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We consider systems of NV diffusions in equilibrium interacting through
a potential V. We study a “height function” which for the special choice
V(z) = e ", coincides with the partition function of a stationary semidis-
crete polymer, also known as the (stationary) O’Connell-Yor polymer. For a
general class of smooth convex potentials (generalizing the O’Connell-Yor
case), we obtain the order of fluctuations of the height function by proving
matching upper and lower bounds for the variance of order NV 2/ 3, the ex-
pected scaling for models lying in the KPZ universality class. The models
we study are not expected to be integrable and our methods are analytic and
non-perturbative, making no use of explicit formulas or any results for the
O’Connell-Yor polymer.
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1. Introduction. The O’Connell-Yor polymer [30], also known as the semi-discrete
polymer, is a central model of the Kardar-Parisi-Zhang (KPZ) universality class. The model
is an ensemble of up-right paths in a random environment formed by independent standard
Brownian motions By, ..., By, with partition function

(1.1) Zn4(B) ::f eﬁzj-\]:lBj(Sj)_Bj(ijl)dsl“'dSNil’
0<s:1<...<sy_1<t

where we use the conventions sp = 0 and sy = . The free energy is defined by log(Zn +(3)).

This model, along with a stationary version also introduced in [30] (see Section 2.1 below for

the definition), has been an object of intense study over the past decade. Using the stationary

version, O’Connell and Moriarty [32] computed the limiting free energy density

. 1
(1.2) lim—log Zy,(8).

Seppildinen and Valké [38] showed that the fluctuations of the free energy are of order N 5
for both the stationary and non-stationary models when N and ¢ are tuned in a certain char-
acteristic direction (otherwise the fluctuations are Gaussian and of larger order). O’Connell
[31] introduced a multidimensional diffusion process related to Dyson Brownian motion such
that the law of log Z v ; is equal to that of the “leading particle" of the process, and used this
to give a contour integral expression for its distribution. An alternate contour representation
was used by Borodin, Corwin and Ferrari [8] to show that the free energy asymptotically
has Tracy-Widom fluctuations, confirming the expectation that the model belongs to the KPZ
universality class. Virdg [44] shows convergence of a suitably centered and rescaled version
of log Zn+(1), as well as the KPZ equation, to the KPZ fixed point of Matetski, Remenik
and Quastel [27]. In this context we also note the concurrent and independent work of Sarkar
and Quastel [42] obtaining convergence to the KPZ fixed point for a broad class of exclu-
sion processes, as well as the KPZ equation itself. An alternative (but equivalent [29]), more
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geometric, description of the scaling limit is the directed landscape, obtained as the contin-
uum limit of Brownian Last Passage percolation, corresponding to 3 = o0, introduced by
Dauvergne, Ortmann and Virag [10].

It has been noted by several authors (see for example [17, 31, 34, 40]) that the sequence

v;(t) =log Zj s

for j =1,..., N satisfies a system of stochastic differential equations of the form:
de = —V/(Uj - Ujfl)dt + dBj,
(1.3)
V(x):=e P2

In this setting, the implication of the Burke property discovered by O’Connell and Yor for
their polymer model [30], is that the solution {v;(¢)}1<j<n has an invariant measure of
product form. The “zero temperature" case, corresponding to the limit 5 — oo of the system
(1.3), has been studied by Sasamoto-Spohn as well as Ferrari, Spohn and Weiss [15, 16, 17,
34]. In this formal limit, the system consists of Brownian motions reflected off each other.
Ferrari, Spohn and Weiss’s results imply that for various classes of initial data, the distribution
of the system has explicit expressions in terms of contour integrals that can be analyzed
to find limiting distributions given by the Airy process. More recently, Nica, Remenik and
Quastel [28] showed that the scaling limit of the time-dependent system at zero temperature
is described by the KPZ fixed point.

Systems such as (1.3), as well as the equilibrium version we study below are the totally
asymmetric analog of the following classical system of interacting Brownian motions studied
in, e.g., [39] (see [18] as well for the case S = o0):

(1.4) dvj = (V’(’Uj.H — Uj) — V/(Uj — Uj_l))dt + dBj.

For general convex V/, this is sometimes known as the Ginzburg-Landau system [45]. Chang
and Yau [9] famously derived the fluctuations for such processes out of equilibrium. In this
symmetric case, the fluctuations are of order N i

Diehl, Gubinelli and Perkowski [11] study the weakly asymmetric case, where (1.4) is
replaced by

de = (pV/(Uj+1 — ’Uj) — qV’(vj — ’Ujfl))dt + dB]
with p — ¢ = 1/N and show that after suitably rescaling, the field
’LLj = Uj — Ujfl,

converges to a solution of the stochastic Burgers equation. Their result holds for a class
of convex potentials with V' Lipschitz. The recent work [20] specifically addresses the
O’Connell-Yor case and proves convergence to the stochastic Burgers equation in the in-
termediate disorder regime.

The purpose of this paper is to probe the universality of the fluctuations of an equilibrium
version of the system (1.3). As described above, the system is exactly solvable and known
to lie in the KPZ universality class in the special case V' (z) = e~*. However, the KPZ uni-
versality is conjectured to hold for generic classes of potentials, beyond the exactly solvable
cases. For example, Ferrari, Spohn and Weiss [16, Chapter 1, p. 3] write that “the exponential
[...] can be replaced by ‘any’ function [of v; — v;_1] except for the linear one, and the system
is still in the KPZ universality class.” Indeed, in the special case of quadratic potentials (i.e.,
V’(x) linear) the system can be solved exactly and we will show that the fluctuations are
Gaussian of order N'/4 as in the symmetric case (1.4).

In the main results of this paper, we will introduce a general class of convex potentials
V" which includes the O’Connell-Yor case V (x) = e™*, but are not expected to be explicitly
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solvable. The class of potentials we consider includes the Laplace transform of any finite
measure compactly supported in (0, c0). To each system of interacting diffusions we associate
a “height function” that coincides with the polymer partition function in the O’Connell-Yor
case. We prove the variance of this height function is of order O(N 2/ 3). In particular, we
recover the upper bounds for the known exponents for the O’Connell-Yor model [38, 33]
entirely through a dynamical approach without appealing to the polymer representation (1.1)
or any exact formulas whatsoever, as both are unavailable for the class of models we consider.
Secondly, under a curvature condition (satisfied in the O’Connell-Yor case, and a condition
that we in general expect to be generic) we complement our upper bounds with a lower bound
for the variance of the same order of magnitude.

Our upper and lower bounds provide evidence for the conjecture that this model lies in the
KPZ universality class by exhibiting the correct order of fluctuations. After introducing our
model and results we will state perspectives on why obtaining the full universality for this
model may indeed be tractable.

The strategy of proof is inspired by coupling arguments appearing in works of Baldzs-
Cator-Seppilidinen for the corner growth model with exponential weights [2], Bal4dzs-Sepp-
dldinen for the ASEP [3], Baldzs-Komjathy-Seppildinen on zero-range and deposition pro-
cesses [4, 5], Balazs-Seppildinen-Quastel on the KPZ equation [6] and Seppildinen on vari-
ous models of last passage percolation and polymers in random environments [36, 37]. All of
these models are expected to belong to the KPZ universality class, and in some cases this ex-
pectation has been confirmed by rigorous results such as the existence of asymptotic random
matrix (e.g. Tracy-Widom) fluctuations.

The difference between the model we consider here and those mentioned thus far — other
than the discrete nature of the state space in most of these works — is that, without the polymer
or particle system interpretation, we do not have access to quantities which play the role of
the occupation length or second class particles when we work with perturbations of the initial
data. We therefore must rely entirely on properties of the system that may be deduced from
the dynamical interpretation (1.3) and the evolution equations we will later derive for the
perturbations.

The models we consider depend on a parameter € > 0, essentially controlling a drift in
one of the Brownian driving terms in (1.3). In [22], the last two authors gave an alternative
proof of the result of Seppildinen and Valké that the variance of the O’Connell-Yor polymer
is of O(N % 3). A substantial component of this argument is that, due to the partition function
representation, the polymer is convex and monotone in . The strategy here follows this
proof in broad strokes; however, the required monotonicity and convexity are now highly
non-trivial (lacking a polymer representation) and the argument now appears quite abstract.
For reader convenience we recall the proof of [22] in Section 3.3.

Our proof of the lower bound relies on the introduction of a random functional which
plays a similar role to the polymer Gibbs measure; for lack of a better term, we introduce
the “pseudo-Gibbs measure” in Section 6. In particular, certain Malliavin derivatives of the
height function can be represented as expectations with respect to the pseudo-Gibbs mea-
sure, similar to the interpretation of a polymer partition function as a cumulant generating
function. However, the connection seems to stop at the first derivative (second derivatives are
not covariances) and so establishing various properties of the pseudo-Gibbs measure (e.g.,
monotonicity of expectations) takes place in a relatively abstract manner.

2. Definition of model and statement of results. Consider the following system of in-
teracting diffusions

{dul = —V'(uy)dt + dBy — 0dt + dB,

2.1
@b de = (V/(Ujfl) *V,(Uj))dt+dBj *dijl, 2<j<N
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Here By,..., By are independent standard Brownian motions on R and 6 > 0. We are
interested in the case where the initial data

u(0) = (u1(0),...,un(0))

is distributed according to the unique invariant measure for (2.1), which is a product measure
of the form,

N N
. 1 —GxJ—V xj .
2.2) wp(x1,...,xN) = Z(9>Nj1j[1e ( )—.jlj[lyg(xj).

Here, Z(0) is the normalization constant,
(2.3) Z(0) := f e 0r=V(@) g
R

and vy is the probability measure on R defined implicitly above. The invariance can be easily
seen at the level of formal calcuation by applying the adjoint of the generator of this diffusion
to the above measure, and will be rigorously justified below (see Proposition 2.2). The class
of potentials V' we consider is as follows.

DEFINITION 2.1.  We say V is of O’Connell-Yor-type if V' > 0 is a smooth convex func-
tion satisfying,

(2.4) V(z)>co*lye oy, V() <0
and
1
(2.5) coV"(z) < =V"(z) < C—V”(az) +Cls_cy,
0

for some constants cg, c, C' > 0.

REMARK. As a consequence of the assumptions (2.4) we have for any 6 > 0 that,
(2.6) V(z)+ 0z >|z| — C'

for some positive ¢/, C’ > 0. O
REMARK. It is easy to see that if x is a finite positive measure whose support is compactly
contained in (0, 20), then

(2.7) V() = fe_“du(s)

is of O’Connell-Yor type, as is V(z) := V,,(x) + ep(z) for ¢ € CF(R) and ¢ sufficiently
small. O

Our assumptions in fact imply an exponential growth condition on V' (x) and so existence
of solutions to (2.1) does not lie within the standard theory. Nonetheless, this system is well-
behaved and for completeness we give a proof of the following in Appendix A. One could
prove the following under considerably less stringent conditions on V/, but this would take us
too far astride of the main goal of our work.

PROPOSITION 2.2. Let V be of O’Connell-Yor type and 0 > 0. The system (2.1) admits
a unique, global-in-time strong solution that is a Markov process with unique invariant mea-
sure given by wy defined in (2.2) above.



2.1. Link with the O’Connell-Yor polymer. Let us now explain the connection between
the model introduced in [30] and the system (2.1) in equilibrium. The stationary semi-discrete
polymer is a polymer model in a random environment, defined by a variant of the partition
function (1.1). Consider a collection By, By, ..., By of N + 1 two-sided Brownian motions
with By(0) = 0 and a parameter 6 > 0. We then define

(2.8) ZJG\'” o f ofs0—Bo(s0)+ X", Bj(s;)—Bj(s;-1) dsg---dsy_1,
' —0<80<81 <...<SN_1 <t

where sy =t as in (1.1), but sg is now a variable of integration. Imamura-Sasamoto [19]
derived a contour integral representation for the above model and found the Baik-Rains dis-
tribution for the limiting free energy distribution. A simple computation using Itd’s formula
shows that the quantities

uPY (t) :=1log Z{ , + Bo(t) — 6t
ud¥ (t):=logZf, —log 2 ,,, 2<j<N

satisfy the stochastic differential equations (2.1) with

V(z)=e".
In particular, we note the following relation involving the free energy:
N
(2.9) log Z8, = Y, uS¥ (t) — By(t) + 0t.
j=1

The main result of [30], the Burke property, implies that u?Y has a product form invariant
measure. That is, if u9Y(0) = (uPY(0),...,u{¥(0)) is an iid vector with the distribution
(log X%_)lgjﬁ ~, where X is a Gamma(6)' random variable, then u©Y (¢) has the same
distribution at later times. In particular,

N
log Z&t:O = Z ujQY(O),
j=1

has the distribution of an iid sum.

2.2. Observable and statement of results. The main object of study in this paper is the
analogue of the free energy in (2.9). Namely, let V' be an O’Connell-Yor type potential, and
let u;(t) denote the solution to (2.1) with initial data distributed according to the product
invariant measure wy. Define,

N
(2.10) W, = > u;(t) — Bo(t) + 6t
j=1
Recall Z(0) as defined in (2.3) and for k > —1, set
v dr+l

Note that 1} (6) > 0, being the variance of a random variable distributed according to v.

! These random variables have density 1{x>0}m9_1e_x %
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From (2.10) and the invariance of wy, we have

(2.12) Var(W5,) < 2Var ( 2 ) +2t =O(N +1).

if the initial data is distributed according to wy. In general, the order of this bound cannot be
improved: by Corollary 5.4 below, we have

(2.13) Var(W§ ) > [Ny (0) — ],

so (2.12) is of the correct order if either one of the two parameters N or ¢ is much larger
than the other. However, for special values of /N and ¢ depending on 6, there is cancellation
between the iid sum and the Brownian motion term in (2.10). For example, we will see below
(see Proposition 2.5) that in the special case V(x) = 352—2, and ¢ = N, the variance can be

computed exactly and the fluctuations are of order N i

The main result of Seppéldinen and Valké [38] for the O’Connell-Yor polymer implies
that if ¢ and IV are suitably chosen (see (2.14)), the fluctuations are of order N é, a growth
rate characteristic of the Kardar-Parisi-Zhang universality class. Our first main result is a
non-perturbative argument which extends the variance upper bound in [38] to a large class of
potentials. Seppildinen and Valké’s proof relies on the polymer interpretation explained in
Section 2.1, which is not available for potentials other than e Bz, 6> 0.

Our upper bound is the following and is proven in Section 4.

THEOREM 2.3. Let V be a O’Connell-Yor type potential. Fix 0 > 0 and suppose that N
and t are chosen so that

(2.14) It — NyY(0)] < AN3,
for some A > 0. Then, there exists C' > 0 such that
(2.15) Var’(W§,) < CN.

REMARK. In general, if one fixes § or allows it to vary over a compact interval supported
n (0,00) one obtains the estimate,

(2.16) Var(W§,) < CN?3 + |t — Ny ()],

for some C' > 0 and all ¢ > 0. O
We remark here that the assumptions (2.4) are primarily used to show that the system (2.1)
is well-posed and that the solutions are differentiable with respect to various parameters. We
expect that our argument can likely be extended to any convex V satisfying (2.5) for which
well-posedness and certain differentiability properties hold.
The characteristic direction condition (2.14) is equivalent to

d 2
(2.17) EWn(6,0)] = oY (6) —t = O(N'),
Itensures that of the two terms };; u;(¢) and By (t) — 0t in the sum (2.10), neither is dominant.
This can be seen from our variance representation Lemma 4.1. Here the last terms on the
right side of these representations are the covariances of By(t) + 6t, resp. > ; Uj> with the

sum (2.10). These covariances are shown to be essentially controlled by

H;eWN’f(e G)H

A similar condition appears in the context of last-passage percolation in a quadrant, where
one has to tune a parameter to ensure that neither the horizontal nor the vertical boundaries
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are too attractive. Here, the relevant condition turns out to be that the parameter be (almost)
a critical point expectation of the passage time, the analog of (2.17) (see [37]).

If, instead of the characteristic direction condition (2.14), we assume that |t — N1} ()| is
much larger than N2/3, then the fluctuations are of larger order and are in fact Gaussian. The
following is proven in Section 5.4.

COROLLARY 2.4. Fix 6 > 0 and suppose that t =ty is such that

=9l (0]
219 NN P
Then,
(2.19) Wl%,t - E[Wj%,t]

[t =t (0)]'?

converges to a standard Gaussian random variable as N — 0.

In the case where V' (x) is quadratic, the system (2.1) is linear and admits an explicit
solution as a Gaussian process. In this case, we have the following, proven in Section 8.

PROPOSITION 2.5 (The Gaussian case). Let V(z) = %2 Then, for each 6 > 0, the ran-
dom variable Wﬁ,t is a Gaussian with variance,

0 t SN—I s tN .
When t = N, we obtain that the normalized quantity
(E) 1/4 W]%,N
2 N1/4

is asymptotically a standard normal random variable as N — 0.

We complement the upper bound in Theorem 2.3 with the following. The proof appears at
the end of Section 7.3.

THEOREM 2.6. Assume that V' is of O’Connell-Yor type and let 0y > 0 satisfy 1y (6y) <
0. Then, there is a ¢ > 0 so that

(2.21) Var (Wﬁ}it) > max{[t — N} (6p)|, N3}

The derivative 1 (0) equals (minus) the third central moment of a random variable dis-
tributed according to vy. Lemma D.1 proves via a dynamical argument that 1 () < 0 for
O’Connell-Yor type potentials. In the case V(z) = e~ in fact (—1)**1¢} (9) > 0 for all
k > 2. In the Gaussian case V (z) = “”—22 we have 13 (6) = 0 and the fluctuations are of lower
order.

3. Tools and techniques. In [22], the last two authors gave an alternative proof of the
result of Seppildinen and Valké (the N''/3 fluctuations of the stationary O’Connell-Yor poly-
mer). This relied on interpreting the partition function as a log-moment generating function,
allowing for the easy proof of certain monotonicity and convexity properties of the under-
lying couplings. For example, log moment generating functions are typically trivially seen
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to be convex functions, their second derivatives being a variance of the underlying random
variable.

The argument we give proving our upper bound will follow in broad strokes that given in
[22]. For this to work, we will require perturbations of the system under various parameters
to have certain monotonicity and convexity properties. This requires careful choice of the
underlying couplings. In this section we will introduce our couplings and then give an outline
of the proof of our upper bound. We will then discuss other aspects of our proofs.

3.1. Couplings. For notational simplicity let us choose a realization of the Brownian
motions driving (2.1) so that they are continuous for every point in the underlying proba-
bility space; for example the canonical realization on Wiener space suffices. As a result of
Appendix A we have the following.

PROPOSITION 3.1.  For every choice of the initial data and every realization of the Brow-
nian motions the system (2.1) has a unique strong solution {u;} ;=1 in that they are continuous
functions satisfying,

ul(t) — U (0) = — J:(V’(Ul (S)) + 9)ds + Bg(t) + Bl(t)

¢
G uy(t) —u;(0) = J (V'(uj—1(s)) = V'(u;(s)))ds + B;(t) — Bj-1(t),  j=2
0
foreveryt > 0.
Given the previous, we can introduce the following couplings.

DEFINITION 3.2. Let {¢;};°; be iid uniform (0,1) random variables. For any ¢ > 0
define,

1 €T
(3.2) Fe(z) = f e~V gy,
T2 )
For any 7,6 > 0 we now define u;(t,7,6) to be the solution of (2.1) with initial data,
(3.3) u;(0,,0) := F; (g5).

Note that {u;(0,7,8)}Y 4= are distributed as the invariant measure wy, of the system (2.1) with
0 =n.

We will refer to n as the initial data parameter and 6 as the driving parameter. Given
71,0 > 0 we introduce the two-parameter height function by,

(3.4) Wi e(n,0 Z i(t,m,6) — Bo(t) + 6,

so that the height function Wﬁu defined in (2.10) has the distribution Wl%,t L Wi (0,0).

3.2. Variance formula. In Section 5.1, we derive two representations for the variance in
terms of derivatives of the height function with respect to the initial data and the parameter
in the equations, respectively. For example, we have

(3.5) Var(W§ ) = Ny (0) — t + 2E[3gWn4(1, 0)]y=0)-
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Note that N} (§) —t = O(N?/?) under the characteristic directions assumption (2.14) on
N and t, so the main difficulty in obtaining the upper bound is to show that the term

(3.6) E[0e Wi (1,6)|n=6]

. 2
is of order Ns.

3.3. Upper bound. In Section 4, we derive the upper bound. As stated, we must show
that the term (3.6) is O(N 2/ 3). At first glance, the computations we carry out in Section 4
may be puzzling. In order to explain our proof, we will discuss in this section the O’ Connell-
Yor case V(x) = e~?. In this case, the last two authors previously gave an alternative proof
of the upper bound in [22], which served as the initial inspiration for our computations.

For the O’Connell-Yor polymer, Wy (0, 7) has the same distribution as log Zﬁ}z, where

(3.7) Z]’z;‘i;zj b5 =m0 =Bo(s0)+ X1, By () =Bi(si-1) g0 . .. dsy_y.
’ —00<59<81<...<Sny_1<t

Here s§ = max{0,so} and s; = max{0,—so} are the positive and negative parts of so.

Compare this to the log partition function (2.8), which equals log Zje\}et. In this case,

(3.8) E[0gWn 1 (1,0)|n-0] = E[E% ,[s¢1]-

Here E?V , denotes the random measure associated to the partition function (2.8):

EX 4 [f (s0,-- -, sn-1)]

3.9
1

— J 6980—BO(SO)+Z§\;1Bj(Sj)—Bj(Sj—l)f(
Z]\}t —00<80<81<...<SN-_1<t

50,7+ ,8N—1)dsg---dsy_1.

The key point is that the total derivative

d
(3.10) 35 Vv(0,0) = B [s0],

is easier to control than E[E¢; ,[s;]]. For example, we have

G.11) E[EY ,[s0]] =t — N (8) = O(NS),

under the characteristic direction assumption (2.14). Here and below we let ¢y, = w,‘c/ in the
O’Connell-Yor V() = e~ case. In this case, we have

0 0 _
(3.12) 210 20 = Eulsgl, 5 log 3 = =Bl
n=0 il n=0
Therefore,
(EXals0D)? = (QaWnu(0,1)n=0)* + (0 W +(0,1) ] =0)°

(3.13) + 256WN,1€(9777>’7]:9 : anWN,t(0>77)’77:9
(E?v,t[s(ﬂ)z + (E%,t[sa])z - 2E12/7t[38r]E1g/7t[55]7

(Ejo\,7t[sg])2 - QE%,t[SS]E?Q,t[SS]-

The first line is not strictly necessary for the above calculation; however, when we leave the
O’Connell-Yor case, we no longer have the Gibbs expectations to work with and things must

(3.14)

v
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be phrased in terms of derivatives of Wy ; as much as possible. We see that, to replace the
sg by s, we must estimate the cross term E&t[sg ]E&t[sa | from above. This error term
can be expected to be small. This is because it turns out that, with respect to the random
measure EZQV +» S0 is concentrated around E]@\, .[50] on a much smaller scale O(N'/2) than the

typical size and standard deviation of EN [s0] = O(N 3) with respect to P. More precisely,
by invariance, we have:

2

B W (0,0)] = E [ Exal(s0 — B[] 7]

showing that the quenched variance is O(V) in expectation. This means that, for a given re-
alization of the Brownian motions By, ..., By, the quantity sq lies within N'/2 of E, ,[so]

(3.15) Nio(0) =

which is of the order N?/3. Therefore, s is very likely to have the same sign as this expecta-
tion, so that %, ,[sg]E% ;[so ] should be small. The observation in [22] making this picture
rigorous is that the RHS of (3.15) equals

(3.16)

E[En:[(sq — Enilsq 1)) + E[Enel(sg — Enelso D] + 2E[Enilsg 1En.[s5 1],

due to the fact that 30 and s; have disjoint support. This shows that the cross-term on the
last line of (3.14) is at most O(N), an acceptable error compared to the target bound for

2 s
E[E,[s81] = o).

Next, once one has replaced dpWy; by the total derivative, we can apply convexity of
6 — Wi (6,0). That is, the derivative can be bounded in terms of difference quotients:

Wit(0,0) = WA, A-) _ - d A e (0,6) < WA A4) — WN,t(9>9)7
0 =10 N — 0

(3.17)

where A+ = 6 + N~1/3. So, this implies that E{ ,[s5]* can be controlled by the square of
the LHS and RHS of (3.17). But these quantities can be related back to the variance of W]% ‘
and W}Lt. In order to move the Ay back to 6, we use the estimates,

(3.18) E[Wn+(6,0)] — E[Wy¢(As, Ar)] = O(N)

which uses the characteristic direction assumption (see (4.12) in the general setting of this
paper) as well as a similar estimate for perturbing the variance (see Lemma 4.5). Hence, we
obtain

(3.19) E[E (59 1] < E[ER,[s3 17172 < C(N'E)(V + NY2)
where V = Vare(WNi). Combined with the variance representation (3.5) we obtain,

(3.20) YV <CN3(V: + N3)

which completes the proof.
Reproducing the above strategy in our setting requires overcoming a number of serious
obstacles. We list the most important ones below.

(1) In the O’Connell-Yor case, the expression (3.7) provides a natural coupling between the
solutions with different inital data that is monotonone and convex in 7, crucial properties
for the proof. No such coupling is provided a priori for the system (2.1).

(2) For general potential V, the height function W +(¢,6) is only defined by analogy with
the O’Connell-Yor log partition function. It is not clear what the meaning of the Gibbs
measure ng,t['] or 5o should be in the general case. The interpretation of the derivatives
in terms of expectations is used crucially in several places like (3.14).
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(3) Given a suitable coupling of the initial data, the derivatives of Wy .(6,6) in the case
of general V' share certain good features, such as their sign and monotonicity, with the
corresponding quantities in the O’Connell-Yor case. We exploit these more fully in our
proof of the lower bound. However, there is no exact relation analogous to (3.16) between
the second derivative (3.15) and the cross-term in (3.13) in the general V case, and so a
different approach must be used to estimate this term.

3.4. Lower bound. Section 7 contains our proof of Theorem 2.6, our lower bound. We
will see that, due to the lower bound | Ny (6) — t| for the variance, it suffices to consider
the case that t = Ntb3 (). Our proof draws some inspiration from [33]. This is essentially a
change of measure argument which attempts to make the event {W&t — E[W]%,t] > cNY 3
typical by relating Wﬁﬂt to Wi%ﬂt’ for \ =6 + N~1/3,

The main observation we use from [33] is that, due to the Cameron-Martin theorem and
Cauchy-Schwarz, one can change the driving parameter 6 to A for s € [0, TN 2/ 3] for any
T > 0 at the cost of an overall multiplicative constant in the probabilities. After doing so, one
still must change the driving parameter in the remaining range of s > TN%/3 as well as in the
initial data. The initial data change turns out to be monotonic in the correct direction, so only
the large time regime must be handled.

In the O’Connell-Yor case, this perturbation of the parameter would be related to the
quenched probability that {sg > T'N 2/ 31. One would require a bit more concentration than is
contained in the estimate of O(N?/3) for the variance of W]%’t (as the variance decomposi-

tion (3.5) provides an estimate for the annealed expectation of sa“ ). For example, one could
compute a fourth central moment.
In our case, our argument rests on our discovery of a random functional that we call the

pseudo-Gibbs measure, and denote by E](\Z’f). This is introduced in Section 6. It has an ex-
plicit form as an integral over the /N-simplex of positive times and is reminiscent of (3.9).
(One could extend it to negative times with a bit more work but this is unnecessary for us.)
While in fact 0y Wi (1, 6) = E](\Z’f) [s¢] as for the O’Connell-Yor polymer, this is no longer

true for higher derivatives and in general deducing desired properties of E](\’;f) as function

of various parameters requires indirect reasoning. Nonetheless, it defines a measure on the
simplex with total mass less than 1 and so one can apply standard analytic arguments, e.g.,
Cauchy-Schwarz, etc.

In order to control the perturbation of 8 for large times, we prove moderate deviation
exponential tail estimates of sa’ with respect to the annealed pseudo-Gibbs measure. Here,
we roughly follow an argument of Emrah-Janjigian-Seppalainen [14]. A crucial input is that,
in analogy with a result of Rains [35] and Emrah-Janjigian-Seppalainen [14] for Last Passage
Percolation with exponential weights on Z? (the discrete, “zero temperature” version of the
O’Connell-Yor polymer), one can derive an exact expression for

(3.21) Elexp ((n = 0)Wn(n,9))]

using the Cameron-Martin formula.

We remark here that under the additional assumption 1 (§) < 0, our upper bound (2.15)
for the variance also follows from the estimates we obtain for the pseudo-Gibbs measure.
Since the derivation of these estimates is at least as involved as the proof of the upper bound
(compare for example Propositions 4.2 and 6.4), and since the upper bound can be obtained
without introducing additional definitions or assumptions, we present separate proofs for the
upper and lower bounds.
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3.5. Organization of the remainder of paper. In Section 4 we will give the proof of The-
orem 2.3, our upper bound for the variance of Wﬁ,t, assuming a number of intermediate
results which are stated in the course of the proof, and whose proofs are given in Section 5.
The proof given in Section 4 follows along the general lines of the argument sketched above
in the O’Connell-Yor case.

The various auxilliary results proven in Section 5 are as follows. Our representation of the
variance is stated as Lemma 4.1 and is proven in Section 5.1. Various monotonicity properties
of the first derivatives are stated and proven in Section 5.2. In Section 5.3 we collect the
various properties of the second derivatives of Wi +(n,6) that we need. In particular, our
substitutes for the elementary convexity in the O’Connell-Yor case, which are Lemmas 4.3
and 4.4, are proven in Section 5.3.1. Our result that treats the analog of the cross term on the
last line of (3.14) is Proposition 4.2 and is proven in Section 5.3.2. Finally, a result concerning
the stability of the variance under change of parameters is stated as Lemma 4.5 and is proven
in Section 5.3.3.

Our lower bound, Theorem 2.6, is proven over the course of Sections 6 and 7. In Section
6.1 we use the Cameron-Martin theorem to derive an exact expression for certain exponential
moments of Wy ,(7,6), the quantity appearing above in (3.21). The pseudo-Gibbs measure
is introduced in Section 6.2 and in Section 6.3 we derive an upper tail bound for the random
variable sp under the pseudo-Gibbs measure. In order to prove our lower bound, we intro-
duce a three-parameter height function in Section 7.1 which is only a slight generalization
of W +(n, ). The main argument in the lower bound is given in Proposition 7.3, as it deals
with the case when the quantity t — N1} () = 0. The general case is an easy corollary and
so the full proof of Theorem 2.6 is given in Section 7.3.

In Section 8 we deal with the Gaussian case, giving the short proof of Proposition 2.5.
This boils down to a calculation of the variance as an integral, which in the case N =t may
be analyzed via Stirling’s formula.

For ease of presentation, we have deferred most of the “soft” analysis to the appendices.
These include the proof of well-posedness of the equations (2.1) and the determination of
the invariant measure, which are both handled in Appendix A. Since the “drift" terms V' (u;)
appearing in the equation can have super-linear growth, the existence of global solutions does
not follow directly from the most basic existence theorems for SDEs in the case where V is
of O’Connell-Yor type. However, our assumptions on V' (x) imply that it is strongly confining
for negative = and sublinear for x > 0. Two further facts which simplify the analysis are the
constant diffusion coefficients and the triangular nature of the system, that is, for each k, the
first k equations form a closed system.

As can be seen from the discussions above, we will often need to differentiate various
quantities with respect to the parameters 7 and 6. The differentiability is treated in Appendix
B. If the reader accepts differentiability, then this section can be safely ignored, except for
Appendix B.1 which contains a few elementary properties of triangular systems of ordinary
differential equations. The punch-line is that the various derivatives of the u; and Wy ; will
satisfy triangular systems of ODEs, resulting in various a priori bounds. Appendix C con-
tains some elementary calculations using calculus primarily for the purposes of showing that
derivatives of the initial data with respect to 1 (recall the coupling given in Definition 3.2
above) have finite moments. This is also required to differentiate under the integral sign in
a few places throughout our proofs. Finally Appendix D contains the proof that 1 (6) <0
under our assumptions.

3.6. Future perspectives. Exhibiting the KPZ universality for non-integrable random
growth models remains a challenging research direction. In this context, the system of in-
teracting diffusions studied in this work is particularly exciting as it may offer a tractable
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setting in which to prove such universality results. In particular, due to the simple way in
which the randomness of the Brownian motion terms enter in the system (2.1), it may be
possible to apply some of the ideas that appear in recent works on ergodicity of Dyson Brow-
nian motion [23, 24, 25]. Here, the main point is that by coupling general systems to those in
equilibrium (by allowing them to have the same underlying driving Brownian motion terms,
similar to how we have coupled the systems at different parameters) one derives parabolic
difference equations for their differences, allowing for the use of PDE methods to study the
time to local equilibrium (e.g., the energy method). The dynamical methods of random matrix
theory (see [13]) have inspired recent studies of the universality of lozenge tilings of general
domains [1], and it is still unclear what is the full range of applicability of these ideas.

Important to the dynamical approach is obtaining certain a priori bounds on the quantities
in play, as these are used to estimate, e.g., coefficients in the derived parabolic equations. In
the eigenvalue context these are known as the local laws or rigidity results. In our setting,
the variance estimates may be viewed as progress towards such estimates. In [22], the last
two authors obtained concentration estimates for the O’Connell-Yor polymer. The starting
point, a recursive scheme for estimating higher moments based on lower ones via Gaussian-
integration-by-parts, is applicable here (remarkably, such schemes - using cumulant expan-
sions in the place of Gaussian-integration-by-parts - have also found much recent success in
random matrix theory, and are used to derive rigidity results in this context see [12]). Both the
universality of our model as well as obtaining moderate deviations results (i.e., an exponential
tail estimates similar to [14]) are subjects of current investigation.

3.7. Notational conventions. Throughout the paper we will use the notation ¢,C' > 0 to
refer to generic constants whose value may change from line to line. In each proof, the value
changes at most finitely many times.

4. Proof of upper bound. Recall the two-parameter height function Wy (7, 6) as de-
fined in (3.4). We will denote derivatives with respect to the first parameter by 0, (the initial
data parameter) and those with respect to the second parameter (the driving parameter) by
0Op. Note that we will evaluate the two-parameter height function on the diagonal § = 7 and
so the notations (0, Wy ¢)(6,6) and (0sWn¢)(6,6), etc., are understood.

Our starting point is the following representation for the variance.

LEMMA 4.1. We have,
Var(Wy4(0,0)) = Ny (0) — t + 2E[(0sWx4)(6,6)]

4.1) =t — Ny (8) — 2E[(3,Wn 1) (6,6)].

The proof is given in Section 5.1. We record here as well the identity,
(4.2) E[Wn.(0,0)] = 0t — Ny (6)
which follows from the definition of Wy ;(6,0) in (3.4), the fact that the u;(t,6,6) are in the
invariant distribution wyg (2.2) and the definition of w,‘;(ﬁ) in (2.11).
From the first representation in (4.1), it suffices to prove the estimate,
(4.3) E[(06Wnz) (0,6)] < CN3 4+ CNY3 (Var(Wi4(6,6)))"/
which will be the goal of the remainder of the proof. In order to handle the LHS, we apply

Cauchy Schwarz and estimate,
E[(0Wn,)(0.0)]* < E[(0Wn.)(0,6)°]

2
@4 <E [((fQWN,tw, ) ] —2E[(2,W1) (6.6) (2aWv) (6.0)].
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The cross term is difficult to estimate. We will prove the following two results which relate it
to the second derivative.

PROPOSITION 4.2.  For all N,t and 0 we have,
(4.5) 0<—(0,Wns) (0,0) x (0aWis) (0,0) < (co) ™ (8,0§Wnt) (6,60),

where cg > 0 is the constant from Definition 2.1.

LEMMA 4.3.  We have for all n,0 > 0 and N and t > 0,
(4.6) (BWn1) (,0) =0, (3,06Wn0) (1,6) = 0.
Uniformly in 1,0 varying in compact subsets of (0,00)? we have for all N,t > 0 that,
4.7) E[(0:Wny) (n,0)] = —CN.

Proposition 4.2 is proven in Section 5.3.2 and Lemma 4.3 is proven in Section 5.3.1. Using
the above results and the identity

d2
22400 Wne) (0,0) = 5 Wa(0,0) = (65 Wiv) (0.0) = (3 Wna) (0.0),

in (4.4) we have,

d 2 d2
E[(06Wn.)(0,0)?] <CN +E (dHWN,tw, 0)) T C@E[Wm(ﬁ, 9)]

2
(4.8) <CN+E <£9WN¢(9, e))

where we used (4.2) in the second line (interchange of derivative and expectation is justi-
fied in Proposition C.4). Let now £y = 6/2 and consider A s.t. |\ — 0| < 9. Then by the
nonnegativity in (4.6) we have by Taylor expansion,

d
WA A) = Wai(0,0) = (A —0)—Wn.(0,0)

de
4.9) —(A=0* sup ((FWn)(©0.0))_ ],
0":10—0"|<eo
where (a)_ := 0 v (—a) denotes the negative part of a. For the quantity on the RHS we prove

the following in Section 5.3.1.

LEMMA 4.4. We have,

|9’79|§Eo

2
(4.10) E ( sup ((aE,WNJ)(a/,e’))_) < CN?

Taking A+ := 6 + N~1/3 we see from (4.9) (after moving the (A+ — 6) to the LHS)

E [<;0WN¢(0,0)>2

4.11) + N2BE[(W (A, M) — Wie(6,60))%]}

< C{N*3 4+ N*BE[(W(Ay,\y) — Wis(0,0))2]
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Since by the identity (4.2) we have SE[Wx(0,0)] =t — Ny} (0) = O(N?/3) (by the as-
sumption (2.14) that we are in a characteristic direction), we see that

(4.12) IE[Wxi(As, A+ )] — E[Wy(0,60)]] < CNY3,

In addition, we have the following estimate for comparing the variance of Wy (A, \) back
to that of W (6, 6). It is proven in Section 5.3.3.

LEMMA 4.5.  Uniformly for 0 and \ varying over compact subsets of (0,0)? we have,
(4.13) [Var(Wy4(6,0)) — Var(Wn (A, X)) < ON1[0 — Al
Using Lemma 4.5 as well as (4.12) we obtain,
E[(W(As, Ax) = Wia(0,0))%] < 2Var(Wi oA, Ax)) + 2Var(Wi (6, 0))
+ 4 (E[Wri(As, As)] — E[Wi,(6,6)])
(4.14) < CVar(Wy(6,6)) + CN*/?

Plugging this estimate into the RHS of (4.11), which in turn is used to estimate the last term
on the RHS of (4.8), we see that we have derived,

(4.15) E[(0Wn 1) (0,0)]> < CN*® + ON?3Var(W 4(6,6))
which is equivalent to (4.3). We have therefore derived the inequality,
(4.16) Var(Wy4(6,0)) < C <N2/3 + N3 (Var (W4 (0, 0)))1/2)

which, after applying Cauchy-Schwarz to the RHS, proves Theorem 2.3. U

5. Proofs of auxilliary results used in upper bound. In this section we collect the
proofs of the various estimates used in the proof of Theorem 2.3 given in Section 4.

5.1. Variance representation. In this section we prove our variance representation,
Lemma 4.1. We comment here that existence of the derivatives is justified by Corollaries
B.6 and B.8. We first prove the following.

LEMMA 5.1. We have,
(5.1 E[Bo(t)Wn(n,0)] = —E[(0eWn ) (n,0)]

PROOF. Let us temporarily indicate the explicit dependence of W +(7,6) on the Brown-
ian motion By by introducing the notation W +(n, 6, By). Then,

(5.2) Wi t(n,0 +h) = W s(n,0 + h, Bo) = W (1,6, Bop)
where,

(5.3) Bou(s):= Bo(s) — hs.

By the Cameron-Martin formula,

(5.4) E[W w.(1,0, Bos)] = E[W n.¢(n, 0, Bo)e " Bs®="51],
Therefore,

_ 5 —hBy(t)— 122t _
(5.5) E[Wna(n.6+ h)g EWne(m0)] _ g [WN,t(n, 9, By) (e h 1)]
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By dominated convergence (using Proposition C.5 together with Cauchy-Schwarz) the RHS
converges to,

o—hBo(t) ="

(5.6) %ILT%)E [WN,t(ﬁ,G,Bo) ( N — 1)] = —E[Wn(n,0)Bo(t)].

On the other hand, by Proposition C.4 we have,

This yields the claim. O
REMARK. As can be seen from the above proof, the derivative (dgWy ) (1,6) can be

expressed as the directional (or Malliavin) derivative of Wy ; obtained by perturbing the

Brownian motion By in the direction — SO 11o,7ds. The interested reader will find more infor-

mation on the terminology “Malliavin derivative" in [26, Section 1.2], but note that we will

not be using any refined properties of these objects, other than the ones that can be obtained

directly from the equations. O
PROOF OF LEMMA 4.1. Define

N
(5.8) Ry s(n,0) := > u;(t,n,0
j=1
Then,
(5.9) Var (W +(6,0)) = Var (Rn+(0,0)) —t — 2E[Wn+(6,0)Bo(t)].
The first line of (4.1) now follows from Lemma 5.1 and the fact that,
(5.10) Var (Ry+(6,0)) = NVar(ui(t,0,0)) = Ny (6).
The second follows from the identity,
(5.11)
LN (0) = (10N (0) = SEWi,(0,0)) = B[(6, W) (0.0)]+ E[(@Wov) 0,0)]
where the differentiation under the integral is justified by Proposition C.4. O

5.2. First derivatives. In this intermediate section we prepare a few results about the
signs of the first derivatives of the quantities involved in our proof. For the reader’s conve-
nience, we first restate Corollaries B.6 and B.8 as follows.

PROPOSITION 5.2.  The derivatives,
(5.12) hj(t,n,0) := (dpu;) (t,n,0), ki(t,n,0) = (Oqu;) (t,n,0)
exist and satisfy the systems of ODEs,
O (t) = V" (ur (t))ha () —
(5.13) Oehy(8) = =V (s (D) (8) + V" (wjr ()hya(8), =2
and
Ok (t) = =V (ur ()1 (t)
(5.14) Orki(t) = =V"(uj(t)k; (&) + V" (uj_1(t))kj-1(1), j=2

where we abbreviated h;(t) = h;(t,0,n), etc. The initial data is hj(0) = 0 for all j and
k‘j (0) <0.
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Using the above we can easily derive the following (in fact, some of the signs appearing
below were already stated in Corollaries B.6 and B.8, but the idea of using the systems of
ODE:s satisfied by the various quantities to deduce monotonicity properties is important for
our methods and so the repetition is warranted).

PROPOSITION 5.3.  We have that for all t > 0 and all j,n and all 1,0 > 0 that,
(5.15) hj(t,H,n) <0, ]{Ij(t,@,’l’]) <0.

(5.16) (06Wn ) (n,0) =0, (OnWnt) (n,0) < 0.

PROOF. The inequalities (5.15) follow from Lemmas B.1 and B.3 and the fact that
V”(z) > 0. The second inequality of (5.16) is immediate. For the first inequality we note
that w;(t) := dpW +(n, 8) satisfies the system,

w1 (t) = =V (ur (t))wi(t) + V" (u1(t))t
(5.17) Orw; (t) = =V" (u; (£))w;(t) + V" (u; (t))wj-1(t),

with 0 initial condition. The nonnegativity of the w;(t) then follows from Lemma B.2. [

COROLLARY 5.4. We have the estimate,
(5.18) Var(Wi ¢(0,6)) = [Nyy (6) —t].

PROOF. This follows immediately from using the two representations of Lemma 4.1 and
the inequalities (5.16). ]

5.3. Second derivatives. In this section we prove the various auxilliary results used in
the proof of Theorem 2.3 that rely on the second derivatives. We first state the following,
whose proof is deferred to Appendix B.3.1.

PROPOSITION 5.5.  The functions u;(t,n,0) are C? in the parameters (n,0). Consider
the system of ODEs for the functions f]( ) given the inhomogeneous terms g;(t),
)
)

Orfi(t) = =V"(ur(8)) f1(t) = V" (ur(t)) g1 (t)
Orf(t) = =V"(u;(t)) f5(t) + V" (uj—1(t)) fi—1(t)
(5.19) — V" (u;(t)g;(t) + V" (uj—1(t))gj-1(t),

(60)  (6m) (nm)

where u;(t) = u;(t,n,0) as usual. The second deriviatives u;yuy and ug " all are solu-

tions of this system, with g; = h Jh k],k], respectively, where the k; and h; are the deriva-

tives described in Proposition 5. 2 In each case, gj(t) > 0 for all t and furthermore the initial
conditions for u§90) and u§9?7) are ugee) (0) = u§9") (0)=0.

5.3.1. Signs of second derivatives; proofs of Lemma 4.3 and 4.4. The entirety of this
subsection is devoted to the proofs of Lemma 4.3 and Lemma 4.4. Consider first the case
w;(t) = (03Wjz) (n,0) or w;(t) = (990, W;¢) (n,0). From Proposition 5.5 we see that these
solve the system,

(5.20) Opw;(t) = =V" (u;(t))w; () + V" (uj () wj-1(t) — V" (u;(t))g;(t)

where the g;(t) are nonnegative and we defined wg(t) = 0. Since V" < 0 we see that w;(t) >
0 for all £ and j by Lemma B.2.
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We turn now to the claimed estimates for (ﬁ%WMt) (n,0). Let us decompose

(5.21) u{™ (,0,m) = £;(t) +my(t)

where f;(t) satisfies the system (5.19) with 0 initial condition and g; () = k;(t)?. Then m;(t)
is the solution to the homogeneous system of ODEs,

&tml(t) = —V”(ul (t))ml(t)
(5.22) oymij(t) = =V"(u;j(t))m;(t) + V" (uj—1(t))m;-1(t)

with initial condition m;(0) = uym) (0). Then, arguing as above in the cases of 93W;; and
0,09 W+ we see that

N
(5.23) D) =0
i=1
for all times ¢. On the other hand, by the last estimate of Lemma B.3 we see that,
N
(5.24) Z my(t)] < 7 ™ (0)] =: X ().
7j=1
From this, we see that for any 1 and 6,
(5.25) (GaWne) (0.1) = =X ().
From Corollary C.3 we have that,
(5.26) E[sup | X (n)*] < CN?

nel

for any compact interval I < (0,0). This completes the proof of Lemma 4.3. Lemma 4.4
now follows from the above estimate and that we have shown that for all compact intervals [
we have,

(5.27) inf (02Wn4) (n,0) = —sup | X (n)|.
L G50 (00—l
This completes the proofs of Lemmas 4.3 and 4.4. O

5.3.2. Mixed partials; proof of Proposition 4.2. 'The entirety of this subsection is devoted
to the proof of Proposition 4.2. The first estimate follows from (5.16). Define,

(5.28) Aj(t) = ((9”89Wj7t(77,0) + 0089Wj7t(17,0)877Wj7t(17,0)) ,

n=0
where ¢y > 0 is the constant in the first inequality of (2.5). It suffices to prove that A,,(t) >0
for all n and ¢. This will be proven by induction.

In the remainder of the proof we suppress the arguments (7),6) in all of the functions
considered. We will always consider these functions evaluated on the diagonal n = 6, but the
proof applies equally well off the diagonal.

We recall here that,

5t50Wj,t = —V”(Uj(t))hj(t)
(5.29) OrOn Wi = —V" (u;(t))k;(t)
and

(5.30) 01000 Wie = V" (ui (1)) (£) — V" (u; (1)) (£) 5 (2)
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which follow from Propositions 5.2 and Proposition 5.5, respectively. Therefore,

d d 0 0 02
&An(t) T [CO%Wn,taan,t + M]W”’t]
= —V"(un(t)) | cok (t)iW + coh (t)iW +L2 (s)
= Un, CoRn 20 n,t T Colln (977 n,t aganun S
(5.31) — VO (up, (£)) o (£) e (1).

We now start the induction. When n = 1, we have ki = 0,W1; and 0y0yu1 = 0p0, W1 .
Therefore, when n = 1, we obtain from (5.31) that,

(5.32) %Al(t) — V" (ur (1) Ay (t) — [COV”(ul(t)) +V® (ul(t))] ha (k1 ()

By the assumption (2.5) and that k1, k; are both negative by (5.15), the the last term of (5.32)
is positive, giving

(5.33) S A1) =~V (1) 41 1)

Since A;(0) = 0, we see that
(5.34) Aq(t) =0,

for all ¢ > 0. Next, for n > 1, we have,

0 0 0 0 0 0

0
kn(t) =W, hp=Whpit==Wpit=Wnit— =Wn_1:=W, ho | Ky + =W,
(1) t T+ it on tag it 1, tT ( + on 1,t>

a0 on on 0
0 0 0 0 0
:%Wn,t%wn,t - %Wn—l,t <hn + aawn—l,t> + hn <kn + aan—l,t>
(5.35)
0 0 0 0

=—Whst=—Wpnt — =Wy 14=—W,_ hp () k(T

69 n,tan n,t 59 n 1,ta77 n 1,t+ n( ) n( )a
In the first equality we substituted k,, = 0, Wy, ; — Oy Wyn—1, and 0y Wy s = kp + 0yWp_1.
In the second equality we substituted dgW,, s = hy, + 0gW,,—1+. Therefore, using the above
equality in (5.31) as well as g0yt = 0gOny(Whp — Wy—14) we find,

%An(t) = V" (uy, (1)) [An(t) = An—1 ()] = (coV" (g, (8)) + VO (g (8)) oy, (8) ki (1)
= = V" (up (£)) An(t)
(536)  +V(Wh(t) Ana(t) = eV (ul (1) + VOl (1) | R (KT ().

As in the case case n = 1, since k,, and h,, are nonpositive by (5.15) and by (2.5), we have
that the last term on the last line is positive. Since V" () > 0 and by the induction assumption
that A,,_1 > 0 we see that in fact the entire last line of (5.36) is positive so that

(5.37) %An@) = V" (un(t)) An(t).

Using the initial condition A, (0) = 0, we conclude the proof. O
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5.3.3. Variance comparison; proof of Lemma 4.5. The entirety of this subsection is de-
voted to the proof of Lemma 4.5. Let A > 6. We have,

Var(Wy 1(0,0)) = Ny (0) — t + 2E[(0Wn 1) (6, 0)]
< Ny (6) —t + 2E[(39 W) (A, A)]
(5.38) = Ny (0) — Ny (A) + Var(Wy (A, \)).

In the first and third lines we used the first representation in (4.1). In the second line we used
that the function (1,0) — (dgWn+) (1,0) is increasing in both of its arguments by Lemma
4.3. Therefore,

(5.39) Var(Wiv,4(6,6)) = Var(Wiv s (A, X)) < Ny (60) = 1 ().
For the lower bound using instead the second representation in (4.1) we have,
Var(Wi(6,0)) =t — Nyy (6) — 2E[(0,Wne) (6,6)]
>t — Ny (6) — 2E[(6,W.) (A N)] = CN (A - )

(5.40) = N1 (A) =7 (8)) = CN(X = 0) — Var(Wy 1(A, A).
In the second line we used the second estimate of Lemma 4.3 which results in the extra
CN (X — 0) term compared to the upper bound. The claim now follows. O

5.4. Proof of Corollary 2.4. The entirety of this subsection is devoted to the proof of
Corollary 2.4. Fix 6 > 0 and let tg := N} (0). If t > t; we may write,
(5.41)

Wh—E[W§,] = (Z u;(t,0,0) — (Bo(t) — Bo(t —to)) + tg _E[W]%,tg]> + By(t—ty).

The first term on the RHS has the same distribution as Wﬁ,’to — E[Wﬁ,,to] and so has variance
O(N??3) by Theorem 2.3. On the other hand, By (t — to) is a Gaussian random variable of
variance ¢ — to » N2/3.

If ¢ <ty we note that Wﬁ,t has the same distribution as the random variable,

(5.42) (Z (t +t0,6,60) — (Bo(t + to) — B(to)) + 9t> .
Jj=1
We then decompose,
(5.43)
N
Z—-E[Z] = (Z wi(t + to,0,60) — (Bo(t +to) — B(t)) + 0tg — E[Wﬁv,to]> + B(ty) — B(t).
j=1

The first term on the RHS has the same distribution as W§ , —E[Wf, , ] and so has variance

O(N?3) by Theorem 2.3, and the second term is a Gaussian with variance |ty — t|. The claim
follows. O

6. Pseudo-Gibbs measures and concentration. This section is devoted to the introduc-
tion of the pseudo-Gibbs measures and proving tail estimates of the “first jump” time on the
scale N2/3 with respect to the annealed measure. In the O’Connell-Yor case, these estimates
results can be interpreted as an analog of Proposition 3.3 of [14] for exponential last passage
percolation.
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Before introducing the pseudo-Gibbs measure, we will first give an exact calculation of
a generating function in Section 6.1. Then, we will introduce the pseudo-Gibbs measures in
Section 6.2 and as well as give them a dynamical interpretation. Finally, in Section 6.3 we
prove the advertised tail estimates.

6.1. The Rains-EJS generating function. In this section we derive the analog in our set-
ting of a generating function considered by Rains [35] and Emrah-Janjigian-Seppalainen [14]
for Last Passage Percolation with exponential weights on Z? (the discrete, “zero temperature”
version of the O’Connell-Yor polymer).

PROPOSITION 6.1.  Let Wi +(n,6) be as in (3.4) and define,

(6.1) ©(8) := Ny¥, () — %9% = Nlog(Z(9)) — %0%.
Then,
(6.2) Elexp ((n — 0)Wn,t(n,0))] = exp (¢(0) — (1)) -

PROOF. We write,
(6.3)
Efexp ((n = 0)Wn,t(n,0))] = Elexp {(n — 0)(Wn+(n,0) — Wo(n,0))} exp {(n — 0)Wo(n,0)}]

where,

(6.4) Wo,t<77, 9) = —Bo(t> + 0t.
Since,
N
(6.5) Wt (1,0) = Wou(n,0) = > u;(t,n,0
7=1
and

(6.6)

we may apply the Cameron-Martin theorem to find,

[ N
Elexp ((n —0)Wn,t(n,0))] =E | exp ((n —0) > uj(t,n, 9)) emeo(t);(en)zt] (P2t
i i=1

I N
=E exp( Zuj (t,m,m )] 5 (n*=6%)t

J=1

Z(G)N 1 2—92 t
(6.7) = ez (=0t

Z(m~
where in the last equality we used that the u;(¢,7,n) are distributed as iid v, this being the
invariant measure. The claim now follows from the definition of ¢. O
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6.2. Pseudo-Gibbs measure. For any (N, t,n,0) let us define the measure E( Nt % on [0,7]
by its action on, say, bounded measureable F': [0,¢] — R via,

(6.8)
Sj+1 N—
Eﬁfﬁfqﬁzj exp< E]J‘ V7 (uj(u du) (s1) TI (51 (55))ds,
O<so<-<sy_1<t j=0

where we use the convention sy = ¢. We will only need a few specific choices of (deter-
ministic) I in this paper which are all continuous or piecewise continuous and bounded. For

f R4 — R piecewise continuous, consider the solution hgf ) (t,n,0) to the following system
of ODEs with initial condition hg.f ) (0) =0 for all 7,

o () = =V (un ()" (1) - £ (1)
(6.9) oh (8) = —V" (w0 (1) + V" (s )R 1), =2
We abbreviated u;(t) = u;(t,n,0) and hg-f) (t) = h§f) (t,n,0).

The connection between these two objects is as follows.

PROPOSITION 6.2. Let F': [0,t] — R be of the form,

(6.10) F(s) = L " f(w)du

for piecewise continuous f. Then,

6.11) EVYIF] 2 W) (t,1,0) + F(t).
7j=1

Moreover, for all F,

(6.12) EGDF) < | Fllo

and E](yte ) defines a positive measure that assigns to [0,t] weight less than or equal to 1. If
f is nonnegative, then

(6.13) n () <0
forall j and t.

PROOF. In the proof we suppress explicit dependence on (7, 0) of the various quantities
involved where convenient. By definition we have,

EMOF) = f = Vol (50)) F(so)dso,
0

)

t t ”
©6.14) EMO[F] = f o S VIl U o NWEDD  [Fldse_y,  n>2

n—1,8,-1
0
Denote temporarily,

(6.15) Eng:= Y 0 t) + F(1).

Then,
(6.16) OrEns=—V"(un(t)Ent + V" (un(t) En_14



24

where E‘Qt := F(t). The solution to this system of ODEs is given by (6.14), proving the
desired equality. Temporarily denote now Emt = ELZ’H) [1]. We prove by induction that
En,t < 1. Clearly by (6.14) all the E N,¢ are nonnegative since V' is convex. We have,

t t ” t "
(6.17) By = J e Soo VI @)duy 4 (50))dsg = 1 — e~ oV (w(@)du < 1
0

Assuming that Enq,t < 1 have,

t t " ~
En,t = f e 55"71 v (un(U))duV”(un(Snfl))Enfl,tdsn
0

t t ”
SJ efgsnAV (“"("))duv”(un(sn—l))dS"_l
0

which completes the proof that the Emt < 1 for all n and ¢. Finally, the nonpositivity of the
hg.f ) (t) in the case of nonnegative f follows from Lemma B.1. U
REMARK. The functions hg-f ) (t) can be obtained by adding the parameter —d f to the RHS

of the equation for u;(¢) in (2.1), differentiating with respect to 0 and setting 6 = 0. In the
language of Malliavin derivatives discussed above in the context of the proof of Lemma 5.1,

the hg-f ) are the Malliavin derivatives of the u; obtained by perturbing the Brownian motion

() = 89uj. O

By in the direction — So f(s)ds. For example, when f = 1, one obtains that h ;

6.3. Upper tail bound with respect to Pseudo-Gibbs measure.

6.3.1. Preliminaries. In order to prove our upper tail estimate, we will need to change
some of the parameters in the measure Ez(v ,te) in order to apply Proposition 6.1. The following
two lemmas establish the required monotonicity properties which are then applied to the

observable of interest in Corollary 6.5.

LEMMA 6.3. Let F be of the form,

(6.19) F(s)= J f(u)du

0
for piecewise continuous nonnegative f. Then, the function,
(6.20) 60— EV)[F]

is differentiable in 0 and nondecreasing.

PrROOF. Differentiability of E]((;’f) [F'] follows easily from its definition as an iterated in-

tegral and the fact that V' is smooth and the u;(¢,7, #) are differentiable.
We now turn to proving the monotonicity. We temporarily denote the derivatives by

vj(t) == 69E](\7,77’f) [F] and denote u;(t) = u;(t,0,n). They satisfy,
(621) Gy (t) = =V (i (4)o; () + V" (s (£)) w1 (8) = V" (s (£) (k5 (8)) (Bouu; (8))
with the convention that vy (¢) = 0. By (5.15) and Proposition 6.2 we have,

(6.22) — V"(u; (1) (b (1)) (g (2)) = 0

for all ¢. From Lemma B.2 we have that v;(¢) > 0 for all t. The claim follows. O
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LEMMA 6.4. LetV be of O’Connell-Yor type and let 0 < a < cg where cq is the constant
from (2.5). Let F be of the form,

(623) F(s) = | Fuydu

0
for nonnegative piecewise continuous f. Then, the function
(624) n— eaWN,t(nﬂ)E](\?;’f) [F]

is increasing.

REMARK. In the O’Connell-Yor case, one can take a = 1 and in fact the quantity under
consideration is independent of 7). Indeed, in this case the prefactor cancels the appearance of
partition function in (3.9) and all that remains is an integral restricted to sg > 0 which does
not depend on 7. O

PROOF. By differentiation (differentiability follows as in the previous lemma), it suffices
to prove that

(6.25) a (0 Wne) (0, 0) BN [F] + 0, BV [F] = 0.

The argument will be similar to the proof of Proposition 4.2. We denote the quantity on
the right in the above display by Ay () and suppress dependence of other quantities in the

proof on the parameters (7),) where convenient. Recall the notation k;(t) = dyu;(t,n,6).
()

By directly differentiating (6.11) with respect to ¢ (recall the h j

’s satisfy (6.9)) we have,

(6.26) O EMIF] = V" (un(£))hD (2)

n,t

and so differentiating with respect to 7 we have,

Q0B ] = =V (un(£))0h ) (1) — V7" ()RS (£ ()

n

(6.27) = V" (un(£)) 0 BV TF] + V" (un (1) 0y B TF] = V7" (i (8) B (1) (8),

n—1,t

where we use the convention E&’g) [F]:= F(t) (and so 8,7E(SZ’0) [F'] = 0). The second line
follows from substituting 8nh%f ) (t) = 8nET(:t’9) [F] — é’nET(LT(i)’t[F ].
By Proposition 5.2 we have,
(6.28) 040y Wt = =V (un(£) o (1).
From this and (6.26) we have,

0 (0aWaa) ESP TR = = V7 (1 ()@ W) (1) = V" (1 (0)lin (0 B F

= = V" (1 (£)) (24 W 1) BV [ F]

n,t
6.29) V" (1 (1)) (Oy Woa—1,0) BN [F] = R () V" (1 (1)) o (1),
where we use the convention Wy +(n,60) = —By(t) + 0t, and so 0, Wy +(n,0) = 0. Above, the
second line follows from substituting hY) (t) = ES};") [F] — Eq(f_(i)t [F] in the first term of

the first line, and ngt’e) [F] = r) (t) + E,(Zlel) ([ F] in the second term, and then simplifying
using 0, W ¢ — kn(t) = 0y W1,
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Therefore, combining (6.27) and (6.29) we obtain,
Ot An(t) = =V"(un(t)) Ap(t) + V" (un(t)) Ap_1(t)
(6.30) + (R () en (6) (= V" (un (£)) — aV" (un(2))).

where Ap(t) = 0. By the assumption on a and the fact that k,,(¢) < 0 by (5.15) and r) (1) <
0 by Proposition 6.2 we have that the last line above is a positive function. The nonnegativity
of the A,,(t) now follows from Lemma B.2. O

COROLLARY 6.5. Let 0 <ty <tandlet,

(6.31) F(s)= Lio=t0}-
Let 0 < a < cg where cq is from (2.5). Then, the functions
0
(6.32) 60— BV [F]
and
avv N, (1, ’9
(6.33) 0 — W10 g [ 7]

are nondecreasing.

PROOF. Let

(6.34) fa(u) =1l cuctorn-1y
and

S
(6.35) Fu(s) = f £ ()da.

0
From the definition (6.8) we see that

0 . 0

(6.36) EYYIF) = lim B[R,
The previous two lemmas apply to F}, and so the claim follows. O

6.3.2. Tail estimates. We now turn to the proof of the moderate deviation estimates of
the first jump time with respect to the pseudo-Gibbs measure in the equilibrium case 1 = 6.
We first derive an estimate for the probability that the first jump time is positive, and then use
stationarity to deduce a general tail estimate from the first case.

PROPOSITION 6.6. Let 0y > 0 be such that,

(6.37) ¥y (60) < 0.
Let g > 0 be,

1
(6.38) €= (co A bo),

where cq is the constant from Assumption 2.5. There is a constant Cy > 0 that depends only
on

(6.39) sup  [1)3(6)]
|0—90‘S50
so that for t = N1y (6y) we have for all § satisfying 0 < 6y — 6 < &¢ that

¥y (60)
16

640) E [E](ﬁ”f)u{wo}]] < exp <N (60 — 0)® + NCo( — 9)4>
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PROOF. Let 4a = 6y — 6 > 0. Define also,
(6.41) A:=0+2a.
We claim that,
0,0
BN [Les0)) < BN Lm0y

a ~N,t(Vo N,t 6o, A
< W@ X)W O ERON [1 g, ]

(6.42) < ea(WN‘t(e(),)\)—WN,t,(g,)\)).

Here, since A > @ the first inequality follows from (6.32) of Corollary 6.5. Since 6y > 6, the
second inequality follows from (6.33) of Corollary 6.5. The final inequality follows from
(6.12). By Cauchy-Schwarz and Proposition 6.1,

E [ea(WN,,,(GO,A)fWN,t(O,)\))]2 <F [ezaWN,t(eo,A)] [eanWN,t(G,)\)]

_E[ (% )meo,m] [ewwwzv,t(e,x)]

(6.43) = exp (N(MZ(A) 0¥, (00) ~ 1 (0)) + 5 (68 + 07 2A2>> .
A Taylor expansion at 8y gives

(6.44) 20Y1 (N) — 9, (00) — Y1 (0) = =49y (60)a® + 843 (0p)a® + O(a).

On the other hand,

(6.45) 02 + 6% — 2)\* = 8a*.

We conclude using t = N} (6p). O

LEMMA 6.7. Let 0 <71 <t. We have the equality in distribution,

(6.46) BV an] LEYY 1420

PROOF. By the definition (6.8) we have,

N—
(6,0)
BNy [Lssn] =L<S o <teXp< >

1

sz ))du) 1{s0>T}HV (uj(sj—1))ds

3:0 Sj j 1
N-—1 Sj+1 N

= J exp < f V ))du) 1{80>7’} H V”(uj(sj,l))ds
T<Sp<-<Sy_1<t =0 j=1

(6.47)
exp( Z J J V"( u](u—l—T))du) 1550 HV uj(sj—1+7))ds

f[)<so<~~~<sN1<t T j=1

Now, {u;(s + T)}1<j<nNo0<s<¢ has the same distribution as {u;(s)}1<j<no0<s<t since the
solution to (2.1) is a Markov process and we are assuming that the distribution of {u; (0)}97: 1
1s invariant. Therefore, the last line has the same distribution as,

(6.48)

N—-1 Sj41 N
f exp (— Z J V”(uj(u))du> 1{80>0} H V”(Uj(Sj_l))dS = E](\?”tez,r [1{SU>0}] .
O<sp<--<sy<t—T j=0 Sj

j=1
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This yields the claim. O
The following is the main technical result of this section, and gives an upper tail estimate
for the first jump time under the pseudo-Gibbs measure. We remark here that the upper bound,
Theorem 2.3 also follows from the following result, given the variance representation on the
first line of (4.1). However, this approach requires the additional assumption 1y (6) < 0.

PROPOSITION 6.8.  Let Iy be a compact interval supported in (0,00) on which 1) (6) <0
for all 0 € Iy. Then there is a 6 > 0 and Cy > 0 so that for all pairs (t,0) satisfying 0 € I
and

(6.49) It — NyY(0)| < 0N
we have for all 0 < w < 0N that,

3

(6,0) -3, .4
(6.50) E [EN,t [1{50>e(97t)+w}]] < exp <_16]\7277Z)¥(9)2 + CoN"w )
where,
(6.51) e(0,t) :=t — Ny (0)

as long as e(6,t) + w = 0.

PROOF. Let §; > 0 be such that 1y (#) < 0 forall @ € I; := Iy +[—d1, 01] and this interval
remains strictly contained in (0, 0). Let us take 6 > 0 so small that for all 0 < wg < 104 and
all 0 € Iy, the equation

(6.52) ¥y (60) = 9y (v) = wo.
has a (necessarily unique) solution v € I; admitting the expansion,
wo 2
(6.53) 0 —v)=— + O(wg),
vy () ’
and that
1
(6.54) |0 —v| < 10 (co A (inf 1))

where cg is the constant in (2.5). Now, given 6 € I and ¢ and w satisfying [t — N} (0)| < 6N
and 0 < w < N let v € I satisfy,
w

(6.55) ¥ (0) =¥ (V) = -

The claim is vacuous if e(f,t) + w >t (the LHS of the desired inequality is then 0), so
assume that 0 < e(6,t) + w < t (alternatively we could also reduce the value of § > 0 to
enforce this). By Lemma 6.7 we have,

0,0 0,0
(6.56) E [E](\fyt ) [1{so>e(9,t)+w}]] =E [E](V7tze(97t),w[lso>0]]
Now by definition,
(6.57) t—e(,t) —w=1v)(v).

We may apply Proposition 6.6 with the 6 there equal to the v here and the 6 there equal to
the 0 here. Therefore,

0,0) ¥y (v)

E[EN,t—e(e,t)—w[lso>0]] < exp <N 6 (v—0)2+NC(v— 0)4>

w3
6.58 < I C, N73 4
(6.5%) exp (~ oap + CoN ')
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and the claim follows. O
Finally, we derive a corollary that is suited for application in the next section.

COROLLARY 6.9. Let 6y > 0 be such that 1Y (6y) < 0. Let
(6.59) to:= Ny (6p),  A:=0g+ N3
There are C > 0 and ¢ > 0 so that for all Y > 0 we have,

(6.60) E[EG) [(so— YNY?), ]l <C (N2/3e*C<Y*C>‘1 e N ) .

PROOF. Note that ¢()\,t) = O(N?%3). By Proposition 6.8 there is an £; > 0 so that,

AX g3
(6'61) E[E](V,to) [1{50>51N/2}]] <Ce e N
and for all 0 <y < &1 N we have,
(662) E[E](\?:’ti‘) [1{50>y}]] < Ce_CN72(y_CN2/3)i‘

The measure defined by E](\}\ﬁ) is supported in the interval [0,t] and so we have almost-
everywhere with respect to to the pseudo-Gibbs measure that,

(6.63) (so— YN?3), <ty <CN.

Therefore,

6.64)  E[EQ (50— YN?) 11y oeinyoy]] < ONE[EG) [1(s,2e,n2y]] < Ce™eN

for some ¢, C' > 0. On the other hand,

o0
E[EGY [(s0 — YN?), 15 cconoyl] = fo E[EQ Ly nos s uzsy<es v /oy 1du

©0]
= N2/3 JO E[EJ(\/;\’Q) []—{(Y+u)N2/3<so<€1N/2}]]du

< N2/3 JOO Ce—c(Y-‘ru—C)idu
0

(6.65) < CN?BemeY=0%
In the first inequality we used (6.62). This yields the claim. O

7. Lower bound. In this section we give the proof of our lower bound for the variance,
Theorem 2.6. We first introduce a three-parameter version of the height function W (), 0)
denoted by W N.¢(n,01,02) below. The role of 7 as the initial data parameter will remain the
same. We separate the drift or driving parameter into two regimes, when s; < N2/3 and when
s1» N?/3_ The first is the regime of “strong dependence” and the second of “weak depen-
dence.” The weak dependence of the three-parameter W N,t(n,01,02) on its last argument is
quantified by the concentration estimates of Corollary 6.9.

Let us remark here that all questions of well-posedness and differentiability of the three-
parameter system are almost identical to the two-parameter one. Further discussion is de-
ferred to Appendix B.3.2.
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_1.1. Three-parameter height function. We introduce a three-parameter height function
W n+(n,61,62) as follows. Fix a Y > 0. This parameter will later be chosen to be large
depending on some other constants that appear in the proof of Proposition 7.3 below. Then,
define @;(t,n, 61, 602) as the solution to,

dity (t,n,01,602) = =V'(u1(t,n,61,602))dt + dBo + dB1 — 011 efo,y N2yt — G2l oy 2y di

(7.1)
da;(t,m,01,02) = =V'(u;(t,n,01,02)) + V' (@;—1(t,n,01,02)) —dB;_1 + dB;,

with initial data equal to @;(0,n,61,602) = Hy(g;). That is, we set the drift parameter equal
to 0 for timeup to YN 2/3 and then 0 for all later times ¢. Then, W ~,¢ 1s defined by,

WNt 77,01702 t n591592 (t)

||Mz

t
(7.2) + J Hll{se[O,YN2/3]}dt + 021{5>YN2/3}d8
0

The point of this definition is that, due to the concentration estimates of the previous section,
the height function depends strongly only on #; and only weakly on 65 for Y large enough.

The next lemma establishes some monotonicity properties similar to the case of the two-
parameter height function.

LEMMA 7.1. For any n, 01,05 > 0 we have,

(7.3) (anaesz,t> (n,01,602) >0, (agZWN,t) (n,01,02) >0,
forall N and t > 0.

PROOF. For notational convenience we drop dependence of the various quantities on the
arguments (1), 01,62). Define h;(t) := 0p,%;(t) and k;(t) := 0,u;(t). The h; obey,

Oeha(t) = =V" (@1 ()7 (8) = Lypmy oy
(7.4) Ophyj(t) = =V (@;(£))hj (1) + V" (@1 () hj-1 (1)

with initial data /;(0) = 0. By Lemma B.1 we have h;(t) < 0 for all ¢. For the k; we have
that they obey,

Otk (t) = =V (@1 (t)) k1 (t)
(7.5) Orkej(8) = =V" (@5 () k; (t) + V" (@5-1.(£)) o1 (1)
with initial data %;(0) < 0. By Lemma B.3 it follows that &;(#) < 0 for all ¢. Then, with
Fj(t) := 0°W n for 0% = 0,,0p, or 0 = 0 we have that these obey the equations,
(7.6) OuF;(t) = V" (u; (1) Fy(t) + V" (0; (1)) Fj-1(t) — V" (1;(t)) g5 ()

where g;(t) = h;(t)? or g;(t) = hj(t)k;(t), with initial data F;j(0) = 0 and the convention
that Fy(t) = 0. In either case, g;(¢) > 0 and so since V" (z) < 0 for all z, the nonnegativity
of F}(t) for all ¢ and j follows from Lemma B.2. O

The following relates the derivative of W N,¢ to the pseudo-Gibbs measure.

LEMMA 7.2. For any 6 > 0 we have, We have,

(7.7) (90, W) (0,0.0) = B [(s1 — YN?),].
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PROOF. First, note that the functions 0y, %;(t) equal the h;f ) (t) as defined in (6.9) with the

choice f(s) = 1(s>y n23}. Indeed, by (7.4), they are solutions to the same system of ODEs
with the same initial data. Therefore,

892WN¢ = Z hgf) (t) + f 1{50>YN2/3}d5
: 0

j=1
18) =500 | [ stwan| = B0 - YN,
0
where in the second equality we used (6.11). O

7.2. Proof of lower bound when “first jump” expectation vanishes. We first prove the
lower bound in the special case that the quantity ¢ — N 1/1}/ (6) = 0 vanishes.” The general
case will be seen to follow easily from a perturbation argument and the general lower bound
of Corollary 5.4.

Parts of the following proof draw some inspiration from the proof of the lower bound of
[33]. Our proof involves lower bounding Wy +(6o,00) by Wy (A, A) for some A close to
6y. However, we have written the proof in the “backwards” direction, starting with a lower
bound for Wiy (A, \) and upper bounding this quantity by W (6o, 6p). While this has the
side effect of making some steps appear unmotivated (they are more easily motivated if one
reads the proof in the other “forwards” direction), it is easier to verify the logic involved due
to upper bounds being somehow conceptually simpler in this setting than lower bounds.

PROPOSITION 7.3.  Let 0y > 0 be such that 13 (6) < 0. Define
(7.9) to := Ny (6o).
There is a constant ¢1 > 0 so that,
(7.10) Var (Wi, (60,600)) = c1 N?/3
for all sufficiently large N.

PROOF. Let us denote,

(7.11) Q =E[Wn,(60,060)]
and define \ by
(7.12) Ai=0p+ N~3,

Choose a ¢, > 0 so that,
(7.13) Q+ ez NV = E[Wy (M A)] = Q + 4e N3,

for all sufficiently large N. Here we use the fact that the function 6 — E[Wy 4, (6,6)] =
0to — Ny (0) has a derivative that vanishes at @ = 6 and a strictly positive second derivative
in a small neighborhood of f by the assumption that 1 (6y) < 0.

21f one formally extends the pseudo-Gibbs measure to start from —oo, then this quantity is the annealed
expectation of the variable sq; this can be seen clearly in the O’Connell-Yor case.
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Defining Z := W 4, (A, A) — Q we have by the Paley-Zygmund inequality,

P[Whi(MA) = Q + 2¢, N3] = P [Z > ;]E[Z]}

1 E[Z]?
~ 4Var(Z) +E[Z]?
(7.14) > 2¢

for some ¢; > 0 and all N sufficiently large. In the last line we used that ¢, N'/3 < E[Z] <
CN'3 for some C' > 0 and that Var(Z) < CN?? by Theorem 2.3. From (5.16) we have
that,

(7.15) VVN’t0 ()\, )\) < VVN’t0 ((90, )\)
and so,
(7.16) P[Wi (60, A) = Q + 2¢s N3] = P[Wiv 1, (A, A) = Q + 2¢. N3] > 2¢,

for all sufficiently large N. Consider now the three parameter height function T/ N,¢ as defined
in the previous section. We have,

W, (00, A) = W x4, (00, A, \)

(7.17) =W, (00, ), 00) + LA(% W 1,)(00, N, 02)d0s.
Now, by Lemmas 7.1 and 7.2, respectively, we have0
L/\(ae?2 W 1,) (00, A, 02)d0 < L/\(aezwzv,to)()v A, A)dfy
=N"13(0p, W n1o) A A N)
(7.18) =N"VBEGV[(s0 - YN?),].

By Corollary 6.9 and Markov’s inequality, we have that for Y sufficiently large and all N
sufficiently large,

(7.19) B[N PEQ (50— YN ] > e N < r.
Therefore, for N sufficiently large we have,
(720)  P[Wis, (60, N) = Q + 2¢. N3] < P[Wnt, (B0, M, 00) = Q + cx N3] + ¢4
and so,
(7.21) P[W n.1, (B0, X, 00) = Q + cx N3] = ¢y
Now, by the Cameron-Martin theorem and Cauchy-Schwarz,
P[W N4, (B0, X, 00) = Q + ¢ N3]

_E [I{WN%(00700’90)2Q+C*N1/3}e(eo—A)Bo(YN?/B)-Y(A-%)?Nzxs/Q]2
<P[Wni4,(60,600) = Q + e NY/3]e Y E[e? o=V Ba(YN*?)]
(7.22) =P[W1,(00,00) > Q + cx N/3]e”
We therefore conclude that there is some c2 > 0 so that for all N sufficient large,
(7.23) P[Wt, (60, 00) — E[Wis, (60, 00)] = coN'3] = ¢

The claim now follows. O
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7.3. Lower bound, general case. We first show that the variance is Lipschitz in the time
parameter.

LEMMA 7.4. Forany s,t >0 and 0 > 0 we have,
(7.24) |Var (W +(6,60)) — Var (W 5(6,6))] < |t — s

PROOF. We have,
(7.25) Ot (0gWit) (0,0) = —=V"(un(0,0))hn(t,0,0) = 0
where the last inequality follows from (5.15) as well as
(7.26) Ot (OnWiit) (0,0) = =V"(un(0,0))kn(t,0,0) >0

where we again use (5.15).
Assume now s > t. Then using the first line of (4.1) we have,

(7.27) Var(Wy4(0,0)) < Ny (0) — t + 2E[(0s Wi 5)(6,0)] = Var(Wi 4(0,6)) + s — t.

Similarly, the second line of (4.1) gives,

(7.28) Var(Wy4(0,0)) =t — Nvpy (6) — 2E[(8,Wn5)(0,0)] = Var(W s(0,0)) +t — s

and so we conclude. O
7.3.1. Proof of Theorem 2.6. The entirety of this subsection is devoted to the proof of

Theorem 2.6. Fix 6 > 0 satisfying the hypotheses of the theorem. Let ¢y = N1} (6p). By
Lemma 7.4 and Proposition 7.3 we have that there is a ¢ > 0 so that for all ¢ satisfying,

(7.29) It — to| < eN?/3

we have,

(7.30) Var(Wy +(6o,600)) = cN%3.

On the other hand, if |t — to| = [t — N} (69)] = ¢cN?? then by Corollary 5.4 we have,
(7.31) Var(Wy¢(6o,600)) = [t — NepY (60)] = eN?/3.

We conclude the proof. O

8. Gaussian case. In this short section we provide the proof of Proposition 2.5 and ana-
lyze the case V(x) = %-. In this case, the system (2.1) reads

dup = (—9 — Ul)dt +dBy +dB;
(8.1) de = (Uj_1 — uj)dt + dBj — dBj_l
These equations have explicit solutions

(8.2)
t

ui(t) = j e S dr(—@ds + dBo(s) + dBi(s)) + e ‘uy(0)
0

(8.3)
=0t —1)+ f

0

t t

e~ (=9)dBy(s) + f e "dB1(s) + e 'ui (0),
0
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(8.4)
t t
u;(t) = f e\ 47 (u;_1(s)ds + dBj(s) — dB;_1(s)) + e u;(0)
0

(8.5)
t

¢ ¢
= j e_(t_s)uj,l(s)ds + J e_(t_s)dBj(s) - j e_(t_s)dBj,l(s) + e 'u;(0) for j > 2.
0 0 0
In particular, by induction we see that each wu;(t) is a linear combination of {u;(0)}1<i<;
and Wiener integrals against the B;(t). In particular, in this case the height function Wy,
is a linear combination of jointly Gaussian random variables and so is Gaussian, and its
distribution is therefore completely determined by its mean and variance.

Consider now the functions,

t gn—1
(8.6) hin(t) := —L (= 1)!e_sds
and
(8.7) fn(t) := —E[un(t) Bo(t)]
Clearly,
(8.8) hi(t) = fi(t)=e " - 1.
On the other hand we have,
(8.9) fa(t) = j:e_(t_s) fa—1(s)ds.

Now by integration by parts,

tnfleft

(8.10) hn(t) = m - hnfl(ﬂ = _athn(t) - hnfl(t)'
Therefore,

¢
(8.11) hn (1) :f e, _1(s)ds

0
and so hy,(t) = f(t) for all n and ¢. We have,
(8.12) Var(Wg,) = N —t — 2E[W} , Bo(t)]

Now, since dW¥, , = —un(t)dt + dBy we have,
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= (N —t)hn(t) + N [hny1(t) — hn(t)]
(N

o

= (N —t)hn(t) +

Therefore,

Var(Wi,) = N —t — 2E[W{,, Bo(t)]
= (N —t)[1+2hn(t)] + 27@—?

When ¢t = N we use Stirling’s approximation to get

Var(W§ INNe—N N\Y VN 2
(8.13) Wyn) _ € :2() VY2 o)
VN (N - 1)IWN e) NNz
This yields the claim. O

APPENDIX A: WELL-POSEDNESS; GENERATOR AND INVARIANT MEASURE

The purpose of this appendix is to prove Proposition 2.2. The well-posedness component
of the proposition statement follows from Proposition A.2. The characterization of the invari-
ant measure is the content of Appendix A.2.

A.1. Well-posedness. In this section we deal with well-posedness of the system (2.1).
Since the coefficients of the Brownian terms are constant, the system (2.1) may be re-
interpreted as a system of ordinary differential equations, for which classical results allow
one to obtain a solution. The only thing that must be checked is that the system does not
explode in finite time, that is, the solution remains bounded on bounded time intervals. Here,
the main point is that due to the confining nature of the potential and triangular nature of the
system, it is straightforward to check the non-explosion. The following lemma will be used
iteratively in the just-described proof.

LEMMA A.1. Let W :R — R be a continuous function satisfying,
(A1) W (z)sign(z) > —L(|z| + 1)

for some L > 0. Let f(s) : Ry — R be a continuous function and let u(t) be a continuous
function satisfying,

t
(A2) u(t) = — J W (u(s))ds + £(£)

0
on some time interval [0, T]. If M > 1 satisfies
(A.3) M > sup |f(s)|+ |u(0)]

s€[0,T]
then,
(A.4) sup |u(t)] <1+ (4M + LT) (1 +TLe*") =: Cy.
te[0,T]

PROOF. Suppose for a contradiction that there exists a ¢ < T such that |u(t)| = Cp. Let
(A.5) ty :=1inf{t € [0,T]: |u(t)| = Cr}.
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We assume that u(t,) = Cr > 0. The case when u(t4) = —C7 < 0 is similar. Let,

(A.6) sy =sup{t € [0,t,] : |u(t)| = 2M}.

Then since u(t) is continuous we have 0 < s, < t, < T, and moreover, for s, <t < t,,
(A7) u(sx) =2M < u(t) < Cr = u(ts).

It follows that for s € [s4,t,] that W (u(s)) > —L(u(s) + 1) and so for ¢ € (s, t«] we have

t
(A.8) u(t) = u(ss) + f(t) f W(u(s))ds < (4M + LT)+ | Lu(s)ds
Sk
By Gronwall’s integral inequality,
(A.9) u(t) < (4M + LT) (1 + TLe*)
which yields a contradiction upon taking ¢ = .. O

PROPOSITION A.2. Let V be of O’Connell-Yor type. For each choice of initial data and
each realization of the Brownian motions, there exists a unique global-in-time solution of
(2.1). Moreover, for each fixed realization of the Brownian motion, the solutions of (2.1) are
uniformly bounded as t,0 and the initial data vary over compact subsets of [0, 00) x (0,00) x
RN . Consequently, the system (2.1) defines a Markov process taking values in C([0,0), RN).

PROOF. The system (2.1) has the form of an N-dimensional stochastic differential equa-
tion:

(A.10) dz =b(z)dt + odB,
with smooth coefficients
(A1) b(x)= (=0 —V'(z1),V (1) = V'(22),...,V'(xn_1) — V'(zn))T €eRY,

and o € My (n41)(R) is given by

(A.12) o= . ,
11

and the Brownian motion B is B = (By, B1,...,By)".
We start by considering, for a fixed continuous f : R, — R, the equations

t
(A.13) x(t) = z(0) + f b(x(s))ds + f(t).

0
This is a system of integral equations with right-hand side F'(x,t) So ))ds + f(t),

where F' locally Lipschitz in x (the Lipschitz constant does not depend on f ) By classical
results (see for example [43, Theorem 1, Chapter 21]) there exists, for each initial data 2(0) =
xo and each continuous f, a maximal time 7 = 74 (f) > 0 of existence and a unique solution
x(t) = x(t,ug, f) € RN of (A.13) on (0, 7). Moreover, if 7, (f) < 00, then lim, , - |z(t)] =
0. Too (f) is called the explosion time.

We now claim that the explosion time satisfies 7 (f) = o0, for every choice of f. First,
note that by assumption of (2.4) we have V'(x) < 0 for all z. By this and the convexity
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of V(x) we see that W (x) = V'(x) satisfies the assumptions of Lemma A.1. Applying this
lemma we see that z1(¢) does not explode in finite time. For higher j, we write the system
(2.1) as

(A.14) 2i(t) = — fo V' (a;(s))ds + F(2),

where F'(t) depends on x;_; and the Brownian motion terms. Arguing inductively we see
that Lemma A.1 implies that if x; 1 does not explode in finite time, then neither does ;.
Evaluating the solution of (A.13) at each realization of the Brownian motion sample paths
yields the solution to the system (2.1). This shows that the system has global-in-time so-
lutions. The claim about uniform boundedness follows from tracking the constants in the
iterative applications of Lemma A.1. The fact that this defines a Markov process is clear, as
the solution to (A.13) depends only on the initial data and the increments of the Brownian
motion sample paths. O

A.2. Generator and invariant measure. Denote 0; = %. We begin by remarking that
system (2.1) is an It6 diffusion with generator

—_

1
L= fZa—ajl 5(aN)2

l\’)

(A.15)
( V/ u1 61 + Z ’LL] 1 /(Uj)] aj.

This generator L has the form

1
(A.16) L= 5vTav +bI'v
where a € My« n(R) is given by,
2 —1
-1 2 -1
-1 2 -1 T
(A.17) a:= _ =S+ 57,
-1 2 -1
-1 2

where the difference operator has matrix elements S;; = 6;; — d;—1,;, and the function b is as
in (A.11). Note that if we define U by

N
(A.18) Z (uj) + Ou.
then b = —SVU. From this we immedlately see that the function e~V satisfies the equation
L*e~Y = 0. Indeed, we have
(A.19) vTave—U VIsve V' =-VT(e VsvU)=e Y ((VU)TSVU - VT SVU)
as well as,
(A.20) VI (S(VU)e V) =e YV (VISVU — (VU)TSVU) ,

from which it follows L*e~V = 0. In order to show that e~V indeed defines an invariant
measure we make a change of variable bringing L into the form of a perturbation of the
Laplacian. For this, we first establish the following.
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PROPOSITION A.3. The symmetric matrix a is positive definite.

PROOF. First, we establish that the eigenvalues of the matrix a are nonnegative. Indeed,
we have,

1 1
§§taf = §e_9”'§VTaVe”g

N
(A21) = @ 5 D@~ ) 5w e 20,
2 = 2

where the second line follows from the fact that %VTaV gives the second-order part of
the generator L in (A.15). Moreover, denoting by D,, the determinant of the matrix a in
dimension n, we have for n > 2

Dy =2Dyp_1—Dp_o, D1 =2, Dy=3.

from which one easily verifies D, =n + 1> 0. O

Now, let A = a=/2 be the unique positive definite symmetric square root of ¢! and
consider the coordinates v = Au. Since,

(A.22) clz2 < |Azlz < Cllz|2

for some ¢, C' > 0 we see that the process defined by v(t) = Au(t) explodes if and only if
u does. We conclude that v is also a Markov process with no explosion and moreover the
invariant measures of v are in one-to-one correspondence with those of u. By the change of
variable,

(A.23) V.= AV,

we see that the generator L of v given by
= 1 1 -
(A.24) L= i(AVv)TaAVv +b(A )T AV, = 50+ b(v)T'V,

where we defined b(v) := Ab(A~'v). We will obtain the uniqueness of the invariant measure
from the following result [43, Ch. 31, p. 254], which is formulated for perturbations of the
Laplacian such as L.

THEOREM A4. Let D = %A + B -V for which the corresponding diffusion does not
explode, that is, it almost surely remains bounded on bounded time intervals. (See [43,

Chapter 24] for more information, including criteria for non-explosion.) Assume B(zx) is
C*(RN;RN). Define the formal adjoint D* of D by

D*:%A—V-B.

Suppose there exists a smooth function o such that D*p =0, ¢ > 0. Then i(A) = § , p(y) dy
defines a unique invariant distribution for the process.

If ® 4 denotes the (unitary) composition map (® 4 f)(z) := det(A)~ /2 f(Az) then, noting
that L = ®*% L® 4, and so L* = % L*® 4 we see that ;' (e~V) defines a unique invariant
measure for L. From the above discussion we see that the measure wy is the unique invariant
measure for the Markov process with generator L.
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APPENDIX B: DERIVATIVES

In this section we deal with proving differentiability of the solutions w;(t,7,0) in the
parameters 7 and 6. In general, the finite difference quotients and the derivatives satisfy
various systems of ODEs. Therefore, we begin with a short section containing a few different
kinds of systems of ODEs that we encounter and state some of their positivity-preserving
properties, as well as standard contractivity properties, etc.

B.1. ODE lemmas.

LEMMA B.1. Let W; : Ry — R be nonnegative continuous functions. Let f : Ry — R
be a nonnegative piecewise continuous function. Then, the solution of the inhomogeneous
linear system of ODEs,

drvi(t) = —Wi(t)vi(t) — f(¢)
B.1) dus(t) = —Wy(t)us (8) + Wy a (Do (1), =2
with v;(0) = 0 for all j satisfies,

<+

(B.2) 0<—v;(t) < J f(s)ds =: F(t)

0
for all t. We also have,

(B.3) 0> L W;(s)vj(s)ds > Jo Wi_1(s)vj—i(s)ds >...> —F(t).

PROOEF. Recall the solution of d;u = —Wu — g is given by

(B4)  u(t)=exp (- ﬂ W(s)ds> u(0) — L " exp (- f t W(u)du> g(s)ds.

Applying this we first see that vq (t) < 0 for all ¢ and then that v;(t) < 0 forall tif v;_1(¢) <0
for all ¢. Hence, we see that the v;’s are all nonpositive. The bound vy (t) > —F'(t) follows
from integrating

(B.5) dror (t) = =Wi(t)vi(t) — f(t) = — ().

On the other hand we also obtain,

(B.6) L W (s)on(s)ds = —F(8) — wn(t) = —F(2).

Integrating the equation for d;v; gives,

(B.7) JW s)vj(s dS—JWJ 1(s)vj—1(s)ds — v;(t) JWJ 1(s)vj—1(s)ds,
and so (B.3) follows by induction. Similarly, by integrating the equations for d;v;
(B.8) vj(t) = fot Wi_1(s)vj—1(s) = —F(t).

This finishes the proofs. O
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LEMMA B.2.  Let Wy,(t) be continuous nonnegative functions and gy, (t) be nonnegative
piecewise continuous. The solution w,,(t) to the system

Opwi (t) = =Wi(t)wi(t) + g1(t)
(B.9) orw;(t) = =Wj(t)w;(t) + Wj(t)wj—1(t) +g;(t),  j=2

with initial data wy,(0) = 0 for all n satisfies w,(t) > 0 for all n and t.
PROOF. This follows immediately from (B.4) and induction. O

LEMMA B.3. Let W; : Ry — R be continuous nonnegative functions. Consider the ho-
mogeneous linear ODE,

aﬂ]l (t) = —W1 (t)’l)l (t)

(B.10) 6151)]' (t) = —Wj (t)vj (t) + Wj_l(t)vj_l(t), j=2
If the initial data are nonnegative then the v;(t) are nonnegative for all times t. Moreover,
(B.11) 0= ) wi(t) < > v;(0),
j=1 j=1

and

¢
(B.12) J W (s)vn(s)ds < Y v;(0)

0 j=1

(B.13)

PROOF. First consider the case of nonnegative initial data. From the explicit form (B.4)
of the solution we conclude the non-negativity of the v;(¢) for all times t. We have,

(B.14) o (i vj(t)> — —W(t)v;(t) <0
j=1

and so (B.11) follows. Via direct integration we have
(B.15)
¢

LWn(s)vn(s)ds U (0) — vy ( JWn 1(8)vn_1(s)ds < vy, (0 an 1(8)vn—1(s)ds

and so the other estimate follows by induction.

For the second claim, consider the solution g;(¢) of (B.10) with initial data g;(0) = |v;(0)].
Then w;(t) := g;(t) —v;(t) also solves (B.11) and is nonnegative for all times ¢, as the initial
data is nonnegative. Hence,

n n

(B.16) Do) < D) < D gi(0) = |v;(0)]
j=1 j=1

Jj=1 Jj=1

where in the second inequality we applied (B.11) to g;(¢). The upper bound of (B.13) follows.
The lower bound follows by considering w;(t) := g;(t) + v;(t). O
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LEMMA B4. Let Wj,g; : Ry — R be nonnegative continuous functions. Consider the
system of ODE:s,

Orv1(t) = =Wi(t)vi(t) + g1 (t)
(B.17) 0rvj(t) = =Wj(t)v; (t) + Wj—a(t)vj1(t) + g;(t) — gj-1(2),
with vj(0) = 0. Then for any n we have for all t,

(B.18) vj(t) >0,
j=1
and the estimates
n—1 nt n t
(B.19) - Z J gj(s) <wvp(t) < 2 J gj(s)ds.
i=1"0 j=170
PROOF. The partial sums ey, := > <k Uj satisfy,
(B.20) orer(t) = —=Wi(t)(ex(t) — ex—1(t)) + gr(t),

where ep = 0. From Lemma B.2 we conclude that e,,(¢) > 0 for all n and ¢.
We now turn to the estimates. For any & > 1 let {m?’ (t)}72, satisty,

i (t) = =W (t)ymf (t) — dukg (1)
(B.21) 6tmf(t) = —Wj(t)mf(t) + Wj_lm;?_l(t) — (5jkgj(t), j=2
with initial condition m;‘: (0) =0 and for k > 2 let {wf 521 (1) satisfy,
drwh (t) = —Wh (t)wf (t)

(B.22) ok (t) = —Wi(O)wh(t) + Wil () — dugi1 (1), j=2
with initial condition wf(O) = 0. Note that mf and wé? are identically O for j < k£ and more-
over,
n
(B.23) un(t) = . (wh(t) — mh (1),
k=1

by linearity of the equations, where we set wjl- = (0. By Lemma B.1 we have,

t t
(B.24) 0< —wf(t) < J gr—1(s)ds, 0< —m?(t) < J gr(s)ds.

0 0
The claim follows. O

B.2. First derivatives. We now apply the results of the prior section to the solutions
u;(t,n,d) defined in Definition 3.2. The notation u;(t,7,6) refers to these solutions for the
remainder of Appendix B.

PROPOSITION B.5.  Let V' be of O’Connell-Yor type. Fix 6,1 > 0. For |h| < 6 A 1 define
the difference quotient,
uj(ta m, 0+ h) - uj(tv m, 0)

d
(B.25) Al (t.n,0) = . .
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Then, the estimate,

(B.26) 0<-AY)(tn.0) <t

holds. Additionally, define,

(B.27) Fj(t) = Jol V" (tu;(t,n,0 + h) + (1 —7)u;(t,n,0))dr,
Then we have the estimate,

(B.28) Lt(—A(.fQ(s))Fj(s)ds <t.

PROOF. For notational simplicity, let us denote Ag.d) (t) = Aédg(t, n,6). By direct calcula-

tion the Ag-d) satisfy,

an? (t) = —F (A" (1) — 1

-R
(B.29) () = —F;0) AP () + FoiaP @), =2
where I is as above. The initial data satisfies Ag-d)(O) = 0. The claim now follows from
Lemma B.1, since V" > 0 by assumption. O

COROLLARY B.6. Let V be of O’Connell-Yor type. The functions w;(t,n,0) are differ-
entiable in 0 and the derivatives,

(B.30) hj(t) = h;(t,n,0) := dgu;(t,0,n)
satisfy the system of ODEs,
Ochi(t) = =V"(ur(t)ha(t) — 1
(B.31) Othj(t) = =V" (u;(#))h (&) + V" (uj—1(t))hj—1(t), j=2
where uj(t) = u;j(t,n,0). Moreover, the h; are jointly continuous in § and 1 and satisfy,

(B.32) 0<—hj(t)<t.

PROOF. Denote the solution to (B.31) by /() and the difference quotients of Proposition

B.5 by Ag-d) (t). By the calculations given there we have that the difference w; := h; — Agd)
satisfies,

Spwn (£) = V" (wr (1))wr (1) + A (1) (V" (n (1) = Fi(8))

orw; (t) = =V"(u; (t))w;(t) + V" (1) w;-1(t)
B.33)  + ATV (1) — F(1) = A2 (V" (wjmr () = Fjma(8)), 522
where the F}; are as in the proof of Proposition B.5. The estimates of Proposition B.5 and the
fact that V' is smooth imply that the inhomogeneous terms in the above system all tend to 0
uniformly in any interval [0, T]. Therefore, by the explicit form of the solution of the above
system, one sees that the w; tend to 0 as i — 0 uniformly in ¢.

The joint continuity follows from the fact that the coefficients in the ODE:s satisfied by the
h;’s are continuous in ¢ and 7). ]
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Recall the initial data u;(0,7,0) are given by Hy(q;) where Hp = F,'. Defining
G0,z,y): Ry x (0,1) x R—> R by

(B.34) G(07x>y) =F9(y) -
we see that by the implicit function theorem and the smoothness of F' that the function Hy(x)

which satisfies G(6, x, Hp(x)) = 0 is smooth in ¢ and z.
Let X denote a random variable distributed according to v,,. Then,

(B.35) @,Fn(u) = —COV(X, 1{X3u}) >0,

where we used the general fact that Cov(Y, F'(Y)) > 0 for any random variable Y and in-

creasing F', provided the covariance exists. Moreover by differentiating F,(H,(q)) = q we

see that,

_(0nFy)(Hy(9))
£ (Hy(g))

PROPOSITION B.7.  Let V' be of O’Connell-Yor type. Fix 0,1 > 0. For |h| <n A 1 define
the difference quotient,

(B.36) onH,(q) = <0.

uj(t777 + h,@) - Uj(t,?],@)
3 .

(B.37) A (t,,0) =

Then, the Ag?l(t, n,0) are all non-positive and we have the estimate,

n

(B.38) —ZAj (t,n,0) < — ZA (0,1,0)

j=1 J=1
Additionally, define,

1
(B.39) Gy(t) = f V' (ru(tom + b, 0) + (1 — 7)u(t, 17, 0))dr.
0

Then we have the estimate,

0 7

t J
(B.40) f( A (t.n,0 sZ ,(0,7,6)

PROOF. For notational simplicity we denote A§i)( )= Ay,)l(t, n,6). By direct calculation
they satisfy the system of ODEs,

Ay (1) = ~Gi(0AY (1)
(B.41) aA () = —c;0)AV ) + G AV (1), j=2.
The claim follows by Lemma B.3 and the fact that (B.36) implies that A\’ (0) < 0 for all
g Given the above proposition, the proof of the following is almost identical to the progi]?

of Corollary B.6 given Proposition B.5 and is omitted. Note that (B.36) gives that the k;(0)
defined below satisfy k;(0) < 0 for all j.

COROLLARY B.8. Let V be of O’Connell-Yor type. The functions w;(t,n,0) are differ-
entiable in n and the derivatives

(B42) kj (t) = kj (tanae) = anuj(t77770)
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satisfy the system of ODEs,
Ok (t) = =V" (ur(t)) k1 (t)
(B.43) Ok (t) = =V"(wj(0)k;(t) + V' (wj—1(t)kj-1(t),  j=2

where u;j(t) = u;(t,n,0). Moreover, the k; are jointly continuous in 8 and 1 and satisfy the
inequality,

(B.44) 0< —kn(t,n,0) <= > k;(0,n,0
7=1

B.3. Second derivatives.

PROPOSITION B.9.  Consider the difference quotients,

hi(t,n,0 + h) — hj(t,n,0
(B.45) A% (t,n,0) = (6 ZL (. 6)
Then,
(B.46) AGD (t,m,0) < Cjt2(1 + 1)

for some C > 0.

PROOF. For simplicity of notation let A(dd)( t) = Agff ) (t,n,0). These satisfy the system
of ODEzs,

8 AD () = V" (uy (£,0,0)) AYD (£) — Q1 (t) - by (t,1,60 + D)
AT (1) = =V (8,0, ) AT (1) + V" (uj1 (8, 6)) AT (1)

7—1
(B.47) +Qj(t) - hy(t,n,0 + h) = Qj—1(t) - hj—1(t,n.0 + h)
where,
1
(B.48) Q;(t) == Al(t,0,m) L V" (ru;(t,n,0 + B) + (1 — 7)u;(t,7,0))dr.

By the assumption that 0 < —V"(z) < C(V"(z) + 1) we see that,
d
(B.49) 0<Q;(t) < —CAY) (t,n,0)(Fj(t) + 1)

where F; are from Proposition B.5. The estimates now follow from Lemma B.4 and the
estimates of the time integrals of the F; of Proposition B.5, as well as the estimate for /()
given in Corollary B.6. O

PROPOSITION B.10.  Consider the difference quotients,

(B.50) A%) (t.1,0) = kj(t,n+ h,elz —ki(t.n.0)
We have,
(B.51)

|Anh(t n,0 ]<Z|A” (0,m,0)|+Cn(1+t) (Z 4 (0,m,0 )(Zn: ;(0,n+ h, 9))
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PROOF. Denote A;m (t) = A;i,? (t,n,0) for simplicity. We have that the Agm (t) satisfy
the system,

AN (1) = =V (un (t,1,0) A (1) = Qu(t) - (£, + b, 0)
G AT (8) = =V () AFY (1) + V" (g (1.0, 0) AT (1)

(B.52) +Qj(t) - kj(t,n+h,0) —Qj—1(t) - kj—1(t,n + h,0)
where,

, ¢
(B.53) Q;(t):= AU (1,6, n)fo VP (g (6, + 1, 8) + (1 — 7Yy (¢, 0))dr.

Let now f; solve

ocfr =—=V"(u1(t,n,0)) f1
(B54) atf] = —V”(Uj (t> 1, 9))f] + V”(ujfl(tv 7, 9)),](‘]71

with initial data f;(0) = Agii)(O). By Lemma B.3 we have,

(B.55) FACIEEDWIVRIO)
=1
Let w;(t) = ”) (t) — f;(t) so that it satisfies the system of equations (B.52) with initial data

w;(0) =0. By the assumption that 0 < —V"(z) < C(V"(x) + 1) we see that,
(B.56) 0<Q;(t) < —CAU (t,1,0)(G;(t) +1)

where G'; are from Proposition B.7. Applying now Lemma B.2, Proposition B.7 to estimate
the time integrals of the G; as well as the estimates for k; of Corollary B.8, we find

(B.57) lwn ()] < Cn(1 (2 \A (0,7, ) (i (0,1 + h, 9))

The claim follows. O

PROPOSITION B.11.  Consider the difference quotients,

(B.58) A (¢, 0) i kj(t,m,60 + h}i — k;(t,n,0)
We have,
(B.59) |Anh(t n,0)] < Cnt(1 <Z (0,1,0 ) _

PROOF. Denote A§id) (t) = A%) (t,n,0) for simplicity. We have that they satisfy,

DD (1) =~V (ur(t,0,0) AT () - Qu(t) - ka(t,1,0 + h)
B A (1) =~V (uy (1,1, 0) A (6) + V" 1y (8, 6) A (1)

(B.60) +Q;(t) kj(t,m,0 +h) —Q;-1(t) - kj—1(t,n,0 + h)
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where,
t

(B.61) Q;(t) = A(d)(t 0,1) f V" (rui(t,n,0 + h) + (1 —7)u;(t,n,0))dr,
0

with initial data 0. We now proceed in a similar fashion to the previous two propositions by
applying Lemma B.4. The Q; can be controlled by the F}; of Proposition B.5 using (B.49).
The time integrals are then estimated using Proposition B.5 as well as Corollary B.8 to control
the k;’s. O

PROPOSITION B.12.  Consider the difference quotients,

di ht77]+h79 _ht77779
(B.62) A (t,0) = i })L i(t:1,9)
Then,
(B.63) A (t,1,0) < Cnt(1 + 1) (Z ~AD(0,0 n))
j=1

PROOF. Denote Agdi) (t) = Ag.ii,? (t,n, ) for simplicity. They satisfy,
A (8) = V" (ur(t,0,0) AL (8) = Q1(8) - ha (1 + B, 0)
A (£) = =V (uj (£, 0) AN () + V" (w1 (., 0) A (1)
(B.64) +Q;(t)-hi(t,n+ h,0) —Qj—1(t) - hj—1(t,n + h,0)

with 0 initial condition where
, ¢
(B.65) Q;i(t) = A (t,0, 77)f VP (ruy (8, + By 6) + (1— 7)u(t,m,0))dr.
0

We now proceed in a similar fashion to the previous two propositions by applying Lemma
B.4. The ); can be controlled by the G; of Proposition B.7 using (B.56). The time integrals
are then estimated using Proposition B.7 as well as Corollary B.6 to control the h;’s. O

B.3.1. Proof of Proposition 5.5. In this section we summarize the proof Proposition 5.5.
It is straightforward given the four propositions stated and proven in Appendix B.3 for each
of the four different sets of finite difference quotients. First, note that Section B.2 establishes
that in particular the w;(¢,6,n) are all jointly continuous in (¢,7,8). Since V' is smooth it
follows from representing the solutions h;(t,n,60) and k;(¢,n,6) as some combination of
iterated integrals (i.e., repeatedly iterating (B.4)) that they are continuous in (¢,7, #). Then, by
representing any of the finite difference quotients Afg ) (1), Ag.iig) (t), etc., as iterated integrals
in a similar fashion, one sees that as h — 0 these converge uniformly to the solutions of the
systems of ODEs described in Proposition 5.5. We also conclude the continuity of the second
derivatives in the parameters. O

B.3.2. Three-parameter height function. In Section 7.1 we introduced a three parameter
system via (7.1) and associated height function in (7.2). In this section we discuss well-
posedness and differentiability of the system. Much of what is needed follows either directly
or with similar proofs in two parameter case.

Well-posedness of the system (7.1) can either be proven via the same method as the two-
parameter system, relying on Lemma A.1, or can be constructed via concatenating the solu-
tion maps at the time ¢t = Y N?/3 that were constructed in the two-parameter case in Appendix
A for each of the 6 and 6. Due to uniqueness, this results in the same solution.
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In order to prove that each of the u;(t,7, 01, 02) are differentiable in the latter three param-
eters one considers the finite difference quotients as in Section B.2. Proceeding in the exact
same fashion as in Proposition B.5 one finds for |h| < 61,

_ﬂj(t,n,91 + h,92) — ﬂj(t,n,el + h,92) <t
h —

and a similar estimate for the difference quotient in 65 (in fact, a slightly better estimate

is true but not required). For the finite difference quotient in 7 one finds the same estimate

as in Proposition B.7. From these estimates, one sees that the %;(¢,7, 61, 02) are continuous

functions of all four parameters. Then, proceeding as in the proof of Corollaries B.6 and B.8,

one finds that they are differentiable in (1,61, 60s).

At this point, one obtains that the first order derivatives satisfy a system of ODEs of trian-
gular form, similar to the cases of /;(t) and k;(t) outlined above. These ODEs have explicit
representations of integrals of V' and its derivatives applied to the functions @;(t,,61,62).
Since these later functions are continuous, it follows easily that the first order derivatives of
the @, are themselves continuous functions of (1,61,62). One can then easily repeatedly dif-
ferentiate these integral expressions repeatedly to find that the @;(t) are C ¥ in the parameters
(n,01,02). This is sufficient for the purposes of Section 7.

(B.66) 0<

APPENDIX C: ESTIMATES OF MOMENTS OF INITIAL DATA DERIVATIVES

We require some estimates on the moments of derivatives of the u;(0,7,6) introduced in
Definition 3.2 with respect to to 7. They are consequences of some direct calculations which
we present in this section. Before beginning, we recall that as in Appendix B we define

(C.1) Hy(q):=F,; ' (q)
where F;, is defined in (3.2) of Definition 3.2. With this notation, we have
(C.2) u;(0,m,6) = Hy(q;)

where ¢; were iid uniform (0, 1).

LEMMA C.1. LetV be a potential of O’ Connell-Yor type and let g > 0. Thereisa C > (
so that for all ny < 2n < 4no we have,

(C3) |0nHy(q)| < C(1+ |Hy(q)])
and
(C4) |05 Hy(9)] < C(1 + |Hy(@)]*) (1 + V (Hy(q)))

PROOF. By direct calculation,

COV(X, 1{X§u})
C.5 onH =

where X is distributed according to v, and u = H,(q). First assume u > 0. Then, using that
0 <V(z) < C for z > 0 we have,

0
(C.6) [Cov(X,lix<uy)| =[Cov(X, lixsu)| < C’J (I1+s)ePds<C(1+u)e ™,

and the desired estimate follows for u > 0. The convexity of V' and the growth assumptions
at —oo imply that lim,_, o, V'(z) = —o0. For z < y using V(y) — V(z) < (y — 2)V'(y) we
see that for s < u < 0 there is a constant ¢ > 0 such that,

(C.7) V(s)+ns=V(u)+nu+clu—s)—ct.
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So for u < 0 we have,

(C8)  |Cov(X,1jxen)| < cf (14 [s])e= V) ds < O(1 4 uf)e=V @+,
—©

The estimate for 0, H,, follows. By direct calculation,

_F,;’(u)((?an(q)F _ QanF/(u)(é’an(q)) a%Fn(U)

7 (@) Fy(u) Fy(u)

(C.9) Oy Hy(q) =

By the previous result we have,

Ey (u) (0 Hy (q))?

(C.10) o)
n

‘ < OV (u) + 1)(1+ [Hy(q)])?

where we used that |V'(z)| < C(V (x) + 1) (which follows by integrating the second inequal-
ity in (2.5) twice). Similarly,

OnF" (u) (O Hy(q))

E(u)

(C.11)

|sc<1+ (o).

By direct calculation,
07 Fy(u) = Cov(X1x <y, X) — E[X]Cov(1{x <y}, X) — P[X < u]Var(X)

(C.12) = —Cov(X1{xsy}, X) + E[X]Cov(l{xsyy, X) + P[X > u]Var(X)
For u > 0, using the second line we easily see in a similar manner as above that,
(C.13) |Cov(X1(xzuy, X)| + [P[X > u]Var(X)| < C(1 + [Hy(q)])%e ™.
Similarly, using the first line we have for u < 0O that,
(C.14) |Cov(X 1 (x<uy, X)| + [P[X <u]Var(X)| < C(1 + |H,(q)|) 2V (W)
We have already estimated the E[X]Cov(1{x<,},X) term previously. This completes the
proof. O

PROPOSITION C.2.  Let ny > ;1 > 0. Let q be uniform on (0, 1). Define I := [ny,12]. For
anyp=>=1andk =0,1,2 we have,

(C.15) Efsup |05 Hy(q)P] < C)
ne

Define now the difference quotients,

(@) L Hn+h(Q) - Hn(‘])
(C.16) AW () = :
and
(1) L aan+h(Q) - aan(Q)
(C.17) A () = :
Then,
(C.18) E[ suwp [AY@mP]<C
nel,|h|<n./2
and
(C.19) E[ sup AP @mp)<C

nel,lh|<n/2
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PROOF. Since ) — H, and V (x) are monotonic functions we see first that,

(C.20) f;él[)!Hn(q)\ +§71;I;|V(Hn(q))\ < |Hp, (@) + |V (Hy, (@) + [Hy, (@) + |V (Hy, (q))]

The quantities on the RHS have finite moments of all orders as H,(q) is distributed as v,.
We conclude the estimates (C.15) from Lemma C.1. The estimates for the difference quo-
tients follow from estimating them by the supremum of |0, H,,| and |8,27 H,| over the intervals

[771/27 2772]' ]

COROLLARY C.3. Let I be any compact interval supported in (0,0). Then there is a
C > 0 so that for all 0 (the expression inside the expectation on the LHS, by definition, does
not depend on 0)

N &2 2
(C.21) E | sup =51 (0,7,0) <CN?.
PROOF. We have,
N 52 2 N 52 52
E [ sup —u;(0,n,0 < E | sup |=5u;(0,1m1,0)|sup |==u;(0, 12,60 ’
nel |j=1 on? it ) HZ::1 mel | O} it >77261 on3 A )
02 2
(C.22) <CN3E Su? an2u1(0,n,0)
ne

where in the second inequality we applied Cauchy-Schwarz and the fact that u;(0, 7, §) are
all iid. Since by (C.2) we have u1(0,7,6) = H,(q) for ¢ uniform in (0,1), we have from
Proposition C.2 that

2

] <C

and the claim follows. O

2

0
7772“1(0777;9)

(C.23) E [sup
nel

PROPOSITION C.4.  For 0= 0y, 09,03, 05, 0n0p we have,
(C.24) OE[Whi(n,0)] = E[0Wy4(n,6)]

PROOF. We claim that this follows from the dominated convergence theorem. First,
note that the difference quotients all converge pointwise to the appropriate derivatives of
W +(n,0) by the differentiability established in Appendix B. All that is required is an esti-
mate for the supremum of the difference quotients over h. For these, we see that any differ-
ence quotient not involving the initial data parameter 7 is bounded by a constant (that may
depend on ¢t and N of course) independent of h, by the estimates proven in Appendix B, i.e.,
Propositions B.5 and B.9.

For any difference quotient involving the initial data parameter n we see by the remaining
propositions of Appendix B that they are all bounded in terms of the difference quotients
or deriviatives of the initial data. By Proposition C.2 the supremum over h and n of such
quantities have finite moments of all orders, and so we can apply dominated convergence to
pass the limit i — 0 inside the integrand, yielding the claim. O

PROPOSITION C.5. We have,
(C.25) E[[Wy.+(n,0)]*] < CN?(1+t)°
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PROOF. We have,
(C.26) E[luj(t,n,0)*] < Ct* + E[|u;(t,n,7)]*] < C(t* + 1).

This is sufficient to prove the required estimate via Cauchy-Schwarz. O

APPENDIX D: NONPOSITIVITY OF 4 (6)
LEMMA D.1. Let V be a potential of O’Connell-Yor type. Then for all 6 > 0 we have,
(D.1) Wy (0) <0.

PROOF. Consider the solution v(t, #) of
(D.2) dv(t) = =V'(v(t,0))dt — 0dt + dBy(t) + d By (t),
with initial data v(0,6) = 0. It follows from the calculations of Appendix B.3 that for all ¢,
the function § — v(¢, ) is convex in . Therefore, for all > 0 sufficiently small we have,
(D.3) v(t,0 + h) +v(t,0 —h) —2v(t,0) = 0.
The claim will then follow by proving that for all § > 0,

(D.4) tlino%) E[v(t,0)] = deug(:v),

as the previous two results imply that 2} (8) — by (8 — h) — 1Y (0 + h) = 0 for all § and h
sufficiently small.

So we turn to proving the convergence (D.4). Along the way we will also see that the
expectations on the LHS are well-defined. Let now u(t) = u(t, #) be the solution to (D.2) but
with initial data distributed according to the invariant measure vy and let w(t) := u(t) — v(t).
Then,

1
(D.5) orw(t) = <—f V" (su(t) + (1 — s)v(t))ds) w(t) =: —F(t)w(t).
0

Since F'(t) > 0 we see that |w(t)| < |w(0)| = |u(0)| for all ¢ (showing that the expectations
in (D.4) are indeed well-defined) and moreover that w(¢) has the same sign as w(0). The
assumption that V' (z) > 0 and the monotonicity of V’/(z) implies that lim,_,o V' (x) = 0.
Therefore, integrating the first inequality of (2.5) gives that
(D.6) V'(x) = —coV'(z) = —eoV' ()
for all z € R and all ¢ > g¢ > 0. It follows that,

1 1
(D.7) J V" (su(t) + (1 — s)v(t))ds > &g (—f V' (su(t) + (1 — s)v(t))ds>

0 0

Since w(t) has the same sign as w(0) it follows that either v(¢) > w(t) for all ¢ or v(t) < u(t)
for all ¢. In the first case, using that V’(z) is monotonic, we have,

J: _ Ll V' (ru(s) + (1 — r)o(s))drds > f "V u(s))ds

0
— 0t + v(t) — v(0) — Bo(t) — By (t)
(D.8) > 0t — |u(t)]| — [u(0)| = [Bo(t)| — | Bi(t)]-

In the case v(t) < u(t) we arrive at a similar estimate using the same method. Let,

(D.9) Fii={|Bo(t)| + [Ba(t)] < (1 +¢7/1)}
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so that P[F¢] < Ce """,
It follows that,

Ello(o)l] < Elexp (- [ F(9)ds) [w(O)]L2] + Ellu(0)1:]

0
< Cefeoet+t3/4E[e€o(\u(t)|+|u(0)\)||u(0)|] + Ceft1/1°/2E[|u(0)|2]1/2

_ctl/10

(D.10) <Ce

as long as g < A/100 so that E[e'%0l“(O)l] < oo, This completes the proof. O
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