Light-Driven Transitions in Quantum Paraelectrics
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Motivated by recent experiments on pump-induced polar ordering in the quantum paraelectric
SrTiOs, we study a driven phonon system close to a second order phase transition. Analyzing its
classical dynamics, we find that sufficiently strong driving leads to transitions into polar phases
whose structures, determined by the light polarization, are not all accessible in equilibrium. In
addition, for certain intensity profiles we demonstrate the possibility of two-step transitions as a
function of fluence. For even stronger field intensities, the possibility of period-doubling and chaotic
behavior is demonstrated. Finally we develop a generalized formalism that allows us to consider
quantum corrections to the classical dynamics in a systematic fashion. We predict a shift in the
critical pump fluence due to quantum fluctuations with a characteristic dependence on the fluence
increase rate that should be observable in experiment.

I. INTRODUCTION

The control and design of properties in quantum mate-
rials are outstanding goals both to address fundamental
questions and to develop applications with quantum ad-
vantages. Because the potential and the kinetic energy
scales in these materials are comparable, their quantum
phases are very sensitive to external fields [1-3]. Ad-
vances in the production of strong light pulses in mid-
infrared and terahertz ranges [4-6] have led to opportu-
nities for such light to strongly modify the low-energy
physics of materials. In particular, light-induced elec-
tronic [7, 8] and lattice [9-16] phase transitions [17-19]
have been observed.

Recently terahertz (THz) field-induced ferroelectric-
ity has been demonstrated in SrTiO3 (STO) [10, 11], in
agreement with semiclassical predictions based on non-
linear phonon coupling [20-22]. Though this material re-
mains paraelectric to the lowest temperatures [23], its po-
lar mode can be softened by chemical substitution [24, 25]
and strain [26] leading to a polar instability. However,
unlike these material modifications, the pump-induced
phase transition occurs as a function of fluence. Since
quantum criticality is observed in ¥O doped STO [27-
29], there is also the intriguing possibility of driving non-
equilibrium quantum critical dynamics in this quantum
paraelectric.

For driven classical phase transitions, the creation of
topological defects with universal scaling of their density
has been predicted and observed in materials [30-32].
Universal dynamics [33-35] have emerged from theoreti-
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cal studies of dynamical quantum critical effects, as have
signatures of dynamical quantum phase transitions such
as the Loschmidt echo [36-38]. However these charac-
terizations have predominantly been realized in closed
quantum systems like cold atoms where initial states can
be carefully prepared [36-38]. By definition, quantum
materials are not isolated from their environments and
their constituents, unlike those of their synthetic quan-
tum counterparts, cannot be easily addressed microscop-
ically.

The light-induced ferroelectricity experiments [10, 11,
13, 14] thus demand new ways to model strong classical
drive protocols that induce critical dynamics, both classi-
cal and quantum, and to identify macroscopic signatures
of dynamical quantum phase transitions. Theoretical
studies suggest that many Thz field-induced phenomena
may be due to nonlinear phonon interactions [20-22, 39—
46]. Recently many of the observed features in the field-
induced ferroelectricity experiments [10, 11] have been
simulated [47] with a time-dependent density functional
theory analysis where the anharmonic coupling between
the driven and the critical phonons is modelled by a
Schrodinger-Langevin approach [48]. In parallel a Mat-
subara action analysis has been developed to describe
an off-resonant drive-induced feroelectric transition [49],
where results have been obtained using a saddle-point
(classical) calculation.

The key idea of light-induced phase transitions is a
generalization of optical tweezers [50-52] to many-body
physics [1, 2]. In the context of optical tweezers, a
high frequency laser mode polarizes the atoms, reducing
their energy by an amount proportional to the intensity
of the light, producing an effective potential Vog(x) =
—3Xx0E(x)?, where g is the polarizability of the atom.
Similarly, in light-induced phase transitions, the intensity
of a high frequency laser modifies the effective potential
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FIG. 1. a) Schematic of the energy scales in a light-induced experiment, showing the pumping frequency € that resonantly
drives the high frequency anharmonic As, optical mode at frequency wg and the low frequency soft polar E, mode. Shown at
the bottom is the evolution of the soft polar mode frequency with fluence, and the effect of quantum fluctuations (h > 0) b)
Phase transitions as a function of electric field amplitude, showing the evolution of an effective potential Vg with increasing
fluence. The orange wavepacket around the blue classical configuration represents the effect of quantum fluctuations. (h > 0)

of a polar soft mode to be

1
Veir(P) = 5 (wh — xE*)P? + S P", (1)
where P and wp are the the polarization and frequency
of the soft mode respectively, u is the quartic coefficient
and y is the coupling to the electric field intensity EZ.
Once the shifted soft mode frequency

W (E) = wh — XE? (2)

vanishes, a phase transition into a broken symmetry state
with finite polarization magnitude

—wh(E)

P =
Pl r

3)
occurs.

Here we consider a harmonic driving electric field
E(t) = Eycos Qt. Typically, the coupling x in (1) and (2)
is enhanced by resonantly driving an intermediate high
frequency optical phonon that is anharmonically coupled
to the polar mode (see Figure 1 (a)). This process mod-
ifies the effective potential of the soft mode, ultimately
inducing phase transitions as a function of fluence (see
Figure 1b). More specifically, in addition to the ferro-
electric transition, at higher field intensities the polar-
ization fluctuations, 6P = |P — Py, become sufficiently

large that the system oscillates between the two poten-
tial wells (6P >> |Py|) and the system returns to being
paraelectric on average. Qualitatively this is because at
high fields Py grows linearly with E whereas § P increases
superlinearly. The latter occurs due to a field-induced
hardening of the soft polar mode frequency, that brings
it closer to the pump frequency, enhancing the oscilla-
tion amplitude. This behavior results in a critical field
E.s where 6P =~ P, (see Figure 1b).

Since quantum criticality has been observed in a num-
ber of quantum paraelectrics at low tempertures [27-29],
it is natural to explore how the presence of quantum fluc-
tuations will modify the critical fluence E.; (see Figure
1b) into the polar phase. Qualitatively we expect the
renormalized mass m(t), the renormalized quadratic co-
efficient in the effective potential (1), to have the form

m(t) = wp +ma(t) +mo(t) (4)
where the time-dependence of the classical mass cor-
rections, mci(t) = —x{E(t)}? (cf. (2)), results from

the harmonic drive; mg(t) refers to the time-dependent
quantum mass corrections. Since quantum fluctuations
are expected to disorder the system, mc;(t) and mq(?)
in (4) act in opposition leading to a shift in the criti-
cal point. Nonequlibrium quantum dynamics has been
previously studied after a quench to the quantum criti-
cal point [33-35], but here a new approach is required to



treat dynamical quantum fluctuations when the classical
order parameter is finite.

In this paper, we present a theoretical study of light-
induced transitions in quantum paraelectrics where we
explore their classical dynamics [20-22] with controlled
quantum corrections. More specifically, classically we
consider the effects of light polarization, long-range
Coulomb interactions and drive fluence for the case of a
resonantly driven phonon coupled to the soft mode (Sec.
IT). For a paraelectric with cubic symmetry (Sec. III), we
demonstrate fluence-and polarization dependent transi-
tions into different ordered phases, some inaccessible in
equilibrium: for example we find two successive tran-
sitions as a function of fluence can occur in contrast to
the one-stage symmetry-breaking routinely observed. Fi-
nally, we demonstrate (Sec. IV) that the classical dynam-
ical equations [20—22] emerge naturally within a Keldysh
field theory. The quantum corrections to these equations
can be then be treated systematically in a diagrammatic
expansion. We find that the critical fluence to enter the
ferroelectric phase F.; (see Figure 1b) is shifted due to
quantum fluctuations, a prediction that should be acces-
sible in experiment. Here we have described light-induced
transitions as a function of field intensity; an increase in
fluence leads to a decrease of mcy(t) such that m(t) will
change sign as a function of time. Thus driven transitions
as a function of fluence and of time are closely connected,
and this link will be pursued particularly in our study of
quantum effects.

II. THE CLASSICAL ACTION WITH CUBIC
SYMMETRY

We consider a three-dimensional paraelectric system
with cubic symmetry group Oy, where the dipole moment
corresponds to the three-fold degenerate irreducible rep-
resentation tq,. There are a number of cubic quantum
paraelectrics including KTaOg, and we note that STO
has a weakly distorted tetragonal structure. We assume
that the only relevant phonon modes are two sets of ¢,
optical phonon modes, P; and Q; (i = x,y,z), where
the P and @ are soft polar and higher energy modes re-
spectively. Consideration of two sets of modes is both
motivated by experiment [11], and, as shown below, is
necessary to provide a finite lifetime to the transient fer-
roelectric state after the pump is turned off, consistent
with observation [10]. The general classical action for
Pi(z,t) and Q;(z,t) has the form

S =54+ 81+Sc+ Spg + SE. (5)
Here S5 describes the harmonic terms in the action
1
s:= [ 231000 - Gver-wet ©

+ (8tpl)2 — cf,(VPZ)2 - OJ]23PZ-2] s

where wg > wp are the frequencies of the two op-
tical modes, and ¢, and ¢, are their sound velocities
respectively. We will also use the shorthand notation
fw, . = [ d3x [ dt hereafter. Sy represents the anharmonic
interactions of the modes, taken to be local:

sie- |
x,t

(D QN v, ) Q! (7)

+up(d P2 +v, Yy P,
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where we require v, gy > —Up(q) if Uy > 0 and vyq) >
—3up(g) if upg) < 0 so that the energy is bounded from
below.

The term S¢ describes the Coulomb interaction be-
tween the charge fluctuations induced by the longitudinal
fluctuations of the P and @ modes, which in reciprocal
space is given by

ST

(8)
p(k) =i ZpkiPi(k) + Zqk:Qi(k)

where Zg(p) is proportional to the effective charge of the

Q(P) mode, and we denote [, , = f%dt. This term
is responsible for the splitting between the longitudinal
and transverse optical modes (LO-TO splitting).

Spg, the third term in Eq. (5), describes the nonlinear
interaction between the P and ) modes. Only coupling
between even powers of P and @ leads to qualitatively
new effects; by contrast, cubic-linear or linear-linear cou-
plings can be shown to simply renormalize the effects of
linear coupling to the electric field (see Appendix A for
more discussions). In particular, these terms will lead
to contributions o< Q(t), Q3(¢), P?(t)Q(t) in the equation
of motion for the P mode. Since ) mode is the one
being driven by light, these terms will oscillate at the
driving frequency (and its multiples) with a zero aver-
age. As we show below, such terms are not important
for the determination of the onset of the pump-induced
ferroelectricity and therefore can be neglected (see also
discussion in Sec. IITC). Therefore, we restrict ourselves
to couplings with even powers of P and (), consistent
with cubic symmetry:

o= |
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describes the interaction of a high frequency external
driving field F with the P and @ modes. Importantly,



one observes that the light only couples to oscillations of
Q or P with antiparallel wavevectors, i.e. E(K) couples
to Q(—k) and P( k), and does not couple to oscillations
orthogonal to E. Since electromagnetic waves are trans-
verse (E - k = 0), the external field couples to transverse
modes so that S¢ (8) vanishes for the transverse optical
modes relevant for our present study due to its longitu-
dinal origin (p(k)  k - E).

IIT. CLASSICAL DYNAMICS

In this Section we explore the equations of motion of
the P and the @) modes that result from the classical ac-
tion with cubic symmetry just presented in Section II. We
discuss the physically reasonable assumptions we make
so that these equations can be mapped onto that of a
particle moving in an effective potential V.g. The insta-
bilities of Vg are then studied as a function of light polar-
ization (IITA). Intensity profiles associated with second
harmonic generation are next presented as experimental
signatures of predicted polar phases often not accessible
in equilibrium (IT1IB).

Finally (III C) we go beyond the effective potential ap-
proximation and analyze a minimalist model of two cou-
pled scalar oscillators. The resulting equation of motion
is that of a generalized Duffing oscillator and thus is ex-
pected to have rich dynamics [53-55]. Indeed at large flu-
ences, we find parameter regimes where there are multi-
ple steady state solutions and even chaotic behavior. We
also find persistance of the polar phase after the drive has
ceased, in qualitative agreement with experiment [10, 11].

A. Effective Potential Approximation:
Polarization-Controlled Ferroelectric Order

Here we assume the system is homogeneous. Since
the typical wavelength of THz/IR light (10' — 10%um)
is much larger than the relevant microscopic scales, we
restrict our attention to the uniform response of the P
and the ) modes. The equations of motion (EOMs) of
the @ modes and P modes are then given by

~ oVy(Qi, P;) | OVpq(Qi, P;)
) 20.
Qirrealit 7o, 9Q;
Ve (Qi, Pi) o
F G AuFi= 0, (10)
Bt P+ oVy(Qi, P;) | 0Vpq(Qi, P;)

OP; oP;
L e (Qi, )

op ~ ZBi=0, (1)

with potentials

Vi = (3 Q0 +vg Q1 +up (3P 0y Y P,

i

(12)
Veq =~ 2 |PPIQP-2(P- Q) ”3ZP2 (13)
lekj 2 Z J
Vo =3 202, =5 PPy + 2n 2 =50 QiQ;
2
dnZ,7, 0 2 5 QP } (14)

where we implicitly take the long-wavelength limit k—0
and assume a simple harmonic drive E;(t) = Ey ; cos {2t.
Several approximations are needed to simplify (10) and
(11). First, we assume that the high frequency @ modes
are not influenced by any feedback from the low fre-
quency P modes (wg > wp), so that Eq. (10) becomes

Q;+ wéQz + 47'1'23 ;23 Q;+ 4uq|Q| Q; + 4qu3 Z4E;,

(15)
where we have used a summation convention over the
repeated subscripts j. Assuming the drive to be weak
enough to ignore the cubic terms in Eq. (15), we find
that the high-frequency transverse modes are then di-

rectly proportional to the driving field,

Qi(t) = xqFEo,: cos Qt, (16)
where the susceptibility
Zq
Xq = w2 — Q2 (17)

diverges as €} — wq, reflecting the resonant response of
the @ mode to the driving field. Note that the incoming
laser beam contains purely transverse fields, so that lon-
gitudinal Q modes are not excited (see discussion after
Eq. (9)). This linear approximation reduces Eq. (11) to
a decoupled nonlinear differential equation for P only.

Next, we assume the solution is rapidly oscillating
with frequency ~  around a time-averaged value P,
where (...) denotes the time-average over a time interval
7> 1/Q. The equations for P; are then obtained by
time-averaging Eq. (11) with respect to @Qs. The result-
ing equations are identical to a particle moving in the
effective potential:

2 ik
Vir =Y <°"2Pa +orz2h ) PP (18)
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TABLE I. Non-equilibrium ferroelectric phase evolution under different conditions for light circularly polarized in the z — y
plane. The symbol {[uvw]}, denotes the Z,, symmetry breaking phase with polarization along uZ + v + w2 or the other n — 1
equivalent directions related by C4 rotations about the z axis or reflection in the zy plane (z — —z).

J1 >0 1 <0
Y1+y2+7 >0 Y1+ +793 <0 Y1+J2+73 >0 Y14+2+7v3 <0

- [000] — {[011]}4¢ B
vp >0 72179 <0 [000] — {[011}}4 — {[abb]}Sb [000] [—(10‘({)%0;;]{}[01—1} }{bTabb]} b [0001 - {[100]}20

2 + 43 > 0] [000] — {[100]}2 — {abb]}s 4 8 d [000]

%2 TR <0 000] = {[0T0]}4 [000] — {[100]}2 — {[abb]}s
v <0 5,50 000] — {[100]}2 [000] = {[010]}4
atf 2u2pufvp c (’_Yl+Zf+’_}’3’+oo>. b1f 27::13% c (_Oo’ %+3?H3>‘ It up;;vp ¢ (MEtBth o) dif up;;vp € (1tatn o).

TABLE II. Non-equilibrium ferroelectric phase evolution under different conditions when light is linearly polarized in z-direction.
The notation is same as that in Table I except that different Z,, symmetry breaking phases are related by C4 rotation around

x axis and reflection with respect to yz plane (z — —x).

where we have employed a summation convention in
the final expression. Effective potentials of this sort lie
at the heart of light-matter manipulations, and Vg is
in essence, a simple extrapolation of the laser-tweezer
concept to a many-body phonon potential. We note
that using (16) we can rewrite the resonant response of
Qo = XqF« allowing us to rewrite the effective potential

| 1 i) B
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FIG. 2. Schematics of two illustrative examples for the non-
thermal pathways considered: multiple polar phase transi-
tions as a function of electric field amplitude in cubic paraelec-
tric systems. Top: the light is circularly polarized in the x —y
plane with v, > 0,41 > 0, 72 +743 < 0 and 271 + 2 +73 > 0;
bottom: the light is linearly polarized along the x-axis with
vp >0, >0,9 4+ %3 >0and 1 + 2 + 3 > 0.

in terms of the driving field

2 Kk
Vg = Z (WQP(SZJ + 27TZ§ k2j

i.j
+ U‘P(Z P)? + Up pr
-2

Ntz Yo V33
> [2E;P3 + = E;E;P,Ps + 2E§Pf} (19)
3

> PP

2

where the coefficients 7; = (x4)%vi (i = 1,2,3) are the
resonant response coefficients to the external field. We
note that in steady state the time-average P; is expected
to lie at the local minimum of Vg.

We now analyze the instabilities resulting from Vg in
the presence of a circularly or linearly polarized electro-
magnetic wave propagating along the z axis, exciting the
transverse modes (), and @,. We assume that the LO-
TO splitting ~ Zg is large and only consider the long-
wavelength soft transverse phonon modes, for instance
e.g. P,,(0,0,k.) and P,(k;,0,0). The excitation of @
modes generates an anisotropic shift in the effective fre-
quency of the soft transverse P phonons. They are de-
fined by the eigenvalues of second derivative matrix of
(18), given by

(@B)ea = wp — 71(E2 + E2) — (52 +73)E2,  (20)
(‘I’%)uy =wh — T E7§+E7§) — (Y2 + ?3)E7§a

Note that we have used E,FE, = 0. For circularly polar-
ized light running along the z axis E? = E2 = 3B, =



3E5 ,, and then Eq. (20) becomes
(@3 )az = (@P)yy = Wp — (291 + 72 + 73) EZ,
(@F)z2 = wp — 271 EZ. (21)

Suppose that both 47 > 0 and 29, + 92 + 43 > 0
are positive. If 45 + 43 > 0, then as the magni-
tude of drive increases, the transverse mode frequencies
(@P)zze = (0%)yy vanish first, giving rise to a sponta-
neous polarization in the x — y plane in the steady state
once Ei(y) > w2/(291+72+73). The direction of the po-
larization that develops is determined by the anisotropy
constant v,. From Eq. (18), one finds that the effective

potential Vig is minimized by P along [£110] if v, > O
and by P along [100] or [010] if v, < 0.

Let us now consider enhancing the drive fluence be-
yond the critical one. Note that equation (21) no longer
determines the phonon frequencies, and the stability of
the system is determined by the Hessian matrix at the
new energy minimum with nonzero P. Let us focus on
the case v, > 0. If the drive Ei(y) is increased beyond
the first instability threshold, the frequency for the trans-
verse P, mode around the new minimum will soften at
a second critical fluence, if the parameters obey certain
constraints (see Table I). This gives rise to a second phase
transition. For light with linear polarization along the x-
axis, the effective frequency Eq. (20) can be similarly
determined by setting E2 = 0.

Table T and Table II summarize various possible fer-
roelectric orderings that are possible in the effective po-
tential approximation with circular (Table I ) and linear
(Table II) light polarizations. There are multiple con-
tinuous phase transitions when E?2 (proportional to the
intensity of light), varies. Importantly, in equilibrium
only [111]g (for vp > 0) or [100]¢ (for vp < 0, sixfold
degenerate due to cubic symmetry) phases can be real-
ized by tuning w?%. Therefore, our analysis shows that
an external drive can induce ferroelectric phases that are
inaccessible in equilibrium. In Figure 2 we show illustra-
tive examples of two-stage symmetry-breaking driven by
circularly and linearly polarized light that do not occur
in thermal polar pathways.

B. Second Harmonic Generation Signatures

Experimentally, non-equilibrium ferroelectricity is de-
tected via second harmonic generation (SHG) [10, 11].
Due to the nonlinearity, a monochromatic electric field
with frequency w induces dipole moments oscillating at
a doubled frequency 2w, described by the second-order
nonlinear optical susceptibility tensor x [56]

Pi(2w) = XijrEj(w) Ep(w). (22)

The dipole moments then act as a source and generate a
second harmonic of frequency 2w and intensity I;(2w) o
|Pz (2w)|2.

For centrosymmetric systems, the absence of inversion
symmetry breaking causes all elements of x vanish, so
there is no SHG. For noncentrosymmetric systems, the
residual symmetry typically reduces the eighteen inde-
pendent tensor elements to only a few, constraining the
relation of intensities along different directions. For ex-
ample, consider the {[110]}4 phase listed in Table I, de-
scribed by the effective potential Eq. (18) and Eq. (21).
The polarized incident light breaks the symmetry be-
tween x, y and z directions, so the ferroelectric phase with
P= (Py, £P,0) only has Cy, symmetry along the 7 =
[1,+1, 0] axis. For convenience, we denote the symmetry
axis 7 as 2z’ and the other two perpendicular directions as
2" and v/, referred as the crystal frame. For Cy, symme-
try, there are only five non-zero independent tensor ele-
ments, that is Xj.o = Xpazs Xyyz = Xyzys Xeaas Xeyys Xezz
in the crystal frame. Suppose that the material inter-
acts with a probe pulse with linear polarization along
0' = cosfz + sinfi’ direction, using Eq. (22) one ob-
tains

P, = B*(X.pa $in* 0 + X cos” 0), (23)
P; = E2X/mzr SiIl 20’
Pl =0

in the crystal frame. Consider {[aac|}s in Table I as
another example. It has Cj; symmetry and the mirror
plane is perpendicular to 3. Besides the five nonzero
elements in Csy,, there are other five non-vanishing ele-
ments: X;zwxfpywxfmz, X;ﬂy = X:Igygrﬂ Xeze = Xego- Thus
for probe pulse with polarization along ¢', one has

Pl = E%(x,,sin?0 + x\,. cos? 0 + x,.,sin26), (24)
P} = E*(Xlpy0 8I0° 0 + X, c08% 0 + X, 510 20),
r_
Py =0.
Thus one can observe a change of profile P;(6) when there
is non-equilibrium phase transition. In Fig. 3, we show

the typical profile of P;(#) for some of the high-symmetry
phases, which is experimentally measurable [11].

C. A Minimalist Coupled Oscillator Model

We now go beyond the effective potential approxima-
tion to study the dynamics of anharmonically coupled os-
cillators. For simplicity, we consider a minimalist model
with two scalar harmonic oscillators P and Q). The real-
time action is given by

1 32 1 2 2 52 1 2 2
1
—JaPt+ %P2Q2 + Z,QE + Z,PE| ,

where o > 0 and we assume wg < wp ~ . To obtain
this model, we have restricted ourselves to the uniform
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FIG. 3. Typical angular dependence of intensity I,(6) (blue) and I,(6) (red) of second harmonic light in laboratory frame for
some of the non-equilibrium ferroelectric phases with high symmetry. The linearly-polarized probe pulse propagates along z
direction and the angle between light polarization and z axis is 6. For phases with Cs, symmetry, we choose the nonlinear
susceptibility in the crystal frame to be X.,, = 1, X%.. = 1.5 and x%,, = 0.4. Note that we have rescaled some of the curves

to make their magnitudes comparable.

states and neglected insignificant terms to our interests,
such as the anharmonic interactions of ) modes. We
also neglected linear-linear and linear-cubic couplings be-
tween P and ) modes. These couplings lead to terms in
the equation of motion oscillating with frequency 2 and
its multiples with zero average, therefore we suggest that
their effects should be qualitatively similar to the effect
of direct coupling Z, to the oscillating electric field (see
Appendix A for more discussions and numerical justifica-
tion). In particular, the effect of the linear P—(@) coupling
can be absorbed into the renormalization of the coupling
of P mode to light Z,. We leave the detailed study of
possible additional effects of cubic-linear couplings (such
as higher harmonic driving effects) to future work. Note
that we are working in the regime where the @) mode is
only driven quasi-resonantly where the amplitude of @
mode is not too large and the nonlinearity of () mode,
whose effect has been studied in Ref. [22], does not play
an important role. This simplified model could describe
the non-equilibrium PE-FE transition driven by the ex-
ternal electric field, given that the unstable soft phonon
mode is non-degenerate near the phase transition, which
is true for Z5 symmetry breaking transitions listed in Ta-
ble I and Table II.

The classical equations of motion (EOMs) resulting
from Eq. (25) are

Q+whQ + B1Q — yP*Q = Z,E(t),
P+ WP+ BoP —yQ*P + aP? = Z,E(t),

(26)
(27)

where we have added extra phenomenological damping
terms 1@ and BoP. Since the P mode is driven off-
resonantly by the E field, we expect the magnitude of
P to be small so that 7P? < w%, and we may ignore
the nonlinear term in Eq. (26). Neglecting damping, we
obtain the steady state solution

Q(t) = xqEo cos(2t), (28)

where

Xq = Zq/(WCQQ - 92)

is the resonant Q-susceptibility introduced in (17) and
Eq. (27) becomes

(29)

P+ (wp +m(t)) P+ aP® = Z,E(), (30)
where m(t) = —yQ?(t) is the time-dependent mass aris-
ing from the P2Q? interaction. For convenience, we write
the above equation as

P+ (w?a - v@) P+aP?=Z,Et) + f(t), (31)
where @ = %(XqEO)2 is the time-average of the rapidly
oscillating @ mode and f(t) = $yx2(Eo)? cos(201)P.
When w? — vQ? > 0, the eigenfrequency of the P os-
cillator remains positive so one expects that P mode os-
cillates around the global minimum P = 0. However
when w% — vQ? < 0, the mass of the P mode becomes
negative and the system becomes ferroelectric in the ab-

sence of time-dependent terms, with finite polarization
Py = £y/w}3/2a as shown in Fig. 4(a). Here

(wp)? = 2(vQ? —wp) = 2(FE? — wh),

is the eigenfrequency for oscillations in the ferro-electric
state and ¥ = 7)(3 is the isotropic version of the resonant
response coefficients introduced in (19). In the presence
of E(t) and f(t), P periodically oscillates around P, in
the steady state, as seen in Figs. 4(b) and 4(e). We may
expand the potential around Py, approximate P in f(t)
by Py in Eq. (31) to obtain the steady state solution

(32)

Z,Eq

w/Z + 20)2
P cos(Q £ £
e cos(Qt) + 5

o= 2wf —467)

Py cos(29),

(33)
where 0P(t) = P — Py. This approximation works well
when the maximum oscillation amplitude §P. is much
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FIG. 4. (a): Time-averaged polarization P versus electric field strength Ey. The solid lines are the numerical solutions of Eq.
(25) for different Z,, while the dashed line is the analytic solution Py = #+/w/?/2a when time-dependent terms is absent. (b)
and (e): Polarization versus time in the steady state when Ey = 4, Z, = 0.3, obtained by numerical method; the blue line is the
regular solution approximately captured by Eq. (33) while the black lines correspond to the solutions with frequency fractional
of Q. (c) and (f): Possible values of P versus Eo when Z, = 0.3; the result is obtained with 30 random initial conditions for
each fixed Fp, and the color of grids indicates the number of times the system reaches P in its steady state. (d) The Poincaré
section when Ey = 5.1, Z, = 0.3, suggesting the coexistence of chaotic behavior (blue) and periodic solution (red), i.e. KAM
structure [57]. All the steady state solution is obtained by numerically solving Eqs. (26) and (27). Common parameter values
for all plots: wp =0.1,wg = 2,0 =2.1,v = 0.01, Z;, = 1, For (a)-(c), we choose o = 0.1, 81 = Bo = 0.002; for (d)-(e) we choose
Ot:L 51:60:0.1.

smaller than the time-averaged polarization P ~ P, Z, # 0, we can neglect the second term in Eq. (34) for
dP./|Po| < 1. The term §f(t) o cos(22)0P that we  sufficiently low wph. The critical fields E, can then be
have neglected reduces |P|, which can be seen by substi-  estimated by solving

tuting Eq. (33) into §f(t) and averaging over time. The

discrepancies between the exact numerical solutions and Z,E. wg

the approximate solution Eq. (33) displayed in Fig. 4(a) 0P, = m =\ 24 = |Pyl. (35)

become substantial once 6 P/|Py| ~ O(1).

In order for the system to exhibit a macroscopic po-
larization, the oscillations in the polarization must not Using (32) to express was = 25(E% - E%)), where E%) =
exceed the width of the potential well, i.e the magnitude w% /7, we can cast this equation in the dimensionless form
of oscillation d P, (33) must be smaller than |Py], or

E2
ZPEO + 2+ 2wp wg wg (34) (EQZ) r=(z—1(z—(r*+1))>2 (36)
Q2 — 492 2V 20 SV, <0

. . . 2
Note that as t'he two contributions in Eq. (33) are phase  where z — (E.JE0)? (1 <z <r*+1), B2 = 2%0;
coherent and in phase, the total magnitude is simply the ) 02 o It et
sum of its separate parts. For Z, = 0 and wp,wph < and r° = 27 In the limit of small Z,, this gives the
Q, we observe that the inequality is always fulfilled, i.e. limiting values x = 1 corresponding to the lower critical
the system becomes ferroelectric for infinitesimal w/p. If field limz, 0 Ee1 = Eep and z = 1 + r2, corresponding
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FIG. 5. Field dependence of the steady-state polarization | Pp|
and the amplitude of rapid oscillations §P. (see (35)). For
0P. > | Py|, the rapid oscillations can no longer be neglected,
having the effect of reducing the observable steady-state po-
larization to zero.

to the higher critical field

limo ECQ = EcO

1/02
Jim 143 (w) (37)

P

Figure 5 shows the dependence of |Py| and JP. on the
electric field strength Ey. Note that 0P, first grows lin-
early with Fy, and then increases superlinearly as the
denominator Q2 — w3 decreases due to the hardening of
phonon frequency wp. By contrast, |Py| increases lin-

early at large Ey. Therefore, for Z, < Zqﬁ,/%,
Q

Eq. (35) has two solutions as shown in Fig. 5, which cor-
respond to the estimated lower and higher critical fields.
The ferroelectric phase with nonzero steady-state polar-
ization therefore exists only between these two field val-
ues.

For w;, < (), the system first becomes ferroelectric
when wp =~ \/ﬁZpEo /92, resulting in shifted critical
values E.1, consistent with the numerical results in Fig.
4(a). For sufficiently large Ey = E., the P oscilla-
tor hops between the two minima as 0P, 2 |FPpl, lead-
ing to a reentrant paraelectric phase. Re-entrant para-
electricity has been observed in previous numerical sim-
ulations [20, 21]. Indeed, as seen from Figs. 4(c) and
4(f), the regular solutions described by Eq. (33) finally
disappear at sufficiently large Ey.

Remarkably, at intermediate Ey we also observe other
solutions with negligible P, coexisting with the regular
solutions. From Figs. 4(b). and 4(e), one can see that
these multiple solutions may have frequency fractional
of 2. We also find chaotic behavior in certain parame-
ter range. Particularly, choosing different initial condi-
tions, we find two different orbits near the onset of chaos

(see Fig. 4(d)). This suggests the coexistence of chaotic
behavior with the periodic solution, known as the Kol-
mogorov—Arnold-Moser (KAM) structure [57]. Indeed
we note that Eq. (31) is the equation of motion of a
Duffing oscillator, generalized due to the additional f(t)
term, that is known to exhibit period-doubling bifurca-
tion and chaotic behavior in certain parameter regimes

[53-55].

It is useful to have an estimate for the critical elec-
tric field strength when finite polarization appears and
vanishes. We assume wé = 1136.1meV-A~2.amu~?,
w? = 1.39meV-A~2.amu~!, a = 206.9meV-A~*.amu~?,
v =11.6meV-A~*.amu~? and Ly R Zg = 1.15e-amu~ /2,
which are consistent with the parameters for strained
KTaO3 [21]. The double well forms when |Q.| ~
0.346A - amu'/?, which corresponds to the electric field
E. ~ 2.7MV/cm if one neglects dissipation and takes
0? = 1200meV-A~2.amu~'. Enforcing condition Eq.
(34) one obtains a rough estimate of the lower criti-
cal electric field E. ~ 2.9MV/cm and the higher crit-
ical electric field E.; =~ 45.6MV/cm (which compares
with the more approximate estimate (37), which gives
E.5 ~ 60MV/cm). Note that E.» corresponds to a large
amplitude oscillation |Q| ~ 5.84 - amu'/?, suggesting the
necessity to include nonlinearity of the @ mode. For ex-
ample, if quartic terms of () mode are included, such large
oscillation amplitudes are suppressed and it may be pos-
sible to observe the vanishing of polarization at a higher
critical field E.o. We note that our predicted electric
field strengths are approachable in experiments where
light pulses with large peak fields (estimated around 18
MV /cm [11]) are used.

In experiments, the driving is not continuous but is
rather performed with finite pulses [10, 11] and the non-
equilibrium polarization persists after the pump has been
turned off. In our model, after the external field is turned
off, the excited P and ) mode relax due to dissipation
resulting in the decay of polarization. As shown in Fig.
6, after the electric field is off, the amplitude of the P
mode decays but remains finite, until it eventually os-
cillates around its equilibrium position. This can be un-
derstood by noticing that the effective potential felt by P
mode gradually relaxes to its equilibrium form due to the
damped motion of Q. The P mode oscillates around the
instantaneous minimum of the effective potential, which
becomes zero once (Q? becomes smaller then the critical
value for the steady-state driven ferroelectricity. There-
fore, the system keeps its ‘memory’ of the pump-induced
order for times of order of the @ mode lifetime. This qual-
itatively describes the observed persistence of the polar-
ization after the pump is removed [10, 11], though per-
sistance time-scales have been reported that are longer
than what is accessible in our approach [11].
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FIG. 6. Polarization versus time after the electric field is
turned off at ¢ = 0. We choose Z, = 0 and Ey = 2 when the
electric field is on, and set 81 = o = 0.002 all the time. The
rest of parameters are the same as that in Fig. 4.

IV. QUANTUM EFFECTS IN THE PHASE
TRANSITION

We now move to a consideration of quantum effects in
light-driven ferroelectricity. Previous approaches [33-35]
focused on quenches close to a QCP.

Here we develop a formalism appropriate to our situa-
tion where quantum fluctuations coexist with significant
classical ones. In IV A we demonstrate how the classi-
cal equations of motion, Eq. (30), arise from a quantum
Keldysh action for the case of a single nonlinear oscil-
lator and study the quantum corrections in IV C, where
generalizations to include the momentum dispersion of
phonons are discussed. The shift of the critical point due
to quantum mass corrections is determined as a function
of pumping rate, and this should be accessible in experi-
ment.

We start with the reduced model for a soft phonon
mode P(¢) described in Eq. 30, with effective Lagrangian

[P = % (W4 m(t))% - O PEG). (39)

The time-dependent m(t) describes the effect of driving
on the P modes: we recall that the drive excites the fast
(@@ modes which, within a classical description, modifies
the mass of the slow P mode via biquadratic interactions.
The P mode is also linearly coupled to the (classical)
electric field, E(t); for the purpose of discussion, we have
set the effective charge in (30) to one, Z, = 1.

We now quantize this description, describing how we
can formulate a path-integral diagramatic approach. The
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FIG. 7. (a) shows graphical representation of the Green’s

functions in Keldysh field theory consisting of two kinds of
fields, namely the classical field P (t) (solid line) and the
quantum fields P, (¢t) (dashed line). Two independent Green’s
functions, namely the retarded D(t,t') and the Keldysh
DX (t,t') Green’s functions, are constructed out of the classi-
cal and the quantum fields via Eq.47. (b) The non-linearity
of the P oscillator mode is shown diagrammatically by the
quartic interaction vertices with the coupling strength a. The
interaction vertices are odd in the quantum fields required by
the causality structure of the two-contour field theory.

quantum Hamiltonian is

+ (Wh+m(t) 5 + %fﬂ —PE(t)  (39)

AT
=73
where 7 is the canonical momentum, satisfying []5, 7l =
ih. We now adopt a Schwinger-Keldysh approach con-
sidering a time-evolution from a state of thermal equilib-
rium in the distant past. The generating function Zx[F]
is written as a time-ordered exponential of the Hamilto-
nian over the Keldysh contour in time, {C : ¢ € —c0 —
00 — —oo} running from the past out to the future and
back,

Zk[E] = Tr [polc] (40)

where pg = e=BHo is the initial thermal density matrix
(we will take T' = 0 in our final results), while
Uc = U—so.00Uso,—00 = Toe™ # Je dH® - (47)

where T denotes path-ordering along the contour C.
Zk[FE] is recast as a path integral,

Zx[E] = /C D[P]eiSs/h. (42)

The action Sk divides into contributions from the out-
ward and return paths,

SK:/cdtL‘[P] :/OO dt[E[P+] L[P_]], (43)

— 00



where Py (t) and P_(t) are the integration variables on
the outward and return paths, respectively [58]. Un-
der the physical Heisenberg equations of motion, there
is strictly one quantum operator P(t) and source term
E(t) at each point in time, but the Keldysh path in-
tegral explores the paths on the upper and lower con-
tours independently, and a complete generating function
must consider independent sources E1 (t) on the outward
and return contours, setting F1 (t) = E(t) to recover the
physical expectation values.

Variations of the generating function Zx (FE) with re-
spect to the source field £ generate correlation functions
of the quantum operators P(t), path-ordered along the
Keldysh contour[59], such that

~ i — P (44)

For instance,

(—ih)?  8°Z

D ’LSK/h
Z  0E(t2)0E(t) / (t2)e
TcP(t1)P( 2)) (45)
We adopt a classical-quantum basis
Py(t) = (Py + P_)/2,
Pyt) = (Py — P_), (46)

where the classical and quantum variables, P, and P,
respectively, are analagous to the the center of mass, and
relative co-ordinates of two body dynamics. Note that
our notation differs from [58, 60] by a factor of two in P,
which simplifies some of the intermediate calculations,

J
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but without affecting the final results. The connectiv-
ity of the forward and backward paths causes the joint
Green’s function (P,(t)P,(t')) = 0 to vanish, leaving two
independent Green’s functions

DR(t,t') = DAt t) = —i(Pa(t)Py(t)) ,
DR (t,t') = —i(Pu(t)Pu(t)). (47)

where D® and D4 are the retarded and advanced re-
sponse functions of the oscillator mode, respectively,
while D¥ is the Keldysh Green’s function, which con-
tains information about the temporal correlations and
occupancy of the mode. The corresponding Feynman di-
agrams for these Green’s functions are shown in Fig.7
where the classical and quantum fields are represented
by solid and dashed lines, respectively.

A. Saddle-point approach

In order to treat the Keldysh path-integral using
saddle-point methods. we are required to vary the for-
ward and backwards time components of the Keldysh
contour independently. In the classical limit A — 0, the
action on outward and return paths are extremized by
the same classical path

lim (P (1)) = P(1) (48)
—

so that the outward and return path actions are equal
and the Keldysh action on the classical contour is zero,
Sk[P] = (S[P4] — S[P,mpizp = 0. This means that a
variational approach must consider paths where P, # 0,
for which the Keldysh action is finite[60].

The condition that the Keldysh action is stationary with respect to independent variations of P on the upper and

lower contour yields

_0Sk _
SP(t)

(07 + wp +m(t)] P(t) + aP?(t)

—E(t) =0, (49)

where P(t) lies on either the upper or lower part of the Keldysh contour. This equation of motion defines the classical

trajectory P(t) =

(Pe(t)) r—o which is the saddle point of the Keldysh action. Since the path integral Zx is invariant

under a time-dependent shift of variables, P — P + 6 P(t), which leaves the measure unchanged D[P] = D[P + 0P},
0= /D [P 4 §P)eiSxPHoPI/R _ /D |eiSxIPI/h — /D ’SK[PW/ ar (195K 5P(t) (50)
hoP(t) ’
the equation of motion(49) is exact when averaged over quantum trajectories,
(SSK 68[(
D[P]e'SIFI/h =0 51
(ot = [ pimesirnm 32t <o (51)

We should not be surprised, for (49) is equivalent to eliminating the momentum 7 from the Heisenberg equations of

motion, (P =
Keldysh contours, we obtain

—(i/R)[H,P) =7 = P =7 = (i/h)[H,n] = —6H/8P). If we take the average of the upper and lower

(@ + b+ (o) (Pato) + o 3P+ P2)) = B0, (52)
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[ Perturbative expansion of the average classical oscillator field )

Q.

— - + 3

(Pe®)s,, = —x +
(Pcl(t)>82

+ O(a?) diagrams

FIG. 8. Diagrammatic expansion for the expectation of the classical component of the oscillator field: obtained by expanding
the quartic interaction term in the effective action Seq in powers of the coupling strength «. The first term in the R.H.S. (shown
by a solid line ending at a cross) is the expectation value for the non-interacting oscillator given in Eq.63. Among the first
order diagrams, the shaded diagram contains maximum influence from the external electric field at this order of perturbation
series while the un-shaded diagram contains loops of classical fields independent of E(t). The former kind of diagrams form
the “tree series” (see Fig.9) leading to classical EOM while the latter kind incorporates effects of quantum fluctuations in the
dynamics that can not be captured within the classical theory.

where we assume a classical source field E+(t) = E(t). We can expand (P? + P?) = 2P3 4 (3/2)P4P? and by
rewriting the point-split expectation value (P P7) — (Te Pay(t1) Py(t2) P,y(t3)) = 0 in terms of time-ordered Heisenberg
operators, we find that it vanishes. At the Gaussian level of approximation, this can be understood because (Pq2 P) =

(Py)(PyPu) + (P})(Peu), which vanishes because the first and second order moments of P, vanish, (P;) = (P?) = 0,

but in Appendix C we show that this is true to all orders. It follows that

(2 + Wb + m(1)) (Pa(t)) + a(Pua(t)®) = B(2). (53)

We calculate the leading quantum fluctuations about
the classical trajectory (6P2) ~ O(h), determined from
the leading quadratic expansion of the action about the
classical trajectory,

Sa = /C dtt [51‘32 — (w% +mi(t) + 3a7>2(t)>5p2]

2
(54)
where dP(t) = P(t) — P(t) is the deviation from the
classical path. The cubic term in the equation of motion
in Eq.49 now acquires an additional component from the
Wick contractions between the fluctuations,

(Pa()sa = P(t)° + 3(6P(t) (55)
YsaP(t) Thisintroducesasel f -
energycorrectiontotheoscillatormassm(t) —

m(t) + X(t), (56)where
Y(t) = 3a(6P3(t))s. = 3iaDg(t,t) (57)

is written in terms of the Keldysh Green’s function
Dk (t,t') = —i(dP,(t)0Ps(t'))s.. The self-energy cor-
rection to the mass modifies the equation of motion,

Pt) + (wh +m(t) + 2(t)) P(t) + aP(t)® = E(t). (58)

Note that while the fluctuations are Gaussian, the clas-
sical equations of motion are nonlinear in a. One of the
key effects of this self-energy correction, is a shift in in
the paraelectric to ferroelectric critical point.

(

B. Keldysh Action

We now re-interpret these results diagrammatically.
The Keldysh action can be divided into Gaussian and
quartic components, Sg = Sy + S4. In the classical-
quantum basis,

Sy = %/m dt ( Pa(t), Py(t)) [D%1 gii } ( %l((;//)) )

—00

+ /dth(t)E(t), (59)

to
where the non-interacting inverse Green’s functions are
Dply = (i, £i0%)* — (WP +m(1),  (60)

while D;(I is a purely imaginary term which sets the ther-
mal boundary conditions. The quartic term

Sy = —%/dt [PL(t) — PL(t)]

~a / dt [P3(1)Py(t) + (1/4) P3(t)Pa(t)] . (61)

only contains terms with odd powers of FP,, as shown in
Fig.7. This is the starting point for the diagrammatic
expansions.
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( Classical EOM from the tree series )
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FIG. 9. a)Recovery of the classical limit from Keldysh field theory: the solution of the classical EOM (see Eq.31) (Pu)c(t) is
obtained from the full expectation value (P (t))s,, (t) by restricting the sum only to the “tree diagrams” shown here. These
are the diagrams which contain maximum powers of the external electric field, symbolically represented by a cross mark here,
in each order of the perturbation theory. These diagrams can be regrouped to yield the non-perturbative classical solution.

The expectation value (P, (t))s., can be expanded per-
turbatively in powers of the coupling strength « as

(Pal®)s = [ DIP) &40 P (1)
= (Pal®))s, +H{PalS2)s, — 3 (Palt) (S5, + -
(62)

where the expectation values are evaluated with respect
to the Gaussian action Sy (59). The Wick expansion of
these terms involves the contraction of pairs of P fields
into propagators and contractions of P fields with the
external field E, giving rise to a series of Feynman dia-
grams, as shown in Fig.8. The contraction of P,; with the
external field in the first term defines the linear response

(Pa(t))s, = — / i DR(t,1)E(t),  (63)

represented by a solid (classical) line ending at a cross
representing the electric field. Wick contractions of the
second term in (62) generate two sets of diagrams: a
“tree diagram”, involving three contractions of P, with
the external field, and a “Hartree diagram”, involving the
contraction of two P, fields.

Next, we organize the higher order diagrams in Fig.8
into two classes: (a) “tree diagrams” with a maximum
number of classical fields contracted with the external
electric fields E(t) and (b) Hartree diagrams (unshaded
in Fig.8) where a pair (or more) of classical fields are con-
tracted among themselves, forming a loop which does not
contain F(t). An example of the first class of diagrams
is shown by the gray shaded diagram in Fig.8. These
diagrams have maximum power of the electric field at a
given order of the perturbation series and contain only
the interaction vertices with 3 classical fields and only
1 quantum field. The second class of diagrams involve

the scattering off quantum fluctuations . These scatter-
ing processes describe the self-energy corrections to the
mass of the soft polar mode by quantum fluctuations, and
can contain retarded and Keldysh Green’s functions.

In Fig. 9a), we show that a resummation of the
tree-diagrams leads to the classical EOM, whose solu-
tion is denoted P(t) (also given in Eq. 31). To un-
derstand the resummation, we start with the first order
diagram in Fig. 9 (same as the gray shaded diagram
in Fig. 8), where each of the three classical fields of
the interaction vertex are contracted with E(t), yielding
((P.))s,)®. Higher order diagrams can be understood as
the result of adding further “tree corrections” to each
external line. The resummation of these diagrams non-
perturbative classical solution can then be re-written in
terms of Green’s functions as,

oo

P(t) = —/dtlDR(t,tl)(E(tl) —aP(t1)?). (64)

to

This classical solution is represented diagrammatically
by a solid line ending at the symbol C in Fig.9. This
identification of the tree series as “classical” diagrams is
crucial to identify and study the quantum effects near
the PE-FE transition which we discuss next.

C. Perturbative Quantum Corrections

In this section, we will study the leading quantum cor-
rection to the soft-mode mass, determining the result-
ing shift in the critical point, first for the case of single
phonon mode (single nonlinear oscillator) in subsection
IV C1, generalizing the calculation to the multi-mode
case in subsection IV C2.



1. Single phonon mode

Quantum corrections to the classical equations of mo-
tion are obtained by inserting self-energy corrections to
the retarded propagator. The leading Hartree self-energy
correction is derived from the one-loop retarded self-
energy Y (t),corresponding to the Hartree approxima-
tion, as shown in Fig. 10. Within this approximation
YE(t,t') = X(t)§(t — t') is local in time so that quantum
fluctuations manifest themselves as a time-dependent
modification of the oscillator mass (see Appendix B for
more details),

m(t) — m(t) + B(t) (65)
in Eq.4, where
Y(t) = 3a(6 Py (1)) se - (66)

is proportional to the fluctuations in P.(¢) calculated
using the Gaussian correction to the action,

Sg = /Cdt% [5152 - <w12; +m(t) + 3aP2(t)>5P2]

(67)
However, if we restrict ourselves to the ”para-electric
phase” where P(t) = (Pu(t)) = 0, then in this case,
the 3aP?%(t) term vanishes in Sg. This does not restrict
our consideration since in this section the main effect of
the driving is incorporated in m(t). The Gaussian action
then coincides with the quadratic action S¢ = S, and the
quantum corrections are the perturbative Hartree correc-
tions, i.e

Y(t) = 3 (6P (t)?)s,,

The quantum contribution to the self-energy is deter-
mined from the equal-time Keldysh propagator so that

(P(t)=0).  (68)

Y(t) = 3aiDX (t,1). (69)

FIG. 10. a) Hartree self-energy insertion to the retarded prop-
agator, describing the leading O(h) effect of quantum fluctu-
ations. b) The equation of motion now involves the renormal-
ized propagator.

Next, we calculate the equal time Keldysh Green’s
function DX (¢,t) for the the non-interacting harmonic
oscillator with a time-dependent mass w% + m(t). To do
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so, we rewrite the Keldysh Green’s functions in terms of
the Heisenberg position operators of the Harmonic oscil-
lator,

Di(t,t') = —i(Pa(t)Pu(t)) = *%<{P(t),ﬁ(t')}>- (70)

Consider a non-interacting oscillator with time-
dependent mass w?(t) = w? +m(t), where m(0) = 0 and
Hamiltonian

H= % (7%2 + w2(t)132) . (71)

Here P and # are canonical position and momentum op-
erators respectively. We now calculate Dy (t,t’) from the
expectation value of the Heisenberg operators P(t), eval-
uated in the initial state. We can relate the Heisenberg
Schrédinger operators P = P(0) and m = 7(0) by

a(t)P + b(t)7. (72)

From the equations of motion 9, P(t) = #(t) and 8,7 (t) =
—w?(t)P(t), we deduce that 92 P(t) = —w?(t)P(t), so the
coefficients a(t) and b(t) satisfy the differential equation

4wt emo)] (3) =0 @)
subject to the boundary conditions
(o) -()- Go)-()-

The Keldysh Green’s function for a system initially in
the state |n) with n phonons, can then be evaluated as

P(t) =

Dic(t,) = §<n|{ (1), P(t)} )
~ila(®)a(t")nlP?ln) + OB ) n[7n)
ilatt)alt) + wpbon)] ("2 ) (79
so that

2 2 272 n+ts

P20y = @0 + o) ("0). o)
As an example, consider a linear time-dependence in
the mass of the form m(t) = —w%(t/to) for which the
oscillator undergoes a quantum phase transition as ¢t — g
(at the bare level without self-energy corrections). We
can obtain an analytical solution from Eq.(73) and in the
extreme limits, this leads to simple form of the quantum

correction (see Appendix D for more details) given by

3o o.)p>>1/t0,

2\/wP+m(t

() =
pr( + 3t )a WP<<1/th

where the initial state of the oscillator is chosen to be the
vacuum state n = 0. In the next subsection, we will ex-
tend this analysis to the case of interacting phonons with
different momenta and study experimentally measurable
effects of the quantum fluctuations in the dynamics.



2. Interacting phonons in 3D

We now extend the discussion to the higher dimen-
sional case where the soft-phonon mode develops disper-
sion. As an illustration, consider 3D phonons with dis-
persion

wi(t) = wp? +m(t) + (ck)? (78)

with an ultraviolet momentum cutoff A of the slow mode
arising from an underlying lattice. We further assume
that the separation of the energy scales between the slow
P modes and the fast () modes is valid at all momenta,
i.e. ¢cA <« Q. This allows us to extend the effective po-
tential approach for slow phonon modes described in (30)
to the multi-mode (P modes) case, where the resonantly
driven @ modes only result in a time-dependent potential
for P modes modifying the bare mass wp? — w% +m(t).

The quantum correction can be calculated from X (t) =
JzX(wr) where [r = [ dk/(2r)? and S (wy) is the re-
tarded self-energy for the independent oscillator modes
of frequency w(t) (78),

[a2(k,t) + (w + 2k*)b*(k, 1)] (n 1)

Vwh + k2 2
(79)

+ 2
where the coefficients a(k,t) and b(k,t) are calculated
from Eq.73 replacing w? + m(t) by w?(t). Unless other-
wise mentioned the initial state of the oscillators is chosen
to be the vacuum state n = 0.

Before understanding the effects quantum fluctuations
in the dynamics, we first focus on the equilibrium quan-

tum correction X (‘/%23 + (ck)Q) at t = 0. This mod-

ifies the bare mass of the oscillators from w?(t = 0) to
@E(t = 0) given by,

Qi(t=0)= [w% + (ck)* + ﬁE ( w? + (ck)2>} :
i
(80)
Here, we note that [;% ( w? + (ck)2> is ultraviolet di-

vergent (oc A%ar/c) and leads to a cut-off dependent shift
of the zero-point energy of the oscillator. This diver-
gence can be renormalized by a redefinition of the oscil-

lator energy w} by @ = wp + [zX (‘/%23 + (ck:)2> ~

w? +3aA?/(87%¢). Wp is the experimentally measurable
energy of the phonon in equilibrium.

As time evolves, the dynamical quantum correction
modifies the energy of the slow mode as,

QR (t) = wh + (ck)® +m(t) + /E(wk(t)). (81)

k

Y(wg) = 3

To clearly differentiate between the A-dependence ap-
pearing in the equilibrium zero-point energy of the P
mode from the relevant dependence appearing in the
dynamical quantum fluctuations, we rewrite the above
equation as

Dp(t) = [@F + (ck)®] + m(t)
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FIG. 11. Shift in the critical point due to quantum fluc-

tuations: the ratio between the critical time with quantum
fluctuations and the classical critical time tg/to is plotted as a
function of the rate of pumping expressed in the dimensionless
unit wpto for three different strengths of the non-linearity (in
dimensionless unit) a/03 = 0.03,0.07,0.1. In the fast pump-
ing limit Gpty < 1, t§ grows from ¢y as t§ with increasing
to. This growth saturates in adiabatic limit wpty > 1 re-
covering the signatures of quantum criticality. = We choose
A2 /&% = 100 to set the ultraviolet cut-off A.

+/E [E(wk(t)) —Eff( w%+(ck)2>} . (82)

Here, the 1st term of Eq. 82 corresponds to the disper-
sion of the oscillator at (¢ = 0) modified by the equi-
librium quantum correction. The subsequent terms cor-
responds to the change in the oscillator energy at later
time ¢ (compared to that at ¢ = 0). These terms con-
sist of: (a) an explicit time-dependence through m(t)
induced by the external drive and (b) the change in the
quantum self-energy (non-equilibrium quantum correc-
tion) d(t) = [z[E(wk(t)) — X(wk(t = 0))]. By this rear-
rangement, we eliminate the equilibrium ultraviolet di-
vergences from the time-dependent part of the oscillator
energy (2nd line of Eq. 82). It is useful to recast Eq.
(82) in a form that does not include the unobservable
bare phonon energy wp, replacing the bare w? with the
experimentally measurable @% in §%(t) as,

O (1) = [@F + (ck)?] +m(t)
+/E [E (\/(Zzl% + (ck)? + m(t)> — (/&% + (ck)Q)] ,
(83)

which leads to corrections of higher order in «. Indeed,
replacing w% by @% leads to O(a?) change in §%(t). As
the leading order answer is O(«), this effect can be ne-
glected.



The non-equilibrium quantum correction leads us to
predict a shift in the critical fluence. To model this phe-
nomenon, we model the effect of a time-dependent pump
by m(t) = —@%t/ty corresponding to a linearly increas-
ing fluence. In the absence of quantum corrections, the
frequency would go to zero at t = tg. To evaluate the
effects of quantum fluctuations, we solve @? (t¢) = 0 from
Eq. 83 numerically to determine the shift in the critical
time. In Fig.11 we show the ratio of the shifted and bare
critical times t{/to as a function of the rate of driving in
the dimensionless unit wpty for three different values of
the quartic coupling, o = 0.03,0.07,0.1.

In the quantum quench limit, the system is driven to
the QCP so rapidly that system is unable adjust to the
QCP (1/wp > to and 1/(cA) > tp); in this case the
dynamical quantum corrections are expected to be small.
Using the analytical form given in Eq. 77 for the single
mode case and generalizing it for the multi-mode case,
we obtain an estimate of the quantum correction in the
mass (in the limit 1/cA > ¢y and wp < cA),

3
a 7 4

SRt 3 —2
() >3 {623 3ty ¢

(84)

The above contribution from the non-equilibrium quan-
tum correction is small for ¢t ~ to by 1/(cA) > to. To

J
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find out the shift in the critical time, we solve

q
% [1 - m +08(t) =0

(85)

In the quantum quench limit, the leading order deviation
of t¢ from t; is obtained from the above equation by
replacing 0X(t8) by 6% (to) to obtain,

4 A4
o g4 [C*A
LF {omaa @l ( ok )

Thus the leading order deviation of ¢§ from ¢, grows as
t(% as we increase the sweeping time .

When the system is driven to the QCP slowly, the sys-
tem has a longer time to adjust to the QCP and the ef-
fects of quantum corrections become marked (see Fig.11).
In the adiabatic regime wpty > 1, the quantum correc-
tion to the retarded self-energy takes the form,

q
o

%N

(86)

c?A?

@3 +m(t)] ﬂ ’
(87)

where we neglected the terms of O(1) as small in compar-

ison with the logarithm in the second term. As discussed

above, the first term in (87) can be absorbed in a renor-

malization of the equilibrium parameters, leading to an

increase in the mode frequency due to

X(t)~3

a o [@F+m(t)]
87T2CA ! 22 log [

a [wp
02 =35 5. |52

The resulting correction has a weak logarithmic depen-
dence on A, consistent with a system at its the upper
critical dimension, demonstrating that in the adiabatic
limit we recover the signatures of equilibrium quantum
criticality.

In the adiabatic limit, the leading order deviation of ¢
from t is obtained from Eq. 85 by replacing 6% (¢8) by

0%(tg) to obtain,
~2 272
ads log ¢ A .
1672¢3 (rS

We have computed an additional delay in the transition
to the polar phase due to leading order quantum fluctu-
ations. Since here we are considering a model where the
fluence varies linearly in time, this result corresponds to
an increase in the critical fluence. More generally quan-
tum fluctuations increase the renormalized mass, thus
requiring modified fluence profiles for the system to tran-
sition to the polar ordered state. Therefore, the depen-
dence of the critical fluence on the driving rate can be
used to identify and to characterize quantum corrections
in driven ferroelectrics.

(89)

tgzto 1+3

c?A?
log( 07 ) -
wp

0 -QFC;n(t)] log <[w%cjrA;(t)])] '

V. SUMMARY

In this work we have analyzed a model of a driven lat-
tice system close to a ferroelectric instability. We have
shown that classically, the driving can be described as
a modification of the nonlinear phonon potential lead-
ing to a phase transition beyond a critical fluence. The
structure of the ordered phase can be tuned by light
polarization. For fluence above the critical one, a sec-
ond phase transitions is possible that breaks additional
symmetries. A further increase in fluence beyond a sec-
ond critical value suppresses the ordered phase and in
some cases, leads to a chaotic behavior. Beyond classical
dynamics, we demonstrated that the classical equations
of motion arise as a approximation to the full quantum
Keldysh evolution and identified the lowest-order quan-
tum corrections. The latter effects predict a dependence
of the critical fluence on the driving rate, which may be
observable experimentally.
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FIG. 12. Time-averaged polarization P versus electric field strength Ey including non-biquadratic P-Q interactions [Egs.
(A2) and (A3)]. These results were obtained from 30 random initial conditions at each fixed Ep, and the color of grids
indicates the number of times the system reaches P in its steady state. The common parameter values for these plots were:
wp =0.1,wg =2,9=21,7v=0.01,%Z, =1,Z, =03, a =1 and B1 = Bo = 0.1. We choose (a) y13 = 31 = 0.003 and (b)
Y13 = 731 = 0.01.
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Appendix A: Effects of Non-Biquadratic P — ) Interactions

In this appendix, we illustrate the reasons why non-biquadratic P — ) interaction terms, such as PQ, PQ? and
P3Q, do not lead to qualitatively new effects and can be neglected. To start, we consider the two-oscillator model in
Sec. III C with additional action

Sodd = /dt [ PQ+ 22PQP+ BLPQ). (A1)
The classical EOM (27) then become
2 2 : 2 3713 542 V31 3 B
Q+woQ + /1@ —YP°Q — TPQ -5 PP = Z,E(t), (A2)
. . 3
P+wiP+ ByP — yQ?P + aP® — %cf - %PQQ —1Q = Z,E(t). (A3)

(

If we first neglect the backaction terms in Eq. (A2), tution, the @ term and Q® terms in Eq. (A3) can be

namely the terms involving Ps, then in this approxima- directly absorbed into a time-dependent renormalization
tion we can apply (28), namely
Q(t) = xqEo cos(2t), (A4)

where X, is defined in the main text. With this substi-



of the electric field,

E(t) = B(t)
+ E(XqEO)?’(cos 30t + 3 cos Q) + EXqEO cos(2t).
87, Z,

(A5)

The additional two terms do not lead to any qualitatively
new physics. The second term simply renormalizes the
oscillating electric field at frequency €2, while the first one
introduces oscillations at 32 that are even further off-
resonance for the P mode. In addition, in the main text
we have demonstrated that the critical Fy for the light-
induced transition scales with wp (see e.g. Eq. (21)) and
is therefore small for a system close to the phase tran-
sition. In that regime, one can also justify the neglect
of higher-order terms in Ey due to the smallness of Ej.
The P?Q term in (A3) corresponds to a time-dependent
cubic potential for P in the original action (Al). This
term averages to zero over a period 27/ and is therefore
unimportant in the paraelectric phase. In the ferroelec-
tric phase, using the method we used to derive Eq. (33),
we can replace P? by P} allowing this term to also be
absorbed into an effective electric field

B(t) = B(t)+ Xqu%pg cos(Qt).  (A6)

We do not expect the omission of the backaction terms in
Eq. (A2) to change our arguments qualitatively, because
the P2Q term merely results in a shift of the resonant fre-
quency of the (2 mode, while the other backaction terms
can be absorbed into an additional renormalization of the
electric field, using similar arguments to those presented
above.

To verify these arguments directly, Figure 12(a) and
12(b) show the numerical solutions of Eqgs. (A2) and
(A3). Comparing them to Fig. 4(f), we see that the in-
clusion of non-biquadratic terms hardly affects the onset
of ferroelectricity, although it can lead to quantitative
differences at higher fields. However, we note that the
qualitative features, such as multiple coexisting solutions
and chaotic behavior, still persist when these terms are
included.
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Appendix B: Two-Time Correlations in Quantum
Corrections

In the main text, we have perturbatively calculated
the quantum corrections to the classical EOM (Pg)c(t)
of the oscillator given in Eq. 64 by modifying the mass
of the polar mode m(t) in Eq.65. In this appendix,
we present the details of calculations leading to this re-
sult. In particular, we show that in the lowest order (the
one which we consider), two-time correlations and noise
terms do not arise from quantum corrections.

The quantum correction is obtained via the retarded
self-energy 3% which can in general is a function of

9, ¢

SR, 1) = 6(r — 1)ZR(@)

X1, 0 « DR, =0

FIG. 13. Diagrams for retarded and Keldysh self-energy
within Hartree approximation are shown. At the one-loop or-
der, the retarded self-energy is a frequency independent one-
time object ©7(¢) while the Keldysh component vanishes due
to the causality structure of the equal time Green’s functions.

two times, X (¢,¢') [44, 45]. However, if we calculate
Y E(t,#') within a Hartree appproximation, i.e. restrict-
ing ourselves to lowest order diagrams (Fig. B), the
retarded self-energy becomes local in time, (¢, t') =
SE#)§(t — ¢')[58]. The Keldysh self-energy X5 (¢,¢)
(Fig. B, right) which typically introdues noise in the dy-
namics (see section 11.3 of the Ref.60), vanishes within
a Hartree aprroximation due to causality structure of
the equal-time Green’s functions D®(¢,t) = 0. Thus,
within the Hartree approximation, we may write the non-
equilibrium Dyson equation for the interacting retarded
Green’s function as [58]

DR, (t.t') = DR(1.t') + / DF(t, 1) SR (1) DE (1, ).

(B1)
Inverting the above equation by applying D~!# from the
left and D 1P from the right we obtain,

int

DMt t) = D7t —6(t — ) BB

nt

=6(t—t)[-0] — (wp +m(t) +2F(1)] (B2

In this way, the quantum corrections in the Hartree
approximation appear as a modification in the time-
dependence of the mass of the polar mode.



Appendix C: Proof that (P}P.) = 0.

19

To prove the identity (P?P.;) = 0 we consider the point-split relation (Py(t 4 6)Py(t)Pu(t — 6)), which we rewrite

as a path-ordered expectation value of the corresponding Heisenberg operators

(Py(t +0)Py(t) Pu(t - 8)) = %(Tc(ﬁ(t +0) = P_(t 4 0))(Py (t) = P-(£)(Ps(t — 6) + P_(t = ))).

(C1)

where T¢ denotes ordering along the Keldysh contour. We now expand this into eight terms, noting that (i) operators
on the lower (-) contour occur after operators on the upper contour (+), (ii) operators on the upper contour are

time-ordered (iii) operators on the lower contour are reverse-time ordered. Thus since t + 3 > ¢ >t — 0,

(TePy(t+ )Py (Pt — ) = (P(t+ )PPt - )
(TePr(t+0)Pr(t)P_(t —0)) = (P(t—0)P(t+0)P(t))
TPy (t+ 8P ()P4 (t - 8)) = ~(P(O)P(t+ ) P(t — o)
~(ToPy(t+ 8P (1P (t - 8)) = ~(P(t — §)P() P(t + )
(TP (t+ )PPyt — 8)) = —(P(t+ O P()P(t - 5))
(TP (t+ 8Py ()P (t - 8)) = —(P(t — )Pt + 8) P(¢)
(ToP- (8 +8)P_ ()P4t —6) = (PPt +)P(t ~0)
(TeP_(t+0)P_(t)P_(t—90))y = (P(t—90)P{t)P(t+9))
We see that the first and fifth, second and sixth, third and seventh and fourth a

so that the total sums to zero.

Appendix D: Derivation of Quantum Self-energy for single mode phonon

(C2)

nd eighth terms cancel one-another,

In the main text, we calculated the quantum correction in the form of Hartree self-energy X (¢) in Eq.77 for a
single-mode phonon. Here we will derive o(t) starting from the formulation to calculate Keldysh Green’s function of

a harmonic oscilator with time-dependent frequency given in Eq.75. The Hartree self-energy,

3a

Y(t) = 3aiDX (t,t) = (a®(t) + wpb*(1))

2(4}]3

We solve the differential equations given in Eq.73 to obatin the solutions with z = wpig,

R R R
V() = w222/3 {Az‘(%/‘&)Bi { (1 _ tto) 22/3} ~ Bi(—22%) Ad { (1 - ;) 22/3}]2

where Ai and Bi are Airy functions and Ai’ and Bi’ denotes their derivatives respectively.
In the quench limit, wpty < 1, the Airy functions can be expanded in power series of z of the form,

. 1 23 z
Aifz)~ 3277 (2) (1 * 6) BETEek

1 23 231/6
oy \L T e ) T
31/61“(5) 6 F(g)
1 23 22
*omar \L T3 ) T s sarey
31/3I‘(§) 3 2 % 32/3I‘(§)

31/6 23 22
o (1 + ) ~ S 36T
(1) 3) 2% 30(2)

Collecting the coefficients of the leading powers of z we obtain Eq.77 as,

t3 2
(t) Sa <1+ w”) ,wp < 1/tg.

- 2wp 3to

(D1)

(D2)
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On the other hand, in the adiabatic limit wpty > 1, we get the same answer as the time-independent harmonic

oscillator with its mass term w% replaced by w% + m(t).
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