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Abstract. We study the stochastic Korteweg-de Vries equation (SKdV) with an additive
space-time white noise forcing, posed on the one-dimensional torus. In particular, we
construct global-in-time solutions to SKdV with spatial white noise initial data. Due to
the lack of an invariant measure, Bourgain’s invariant measure argument is not applicable
to this problem. In order to overcome this difficulty, we implement a variant of Bourgain’s
argument in the context of an evolution system of measures and construct global-in-time
dynamics. Moreover, we show that the white noise measure with variance 1 + t is an
evolution system of measures for SKdV with the white noise initial data.
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1. Introduction

1.1. Main result. The main objective of the present paper is to explain how techniques

developed to study invariance of certain measures (in our case, a spatial white noise) under

the flow of Hamiltonian partial differential equations (PDEs) can be combined with the

analysis of stochastic perturbations of these equations to construct global-in-time solutions

in a probabilistic setting.

In particular, we consider the following Cauchy problem for the stochastic Korteweg-de

Vries equation (SKdV) on the one-dimensional torus T = R/(2πZ):{︄
∂tu+ ∂3

xu+ u∂xu = ξ

u|t=0 = u0.
(1.1)

Here, ξ denotes an additive (Gaussian) space-time white noise forcing whose space-time

covariance is (formally) given by

E[ξ(x1, t1)ξ(x2, t2)] = δ(x1 − x2)δ(t1 − t2) (1.2)

for x1, x2 ∈ T and t1, t2 ∈ R+ with δ denoting the Dirac delta function. In particular, we

study (1.1) with a spatial white noise1 on T, independent of the forcing ξ, as initial data.

More concretely, we take u0 = uω0 of the form:2

uω0 (x) =
∑︂
n∈Z

gn(ω)e
inx, (1.3)

where {gn}n∈Z is a family of independent standard complex-valued Gaussian random vari-

ables conditioned that g−n = gn, n ∈ Z. The main difficulty of this problem comes from the

roughness of the noise and the white noise initial data, such that the solution u(t) to (1.1)

belong to Hs(T) \ H− 1
2 (T), s < −1

2 , almost surely. Here, Hs(T) denotes the L2-based

Sobolev space defined by the norm:

∥u∥Hs =

(︃∑︂
n∈Z

⟨n⟩2s|ˆ︁u(n)|2)︃ 1
2

,

where ⟨ · ⟩ =
√︁
1 + | · |2.

The well-posedness issue of SKdV with an additive forcing:

∂tu+ ∂3
xu+ u∂xu = ϕξ, (1.4)

where ϕ is a bounded operator on L2, has been studied both on the real line and on the

torus [20, 21, 51, 22, 37]. In the periodic setting, de Bouard, Debussche, and Tsutsumi [22]

proved local well-posedness of (1.4) on T when ϕ is a Hilbert-Schmidt operator from L2(T)
to Hs(T) for s > −1

2 , barely missing the case of an additive space-time white noise. This

local well-posedness result in [22] was obtained via a contraction argument, based on the

Fourier restriction norm method (namely, utilizing the Xs,b-spaces) adapted to the Besov

space, utilizing the endpoint Besov regularity of the Brownian motion [13, 54, 1]. With

1As it is customary in the literature, with a slight abuse of notation, we use the term ‘white noise’ to refer
to both the distribution-valued random variable uω

0 in (1.3) and its law µ1 = Law(uω
0 ), when there is no

confusion. Here, Law(X) denotes the law of a random variable X. For clarity, we may refer to µ1 = Law(uω
0 )

as the white noise measure.
2By convention, we endow T with the normalized Lebesgue measure (2π)−1dx.
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an additional assumption that ϕ is Hilbert-Schmidt from L2(T) to L2(T), they also proved

global well-posedness of (1.4) in L2(T). In [37], the first author improved this result and

proved local well-posedness of (1.4) even when ϕ = Id (thus reducing to (1.1)), thus handling

the case of an additive space-time white noise.3 We point out that the argument in [37] is

based on an approximation argument, in particular, not based on a contraction argument.

Below, we will describe the approach in [37] more in detail; see Section 3. Our main goal

is to construct global-in-time dynamics for (1.1) with the spatial white noise uω0 in (1.3) as

initial data.

Before proceeding further, let us go over the known well-posedness results for the (de-

terministic) KdV on T:
∂tu+ ∂3

xu+ u∂xu = 0. (1.5)

In [4], Bourgain introduced the so-called Fourier restriction norm method, utilizing the

Xs,b-spaces defined by the norm:

∥u∥Xs,b(T×R) = ∥⟨n⟩s⟨τ − n3⟩bˆ︁u(n, τ)∥ℓ2nL2
τ (Z×R), (1.6)

and proved local well-posedness of (1.5) in L2(T) via a fixed point argument, immediately

yielding global well-posedness in L2(T) thanks to the conservation of the L2-norm. Subse-

quently, Kenig, Ponce, and Vega [31] (also see [14]) improved Bourgain’s result and proved

local well-posedness of (1.5) in H− 1
2 (T) by establishing the following bilinear estimate:

∥∂x(uv)∥Xs,b−1 ≲ ∥u∥Xs,b∥v∥Xs,b (1.7)

for s ≥ −1
2 and b = 1

2 under the (spatial) mean-zero assumption on u and v. In [14],

Colliander, Keel, Staffilani, Takaoka, and Tao then proved the corresponding global well-

posedness result in H− 1
2 (T) via the I-method. The KdV equation (1.5) is also known to

be one of the simplest completely integrable PDEs, and there are well-posedness results

for (1.5), exploiting the completely integrable structure of the equation. In [6], Bourgain

proved global well-posedness of (1.5) in the class M(T) of finite Borel measures λ on T,
assuming that its total variation ∥λ∥ is sufficiently small. His proof was based on partially

iterating the Duhamel formulation of (1.5) and establishing bilinear and trilinear estimates,

assuming an a priori uniform bound of the form:

sup
t∈R

sup
n∈Z

|ˆ︁u(n, t)| ≤ C (1.8)

on the Fourier coefficients of the solution u. Then, he established the global-in-time a priori

bound (1.8), using the complete integrability. In [30], Kappeler and Topalov proved global

well-posedness of (1.5) in H−1(T) via the inverse spectral method. See also [33].

For SKdV (1.1) with a random perturbation, such an integrable structure is destroyed and

thus the approaches based on the complete integrability of KdV are no longer applicable.

Nonetheless, in [37], the first author adapted Bourgain’s approach [6], based on a partial

iteration of the Duhamel formulation (= the mild formulation) of (1.1), and proved local

well-posedness of (1.1). In particular, he bypassed the assumption (1.8) by employing the

Fourier restriction norm method adapted to the “Fourier-Besov” space ˆ︁bsp,∞(T) introduced

3Note that ϕ = Id is a Hilbert-Schmidt operator from L2(T) to Hs(T) for s < − 1
2
but not for s ≥ − 1

2
.
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in [36], defined by the norm:

∥f∥ˆ︁bsp,∞ = ∥ ˆ︁f∥bsp,∞ = sup
j∈Z≥0

∥⟨n⟩s ˆ︁f(n)∥ℓp
|n|∼2j

= sup
j∈Z≥0

(︃ ∑︂
|n|∼2j

⟨n⟩sp| ˆ︁f(n)|p)︃ 1
p

,
(1.9)

which captures the spatial regularity of the space-time white noise when sp < −1; see

Proposition 3.4 in [36].4 Here, Z≥0 = N ∪ {0}, and {|n| ∼ 2j} means {2j−1 < |n| ≤ 2j}
when j ≥ 1 and {|n| ≤ 1} when j = 0. Note that, by taking p > 2 (but close to 2), we

can take s > −1
2 , still satisfying sp < −1, which is crucial in establishing relevant nonlinear

estimates. In Section 3, we go over some aspects of the local well-posedness argument

from [37].

We now state our main result, which extends the solution constructed in [37] globally in

time in the case of the white noise initial data. We say that u is a solution to (1.1) if it

satisfies the following Duhamel formulation (= the mild formulation):

u(t) = S(t)u0 −
1

2

ˆ t

0
S(t− t′)∂xu

2(t′)dt+

ˆ t

0
S(t− t′)dW (t′), (1.10)

where S(t) = e−t∂3
x denotes the linear KdV propagator (= the Airy propagator) and W

denotes a cylindrical Wiener process on L2(T):

W (t) =
∑︂
n∈Z

βn(t)e
inx, (1.11)

where {βn}n∈Z is defined by βn(t) = ⟨ξ,1[0,t] · en⟩x,t. Here, ⟨·, ·⟩x,t denotes the duality

pairing on T × R+. As a result, we see that {βn}n∈Z is a family of mutually independent

complex-valued Brownian motions conditioned that β−n = βn, n ∈ Z. In particular, β0 is

a standard real-valued Brownian motion, and we have

Var(βn(t)) = E
[︁
⟨ξ,1[0,t] · en⟩x,t⟨ξ,1[0,t] · en⟩x,t

]︁
= ∥1[0,t] · en∥2L2

x,t
= t (1.12)

for any n ∈ Z. Note that the space-time white noise ξ in (1.1) is a distributional time

derivative of the cylindrical Wiener process W in (1.11). The third term on the right-hand

side of (1.10) is the so-called stochastic convolution, representing the effect of the stochastic

forcing.

In the following, we set

s = −1

2
+ δ1 and p = 2 + δ2 (1.13)

for some small δ1, δ2 > 0 such that sp < −1. Given α ≥ 0,5 we say that a distribution-

valued random variable X on T (and its law, denoted by µα) is a (spatial) white noise on T

4In other words, ϕ = Id is a γ-radonifying operator from L2(T) to ˆ︁bsp,∞(T) when sp < −1, which is a
suitable generalization of the notion of Hilbert-Schmidt operators in the Banach space setting; see [8, 59].
See also [29, Chapter 9].

5By convention, we have X ≡ 0 when α = 0. Namely, µ0 = δ0, where δ0 is the Dirac delta distribution
at the trivial function.
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with variance α if

µα = Law(X) = Law(
√
αuω0 ), (1.14)

where uω0 is the white noise (with variance 1) in (1.3).

Theorem 1.1. The stochastic KdV equation (1.1) with an additive space-time white noise

forcing is globally well-posed with white noise initial data. More precisely, there exist small

δ1, δ2 > 0 such that, with probability 1, there exists a unique global-in-time solution u

to (1.1), belonging to the class C(R+;ˆ︁bsp,∞(T)) with s and p as in (1.13), with the white

noise initial data uω0 in (1.3). Moreover, for any t ≥ 0, we have

Law(u(t)) = µ1+t. (1.15)

Namely, u(t) is a white noise with variance 1 + t.

The proof of Theorem 1.1 is based on a variant of Bourgain’s invariant measure argu-

ment [5] in the context of an evolution system of measures [19, 18], which is a natural gener-

alization of the concept of invariant measures for an autonomous dynamical system. Let us

give a somewhat formal definition of an evolution system of measures. Let Φt1,t2 = Φω
t1,t2 ,

t2 ≥ t1 ≥ 0, be a solution map for a given autonomous (random) dynamical system, send-

ing the data φ at time t1 to the solution Φt1,t2φ at time t2. Then, we define the transition

semigroup Pt1,t2 by

Pt1,t2F (φ) = E[F (Φω
t1,t2φ)] (1.16)

for a bounded measurable function F on the phase space M. Then, we say that6 a family

{ρt}t∈R+ of probability measures on M is an evolution system of measures indexed by R+

if ˆ
M

F (φ)ρt2(dφ) =

ˆ
M

Pt1,t2F (φ)ρt1(dφ) (1.17)

for any bounded continuous function F onM and t2 ≥ t1 ≥ 0. Note that (1.17) is equivalent

to

ρt2 = P ∗
t1,t2ρt1

for any t2 ≥ t1 ≥ 0. If there exists an invariant measure ρ, then by setting ρt = ρ, t ∈ R+,

the family {ρt}t∈R+ is obviously an evolution system of measures. It is in this sense that the

notion of an evolution system of measures is a generalization of the notion of an invariant

measure.

Given t ∈ R+, let µ1+t be the white noise of variance 1 + t defined in (1.14). Then, the

following corollary follows from (1.15) and the flow property

Φt1,t3 = Φt2,t3 ◦ Φt1,t2 (1.18)

for t3 ≥ t2 ≥ t1 ≥ 0 of the solution map to SKdV (1.1) constructed in Theorem 1.1.

Corollary 1.2. Let µ1+t be the white noise measure with variance 1+ t as in (1.14). Then,

the family {µ1+t}t∈R+ is an evolution system of measures for SKdV (1.1) with the white

noise initial data uω0 in (1.3).

6Strictly speaking, an evolution system of measures is the mapping t ∈ R+ ↦→ ρt ∈ P(M), where P(M)
denotes the family of probability measures on M. However, we simply refer to the family {ρt}t∈R+ of

measures as an evolution system of measures.
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Furthermore, we have the following corollary to Theorem 1.1.

Corollary 1.3. (i) Given α ≥ 0, let uω0,α be a white noise on T with variance α given by

uω0,α(x) =
√
α
∑︂
n∈Z

gn(ω)e
inx,

where {gn}n∈Z is as in (1.3). Then, with probability 1, there exists a unique global-in-time

solution u to (1.1), with u|t=0 = uω0,α. Moreover, for any t ≥ 0, we have

Law(u(t)) = µα+t, (1.19)

where µα+t is as in (1.14). Namely, u(t) is a white noise with variance α+ t.

(ii) Let w0 be a deterministic function in L2(T) and α > 0. Then, with probability 1, there

exists a unique global-in-time solution u to (1.1) with u|t=0 = w0 +
√
αuω0,α, where uω0 is

the white noise on T with variance α as in (1.3).

Part (i) of Corollary 1.3 directly follows from Theorem 1.1 together with the flow prop-

erty (1.18) and the time translation invariance (in law) of SKdV (1.1). See also Remark 1.5.

Part (ii) of Corollary 1.3 follows from Corollary 1.3 (i) and the Cameron-Martin theorem [9]

by noting that L2(T) is the Cameron-Martin space of µα = Law(
√
αuω0 ). See [42] for a fur-

ther discussion.

Thanks to the time reversibility of the KdV equation, Theorem 1.1 and Corollary 1.3

also hold for negative times (where the variances 1 + t in (1.15) and α + t in (1.19) are

replaced by 1+ |t| and α+ |t|, respectively. For simplicity of the presentation, however, we

only consider positive times in the remaining part of the paper. Moreover, in the following

discussion, in considering a stochastic flow on a time interval [t1, t2], it is understood that

random initial data at time t1 and a stochastic forcing on [t1, t2] are independent (which is

justified by (1.2)).

1.2. Outline of the proof. Let us now describe some aspects of the proof of Theorem 1.1.

Except in the small data regime (including a small perturbation of a known global solution),

one usually needs to exploit conservation laws in order to construct global-in-time solutions

to nonlinear dispersive PDEs. A remarkable intuition by Bourgain in [5] was to use (formal)

invariance of a Gibbs measure as a replacement of a conservation law to construct global-in-

time solutions with the Gibbsian initial data. More precisely, he used the rigorous invariance

of the truncated Gibbs measures for the associated truncated dynamics and combined

it with a PDE approximation argument to construct the desired global-in-time invariant

Gibbs dynamics. This argument, known as Bourgain’s invariant measure argument, has

been applied to many dispersive PDEs with random initial data (and stochastic forcing), in

particular over the last fifteen years. See the survey papers [38, 3, 58] for a further discussion

on this topic and the references therein. See also [26, 39, 40] for more recent results in the

context of stochastic dispersive PDEs. We point out that Bourgain’s invariant measure

argument has also been applied to globalize solutions to stochastic parabolic PDEs; see, for

example, [28, 46, 45].

In the current problem at hand, due to the lack of a damping term, there is no invariant

measure for SKdV (1.1), and thus Bourgain’s invariant measure argument is not applica-

ble. It is, however, easy to see, at a formal level, (as explained below) that SKdV (1.1)
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with the white noise initial data (1.3) possesses a (formal) evolution system of measures

{µ1+t}t∈R+ , where µ1+t is a white noise measure with variance 1 + t defined in (1.14). See

also Proposition 1.4. Our main strategy is then to use this (formal) evolution system of mea-

sures {µ1+t}t∈R+ as a replacement of a (formal) invariant measure in Bourgain’s invariant

measure argument (and hence as a replacement of a conservation law in the deterministic

setting).

Before proceeding further, let us provide a heuristic argument for the claim that

{µ1+t}t∈R+ is an evolution system of measures for SKdV (1.1) with the white noise ini-

tial data. First, view the SKdV dynamics (1.1) as a superposition of the deterministic

KdV (1.5) and

∂tu = ξ (1.20)

(at the level of infinitesimal generators). On the one hand, the white noise (with any

variance) is known to be invariant under the flow of the deterministic KdV (1.5); see

[52, 36, 38, 43, 32]. On the other hand, the stochastic flow (1.20) with a white noise

initial data (with any variance) increases the variance by the length of the time interval

under consideration. Then, the claim follows, at least at a purely formal level, from these

observations together with the Lie-Trotter product formula [53, Section VIII.8]:

et(A+B) = lim
n→∞

[︁
e

t
n
Ae

t
n
B
]︁n

(1.21)

(which holds, for example, for finite-dimensional matrices A,B). We point out that the Lie-

Trotter product formula (1.21) is not directly applicable to our problem, and the core of

the proof of Theorem 1.1 consists of justifying this heuristic argument by an approximation

argument, which we explain next.

• Truncated SKdV dynamics. Given N ∈ N, let PN denotes the Dirichlet projection

on (spatial) frequencies {|n| ≤ N}. Then, consider the following truncated SKdV equation:{︄
∂tu

N + ∂3
xu

N +PN (PNuN · ∂xPNuN ) = ξ

uN |t=0 = uω0 ,
(1.22)

where uω0 is the white noise given in (1.3). Note that the truncation appears only on the

nonlinearity, but not on the noise or the initial data. With P⊥
N = Id−PN , set

uN = PNuN and u⊥N = P⊥
NuN .

Then, the truncated SKdV dynamics (1.22) decouples into the finite-dimensional nonlinear

dynamics for the low frequency part uN = PNuN :{︄
∂tuN + ∂3

xuN +PN (uN∂xuN ) = PNξ

uN |t=0 = PNuω0 ,
(1.23)

and the linear dynamics for the high frequency part u⊥N = P⊥
NuN :{︄

∂tu
⊥
N + ∂3

xu
⊥
N = P⊥

Nξ

u⊥N |t=0 = P⊥
Nuω0 .

(1.24)

It is easy to see that both (1.23) and (1.24) are globally well-posed (which implies that (1.22)

is globally well-posed); see Section 2. For t2 ≥ t1 ≥ 0, we denote by ΦN,low
t1,t2

and ΦN,high
t1,t2

the

solution maps for (1.23) and (1.24) sending data φ at time t1 to the solutions ΦN,low
t1,t2

φ and
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ΦN,high
t1,t2

φ at time t2. We let PN,low
t1,t2

and PN,high
t1,t2

denote the transition semigroups for (1.23)

and (1.24), respectively, defined as in (1.16), where the expectation is taken over the noise

restricted to the time interval [t1, t2]. We also use ΦN
t1,t2 and PN

t1,t2 to denote the solution

map and the transition semigroup for the truncated SKdV (1.22).

Given α ≥ 0, let µα be the white noise measure (with variance α) as in (1.14). Then, we

can write µα as

µα = µN,low
α ⊗ µN,high

α

= (PN )∗µα ⊗ (P⊥
N )∗µα,

(1.25)

where µN,low
α = (PN )∗µα and µN,high

α = (P⊥
N )∗µα the pushforward image measures of µα

under PN and P⊥
N , respectively. Note that µN,low

α and µN,high
α are nothing but the white

noise measures (with variance α) on EN = span{einx : |n| ≤ N} and E⊥
N = span{einx :

|n| > N}, respectively, where the latter span is taken over the space D′(T) of distributions
on T.

The high frequency dynamics (1.23) is linear and it is easy to verify that

(PN,high
t1,t2

)∗µN,high
1+t1

= µN,high
1+t2

. (1.26)

By writing it on the Fourier side, we see that the low frequency dynamics (1.23) is nothing

but a finite-dimensional system of SDEs, which can be viewed as the superposition of the

finite-dimensional KdV dynamics:

∂tuN + ∂3
xuN +PN (uN∂xuN ) = 0 (1.27)

and the linear stochastic dynamics:

∂tuN = PNξ. (1.28)

While the former (1.27) preserves the white noise µN,low
α (with any variance), the lat-

ter (1.28) increases the variance of the white noise initial data by the length of the time

interval under consideration. Then, in view of the Lie-Trotter product formula (1.21), we

see that

(PN,low
t1,t2

)∗µN,low
1+t1

= µN,low
1+t2

. (1.29)

Putting (1.26) and (1.29) together, we then obtain the following proposition.

Proposition 1.4. Let N ∈ N. Then, for any t2 ≥ t1 ≥ 0, we have

(PN
t1,t2)

∗µ1+t1 = µ1+t2 ,

where PN
t1,t2 is the transition semigroup for the truncated SKdV (1.22). Namely, {µ1+t}t∈R+

is an evolution system of measures for the truncated SKdV (1.22).

We present the proof of Proposition 1.4 in Section 2. As for the low frequency part of the

claim, instead of decomposing the low frequency dynamics (1.23) into (1.27) and (1.28) and

applying the Lie-Trotter product formula (1.21), we verify (1.29) by directly showing that

µN,low
1+t is the unique solution to the Kolmogorov forward equation (= the Fokker-Planck

equation).
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Remark 1.5. Let α ≥ 0. A straightforward modification of the proof of Proposition 1.4

yields

(PN
t1,t2)

∗µα = µα+(t2−t1),

which is the key ingredient for proving Corollary 1.3 (i), replacing Proposition 1.4.

Once we obtain Proposition 1.4, we use ideas from Bourgain’s invariant measure argu-

ment [5] together with the nonlinear analysis in [37], and establish a probabilistic uniform

(in N) growth bound on the solutions to the truncated SKdV (1.22). See Proposition 4.1.

Finally, Theorem 1.1 follows from a PDE approximation argument and this probabilistic

uniform growth bound. See Section 5.

• Mean-zero assumption: Recall that the bilinear estimate (1.7) holds only for (spatial)

mean-zero functions, namely, the spatial means of u(t) and v(t) are zero for any t ∈ R. In
the case of the deterministic KdV (1.5), if initial data u0 has non-zero mean α0, then the

following Galilean transformation:

u(x, t) ↦−→ u(x+ α0t, t)− α0

as in [15] together with the conservation of the (spatial) mean under KdV transforms

KdV with a non-zero mean into the mean-zero KdV (so that the bilinear estimate (1.7)

is applicable). In the case of SKdV with an additive noise, the spatial mean of a solution

is no longer conserved. Nonetheless, in [22, 37], a similar transformation was employed to

reduce SKdV with an additive noise to the mean-zero case. The transformation in this case

depends not only on the mean of the initial condition but also on the Brownian motion β0
at the zeroth frequency in (1.11). See [22, 37] for details.

For conciseness of the presentation, we impose the following mean-zero assumption in

the remaining part of the paper.

• We assume that the white noise initial data uω0 in (1.3) and the space-time white

noise ξ in (1.1) and (1.22) have spatial mean-zero. This means that the random

initial data is now given by

uω0 (x) =
∑︂
n∈Z∗

gn(ω)e
inx, (1.30)

where Z∗ = Z \ {0}, and the stochastic forcing ξ is given by the distributional time

derivative of

W (t) =
∑︂
n∈Z∗

βn(t)e
inx. (1.31)

Namely, we have ξ = P̸=0ξ, where P̸=0 is the projection onto the non-zero (spatial)

frequencies. This assumption together with the presence of the derivative on the

nonlinearity u∂xu = 1
2∂xu

2 implies that a solution u to SKdV (1.1) has spatial mean

zero as long as it exists.

It is understood that all the functions/distributions have spatial mean zero in the following.

The required modifications to handle the general case (i.e. with the white noise uω0 in (1.3)

and the space-time white noise ξ without the projection P̸=0) are straightforward and hence

we omit details. See [37] for details.
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We conclude this introduction by stating several remarks.

Remark 1.6. The usual application of Bourgain’s invariant measure argument provides a

growth bound7 on a solution by
√
log t for t ≫ 1, where the implicit constant is random. In

the current SKdV problem, we instead obtain a growth bound on a solution by (something

slightly faster than)
√
t log t for t ≫ 1, where the extra factor

√
t comes from the fact that

the variance of the white noise at time t grows like ∼ t. See Remark 5.2.

Remark 1.7. (i) As mentioned above, by applying the I-method, Colliander, Keel, Staffi-

lani, Takaoka, and Tao [14] proved global well-posedness of the deterministic KdV (1.5) in

H− 1
2 (T). It would be of interest to apply the I-method to study global well-posedness of

SKdV (1.1) with general deterministic initial data. In [11], the first author with Cheung

and Li adapted the I-method to the stochastic setting and proved global well-posedness,

below the energy space, of the stochastic nonlinear Schrödinger equation (SNLS) on R3

with additive stochastic forcing, white in time and correlated in space. On the one hand,

the I-method is suitable for controlling an L2-based Sobolev norm. On the other hand, the

only known local well-posedness result of SKdV (1.1) is in the Fourier-Besov space ˆ︁bsp,∞
(at this point), and thus there is a non-trivial difficulty in adapting the I-method to this

problem.

(ii) In [34], Killip, Vişan, and Zhang exploited the complete integrable structure of the

deterministic KdV (1.5) and established a global-in-time a priori bound for solutions to

KdV in Hs(T), s ≥ −1. This a priori bound was given by a sum of suitable rescaled

perturbation determinants, (each of which is given as an infinite series). It would also be

of interest to investigate if their approach can be adapted to the current stochastic setting

(and moreover to the Fourier-Besov setting, using the ideas in [49]).

Remark 1.8. Consider the following SNLS on T:

i∂tu− ∂2
xu+ |u|2u = ξ, (1.32)

where ξ is a complex-valued space-time white noise on T × R+, with the complex-valued

white noise initial data:

uω0 (x) =
∑︂
n∈Z

gn(ω)e
inx, (1.33)

where {gn}n∈Z is a family of independent standard complex-valued Gaussian random vari-

ables. (Here, we do not impose the condition g−n = gn.) Due to the low regularity of

the initial data and the forcing, we need to renormalize the nonlinearity in (1.32) to that

considered in [12, 27, 25, 50]. In the following discussion, we suppress this renormalization

issue.

Let us first consider the (deterministic) nonlinear Schrödinger equation (NLS) on T:

i∂tu− ∂2
xu+ |u|2u = 0. (1.34)

7At least in the setting of [5]. In the singular setting, we have a growth bound by a suitable power of
log t. See, for example, Section 5 in [44].
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Given α > 0, let µα = Law(
√
αuω0 ) with uω0 as in (1.33) be the (complex) white noise

measure with variance α. Formally, we have

dµα = Z−1
α e−

1
2α

´
T |u|2dxdu.

See [38, 43]. Then, in view of the conservation of the L2-norm under (1.34) and the fact

that NLS (1.34) is Hamiltonian, we expect that the white noise measure µα is invariant

under the NLS dynamics. In [43], the first two authors with Valkó proved formal invariance

of the white noise measure under NLS (1.34) in the sense that the white noise measure is a

weak limit of invariant measures for NLS (1.34). In the same paper, they also conjectured

invariance of the white noise under NLS (1.34). This conjecture remains as a challenging

open problem to date, in particular due to the critical nature of the well-posedness issue

for (1.34) (and also for (1.32)) with white noise initial data; see [25, 23]. See also [48] for

invariance of the white noise measure under the fourth order NLS on T, where −∂2
x in (1.34)

is replaced by (−∂2
x)

2.

Let us now turn our attention to SNLS (1.32). As in the SKdV case, by viewing (1.32) as a

superposition of the deterministic NLS (1.34) and the stochastic flow i∂tu = ξ together with

the conjectural invariance of the white noise under NLS (1.34), we arrive at the following

conjecture.

Conjecture 1. The family {µ1+t}t∈R+ of the white noise measures with variance 1 + t

is an evolution system of measures for SNLS (1.32) with the white noise initial data uω0
in (1.33).

This conjecture is of importance not only from the viewpoint of mathematical anal-

ysis but also from the viewpoint of applications due to the importance of SNLS (1.32)

(and NLS (1.34)) in nonlinear fiber optics. A straightforward modification of the proof of

Proposition 1.4 shows that, for any N ∈ N, the family {µ1+t}t∈R+ is an evolution system

of measure for the following truncated SNLS:

i∂tu
N − ∂2

xu
N +PN (|PNuN |2PNuN ) = ξ

with the white noise initial data uω0 in (1.33). The main obstacle for proving Conjecture 1

is the local well-posedness issue as in the case of NLS (1.34) with the white noise initial

data.

2. Finite-dimensional approximations and their distributions

In the remaining part of the paper, we work on a probability space (Ω,F ,P) supporting
• A family {gn}n∈N of independent standard complex-valued Gaussian random vari-

ables:

gn = Re gn + i Im gn, n ∈ N. (2.1)

Here, {Re gn, Im gn}n∈N is a family of independent real-valued Gaussian random

variables with mean 0 and variance 1
2 . We then set g−n = gn, n ∈ N. The random

variables gn are used to define the spatial white noise uω0 on T in (1.30) which we

use as initial data for (1.1) and (1.22).
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• A family {βn}n∈N of independent complex-valued Brownian motions, satisfy-

ing (1.12):

βn(t) = Reβn(t) + i Imβn(t), n ∈ N,
which is also independent of {gn}n∈N. We then set β−n = βn, n ∈ N. The Brownian
motions βn serve to define the driving space-time white noise appearing in (1.1) as

well as its truncated version (1.22).

We emphasize that we only work with (spatial) mean-zero functions/distributions in the

following. Given α ≥ 0, let uω0,α be a white noise on T with variance α given by

uω0,α(x) =
√
αuω0 (x) =

√
α

∑︂
n∈Z∗

gn(ω)e
inx, (2.2)

where {gn}n∈Z is as in (2.1), and set

µα = Law(uω0,α) (2.3)

to be the (mean-zero) white noise measure with variance α. With this version of µα, we set

µN,low
α = (PN )∗µα and µN,high

α = (P⊥
N )∗µα.

Then, (1.25) holds in the current setting.

In this section, we study the truncated SKdV (1.22) and present the proof of Proposi-

tion 1.4. In view of the discussion in Section 1, it suffices to prove (1.26) and (1.29) for the

high and low frequency dynamics, respectively.

We first consider the high frequency dynamics (1.24):

∂tu
⊥
N + ∂3

xu
⊥
N = P⊥

Nξ. (2.4)

By working on the Fourier side, we see that (2.4) is a system of decoupled linear SDEs for

each frequency. In particular, (2.4) is globally well-posed and the solution to (2.4) is given

by ˆ︂u⊥N (n, t) = eitn
3 ˆ︂u⊥N (n, 0) +

ˆ t

0
ei(t−t′)n3

dβn(t
′), |n| > N,

for general initial data u⊥N (0) = P⊥
Nu⊥N (0). In particular, when the initial data is given by

P⊥
Nuω0 with uω0 in (1.30), we have

ˆ︂u⊥N (n, t) = eitn
3
gn +

ˆ t

0
ei(t−t′)n3

dβn(t
′) =: In + IIn, |n| > N,

Note that Law( In) = Law(gn) (see Lemma 4.2 in [47]) and Law(IIn) = Law(
√
t gn). Then,

from the independence of In and IIn, we conclude that

(PN,high
0,t )∗µN,high

1 = µN,high
1+t . (2.5)

Therefore, from (2.5) and the flow property of the solution map ΦN,high
t1,t2

for (2.4) (analogous

to (1.18)), we conclude (1.26).

Let us now turn our attention to the low frequency dynamics (1.23):

∂tuN + ∂3
xuN +PN (uN∂xuN ) = PNξ. (2.6)

Lemma 2.1. Let n ∈ N. Given any initial data uN (0) = PNuN (0) with ˆ︁uN (0, 0) = 0,

there exists a unique global solution uN ∈ C(R+;L
2(T)) to (2.6) with uN |t=0 = uN (0).
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Proof. By writing (2.6) in the Duhamel formulation, we have

uN (t) = S(t)uN (0)− 1

2

ˆ t

0
S(t− t′)∂xPN (u2N )(t′)dt′ +

ˆ t

0
S(t− t′)dPNW (t′), (2.7)

where W is as in (1.31). Note that uN (t) = PNuN (t) as long as the solution uN exists. By

Bernstein’s inequality ([57, Appendix A]), we have

∥∂xPNu2N∥C([0,T ];L2
x)

≲ N∥uN∥2C([0,T ];L4
x)

≲ N
3
2 ∥uN∥2C([0,T ];L2

x)
, (2.8)

which allows us to control the second term on the right-hand side of (2.7). By the unitarity

of S(t) on L2(T) and the basic property of a Wiener integral, we have

E

[︄⃦⃦⃦⃦ˆ t

0
S(t− t′)dPNW (t′)

⃦⃦⃦⃦2
C([0,T ];L2

x)

]︄
≲ TN.

In particular, we have⃦⃦⃦⃦ˆ t

0
S(t− t′)dPNW (t′)

⃦⃦⃦⃦
C([0,T ];L2

x)

≤ C(ω)T
1
2N

1
2 (2.9)

for some almost surely finite random constant C(ω) > 0. Hence, we conclude from a

standard contraction argument in C([0, T ];L2(T)) with (2.8) and (2.9) that (2.6) is locally

well-posed. Furthermore, the solution exists globally in time as long as its L2(T)-norm
remains bounded.

As observed in [22, Theorem 1.5] and [21, Section 3.2], a simple argument, using Ito’s

formula, Doob’s martingale inequality, and the L2-conservation of the truncated KdV equa-

tion (1.27), provides the following bound:

E
[︂

sup
t∈[0,T ]

∥uN (t)∥2L2

]︂
≤ ∥uN (0)∥2L2 + C(T )∥PN∥HS(L2;L2)

≤ ∥uN (0)∥2L2 + C ′(T )N
1
2

for any finite T > 0, where ∥ · ∥HS(L2;L2) denotes the Hilbert-Schmidt norm from L2(T) to
L2(T). From this a priori bound, we conclude global well-posedness of (2.6). □

In the following, we study the evolution of the distribution of the solution uN (t) to the low

frequency dynamics (2.6). Let pn(t) = Re ˆ︁uN (n, t) and qn(t) = Im ˆ︁uN (n, t) for 1 ≤ |n| ≤ N .

Since uN is real-valued, we have

p−n = pn and q−n = −qn.

Then, by writing (2.6) on the Fourier side, we obtain the following finite-dimensional system

of SDEs for (p̄, q̄) = (p1, . . . , pN , q1, . . . , qN ):

dpn = Pndt+ d(Reβn),

dqn = Qndt+ d(Imβn)
(2.10)
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for n = 1, . . . , N , where Pn and Qn are defined by

Pn := −n3qn +
∑︂

n=n1+n2
1≤|n1|,|n2|≤N

n2(pn1qn2 + qn1pn2),

Qn := n3pn −
∑︂

n=n1+n2
1≤|n1|,|n2|≤N

n2(pn1pn2 − qn1qn2).
(2.11)

Define A(p̄, q̄) = A(p1, . . . , pN , q1, . . . , qN ) by

A(p̄, q̄) = (P1, . . . , PN , Q1, . . . , QN ). (2.12)

Then, we have

divp̄,q̄A(p̄, q̄) =

N∑︂
n=1

(∂pnPn + ∂qnQn) =

N∑︂
n=1

12n≤N (nq2n − nq2n) = 0. (2.13)

Let x̄ = (x1, . . . , x2N ) = (p1, . . . , pN , q1, . . . , qN ). In the following, we briefly go over

the derivation of the Kolmogorov forward equation for the evolution of the density of the

distribution forˆ︁U(t) =
(︁
Re ˆ︁uN (1, t), . . . ,Re ˆ︁uN (n, t), Im ˆ︁uN (1, t), . . . , Im ˆ︁uN (n, t)

)︁
. (2.14)

See, for example, [55, 17]. Recalling from (1.12) that E[(Reβn(t)2] = E[(Imβn(t)
2] = t

2 , we

see that the Kolmogorov operator L for (2.10) is given by

L =
1

4
∆x̄ +A(x̄) · ∇x̄, (2.15)

where A(x̄) is given by

A(x̄) = (P1, . . . , PN , Q1, . . . , QN ). (2.16)

Lemma 2.2. Let f0(x̄) be a density of the distribution for ˆ︁U(0). Then, the density f(x̄, t)

of the distribution for ˆ︁U(t) satisfies the following Kolmogorov forward equation on R2N :{︄
∂tf(x̄, t)− 1

4∆x̄f(x̄, t) +A(x̄) · ∇x̄f(x̄, t) = 0,

f |t=0 = f0,
(2.17)

where the vector field A(x̄) is as in (2.16).

Proof. This is classical, so we only provide a sketch. Consider{︄
(∂t − L)g(x̄, t) = 0

g|t=0 = g0,
(2.18)

where L is as in (2.15). It is well known that (2.18) has a smooth fundamental solution

p(x̄, ȳ, t) for (x̄, ȳ, t) ∈ R2N × R2N × R+, and thus, for initial data g0 ∈ C2(R2N ) with

bounded derivatives, the unique solution to (2.18) is given by

g(x̄, t) =

ˆ
R2N

g0(ȳ)p(x̄, ȳ, t)dȳ. (2.19)
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Here, (x̄, t) ↦→ p(x̄, ȳ, t) satisfies (∂t − L)p(x̄, ȳ, t) = 0 for each fixed ȳ ∈ R2N . See, for

example, [55, Lemma 3.3.3]. Moreover, g(x̄, t) has the following probabilistic representation

([17, Theorem 9.16]):

g(x̄, t) = E
ȳ=ˆ︁U(t)

[︁
g0(ȳ) | x̄ = ˆ︁U(0)

]︁
, (2.20)

where ˆ︁U(t) is as in (2.14) and the expectation on the right-hand side is taken with respect

to the vector ȳ = ˆ︁U(t) conditioned that x̄ = ˆ︁U(0). Hence, it follows from (2.20) and (2.19)

that

E
ȳ=ˆ︁U(t)

[g0(ȳ)] = E
x̄=ˆ︁U(0)

[︁
E
ȳ=ˆ︁U(t)

[g0(ȳ) | x̄ = ˆ︁U(0)]
]︁

=

ˆ
R2N

ˆ
R2N

g(ȳ)p(x̄, ȳ, t)dȳf0(x̄)dx̄.

Therefore, the density f(ȳ, t) of ˆ︁U(t) is given by

f(ȳ, t) =

ˆ
f0(x̄)p(x̄, ȳ, t)dx̄ (2.21)

Now, it follows from (2.19), (2.20), and Ito’s formula (see, for example, the proof of

Proposition 9.9 in [17]), we seeˆ
R2N

g0(ȳ)∂tp(x̄, ȳ, t)dȳ =
d

dt
E
ȳ=ˆ︁U(t)

[︁
g0(ȳ) | x̄ = ˆ︁U(0)

]︁
=

ˆ
(Lg0)(ȳ)p(x̄, ȳ, t)dȳ

=

ˆ
g0(ȳ) (Lt

ȳp)(x̄, ȳ, t)dȳ,

where Lt is the formal adjoint of L given by

Lt
ȳ =

1

4
∆ȳ −A(ȳ) · ∇ȳ.

Note that, in the computation of Lt, we used (2.13): divȳA(ȳ) = 0. Hence, we conclude

that (ȳ, t) ↦→ p(x̄, ȳ, t) satisfies (∂t−Lt
ȳ)p(x̄, ȳ, t) = 0, and therefore, we conclude from (2.21)

that f(ȳ, t) satisfies (∂t − Lt
ȳ)f(ȳ, t) = 0. □

We are now ready to prove (1.26). Let γα be the density for the normal distribution

on R with mean 0 and variance α
2 > 0:

γα(x) =
1√
πα

e−
x2

α .

Then, in the current setting, the density of the distribution for PNuω0 with uω0 as in (1.30)

is given by

f0(x̄) =
2N∏︂
n=1

γ1(xn).

The following lemma shows that the solution uN (t) to (2.6) with initial data uω0,α =
√
αuω0

in (2.2) is distributed by the (mean-zero) white noise measure µα+t in (2.3), which in

particular proves (1.26).
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Lemma 2.3. For any α > 0, the function fN,α given by

fN,α(x̄, t) =

2N∏︂
n=1

γα+t(xn) =
1

(π(α+ t))
N
2

e−
|x̄|2
α+t

is the unique solution to (2.17).

Proof. Uniqueness is classical (see [17, Theorem 9.16]). Hence, we only need to check that

fN,α is a solution to (2.17).

A direct computation shows

∂tγα+t(xn) =
1

4
∂2
xn
γα+t(xn)

for n = 1, . . . , N . Hence, it suffices to prove

A(x̄) · ∇
(︃ 2N∏︂

n=1

γα+t(xn)

)︃
= 0.

Since

∂xnγα+t(xn) = − 2xn
α+ t

γα+t(xn),

it suffices to check A(x̄) · x̄ = 0. Recalling x̄ = (x1, . . . , x2N ) = (p1, . . . , pN , q1, . . . , qN ), it

follows from (2.11) and (2.16) that

A(x̄) · x̄ = −
N∑︂

n=1

n3qnpn +

N∑︂
n=1

∑︂
n=n1+n2

1≤|n1|,|n2|≤N

n2(pn1qn2 + qn1pn2)pn

+

N∑︂
n=1

n3pnqn −
N∑︂

n=1

∑︂
n=n1+n2

1≤|n1|,|n2|≤N

n2(pn1pn2 − qn1qn2)qn

= −
N∑︂

n=1

Re
(︁
Fx(PN (uN∂xuN ))(n)

)︁
Re ˆ︁uN (n)

−
N∑︂

n=1

Im
(︁
Fx(PN (uN∂xuN ))(n)

)︁
Im ˆ︁uN (n),

where Fx denotes the Fourier transform. In the second step, we used the definition: pn(t) =

Re ˆ︁uN (n, t) and qn(t) = Im ˆ︁uN (n, t) together with (2.6) and (2.10). By Parseval’s identity

with the fact that uN is real-valued and uN = PNuN , we then have

A(x̄) · x̄ =
1

2

ˆ
T
PN (uN∂xuN )uNdx =

1

6

ˆ
T
∂x(u

3
N )dx = 0. (2.22)

We point out that, in view of (2.11) and (2.12), A(x̄) · x̄ = 0 in (2.22) is equivalent to the

conservation of ℓ2-norm (= the Euclidean distance in R2N ) for the deterministic system:

∂tpn = Pn,

∂tqn = Qn

for n = 1, . . . , N (which in turn is equivalent to the conservation of the L2-norm for the

finite-dimensional KdV (1.27)). This concludes the proof of Lemma 2.3 □
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Remark 2.4. A slight modification of the computations in the proof of Lemma 2.3 shows

the truncated white noise is invariant under the finite-dimensional KdV dynamics (1.27).

As a corollary to Proposition 1.4, we obtain the following tail estimate on the size of

solutions uN (t) to (1.22).

Lemma 2.5. Let s < 0 and finite p > 1 such that sp < −1. Given α > 0, let uN be the

solution to (1.22) with initial data uω0,α =
√
αuω0 in (2.2). Then, we have

P
(︂
∥uN (t)∥ˆ︁bsp,∞ > λ

)︃
= P

(︃√︃
α+ t

α
∥uω0 ∥ˆ︁bsp,∞ > λ

)︃
≤ Ce−c α

α+t
λ2

.

(2.23)

for any t ∈ R+ and λ > 0, where the constants C, c > 0 are independent of α > 0.

The inequality in (2.23) follows from the fact that (µ1,ˆ︁bsp,∞(T), L2(T)) is an abstract

Wiener space when sp < −1 ([36, Proposition 3.4]) and Fernique’s theorem [24]; see Theo-

rem 3.1 in [35].

3. Review of the local well-posedness argument for SKdV

In this section, we go over the local well-posedness argument in [37] and collect useful

estimates.

3.1. Function spaces. We first recall the definition of the Xs,b-spaces adapted to the

space ˆ︁bsp,∞(T) defined in (1.9). Given s ∈ R and 1 ≤ p, q ≤ ∞, define the space Xs,b
p,q(T×R)

by the norm:

∥u∥
Xs,b

p,q
= ∥⟨n⟩s⟨τ − n3⟩bˆ︁u(n, τ)∥b0p,∞Lq

τ
. (3.1)

In terms of the interaction representation v(t) = S(−t)u(t), we have

∥u∥
Xs,b

p,q
= ∥⟨∂x⟩s⟨∂t⟩bv∥(ˆ︁b0p,∞)xFL0,q

t
,

where FLb,q(R) denotes the Fourier-Lebesgue space defined by the norm:

∥f∥FLb,q = ∥⟨τ⟩b ˆ︁f(τ)∥Lq
τ
. (3.2)

From (1.9), we have b0p,∞(Z) ⊃ ℓp(Z) ⊃ ℓ2(Z) for p ≥ 2, and thus we have

∥u∥
Xs,b

p,2
≤ ∥u∥Xs,b (3.3)

for p ≥ 2, where Xs,b is the standard Xs,b-space defined in (1.6). We also have

∥u∥
X− 1

2−δ,b ≲ ∥u∥
X

− 1
2+δ,b

p,2

, (3.4)

provided that δ > p−2
4p (with p ≥ 2). See [37, eq. (17)]. See also the embedding (5.2) below.

Given an interval I ⊂ R+, we define the restriction space Xs,b
p,q(I) of X

s,b
p,q to the interval I

by

∥u∥
Xs,b

p,q(I)
= inf

{︁
∥v∥

Xs,b
p,q(T×R) : v|I = u

}︁
. (3.5)
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When I = [0, T ], we also set Xs,b,T
p,q = Xs,b

p,q([0, T ]). When b > 1
2 , it follows from the

Riemann-Lebesgue lemma that

Xs,b
p,2(I) ⊂ C(I;ˆ︁bsp,∞(T)) (3.6)

for any s ∈ R and 1 ≤ p ≤ ∞.

When q = 2, in order to capture the temporal regularity of the stochastic convolution:

Ψ(t) =

ˆ t

0
S(t− t′)dW (t′), (3.7)

where W is as in (1.11), we need to take b < 1
2 (see Lemma 3.4 below), for which the

embedding (3.6) fails. When q = 1, we have the following embedding:

Xs,0
p,1(I) ⊂ C(I;ˆ︁bsp,∞(T)), (3.8)

and thus we use Xs,0
p,1(I) as an auxiliary function space.

We now recall the basic linear estimate for KdV; given s ∈ R and 0 ≤ b < 1
2 , we have

∥S(t)u0∥Xs,b,T
p,2

≲ T
1
2
−b∥u0∥ˆ︁bsp,∞ . (3.9)

for 0 < T ≤ 1, where Xs,b,T
p,2 = Xs,b

p,2([0, T ]) is the restriction space defined in (3.5). Next,

we recall the L4-Strichartz estimate due to Bourgain [4, Proposition 7.15] (see also [56,

Proposition 6.4]):

∥u∥L4(T×R) ≲ ∥u∥
X0, 13

. (3.10)

Lastly, we define the Fourier-Lebesgue space FLs.p(T) in the spatial variable by the

norm:

∥f∥FLs,p = ∥⟨n⟩s ˆ︁f(n)∥ℓpn . (3.11)

Then, for s ∈ R and 1 ≤ p, q ≤ ∞, we define the Xs,b-spaces adapted to the Fourier-

Lebesgue spaces by the norm:

∥u∥
Y s,b
p,q

= ∥⟨n⟩s⟨τ − n3⟩bˆ︁u(n, τ)∥ℓpnLq
τ
. (3.12)

Trivially, we have

∥f∥ˆ︁bsp,∞ ≤ ∥f∥FLs,p and ∥u∥
Xs,b

p,q
≤ ∥u∥

Y s,b
p,q

. (3.13)

Given an interval I ⊂ R+, we define the restriction space Y s,b
p,q (I) as in (3.5).

3.2. Partially iterated Duhamel formulation. In this subsection, we discuss the par-

tially iterated Duhamel formulation used in [37].

First, we consider the deterministic KdV (1.5) considered in [6]. By writing it in the

Duhamel formulation, we have

u(t) = S(t)u0 −
1

2
N (u, u)(t), (3.14)

where N (u1, u2) is given by

N (u1, u2)(t) =

ˆ t

0
S(t− t′)∂x(u1u2)(t

′)dt. (3.15)
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Note that the Fourier transform ˆ︁u1u2(n, τ) can be written in the convolution form:

ˆ︁u1u2(n, τ) =
∑︂

n=n1+n2

ˆ

τ=τ1+τ2

ˆ︂u1(n1, τ1)ˆ︂u2(n2, τ2) dτ1.

Henceforth, we denote by (n, τ), (n1, τ1), and (n2, τ2) the space-time frequency variables

for the Fourier transforms of N (u1, u2), u1, and u2 in (3.15), respectively. In particular, we

have

n = n1 + n2 and τ = τ1 + τ2. (3.16)

By assuming that the initial data u0 has spatial mean 0, it follows that u(t) also has

mean 0. Furthermore, in view of the derivative on the nonlinearity, we may assume that

n, n1, n2 ̸= 0. We also denote the modulations by

σ0 = ⟨τ − n3⟩ and σj = ⟨τj − n3
j ⟩, j = 1, 2. (3.17)

Recall the following algebraic relation [4]:

n3 − n3
1 − n3

2 = 3nn1n2

for n = n1 + n2. Then, under (3.16), we have

MAX := max(σ0, σ1, σ2) ≳ ⟨nn1n2⟩. (3.18)

In our setting, we need to take b < 1
2 to capture the temporal regularity of the stochastic

convolution Ψ in (3.7). On the other hand, the crucial bilinear estimate (1.7) holds only for

b = 1
2 . In order to overcome this difficulty, we decompose the nonlinearity into three pieces,

depending on the sizes of the modulations σ0, σ1, and σ2. Define the sets Mj , j = 0, 1, 2,

by

M0 =
{︁
(n, n1, n2, τ, τ1, τ2) ∈ Z3

∗ × R3 : σ0 = MAX
}︁
,

Mj =
{︁
(n, n1, n2, τ, τ1, τ2) ∈ Z3

∗ × R3 : σj = MAX and σj > 1
}︁
, j = 1, 2.

(3.19)

For j = 0, 1, 2, let Nj(u1, u2) be the contribution of N (u1, u2) on Mj , and thus we have

N (u1, u2) =

2∑︂
j=0

Nj(u1, u2). (3.20)

The standard bilinear estimate (1.7) allows us to estimate N0(u1, u2) even when b < 1
2 ; see

[37, eq. (46)]. As for Nj(u1, u2), j = 1, 2, however, the bilinear estimate fails for temporal

regularity b < 1
2 (in Xs,b

p,q for any s ∈ R and 1 ≤ p, q ≤ ∞) since, in this case, we do not

have a sufficient power for the largest modulation σj to control the derivative loss in the

nonlinearity. See [31].

This issue was circumvented in [6, 37, 38] by partially iterating the Duhamel formula-

tion (3.14) and writing it as

u(t) = S(t)u0 −
1

2
N0(u, u)(t) +

1

4
N1(N (u, u), u) +

1

4
N2(u,N (u, u)).

Namely, for j = 1, 2, we replaced the jth entry in Nj(u, u) (where the maximum mod-

ulation is given by σj) by its Duhamel formulation (3.14). It follows from the definition

of Nj (see (3.19)) that there is no contribution from the linear solution S(t)u0 in iter-

ating the Duhamel formulation, since its space-time Fourier transform is supported on
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{τ = n3}, namely, S(t)u0 has zero modulation, and thus from the definition of Nj , we have

N1(S(t)u0, u) = N2(u, S(t)u0) = 0.

In the context of SKdV (1.1) and its Duhamel formulation (1.10):

u(t) = S(t)u0 −
1

2
N (u, u) + Ψ, (3.21)

the discussion above leads to

u(t) = S(t)u0 −
1

2
N0(u, u)(t)

+
1

4
N1(N (u, u), u)− 1

2
N1(Ψ, u)

+
1

4
N2(u,N (u, u))− 1

2
N2(u,Ψ) + Ψ,

(3.22)

where Ψ is the stochastic convolution in (3.7). In [37], the first author studied this new

formulation (3.22) and establish an a priori bound on solutions (with smooth initial data

and (spatially) smooth noise), which allowed him to construct a solution (1.10) by an

approximation argument.

Lastly, we state an analogous formulation for the truncated SKdV (1.22). By writ-

ing (1.22) in the Duhamel formulation, we have

uN (t) = S(t)u0 −
1

2
NN (uN , uN ) + Ψ, (3.23)

where NN (uN , uN ) is given by

NN (u1, u2) = PNN (PNu1,PNu2)

=

ˆ t

0
S(t− t′)∂xPN (PNu1PNu2)(t

′)dt.

Then, by partially iterating the Duhamel formulation as above, we rewrite (3.23) as

uN (t) = S(t)u0 −
1

2
NN

0 (uN , uN )(t)

+
1

4
NN

1 (NN (uN , uN ), uN )− 1

2
NN

1 (Ψ, uN )

+
1

4
NN

2 (uN ,NN (uN , uN ))− 1

2
NN

2 (uN ,Ψ) + Ψ

(3.24)

where NN
j (u1, u2) is the contribution of NN (u1, u2) on Mj , j = 0, 1, 2.

3.3. Local well-posedness and an a priori bound. In this subsection, we collect the

useful nonlinear estimates on the iterated formulation (3.22) from [37], and establish an a

priori bound for solutions to the truncated SKdV (1.22).

We first recall the following local well-posedness result of SKdV (1.1) from [37].

Theorem 3.1. Let s = −1
2 + δ and p = 2 + δ0 for some small δ, δ0 > 0 such that p−2

4p <

δ < p−2
2p . Given a mean-zero function u0 ∈ ˆ︁bsp,∞(T), there exist a stopping time Tω > 0

and a unique solution u ∈ C([0, Tω];ˆ︁bsp,∞(T)) ∩ X
s, 1

2
−δ

p,2 ([0, Tω]) to (1.1) with u|t=0 = u0.
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Furthermore, denoting by T∗ = T∗(ω) the maximal time of existence, we have the following

blowup alternative:

lim
t↗T∗

∥u(t)∥ˆ︁bsp,∞ = ∞ or T∗ = ∞.

Here, the condition δ < p−2
2p is equivalent to sp < −1, while δ > p−2

4p is used for the

embedding (3.4).

In the following, we recall some of the nonlinear estimates from [37]. In the remaining

part of the paper, we fix small δ, δ0 > 0, satisfying the hypothesis in Theorem 3.1, and set

α =
1

2
− δ (3.25)

as in [6, 37]. The following discussion applies to both the original SKdV (1.1) and its

truncated version (1.22). In order to treat them in a uniform manner, we take N ∈ Z≥0

and set u∞ = u, N∞(u1, u2) = N (u1, u2), and N∞
j (u1, u2) = Nj(u1, u2), j = 0, 1, 2. Note

that, in the following, all the estimates hold, uniformly in N ∈ Z≥0.

Given T > 0, we define the random quantity Lω(T ) by

Lω(T ) = ∥1[0,T ]Ψ∥
X− 1

2− 1
2 δ, 12−δ + ∥1[0,T ]Ψ∥

Y
− 1

2− 1
2 δ, 1116+δ

2,4

, (3.26)

which is a pathwise8 upper bound for the X−α,1−α,T -norms of N1(Ψ, u) in (3.22) and

NN
1 (Ψ, uN ) in (3.24). See Appendix B. We point out that, while the analysis in Appendix B

(see (B.2) and (B.4)) yields the spatial regularity −1
2 − δ, we use a slightly worse spatial

regularity for the definition of Lω(T ) in (3.26) (so that the estimate (5.8) below holds,

allowing us to gain a decay in N). Note that, in contrast to [37], we defined Lω(T ) on the

“long” interval [0, T ]. This will be useful in Sections 4 and 5 when we iterate the local-

in-time argument on many small subintervals of [0, T ] but with a fixed driving space-time

white noise. From (3.26) and Remark 3.5 below, we have

∥Lω(T )∥Lr(Ω) ≲
√
r T

3
2 (3.27)

for any T > 0 and 1 ≤ r < ∞, provided that δ > 0 is sufficiently small such that(︃
11

16
+ δ − 1

)︃
4 < −1.

With this notation, the main nonlinear estimate [37, eq. (73)] (see also Appendix B)

reads (with some small θ > 0)

∥uN∥
X

−α,α,T1
p,2

≤ C1∥uN0 ∥ˆ︁b−α
p,∞

+
1

2
C2T

θ
1 ∥uN∥2

X
−α,α,T1
p,2

+ 2C3T
θ
1 ∥uN∥3

X
−α,α,T1
p,2

+ 2C3T
θ
1Lω(T )∥uN∥

X
−α,α,T1
p,2

+ C4∥Ψ∥
X

−α,α,T1
p,2

(3.28)

for any T > 0 and 0 < T1 ≤ min(1, T ), provided that

C3T
θ
1R ≤ 1

2
and ∥uN∥

X
−α,α,T1
p,2

≤ R. (3.29)

Here, in importing (3.28) from [37], we use the fact that PN is bounded on relevant function

spaces, uniformly in N ∈ N. The nonlinear estimate (3.28) together with an analogous

8In [37, “Estimate on (ii)” on pp. 296-297], an expectation was taken on theX−α,1−α,T -norms ofN1(Ψ, u).
However, we in fact need a pathwise bound, which is established in Appendix B.
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difference estimate ([37, eq. (74)]) allows us to construct a solution u ∈ X−α,α,T1
p,2 to (1.1) as

a limit of smooth solutions.

Next, we estimate the ˆ︁b−α
p,∞-norm of a solution uN (t) to (3.23). Since α < 1

2 , the embed-

ding (3.6) does not hold and thus (3.28) is not directly applicable. However, some terms

can be estimated in a stronger norm. Indeed, from (3.6), (3.3), and [37, eq. (47) and (72)],

we have, under the condition (3.29),

∥NN
1 (uN , uN ) +NN

2 (uN , uN )∥
C([0,T1];ˆ︁b−α

p,∞)

≲ ∥NN
1 (uN , uN ) +NN

2 (uN , uN )∥X−α,1−α,T1

≤ 2C3

(︂
T θ
1 ∥uN∥3

X
−α,α,T1
p,2

+ T θ
1Lω(T )∥uN∥

X
−α,α,T1
p,2

)︂ (3.30)

for any T > 0 and 0 < T1 ≤ min(1, T ), where the first inequality follows from (3.6) since

b = 1− α = 1
2 + δ > 1

2 . As for N
N
0 , we write it as

NN
0 (uN , uN ) = NN

3 (uN , uN ) +NN
4 (uN , uN ),

where NN
3 denotes the contribution of NN

0 on {max(σ1, σ2) ≳ ⟨nn1n2⟩
1

100 }. Then, from

(3.6), (3.8), and [37, (a) and (b) on p. 302)], we have

∥NN
0 (uN , uN )∥

C([0,T1];ˆ︁b−α
p,∞)

≲ ∥NN
3 (uN , uN )∥

X
−α,1−α,T1
p,2

+ ∥NN
4 (uN , uN )∥

X
−α,0,T1
p,1

≲ T θ
1 ∥uN∥2

X
−α,α,T1
p,2

.
(3.31)

Hence, putting (3.23), (3.30), and (3.31) together, we obtain

∥uN∥
C([0,T1];ˆ︁b−α

p,∞)
≤ ∥u0∥ˆ︁b−α

p,∞
+ C5T

θ
1 ∥uN∥2

X
−α,α,T1
p,2

+ C6T
θ
1 ∥uN∥3

X
−α,α,T1
p,2

+ C7T
θ
1Lω(T )∥uN∥

X
−α,α,T1
p,2

+ ∥Ψ∥
C([0,T1];ˆ︁b−α

p,∞)

(3.32)

for any T > 0 and 0 < T1 ≤ min(1, T ), provided that (3.29) holds.

We now state an a priori bound on a solution uN to the truncated SKdV (1.22).

Lemma 3.2. Let N ∈ N. Then, there exist absolute constants γ > 0 and C∗, c∗ > 0 such

that, given any T > 0, we have

∥uN∥X−α,α
p,2 (I) ≤ C∗

(︂
∥uN (t0)∥ˆ︁b−α

p,∞
+ ∥Ψ∥X−α,α

p,2 ([t0,t0+1]) + 1
)︂
=: Rω(t0) (3.33)

for any time interval I = [t0, t0 + T1] ⊂ [0, T ] of length T1 ≤ 1 and any solution uN to the

truncated SKdV (1.22), provided that

T1 ≤ c∗(Rω(Rω + 1) + Lω(T ))
−γ . (3.34)

Here, the constants γ > 0 and C∗, c∗ > 0 are independent of N ∈ N.

Proof. Under (3.29), it follows from (3.28) that

∥uN∥X−α,α
p,2 (I) ≤ 2C1∥uN (t0)∥ˆ︁b−α

p,∞
+ 2C4∥Ψ∥X−α,α

p,2 (I), (3.35)

provided that

T θ
1

(︃
1

2
C2R+ 2C3R

2 + 2C3Lω(T )

)︃
≤ 1

2
.
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Then, under (3.34) with γ = θ−1, the bound (3.33) follows from (3.35) and a continuity

argument. □

Remark 3.3. In order use a continuity argument in the proof of Lemma 3.2 presented

above, we need the continuity of the X−α,α
p,2 ([t0, t1])-norm with respect to the right end-

point t1. While it may be possible to check this directly (see, for example, [2, Appendix A]

and [27, Lemma 8.1]), let us use the following equivalence:

∥u∥X−α,α
p,2 ([t0,t1])

∼ ∥1[t0,t1]u∥X−α,α
p,2

, (3.36)

where the norm on the left-hand side is defined in (3.5), and study the latter norm. Recall

that the equivalence (3.36) holds since the temporal regularity b = α = 1
2−δ is below 1

2 (see

[16, eq. (3.5)]). Such equivalence also holds for the general Xs,b
p,q([t0, t1]) for 0 ≤ b < q−1

q ;

see [10].

Given small h > 0, from the triangle inequality, we have

∥1[t0,t1+h]u∥X−α,α
p,2

− ∥1[t0,t1]u∥X−α,α
p,2

≤ ∥1[t1,t1+h]u∥X−α,α
p,2

, (3.37)

and thus it suffices to show that the right-hand side of (3.37) tends to 0 as h → 0. In view

of the definition (3.1), such a claim follows once we prove

lim
h→0

∥1[t1,t1+h]f∥Hα = 0 (3.38)

for a function f ∈ Hα(R). Obviously, we have limh→0 ∥1[t1,t1+h]f∥L2 = 0. Using the

physical side characterization of the homogeneous Sobolev norm, we have

∥1[t1,t1+h]f∥2Hα =

ˆ
R

ˆ
R

|1[t1,t1+h](t)f(t)− 1[t1,t1+h](τ)f(τ)|2

|t− τ |1+2α
dtdτ

= I(h) + II(h) + III(h),

where I , II, and III are defined by

I (h) =

ˆ
[t1,t1+h]

ˆ
[t1,t1+h]

|f(t)− f(τ)|2

|t− τ |1+2α
dtdτ,

II(h) =

ˆ
[t1,t1+h]

ˆ
[t1,t1+h]c

|f(t)|2

|t− τ |1+2α
dτdt,

III(h) =

ˆ
[t1,t1+h]

ˆ
[t1,t1+h]c

|f(τ)|2

|t− τ |1+2α
dtdτ.

By the dominated convergence theorem with the fact that f ∈ Hα(R), we see that

limh→∞ I (h) = 0. As for II(h), integration in τ yields

II(h) ∼
ˆ
[t1,t1−h]

|f(t)|2

|t− t1 − h|2α
dt+

ˆ
[t1,t1+h]

|f(t)|2

|t− t1|2α
dt

≲ ∥f∥Ḣα
(R),

where the second step follows from Hardy’s inequality ([57, Lemma A.2]) since 0 ≤ α < 1
2 .

Noting that III(h) = II(h), we see that the term III(h) also satisfies the bound above. Also,

the case h < 0 follows from an analogous consideration. Putting everything together, we

conclude (3.38). See also Lemma 4.4 in [7].
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We conclude this section by stating a lemma on growth of the stochastic convolution Ψ

in (3.7) over long time intervals. We point out that analogous regularity results were

obtained in [37, Propositions 4.1 and 4.5] but they are only for short times.

Lemma 3.4. Let s < 0 and 1 ≤ p, q < ∞ such that sp < −1.

(i) Let (b− 1)q < −1. Given any 1 ≤ r < ∞ and T ≥ 1, we have⃦⃦⃦
∥Ψ∥

Xs,b
p,q(I)

⃦⃦⃦
Lr(Ω)

≤
⃦⃦⃦
∥Ψ∥

Y s,b
p,q (I)

⃦⃦⃦
Lr(Ω)

≲
√
rT (3.39)

for any interval I ⊂ [0, T ] with length |I| ≤ 1, where the implicit constant is independent

of r and T .

(ii) Given any 1 ≤ r < ∞ and T ≥ 1, we have⃦⃦⃦
∥Ψ∥

C([0,T ];ˆ︁bsp,∞)

⃦⃦⃦
Lr(Ω)

≲
√︁

rT log T , (3.40)

where the implicit constant is independent of r and T .

We present the proof of Lemma 3.4 in Appendix A.

Remark 3.5. We point out that the bound (3.39) holds only for intervals I of short lengths.

Indeed, a slight modification of the proof yields the following estimate for I = [0, T ]:⃦⃦⃦
∥Ψ∥

Xs,b,T
p,q

⃦⃦⃦
Lr(Ω)

≤
⃦⃦⃦
∥Ψ∥

Y s,b,T
p,q

⃦⃦⃦
Lr(Ω)

≲
√
r T

3
2 , (3.41)

where the right-hand side is much worse than those in (3.39) and (3.40). See Remark A.1.

4. Probabilistic uniform growth bound

Given N ∈ N, let uN be the global solution to the truncated SKdV (1.22) with the mean-

zero white noise initial data uω0 in (1.30). Our main goal in this section is to establish the

following probabilistic growth bound on the solution uN to (1.1) whose proof is based on

a variant of Bourgain’s invariant measure argument in the current setting of an evolution

system of measures (Proposition 1.4).

Proposition 4.1. Let α and p be as in (3.25) and Theorem 3.1, respectively. Given any

T ≫ 1 and 0 < ε ≪ 1, there exists a set ΩT,ε(N) such that P(ΩT,ε(N)c) < ε and

sup
t∈[0,T ]

∥uN (t)∥ˆ︁b−α
p,∞

≤ C

√︃
log

1

ε

√︁
T log T (4.1)

on ΩT,ε(N), where the constant C > 0 is independent of N ∈ N, T ≫ 1, and ε ≪ 1.

Proof. Fix small T1 > 0 (to be chosen later), and let Ij = [jT1, (j + 1)T1] ∩ [0, T ], j ∈ Z≥0.

Recall from Proposition 1.4 that the solution uN (jT1) at time t = jT1 is distributed by the

white noise measure µ1+jT1 with variance 1 + jT1, where µ1+jT1 is as in (2.3). Then, given

K1 ≫ 1, set Ω1 = Ω1(T, ε,N) ⊂ Ω by

Ω1 =

[T/T1]⋂︂
j=0

{︂
∥uN (jT1)∥ˆ︁b−α

p,∞
≤ K1

}︂
. (4.2)
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Then, it follows from Lemma 2.5 and choosing

K1 = r1

√︃
T log

T

ε
(4.3)

for some r1 ≫ 1(to be chosen later) that

P(Ωc
1) ≲

[T/T1]∑︂
j=0

e
− c

1+jT1
K2

1 ∼ T

T1
e−

c′
T
K2

1 = T−1
1 T 1−c′r21εc

′r21 . (4.4)

Next, define Ω2 = Ω2(T, ε) ⊂ Ω by

Ω2 =

[T/T1]⋂︂
j=0

{︂
∥Ψ∥X−α,α

p,2 ([jT1,jT1+1]) ≤ K1

}︂
, (4.5)

where K1 is as in (4.3). Then, by Lemma 3.4 (i) and Chebyshev’s inequality, we have

P(Ωc
2) ≲

[T/T1]∑︂
j=0

e
− c

1+jT1
K2

1 ∼ T−1
1 T 1−c′r21εc

′r21 (4.6)

just as in (4.4). Lastly, define Ω3 = Ω3(T, ε) ⊂ Ω by

Ω3 =
{︁
Lω(T ) ≤ K2

}︁
, (4.7)

where Lω(T ) is as in (3.26) and

K2 = r2

√︃
T 3 log

1

ε
. (4.8)

Then, by choosing r2 > 0 sufficiently large, it follows from (3.27) and Chebyshev’s inequality

that

P(Ωc
3) ≤ Ce−

c
T3K

2
2 <

ε

4
. (4.9)

Let Rω be as in (3.33). Then, on Ω1 ∩ Ω2 ∩ Ω3, we have

Rω(jT1) ≤ C∗(2K1 + 1) ∼ K1 and Lω(T ) ≤ K2 (4.10)

for j = 0, 1, . . . ,
[︁
T
T1

]︁
. In view of (3.29) and (3.34) in Lemma 3.2 with (4.10), we now choose

T1 > 0 by setting

T1 ∼ min
{︂
K

− 1
θ

1 , (K2
1 +K2)

−γ
}︂
. (4.11)

Then, by choosing r1 > 0 sufficiently large, it follows from (4.4) and (4.6) with (4.3), (4.8),

and (4.11) that

P(Ωc
k) <

ε

4
(4.12)

for k = 1, 2. Furthermore, from Lemma 3.2 and (4.10) with (4.3), we obtain

∥uN∥X−α,α
p,2 (Ij)

≤ C∗(2K1 + 1) ∼ K1 ∼
√︃
T log

T

ε
(4.13)

for j = 0, 1, . . . ,
[︁
T
T1

]︁
.
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Now, define Ω4 = Ω4(T, ε) ⊂ Ω by

Ω4 =

{︃
∥Ψ∥

C([0,T ];ˆ︁bsp,∞)
≤ r3

√︃
log

1

ε

√︁
T log T

}︃
. (4.14)

Then, from Lemma 3.4 (ii) and Chebyshev’s inequality, we have

P(Ωc
4) <

ε

4
(4.15)

by choosing r3 > 0 sufficiently large. In view of (3.32) with (4.10) and (4.13), we further

impose that

T θ
1

(︁
C5C∗(2K1 + 1) + C6C

2
∗ (2K1 + 1)2 + C7K2

)︁
≤ 1. (4.16)

Note that (4.16) yields T1 ≲ (K2
1+K2)

− 1
θ , which is essentially implied by (4.11) (by possibly

making r1 larger) and thus the bound (4.12) still holds.

Finally, set ΩT,ε(N) = Ω1 ∩ · · · ∩ Ω4. Then, from (4.9), (4.12), and (4.15), we have

P(ΩT,ε(N)c) < ε.

Furthermore, on ΩT,ε(N), we conclude from (3.32) with (4.2), (4.3), (4.13), (4.14), and

(4.16) that

∥uN∥
C(Ij ;ˆ︁b−α

p,∞)
≲

√︃
log

1

ε

√︁
T log T ,

uniformly in j = 0, 1, . . . ,
[︁
T
T1

]︁
, which implies (4.1). □

5. Approximation argument

In this section, we present the proof of Theorem 1.1. We first establish the following

‘almost’ almost sure global well-posedness of SKdV (1.1) via an approximation argument.

Given N ∈ N, let uN be the global solution to the truncated SKdV (1.22) with the

mean-zero white noise initial data uω0 in (1.30), and let u be the solution to SKdV (1.1)

with the mean-zero white noise initial data uω0 in (1.30), whose local existence is guaranteed

by Theorem 3.1.

Proposition 5.1. Let α = 1
2 − δ and p = 2 + δ0 for some small δ, δ0 > 0 such that p−2

3p <

δ < p−2
2p . Given any T ≫ 1 and 0 < ε ≪ 1, there exist a set ΩT,ε and N∗ = N∗(T, ε) ∈ N

such that P(Ωc
T,ε) < ε and, on ΩT,ε, we have

sup
t∈[0,T ]

∥u(t)− uN∗(t)∥ˆ︁b−α
p,∞

≤ C(T, ε)N
− δ

2
∗ . (5.1)

In particular, on ΩT,ε, the solution u to SKdV (1.1) with the mean-zero white noise initial

data uω0 in (1.30) exists on the time interval [0, T ].

As compared to Theorem 3.1, we need an extra restriction δ > p−2
3p in order to obtain a

decay in N . See (5.2) and (5.12).
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Proof. We first record the following embedding, which requires the additional condition

δ > p−2
3p . Let p > 2. By Hölder’s inequality, we have

∥f∥
H− 1

2− 1
2 δ ≤

(︃ ∞∑︂
j=0

2−2εj∥⟨n⟩−
1
2
− 1

2
δ+ε ˆ︁f(n)∥2ℓ2

|n|∼2j

)︃ 1
2

≤ ∥⟨n⟩−
3
2
δ+ε∥

ℓ
2p
p−2
n

sup
j∈Z≥0

∥⟨n⟩−
1
2
+δ ˆ︁f(n)∥ℓp

|n|∼2j
≲ ∥f∥ˆ︁b− 1

2+δ
p,∞

,

provided that δ > p−2
3p (by taking ε > 0 sufficiently small). Hence, we have

∥u∥
X− 1

2− 1
2 δ,b ≲ ∥u∥

X
− 1

2+δ,b

p,2

(5.2)

for any s, b ∈ R, provided that δ > p−2
3p . Instead of (3.4), we use (5.2) in the following.

• Step 1: In the following, we first study the difference of the Duhamel formulations (3.21)

and (3.23) for SKdV (1.1) and the truncated SKdV (1.22), respectively, on short time

intervals. Our first main goal is to estimate the difference

∥N (u, u)−NN (uN , uN )∥
X

−α,α,T1
p,2

for small T1 > 0, where α = 1
2 − δ as in (3.25). From the discussion in Subsection 3.2, we

have

N (u, u)−NN (uN , uN ) =
2∑︂

j=0

(︂
Nj(u, u)−NN

j (uN , uN )
)︂

= N0(u, u)−NN
0 (uN , uN )

− 1

2

(︂
N1(N (u, u), u)−NN

1 (NN (uN , uN ), uN )
)︂

+N1(Ψ, u)−NN
1 (Ψ, uN )

− 1

2

(︂
N2(u,N (u, u))−NN

2 (uN ,NN (uN , uN ))
)︂

+N2(u,Ψ)−NN
2 (uN ,Ψ).

From the definitions of N1(u, u) and NN
1 (uN , uN ), we have

N1(N (u, u), u)−NN
1 (NN (uN , uN ), uN )

= N1(N (u, u), u)−PNN1(PNN (PNuN ,PNuN ),PNuN )

= N1

(︁
N (u, u)−PNN (PNuN ,PNuN ), u

)︁
+N1(PNN (PNuN ,PNuN ), u− uN )

+N1(PNN (PNuN ,PNuN ),P⊥
NuN )

+P⊥
NN1(PNN (PNuN ,PNuN ),PNuN )

=: A1 +A2 +A3 +A4

(5.3)
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and

N1(Ψ, u)−NN
1 (Ψ, uN ) = N1(Ψ, u)−PNN1(PNΨ,PNuN )

= N1(P
⊥
NΨ, u

)︁
+N1(PNΨ, u− uN )

+N1(PNΨ,P⊥
NuN ) +P⊥

NN1(PNΨ,PNuN )

=: B1 +B2 +B3 +B4.

(5.4)

Similar expressions hold for the differences

N2(u,N (u, u))−NN
2 (uN ,NN (uN , uN )) (5.5)

and

N2(u,Ψ)−NN
2 (uN ,Ψ). (5.6)

Let us first estimate (5.4). Given N ∈ N, define ˜︁L⊥
ω,N (T ) by

˜︁L⊥
ω,N (T ) = ∥1[0,T ]P

⊥
NΨ∥

X− 1
2−δ, 12−δ + ∥1[0,T ]P

⊥
NΨ∥

Y
− 1

2−δ, 1116+δ

2,4

. (5.7)

See (B.5) below. Then, from (3.26) and (5.7), we have

˜︁L⊥
ω,N (T ) ≲ N− δ

2Lω(T ). (5.8)

From the estimates in Appendix B, (5.8), and (5.2) (see also (5.12) below), we have

∥B1 +B2 +B3∥X−α,1−α,T1

≲ T θ
1
˜︁L⊥
ω,N (T )∥u∥X−(1−α),α,T1

+ T θ
1Lω(T )

(︂
∥u− uN∥X−(1−α),α,T1 + ∥P⊥

NuN∥X−(1−α),α,T1

)︂
≲ T θ

1Lω(T )∥u− uN∥
X

−α,α,T1
p,2

+N− δ
2T θ

1Lω(T )
(︂
∥u∥

X
−α,α,T1
p,2

+ ∥uN∥
X

−α,α,T1
p,2

)︂ (5.9)

and

∥B4∥X−α,1−α,T1 ≲ N− δ
2 ∥B4∥

X−α+ δ
2 ,1−α,T1

≲ N− δ
2T θ

1Lω(T )∥uN∥
X− 1

2− δ
2 ,α,T1

≲ N− δ
2T θ

1Lω(T )∥uN∥
X

−α,α,T1
p,2

(5.10)

for some small θ > 0. Therefore, from (5.9), (5.10), and the symmetry between N1 and N2,

we have

∥(5.4) + (5.6)∥X−α,1−α,T1 ≲ T θ
1Lω(T )∥u− uN∥

X
−α,α,T1
p,2

+N− δ
2T θ

1Lω(T )
(︂
∥u∥

X
−α,α,T1
p,2

+ ∥uN∥
X

−α,α,T1
p,2

)︂
.

(5.11)

Next, we estimate the terms in (5.3). The main nonlinear analysis comes from [6, (2.27)-

(2.59) pp. 125-130] and [37, “Estimate on (i)” on pp. 295-296]. Here, the latter replaces

[6, Estimation of (2.62) on p. 131], where the a priori assumption (1.8) was used. In [6],

the nonlinear analysis ([6, (2.27)-(2.59) pp. 125-130]) was estimated by the X−(1−α),α-norm

of u. In particular, in estimating the terms with P⊥
NuN in (5.3) (namely, the first and third
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terms on the right-hand side of (5.3)), we can apply (5.2) to gain a negative power of N as

follows:

∥P⊥
NuN∥X−(1−α),α,T1 ≲ N− δ

2 ∥P⊥
NuN∥

X− 1
2− 1

2 δ,α,T1

≲ N− δ
2 ∥uN∥

X
−α,α,T1
p,2

.
(5.12)

As for and [37, “Estimate on (i)” on pp. 295-296] on Rα in [37, (58)], we used ⟨n⟩−1−α ≤
⟨n⟩−3α. This can be replaced by ⟨n⟩−1−α+ δ

2 ≤ ⟨n⟩−3α, which allows us to gain N− δ
2

from P⊥
N .

From the discussion above, a straightforward modification of the estimates in [6, (2.27)-

(2.59) pp. 125-130] and [37, “Estimate on (i)” on pp. 295-296] yields

∥A1∥X−α,1−α,T1

≲ T θ
1 ∥N1(u, u)−PNN1(PNuN ,PNuN )∥X−α,1−α,T1∥u∥X−(1−α),α,T1

+ T θ
1

(︂
∥u∥2

X−(1−α),α,T1
+ ∥uN∥2

X−(1−α),α,T1

)︂
∥u− uN∥X−(1−α),α,T1

+N− δ
2T θ

1 ∥uN∥3
X−(1−α),α,T1

≲ T θ
1 ∥N1(u, u)−NN

1 (uN , uN )∥X−α,1−α,T1∥u∥X−α,α,T1
p,2

+ T θ
1

(︂
∥u∥2

X
−α,α,T1
p,2

+ ∥uN∥2
X

−α,α,T1
p,2

)︂
∥u− uN∥

X
−α,α,T1
p,2

+N− δ
2T θ

1 ∥uN∥3
X

−α,α,T1
p,2

.

(5.13)

Here, the first term on the right-hand side comes from [6, (II.1) on pp. 126-127], while

the second and third terms on the right-hand side come from estimating the other cases

trilinearly, using

N (u, u)−PNN (PNuN ,PNuN ) = N (u, u)−N (uN , uN )

+N (uN ,P⊥
NuN ) +N (P⊥

NuN ,PNuN )

+P⊥
NN (PNuN ,PNuN ).

Similarly, we have

∥A2∥X−α,1−α,T1 ≲ T θ
1 ∥NN

1 (uN , uN )∥X−α,1−α,T1∥u− uN∥
X

−α,α,T1
p,2

+ T θ
1 ∥uN∥2

X
−α,α,T1
p,2

∥u− uN∥
X

−α,α,T1
p,2

(5.14)

and

∥A3∥X−α,1−α,T1 ≲ N− δ
2T θ

1 ∥NN
1 (uN , uN )∥X−α,1−α,T1∥uN∥

X
−α,α,T1
p,2

+N− δ
2T θ

1 ∥uN∥3
X

−α,α,T1
p,2

.
(5.15)

In handling the term A4 in (5.3) with P⊥
N outside the nonlinearity we simply use

⟨n⟩
δ
2 ≲ ⟨n1⟩

δ
2 ⟨n2⟩

δ
2 and ⟨n⟩

δ
2 ≲ ⟨n2⟩

δ
2 ⟨n3⟩

δ
2 ⟨n4⟩

δ
2 ,



30 T. OH, J. QUASTEL, AND P. SOSOE

where n3 and n4 are the spatial frequencies of the first and second factors of

PNN (PNuN ,PNuN ) in A4; see also (5.10) above. Thus, we have

∥A4∥X−α,1−α,T1 ≲ N− δ
2 ∥A4∥

X−α+ δ
2 ,1−α,T1

≲ N− δ
2T θ

1 ∥NN
1 (uN , uN )∥X−α,1−α,T1∥uN∥

X
−α,α,T1
p,2

+N− δ
2T θ

1 ∥uN∥3
X

−α,α,T1
p,2

.

(5.16)

Here, the first term on the right-hand side of (5.16) comes from [6, (II.1) on pp. 126-127],

where we used the fact that ⟨n1⟩2α−1 = ⟨n1⟩−2δ. (In [6], in view of 2α− 1 < 0, this factor

⟨n1⟩2α−1 was simply thrown away; see [6, (2.37)].) Hence, from (5.13), (5.14), (5.15), (5.16),

and the symmetry between N1 and N2, we obtain

∥(5.3) + (5.5)∥X−α,1−α,T1 ≲ T θ
1 ∥N1(u, u)−NN

1 (uN , uN )∥X−α,1−α,T1∥u∥X−α,α,T1
p,2

+ T θ
1

(︂
∥u∥2

X
−α,α,T1
p,2

+ ∥uN∥2
X

−α,α,T1
p,2

)︂
∥u− uN∥

X
−α,α,T1
p,2

+ T θ
1 ∥NN

1 (uN , uN )∥X−α,1−α,T1∥u− uN∥
X

−α,α,T1
p,2

+N− δ
2T θ

1 ∥NN
1 (uN , uN )∥X−α,1−α,T1∥uN∥

X
−α,α,T1
p,2

+N− δ
2T θ

1 ∥uN∥3
X

−α,α,T1
p,2

.

(5.17)

Given R ≥ 1, by choosing T1 = T1(R) > 0 sufficiently small such that the condition (3.29)

is satisfied. Then, by possibly making T1 = T1(R) > 0 small, it follows from (5.11)

and (5.17) with (3.30) that

2∑︂
j=1

∥Nj(u, u)−NN
j (uN , uN )∥X−α,1−α,T1

≲ T θ
1

(︂
∥u∥2

X
−α,α,T1
p,2

+R3 + Lω(T )R
)︂
∥u− uN∥

X
−α,α,T1
p,2

+N− δ
2T θ

1

(︂
R4 + Lω(T )R

2
)︂

(5.18)

under an extra assumption u:

∥u∥
X

−α,α,T1
p,2

≤ 2R. (5.19)

As mentioned in Section 3, the temporal regularity on the left-hand side of (5.18) is b =

1− α = 1
2 + δ > 1

2 , which is used in (5.23) below.

The following estimate follows from a slight modification of the bilinear estimate (1.7)

(see [6, (I.1) and (I.2) on pp. 122-125] and (3.4)):

∥N0(u, u)−NN
0 (uN , uN )∥X−α,α,T1

≲ T θ
1

(︂
∥u∥X−(1−α),α,T1 + ∥uN∥X−(1−α),α,T1

)︂
∥u− uN∥X−(1−α),α,T1

≲ T θ
1

(︂
∥u∥

X
−α,α,T1
p,2

+ ∥uN∥
X

−α,α,T1
p,2

)︂
∥u− uN∥

X
−α,α,T1
p,2

.

(5.20)
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As for the difference of the linear solutions, it follows from (3.5) (with T1 ≤ 1) and (3.9)

that

∥S(t)u(0)− S(t)uN (0)∥
X

−α,α,T1
p,2

≤ ∥S(t)u(0)− S(t)uN (0)∥
X−α,α,1

p,2

≲ ∥u(0)− uN (0)∥ˆ︁b−α
p,∞

.

Therefore, putting (3.21), (3.20), (3.23), (5.18), and (5.20) together we obtain

∥u− uN∥
X

−α,α,T1
p,2

≤ D0∥u(0)− uN (0)∥ˆ︁b−α
p,∞

+D1T
θ
1

(︂
∥u∥2

X
−α,α,T1
p,2

+R3 + Lω(T )R
)︂
∥u− uN∥

X
−α,α,T1
p,2

+D2N
− δ

2T θ
1

(︂
R4 + Lω(T )R

2
)︂ (5.21)

under the assumptions (3.29) and (5.19). Here, we took general initial data u(0) and uN (0)

so that we can apply the estimate (5.21) to a general time interval of length T1.

Next, let us bound the difference of u and uN in the C([0, T1];ˆ︁b−α
p,∞(T))-norm. A bilinear

version of (3.31) yields

∥N0(u, u)−NN
0 (uN , uN )∥

C([0,T1];ˆ︁b−α
p,∞)

≲ T θ
1

(︂
∥u∥

X
−α,α,T1
p,2

+ ∥uN∥
X

−α,α,T1
p,2

)︂
∥u− uN∥

X
−α,α,T1
p,2

.
(5.22)

Hence, from (5.18) and (5.22), we have9

∥u− uN∥
C([0,T1];ˆ︁b−α

p,∞)
≤ ∥u(0)− uN (0)∥ˆ︁b−α

p,∞

+D1T
θ
1

(︂
∥u∥2

X
−α,α,T1
p,2

+R3 + Lω(T )R
)︂
∥u− uN∥

X
−α,α,T1
p,2

+D2N
− δ

2T θ
1

(︂
R4 + Lω(T )R

2
)︂ (5.23)

under the assumptions (3.29) and (5.19). We point out that the estimates (5.21) and (5.23)

hold true on a general time interval of length T1.

• Step 2: Fix T ≫ 1 and 0 < ε ≪ 1. We now establish the difference estimate (5.1) on

the time interval [0, T ] by iterating the local-in-time estimates (5.21) and (5.23) with the

probabilistic input from Proposition 4.1.

Given N ∈ N, let ΩT,ε(N) = Ω1∩· · ·∩Ω4 be as in Proposition 4.1, where Ωk, k = 1, . . . , 4,

are as in (4.2), (4.5), (4.7), and (4.14), respectively. In particular, if necessary, we have

made T1 smaller such that (4.11) is satisfied. In the following, it is understood that we

work on ΩT,ε(N) and that all the estimates are restricted to ΩT,ε(N), where the value of

N may increase in each step.

For now, assume that

∥u∥X−α,α
p,2 (Ij)

≤ ∥uN∥X−α,α
p,2 (Ij)

+ 1 ≲ K1 (5.24)

for Ij = [jT1, (j + 1)T1] ∩ [0, T ], j = 0, 1, . . . ,
[︁
T
T1

]︁
, where the second inequality follows

from (4.13). Note that, with R = C∗(2K1 + 1), (3.29) (on the interval Ij) and (5.24) (see

also (4.10) and (4.13)) implies (5.19) (on the interval Ij). Then, in view of (5.21) and (5.23)

9In general, the constants D1 and D2 in (5.21) and (5.23) are different, but we simply take the worse
ones.
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with (4.10) (see also (3.33) in Lemma 3.2) we further impose that T1 > 0 be sufficiently

small such that

T θ
1

(︂
K3

1 +K1K2

)︂
≪ 1,

T θ
1

(︂
K4

1 +K2
1K2

)︂
≪ 1.

(5.25)

In the following, we work iteratively on each interval Ij and verify (5.24).

Let us now consider the first time interval I0 = [0, T1]. By the local well-posedness theory

(see (3.28)), there exists small T0 > 0 such that

∥u∥
X

−α,α,T0
p,2

≲ K1. (5.26)

Then, from (5.21) (but with T0 replacing T1 and with u(0) = uN (0)) with (5.25) and (5.26),

we have

∥u− uN∥
X

−α,α,T0
p,2

≤ 1

2
∥u− uN∥

X
−α,α,T0
p,2

+N− δ
2

Hence, we have

∥u− uN∥
X

−α,α,T0
p,2

≤ 2N− δ
2 .

Therefore, by a standard continuity argument (see also Remark 3.3), we conclude that there

exists N0 ∈ N such that (5.24) holds on the entire time interval I0 = [0, T1] for any N ≥ N0.

As a result, we obtain

∥u− uN∥X−α,α
p,2 (I0)

≤ 2N− δ
2 (5.27)

for any N ≥ N0. By applying (5.25) and (5.27) (with (4.10)) to (5.23), we then obtain

∥u− uN∥
C(I0;ˆ︁b−α

p,∞)
≤ 2N− δ

2 (5.28)

for any N ≥ N0.

On the second interval I1 = [T1, 2T1] ∩ [0, T ], we repeat an analogous analysis.

From (5.28), we have

∥u(T1)− uN (T1)∥ˆ︁b−α
p,∞

≤ 2N− δ
2

for any N ≥ N0. By the local theory, there exists small T0 > 0 such that

∥u∥X−α,α
p,2 ([T1,T1+T0])

≲ K1.

Then, from (5.21) (but on [T1, T1 + T0]) with (5.25) and (5.26), we have

∥u− uN∥X−α,α
p,2 ([T1,T1+T0])

≤ 2N− δ
2 +

1

2
∥u− uN∥X−α,α

p,2 ([T1,T1+T0])
+N− δ

2 ,

which yields

∥u− uN∥X−α,α
p,2 ([T1,T1+T0])

≤ 6N− δ
2 .

Therefore, it follows from a standard continuity argument that there exists N1 ∈ N such

that (5.24) holds on the entire time interval I1 for any N ≥ N1. As a result, we obtain

∥u− uN∥X−α,α
p,2 (I1)

≤ 6N− δ
2 (5.29)
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for any N ≥ N1. Hence, from (5.23), (5.24) (5.25), and (5.29), we obtain

∥u− uN∥
C(I1;ˆ︁b−α

p,∞)
≤ 2N− δ

2 +
1

2
· 6N− δ

2 +N− δ
2 = 6N− δ

2 .

for any N ≥ N1.

Proceeding iteratively, we conclude that, on the jth interval Ij = [jT1, (j+1)T1]∩ [0, T ],

j = 0, 1, . . . ,
[︁
T
T1

]︁
, there exists Nj ∈ N such that

∥u− uN∥X−α,α
p,2 (Ij)

≤
(︃ j∑︂

k=0

2k+1

)︃
N− δ

2 ,

∥u− uN∥
C(Ij ;ˆ︁b−α

p,∞)
≤

(︃ j∑︂
k=0

2k+1

)︃
N− δ

2

(5.30)

for any N ≥ Nj . Note that T1 depends only on T and ε; see (4.11) and (5.25) with (4.3)

and (4.8). See also (3.28) with R ≲ K1 as in (4.10). Therefore, by setting

N∗ = N∗(T, ε) = N[T/T1] and ΩT,ε = ΩT,ε(N∗(T, ε)),

where the latter is as in Proposition 4.1, we conclude from (5.30) that, on ΩT,ε, we have

∥u− uN∗∥
C([0,T ];ˆ︁b−α

p,∞)
≤ C(T, ε)N

− δ
2

∗ .

This concludes the proof of Proposition 5.1. □

We now present the proof of Theorem 1.1. We first note that the claimed almost sure

global well-posedness of SKdV (1.1) with the white noise initial data immediately follows

from the ‘almost’ almost sure global well-posedness result established in Proposition 5.1;

see [16, 2]. Indeed, define Σ ⊂ Ω by

Σ =
∞⋃︂
k=1

∞⋂︂
j=1

Ω2j , 1

k2j
, (5.31)

where ΩT,ε is as in Proposition 5.1. Then, we have

P(Σc) ≤ inf
k∈N

∞∑︂
j=1

P(Ωc
2j , 1

k2j
) = inf

k∈N

1

k
= 0.

Moreover, if ω ∈ Σ, then there exists k ∈ N such that ω ∈ Ω2j , 1

k2j
for any j ∈ N, which

implies that the corresponding solution u = u(ω) to SKdV (1.1) exists globally in time.

It remains to prove (1.15). It follows from the proof of Proposition 5.1 that, on ΩT,ε =

ΩT,ε(N∗(T, ε)), we have

sup
t∈[0,T ]

∥uN (t)− uN∗(t)∥ˆ︁b−α
p,∞

≤ C(T, ε)N
− δ

2
∗ . (5.32)

for any N ≥ N∗. Define ˜︁Ω1(N) = ˜︁Ω1(T, ε,N) ⊂ Ω by

˜︁Ω1(N) =

[T/T1]⋂︂
j=0

{︂
∥uN (jT1)∥ˆ︁b−α

p,∞
≤ 2K1

}︂
. (5.33)

Namely, we replaced K1 in (4.2) by 2K1. By taking N∗ sufficiently large, it follows

from (5.32) that ΩT,ε ⊂ ˜︁Ω1(N) for any N ≥ N∗. Hence, by setting ˜︁ΩT,ε(N) =
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˜︁Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4, where Ω2, Ω3, and Ω4 are (4.5), (4.7), and (4.14), respectively, we

have

ΩT,ε ⊂ ˜︁ΩT,ε(N) (5.34)

for any N ≥ N∗. Now, by repeating Step 2 in the proof of Proposition 5.1,10 we conclude

that, there exists N∗∗ = N∗∗(T, ε) ∈ N such that, on ΩT,ε, we have

sup
t∈[0,T ]

∥u(t)− uN (t)∥ˆ︁b−α
p,∞

≤ C(T, ε)N− δ
2 . (5.35)

for any N ≥ N∗∗. This in particular implies that, for each ω ∈ ΩT,ε, the solution u = u(ω)

to SKdV (1.1) is the limit of uN = uN (ω) in C([0, T ];ˆ︁b−α
p,∞(T)). Hence, given t ∈ R+, it

follows from the discussion above that, for each ω ∈ Σ,

∥uN (t;ω)− u(t;ω)∥ˆ︁b−α
p,∞

−→ 0

as N → ∞. This in particular implies convergence in law of uN (t) to u(t). Recalling that

Law(uN (t)) = µ1+t for any N ∈ N, we then conclude that

Law(u(t)) = µ1+t.

This concludes the proof of Theorem 1.1.

Remark 5.2. Let ω ∈ ΩT,ε. Then, from (5.34), (5.35), and Proposition 4.1, we have

sup
t∈[0,T ]

∥u(t)∥ˆ︁b−α
p,∞

≤ C

√︃
log

1

ε

√︁
T log T . (5.36)

Fix k ∈ N, and suppose that ω ∈
⋂︁∞

j=1Ω2j , 1

k2j
. Then, from (5.36), we obtain

∥u(t)∥ˆ︁b−α
p,∞

≤ C
√︁
log k

√
1 + t log(1 + t)

for any t ∈ R+. Namely, we have

∥u(t)∥ˆ︁b−α
p,∞

≤ C(ω)
√
1 + t log(1 + t) (5.37)

for any t ∈ R+ and ω ∈ Σ. Note that the growth bound (5.37) is not optimal, and we can

improve it by modifying the definition (5.31) of Σ. For example, by redefining Σ by

Σ =

∞⋃︂
k=1

∞⋂︂
j=1

Ω2j , 1
kj2

and repeating the argument, we obtain the following growth bound:

∥u(t)∥ˆ︁b−α
p,∞

≤ C(ω)
√
1 + t

√︁
log(1 + t)

√︁
log log(1 + t).

In this way, we can obtain a growth bound which is only slightly faster than
√
t log t, t ≫ 1

(but the random constant C(ω) gets worse).

10In (5.33), we replaced K1 by 2K1, which worsens constants in the argument. We can, however,
implement the proof of Proposition 5.1 to incorporate these worse constants from the beginning.
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Appendix A. Growth bound on the stochastic convolution for large times

In this appendix, we present the proof of Lemma 3.4.

Proof of Lemma 3.4. Fix s < 0 and 1 ≤ p, q < ∞ such that sp < −1, and (b − 1)q < −1.

We also fix 1 ≤ r < ∞ and T ≥ 1. Without loss of generality, we assume

r ≥ max(p, q). (A.1)

Before proceeding further, we first recall the following bound for a Gaussian random vari-

able g:

∥g∥Lr(Ω) ≲
√
r∥g∥L2(Ω). (A.2)

(i) Let I = [t0, t1] ⊂ [0, T ] be an interval of length |I| ≤ 1. The first inequality in (3.39)

follows from (3.13), and thus we focus on proving the second inequality in (3.39).

Recall that

∥u∥
Y s,b
p,q

= ∥S(−t)u(t)∥FLs,p
x FLb,q

t
, (A.3)

where FLb,q
t and FLs,p

x are the Fourier-Lebesgue spaces defined in (3.2) and (3.11), respec-

tively. Let Φ(t) = S(−t)Ψ(t) be the interaction representation of Ψ. From (3.7) with (1.11),

we have ˆ︃1IΦ(n, t) = 1I(t)

ˆ t

0
e−it′n3

dβn(t
′).

By taking the temporal Fourier transform, we then have

ˆ︃1IΦ(n, τ) = ˆ t1

t0

e−itτ

ˆ t

0
e−it′n3

dβn(t
′)dt

=

ˆ t1

0
e−it′n3

ˆ t1

max(t0,t′)
e−itτdtdβn(t

′).

(A.4)

The inner integral can be estimated as⃓⃓⃓⃓ ˆ t1

max(t0,t′)
e−itτdt

⃓⃓⃓⃓
≲ min

(︃
1,

1

|τ |

)︃
≲

1

⟨τ⟩
. (A.5)

From (3.5) (for the Y s,b
p,q -space) and (A.3), we have

∥Ψ∥
Y s,b
p,q (I)

≤ ∥1IΨ∥
Y s,b
p,q (I)

= ∥⟨n⟩s⟨τ⟩bˆ︃1IΦ(n, τ)∥ℓpnLq
τ
. (A.6)

Then, by (A.6), Minkowski’s integral inequality, and (A.2) followed by the Ito isometry

with (A.4), (A.5) and t1 ≤ T , we have⃦⃦⃦
∥Ψ∥

Y s,b
p,q (I)

⃦⃦⃦
Lr(Ω)

=
⃦⃦⃦
∥⟨n⟩s⟨τ⟩bˆ︃1IΦ(n, τ)∥ℓpnLq

τ

⃦⃦⃦
Lr(Ω)

≤
⃦⃦⃦
∥⟨n⟩s⟨τ⟩bˆ︃1IΦ(n, τ)∥Lr(Ω)

⃦⃦⃦
ℓpnL

q
τ

≲
√
r
⃦⃦⃦
∥⟨n⟩s⟨τ⟩bˆ︃1IΦ(n, τ)∥L2(Ω)

⃦⃦⃦
ℓpnL

q
τ

≲
√
rT∥⟨n⟩s⟨τ⟩b−1∥ℓpnLq

τ

≲
√
rT ,

since sp < −1 and (b− 1)q < −1. This proves (3.39).
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(ii) It follows from [37, Proposition 4.5] that the stochastic convolution is continuous in

time with values in ˆ︁bsp,∞(T) when sp < −1, at least locally in time. In the following, we

estimate its growth in a direct manner by following the argument in [41, Lemma 3.4].

Without loss of generality, assume that T ∈ 2N. For an integer k ∈ Z ∩ [− log2 T,∞),

let {tℓ,k : ℓ = 0, 1, . . . , 2kT} be 2kT + 1 equally spaced points on [0, T ], i.e. t0,k = 0

and tℓ,k − tℓ−1,k = 2−k for ℓ = 1, . . . , 2kT . Let Φ(t) = S(−t)Ψ(t) be the interaction

representation of Ψ. Then, given t ∈ [0, T ], it follows from the continuity (in time) of Ψ

and Ψ(0) = 0 that

Φ(t) =
∞∑︂

k=− log2 T

(︁
Φ(tℓk,k)− Φ(tℓk−1,k−1)

)︁
(A.7)

for some ℓk = ℓk(t) ∈ {0, . . . , 2kT}. Then, from (3.13), (A.7), and Minkowski’s integral

inequality with (A.1), we have

⃦⃦⃦
∥Ψ∥

C[0,T ];ˆ︁bsp,∞)

⃦⃦⃦
Lr(Ω)

≤
⃦⃦⃦
∥Φ(t)∥C([0,T ];FLs,p)

⃦⃦⃦
Lr(Ω)

≤
∞∑︂

k=− log2 T

⃦⃦⃦
max

0≤ℓk≤2kT
∥Φ(tℓk,k)− Φ(tℓ′k−1,k−1)∥FLs,p

⃦⃦⃦
Lr(Ω)

,
(A.8)

where tℓ′k−1,k−1 is one of the 2(k−1)T+1 equally spaced points such that

|tℓk,k − tℓ′k−1,k−1| ≤ 2−k. (A.9)

For k ∈ Z ∩ [− log2 T,∞), let

qk = max(log 2kT, p, r) ∼ log(2kT ) + r.

Then, noting that (2kT + 1)
1
qk ≲ 1, it follows from (A.8) that

⃦⃦⃦
∥Φ∥

C[0,T ];ˆ︁bsp,∞)

⃦⃦⃦
Lr(Ω)

≤
∞∑︂

k=− log2 T

⃦⃦⃦⃦(︃ 2kT∑︂
ℓk=0

∥Φ(tℓk,k)− Φ(tℓ′k−1,k−1)∥
qk
FLs,p

)︃ 1
qk

⃦⃦⃦⃦
Lqk (Ω)

=
∞∑︂

k=− log2 T

(︃ 2kT∑︂
ℓk=0

⃦⃦⃦
∥Φ(tℓk,k)− Φ(tℓ′k−1,k−1)∥FLs,p

⃦⃦⃦qk
Lqk (Ω)

)︃ 1
qk

≲
∞∑︂

k=− log2 T

max
0≤ℓk≤2kT

⃦⃦⃦
∥Φ(tℓk,k)− Φ(tℓ′k−1,k−1)∥FLs,p

⃦⃦⃦
Lqk (Ω)

.

(A.10)
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From (3.11), Minkowski’s integral inequality, and (A.2), we have⃦⃦⃦
∥Φ(tℓk,k)− Φ(tℓ′k−1,k−1)∥FLs,p

⃦⃦⃦
Lqk (Ω)

=
⃦⃦⃦⃦⃦

⟨n⟩s
(︁ˆ︁Φ(n, tℓk,k)− ˆ︁Φ(n, tℓ′k−1,k−1)

)︁⃦⃦
ℓpn

⃦⃦⃦
Lqk (Ω)

≲
√
qk

⃦⃦⃦
⟨n⟩s∥ˆ︁Φ(n, tℓk,k)− ˆ︁Φ(n, tℓ′k−1,k−1)∥L2(Ω)

⃦⃦⃦
ℓpn

=
√
qk

⃦⃦⃦⃦
⃦⟨n⟩s

⃦⃦⃦⃦ˆ tℓk,k

tℓ′
k−1

,k−1

e−it′n3
dβn(t

′)

⃦⃦⃦⃦
L2(Ω)

⃦⃦⃦⃦
⃦
ℓpn

≲

√︃
qk
2k

,

(A.11)

where the last step follows from (A.9) and sp < −1. Hence, from (A.10) and (A.11), we

obtain (A.8) that ⃦⃦⃦
∥Ψ∥

C[0,T ];ˆ︁bsp,∞)

⃦⃦⃦
Lr(Ω)

≲
√
r

∞∑︂
k=− log T

log 2k + log2 T

2
1
2
k

≲
√
r
√︁
T log T .

This proves (3.40). □

Remark A.1. Let us consider the bound (3.39) when I = [0, T ], as discussed in Remark 3.5.

In this case, (A.4) becomes

ˆ︂1[0,T ]Φ(n, τ) =

ˆ T

0
e−it′n3

ˆ T

t′
e−itτdtdβn(t

′).

In particular, the inner integral is estimated as⃓⃓⃓⃓ ˆ T

t′
e−itτdt

⃓⃓⃓⃓
≲

T

⟨τ⟩
. (A.12)

Then, by repeating the computation above with (A.12), we obtain (3.41).

Appendix B. Pathwise bound on the iterated term with the stochastic

convolution

In this appendix, we establish a pathwise bound on the X−α,1−α,T -norm of N1(Ψ, u)

appearing in (3.22). This was essentially carried out in [37, “Estimate on (ii)” on pp. 296-

297] but was done with an expectation. In the following, based on the analysis in [37], we

instead present straightforward pathwise analysis. By duality, it suffices to estimate∑︂
n,n1∈Z

n=n1+n2

ˆ

τ=τ1+τ2

dτdτ11σ1=MAX
⟨n⟩1−αd(n, τ)

σα
0

| ˆ︂1[0,T ]Ψ(n1, τ1)|
⟨n2⟩1−α|c(n2, τ2)|

σα
2

, (B.1)

where σj , j = 0, 1, 2, is as in (3.17), d = d(n, τ) with ∥d∥ℓ2nL2
τ

= 1, and c(n, τ) =

⟨n⟩−(1−α)⟨τ − n3⟩αˆ︁u(n, τ) such that ∥c∥ℓ2nL2
τ
= ∥u∥X−(1−α),α .
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• Case 1: max(σ0, σ2) ≳ ⟨nn1n2⟩
1

100 .

Without loss of generality, assume σ0 ≳ ⟨nn1n2⟩
1

100 . Then, by (3.18) and the

L4
x,t, L

2
x,t, L

4
x,t-Hölder’s inequality followed by the L4-Strichartz estimate (3.10), we have

(B.1) ≲
∑︂

n,n1∈Z
n=n1+n2

ˆ

τ=τ1+τ2

dτdτ1
d(n, τ)

σα−200δ
0

⟨n1⟩−
1
2
−δσ

1
2
−δ

1 | ˆ︂1[0,T ]Ψ(n1, τ1)|
|c(n2, τ2)|

σα
2

≲ ∥1[0,T ]Ψ∥
X− 1

2−δ, 12−δ∥u∥X−(1−α),α,T

(B.2)

by taking δ > 0 sufficiently small.

• Case 2: max(σ0, σ2) ≪ ⟨nn1n2⟩
1

100 .

Define the set Ω(n) by

Ω(n) =
{︁
σ ∈ R :σ = −3nn1n2 + o(⟨nn1n2⟩

1
100 )

for some n1, n2 ∈ Z∗ with n = n1 + n2

}︁
.

Then, we have ˆ
⟨τ − n3⟩−

3
41Ω(n)(τ − n3)dτ ≲ 1. (B.3)

See [37, Lemma 5.3]. By (3.18), the L4
x,t, L

2
x,t, L

4
x,t-Hölder’s inequality, the L4-Strichartz

estimate (3.10), and Hölder’s inequality (in τ) with (B.3), we have

(B.1) ≲
∑︂

n,n1∈Z
n=n1+n2

ˆ

τ=τ1+τ2

dτdτ1
d(n, τ)

σα
0

× 1Ω(n1)(τ1 − n3
1)⟨n1⟩−

1
2
−δσ

1
2
+δ

1 | ˆ︂1[0,T ]Ψ(n1, τ1)|
|c(n2, τ2)|

σα
2

≲ ∥1Ω(n1)(τ1 − n3
1)⟨n1⟩−

1
2
−δσ

1
2
+δ

1
ˆ︂1[0,T ]Ψ(n1, τ1)∥ℓ2n1

L2
τ1
∥u∥X−(1−α),α

≲ ∥1[0,T ]Ψ∥
Y

− 1
2−δ, 1116+δ

2,4

∥u∥X−(1−α),α,T ,

(B.4)

where the Y s,b
p,q -norm is defined in (3.12).

Given N ∈ N, a similar computation yields

∥N1(P
⊥
NΨ, u)∥X−α,1−α,T

≲
(︂
∥1[0,T ]P

⊥
NΨ∥

X− 1
2−δ, 12−δ + ∥1[0,T ]P

⊥
NΨ∥

Y
− 1

2−δ, 1116+δ

2,4

)︂
∥u∥X−(1−α),α,T ,

(B.5)

which motivates the definition of ˜︁L⊥
ω,N (T ) in (5.7).
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