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Motivated by recent experiments on pump-induced polar ordering in the quantum paraelectric
SrTiO3, we study a driven phonon system close to a second order phase transition. Analyzing its
classical dynamics, we find that su�ciently strong driving leads to transitions into polar phases
whose structures, determined by the light polarization, are not all accessible in equilibrium. In
addition, for certain intensity profiles we demonstrate the possibility of two-step transitions as a
function of fluence. For even stronger field intensities, the possibility of period-doubling and chaotic
behavior is demonstrated. Finally we develop a generalized formalism that allows us to consider
quantum corrections to the classical dynamics in a systematic fashion. We predict a shift in the
critical pump fluence due to quantum fluctuations with a characteristic dependence on the fluence
increase rate that should be observable in experiment.

I. INTRODUCTION

The control and design of properties in quantum mate-
rials are outstanding goals both to address fundamental
questions and to develop applications with quantum ad-
vantages. Because the potential and the kinetic energy
scales in these materials are comparable, their quantum
phases are very sensitive to external fields [1–3]. Ad-
vances in the production of strong light pulses in mid-
infrared and terahertz ranges [4–6] have led to opportu-
nities for such light to strongly modify the low-energy
physics of materials. In particular, light-induced elec-
tronic [7, 8] and lattice [9–16] phase transitions [17–19]
have been observed.

Recently terahertz (THz) field-induced ferroelectric-
ity has been demonstrated in SrTiO3 (STO) [10, 11], in
agreement with semiclassical predictions based on non-
linear phonon coupling [20–22]. Though this material re-
mains paraelectric to the lowest temperatures [23], its po-
lar mode can be softened by chemical substitution [24, 25]
and strain [26] leading to a polar instability. However,
unlike these material modifications, the pump-induced
phase transition occurs as a function of fluence. Since
quantum criticality is observed in 18O doped STO [27–
29], there is also the intriguing possibility of driving non-
equilibrium quantum critical dynamics in this quantum
paraelectric.

For driven classical phase transitions, the creation of
topological defects with universal scaling of their density
has been predicted and observed in materials [30–32].
Universal dynamics [33–35] have emerged from theoreti-
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cal studies of dynamical quantum critical e↵ects, as have
signatures of dynamical quantum phase transitions such
as the Loschmidt echo [36–38]. However these charac-
terizations have predominantly been realized in closed
quantum systems like cold atoms where initial states can
be carefully prepared [36–38]. By definition, quantum
materials are not isolated from their environments and
their constituents, unlike those of their synthetic quan-
tum counterparts, cannot be easily addressed microscop-
ically.

The light-induced ferroelectricity experiments [10, 11,
13, 14] thus demand new ways to model strong classical
drive protocols that induce critical dynamics, both classi-
cal and quantum, and to identify macroscopic signatures
of dynamical quantum phase transitions. Theoretical
studies suggest that many Thz field-induced phenomena
may be due to nonlinear phonon interactions [20–22, 39–
46]. Recently many of the observed features in the field-
induced ferroelectricity experiments [10, 11] have been
simulated [47] with a time-dependent density functional
theory analysis where the anharmonic coupling between
the driven and the critical phonons is modelled by a
Schrödinger-Langevin approach [48]. In parallel a Mat-
subara action analysis has been developed to describe
an o↵-resonant drive-induced feroelectric transition [49],
where results have been obtained using a saddle-point
(classical) calculation.

The key idea of light-induced phase transitions is a
generalization of optical tweezers [50–52] to many-body
physics [1, 2]. In the context of optical tweezers, a
high frequency laser mode polarizes the atoms, reducing
their energy by an amount proportional to the intensity
of the light, producing an e↵ective potential Ve↵(x) =
�

1
2�0E(x)2, where �0 is the polarizability of the atom.

Similarly, in light-induced phase transitions, the intensity
of a high frequency laser modifies the e↵ective potential
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FIG. 1. a) Schematic of the energy scales in a light-induced experiment, showing the pumping frequency ⌦ that resonantly
drives the high frequency anharmonic A2u optical mode at frequency !Q and the low frequency soft polar Eu mode. Shown at
the bottom is the evolution of the soft polar mode frequency with fluence, and the e↵ect of quantum fluctuations (~ > 0) b)
Phase transitions as a function of electric field amplitude, showing the evolution of an e↵ective potential Ve↵ with increasing
fluence. The orange wavepacket around the blue classical configuration represents the e↵ect of quantum fluctuations. (~ > 0)

of a polar soft mode to be

Ve↵(P ) =
1

2
(!2

P
� �E2)P 2 +

u

2
P 4, (1)

where P and !P are the the polarization and frequency
of the soft mode respectively, u is the quartic coe�cient
and � is the coupling to the electric field intensity E2.
Once the shifted soft mode frequency

!2
P
(E) = !2

P
� �E2 (2)

vanishes, a phase transition into a broken symmetry state
with finite polarization magnitude

|P0| =

r
�!2

P
(E)

2u
(3)

occurs.
Here we consider a harmonic driving electric field

E(t) = E0 cos⌦t. Typically, the coupling � in (1) and (2)
is enhanced by resonantly driving an intermediate high
frequency optical phonon that is anharmonically coupled
to the polar mode (see Figure 1 (a)). This process mod-
ifies the e↵ective potential of the soft mode, ultimately
inducing phase transitions as a function of fluence (see
Figure 1b). More specifically, in addition to the ferro-
electric transition, at higher field intensities the polar-
ization fluctuations, �P = |P � P0|, become su�ciently

large that the system oscillates between the two poten-
tial wells (�P >> |P0|) and the system returns to being
paraelectric on average. Qualitatively this is because at
high fields P0 grows linearly with E whereas �P increases
superlinearly. The latter occurs due to a field-induced
hardening of the soft polar mode frequency, that brings
it closer to the pump frequency, enhancing the oscilla-
tion amplitude. This behavior results in a critical field
Ec2 where �P ⇡ P0 (see Figure 1b).
Since quantum criticality has been observed in a num-

ber of quantum paraelectrics at low tempertures [27–29],
it is natural to explore how the presence of quantum fluc-
tuations will modify the critical fluence Ec1 (see Figure
1b) into the polar phase. Qualitatively we expect the
renormalized mass m̃(t), the renormalized quadratic co-
e�cient in the e↵ective potential (1), to have the form

m̃(t) = !2
P
+mCl(t) +mQ(t) (4)

where the time-dependence of the classical mass cor-
rections, mCl(t) = ��{E(t)}2 (cf. (2)), results from
the harmonic drive; mQ(t) refers to the time-dependent
quantum mass corrections. Since quantum fluctuations
are expected to disorder the system, mCl(t) and mQ(t)
in (4) act in opposition leading to a shift in the criti-
cal point. Nonequlibrium quantum dynamics has been
previously studied after a quench to the quantum criti-
cal point [33–35], but here a new approach is required to
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treat dynamical quantum fluctuations when the classical
order parameter is finite.

In this paper, we present a theoretical study of light-
induced transitions in quantum paraelectrics where we
explore their classical dynamics [20–22] with controlled
quantum corrections. More specifically, classically we
consider the e↵ects of light polarization, long-range
Coulomb interactions and drive fluence for the case of a
resonantly driven phonon coupled to the soft mode (Sec.
II). For a paraelectric with cubic symmetry (Sec. III), we
demonstrate fluence-and polarization dependent transi-
tions into di↵erent ordered phases, some inaccessible in
equilibrium: for example we find two successive tran-
sitions as a function of fluence can occur in contrast to
the one-stage symmetry-breaking routinely observed. Fi-
nally, we demonstrate (Sec. IV) that the classical dynam-
ical equations [20–22] emerge naturally within a Keldysh
field theory. The quantum corrections to these equations
can be then be treated systematically in a diagrammatic
expansion. We find that the critical fluence to enter the
ferroelectric phase Ec1 (see Figure 1b) is shifted due to
quantum fluctuations, a prediction that should be acces-
sible in experiment. Here we have described light-induced
transitions as a function of field intensity; an increase in
fluence leads to a decrease of mCl(t) such that m̃(t) will
change sign as a function of time. Thus driven transitions
as a function of fluence and of time are closely connected,
and this link will be pursued particularly in our study of
quantum e↵ects.

II. THE CLASSICAL ACTION WITH CUBIC
SYMMETRY

We consider a three-dimensional paraelectric system
with cubic symmetry group Oh, where the dipole moment
corresponds to the three-fold degenerate irreducible rep-
resentation t1u. There are a number of cubic quantum
paraelectrics including KTaO3, and we note that STO
has a weakly distorted tetragonal structure. We assume
that the only relevant phonon modes are two sets of t1u
optical phonon modes, Pi and Qi (i = x, y, z), where
the P and Q are soft polar and higher energy modes re-
spectively. Consideration of two sets of modes is both
motivated by experiment [11], and, as shown below, is
necessary to provide a finite lifetime to the transient fer-
roelectric state after the pump is turned o↵, consistent
with observation [10]. The general classical action for
Pi(x, t) and Qi(x, t) has the form

S = S2 + S4 + SC + SPQ + SE . (5)

Here S2 describes the harmonic terms in the action

S2 =

Z

x,t

X

i

1

2

⇥
(@tQi)

2
� c2

q
(rQi)

2
� !2

Q
Q2

i
(6)

+ (@tPi)
2
� c2

p
(rPi)

2
� !2

P
P 2
i

⇤
,

where !Q � !P are the frequencies of the two op-
tical modes, and cp and cq are their sound velocities
respectively. We will also use the shorthand notationR
x,t

⌘
R
d3x

R
dt hereafter. S4 represents the anharmonic

interactions of the modes, taken to be local:

S4 = �

Z

x,t

"
uq(

X

i

Q2
i
)2 + vq

X

i

Q4
i

(7)

+ up(
X

i

P 2
i
)2 + vp

X

i

P 4
i

#
,

where we require vp(q) > �up(q) if up(q) > 0 and vp(q) >
�3up(q) if up(q) < 0 so that the energy is bounded from
below.
The term SC describes the Coulomb interaction be-

tween the charge fluctuations induced by the longitudinal
fluctuations of the P and Q modes, which in reciprocal
space is given by

SC = �2⇡

Z

k,t

⇢(k)⇢(�k)

k2

⇢(k) = i
X

i

ZP kiPi(k) + ZQkiQi(k)
(8)

where ZQ(P ) is proportional to the e↵ective charge of the

Q(P ) mode, and we denote
R
k,t

=
R

d
3
k

(2⇡)3 dt. This term
is responsible for the splitting between the longitudinal
and transverse optical modes (LO-TO splitting).
SPQ, the third term in Eq. (5), describes the nonlinear

interaction between the P and Q modes. Only coupling
between even powers of P and Q leads to qualitatively
new e↵ects; by contrast, cubic-linear or linear-linear cou-
plings can be shown to simply renormalize the e↵ects of
linear coupling to the electric field (see Appendix A for
more discussions). In particular, these terms will lead
to contributions / Q(t), Q3(t), P 2(t)Q(t) in the equation
of motion for the P mode. Since Q mode is the one
being driven by light, these terms will oscillate at the
driving frequency (and its multiples) with a zero aver-
age. As we show below, such terms are not important
for the determination of the onset of the pump-induced
ferroelectricity and therefore can be neglected (see also
discussion in Sec. III C). Therefore, we restrict ourselves
to couplings with even powers of P and Q, consistent
with cubic symmetry:

SPQ =

Z

x,⌧

"
�1
2
|~P |

2
| ~Q|

2 +
�2
2
(~P · ~Q)2 +

�3
2

X

i

P 2
i
Q2

i

#

Finally,

SE =

Z

x,t

Zq
~E · ~Q+ Zp

~E · ~P (9)

describes the interaction of a high frequency external
driving field E with the P and Q modes. Importantly,
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one observes that the light only couples to oscillations of
Q or P with antiparallel wavevectors, i.e. ~E(~k) couples

to ~Q(�~k) and ~P (�~k), and does not couple to oscillations
orthogonal to ~E. Since electromagnetic waves are trans-
verse ( ~E · ~k = 0), the external field couples to transverse
modes so that SC (8) vanishes for the transverse optical
modes relevant for our present study due to its longitu-
dinal origin (⇢(k) / ~k · ~E).

III. CLASSICAL DYNAMICS

In this Section we explore the equations of motion of
the P and the Q modes that result from the classical ac-
tion with cubic symmetry just presented in Section II. We
discuss the physically reasonable assumptions we make
so that these equations can be mapped onto that of a
particle moving in an e↵ective potential Ve↵. The insta-
bilities of Ve↵ are then studied as a function of light polar-
ization (IIIA). Intensity profiles associated with second
harmonic generation are next presented as experimental
signatures of predicted polar phases often not accessible
in equilibrium (III B).

Finally (III C) we go beyond the e↵ective potential ap-
proximation and analyze a minimalist model of two cou-
pled scalar oscillators. The resulting equation of motion
is that of a generalized Du�ng oscillator and thus is ex-
pected to have rich dynamics [53–55]. Indeed at large flu-
ences, we find parameter regimes where there are multi-
ple steady state solutions and even chaotic behavior. We
also find persistance of the polar phase after the drive has
ceased, in qualitative agreement with experiment [10, 11].

A. E↵ective Potential Approximation:
Polarization-Controlled Ferroelectric Order

Here we assume the system is homogeneous. Since
the typical wavelength of THz/IR light (101 � 102µm)
is much larger than the relevant microscopic scales, we
restrict our attention to the uniform response of the P
and the Q modes. The equations of motion (EOMs) of
the Q modes and P modes are then given by

Q̈i + !2
Q
Qi +

@V4(Qi, Pi)

@Qi

+
@VPQ(Qi, Pi)

@Qi

+
@VC(Qi, Pi)

@Qi

� ZqEi = 0, (10)

P̈i + !2
P
Pi +

@V4(Qi, Pi)

@Pi

+
@VPQ(Qi, Pi)

@Pi

+
@VC(Qi, Pi)

@Pi

� ZpEi = 0, (11)

with potentials

V4 = uq(
X

i

Q2
i
)2 + vq

X

i

Q4
i
+ up(

X

i

P 2
i
)2 + vp

X

i

P 4
i
,

(12)

VPQ = �
�1
2
|~P |

2
| ~Q|

2
�
�2
2
(~P · ~Q)2�

�3
2

X

i

P 2
i
Q2

i
, (13)

VC =
X

i,j


2⇡Z2

p

kikj
k2

PiPj + 2⇡Z2
q

kikj
k2

QiQj

+4⇡ZpZq

kikj
k2

QiPj

�
, (14)

where we implicitly take the long-wavelength limit ~k ! 0
and assume a simple harmonic drive Ei(t) = E0,i cos⌦t.
Several approximations are needed to simplify (10) and
(11). First, we assume that the high frequency Q modes
are not influenced by any feedback from the low fre-
quency P modes (!Q � !P ), so that Eq. (10) becomes

Q̈i +!2
Q
Qi +4⇡Z2

q

kikj
k2

Qj +4uq|
~Q|

2Qi +4vqQ
3
i
= ZqEi,

(15)
where we have used a summation convention over the
repeated subscripts j. Assuming the drive to be weak
enough to ignore the cubic terms in Eq. (15), we find
that the high-frequency transverse modes are then di-
rectly proportional to the driving field,

Qi(t) = �qE0,i cos⌦t, (16)

where the susceptibility

�q =
Zq

!2
Q
� ⌦2

. (17)

diverges as ⌦ ! !Q, reflecting the resonant response of
the Q mode to the driving field. Note that the incoming
laser beam contains purely transverse fields, so that lon-
gitudinal Q modes are not excited (see discussion after
Eq. (9)). This linear approximation reduces Eq. (11) to
a decoupled nonlinear di↵erential equation for ~P only.
Next, we assume the solution is rapidly oscillating

with frequency ⇠ ⌦ around a time-averaged value Pi,
where (...) denotes the time-average over a time interval
⌧ � 1/⌦. The equations for Pi are then obtained by
time-averaging Eq. (11) with respect to Qs. The result-
ing equations are identical to a particle moving in the
e↵ective potential:

Ve↵ =
X

i,j

✓
!2
P

2
�ij + 2⇡Z2

p

kikj
k2

◆
PiPj (18)

+ up(
X

i

P 2
i
)2 + vp

X

i

P 4
i

�

X

i,j

h�1
2
Q2

j
P 2
i
+

�2
2
QiQjPiPj +

�3
2
Q2

i
P 2
i

i

⌘
1

2
(!̃2

P
)ijPiPj + uP (

X

i

P 2
i
)2 + vP

X

i

P 4
i
,
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2�̃1 + �̃2 + �̃3 > 0 2�̃1 + �̃2 + �̃3 < 0
�̃1 > 0 �̃1 < 0 �̃1 > 0 �̃1 < 0

vp > 0
�̃2 + �̃3 > 0

[000] ! {[110]}4a
[000] ! {[110]}4 ! {[aac]}8b

[000] ! {[110]}4a
[000] ! {[110]}4 ! {[aac]}8b [000] ! {[001]}2c

[000] ! {[001]}2 ! {[aac]}8d
[000]�̃2 + �̃3 < 0 [000] ! {[001]}2 ! {[aac]}8

vp < 0
�̃2 + �̃3 > 0 [000] ! {[100]}4 [000] ! {[100]}4
�̃2 + �̃3 < 0 [000] ! {[001]}2

aIf
2up

2up+vp
2

⇣
2�̃1

2�̃1+�̃2+�̃3
,+1

⌘
. bIf

2up

2up+vp
2

⇣
�1, 2�̃1

2�̃1+�̃2+�̃3

⌘
. cIf

up+vp
up

/2 ( 2�̃1
2�̃1+�̃2+�̃3

, 0). dIf
up+vp

up
2 ( 2�̃1

2�̃1+�̃2+�̃3
, 0).

TABLE I. Non-equilibrium ferroelectric phase evolution under di↵erent conditions for light circularly polarized in the x � y

plane. The symbol {[uvw]}n denotes the Zn symmetry breaking phase with polarization along ux̂+ vŷ+wẑ or the other n� 1
equivalent directions related by C4 rotations about the z axis or reflection in the xy plane (z ! �z).

�̃1 > 0 �̃1 < 0
�̃1 + �̃2 + �̃3 > 0 �̃1 + �̃2 + �̃3 < 0 �̃1 + �̃2 + �̃3 > 0 �̃1 + �̃2 + �̃3 < 0

vp > 0
�̃2 + �̃3 < 0

[000] ! {[011]}4a
[000] ! {[011]}4 ! {[abb]}8b

[000] ! {[011]}4a
[000] ! {[011]}4 ! {[abb]}8b [000] ! {[100]}2c

[000] ! {[100]}2 ! {[abb]}8d
[000]�̃2 + �̃3 > 0 [000] ! {[100]}2 ! {[abb]}8

vp < 0
�̃2 + �̃3 < 0 [000] ! {[010]}4 [000] ! {[010]}4
�̃2 + �̃3 > 0 [000] ! {[100]}2

aIf
2up

2up+vp
2

⇣
�̃1+�̃2+�̃3

�̃1
,+1

⌘
. bIf

2up

2up+vp
2

⇣
�1, �̃1+�̃2+�̃3

�̃1

⌘
. cIf

up+vp
up

/2 ( �̃1+�̃2+�̃3
�̃1

, 0). dIf
up+vp

up
2 ( �̃1+�̃2+�̃3

�̃1
, 0).

TABLE II. Non-equilibrium ferroelectric phase evolution under di↵erent conditions when light is linearly polarized in x-direction.
The notation is same as that in Table I except that di↵erent Zn symmetry breaking phases are related by C4 rotation around
x axis and reflection with respect to yz plane (x ! �x).

where we have employed a summation convention in
the final expression. E↵ective potentials of this sort lie
at the heart of light-matter manipulations, and Ve↵ is
in essence, a simple extrapolation of the laser-tweezer
concept to a many-body phonon potential. We note
that using (16) we can rewrite the resonant response of
Q↵ = �qE↵ allowing us to rewrite the e↵ective potential

FIG. 2. Schematics of two illustrative examples for the non-
thermal pathways considered: multiple polar phase transi-
tions as a function of electric field amplitude in cubic paraelec-
tric systems. Top: the light is circularly polarized in the x�y

plane with vp > 0, �̃1 > 0, �̃2 + �̃3 < 0 and 2�̃1 + �̃2 + �̃3 > 0;
bottom: the light is linearly polarized along the x-axis with
vp > 0, �̃1 > 0, �̃2 + �̃3 > 0 and �̃1 + �̃2 + �̃3 > 0.

in terms of the driving field

Ve↵ =
X

i,j

✓
!2
P

2
�ij + 2⇡Z2

p

kikj
k2

◆
PiPj

+ up(
X

i

P 2
i
)2 + vp

X

i

P 4
i

�

X

i,j


�̃1
2
E2

j
P 2
i
+

�̃2
2
EiEjPiP� +

�̃3
2
E2

i
P 2
i

�
(19)

where the coe�cients �̃i = (�q)2�i (i = 1, 2, 3) are the
resonant response coe�cients to the external field. We
note that in steady state the time-average Pi is expected
to lie at the local minimum of Ve↵ .
We now analyze the instabilities resulting from Ve↵ in

the presence of a circularly or linearly polarized electro-
magnetic wave propagating along the z axis, exciting the
transverse modes Qx and Qy. We assume that the LO-
TO splitting ⇠ Z2

p
is large and only consider the long-

wavelength soft transverse phonon modes, for instance
e.g. Px,y(0, 0, kz) and Pz(kx, 0, 0). The excitation of Q
modes generates an anisotropic shift in the e↵ective fre-
quency of the soft transverse P phonons. They are de-
fined by the eigenvalues of second derivative matrix of
(18), given by

(!̃2
P
)xx = !2

P
� �̃1(E2

x
+ E2

y
)� (�̃2 + �̃3)E2

x
, (20)

(!̃2
P
)yy = !2

P
� �̃1(E2

x
+ E2

y
)� (�̃2 + �̃3)E2

y
,

(!̃2
P
)zz = !2

P
� �̃1(E2

x
+ E2

y
),

Note that we have used ExEy = 0. For circularly polar-
ized light running along the z axis E2

x
= E2

y
= 1

2E
2
0,x =
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1
2E

2
0,y, and then Eq. (20) becomes

(!̃2
P
)xx = (!̃2

P
)yy = !2

P
� (2�̃1 + �̃2 + �̃3)E2

x
,

(!̃2
P
)zz = !2

P
� 2�̃1E2

x
. (21)

Suppose that both �̃1 > 0 and 2�̃1 + �̃2 + �̃3 > 0
are positive. If �̃2 + �̃3 > 0, then as the magni-
tude of drive increases, the transverse mode frequencies
(!̃2

P
)xx = (!̃2

P
)yy vanish first, giving rise to a sponta-

neous polarization in the x� y plane in the steady state
once E2

x(y) > !2
p
/(2�̃1+ �̃2+ �̃3). The direction of the po-

larization that develops is determined by the anisotropy
constant vp. From Eq. (18), one finds that the e↵ective

potential Ve↵ is minimized by ~P along [±110] if vp > 0

and by ~P along [100] or [010] if vp < 0.
Let us now consider enhancing the drive fluence be-

yond the critical one. Note that equation (21) no longer
determines the phonon frequencies, and the stability of
the system is determined by the Hessian matrix at the
new energy minimum with nonzero ~P . Let us focus on
the case vp > 0. If the drive E2

x(y) is increased beyond
the first instability threshold, the frequency for the trans-
verse Pz mode around the new minimum will soften at
a second critical fluence, if the parameters obey certain
constraints (see Table I). This gives rise to a second phase
transition. For light with linear polarization along the x-
axis, the e↵ective frequency Eq. (20) can be similarly
determined by setting E2

y
= 0.

Table I and Table II summarize various possible fer-
roelectric orderings that are possible in the e↵ective po-
tential approximation with circular (Table I ) and linear
(Table II) light polarizations. There are multiple con-
tinuous phase transitions when E2 (proportional to the
intensity of light), varies. Importantly, in equilibrium
only [111]8 (for vP > 0) or [100]6 (for vP < 0, sixfold
degenerate due to cubic symmetry) phases can be real-
ized by tuning !2

P
. Therefore, our analysis shows that

an external drive can induce ferroelectric phases that are
inaccessible in equilibrium. In Figure 2 we show illustra-
tive examples of two-stage symmetry-breaking driven by
circularly and linearly polarized light that do not occur
in thermal polar pathways.

B. Second Harmonic Generation Signatures

Experimentally, non-equilibrium ferroelectricity is de-
tected via second harmonic generation (SHG) [10, 11].
Due to the nonlinearity, a monochromatic electric field
with frequency ! induces dipole moments oscillating at
a doubled frequency 2!, described by the second-order
nonlinear optical susceptibility tensor � [56]

Pi(2!) = �ijkEj(!)Ek(!). (22)

The dipole moments then act as a source and generate a
second harmonic of frequency 2! and intensity Ii(2!) /
|Pi(2!)|2.

For centrosymmetric systems, the absence of inversion
symmetry breaking causes all elements of � vanish, so
there is no SHG. For noncentrosymmetric systems, the
residual symmetry typically reduces the eighteen inde-
pendent tensor elements to only a few, constraining the
relation of intensities along di↵erent directions. For ex-
ample, consider the {[110]}4 phase listed in Table I, de-
scribed by the e↵ective potential Eq. (18) and Eq. (21).
The polarized incident light breaks the symmetry be-
tween x, y and z directions, so the ferroelectric phase with
~P = (P0,±P0, 0) only has C2v symmetry along the n̂ =
[1,±1, 0] axis. For convenience, we denote the symmetry
axis n̂ as z0 and the other two perpendicular directions as
x0 and y0, referred as the crystal frame. For C2v symme-
try, there are only five non-zero independent tensor ele-
ments, that is �0

xzx
= �0

xxz
,�0

yyz
= �0

yzy
,�0

zxx
,�0

zyy
,�0

zzz

in the crystal frame. Suppose that the material inter-
acts with a probe pulse with linear polarization along
✓̂0 = cos ✓ẑ0 + sin ✓x̂0 direction, using Eq. (22) one ob-
tains

P 0
z
= E2(�0

zxx
sin2 ✓ + �0

zzz
cos2 ✓), (23)

P 0
x
= E2�0

xzx
sin 2✓,

P 0
y
= 0

in the crystal frame. Consider {[aac]}8 in Table I as
another example. It has C1h symmetry and the mirror
plane is perpendicular to ŷ0. Besides the five nonzero
elements in C2v, there are other five non-vanishing ele-
ments: �0

xxx
,�0

xyy
,�0

xzz
,�0

yxy
= �0

yyx
,�0

zzx
= �0

zxz
. Thus

for probe pulse with polarization along ✓̂0, one has

P 0
z
= E2(�0

zxx
sin2 ✓ + �0

zzz
cos2 ✓ + �0

xzx
sin 2✓), (24)

P 0
x
= E2(�0

xxx
sin2 ✓ + �0

xzz
cos2 ✓ + �0

xzx
sin 2✓),

P 0
y
= 0.

Thus one can observe a change of profile Pi(✓) when there
is non-equilibrium phase transition. In Fig. 3, we show
the typical profile of Pi(✓) for some of the high-symmetry
phases, which is experimentally measurable [11].

C. A Minimalist Coupled Oscillator Model

We now go beyond the e↵ective potential approxima-
tion to study the dynamics of anharmonically coupled os-
cillators. For simplicity, we consider a minimalist model
with two scalar harmonic oscillators P and Q. The real-
time action is given by

S =

Z
dt


1

2
Q̇2

�
1

2
!2
Q
Q2 +

1

2
Ṗ 2

�
1

2
!2
P
P 2 (25)

�
1

4
↵P 4 +

�

2
P 2Q2 + ZqQE + ZpPE

�
,

where ↵ > 0 and we assume !Q ⌧ !P ⇡ ⌦. To obtain
this model, we have restricted ourselves to the uniform
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FIG. 3. Typical angular dependence of intensity Ix(✓) (blue) and Iy(✓) (red) of second harmonic light in laboratory frame for
some of the non-equilibrium ferroelectric phases with high symmetry. The linearly-polarized probe pulse propagates along z

direction and the angle between light polarization and x axis is ✓. For phases with C2v symmetry, we choose the nonlinear
susceptibility in the crystal frame to be �

0
zxx = 1, �0

zzz = 1.5 and �
0
xzx = 0.4. Note that we have rescaled some of the curves

to make their magnitudes comparable.

states and neglected insignificant terms to our interests,
such as the anharmonic interactions of Q modes. We
also neglected linear-linear and linear-cubic couplings be-
tween P and Q modes. These couplings lead to terms in
the equation of motion oscillating with frequency ⌦ and
its multiples with zero average, therefore we suggest that
their e↵ects should be qualitatively similar to the e↵ect
of direct coupling Zp to the oscillating electric field (see
Appendix A for more discussions and numerical justifica-
tion). In particular, the e↵ect of the linear P�Q coupling
can be absorbed into the renormalization of the coupling
of P mode to light Zp. We leave the detailed study of
possible additional e↵ects of cubic-linear couplings (such
as higher harmonic driving e↵ects) to future work. Note
that we are working in the regime where the Q mode is
only driven quasi-resonantly where the amplitude of Q
mode is not too large and the nonlinearity of Q mode,
whose e↵ect has been studied in Ref. [22], does not play
an important role. This simplified model could describe
the non-equilibrium PE-FE transition driven by the ex-
ternal electric field, given that the unstable soft phonon
mode is non-degenerate near the phase transition, which
is true for Z2 symmetry breaking transitions listed in Ta-
ble I and Table II.

The classical equations of motion (EOMs) resulting
from Eq. (25) are

Q̈+ !2
Q
Q+ �1Q̇� �P 2Q = ZqE(t), (26)

P̈ + !2
P
P + �0Ṗ � �Q2P + ↵P 3 = ZpE(t), (27)

where we have added extra phenomenological damping
terms �1Q̇ and �0Ṗ . Since the P mode is driven o↵-
resonantly by the E field, we expect the magnitude of
P to be small so that �P 2 ⌧ !2

Q
, and we may ignore

the nonlinear term in Eq. (26). Neglecting damping, we
obtain the steady state solution

Q(t) = �qE0 cos(⌦t), (28)

where

�q = Zq/(!
2
Q
� ⌦2) (29)

is the resonant Q-susceptibility introduced in (17) and
Eq. (27) becomes

P̈ +
�
!2
P
+m(t)

�
P + ↵P 3 = ZpE(t), (30)

where m(t) = ��Q2(t) is the time-dependent mass aris-
ing from the P 2Q2 interaction. For convenience, we write
the above equation as

P̈ +
⇣
!2
P
� �Q2

⌘
P + ↵P 3 = ZpE(t) + f(t), (31)

where Q2 = 1
2 (�qE0)2 is the time-average of the rapidly

oscillating Q mode and f(t) = 1
2��

2
q
(E0)2 cos(2⌦t)P .

When !2
P
� �Q2 > 0, the eigenfrequency of the P os-

cillator remains positive so one expects that P mode os-
cillates around the global minimum P = 0. However
when !2

P
� �Q2 < 0, the mass of the P mode becomes

negative and the system becomes ferroelectric in the ab-
sence of time-dependent terms, with finite polarization
P0 = ±

p
!02
P
/2↵ as shown in Fig. 4(a). Here

(!0
P
)2 = 2(�Q2 � !2

P
) = 2(�̃E2 � !2

P
), (32)

is the eigenfrequency for oscillations in the ferro-electric
state and �̃ = ��2

q
is the isotropic version of the resonant

response coe�cients introduced in (19). In the presence
of E(t) and f(t), P periodically oscillates around P0 in
the steady state, as seen in Figs. 4(b) and 4(e). We may
expand the potential around P0, approximate P in f(t)
by P0 in Eq. (31) to obtain the steady state solution

�P (t) ⇡
ZpE0

!02
P
� ⌦2

cos(⌦t) +
!02
P
+ 2!2

P

2(!02
P
� 4⌦2)

P0 cos(2⌦t),

(33)
where �P (t) = P � P0. This approximation works well
when the maximum oscillation amplitude �Pe is much
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FIG. 4. (a): Time-averaged polarization P versus electric field strength E0. The solid lines are the numerical solutions of Eq.
(25) for di↵erent Zp, while the dashed line is the analytic solution P0 = ±

p
!02
P /2↵ when time-dependent terms is absent. (b)

and (e): Polarization versus time in the steady state when E0 = 4, Zp = 0.3, obtained by numerical method; the blue line is the
regular solution approximately captured by Eq. (33) while the black lines correspond to the solutions with frequency fractional
of ⌦. (c) and (f): Possible values of P versus E0 when Zp = 0.3; the result is obtained with 30 random initial conditions for
each fixed E0, and the color of grids indicates the number of times the system reaches P in its steady state. (d) The Poincaré
section when E0 = 5.1, Zp = 0.3, suggesting the coexistence of chaotic behavior (blue) and periodic solution (red), i.e. KAM
structure [57]. All the steady state solution is obtained by numerically solving Eqs. (26) and (27). Common parameter values
for all plots: !P = 0.1,!Q = 2,⌦ = 2.1, � = 0.01, Zq = 1, For (a)-(c), we choose ↵ = 0.1, �1 = �0 = 0.002; for (d)-(e) we choose
↵ = 1, �1 = �0 = 0.1.

smaller than the time-averaged polarization P ⇡ P0,
�Pe/|P0| ⌧ 1. The term �f(t) / cos(2⌦t)�P that we
have neglected reduces |P |, which can be seen by substi-
tuting Eq. (33) into �f(t) and averaging over time. The
discrepancies between the exact numerical solutions and
the approximate solution Eq. (33) displayed in Fig. 4(a)
become substantial once �P/|P0| ⇠ O(1).

In order for the system to exhibit a macroscopic po-
larization, the oscillations in the polarization must not
exceed the width of the potential well, i.e the magnitude
of oscillation �Pe (33) must be smaller than |P0|, or

ZpE0

⌦2 � !02
P

+
!02
P
+ 2!2

P

2(4⌦2 � !02
P
)

r
!02
P

2↵
.

r
!02
P

2↵
. (34)

Note that as the two contributions in Eq. (33) are phase
coherent and in phase, the total magnitude is simply the
sum of its separate parts. For Zp = 0 and !P ,!0

P
⌧

⌦, we observe that the inequality is always fulfilled, i.e.
the system becomes ferroelectric for infinitesimal !0

P
. If

Zp 6= 0, we can neglect the second term in Eq. (34) for
su�ciently low !0

P
. The critical fields Ec can then be

estimated by solving

�Pe ⌘
ZpEc

⌦2 � !02
P

=

r
!02
P

2↵
⌘ |P0|. (35)

Using (32) to express !02
P
= 2�̃(E2

c
�E2

c0), where E
2
c0 =

!2
P
/�̃, we can cast this equation in the dimensionless form

✓
E2

Z

E2
c0

◆
x = (x� 1)(x� (r2 + 1))2, (36)

where x = (Ec/Ec0)2 (1  x  r2 + 1), E2
Z

=
Z

2
p↵

2�̃2!2
P

and r2 = ⌦2

2!2
P
. In the limit of small Zp, this gives the

limiting values x = 1 corresponding to the lower critical
field limZp!0 Ec1 = Ec0 and x = 1 + r2, corresponding
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FIG. 5. Field dependence of the steady-state polarization |P0|
and the amplitude of rapid oscillations �Pe (see (35)). For
�Pe > |P0|, the rapid oscillations can no longer be neglected,
having the e↵ect of reducing the observable steady-state po-
larization to zero.

to the higher critical field

lim
Zp!0

Ec2 = Ec0

s

1 +
1

2

✓
⌦2

!2
P

◆
. (37)

Figure 5 shows the dependence of |P0| and �Pe on the
electric field strength E0. Note that �Pe first grows lin-
early with E0, and then increases superlinearly as the
denominator ⌦2

� !02
P

decreases due to the hardening of
phonon frequency !0

P
. By contrast, |P0| increases lin-

early at large E0. Therefore, for Zp . Zq
⌦2

|!2
Q�⌦2|

p
�

2↵ ,

Eq. (35) has two solutions as shown in Fig. 5, which cor-
respond to the estimated lower and higher critical fields.
The ferroelectric phase with nonzero steady-state polar-
ization therefore exists only between these two field val-
ues.

For !0
p

⌧ ⌦, the system first becomes ferroelectric

when !0
P

⇡
p
2↵ZpE0/⌦2, resulting in shifted critical

values Ec1, consistent with the numerical results in Fig.
4(a). For su�ciently large E0 & Ec2, the P oscilla-
tor hops between the two minima as �Pe & |P0|, lead-
ing to a reentrant paraelectric phase. Re-entrant para-
electricity has been observed in previous numerical sim-
ulations [20, 21]. Indeed, as seen from Figs. 4(c) and
4(f), the regular solutions described by Eq. (33) finally
disappear at su�ciently large E0.

Remarkably, at intermediate E0 we also observe other
solutions with negligible P , coexisting with the regular
solutions. From Figs. 4(b). and 4(e), one can see that
these multiple solutions may have frequency fractional
of ⌦. We also find chaotic behavior in certain parame-
ter range. Particularly, choosing di↵erent initial condi-
tions, we find two di↵erent orbits near the onset of chaos

(see Fig. 4(d)). This suggests the coexistence of chaotic
behavior with the periodic solution, known as the Kol-
mogorov–Arnold–Moser (KAM) structure [57]. Indeed
we note that Eq. (31) is the equation of motion of a
Du�ng oscillator, generalized due to the additional f(t)
term, that is known to exhibit period-doubling bifurca-
tion and chaotic behavior in certain parameter regimes
[53–55].

It is useful to have an estimate for the critical elec-
tric field strength when finite polarization appears and
vanishes. We assume !2

Q
= 1136.1meV·Å�2

·amu�1,

!2
P

= 1.39meV·Å�2
·amu�1, ↵ = 206.9meV·Å�4

·amu�2,
� = 11.6meV·Å�4

·amu�2 and Zp ⇡ Zq = 1.15e·amu�1/2,
which are consistent with the parameters for strained
KTaO3 [21]. The double well forms when |Qc| ⇠

0.346Å · amu1/2, which corresponds to the electric field
Ec0 ⇠ 2.7MV/cm if one neglects dissipation and takes
⌦2 = 1200meV·Å�2

·amu�1. Enforcing condition Eq.
(34) one obtains a rough estimate of the lower criti-
cal electric field Ec1 ⇡ 2.9MV/cm and the higher crit-
ical electric field Ec2 ⇡ 45.6MV/cm (which compares
with the more approximate estimate (37), which gives
Ec2 ⇠ 60MV/cm). Note that Ec2 corresponds to a large
amplitude oscillation |Q| ⇠ 5.8Å · amu1/2, suggesting the
necessity to include nonlinearity of the Q mode. For ex-
ample, if quartic terms ofQmode are included, such large
oscillation amplitudes are suppressed and it may be pos-
sible to observe the vanishing of polarization at a higher
critical field Ec2. We note that our predicted electric
field strengths are approachable in experiments where
light pulses with large peak fields (estimated around 18
MV/cm [11]) are used.

In experiments, the driving is not continuous but is
rather performed with finite pulses [10, 11] and the non-
equilibrium polarization persists after the pump has been
turned o↵. In our model, after the external field is turned
o↵, the excited P and Q mode relax due to dissipation
resulting in the decay of polarization. As shown in Fig.
6, after the electric field is o↵, the amplitude of the P
mode decays but remains finite, until it eventually os-
cillates around its equilibrium position. This can be un-
derstood by noticing that the e↵ective potential felt by P
mode gradually relaxes to its equilibrium form due to the
damped motion of Q. The P mode oscillates around the
instantaneous minimum of the e↵ective potential, which
becomes zero once Q2 becomes smaller then the critical
value for the steady-state driven ferroelectricity. There-
fore, the system keeps its ‘memory’ of the pump-induced
order for times of order of theQmode lifetime. This qual-
itatively describes the observed persistence of the polar-
ization after the pump is removed [10, 11], though per-
sistance time-scales have been reported that are longer
than what is accessible in our approach [11].
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FIG. 6. Polarization versus time after the electric field is
turned o↵ at t = 0. We choose Zp = 0 and E0 = 2 when the
electric field is on, and set �1 = �0 = 0.002 all the time. The
rest of parameters are the same as that in Fig. 4.

IV. QUANTUM EFFECTS IN THE PHASE
TRANSITION

We now move to a consideration of quantum e↵ects in
light-driven ferroelectricity. Previous approaches [33–35]
focused on quenches close to a QCP.

Here we develop a formalism appropriate to our situa-
tion where quantum fluctuations coexist with significant
classical ones. In IVA we demonstrate how the classi-
cal equations of motion, Eq. (30), arise from a quantum
Keldysh action for the case of a single nonlinear oscil-
lator and study the quantum corrections in IVC, where
generalizations to include the momentum dispersion of
phonons are discussed. The shift of the critical point due
to quantum mass corrections is determined as a function
of pumping rate, and this should be accessible in experi-
ment.

We start with the reduced model for a soft phonon
mode P (t) described in Eq. 30, with e↵ective Lagrangian

L[P ] =
Ṗ 2

2
� (!2

P
+m(t))

P 2

2
�

↵

4
P 4 + PE(t). (38)

The time-dependent m(t) describes the e↵ect of driving
on the P modes: we recall that the drive excites the fast
Q modes which, within a classical description, modifies
the mass of the slow P mode via biquadratic interactions.
The P mode is also linearly coupled to the (classical)
electric field, E(t); for the purpose of discussion, we have
set the e↵ective charge in (30) to one, Zp = 1.

We now quantize this description, describing how we
can formulate a path-integral diagramatic approach. The

Pcl(t)Pcl(t� )
DK(t, t� ) DR(t, t� )

Pcl(t)Pq(t� )

� �

(a)

(b)

Pcl(t) Pcl(t)

Pcl(t) Pcl(t)Pq(t) Pq(t)

Pq(t) Pq(t)
FIG. 7. (a) shows graphical representation of the Green’s
functions in Keldysh field theory consisting of two kinds of
fields, namely the classical field Pcl(t) (solid line) and the
quantum fields Pq(t) (dashed line). Two independent Green’s
functions, namely the retarded D

R(t, t0) and the Keldysh
D

K(t, t0) Green’s functions, are constructed out of the classi-
cal and the quantum fields via Eq.47. (b) The non-linearity
of the P oscillator mode is shown diagrammatically by the
quartic interaction vertices with the coupling strength ↵. The
interaction vertices are odd in the quantum fields required by
the causality structure of the two-contour field theory.

quantum Hamiltonian is

Ĥ =
⇡̂2

2
+ (!2

P
+m(t))

P̂ 2

2
+

↵

4
P̂ 4

� P̂E(t) (39)

where ⇡̂ is the canonical momentum, satisfying [P̂ , ⇡̂] =
i~. We now adopt a Schwinger-Keldysh approach con-
sidering a time-evolution from a state of thermal equilib-
rium in the distant past. The generating function ZK [E]
is written as a time-ordered exponential of the Hamilto-
nian over the Keldysh contour in time, {C : t 2 �1 �!

1 �! �1} running from the past out to the future and
back,

ZK [E] = Tr [⇢̂0UC ] (40)

where ⇢̂0 = e��Ĥ0 is the initial thermal density matrix
(we will take T = 0 in our final results), while

UC = U�1,1U1,�1 = TCe
� i

~
R
C dtH(t), (41)

where TC denotes path-ordering along the contour C.
ZK [E] is recast as a path integral,

ZK [E] =

Z

C
D[P ]eiSK/~. (42)

The action SK divides into contributions from the out-
ward and return paths,

SK =

Z

C
dtL[P ] =

Z 1

�1
dt


L[P+]� L[P�]

�
, (43)
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where P+(t) and P�(t) are the integration variables on
the outward and return paths, respectively [58]. Un-
der the physical Heisenberg equations of motion, there
is strictly one quantum operator P̂ (t) and source term
E(t) at each point in time, but the Keldysh path in-
tegral explores the paths on the upper and lower con-
tours independently, and a complete generating function
must consider independent sources E±(t) on the outward
and return contours, setting E±(t) = E(t) to recover the
physical expectation values.

Variations of the generating function ZK(E) with re-
spect to the source field E generate correlation functions
of the quantum operators P̂ (t), path-ordered along the
Keldysh contour[59], such that

� i~ �

�E(t)
�! P̂ (t) (44)

For instance,

(�i~)2
Z

�2Z

�E(t2)�E(t1)
!

1

Z

Z
D[P ]P (t1)P (t2)e

iSK/~

= hTC P̂ (t1)P̂ (t2)i (45)

We adopt a classical-quantum basis

Pcl(t) = (P+ + P�)/2,
Pq(t) = (P+ � P�), (46)

where the classical and quantum variables, Pcl and Pq

respectively, are analagous to the the center of mass, and
relative co-ordinates of two body dynamics. Note that
our notation di↵ers from [58, 60] by a factor of two in Pq,
which simplifies some of the intermediate calculations,

but without a↵ecting the final results. The connectiv-
ity of the forward and backward paths causes the joint
Green’s function hPq(t)Pq(t0)i = 0 to vanish, leaving two
independent Green’s functions

DR(t, t0) = DA(t0, t) = �ihPcl(t)Pq(t
0)i ,

DK(t, t0) = �ihPcl(t)Pcl(t
0)i. (47)

where DR and DA are the retarded and advanced re-
sponse functions of the oscillator mode, respectively,
while DK is the Keldysh Green’s function, which con-
tains information about the temporal correlations and
occupancy of the mode. The corresponding Feynman di-
agrams for these Green’s functions are shown in Fig.7
where the classical and quantum fields are represented
by solid and dashed lines, respectively.

A. Saddle-point approach

In order to treat the Keldysh path-integral using
saddle-point methods. we are required to vary the for-
ward and backwards time components of the Keldysh
contour independently. In the classical limit ~ ! 0, the
action on outward and return paths are extremized by
the same classical path

lim
~!0

hP±(t)i = P(t), (48)

so that the outward and return path actions are equal
and the Keldysh action on the classical contour is zero,
SK [P] = (S[P+]� S[P�])

��
P±=P = 0. This means that a

variational approach must consider paths where Pq 6= 0,
for which the Keldysh action is finite[60].

The condition that the Keldysh action is stationary with respect to independent variations of P on the upper and
lower contour yields

�
�SK

�P (t)
=

⇥
@2
t
+ !2

P
+m(t)

⇤
P (t) + ↵P 3(t)� E(t) = 0, (49)

where P (t) lies on either the upper or lower part of the Keldysh contour. This equation of motion defines the classical
trajectory P(t) = hPcl(t)i~!0 which is the saddle point of the Keldysh action. Since the path integral ZK is invariant
under a time-dependent shift of variables, P ! P + �P (t), which leaves the measure unchanged D[P ] = D[P + �P ],

0 =

Z
D[P + �P ]eiSK [P+�P ]/~

�

Z
D[P ]eiSK [P ]/~ =

Z
D[P ]eiSK [P ]/~

Z

C

dt

✓
i

~
�SK

�P (t)

◆
�P (t), (50)

the equation of motion(49) is exact when averaged over quantum trajectories,

⌧
�SK

�P (t)

�
=

Z
D[P ]eiS[P ]/~ �SK

�P (t)
= 0, (51)

We should not be surprised, for (49) is equivalent to eliminating the momentum ⇡ from the Heisenberg equations of
motion, (Ṗ = �(i/~)[H,P ] = ⇡ ) P̈ = ⇡̇ = (i/~)[H,⇡] = ��H/�P ). If we take the average of the upper and lower
Keldysh contours, we obtain

�
@2
t
+ !2

P
+m(t)

�
hPcl(t)i+ ↵

⌧
1

2
(P 3

+ + P 3
�)

�
= E(t), (52)
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�Pcl(t)�Se� = + + +

Perturbative expansion of the average classical oscillator field

�Pcl(t)�S2

�(�2) diagrams3

FIG. 8. Diagrammatic expansion for the expectation of the classical component of the oscillator field: obtained by expanding
the quartic interaction term in the e↵ective action Se↵ in powers of the coupling strength ↵. The first term in the R.H.S. (shown
by a solid line ending at a cross) is the expectation value for the non-interacting oscillator given in Eq.63. Among the first
order diagrams, the shaded diagram contains maximum influence from the external electric field at this order of perturbation
series while the un-shaded diagram contains loops of classical fields independent of E(t). The former kind of diagrams form
the “tree series” (see Fig.9) leading to classical EOM while the latter kind incorporates e↵ects of quantum fluctuations in the
dynamics that can not be captured within the classical theory.

where we assume a classical source field E±(t) = E(t). We can expand (P 3
+ + P 3

�) = 2P 3
cl
+ (3/2)PclP 2

q
and by

rewriting the point-split expectation value hPclP 2
q
i ! hTC P̂cl(t1)P̂q(t2)P̂q(t3)i = 0 in terms of time-ordered Heisenberg

operators, we find that it vanishes. At the Gaussian level of approximation, this can be understood because hP 2
q
Pcli =

hPqihPqPcli + hP 2
q
ihPcli, which vanishes because the first and second order moments of Pq vanish, hPqi = hP 2

q
i = 0,

but in Appendix C we show that this is true to all orders. It follows that
�
@2
t
+ !2

P
+m(t)

�
hPcl(t)i+ ↵hPcl(t)

3
i = E(t). (53)

We calculate the leading quantum fluctuations about
the classical trajectory h�P 2

cl
i ⇠ O(~), determined from

the leading quadratic expansion of the action about the
classical trajectory,

SG =

Z

C

dt
1

2


�Ṗ 2

�

✓
!2
P
+m(t) + 3↵P2(t)

◆
�P 2

�

(54)
where �P (t) = P (t) � P(t) is the deviation from the
classical path. The cubic term in the equation of motion
in Eq.49 now acquires an additional component from the
Wick contractions between the fluctuations,

hP 3
cl
(t)iSG ! P(t)3 + 3h�P 2

cl
(t) (55)

iSGP(t) Thisintroducesaself �

energycorrectiontotheoscillatormassm(t) !

m(t) + ⌃(t), (56)where

⌃(t) = 3↵h�P 2
cl
(t)iSG = 3i↵DK(t, t) (57)

is written in terms of the Keldysh Green’s function
DK(t, t0) = �ih�Pcl(t)�Pcl(t0)iSG . The self-energy cor-
rection to the mass modifies the equation of motion,

P̈(t) +
�
!2
P
+m(t) + ⌃(t)

�
P(t) + ↵P(t)3 = E(t). (58)

Note that while the fluctuations are Gaussian, the clas-
sical equations of motion are nonlinear in ↵. One of the
key e↵ects of this self-energy correction, is a shift in in
the paraelectric to ferroelectric critical point.

B. Keldysh Action

We now re-interpret these results diagrammatically.
The Keldysh action can be divided into Gaussian and
quartic components, SK = S2 + S4. In the classical-
quantum basis,

S2 =
1

2

Z 1

�1
dt

�
Pcl(t), Pq(t)

� h 0 D�1
A

D�1
R

D�1
K

i⇣ Pcl(t0)
Pq(t0)

⌘

+

1Z

t0

dtPq(t)E(t), (59)

where the non-interacting inverse Green’s functions are

D�1
R,A

= (i@t ± i0+)2 � (!2
P
+m(t)), (60)

whileD�1
K

is a purely imaginary term which sets the ther-
mal boundary conditions. The quartic term

S4 = �
↵

4

1Z

t0

dt
⇥
P 4
+(t)� P 4

�(t)
⇤

= �↵

1Z

t0

dt
⇥
P 3
cl
(t)Pq(t) + (1/4)P 3

q
(t)Pcl(t)

⇤
, (61)

only contains terms with odd powers of Pq, as shown in
Fig.7. This is the starting point for the diagrammatic
expansions.
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+

Classical EOM from the tree series

�(�4) diagrams
�Pcl(t)�C

= + +
�Pcl(t)�S2

3 + 9 + 3

�
Resummation

C

=C CCC
+

FIG. 9. a)Recovery of the classical limit from Keldysh field theory: the solution of the classical EOM (see Eq.31) hPcliC(t) is
obtained from the full expectation value hPcl(t)iSeff (t) by restricting the sum only to the “tree diagrams” shown here. These
are the diagrams which contain maximum powers of the external electric field, symbolically represented by a cross mark here,
in each order of the perturbation theory. These diagrams can be regrouped to yield the non-perturbative classical solution.

The expectation value hPcl(t)iSeff can be expanded per-
turbatively in powers of the coupling strength ↵ as

hPcl(t)iSK =

Z
D[P ] ei(S2+S4)Pcl(t)

= hPcl(t)iS2 + ihPcl(t)S4iS2 �
1

2
hPcl(t) (S4)

2
iS2 + ....,

(62)

where the expectation values are evaluated with respect
to the Gaussian action S2 (59). The Wick expansion of
these terms involves the contraction of pairs of P fields
into propagators and contractions of P fields with the
external field E, giving rise to a series of Feynman dia-
grams, as shown in Fig.8. The contraction of Pcl with the
external field in the first term defines the linear response

hPcl(t)iS2 = �

Z
dt1D

R(t, t1)E(t1), (63)

represented by a solid (classical) line ending at a cross
representing the electric field. Wick contractions of the
second term in (62) generate two sets of diagrams: a
“tree diagram”, involving three contractions of Pcl with
the external field, and a “Hartree diagram”, involving the
contraction of two Pcl fields.

Next, we organize the higher order diagrams in Fig.8
into two classes: (a) “tree diagrams” with a maximum
number of classical fields contracted with the external
electric fields E(t) and (b) Hartree diagrams (unshaded
in Fig.8) where a pair (or more) of classical fields are con-
tracted among themselves, forming a loop which does not
contain E(t). An example of the first class of diagrams
is shown by the gray shaded diagram in Fig.8. These
diagrams have maximum power of the electric field at a
given order of the perturbation series and contain only
the interaction vertices with 3 classical fields and only
1 quantum field. The second class of diagrams involve

the scattering o↵ quantum fluctuations . These scatter-
ing processes describe the self-energy corrections to the
mass of the soft polar mode by quantum fluctuations, and
can contain retarded and Keldysh Green’s functions.
In Fig. 9a), we show that a resummation of the

tree-diagrams leads to the classical EOM, whose solu-
tion is denoted P(t) (also given in Eq. 31). To un-
derstand the resummation, we start with the first order
diagram in Fig. 9 (same as the gray shaded diagram
in Fig. 8), where each of the three classical fields of
the interaction vertex are contracted with E(t), yielding
(hPcliS2)

3. Higher order diagrams can be understood as
the result of adding further “tree corrections” to each
external line. The resummation of these diagrams non-
perturbative classical solution can then be re-written in
terms of Green’s functions as,

P(t) = �

1Z

t0

dt1D
R(t, t1)(E(t1)� ↵P(t1)

3). (64)

This classical solution is represented diagrammatically
by a solid line ending at the symbol C in Fig.9. This
identification of the tree series as “classical” diagrams is
crucial to identify and study the quantum e↵ects near
the PE-FE transition which we discuss next.

C. Perturbative Quantum Corrections

In this section, we will study the leading quantum cor-
rection to the soft-mode mass, determining the result-
ing shift in the critical point, first for the case of single
phonon mode (single nonlinear oscillator) in subsection
IVC1, generalizing the calculation to the multi-mode
case in subsection IVC2.
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1. Single phonon mode

Quantum corrections to the classical equations of mo-
tion are obtained by inserting self-energy corrections to
the retarded propagator. The leading Hartree self-energy
correction is derived from the one-loop retarded self-
energy ⌃R(t),corresponding to the Hartree approxima-
tion, as shown in Fig. 10. Within this approximation
⌃R(t, t0) = ⌃(t)�(t� t0) is local in time so that quantum
fluctuations manifest themselves as a time-dependent
modification of the oscillator mass (see Appendix B for
more details),

m(t) ! m(t) + ⌃(t) (65)

in Eq.4, where

⌃(t) = 3↵h�Pcl(t)
2
iSG . (66)

is proportional to the fluctuations in Pcl(t) calculated
using the Gaussian correction to the action,

SG =

Z

C

dt
1

2


�Ṗ 2

�

✓
!2
P
+m(t) + 3↵P2(t)

◆
�P 2

�

(67)
However, if we restrict ourselves to the ”para-electric
phase” where P(t) = hPcl(t)i = 0, then in this case,
the 3↵P2(t) term vanishes in SG. This does not restrict
our consideration since in this section the main e↵ect of
the driving is incorporated in m(t). The Gaussian action
then coincides with the quadratic action SG ⌘ S2 and the
quantum corrections are the perturbative Hartree correc-
tions, i.e

⌃(t) = 3↵h�Pcl(t)
2
iS2 , (P(t) = 0). (68)

The quantum contribution to the self-energy is deter-
mined from the equal-time Keldysh propagator so that

⌃(t) = 3↵iDK(t, t). (69)

a)

b)

FIG. 10. a) Hartree self-energy insertion to the retarded prop-
agator, describing the leading O(~) e↵ect of quantum fluctu-
ations. b) The equation of motion now involves the renormal-
ized propagator.

Next, we calculate the equal time Keldysh Green’s
function DK(t, t) for the the non-interacting harmonic
oscillator with a time-dependent mass !2

P
+m(t). To do

so, we rewrite the Keldysh Green’s functions in terms of
the Heisenberg position operators of the Harmonic oscil-
lator,

DK(t, t0) = �ihPcl(t)Pcl(t
0)i = �

i

2
h{P̂ (t), P̂ (t0)}i. (70)

Consider a non-interacting oscillator with time-
dependent mass !2(t) = !2

P
+m(t), where m(0) = 0 and

Hamiltonian

H =
1

2

⇣
⇡̂2 + !2(t)P̂ 2

⌘
. (71)

Here P̂ and ⇡̂ are canonical position and momentum op-
erators respectively. We now calculate DK(t, t0) from the
expectation value of the Heisenberg operators P (t), eval-
uated in the initial state. We can relate the Heisenberg
Schrödinger operators P = P (0) and ⇡ = ⇡(0) by

P̂ (t) = a(t)P̂ + b(t)⇡̂. (72)

From the equations of motion @tP̂ (t) = ⇡̂(t) and @t⇡̂(t) =
�!2(t)P̂ (t), we deduce that @2

t
P (t) = �!2(t)P (t), so the

coe�cients a(t) and b(t) satisfy the di↵erential equation

⇥
@2
t
+ !2

P
+m(t)

⇤✓a(t)
b(t)

◆
= 0, (73)

subject to the boundary conditions
✓
a(0)
b(0)

◆
=

✓
1
0

◆
,

✓
ȧ(0)
ḃ(0)

◆
=

✓
0
1

◆
, (74)

The Keldysh Green’s function for a system initially in
the state |ni with n phonons, can then be evaluated as

DK(t, t0) = �
i

2
hn|{P̂ (t), P̂ (t0)}|ni

= �i[a(t)a(t0)hn|P 2
|ni+ b(t)b(t0)hn|⇡2

|ni]

= �i[a(t)a(t0) + !2
P
b(t)b(t0)]

✓
n+ 1

2

!P

◆
. (75)

so that

hP 2
cl
(t)i = (a2(t) + !2

P
b2(t))

✓
n+ 1

2

!P

◆
. (76)

As an example, consider a linear time-dependence in
the mass of the form m(t) = �!2

P
(t/t0) for which the

oscillator undergoes a quantum phase transition as t ! t0
(at the bare level without self-energy corrections). We
can obtain an analytical solution from Eq.(73) and in the
extreme limits, this leads to simple form of the quantum
correction (see Appendix D for more details) given by

⌃(t) =

8
<

:

3↵

2
p

!
2
P+m(t)

, !P � 1/t0,

3↵
2!P

⇣
1 + t

3
!

2
P

3t0

⌘
, !P ⌧ 1/t0,

(77)

where the initial state of the oscillator is chosen to be the
vacuum state n = 0. In the next subsection, we will ex-
tend this analysis to the case of interacting phonons with
di↵erent momenta and study experimentally measurable
e↵ects of the quantum fluctuations in the dynamics.
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2. Interacting phonons in 3D

We now extend the discussion to the higher dimen-
sional case where the soft-phonon mode develops disper-
sion. As an illustration, consider 3D phonons with dis-
persion

!2
k
(t) = !P

2 +m(t) + (ck)2 (78)

with an ultraviolet momentum cuto↵ ⇤ of the slow mode
arising from an underlying lattice. We further assume
that the separation of the energy scales between the slow
P modes and the fast Q modes is valid at all momenta,
i.e. c⇤ ⌧ ⌦. This allows us to extend the e↵ective po-
tential approach for slow phonon modes described in (30)
to the multi-mode (P modes) case, where the resonantly
driven Q modes only result in a time-dependent potential
for P modes modifying the bare mass !P

2
! !2

P
+m(t).

The quantum correction can be calculated from ⌃(t) =R
~k
⌃(!k) where

R
~k
=

R
d~k/(2⇡)3 and ⌃R

q
(!k) is the re-

tarded self-energy for the independent oscillator modes
of frequency !2

k
(t) (78),

⌃(!k) = 3↵

⇥
a2(k, t) + (!2

P
+ c2k2)b2(k, t)

⇤
p
!2
P
+ c2k2

✓
n+

1

2

◆
,

(79)
where the coe�cients a(k, t) and b(k, t) are calculated
from Eq.73 replacing !2

P
+m(t) by !2

k
(t). Unless other-

wise mentioned the initial state of the oscillators is chosen
to be the vacuum state n = 0.

Before understanding the e↵ects quantum fluctuations
in the dynamics, we first focus on the equilibrium quan-

tum correction ⌃
⇣p

!2
P
+ (ck)2

⌘
at t = 0. This mod-

ifies the bare mass of the oscillators from !2
k
(t = 0) to

!̃2
k
(t = 0) given by,

!̃2
k
(t = 0) =


!2
P
+ (ck)2 +

Z

~k

⌃

✓q
!2
P
+ (ck)2

◆�
.

(80)

Here, we note that
R
~k
⌃
⇣p

!2
P
+ (ck)2

⌘
is ultraviolet di-

vergent (/ ⇤2↵/c) and leads to a cut-o↵ dependent shift
of the zero-point energy of the oscillator. This diver-
gence can be renormalized by a redefinition of the oscil-

lator energy !2
P

by !̃2
P

= !2
P
+

R
~k
⌃
⇣p

!2
P
+ (ck)2

⌘
⇡

!2
P
+3↵⇤2/(8⇡2c). !̃P is the experimentally measurable

energy of the phonon in equilibrium.
As time evolves, the dynamical quantum correction

modifies the energy of the slow mode as,

!̃2
k
(t) = !2

P
+ (ck)2 +m(t) +

Z

~k

⌃(!k(t)). (81)

To clearly di↵erentiate between the ⇤-dependence ap-
pearing in the equilibrium zero-point energy of the P
mode from the relevant dependence appearing in the
dynamical quantum fluctuations, we rewrite the above
equation as

!̃2
k
(t) =

⇥
!̃2
P
+ (ck)2

⇤
+m(t)

� � ��

�����

����

tq 0/t 0

�̃Pt0

�/c3 = 0.03

�/c3 = 0.07

�/c3 = 0.1

FIG. 11. Shift in the critical point due to quantum fluc-
tuations: the ratio between the critical time with quantum
fluctuations and the classical critical time tq0/t0 is plotted as a
function of the rate of pumping expressed in the dimensionless
unit !̃P t0 for three di↵erent strengths of the non-linearity (in
dimensionless unit) ↵/c

3 = 0.03, 0.07, 0.1. In the fast pump-
ing limit !̃P t0 ⌧ 1, t

q
0 grows from t0 as t

2
0 with increasing

t0. This growth saturates in adiabatic limit !̃P t0 � 1 re-
covering the signatures of quantum criticality. We choose
c
2⇤2

/!̃
2
P = 100 to set the ultraviolet cut-o↵ ⇤.

+

Z

~k


⌃(!k(t))� ⌃R

q

✓q
!2
P
+ (ck)2

◆�
. (82)

Here, the 1st term of Eq. 82 corresponds to the disper-
sion of the oscillator at (t = 0) modified by the equi-
librium quantum correction. The subsequent terms cor-
responds to the change in the oscillator energy at later
time t (compared to that at t = 0). These terms con-
sist of: (a) an explicit time-dependence through m(t)
induced by the external drive and (b) the change in the
quantum self-energy (non-equilibrium quantum correc-
tion) �⌃(t) =

R
~k
[⌃(!k(t))� ⌃(!k(t = 0))]. By this rear-

rangement, we eliminate the equilibrium ultraviolet di-
vergences from the time-dependent part of the oscillator
energy (2nd line of Eq. 82). It is useful to recast Eq.
(82) in a form that does not include the unobservable
bare phonon energy !P , replacing the bare !2

P
with the

experimentally measurable !̃2
P

in �⌃(t) as,

!̃2
k
(t) ⇡

⇥
!̃2
P
+ (ck)2

⇤
+m(t)

+

Z

~k


⌃

✓q
!̃2
P
+ (ck)2 +m(t)

◆
� ⌃(

q
!̃2
P
+ (ck)2)

�
,

(83)

which leads to corrections of higher order in ↵. Indeed,
replacing !2

P
by !̃2

P
leads to O(↵2) change in �⌃(t). As

the leading order answer is O(↵), this e↵ect can be ne-
glected.
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The non-equilibrium quantum correction leads us to
predict a shift in the critical fluence. To model this phe-
nomenon, we model the e↵ect of a time-dependent pump
by m(t) = �!̃2

P
t/t0 corresponding to a linearly increas-

ing fluence. In the absence of quantum corrections, the
frequency would go to zero at t = t0. To evaluate the
e↵ects of quantum fluctuations, we solve !̃2

k
(tq0) = 0 from

Eq. 83 numerically to determine the shift in the critical
time. In Fig.11 we show the ratio of the shifted and bare
critical times tq0/t0 as a function of the rate of driving in
the dimensionless unit !̃P t0 for three di↵erent values of
the quartic coupling, ↵ = 0.03, 0.07, 0.1.

In the quantum quench limit, the system is driven to
the QCP so rapidly that system is unable adjust to the
QCP (1/!̃P � t0 and 1/(c⇤) � t0); in this case the
dynamical quantum corrections are expected to be small.
Using the analytical form given in Eq. 77 for the single
mode case and generalizing it for the multi-mode case,
we obtain an estimate of the quantum correction in the
mass (in the limit 1/c⇤ � t0 and !̃P ⌧ c⇤),

�⌃(t) ⇡ 3
↵

16⇡2c3
t3

3t0
c4⇤4. (84)

The above contribution from the non-equilibrium quan-
tum correction is small for t ⇠ t0 by 1/(c⇤) � t0. To

find out the shift in the critical time, we solve

!̃2
P


1�

tq0
t0

�
+ �⌃(tq0) = 0 (85)

In the quantum quench limit, the leading order deviation
of tq0 from t0 is obtained from the above equation by
replacing �⌃(tq0) by �⌃(t0) to obtain,

tq0
t0

⇡ 1 +
↵

16⇡2c3
!̃2
P
t20

✓
c4⇤4

!̃4
P

◆
(86)

Thus the leading order deviation of tq0 from t0 grows as
t20 as we increase the sweeping time t0.
When the system is driven to the QCP slowly, the sys-

tem has a longer time to adjust to the QCP and the ef-
fects of quantum corrections become marked (see Fig.11).
In the adiabatic regime !̃P t0 � 1, the quantum correc-
tion to the retarded self-energy takes the form,

⌃(t) ⇡ 3
↵

8⇡2c
⇤2


1�

[!̃2
P
+m(t)]

c2⇤2
log

✓
c2⇤2

[!̃2
P
+m(t)]

◆�
,

(87)
where we neglected the terms of O(1) as small in compar-
ison with the logarithm in the second term. As discussed
above, the first term in (87) can be absorbed in a renor-
malization of the equilibrium parameters, leading to an
increase in the mode frequency due to

�⌃(t) = 3
↵

8⇡2c


!̃2
P

2c2
log

✓
c2⇤2

!̃2
P

◆
�

[!̃2
P
+m(t)]

2c2
log

✓
c2⇤2

[!̃2
P
+m(t)]

◆�
. (88)

The resulting correction has a weak logarithmic depen-
dence on ⇤, consistent with a system at its the upper
critical dimension, demonstrating that in the adiabatic
limit we recover the signatures of equilibrium quantum
criticality.

In the adiabatic limit, the leading order deviation of tq0
from t0 is obtained from Eq. 85 by replacing �⌃(tq0) by
�⌃(t0) to obtain,

tq0 = t0


1 + 3

↵!̃2
P

16⇡2c3
log

✓
c2⇤2

!̃2
P

◆�
. (89)

We have computed an additional delay in the transition
to the polar phase due to leading order quantum fluctu-
ations. Since here we are considering a model where the
fluence varies linearly in time, this result corresponds to
an increase in the critical fluence. More generally quan-
tum fluctuations increase the renormalized mass, thus
requiring modified fluence profiles for the system to tran-
sition to the polar ordered state. Therefore, the depen-
dence of the critical fluence on the driving rate can be
used to identify and to characterize quantum corrections
in driven ferroelectrics.

V. SUMMARY

In this work we have analyzed a model of a driven lat-
tice system close to a ferroelectric instability. We have
shown that classically, the driving can be described as
a modification of the nonlinear phonon potential lead-
ing to a phase transition beyond a critical fluence. The
structure of the ordered phase can be tuned by light
polarization. For fluence above the critical one, a sec-
ond phase transitions is possible that breaks additional
symmetries. A further increase in fluence beyond a sec-
ond critical value suppresses the ordered phase and in
some cases, leads to a chaotic behavior. Beyond classical
dynamics, we demonstrated that the classical equations
of motion arise as a approximation to the full quantum
Keldysh evolution and identified the lowest-order quan-
tum corrections. The latter e↵ects predict a dependence
of the critical fluence on the driving rate, which may be
observable experimentally.
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(a) (b)

FIG. 12. Time-averaged polarization P versus electric field strength E0 including non-biquadratic P-Q interactions [Eqs.
(A2) and (A3)]. These results were obtained from 30 random initial conditions at each fixed E0, and the color of grids
indicates the number of times the system reaches P in its steady state. The common parameter values for these plots were:
!P = 0.1,!Q = 2,⌦ = 2.1, � = 0.01, Zq = 1, Zp = 0.3, ↵ = 1 and �1 = �0 = 0.1. We choose (a) �13 = �31 = 0.003 and (b)
�13 = �31 = 0.01.
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Appendix A: E↵ects of Non-Biquadratic P �Q Interactions

In this appendix, we illustrate the reasons why non-biquadratic P � Q interaction terms, such as PQ, PQ3 and
P 3Q, do not lead to qualitatively new e↵ects and can be neglected. To start, we consider the two-oscillator model in
Sec. III C with additional action

Sodd =

Z
dt

h
�11PQ+

�13
2

PQ3 +
�31
2

P 3Q
i
. (A1)

The classical EOM (27) then become

Q̈+ !2
Q
Q+ �1Q̇� �P 2Q�

3�13
2

PQ2
�

�31
2

P 3
� �11P = ZqE(t), (A2)

P̈ + !2
P
P + �0Ṗ � �Q2P + ↵P 3

�
�13
2

Q3
�

3�31
2

P 2Q� �11Q = ZpE(t). (A3)

If we first neglect the backaction terms in Eq. (A2),
namely the terms involving P s, then in this approxima-
tion we can apply (28), namely

Q(t) = �qE0 cos(⌦t), (A4)

where �q is defined in the main text. With this substi-

tution, the Q term and Q3 terms in Eq. (A3) can be
directly absorbed into a time-dependent renormalization
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of the electric field,

Ẽ(t) = E(t)

+
�13
8Zp

(�qE0)
3(cos 3⌦t+ 3 cos⌦t) +

�11
Zp

�qE0 cos(⌦t).

(A5)

The additional two terms do not lead to any qualitatively
new physics. The second term simply renormalizes the
oscillating electric field at frequency ⌦, while the first one
introduces oscillations at 3⌦ that are even further o↵-
resonance for the P mode. In addition, in the main text
we have demonstrated that the critical E0 for the light-
induced transition scales with !P (see e.g. Eq. (21)) and
is therefore small for a system close to the phase tran-
sition. In that regime, one can also justify the neglect
of higher-order terms in E0 due to the smallness of E0.
The P 2Q term in (A3) corresponds to a time-dependent
cubic potential for P in the original action (A1). This
term averages to zero over a period 2⇡/⌦ and is therefore
unimportant in the paraelectric phase. In the ferroelec-
tric phase, using the method we used to derive Eq. (33),
we can replace P 2 by P 2

0 allowing this term to also be
absorbed into an e↵ective electric field

˜̃E(t) = Ẽ(t) + �qE0
3�31
2

P 2
0 cos(⌦t). (A6)

We do not expect the omission of the backaction terms in
Eq. (A2) to change our arguments qualitatively, because
the P 2Q term merely results in a shift of the resonant fre-
quency of the Q mode, while the other backaction terms
can be absorbed into an additional renormalization of the
electric field, using similar arguments to those presented
above.

To verify these arguments directly, Figure 12(a) and
12(b) show the numerical solutions of Eqs. (A2) and
(A3). Comparing them to Fig. 4(f), we see that the in-
clusion of non-biquadratic terms hardly a↵ects the onset
of ferroelectricity, although it can lead to quantitative
di↵erences at higher fields. However, we note that the
qualitative features, such as multiple coexisting solutions
and chaotic behavior, still persist when these terms are
included.

Appendix B: Two-Time Correlations in Quantum
Corrections

In the main text, we have perturbatively calculated
the quantum corrections to the classical EOM hPcliC(t)
of the oscillator given in Eq. 64 by modifying the mass
of the polar mode m(t) in Eq.65. In this appendix,
we present the details of calculations leading to this re-
sult. In particular, we show that in the lowest order (the
one which we consider), two-time correlations and noise
terms do not arise from quantum corrections.
The quantum correction is obtained via the retarded

self-energy ⌃R which can in general is a function of

Perturbative expansion of the average classical oscillator field

�R(t, t� ) = �(t � t� )�R(t) �K(t, t) � DR(t, t) = 0

FIG. 13. Diagrams for retarded and Keldysh self-energy
within Hartree approximation are shown. At the one-loop or-
der, the retarded self-energy is a frequency independent one-
time object ⌃R(t) while the Keldysh component vanishes due
to the causality structure of the equal time Green’s functions.

two times, ⌃R(t, t0) [44, 45]. However, if we calculate
⌃R(t, t0) within a Hartree appproximation, i.e. restrict-
ing ourselves to lowest order diagrams (Fig. B), the
retarded self-energy becomes local in time, ⌃(t, t0) =
⌃R(t)�(t � t0)[58]. The Keldysh self-energy ⌃K(t, t0)
(Fig. B, right) which typically introdues noise in the dy-
namics (see section 11.3 of the Ref.60), vanishes within
a Hartree aprroximation due to causality structure of
the equal-time Green’s functions DR(t, t) = 0. Thus,
within the Hartree approximation, we may write the non-
equilibrium Dyson equation for the interacting retarded
Green’s function as [58]

DR

int
(t, t0) = DR(t, t0) +

Z
DR(t, t1)⌃

R(t1)D
R

int
(t1, t

0).

(B1)
Inverting the above equation by applying D�1R from the
left and D�1R

int
from the right we obtain,

D�1R
int

(t, t0) = D�1R(t, t0)� �(t� t0)⌃R(t0)

= �(t� t0)
⇥
�@2

t
� (!2

P
+m(t) + ⌃R(t))

⇤
(B2)

In this way, the quantum corrections in the Hartree
approximation appear as a modification in the time-
dependence of the mass of the polar mode.
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Appendix C: Proof that hP 2
q Pcli = 0.

To prove the identity hP 2
q
Pcli = 0 we consider the point-split relation hPq(t+ �)Pq(t)Pcl(t� �)i, which we rewrite

as a path-ordered expectation value of the corresponding Heisenberg operators

hPq(t+ �)Pq(t)Pcl(t� �)i =
1

2
hTC(P̂+(t+ �)� P̂�(t+ �))(P̂+(t)� P̂�(t))(P̂+(t� �) + P̂�(t� �))i.

(C1)

where TC denotes ordering along the Keldysh contour. We now expand this into eight terms, noting that (i) operators
on the lower (-) contour occur after operators on the upper contour (+), (ii) operators on the upper contour are
time-ordered (iii) operators on the lower contour are reverse-time ordered. Thus since t+ � > t > t� �,

hTC P̂+(t+ �)P̂+(t)P̂+(t� �)i = hP̂ (t+ �)P̂ (t)P̂ (t� �)i
hTC P̂+(t+ �)P̂+(t)P̂�(t� �)i = hP̂ (t� �)P̂ (t+ �)P̂ (t)i

�hTC P̂+(t+ �)P̂�(t)P̂+(t� �)i = �hP̂ (t)P̂ (t+ �)P̂ (t� �)i
�hTC P̂+(t+ �)P̂�(t)P̂�(t� �)i = �hP̂ (t� �)P̂ (t)P̂ (t+ �)i
�hTC P̂�(t+ �)P̂+(t)P̂+(t� �)i = �hP̂ (t+ �)P̂ (t)P̂ (t� �)i
�hTC P̂�(t+ �)P̂+(t)P̂�(t� �)i = �hP̂ (t� �)P̂ (t+ �)P̂ (t)i
hTC P̂�(t+ �)P̂�(t)P̂+(t� �)i = hP̂ (t)P̂ (t+ �)P̂ (t� �)i
hTC P̂�(t+ �)P̂�(t)P̂�(t� �)i = hP̂ (t� �)P̂ (t)P̂ (t+ �)i. (C2)

We see that the first and fifth, second and sixth, third and seventh and fourth and eighth terms cancel one-another,
so that the total sums to zero.

Appendix D: Derivation of Quantum Self-energy for single mode phonon

In the main text, we calculated the quantum correction in the form of Hartree self-energy ⌃(t) in Eq.77 for a
single-mode phonon. Here we will derive �(t) starting from the formulation to calculate Keldysh Green’s function of
a harmonic oscilator with time-dependent frequency given in Eq.75. The Hartree self-energy,

⌃(t) = 3↵iDK(t, t) =
3↵

2!P

(a2(t) + !2
P
b2(t)) (D1)

We solve the di↵erential equations given in Eq.73 to obatin the solutions with z = !P t0,

a2(t) = ⇡2


Ai0(�z2/3)Bi

⇢✓
1�

t

t0

◆
z2/3

�
�Bi0(�z2/3)Ai

⇢
�

✓
1�

t

t0

◆
z2/3

��2

b2(t) = ⇡2z2/3

Ai(�z2/3)Bi

⇢
�

✓
1�

t

t0

◆
z2/3

�
�Bi(�z2/3)Ai

⇢
�

✓
1�

t

t0

◆
z2/3

��2
(D2)

where Ai and Bi are Airy functions and Ai0 and Bi0 denotes their derivatives respectively.
In the quench limit, !P t0 ⌧ 1, the Airy functions can be expanded in power series of z of the form,

Ai(z)⇡
1

32/3�( 23 )

✓
1 +

z3

6

◆
�

z

31/3�( 13 )
,

Bi(z)⇡
1

31/6�( 23 )

✓
1 +

z3

6

◆
�

z31/6

�( 13 )
,

Ai0(z)⇡
1

31/3�( 13 )

✓
1 +

z3

3

◆
�

z2

2⇥ 32/3�( 23 )
,

Bi0(z)⇡
31/6

�( 13 )

✓
1 +

z3

3

◆
�

z2

2⇥ 31/6�( 23 )
,

(D3)

Collecting the coe�cients of the leading powers of z we obtain Eq.77 as,

⌃(t) =
3↵

2!P

✓
1 +

t3!2
P

3t0

◆
,!P ⌧ 1/t0. (D4)



20

On the other hand, in the adiabatic limit !P t0 � 1, we get the same answer as the time-independent harmonic
oscillator with its mass term !2

P
replaced by !2

P
+m(t).
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