogous
to ((1.18))), we conclude ((1.26)).
Let us now turn our attention to the low frequency dynamics (|1.23)):
diun + ai’uN + PN(UNaxuN) = Pn¢. (26)

Lemma 2.1. Let n € N. Given any initial data un(0) = Pyun(0) with uy(0,0) = 0,
there exists a unique global solution uy € C(R; L%(T)) to (2.6) with un|i—o = un(0).
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Proof. By writing (2.6)) in the Duhamel formulation, we have

un(8) = S(E)un(0) — % /O CS(t — )0, P (3 ) (1) + /0 "S- PN (), (27)

where W is as in (1.31]). Note that uyn(t) = Pyun(t) as long as the solution uy exists. By
Bernstein’s inequality ([57, Appendix A]), we have

3
10:Pruvllcqorizz) S Nlunlleqores S N2 lunlleqom;z), (2.8)

which allows us to control the second term on the right-hand side of (2.7). By the unitarity
of S(t) on L?(T) and the basic property of a Wiener integral, we have

2

E < TN.

H /0 "t ¢)aP T ()

C([0,T;LZ)
In particular, we have

< C(w)TzNz (2.9)

t
H / St —tdPNW (1)
0 c([o,T;L3)

for some almost surely finite random constant C'(w) > 0. Hence, we conclude from a
standard contraction argument in C([0, T]; L?(T)) with and that is locally
well-posed. Furthermore, the solution exists globally in time as long as its L?(T)-norm
remains bounded.

As observed in [22) Theorem 1.5] and [21, Section 3.2], a simple argument, using Ito’s
formula, Doob’s martingale inequality, and the L?-conservation of the truncated KdV equa-
tion , provides the following bound:

E[ sup Huzv(t)H%z] < [lun(0)lI72 + C(T) P w llus(r2; 2y
t€[0,T]
< [lun(0)]2, + C(T)N2

for any finite 7' > 0, where || - ||gs(z2,2) denotes the Hilbert-Schmidt norm from L*(T) to
L?(T). From this a priori bound, we conclude global well-posedness of (2.6]). O

In the following, we study the evolution of the distribution of the solution uy(t) to the low
frequency dynamics (2.6). Let p,(t) = Reun(n,t) and g,(t) = Imuyn(n,t) for 1 < |n| < N.
Since uy is real-valued, we have

P—n = Pn and q—n = —qn-

Then, by writing (2.6)) on the Fourier side, we obtain the following finite-dimensional system
of SDEs for (p,q) = (p1,-..,PN,q1,---,qN):
dp, = P,dt + d(Re f3,,),

dgy = Qudt + d(Im ) (2.10)
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forn=1,...,N, where P, and @,, are defined by

P, = —nsqn + Z n2(pn1(1n2 + qnlpn2)’

n=ni+ngz
1<|n ], lne| <N

\ (2.11)
Qn :=n"py — Z n2(Pny Py — Gy Gns)-
n=ni+nsg
1<|n |, |n2| <N
Define A(p,q) = A(p1,...,PN+q15---,qN) by
A(pac_]):(Pla"'7PN7Qla"'7QN)‘ (212)
Then, we have
N N
divp,g AP, @) = Y (Fp, Po + 04, Qn) = Y Lonen(ngan — ngay) = 0. (2.13)
n=1 n=1

Let z = (x1,...,22n) = (P1,---,DPN,q1,---,qn). In the following, we briefly go over
the derivation of the Kolmogorov forward equation for the evolution of the density of the
distribution for

U(t) = (Retn(1,t),...,Retin(n, t), Imay(1,t),..., Iman(n,t)). (2.14)

See, for example, [55, [17]. Recalling from (L.12) that E[(Re 8,(t)?] = E[(Im 8,(¢)?] = &, we
see that the Kolmogorov operator £ for (2.10]) is given by

L= %Ai +A®) - Vs, (2.15)
where A(Z) is given by
Az)=(P1,...., PN, Q1,...,QN). (2.16)

Lemma 2.2. Let fo(Z) be a density of the distribution for U(0). Then, the density f(%,t)

~

of the distribution for U(t) satisfies the following Kolmogorov forward equation on R?N:

(2.17)
f‘t=0 = an
where the vector field A(Z) is as in (2.16).
Proof. This is classical, so we only provide a sketch. Consider
gli=0 = go,

where £ is as in (2.15). It is well known that (2.18) has a smooth fundamental solution
p(Z,7,t) for (z,7,t) € R2NV x RN x R, , and thus, for initial data gy € C?(R?Y) with
bounded derivatives, the unique solution to (2.18)) is given by

s@t) = [ | ao@wta.s. 0. (219)
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Here, (Z,t) — p(Z,7,t) satisfies (0; — L)p(Z,7,t) = 0 for each fixed § € R?N. See, for
example, [55, Lemma 3.3.3]. Moreover, ¢(Z, t) has the following probabilistic representation
([I7, Theorem 9.16]):

9(@,t) =B, g, [00(@) |2 = T(0)], (2.20)

where U (t) is as in (2.14]) and the expectation on the right-hand side is taken with respect
to the vector § = U(t) conditioned that z = U(0). Hence, it follows from (2.20) and (2.19)
that

Eg:[/j\(t) [90(@)] = Ei:fj(o) [E@:ﬁ(t) [go(g) ‘ T = ﬁ(o)]]
— [, [ @05 0dafo(a)da.
R2N JR2N
Therefore, the density f(y,t) of U (t) is given by
100 = [ fl@)p(@.p.ods (2:21)

Now, it follows from (2.19), (2.20)), and Ito’s formula (see, for example, the proof of
Proposition 9.9 in [I7]), we see

_ g d _
[ 500000005005 = 5B [on(3)

- / (L90) @)p(E. 7. 1)dg
- / 00(7) (LEp)(2. 5. 1)dy,

z=U(0)]

where L! is the formal adjoint of £ given by
1

t __
Note that, in the computation of L', we used (2.13): divzA(y) = 0. Hence, we conclude
that (7,t) — p(Z,7,t) satisfies (9; — L )p(Z,7,t) = 0, and therefore, we conclude from (2.21)
that f(7,t) satisfies (0; — £}) f(7,t) = 0. O

Ay — A(Y) - Vy.

We are now ready to prove . Let 7, be the density for the normal distribution
on R with mean 0 and variance § > 0:
1 22
Ya(x) = \/ﬂe a.
Then, in the current setting, the density of the distribution for P yug with u§ as in
is given by

2N
fo@) = T n(wn).
n=1

The following lemma shows that the solution uy(t) to (2.6) with initial data uf , = \/aug
in (2.2) is distributed by the (mean-zero) white noise measure piq4¢ in (2.3), which in

particular proves ((1.26]).
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Lemma 2.3. For any a > 0, the function [N, given by

1 _ a2
INa(T,1) H%m Tp) = —————x€ oft
2

(m(a+1t))
1s the unique solution to .

Proof. Uniqueness is classical (see [I7, Theorem 9.16]). Hence, we only need to check that
fN.o 1s a solution to (2.17)).
A direct computation shows
1

OYat+t(Tn) = 1832;”%4“(%)
forn=1,...,N. Hence, it suffices to prove
2N
V( H ’Yoc-l-t(xn)) =0.
n=1
Since 2
8:cn')/a+t(xn) = T 7a+t($n)

a+t
it suffices to check A(z) -z = 0. Recalling z = (x1,...,22n) = (P15, PN, @15+ -+, qN), it
follows from (2.11)) and (]2.16|) that

Z N qnPn + Z Z nz (pn1 Gny + QnqiPny )pn
=1 n=1

n=ni4+ns
1<Iny|,|n2| <N

+ Z 1" Pnln — Z Z n2(pn1pn2 - in(an)Qn

n=ni-+ng
1<|n1\ [n2|<N

= —ZRe +(Pn(undzun))(n)) Retin(n)

—Zlm »(Pn(unOrun))(n)) Imay (n),

where F, denotes the Fourier transform. In the second step, we used the definition: p,(t) =
Retun(n,t) and ¢,(t) = Imuyn(n,t) together with (2.6) and (2.10). By Parseval’s identity
with the fact that uy is real-valued and uy = Pyun, we then have

1

AZ) &= / Py (unOyun)undr = 1/ Dy (udy)dz = 0. (2.22)
2 Jr 6 Jr

We point out that, in view of (2.11]) and (2.12]), A(z) -z = 0 in (2.22)) is equivalent to the
conservation of £2-norm (= the Euclidean distance in R?") for the deterministic system:

8tpn = In,
O¢Gn = Qn
for n = 1,...,N (which in turn is equivalent to the conservation of the L?-norm for the

finite-dimensional KdV (1.27))). This concludes the proof of Lemma O
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Remark 2.4. A slight modification of the computations in the proof of Lemma shows
the truncated white noise is invariant under the finite-dimensional KdV dynamics (1.27)).

As a corollary to Proposition [I.4] we obtain the following tail estimate on the size of

solutions u” (¢) to (1.22).

Lemma 2.5. Let s < 0 and finite p > 1 such that sp < —1. Given a > 0, let uN be the
solution to (1.22) with initial data ug , = /aug in (2.2). Then, we have

a+t.
IP(HUN(t)Hg;m > )\) = IP< — bl > A)

/\2

(2.23)
< Ce %att

for any t € Ry and X > 0, where the constants C,c > 0 are independent of o > 0.

The inequality in ([2.23]) follows from the fact that (ul,gf),oo(T),LQ(']T)) is an abstract
Wiener space when sp < —1 ([36], Proposition 3.4]) and Fernique’s theorem [24]; see Theo-
rem 3.1 in [35].

3. REVIEW OF THE LOCAL WELL-POSEDNESS ARGUMENT FOR SKDV

In this section, we go over the local well-posedness argument in [37] and collect useful
estimates.

3.1. Function spaces. We first recall the definition of the X*’-spaces adapted to the
space by, . (T) defined in (1.9). Given s € R and 1 < p,q < oo, define the space X;;g('ﬂ‘ x R)
by the norm:

el e = 1) (7 = )i, g - (3.)
In terms of the interaction representation v(t) = S(—t)u(t), we have
lull g = 4000l gy ). pyma
where FLY4(R) denotes the Fourier-Lebesgue space defined by the norm:
11l 7o = 16T F ()]l o (3.2)
From (L.9), we have b) . (Z) D ¢*(Z) > (*(Z) for p > 2, and thus we have
lull o < flull o (3.3)
for p > 2, where X*? is the standard X*’-space defined in (I.6). We also have

lull -3 -a0 S Ml 3ss (3-4)
p,2

provided that § > % (with p > 2). See [37, eq. (17)]. See also the embedding (5.2)) below.

Given an interval I C R, we define the restriction space X35 (I) of X5 to the interval I
by

HUHX;;Z(I) = inf {HU”X;;Z(TXR) vl =u}. (3.5)
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When I = [0,7], we also set X;ST = X;jg([O,T]). When b > 1, it follows from the
Riemann-Lebesgue lemma that

X

w5(I) C C(I5b) o (T)) (3.6)

for any s € Rand 1 <p < oco.
When g = 2, in order to capture the temporal regularity of the stochastic convolution:

t
:/ St —tdw ('), (3.7)
0
where W is as in (L.1I)), we need to take b < % (see Lemma below), for which the
embedding (3.6 fails. When ¢ = 1, we have the following embedding:
X ( ) C C(I; b (T)), (3.8)

) p o0

and thus we use X;”g (I) as an auxiliary function space.
We now recall the basic linear estimate for KdV; given s € R and 0 < b < %, we have

1_
IS (E)uollpr S T+ ol (3.9)

for 0 < T < 1, where Xs T — XS b([O T]) is the restriction space defined in (3.5)). Next,
we recall the L4 Str1chartz estlmate due to Bourgain [4, Proposition 7.15] (see also [56],
Proposition 6.4)):

ullparxry < lull yo,3- (3.10)

Lastly, we define the Fourier-Lebesgue space FL*P(T) in the spatial variable by the
norm:

IfllzLse = [[(n)* F(n)lgp - (3.11)

Then, for s € R and 1 < p,q < oo, we define the X*-spaces adapted to the Fourier-
Lebesgue spaces by the norm:

b~
fullysp = I} (= 0?0, 7)o (312)
Trivially, we have
. < s, s < s,b . .
175, < IFlrees and fullgpp < flul e (3.13)
Given an interval I C Ry, we define the restriction space Y;f’qb (I) as in (3.5)).

3.2. Partially iterated Duhamel formulation. In this subsection, we discuss the par-
tially iterated Duhamel formulation used in [37].

First, we consider the deterministic KdV considered in [6]. By writing it in the
Duhamel formulation, we have

u(t) = S(tyuo — %N(u, W)(8), (3.14)

where N (u1,uz) is given by

ul, UQ / S t— t Uﬂtg)(t )dt (315)
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Note that the Fourier transform ujus (n,T) can be written in the convolution form:
—_— —~ —_~
uuz(n, ) = g ui(ny, 1 )uz(ng, 7o) dry.
NEMAN oy oy

Henceforth, we denote by (n,7), (n1,71), and (ng, 72) the space-time frequency variables
for the Fourier transforms of N (uy, u2), u1, and ug in (3.15)), respectively. In particular, we
have

n=mnj+ no and T=7 + 7. (3.16)

By assuming that the initial data ug has spatial mean 0, it follows that u(t) also has
mean 0. Furthermore, in view of the derivative on the nonlinearity, we may assume that
n,ni,ne 7 0. We also denote the modulations by

oo = (1 —n3) and oj = (15 — n§’>7 j=12 (3.17)

Recall the following algebraic relation [4]:
n3 — ni’ — ng = 3nning
for n = n1 4+ ne. Then, under , we have
MAX := max(0g,01,02) 2, (nning). (3.18)

In our setting, we need to take b < % to capture the temporal regularity of the stochastic
convolution ¥ in (3.7)). On the other hand, the crucial bilinear estimate (1.7)) holds only for
b= % In order to overcome this difficulty, we decompose the nonlinearity into three pieces,
depending on the sizes of the modulations og, 01, and o2. Define the sets M;, j = 0,1,2,
by

My = {(n, ni,ng, 7,71, T2) € Z3 X R : g = MAX},
M; = {(n,n1,n2,7,71,72) € 72 xR3: 0; = MAX and o, > 1}, j=1,2

For j =0,1,2, let Nj(u,uz) be the contribution of N (u1,u2) on M;, and thus we have

(3.19)

2
N (u,ug) =Y Nj(ug, up). (3.20)
j=0

The standard bilinear estimate allows us to estimate Ny (u1,u2) even when b < %; see
[37, eq. (46)]. As for Nj(u1,u2), j = 1,2, however, the bilinear estimate fails for temporal
regularity b < % (in X;:g for any s € R and 1 < p,q < 00) since, in this case, we do not
have a sufficient power for the largest modulation o; to control the derivative loss in the
nonlinearity. See [31].

This issue was circumvented in [0, B7, B8] by partially iterating the Duhamel formula-

tion (3.14)) and writing it as
1 1 1
u(t) = S(t)ug — iNo(u, u)(t) + 1N1(N(u,u),u) + ZNQ(U,N(U, u)).
Namely, for j = 1,2, we replaced the jth entry in Nj(u,u) (where the maximum mod-
ulation is given by o;) by its Duhamel formulation (3.14). It follows from the definition

of Nj (see (3.19)) that there is no contribution from the linear solution S(t)ug in iter-
ating the Duhamel formulation, since its space-time Fourier transform is supported on
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{7 = n3}, namely, S(¢)ug has zero modulation, and thus from the definition of N, we have
N1(S(t)ug, u) = Na(u, S(t)ug) = 0.
In the context of SKAV ([1.1)) and its Duhamel formulation (1.10):

1
u(t) = S(t)ug — §N(u,u) + U, (3.21)
the discussion above leads to
1
u(t) = S(t)uo — QNo(u,u)(t)

+ iNl (N (u, u),u) — %Nl(\p, u) (3.22)

1 1
+ zNz(u,N(u,u)) - éNg(u, U) 4+ ¥,
where U is the stochastic convolution in (3.7)). In [37], the first author studied this new
formulation (3.22)) and establish an a priori bound on solutions (with smooth initial data
and (spatially) smooth noise), which allowed him to construct a solution ([1.10) by an
approximation argument.

Lastly, we state an analogous formulation for the truncated SKdV (1.22)). By writ-
ing (1.22)) in the Duhamel formulation, we have

1
u® (t) = S(t)ug — iNN(uN, uN) + U, (3.23)
where NV (uV, uV) is given by

NN (ug,uz) = PN (Pyut, Pyus)
_ /O "t )0uP y (Pryuy P s ()
Then, by partially iterating the Duhamel formulation as above, we rewrite (3.23)) as
N (8) = S(euo — AR (", u) 1)
AN @), ) — A () (3.24)
+ i/\/'QN(uN,NN(uN,uN)) — %/\@N(UN,\I/) + W
where /\/'JN(ul,UQ) is the contribution of NN (u1,us) on M;, j =0,1,2.

3.3. Local well-posedness and an a priori bound. In this subsection, we collect the
useful nonlinear estimates on the iterated formulation from [37], and establish an a
priori bound for solutions to the truncated SKdV .

We first recall the following local well-posedness result of SKdV from [37].

Theorem 3.1. Let s = —% + 0 and p = 2+ §y for some small 5,69 > 0 such that % <

0 < %. Given a mean-zero function ug € /l;f,’oo(T), there exist a stopping time T, > 0

~ 1_
and a unique solution u € C([0,T,];05 (T)) N X;:; 6([0,Tw]) to (1.1) with u|;—p = wo.

»Yp,o0
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Furthermore, denoting by Ty = Ty (w) the maximal time of existence, we have the following
blowup alternative:

lm fu(®)l, =o0 or  T.=oc
Here, the condition § < 1’2;[)2 is equivalent to sp < —1, while 6 > % is used for the

embedding (3.4)).

In the following, we recall some of the nonlinear estimates from [37]. In the remaining
part of the paper, we fix small §,dp > 0, satisfying the hypothesis in Theorem [3.1] and set
1
as in [6, B7]. The following discussion applies to both the original SKdV (l.1) and its
truncated version (1.22)). In order to treat them in a uniform manner, we take N € Zx>g
and set u™ = u, N*(u1,uz) = N(u1,uz), and N7°(u,uz) = Nj(u1,uz), j = 0,1,2. Note
that, in the following, all the estimates hold, uniformly in N € Z>.

Given T > 0, we define the random quantity L, (7T") by

Lo(T) = oYl 33545 + 110 PIL 435 4305 (3.26)
2,4

which is a pathwiseﬁ upper bound for the X~*!=*T_norms of A7 (V¥,u) in and
N 1N (U, uV) in . See Appendix We point out that, while the analysis in Appendix
(see and @) yields the spatial regularity —% — §, we use a slightly worse spatial
regularity for the definition of L, (7)) in (so that the estimate below holds,
allowing us to gain a decay in N). Note that, in contrast to [37], we defined L, (7") on the
“long” interval [0,7]. This will be useful in Sections [4| and |5| when we iterate the local-
in-time argument on many small subintervals of [0,7] but with a fixed driving space-time
white noise. From and Remark below, we have

3
Lo (T Lre) S VT2 (3.27)
for any T'> 0 and 1 < r < oo, provided that § > 0 is sufficiently small such that

11
—+0-1)d< -1
(3670-1)1<

With this notation, the main nonlinear estimate [37, eq. (73)] (see also Appendix
reads (with some small 6 > 0)

Lo 0
HUNHXZ:g,a,Tl S Cl”ué\[”’b\;go + §CQT1 HUN||§(;§"”"T1 + 2C3T1 ”uNHA?;(;;’a’Tl

(3.28)
+ 203T10Lw (T) HUN”Xfa,a,Tl + C4H\I]HX70¢,Q,T1
p,2 p,2
for any "> 0 and 0 < 77 < min(1,7T), provided that
1
C3TYR < = and |u]  —ar < R. (3.29)
2 Xp,2

Here, in importing (3.28)) from [37], we use the fact that Py is bounded on relevant function
spaces, uniformly in N € N. The nonlinear estimate (3.28]) together with an analogous

8In [37, “Estimate on (ii)” on pp. 296-297], an expectation was taken on the X ~**~*7T_norms of N7 (¥, u).
However, we in fact need a pathwise bound, which is established in Appendix
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difference estimate ([37, eq. (74)]) allows us to construct a solution u € X, 5 T to as
a limit of smooth solutions.

Next we estimate the b S -norm of a solutlon uN (1) to (3-23)). Since a < %, the embed-
ding (3.6)) does not hold and thus is not directly applicable. However, some terms
can be estlmated in a stronger norm. Indeed, from (3.6), (3.3), and [37, eq. (47) and (72)],
we have, under the condition ,

INFY (™, ™) + NG (u )Hc ([0,73]55.%)
S N (@ u™) +N2 (@™, u™)| x-a1-0m (3.30)
< 205 (T [} gy + T Lo(T) [ o )
for any T'> 0 and 0 < 7} < min(1,7), where the first inequality follows from (3.6 since
bzl—a:%—l—(5> % As for NV, we write it as
A ) = N () + N (),

where N3V denotes the contribution of N¥ on {max(oy,02) > <nn1n2>T=0} Then, from
(3.6]), (3.8]), and [37, (a) and (b) on p.302)], we have

NG (™, el o,y ey S HNyfV(uN,uN)HX;;»m,Tl + IINiV(quuN)HX;?,o,Tl
< TGHUNHQ . (3.31)
.2
Hence, putting , , and - 3.31)) together, we obtain
HUNHC([O,Tl];E;,gO) < |luollga + C5Tf”UN||§(;;,a,T1
+ CT{ Yy oy + O LT | (3.32)

1 ¥lleqomze,)
for any 7" > 0 and 0 < 77 < min(1,7"), provided that (3.29) holds.
We now state an a priori bound on a solution u” to the truncated SKdV (T.22).

Lemma 3.2. Let N € N. Then, there exist absolute constants v > 0 and Cy,ce > 0 such
that, given any T > 0, we have

el gy < O™ (), + 1l x4y + 1) =+ Bulto) (3.33)

for any time interval I = [to,to + T1] C [0,T] of length Ty < 1 and any solution u™ to the
truncated SKdV (1.22)), provided that

Ty < cu(Ry(Ryw + 1)+ Ly(T)) 7. (3.34)
Here, the constants v > 0 and Cy, cx > 0 are independent of N € N.
Proof. Under (3.29)), it follows from (3.28)) that
N N
Hu HX;S"O‘(I) < 2C1Hu (tO)HE;go + 204”@”)(;3,&(1), (3'35)
provided that

1 1
T! (2021% + 203R? + QCng(T)> <3
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Then, under ) with v = 67!, the bound ( - ) follows from and a continuity
argument. (Il

Remark 3.3. In order use a continuity argument in the proof of Lemma presented
above, we need the continuity of the X 2 " ([to, t1])-norm with respect to the right end-
point ¢;. While it may be possible to check this directly (see, for example, [2, Appendix A]
and [27, Lemma 8.1]), let us use the following equivalence:

Hu”xggaa([to,tl]) ~ Hl[to,tl]u”)(;;aaa (3-36)

where the norm on the left-hand side is defined in , and study the latter norm. Recall
that the equivalence holds since the temporal regularity b = o = %— 0 is below % (see
[16, eq.(3.5)]). Such equivalence also holds for the general X;;S([to,tl]) for 0 < b < q%ql;
see [10].

Given small h > 0, from the triangle inequality, we have

||1[t0,t1+h}UHX;gaa - ”1[t0,t1}UHX;gaa < ||1[t1,t1+h]u||xggv°‘7 (3.37)

and thus it suffices to show that the right-hand side of (3.37)) tends to 0 as h — 0. In view
of the definition (3.1]), such a claim follows once we prove

i (15 1,43 172 = 0 (3.38)

for a function f € H%(R). Obviously, we have limj .o ||y, ;44 fllz2 = 0. Using the
physical side characterization of the homogeneous Sobolev norm, we have

2o [ MOS0 ~ e (I E)P
W sen e = /R/R - [t — 7—|1+12al dtdr
1(h)+1I

(h) +I(R),

where I, II, and III are defined by

_ 2
I(h) = / / Mdtdr,
[t1,t1+h] J[t1,t1+h] [ T’ @

’2
(h) = / / —————drdt,
[t1,t14h] J [t1,t1+h]c ‘t - T’HZ&

f()]?
I(h) = / / —————dtdr.
[tl t1+h] [tl t1+h ‘t - T|1+2a

By the dominated convergence theorem with the fact that f € H%(R), we see that
limp_,oo I(h) = 0. As for II(h), integration in 7 yields

2 2
]I(h)rv/ 1) ! dt+/ |f(75)|2 gt
it t1—h) [t —t1 — R[2® ity +h) [t — 12

S le

where the second step follows from Hardy’s inequality (|57, Lemma A.2]) since 0 < o < 3.
Noting that III(h) = II(h), we see that the term III(h) also satisfies the bound above. Also,
the case h < 0 follows from an analogous consideration. Putting everything together, we
conclude (3.38). See also Lemma 4.4 in [7].
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We conclude this section by stating a lemma on growth of the stochastic convolution ¥
in over long time intervals. We point out that analogous regularity results were
obtained in [37, Propositions 4.1 and 4.5] but they are only for short times.

Lemma 3.4. Let s <0 and 1 < p,q < oo such that sp < —1.
(i) Let (b—1)g < —1. Given any 1 <r < oo and T > 1, we have

<VrT (3.39)

180 < 12200 1 =

XP ‘1(1 ‘

for any interval I C [0,T] with length |I| < 1, where the zmplz'cit constant is independent
of r and T'.

(ii) Given any 1 <r < oo and T > 1, we have

SVrTlogT, (3.40)

Lr()
where the implicit constant is independent of v and T'.

HII‘I’\Icqo,TJ;E;,oo)‘

We present the proof of Lemma [3.4] in Appendix [A]

Remark 3.5. We point out that the bound (3.39)) holds only for intervals I of short lengths.
Indeed, a slight modification of the proof yields the following estimate for I = [0, T7:

<SVrT?, (3.41)

liol,,
Q) ~ ¥l zpr LT(Q)
where the right-hand side is much worse than those in and (| - See Remark |A. 1] .

HH\I/“XS:Z’T

4. PROBABILISTIC UNIFORM GROWTH BOUND

Given N € N, let ¥ be the global solution to the truncated SKdV with the mean-
zero white noise initial data ug in . Our main goal in this section is to establish the
following probabilistic growth bound on the solution u" to whose proof is based on
a variant of Bourgain’s invariant measure argument in the current setting of an evolution
system of measures (Proposition .

Proposition 4.1. Let « and p be as in (3.25) and Theorem respectively. Given any
T>>1 and 0 < e < 1, there exists a set Qp(N) such that P(Qr(N)°) < e and

1
sup ‘|UN(t)H3;gO§C logg TlogT (4.1)

te[0,7

on Qrc(N), where the constant C > 0 is independent of N € N, T'> 1, and ¢ < 1.

Proof. Fix small T; > 0 (to be chosen later), and let I; = [j11, (j + 1)T1) N [0,T], j € Z>o.
Recall from Proposition that the solution u” (j11) at time ¢ = j7} is distributed by the
white noise measure 1147, with variance 1+ jT7, where pi4 7 is as in (2.3)). Then, given
Ky >1,set Q) = Ql(T,é‘,N) C Q by

(T/T1]

= () {IWN 6Tl e < Faf (42)
j=0
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Then, it follows from Lemma [2.5] and choosing

T
Kler/Tlogg (4.3)

for some 71 > 1(to be chosen later) that

——c T I / /
POf) S Y ¢ T~ e T S gt (4.4)
Next, define Qo = Qa(T,e) C Q by

(T/Th]

%= {||\I’HX;§“’°‘(UT1,J'T1+1]) < Kl}a (4.5)
=0

where K7 is as in (4.3]). Then, by Lemma (1) and Chebyshev’s inequality, we have

/7] c k2 12 2
P(5) S Y e T o irteeieen (4.6)
5=0
just as in (4.4). Lastly, define Q3 = Q3(T,¢) C Q by
Qs = {L,(T) < K}, (4.7)

where L, (7T) is as in (3.26)) and

1
Ky =roy /T3 1og —. (4.8)
£

Then, by choosing o > 0 sufficiently large, it follows from ([3.27]) and Chebyshev’s inequality
that

P(Q5) < Ce™ 79K < i (4.9)
Let R, be as in (3.33)). Then, on 27 N Qe N N3, we have
Rw(]Tl) < C*(2K1 + 1) ~ Ky and LN(T) < Ko (410)

forj =0,1,..., [T%] In view of (3.29) and (3.34) in Lemmawith (4.10f), we now choose
T1 > 0 by setting

_1
Ty ~ min{K1 7, (K2 —|—K2)_V}. (4.11)

Then, by choosing r; > 0 sufficiently large, it follows from (4.4)) and (4.6]) with (4.3)), (4.8)),
and (4.11)) that

P(QS) < Z (4.12)

for kK = 1,2. Furthermore, from Lemma and (4.10) with (4.3), we obtain

T
HUNHXZ;S"O‘(IJ-) <Cy(2K1 +1) ~ Ky ~ \/Tlog; (4.13)
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Now, define Q4 = Qu(T,e) C Q by

1
Oy = {H\II‘C([O,T];Z;,OQ) < r34/log Ex/TlogT}. (4.14)

Then, from Lemma (ii) and Chebyshev’s inequality, we have
P(QS) < Z (4.15)

by choosing r3 > 0 sufficiently large. In view of (3.32)) with (4.10) and (4.13)), we further

impose that
T{ (C5C(2K1 + 1) + CoC2(2K1 + 1)? + C7K>3) < 1. (4.16)

Note that (4.16|) yields T} < (K f—l—Kg)_%, which is essentially implied by (4.11)) (by possibly
making r; larger) and thus the bound (4.12]) still holds.

Finally, set Qr(N) = Q1 N--- N Q4. Then, from (4.9), (4.12), and (4.15)), we have
P(Qr (N)°) <e.

Furthermore, on Q7 .(N), we conclude from (3.32)) with (4.2), (4.3), (4.13)), (4.14), and
(4.16) that

1
||UNHC(IJ.;E;30) S 4/ log = vV TlogT,

uniformly in 5 =0,1,..., [T%]? which implies (4.1]). O

5. APPROXIMATION ARGUMENT

In this section, we present the proof of Theorem [I.1l We first establish the following
‘almost’ almost sure global well-posedness of SKdV via an approximation argument.
Given N € N, let u" be the global solution to the truncated SKdV with the
mean-zero white noise initial data ug in , and let u be the solution to SKdV
with the mean-zero white noise initial data ug in , whose local existence is guaranteed

by Theorem

Proposition 5.1. Let a = % — 4§ and p = 2+ &g for some small 6,99 > 0 such that % <
o< %. Given any T > 1 and 0 < € < 1, there exist a set Qp. and N, = N,(T,e) € N

such that P(Q5._) < € and, on Qr., we have

sup |lu(t) — u™ ()][f-a < C(T, )Ny
te[0,T] P

[NJIS)

(5.1)

In particular, on Qr., the solution u to SKdV (1.1)) with the mean-zero white noise initial
data ug in (1.30) exists on the time interval [0,T].

As compared to Theorem [3.1] we need an extra restriction § > % in order to obtain a
decay in N. See (5.2)) and (5.12)).
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Proof. We first record the following embedding, which requires the additional condition
o> %. Let p > 2. By Holder’s inequality, we have

||f||H_%_%5 < <22_26j||< )T 5 %5—&-6]0( )||2n|N2j>2

=0

_35 _las7
<72 2, sup ()72 ()l S NSy

Ly~ " j€ZL>o n bp,50
provided that § > % (by taking € > 0 sufficiently small). Hence, we have

Jall s S el yiss (5.2)

p,2

for any s,b € R, provided that § > %. Instead of (3.4]), we use (5.2 in the following.

e Step 1: In the following, we first study the difference of the Duhamel formulations (3.21])
and (3.23) for SKAV (1.1) and the truncated SKdAV (1.22), respectively, on short time
intervals. Our first main goal is to estimate the difference

HN(U, u) — 'N‘N(uNﬂ uN) HX*av‘lle

p,2

for small T} > 0, where oo = % — 6 as in (3.25). From the discussion in Subsection we
have

N (u, ) — NN ]22;( NN(N N))

= No(u,u) — ./\/gv(uN, uN)

+ N (0, u) — NN (@, uY)
- %(Ng(u,./\/'(u,u)) NN NN N )
+ No(u, U) — N3¥ (uV, ).

From the definitions of N (u,u) and N (u?, "), we have

NN (u, ), u) = NN @ ulV), ulV)
= M (N (u,u),u) — PyN (PyN (PrulY, Pyu), Pyul)
= N1(N(u,u) — PNN(PNuN,PNuN),u)
+ M (PyN Py, Pyu), u—ul) (5.3)
+ N (PyN Py, Pyu®), Pyu®)
Py N1 (PyN(Pyul, Pyul), PyulY)
= Ay + Ay + A3+ Ay
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and
MY, u) = NN (0, uN) = N (W, u) — PyN (P, PyulY)
=N (PyV,u) + N (PnT,u —u®)

+ M (PNT, Prul) + PANL (PN, PyulY) (54
=: By + By + B3 + By.
Similar expressions hold for the differences
No(u, N (u, w) = N (N, NV (u, uY)) (5.5)
and
No(u, U) — NN (uV, ). (5.6)
Let us first estimate (5.4). Given N € N, define Ej ~N(T) by
Lin(T) = Hl[O,T]PJ]\_f\IIHX— S+ 1Py Y| yo At (5.7)
See ) below. Then, from and ., we have
EiN(T) SN ELL(T). (5.8)

From the estimates in Appendix [B] (5.8)), and (5.2)) (see also (5.12)) below), we have
HBl + By + Bg”X—a,l—a,Tl
STVLE v (D)lfully-a-wm

5.9
+T19LM(T)<||U - UN||X—(1—Q),a,T1 + ”PJNUNHX—(l—a),a,T1> ( )
_8
STV Ly(T)|u— vV y—awm + N72T{ Ly(T) (||u|yX,a,a,T1 + HuNH —a.a Tl)
P,2 P,2
and
_8 _38

|Ballx-aa-ary S NT2Ball aogar, SN2V Lo(D[u™ 3 g0, (5.10)

8
< N‘2TfLw(T)IIuNH oy

for some small § > 0. Therefore, from ([5.9)), 1} and the symmetry between N7 and N,

we have

IED + BBl STV Lu(T)u = u¥ |y =g

s (5.11)
+ NI L(T) (Jlull g + 6] - em )

Next, we estimate the terms in (5.3)). The main nonlinear analysis comes from [6, (2.27)-
(2.59) pp.125-130] and [37, “Estimate on (i)” on pp.295-296]. Here, the latter replaces
[0, Estimation of (2.62) on p.131], where the a priori assumption was used. In [6],
the nonlinear analysis ([6, (2.27)-(2.59) pp. 125-130]) was estimated by the X ~(1=®):% norm
of u. In particular, in estimating the terms with PJNuN in (namely, the first and third
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terms on the right-hand side of (5.3))), we can apply (5.2)) to gain a negative power of N as
follows:

_s
IPru™ |l x-a-mam SN 2Pyl g yoam 5.12)
SN7E U] ey ‘
p,2

As for and [37, “Estimate on (i)” on pp.295-296] on R, in [37, (58)], we used (n)~1=% <
(n)=3@. This can be replaced by (n)_l_o‘+g < (n)73®, which allows us to gain N~3
from Py.
From the discussion above, a straightforward modification of the estimates in [0, (2.27)-
(2.59) pp. 125-130] and [37, “Estimate on (i)” on pp. 295-296] yields
[A1]l x-01-am

S TN (u, w) = PNN(Pru® Pyl | y—anzom u] x-a-a).en
0 N N
+ 17 (el -y + 1N 0w ) e = 0¥l - am
—%70, N
+ N 217 ||lu H?{*(lfa),a,Tl

, N (5.13)
S TN () = N7 (w0l x-a—ary fJull c—aaimy

0 2 N2 N
e ey | Ll ey

[
+ NI 2 o,
p,2

Here, the first term on the right-hand side comes from [0, (II.1) on pp.126-127], while
the second and third terms on the right-hand side come from estimating the other cases
trilinearly, using

N(u,u) — PyN(Pru , Pyu) = N(u,u) — N (@, ul)
+ N, Pyu) + N(Pru, Pyu?)
+ PN (Pyu?, Pyul).

Similarly, we have

||A2HX70¢,170¢,T1 S TleHNljv(uN, UN)”Xfa,lfa,Tl ||u - UNHXf;y,a,Tl
D,

(5.14)
+ TlGHUNH?X;;,a,T1 Hu - UNHX;;&,Tl

and

_s
|4l x-o1-ar S NIV AT (™, 0| x-on-am [[u™]] g oamy
P,

. (5.15)
+ NI |,
p,2

In handling the term Ay in (5.3 with P4 outside the nonlinearity we simply use

(n)

N[
I

S(n)i(ne)?  and  (n)? S (n2)2(ns)? (ng)2,
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where n3 and ng4 are the spatial frequencies of the first and second factors of
Py N (Pyu,Pyul) in Ay; see also (5.10]) above. Thus, we have

_s
[Aallx-on-ary SN2 Aall 0igiam

_s
S NN ()| - e ||UN||Xp—2a,a7T1 (5.16)
[
F N AT,
p,2
Here, the first term on the right-hand side of (5.16]) comes from [6, (II.1) on pp. 126-127],
where we used the fact that (n1)2*~! = (n;)=2°. (In [6], in view of 2a: — 1 < 0, this factor

(n1)%2~! was simply thrown away; see [6], (2.37)].) Hence, from (5.13)), (5.14)), (5.15), (5.16)),
and the symmetry between N7 and N3, we obtain

1B3) + BBl x—ar-er S TT [N (uu) = MY (@ ™) | g aimam el g

0 2 N2 N
R o L

L A [P R e (5.17)

_s
+ N 72T N (6 a) | ey [

—a,a, Ty
,2

XP

)
F NIV P
p,2
Given R > 1, by choosing T1 = T1(R) > 0 sufficiently small such that the condition ({3.29)
is satisfied. Then, by possibly making 77 = Ti(R) > 0 small, it follows from (5.11)

and (5.17) with (3.30) that

2
D NG w) = A (N ) e e,
j=1

5.18
ST ([l s, + B+ L(T)R) 1= o, (519
p,2 P2
+ N73T? <R4 + Lw(T)R2>
under an extra assumption u:

As mentioned in Section [3| the temporal regularity on the left-hand side of is b=
l—a= % 4+ > %, which is used in below.

The following estimate follows from a slight modification of the bilinear estimate
(see [6, (I1.1) and (1.2) on pp.122-125] and (3.4)):

NG (u, ) = NG (™, u™) || -y
ST (HUHXfufa),a,Tl + ||UNHX7<1fa>,a,T1) lu =™ x--a).0m (5.20)

5 Tle (HUHX;;‘»ale + ”U’NHX;‘Q%%Tl) HU - uNHX;;v%Tl .
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As for the difference of the linear solutions, it follows from (3.5)) (with 77 < 1) and ({3.9))
that

1S (t)u(0) — S()u™ (0)] —eary < [|S(#)u(0) - 5(75)UN(0)IIXP—,;««%1

XP
< Mu(0) = u™ (0) 5.
Therefore, putting (3.21)), (3.20)), (3.23), (5.18)), and (5.20) together we obtain

Hu - UNHX;S,Ot,Tl < DOHU(O) - UN(O)

[
by,

+ DyT? (||u|\§(_a,a,T1 + R4 Lw(T)R) Ju =Nl aen (5.20)
p,2

P,

+ DyN=3T? <R4 + LW(T)RQ)

under the assumptions (3.29) and (5.19). Here, we took general initial data u(0) and u¥(0)
so that we can apply the estimate (5.21)) to a general time interval of length 77.
Next, let us bound the difference of v and u” in the C([0,T}]; b5 < (T))-norm. A bilinear

’ p?m
version of (3.31)) yields

\‘No(u, u) — NéV(UN7 UN) ”C([O,Tl]

ibp,%)
S (s N s ) o = 0 s

Hence, from ([5.18) and (5.22)), we haveﬂ

) < llu(0) —u(0)

(5.22)

N
le = w085, I3, 5.

o+ Dy ([0l o, + R+ Lo(TR) = w00y (5.23)
p,2 p,2

4 DyN“5T? (R4 + Lw(T)RQ)

under the assumptions (3.29) and (5.19). We point out that the estimates (5.21)) and (5.23))
hold true on a general time interval of length 7.

e Step 2: Fix T > 1 and 0 < ¢ < 1. We now establish the difference estimate on
the time interval [0, 7] by iterating the local-in-time estimates (5.21)) and (5.23|) with the
probabilistic input from Proposition [4.1}

Given N € N, let Qp(N) = Q1N---NQy be as in Proposition where O, k=1,...,4,
are as in , , , and , respectively. In particular, if necessary, we have
made 77 smaller such that is satisfied. In the following, it is understood that we
work on Q7 .(N) and that all the estimates are restricted to Q7 (N), where the value of
N may increase in each step.

For now, assume that
N <
HUHX;SL,an) < Ju ||X;gva(]j) +135 Ky (5.24)
for I; = [jT1,(j + )W) N [0,T], j = 0,1,..., [Ti], where the second inequality follows

from (4.13)). Note that, with R = C,(2K; + 1), (3.29) (on the interval I;) and (5.24) (see
also (4.10)) and (4.13))) implies (5.19)) (on the interval I;). Then, in view of (5.21]) and (5.23])

9n general, the constants Dy and Dy in (5.21) and (5.23) are different, but we simply take the worse
ones.
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with (4.10]) (see also (3.33)) in Lemma |3.2]) we further impose that 77 > 0 be sufficiently
small such that

¢ (Ki” n KlKQ) <1,
(5.25)

¢ (Kf n K12K2> < 1.
In the following, we work iteratively on each interval I; and verify (5.24).

Let us now consider the first time interval Iy = [0, T1]. By the local well-posedness theory
(see (3.28])), there exists small T > 0 such that

[ull —eeme S K. (5.26)
p,2

Then, from (5.21)) (but with T replacing 7} and with u(0) = u¥(0)) with (5.25) and (5.26)),

we have

_9
HU_UNH NHX—Q""O"TO + N2

1
x5 o < 5”“ —u -

Hence, we have

M

HU—U —a,a, Ty S 2Nig.
,2

XP

Therefore, by a standard continuity argument (see also Remark , we conclude that there
exists Ny € N such that ((5.24]) holds on the entire time interval Iy = [0, T1] for any N > Nj.
As a result, we obtain

N _9
lu—u ||X;2a,a(10) <2N™2 (5.27)
for any N > Ny. By applying (5.25)) and (5.27) (with (4.10)) to (5.23]), we then obtain
_9
l|u— “NHC(IO;E;,gO) <2N™2 (5.28)

for any N > Np.
On the second interval I} = [11,271] N [0,7], we repeat an analogous analysis.

From ([5.28]), we have
s
HU(T]_) — uN(Tl)H/b\;go S 2N 2
for any N > Ny. By the local theory, there exists small Ty > 0 such that

HUHX;;”"([Tl,TlJrTg]) S K.

Then, from (5.21) (but on [Th,T1 + Tp)) with (5.25) and (5.26)), we have

_9d 1 N
SQN 2 +§Hu_u HX;a,a(

N _3
lu—u ||X;g’o‘([T1,T1+T0]) 5 ([T, T +To)) +NT,

which yields

N _9
||U—u ”X;Z‘l’a([ < 6N 2.

T1,T1+To))

Therefore, it follows from a standard continuity argument that there exists N7 € N such
that (5.24]) holds on the entire time interval I; for any N > Nj. As a result, we obtain

_9
l|u — uN||X;g,a(h) < 6N~z (5.29)
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for any N > Nj. Hence, from (5.23)), (5.24) (5.25)), and (5.29)), we obtain

s 1 _é _é s
< 2N 2+§'6N 24+ N2 =6N"2.

N
”u —Uu HC(IUEE,C;O)

for any N > Nj.
Proceeding iteratively, we conclude that, on the jth interval I; = [jT1, (j+ 1)T1] N[0, T7,
7=0,1,..., [Tll]’ there exists N; € N such that

J

N k -3

e = u¥ gy, < <ZQ +1>N ;.
’ k=0
J

N k+1 —=

e = w o, gra) < (22 )N ’
k=0

for any N > N;. Note that 77 depends only on 7" and ¢; see (4.11)) and (5.25)) with (4.3
and (4.8). See also (3.28) with R < K as in (4.10)). Therefore, by setting

N* = N*(T,E) = N[T/Tl} and QT,E = QTﬁ(N*(T, 8)),
where the latter is as in Proposition we conclude from (5.30]) that, on Q7 ., we have

(5.30)

[SI-9)

Ju— uN*HC([D,T];E;g‘O) < C(T,e)N.

This concludes the proof of Proposition O

We now present the proof of Theorem We first note that the claimed almost sure
global well-posedness of SKdV with the white noise initial data immediately follows
from the ‘almost’ almost sure global well-posedness result established in Proposition [5.1}
see [16] 2]. Indeed, define ¥ C Q by

Y= U ﬂ Qi 1, (5.31)

ko
k=1j=1
where Q7 is as in Proposition Then, we have

e 1
P(X¢) < inf P(QE. = inf — =0.
( >—;2NZ (9, 1) = inf £ =0

Moreover, if w € 3, then there exists £k € N such that w € QQJ . for any j € N, which
implies that the corresponding solution u = u(w) to SKdV ex1sts globally in time.

It remains to prove ([1.15)). It follows from the proof of Prop081t10n E that, on Q7. =
Qr(N«(T,¢€)), we have

w\o«,

sup_[[u” (1) — u™ ()5 < C(T,)N, (5.32)
te[0,7
for any N > N,. Define Q1 (N) = Qi(T,e,N) C Q by
. 7/
amN = N {”uN(jTl)HE;go < 2K1}. (5.33)
=0

Namely, we replaced Kj in (4.2) by 2K;. By taking N, sufficiently large, it follows
from (5.32) that Qr. C () for any N > N,. Hence, by setting Q. (N) =
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Q1N QNN Qq, where Qq, Q3, and 4 are (4.5)), , and (4.14)), respectively, we
have

Qr. C Qr.(N) (5.34)

for any N > N,. Now, by repeating Step 2 in the proof of Proposition [5.1'" we conclude
that, there exists Ny = Nyi(T,€) € N such that, on Qr., we have

sup [u(t) — u™ (t)|fr-a < C(T,e)N"3. (5.35)

13-
t€[0,T] bp,50

for any N > N,,. This in particular implies that, for each w € Q7 ., the solution u = u(w)

to SKAV (I.1) is the limit of u" = u"(w) in C’([O,T]'Z*a (T)). Hence, given t € R4, it

) p7w
follows from the discussion above that, for each w € X,

Jul (t; w) — u(t;w) —0

HE;";O
as N — oo. This in particular implies convergence in law of u™ (¢) to u(t). Recalling that
Law(u (t)) = p144 for any N € N, we then conclude that

Law(u()) = s
This concludes the proof of Theorem

Remark 5.2. Let w € Q.. Then, from (5.34), (5.35)), and Proposition we have

1
sup Hu(t)||3;go < Cy/log g\/TlogT. (5.36)

te[0,T]

Fix k € N, and suppose that w € ﬂj‘;l Qy; 1 . Then, from (5.36]), we obtain
" k27

Hu(t)HB;go < Cv/logkv1 + tlog(1l +1t)
for any ¢t € Ry. Namely, we have
\|u(7§)||g;go < C(w)V1+tlog(l+1t) (5.37)

for any t € Ry and w € X. Note that the growth bound (5.37)) is not optimal, and we can
improve it by modifying the definition (5.31]) of ¥. For example, by redefining 3 by

3= ;
UM%z,
k=1j=1
and repeating the argument, we obtain the following growth bound:
lu(®)ll5o, < Clw)VI+ ty/log(1 + t)/loglog(1 + t).

In this way, we can obtain a growth bound which is only slightly faster than /tlogt, t > 1
(but the random constant C'(w) gets worse).

10y (5.33), we replaced K; by 2K;, which worsens constants in the argument. We can, however,
implement the proof of Proposition to incorporate these worse constants from the beginning.
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APPENDIX A. GROWTH BOUND ON THE STOCHASTIC CONVOLUTION FOR LARGE TIMES
In this appendix, we present the proof of Lemma

Proof of Lemma 3.4 Fix s < 0 and 1 < p,q < oo such that sp < —1, and (b —1)q < —1.
We also fix 1 <r < oo and T > 1. Without loss of generality, we assume

r > max(p, q). (A.1)

Before proceeding further, we first recall the following bound for a Gaussian random vari-
able g:

lgllr ) S VTllglrz)- (A.2)

(i) Let I = [to,t1] C [0,7T] be an interval of length |I| < 1. The first inequality in (3.39)
follows from (3.13]), and thus we focus on proving the second inequality in ((3.39)).
Recall that
‘|u||y;’q” = HS(_t)u(t)”fL;’PfL’t’qu (A3)

where F th”q and FLz? are the Fourier-Lebesgue spaces defined in (3.2)) and :3.11 , respec-
tively. Let ®(¢t) = S(—t)¥(t) be the interaction representation of ¥. From (3.7]) with (1.11)),

we have

1;®(n,t) = 1;(t) /t —in 4B, (t).

0
By taking the temporal Fourier transform, we then have

t1 ,
11(1) n 7_ / th/ —it n3dﬂ
to

(A.4)
- / e it'm? / e~ dtdB, (t).
0 max(to,t’)
The inner integral can be estimated as
h : 1 1
/ e"”dt‘ < min (1, ) < . (A.5)
max(to,t’) |T| <T>
From (3.5) (for the Yﬁ;f—space) and (A.3]), we have
190y ey < L@y = 1) (PP T2, 7)1 (A6)

Then, by (A.6), Minkowski’s integral inequality, and (A.2)) followed by the Ito isometry

with (A.4)), (A.5) and ¢t; < T, we have

H”‘I’Hypq(l ‘LT(Q) H” (7 Lr(n, 7l L7(%)
= H” ()" 118 (n,7) | ) L4
< \fHH 11@(71 2@ Mg a
SVrT||(n)® <T>b_ llenzs
ST,

since sp < —1 and (b — 1)g < —1. This proves (3.39).



36 T. OH, J. QUASTEL, AND P. SOSOE

(ii) It follows from [37, Proposition 4.5] that the stochastic convolution is continuous in
time with values in 5;700(11‘) when sp < —1, at least locally in time. In the following, we
estimate its growth in a direct manner by following the argument in [41, Lemma 3.4].

Without loss of generality, assume that 7" € 2~. For an integer k¥ € Z N [~ log, T, 00),
let {tgr : £ = 0,1,...,28T} be 2*T + 1 equally spaced points on [0,7], i.e. tor = 0
and to —tp1p = 27% for £ = 1,...,2"T. Let ®(t) = S(—t)¥(¢) be the interaction
representation of W. Then, given t € [0,7], it follows from the continuity (in time) of ¥
and U(0) = 0 that

o0

o) = > (DAtyn) — Dty k5-1)) (A.7)

k=—logy T

for some £ = £(t) € {0,...,28T}. Then, from (3.13)), (A.7), and Minkowski’s integral
inequality with (A.1]), we have

H”\IIHC[OaT];Ez,w)‘ < HH(I)(t)HC([O,T];J:Ls,p)

Lr() L7 ()
o0 (A.8)
< D(t — Oty s, ,
< 2 ||, max, 19000 — 20y k)lrres
k=—log, T
where ty k-1 is one of the 25~ T41 equally spaced points such that
ok =t peal <278 (A.9)
For k € ZN[—logy T, o), let
qr = max(log 25T, p, r) ~ log(28T) + r.
1
Then, noting that (28T + 1)% < 1, it follows from (A8 that
LS .
00 2kT i
< 2 (1t - oty 0l
k=—log, T ' ™ 4,=0 Lk ()
o0 2k BN (A.10)
= Y (3|10t - @ty sl )"
L,k ¢, k=1)I|FL* Lok ()
k=—logy, T' *{;=0
o
< — ! S .
SIED DRI LYo (LTSI ] Eo)

k=—log, T



GLOBAL DYNAMICS FOR SKDV 37

From (3.11)), Minkowski’s integral inequality, and (A.2]), we have

H”‘I)(t@k,k) Dty r1)llFre ‘qu(ﬂ)
- HH<n>S(EI\>(n,tgk,k)—‘/f’(n Loy - 1)) wll Lok (@)
V| (0Bt ) — Bty 1) )
tey k —t’
= Vak|/(n)*® / A (YY)
by k1 L2(Q) | ¢p

< |9
~y 2k7

where the last step follows from (A.9) and sp < —1. Hence, from (A.10)) and (A.11)), we

obtain (A.8) that

= log 2k +1og, T
<\[ Z %

k=~ log 22"
< \/?\/Tlog T.
This proves (3.40)). O

Remark A.1. Let us consider the bound (3.39) when I = [0, T, as discussed in Remark[3.5]
In this case, (A.4]) becomes

[RZE e o

— T .73 T .
1o7®(n,7) = /0 et / e T dtdB,(t).
t/

In particular, the inner integral is estimated as

T ) T
‘ / emdt‘ < —. (A.12)
t (1)
Then, by repeating the computation above with (A.12]), we obtain (3.41]).

APPENDIX B. PATHWISE BOUND ON THE ITERATED TERM WITH THE STOCHASTIC
CONVOLUTION

In this appendix, we establish a pathwise bound on the X ~%!=%T_norm of N} (¥, u)
appearing in . This was essentially carried out in [37, “Estimate on (ii)” on pp. 296-
297] but was done with an expectation. In the following, based on the analysis in [37], we
instead present straightforward pathwise analysis. By duality, it suffices to estimate

i =d(n, ), —— na) ~e(no, T
Z / deTllo’leAXHO_a()|1[07T]\I’(n1,’7'1)|< 2> O"O‘( 2 2)|, (Bl)
EL Gt 4y 0 2
n=ni+n2

where o;, j = 0,1,2, is as in (3.17), d = d(n,7) with [|d|[z22 = 1, and ¢(n,7) =
(n)=(0=2) (7 — n3)°%(n, 1) such that |||z r2 = lul x-1-a.a
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e Case 1: max(og,02) 2 <nn1n2>ﬁ.
Without loss of generality, assume o¢ 2 <7m1n2>ﬁ. Then, by (3.18) and the

~

L3, L2, L} -Holder’s inequality followed by the L*-Strichartz estimate (3.10)), we have
d(n,t 15 26 /= c(ng, T2
Bhs Y [ aram SO Ao o, 2
LT RS SR i (B2)
S Lo, VYl 51— llullx—-a)ar

X_i_ 27

by taking ¢ > 0 sufficiently small.

1
e Case 2: max(0g,02) < (nnyngy) 0.
Define the set Q(n) by

Q(n) {U eER:0=—-3nning + 0(<nn1n2>%)

for some ny,ny € Z, with n =n; + ng}.
Then, we have
/<T i) g (r - n¥)dr < 1. (B.3)

See [37, Lemma 5.3]. By (3.18 - the th, xt,L -Hélder’s inequality, the L*-Strichartz
estimate (3.10), and Holder’s inequality (in 7) Wlth (B.3)), we have

d(n,7)
EDs [ aran®
n,n —_
n:’n}JrnQ T=T1+T2
15 45 —— c(ng, T2
< Sy (71— 1)) 300 g, m 2
2

1§ r46 ——
S Iy (11 = nd)(ng) "2 %02 Lo¥(n1, m)llez, 22, ullx-a-a.a

S Iom ¥l s gyslullx-o-crar,
2,4

where the iﬁigb—norm is defined in ([3.12]).
Given N € N, a similar computation yields
INU(PRT, )| x—an—ar

B.5
< (omPEH -y ogo + I PAEL_yogpes)lilxaoer, 7

which motivates the definition of Ei ~(T) in (5.7).
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