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Abstract

Earth system modelling (ESM) is essential for understanding past, 
present and future Earth processes. Deep learning (DL), with the data-
driven strength of neural networks, has promise for improving ESM by 
exploiting information from Big Data. Yet existing hybrid ESMs largely 
have deep neural networks incorporated only during the initial stage of 
model development. In this Perspective, we examine progress in hybrid 
ESM, focusing on the Earth surface system, and propose a framework 
that integrates neural networks into ESM throughout the modelling 
lifecycle. In this framework, DL computing systems and ESM-related 
knowledge repositories are set up in a homogeneous computational 
environment. DL can infer unknown or missing information, feeding it 
back into the knowledge repositories, while the ESM-related knowledge 
can constrain inference results of the DL. By fostering collaboration 
between ESM-related knowledge and DL systems, adaptive guidance 
plans can be generated through question-answering mechanisms and 
recommendation functions. As users interact iteratively, the hybrid 
system deepens its understanding of their preferences, resulting 
in increasingly customized, scalable and accurate guidance plans 
for modelling Earth processes. The advancement of this framework 
necessitates interdisciplinary collaboration, focusing on explainable 
DL and maintaining observational data to ensure the reliability of 
simulations.

Sections

Introduction

Challenges of current Earth 
surface system modelling

Neural strengths of deep 
learning

Integrating ESSM and DL

Shortcomings of hybrid ESSM

Towards iterative hybrid ESSM

Summary and future 
perspectives

A full list of affiliations appears at the end of the paper.  e-mail: chenmin0902@njnu.edu.cn; gnlu@njnu.edu.cn

http://www.nature.com/natrevearthenviron
https://doi.org/10.1038/s43017-023-00452-7
http://crossmark.crossref.org/dialog/?doi=10.1038/s43017-023-00452-7&domain=pdf
http://orcid.org/0000-0001-8922-8789
http://orcid.org/0000-0002-0423-7430
http://orcid.org/0000-0001-9531-1239
http://orcid.org/0000-0001-8602-9258
http://orcid.org/0000-0003-2606-2579
http://orcid.org/0000-0001-5681-1986
http://orcid.org/0000-0001-5772-7065
http://orcid.org/0009-0008-9441-9721
http://orcid.org/0000-0002-3898-0863
http://orcid.org/0000-0003-3353-4060
http://orcid.org/0000-0002-7926-9349
http://orcid.org/0000-0001-6072-4199
mailto:chenmin0902@njnu.edu.cn
mailto:gnlu@njnu.edu.cn


Nature Reviews Earth & Environment | Volume 4 | August 2023 | 568–581 569

Perspective

throughout the modelling lifecycle. We focus on the Earth surface 
system, that is, the interacting system of processes occurring at or near 
the Earth’s surface, such as hydrological, geological, (near-surface) 
atmospheric, biological and social subsystems29,30 (Fig. 1). To align 
with this focus, we narrow the broad concept of ESM to a more specific 
subset of ESSM. The proposed framework is primarily designed for 
ESSM, but has the potential for broader applicability in the overall field 
of ESM. Finally, we envisage future directions toward advancing ESM 
research through its integration with DL.

Challenges of current Earth surface system 
modelling
Numerous process-based models have been developed and applied 
in Earth surface system science throughout the evolution of the geo-
sciences. To analyse more comprehensive issues involving numerous 
processes, communities have developed a series of integrated ESSMs 
that are able to depict complicated interactions among multiple sub-
systems31. The scientific lifecycle of ESSM generally has five methodo-
logical stages, namely: problem definition and contextualization; data 
preparation and processing; model development and integration; 
model evaluation and optimization; and model simulation and applica-
tion32,33. These stages need iterative fine-tuning to ensure that the key 
modelling processes are incorporated and the purposes or objectives 
are sufficiently considered34,35. Table 1 lists examples of prominent 
modelling applications in distinct domains. As indicated below, we have 
identified four notable challenges facing ESSM.

Completeness of understanding problems
To understand the dynamics of the Earth surface system, which exhibit 
self-organization, emergent and hierarchical properties, we should 
consider the intrinsic interactions and feedbacks among different 
subsystems36,37.

In ESSM, macroscopic problems are often hierarchically decom-
posed into less complex and more manageable pieces to aid analysis 
and problem-solving, while underlining the importance of interac-
tions and emergent properties across multiple scales38,39. Yet some 
current methodologies in ESSM, particularly those designed for large-
scale simulations, might not fully capture the intrinsic connections 
among related subsystems, potentially resulting in a reductionist 
approach40–42. Furthermore, these methods could lead to incom-
plete understanding and computational challenges. Specifically, 
decomposed subproblems with too few geographical objects (such 
as landforms, vegetation or rivers) in subsystems might not provide a 
comprehensive view of the relevant Earth surface states5,43. By contrast, 
those with many geographical objects might not necessarily address 
the nonlinearity problem effectively and could introduce additional 
formulating complexities44,45.

Capability of handling Big Data
A plethora of sensors continue to produce unstructured observational 
data that capture states, fluxes and interactions of the Earth’s surface46. 
These include Earth observation satellites, the global positioning sys-
tem, in situ observations and social media, and they generate quintil-
lions of bytes every day47,48. Although this data availability has created 
numerous opportunities for ESSM, it has also led to unprecedented 
technological obstacles, namely, volume, variety, veracity, velocity 
and value49,50. It is generally difficult to fully process the various data 
sources and further extract deep-level patterns, let alone discover 
knowledge from them, through conventional ESSM approaches51,52.

Introduction
Earth is a complex, dynamic and adaptive system, with diverse interac-
tions driven by energy, matter and organisms1. Human activities are 
increasingly disturbing the Earth system, for example through releasing 
greenhouse gases and pollutants and destroying habitats2. Understand-
ing these multifaceted and interconnected Earth processes requires 
integration of observational measurements with physical models of 
the environment3. In particular, identification of the underlying mecha-
nisms and anticipation of potential feedback cycles in Earth systems 
is essential to more fully understand the impacts of human pressures 
and how they can be mitigated4.

Earth system modelling (ESM, Fig. 1) represents a primary tool for 
characterizing and quantifying the spatiotemporal variations and inter-
nal interactions of the Earth across the past, present and future5–7. ESMs 
are composed of a set of physics-based equations that simulate physical, 
chemical and biological processes within the Earth system, such as carbon 
and nitrogen cycles, solar radiation dynamics and terrestrial ecosys-
tem dynamics8–10. These process-based models merge all aspects of the 
Earth system together, unlike their predecessors (such as global climate 
models) that just focused on the atmosphere and oceans. However, 
owing to their complexity, ESMs are very computationally demanding, 
time-consuming and expensive. The vast volume of data available has 
created analytical barriers to ESM research and necessitates the adoption 
of sophisticated machine learning technologies to streamline processing 
times and overcome computational bottlenecks11,12.

Deep learning (DL; Fig. 1) has advanced many research fields, includ-
ing computer vision, natural language processing (such as ChatGPT13) 
and protein structure prediction14, as it has the ability to improve the pre-
diction accuracy and computational efficiency of other computational 
models. It also has the beneficial ability to process multimodal data, 
which is especially important in Earth sciences, where vast quantities of 
heterogeneous and noisy raw observational data are gathered on a daily 
basis (for example satellite data from different sensors, ground-based 
observations and socioeconomic data)15,16. As such, geoscientific applica-
tions of deep learning17–19 have shown potential to address the analytical 
and computational challenges faced by ESM research15,20. However, the 
data-intensive nature of DL has underlying abstract formulations that 
are often not visible to the user, and insufficient quantities of labelled 
and preprocessed machine-readable data21 can make it challenging for 
DL models to recognize patterns and generate trustworthy trends. Hence 
it must be stressed that any deep or machine learning model is only as 
good as the quality of the input data22,23, except when they are trained 
with prior domain expertise and physical principles20,24.

Hybrid ESM, which combines the strengths of ESM and DL, is a cur-
rent research trend that is leading to improved emulation of Earth sur-
face processes in high resolution25,26 (Fig. 1). DL enhances the analysing 
efficiency of observational data into ESMs to accelerate discovery27,28. 
In addition, hybrid ESMs have also broadened the application scope of 
DL, such as extraction of information from remote-sensing imagery and 
prediction of climate variables15. However, existing research has primar-
ily focused on combining approaches at the initial model-integration 
level. Such approaches can have potential for subjective bias towards 
one system over the other leading to an imbalance between the two 
systems, potentially impeding their successful integration. Integra-
tion over the modelling lifecycle could help to build compatible model 
deployment that can better understand and solve given tasks.

In this Perspective, we review the development of hybrid Earth 
surface system modelling (ESSM) and propose a conceptual framework 
for intelligent ESSM in which DL and human insights are integrated 
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Precision of modelling dynamics
The construction of ESSM needs to be fundamentally grounded in 
established physical principles, such as heat transfer or fluid dynamics, 
and adheres to well-established scientific knowledge. Nevertheless, 
expert bias can still have a role in the process53. Hence, model architec-
ture and configuration are potentially affected by subjectivity and are 
prone to bias, errors and unexpected simulation results54. This issue 
could be aggravated when the derived models consist of physical or 
(semi-)empirical models also encounter the challenging of effectively 
addressing complex nonlinear dynamics42,55,56. Although data assimi-
lation strategies can improve the performance of these models, the 
pace of creating data frequently far exceeds the ability of models to 
assimilate it sensibly20.

Efficiency of computational technology
The computational efficiency of process-based models is crucial, 
particularly for high-resolution or (near-) real-time modelling (for 
example, natural disaster assessment), where delays in results and 
knowledge production could narrow the window of opportunity in 
decision-making processes57,58. In terms of hardware, current ESSM 
research often relies on multiple central-processing-unit (CPU)-based 
computers or supercomputers, which have been outperformed by 
expanding computational demands59,60. A three-year study of fine-
grained climate simulations on supercomputers shows that graphics 
processing units (GPUs) outperform CPUs by at least an order of mag-
nitude during high-resolution simulations61. Regarding software, ESSM 
lifecycle processes typically require manual operations or intermediate 
data transfers, which can impede the computing pipeline. In addition, 
some models with computationally expensive modules, such as the 
solution of optimization problems and partial differential equations, 
necessitate time-intensive iterative simulations.

These four challenges have the potential to disrupt a more com-
plete understanding of Earth system dynamics, dilute the insights 
gleaned from ever-expanding data reserves, introduce discrepan-
cies and inaccuracies in model constructions and slow down crucial, 
time-sensitive decisions. To transcend these barriers, it is imperative 
that current ESSM frameworks are enhanced with forward-thinking 
methodologies, such as deep learning.

Neural strengths of deep learning
As a specific subfield of artificial intelligence, DL comprises a large class 
of approaches based on different variations of deep neural network 
architectures. For example, convolutional neural networks, archi-
tectures that focus on local connections through multidimensional 
convolutions, are often used to extract patterns from various data 
modalities (for instance, 1D convolutions for sequences, 2D convolu-
tions for images and 3D convolutions for videos)14. Recurrent neural 
networks, particularly those equipped with memory cells known as 
long short-term memory networks62, are commonly adept at learn-
ing features and long-term dependencies from sequential inputs63. 
More sophisticated networks, such as graph neural networks, genera-
tive adversarial networks and transformers, expand the applicability 
of neural networks beyond relatively specific uses and demonstrate 
greater flexibility and adaptability for various tasks;50,64,65 in particular, 
transformers have been shown to be applicable across diverse purposes 
with outstanding performance in geoscientific applications, such as 
modelling spatiotemporal patterns of climate variables66 and tectonic 
plate movement67.

Compared with conventional process-based models, deep neural 
networks generally exhibit superior prediction performance in terms 
of fitting observational data14. Although it is important to acknowl-
edge that these networks typically have limited interpretability for 
understanding decision processes68, with the research community 
actively working to address these shortcomings, the characteristics 
of deep learning still pave the way for data-driven discovery of pat-
terns in Earth surface system dynamics. Table 1 contains some existing 
examples of DL-integrated ESSM options for the different domains. 
On a broader note, the opportunities that DL brings to mitigate the 
challenges of ESSM can be seen from four perspectives, as described 
in the following sections.

Maximum use of multimodal data
Data derived across space and time are often characterized by multimo-
dalities; that is, they are multisource, heterogeneous, unstructured or 
multitemporal69. Integrating information from various modalities into 
a homogeneous space helps to uncover distinctive characteristics and 
explain the observed processes70,71. Techniques for multimodal data 

Hybrid Earth
system modelling

Deep learning
• CNNs
• RNNs
• LSTM
• GNNs
• GANs
• Transformers
...

Environmental grand challenges
• Climate change
• Biodiversity loss
• Pollution impacts on human 

health and the environment
...

Observational data from 
Earth surface systems
• Hydrological subsystem
• Geological subsystem
• Atmospheric subsystem
• Biological subsystem
• Social subsystem
...

Earth system modelling
• Conceptualization
• Parameterization
• Calibration
• Validation
• Uncertainty analysis
• Simulation
...

Fig. 1 | Answering the grand environmental 
challenges through integrating Earth system 
modelling and deep learning. Earth surface system 
dynamics and their interactions can be interpreted 
and simulated through Earth system modelling 
(ESM). Integration of ESM with deep learning 
methods increases the predictive power, accuracy 
and interpretability. These features make hybrid 
ESMs promising tools to better understand and 
mitigate the environmental grand challenges such 
as climate change, biodiversity loss, and pollution 
impacts on human health and the environment. 
CNNs, convolutional neural networks; GANs, 
generative adversarial networks; GNNs, graph neural 
networks; LSTM, long short-term memory network; 
RNNs, recurrent neural networks.
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fusion are numerous. Those techniques that rely heavily on manual 
encoding with domain-specific expertise inevitably impair the fusion 
results72. In contrast, deep neural networks can adapt to unstructured 
multimodal data and uncover complicated correlations among them73. 
The ability to tackle the challenges of ESSM using this aspect of DL is 
a major advantage. For instance, DL-based approaches can fuse the 
various multimodal data derived from decomposed problems, thereby 
affording an efficient and comprehensive way to understand Earth’s 
surface processes.

Self-adaptive feature representation
Even data generated by natural laws exhibit considerable uncertainty 
and high dimensionality20,74. To extract information from and under-
stand such data, scientific communities have a strong interest in rep-
resenting their features. Traditional methods, such as scale-invariant 
feature transform, term frequency–inverse document frequency and 
principal component analysis, commonly extract low- or mid-level fea-
tures and are only suitable for certain workloads75. In contrast, DL-based 
approaches have received considerable attention in geoscientific 
applications because of the self-adaptive learning mechanism (com-
monly based on supervised learning and labelled data). Specifically, 
deep neural networks can reveal patterns and relationships from data, 
such as interpreting various objects within complex backgrounds in 
observed images, which can be challenging to formulate using tradi-
tional methods and a priori knowledge76,77. The feature representation 

ability of DL aids the extraction of deep-level features without tedious 
feature engineering. Furthermore, unsupervised or self-supervised 
approaches can automatically adapt to latent domains in heterogene-
ous data at a fraction of manual and computational cost78,79. Model-
lers can use pretrained models on public datasets like ImageNet80 to 
transition to geoscientific applications, reducing time-consuming 
labelling efforts.

Superior fitting precision
DL-based approaches perform well in complex Earth system dynamics 
as universal functional approximators81. For example, DL-based fore-
casting or nowcasting of climate variables (such as precipitation, 
temperature and humidity) can achieve better results, spatially and 
temporally, including the exact timing, location and intensity79,82. 
By contrast, traditional models such as optical flow frequently strug-
gle to effectively capture nonlinear climate dynamics (such as moist 
convection and cloud formation)82,83, which can be attributed to the 
separation of internal processes and the presence of non-optimizable 
parameters84. DL has been used in some tasks, such as visual question-
answering for geographic scenes85, synthetic spatiotemporal data 
generation86 and extreme weather prediction87 and has notably 
improved these tasks’ simulation accuracy, which seems impossible 
for traditional process-based models. All of the preceding examples 
rely on the ability of deep neural networks to fit with superior precision. 
There is, however, one caveat to recognize here in that, as with all mod-
elling, the parameterization of deep neural networks depends on the 
training dataset(s), which greatly affects fitting performance88,89. Biases 
embedded in training data can be encoded into a model, making it 
essential to consider data quality and the conditions that affect their 
parameterizations and extracted patterns90,91.

High inferencing speed
It is undeniable that training deep neural networks requires a substan-
tial amount of time92, ranging from several hours to multiple weeks. 
However, the inferencing speed of trained networks can be orders of 
magnitude faster than conventional process-based models93, such as 
numerical methods, which frequently require lengthy simulation dura-
tions to yield reliable outcomes on simulating complex dynamics61,94. 
The computational efficiency of these conventional models can be sub-
stantially improved with trained networks as a substitute17. End-to-end 
network architecture and parallel computing explain the computational 
advantage of inferencing. First, end-to-end setups enable networks to 
learn complex representations of data, from inputs to targets, by feeding 
given data directly without manual manipulations, thereby being highly 
beneficial for large-scale simulation95. Second, the data in deep neural 
networks are usually structured as a couple of tensors or matrices, which 
is suitable for parallel computation96. The resulting inferencing speed 
can be increased by several orders of magnitude with GPUs and TPUs97.

Leveraging DL-based approaches provides a transformative 
approach to processing abundant observational data and modelling 
Earth system dynamics. By integrating DL’s strengths, the scientific 
community can enhance its comprehension of the fundamental mech-
anisms driving Earth’s surface processes, paving the way towards 
surmounting the outlined challenges in ESSM more effectively.

Integrating ESSM and DL
The integration of ESSM and DL offers a promising avenue for advanc-
ing our understanding of Earth surface system dynamics. Although 
these two approaches are distinct — theory-simulation-driven and 

Table 1 | Examples of conventional Earth system modelling 
approaches and integrated deep learning options

Domain Scientific challenge Conventional 
ESM examples

DL-integrated 
options

Hydrological 
system

Rainfall–runoff 
simulation

SAC-SMA154 MLP155

Groundwater 
modelling

MODFLOW156 CNN-BiLSTM157 
(CNN- and 
LSTM-based)

Geomorphological 
system

Soil erosion 
modelling

WEPP158 ANFIS159 
(MLP-based)

Sediment estimation SEDD160 CNN161

Atmospheric 
system

Air quality 
assessment

Gaussian 
plume model162

CNN163

Weather prediction WRF164 GNN65

Biological system Forest carbon 
estimation

SEIB-DGVM165 MLP166

Wetland monitoring WSM167 MLP168

Social system Epidemic spread 
modelling

Susceptible–
infected–
susceptible 
model169

LSTM112

Human migration 
simulation

Gravity 
model170

Deep gravity 
model171 
(MLP-based)

ANFIS, adaptive network-based fuzzy inference system; BiLSTM, bidirectional long short-
term memory network; CNN, convolutional neural network; DL, deep learning; ESM, Earth 
system modelling; GNN, graph neural network; LSTM, long short-term memory network; 
MLP, multilayer perceptron; MODFLOW, US Geological Survey modular finite-difference 
flow model; SAC-SMA, Sacramento soil moisture accounting model; SEDD, sediment 
delivery distributed model; SEIB-DGVM, spatially explicit individual-based dynamic global 
vegetation model; WEPP, water erosion prediction project model; WRF, weather research 
and forecasting model; WSM, wetland shrinkage monitoring model.
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data-driven — they complement each other in principle28. ESSM offers a 
strong theoretical foundation for interpreting and representing Earth 
surface processes but can struggle with handling complex dynamics 
and feedbacks in the context of big observational data. By contrast, DL 
excels at extracting information and identifying trends in large datasets. 
However, it lacks interpretive equations and physical constraints, and its 
forecasting capabilities for new scenarios are limited, as it relies entirely 
on previously observed relationships (even complex ones) among 
variables. Hence, by leveraging the integration of both approaches, 
hybrid ESSM demonstrates enhanced prediction and interpretability 
capacities, potentially expediting the discovery of underlying Earth 
surface system dynamics and interactions98–100 (see Fig. 2).

Existing hybrid ESSM research primarily focuses on integrating 
process-based models with deep neural networks during the initial 
stage of model development and integration in the modelling life-
cycle. The main integration modes can be categorized into three 
fundamental modes: the cascading mode, the parallel mode and the 
embedding mode (Fig. 3). It is worth noting that complex tasks often 
require a combination of these fundamental modes.

Cascading mode
The cascading mode consists of a computational pipeline that sequen-
tially runs process-based models and deep neural networks, transmit-
ting intermediate results between them. This cascading mode can be 
categorized into two cases.

In the first case, the process-based model is executed before the 
deep neural network (diagram 1 in Fig. 3). Common functions include 
using a process-based model to generate training data or perform 
feature engineering for a deep neural network or using the latter to 
downscale the output variables of the former. For instance, process-
based models can filter high-quality samples based on physics-based 
criteria or construct simulated datasets to train deep neural networks 
for achieving high prediction accuracy with less ground-truth data101,102. 
Deep neural networks can statistically downscale the coarse outputs 
of process-based models, crucial for predicting climate variables103 
and reconstructing real-world landscapes104. Moreover, deep neural 
networks could identify attractor states and characterize uncertainty 
in complex, multidimensional output from process model ensembles, 
for example from parameter sweeps105.

Evaporation (mm month–1)

140120100806040200

Evaporation (mm month–1)

140120100806040200

Evaporation (mm month–1)

140120100806040200

a  FLUXCOM b  Process-based model c  Hybrid model

d  ERA5 reanalysis e  Process-based model

Precipitation (mm day–1)

20151050

Precipitation (mm day–1)

20151050

Precipitation (mm day–1)

20151050

f  Hybrid model

Observational models Results of ESSM models Results of hybrid models

Fig. 2 | Comparison between outputs from Earth surface system models 
and hybrid models. a, The seasonal aggregates of terrestrial evaporation 
from a model trained directly on evaporation from FLUXNET sites100. FLUXNET 
sites refer to a global network of measurement stations equipped with high-
frequency sensors, which collect data on carbon dioxide, water vapour and 
energy exchanges between the biosphere and atmosphere across diverse 
ecosystems. b, Evaporation predicted by a process-based Earth surface system 
model100. c, Evaporation predicted by hybrid model100. d, Daily precipitation 
above 1 mm day−1 from ERA5 reanalysis79. The ERA5 reanalysis, produced by 
the European Centre for Medium-Range Weather Forecasts (ECMWF), is a 
comprehensive dataset of past global climate conditions, providing hourly 

estimates of various atmospheric, land and oceanic variables from 1950 
to near real-time. e, Results from CM2Mc-LPJmL model based on quantile 
mapping-based post-processing79. CM2Mc-LPJmL is the result of coupling 
the well-validated dynamic global vegetation model LPJmL5 (Lund–Potsdam–
Jena managed land) with the coupled climate model CM2Mc, which is founded 
on the atmosphere model AM2 and the ocean model MOM5 (Modular 
Ocean Model 5). f, Results from CM2Mc-LPJmL model based on physically 
constrained GAN-based post-processing79. GAN, generative adversarial 
network. Owing to the incorporation of deep learning mechanisms, the hybrid 
model simulates Earth’s surface processes more effectively than traditional 
process-based models.
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In the second case, the deep neural network is used first, followed 
by the process-based model (diagram 2 in Fig. 3). Process-based models 
can, for example, constrain or refine deep neural network outputs to 
adhere to physical mechanisms106, such as the law of conservation of 
energy51. In addition, deep neural networks can be used to calibrate 
process-based models, reducing parameterization complexity when 
solving partial differential equations107,108. Deep neural networks could 
also propose process model algorithms to minimize developer biases 
or clarify non-intuitive relationships that could be incorporated into 
process models109.

Parallel mode
In parallel mode, process-based models and deep neural networks 
run simultaneously (diagram 3 in Fig. 3). This parallel mode offers 
three practical advantages due to its concurrent nature: addressing 
complex issues using a divide-and-conquer approach; processing 
multimodal data; and facilitating parallel computing. Specifically, 
the divide-and-conquer strategy, generally built for decomposed sub-
problems, leverages both the process-based model and deep neural 
network simultaneously to tackle challenges in their respective areas 
of expertise110,111. For instance, a modified susceptible–exposed–
infectious–removed model can be used to derive the COVID-19 epidemic 
curve based on population migration data, while a long short-term 
memory network trained on SARS data predicts the epidemic112.

Furthermore, process-based models tend to handle specific file 
formats (for example Shapefile and NetCDF) more efficiently than 
deep neural networks in terms of preprocessing and encoding these 

raw datasets. Consequently, using process-based models or deep 
neural networks to process data they can handle most efficiently while 
working with heterogeneous data sources can improve computational 
efficiency113,114. Parallel computing not only uses supercomputer tech-
nology to enhance computational performance115 but also divides 
the modelling environment, preventing incompatibilities caused by 
heterogeneous computing resources between process-based models 
and deep neural networks59,116.

Embedding mode
The embedding mode enables process-based models and deep neural 
networks to function as plug-and-play components117–119. Specifically, 
these two approaches serve as complementary plug-ins. The embedding 
mode can be further subdivided into two cases.

The first case involves integrating deep neural networks as surrogate 
modules into process-based models (diagram 4 in Fig. 3). Trained deep 
neural networks can act as neural surrogates or solvers using emulation-
style algorithms for computationally intensive process submodules, 
such as those based on partial differential equations120, optimization 
procedures121 and high-dimensional tasks107. These neural surrogates 
or solvers allow for the automatic parameterization and modification 
of local modules in process-based models122, improving computational 
efficiency with less resources needed in simulation complex dynamics123.

The second case entails incorporating process-based models 
into deep neural networks (diagram 5 in Fig. 3) to include physical 
mechanisms and principles, thereby constructing physics-informed 
architectures124, such as Physics-Informed Neural Networks (PINNs)81. 
For example, designing specific loss functions for network optimiza-
tion is a straightforward and effective way for constraining inferred 
results to adhere to domain-specific understanding125. Methods for 
determining the network’s structure, like hidden layers, have been 
explored based on domain laws or physical techniques. Although chal-
lenging, groundbreaking results have been achieved, such as neural 
ordinary differential equations126 and geographically weighted artificial 
neural network127. Another promising area of research is incorporating 
physical constraints into deep neural networks to derive new equations 
that characterize Earth surface dynamics128.

The integration of ESSM and DL, achieved through diverse strat-
egies such as cascading, parallel and embedding modes, opens new 
doors in the geosciences. This fusion of theory-simulation-based and 
data-driven techniques offers a more expansive and clearer perspective 
for predicting and understanding Earth surface processes.

Shortcomings of hybrid ESSM
Despite years of continuous research and development, hybrid ESSM 
is still in its infancy. Highly heterogeneous data, insufficient ground-
truth data and low interpretability of outcomes have been previously 
described as the main challenges20. This section examines further theo-
retical and practical shortcomings in existing hybrid ESSM, with the aim 
to identify opportunities for improvements in hybrid ESSM capabilities.

Restricted integration scenarios
Existing hybrid ESSM research concentrates mainly on model-level 
integration. Nevertheless, the ESSM lifecycle is more comprehensive 
and generally includes the five indispensable stages in the scientific 
methodology summarized in the introduction. These stages are all 
essential for determining the quality and relevance of the solution so 
that the modelling is suitable for the purpose, such as is captured by 
the notions of usability, feasibility and reliability34.

Cascading mode

Process-based model Deep neural networkOutput OutputInput

Deep neural network Process-based modelOutput OutputInput

Output

Integrate

Input

Deep neural
network

Parallel mode

Process-based
model Output Output

Input Output

1

3
Embedding mode

4

5

2

Input

Deep neural
network

Process-based
model

Process-based
model

Deep neural
network

Fig. 3 | Computational logics of hybrid models. a, Cascading mode is a 
computational pipeline consisting of process-based models and deep neural 
networks that runs sequentially and transmits intermediate results. There are 
two cases according to the sequential order of the models. b, Parallel mode 
is when both types of models are run simultaneously. c, The embedding mode is 
when the two types of models are embedded into each other as plug-in modules. 
According to the embedding relationship, they can also be divided into two 
cases depending on which model is embedded into the other. Among the three 
integration modes, the cascading approach is the most simplistic, whereas the 
embedded mode provides greater flexibility and broader potential in simulating 
Earth surface processes.
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Subjectivity in the modelling lifecycle
Subjective factors can be the primary obstacles to achieving highly 
accurate outcomes in hybrid ESSM. As noted previously, researchers 
are prone to use their expertise or criteria, likely making the modelling 
logic less precise and potentially biased. For example, modellers can 
favour physical or numerical models, whereas others with a strong 
background in DL prefer a more data-driven approach. Both can lead 
to suboptimal hybrid models for a specific task129. Another underlying 
challenge is that numerous innovative ideas and techniques about DL 
continue to inundate scientific communities, necessitating research-
ers to comprehend the most current technical advancements130. When 
it comes to choosing configurations (for example, architectures or 
hyperparameters) for deep neural networks, many experienced ESSM 
researchers might be at a loss.

Incompatible computational environment
Incompatibilities between ESSM and DL in terms of hardware, soft-
ware stack and operating environment could impair computational 
efficiency. Specifically, process-based models are often executed on 
multi-CPU computers or high-performance computing facilities131, 
whereas the training and inferencing phases of deep neural networks 
are typically deployed in GPU-based and container-based (like Docker) 
environments132. Further, process-based models, particularly mecha-
nistic ones, are often constructed using Fortran and C++, whereas deep 
neural networks in specific environments use Python and packages 
such as Tensorflow and PyTorch. This latter distinction has become less 
problematic as many scientists are starting to embrace Python and the 
emerging technique of scientific machine learning (SciML) developed 
with the Julia programming packages133. But these discrepancies in devel-
opment and deployment methodologies generally result in separating 
DL and ESSM workloads. This substantially affects data and message 
transmission and limits the computing capacity of hybrid ESSM.

Despite notable progress, hybrid ESSM still has substantial ground 
to cover. Overcoming these hurdles calls for expansion of integra-
tion approaches, deeper scrutiny of modelling biases, and harmony 
between the computational environments of ESSM and DL.

Towards iterative hybrid ESSM
Constructing appropriate and effective solutions to ascertain the 
dynamics of the Earth surface system is generally challenging. An initial 
undertaking is to fully understand the problem contexts and associ-
ated geographic objects. Handling big and multimodal data, especially 
extracting useful information or knowledge from it, is also a laborious 
task. Further, it is essential to focus on the trade-offs between model 
complexity and computational efficiency, as well as to calibrate the 
derived models and quantify or at least indicate model performance 
including uncertainty aspects. Finally, when applying constructed 
models, computational environments and software stacks are not easy 
to comprehend for those domain experts who are often not also experts 
in computation. Given the possible challenges and shortcomings ana-
lysed earlier, our goal is to put forward a hybrid ESSM-deep learning 
framework that holds the potential to deliver customized, scalable and 
accurate solutions to given ESSM tasks so as to lower technical barriers.

Conceptual framework
We propose a conceptual framework designed to intelligently guide 
the entire modelling lifecycle, ultimately generating accurate solutions 
for specific tasks through collaboration between human insights and 
the strengths of neural networks (Fig. 4). Furthermore, this framework 

not only possesses self-renewal capabilities through its internal mecha-
nisms, but also continuously improves its performance by incorpo-
rating user feedback from practical applications. For example, our 
iterative hybrid-ESM framework can generate customized responses 
based on user queries and prompts in a similar way to ChatGPT, but it is 
specifically designed for the ESSM field and has potential for broader 
applications in ESM. Notable differences between our framework and 
ChatGPT include the output form (multimodal outputs and modelling 
resource assignment versus pure-text outputs), technical ESM founda-
tion (knowledge-constrained inference versus inference by large-scale 
deep neural networks) and learning strategy (online self-learning versus 
periodic background updates)13,134.

The framework consists of three major components. First, there 
is a modelling-related knowledge repository (representing human 
insights), which organizes diverse knowledge established by previous 
modelling of Earth surface processes. For example, there should be 
knowledge about formulated geophysical mechanisms, data, methods, 
models (both conventional and DL-based approaches) and computa-
tional infrastructure (software and hardware basis for running and 
analysing developed models). Second, there is a DL computing system 
that encompasses various deep neural networks (for example, trans-
formers for language understanding, convolutional neural networks 
for image processing and graph neural networks for knowledge rea-
soning), enhanced by effective learning strategies such as self-taught 
learning, online learning and Bayesian learning. Third, there are adap-
tive guidance plans, which result from interactions between the first 
two components and improve the modelling of lifecycle processes.

Ideally, the modelling-related knowledge repository and the 
DL computing system are built within a homogeneous environment, 
sharing cloud-based services and high-performance computing sup-
port. This configuration offers potential practical advantages. For 
example, a homogeneous environment enables efficient interaction 
and communication between the two components. In addition, it 
aids data acquisition from the Internet and crowdsourcing, online 
updates of deep neural networks and dynamic extension of the 
modelling-related knowledge repository. Finally, it allows generated 
models or computational solutions to be deployed and run in separate 
environments, avoiding incompatibility issues.

The knowledge repository not only organizes various types of 
knowledge but also serves as a knowledge graph, providing a priori con-
straints to improve the inference performance of the DL computing sys-
tem. Consequently, the generated output aligns with the current scope 
of knowledge or logically inferred derivations from existing information, 
rather than being arbitrarily generated by deep neural networks (which 
can contradict domain principles or modelling logic). In constructing 
the knowledge repository, both ‘top-down’ and ‘bottom-up’ strategies 
are used. Top-down strategies depend on domain experts or commu-
nities for the structure and items of the repository, resulting in a more 
scientific but potentially biased approach that typically involves manual 
manipulation. Bottom-up strategies use natural language processing 
and computer vision methods to automatically extract knowledge about 
Earth surface process concepts, entities and relationships from publicly 
available authoritative data (for example peer-reviewed research litera-
ture and web corpora). This approach generates more comprehensive 
and up-to-date knowledge through an automated process, but it relies 
on existing information and knowledge extraction technologies.

The deep neural networks within the DL computing system are 
ideally pretrained using authoritative datasets, which require further 
preprocessing, such as converting them into question–answer pairs 
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and supplementing them with user–item interaction datasets (such as 
click-throughs or historical modelling logs) available from open ESSM 
platforms. The developed DL computing system can help complete 
the existing knowledge repository by inferring unknown or missing 
information (entities or their relations) using graph-based networks 
and Bayesian learning strategies. Furthermore, it can extract subjects 
from users’ inputs (questions or preferences) and feed them into neural 
networks constrained by the knowledge graph to generate answers and 
recommendations. However, data deficiency, or the lack of high-quality 
labelled data, might pose a challenge for the DL computing system after 
some time. In such cases, semi- or unsupervised learning or self-taught 
learning offer promising solutions. Deep neural networks can update 
their parameters based on unlabelled data and maintain online learn-
ing on the backend, facilitating self-renewal of both the deep neural 
networks and the knowledge repository.

Adaptive modelling guidance plans, a comprehensive term for 
inference results derived from question-answering mechanisms and 
recommendation functions, are generated through the collabora-
tion between the modelling-related knowledge repository and the 
DL computing system. These plans are multimodal in nature, producing 
outputs in various forms, such as text, images and video. Additionally, 
given the homogeneous deployment environment of the framework, 
modular modelling resources such as data, methods and models can be 
allocated accordingly. As users engage in iterative interactions with a 
platform implementing our proposed framework, the system deepens 
its understanding of their questions or preferences, resulting in increas-
ingly customized, scalable and accurate guidance plans. Generated 
throughout the entire modelling lifecycle, these adaptive guidance 
plans serve as clear guidelines and modelling resource allocators for 
arising modelling tasks. In the end, they aid complete and effective 
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Fig. 4 | A framework for iterative integration of Earth surface system 
modelling and deep learning. a, Interactions between the hybrid Earth 
surface system model (ESSM) and the user allow the system to deepen its 
understanding of their questions or preferences, resulting in increasingly 
customized, scalable and accurate guidance plans. b, Adaptive guidance plans 
are intelligently generated within a homogeneous environment (central box) 
to guide modelling tasks and allocate modular resources throughout the 
modelling lifecycle. These plans result from question-answering mechanisms 

and recommendation functions, powered by a modelling-related knowledge 
repository and a deep learning (DL) computing system. The guidance 
plans can direct modellers to build customized solutions to solve given 
environmental or Earth process problems. This guidance can be divided into 
five stages according to the ESSM lifecycle (outer ring). When users interact 
iteratively with a modelling platform that adopts this framework, the outcomes 
of the guidance plans can be more precise and tailored to specific tasks.
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computational solutions by integrating all modular resources within 
separate spaces in the deployment environment.

The guidance plans provided by the iterative hybrid ESSM can be 
divided into five stages. Stage 1 involves the problem definition and 
contextualization. A given topic can be hierarchically decomposed into 
multiple sub-analyses or interactions of the subsystems involved. Geo-
graphic objects and their relations in space and time can be recognized 
and visualized automatically, giving modellers a clearer understanding 
of what to analyse before investigation commences. Stage 2 forms 
the data preparation and processing. Relevant data is retrieved, with 
adaptive recommendations for processing techniques. Therefore, ben-
eficial patterns and interior knowledge can be acquired from various 
types of data rather than through manual manipulation. Stage 3 is the 
model development and integration step. A modular strategy organ-
izes model modules, allowing knowledge-based reasoning methods 
to build customized models for specific needs. Automatic methods, 
including calibration and uncertainty estimation, improve prediction 
results and computational efficiency. Stage 4 is where the model is 
evaluated and optimized. Suitable metrics for evaluating performance 
will also be selected at this stage. The probabilistic inferencing and 
other methods will be used to estimate the statistical confidence in 
the models and other ways to represent uncertainties. Finally, stage 5 
is where the model simulation and application are produced. Consid-
ering the data and model characteristics, an efficient computational 
infrastructure will be developed by allocating resources to create 
separate environments. Simulated results will be effectively visualized 
and communicated to relevant stakeholders or the general public.

Potential application case
The COVID-19 pandemic has had unprecedented impacts on human 
behaviour and decision-making, leading to effects on Earth surface 
processes at local to global scales135. As we navigate the post-COVID-19 
era, with all countries adapting to living with the virus, it is crucial to 
reflect on the pandemic’s impacts over the past three years and antici-
pate future trends. Understanding the questions related to COVID-19 
impacts will aid in analysing the pandemic’s effects on the socioeco-
nomic environment, as well as discerning causality in the Earth surface 
system response, ultimately promoting sustainable development in 
the post-COVID-19 era136.

The ensuing discussion assumes that this framework has been 
implemented and integrated in a modelling platform. The aim is 
to elucidate the application of our framework to this macroscopic 
and multifaceted problem and to explain the mechanisms of oper-
ation and interaction between the modelling-related knowledge 
repository and the DL computing system contained within the frame-
work. In addition, the potential generation of modelling guidance 
plans is explored, contributing to a comprehensive understanding of 
the underlying principles and goals of our framework.

Upon receiving a user’s enquiry, such as “What are the various 
impacts of the changed travel behaviours adapted to the post-COVID-19 
era?”, the platform processes the input using natural language pro-
cessing techniques. Specifically, it extracts key terms and concepts, 
including “changed travel behaviours”, “post-COVID-19 era” and “vari-
ous impacts.” The DL computing system then consults the knowledge 
graph maintained by the modelling-related knowledge repository, 
searching for relevant concepts, entities and relationships associated 
with the extracted key terms. Graph neural networks within the comput-
ing system infer potential answers and recommendations based on user 
preferences, using connections and patterns in the knowledge graph.  

Simultaneously, if necessary, other deep learning models such as 
transformers for language understanding and convolutional neural 
networks for image processing are used to generate coherent and 
meaningful responses. Inference processes take place throughout 
the entire modelling lifecycle stages, and the DL computing system’s 
output is validated by the knowledge repository, ensuring that the 
generated guidance plans adhere to the current scope of knowledge 
and domain principles.

Generated guidance plans will progress through modelling lifecy-
cle stages, starting with the decomposition of the primary question into 
finer subtopics. Initially, the overarching question is divided into inter-
mediate-level concerns, such as impacts on the natural environment 
(emissions, air quality and climate) and the socioeconomic environ-
ment (poverty, food and globalization). These intermediate topics are 
further divided into finer details, including spatiotemporal variations 
in local travel behaviours137, energy supply and consumption138, and air 
pollution changes139. These issues span local to global scales and short 
to long-term timescales. By visualizing geographical objects and their 
relationships, the decomposed subproblems enable users to gain a 
comprehensive understanding of the causal relationships and interac-
tions among changed human behaviours, their impacts on the economy 
and society, and the resulting Earth surface system responses.

Furthermore, the guidance plans will include recommendations 
for data sources and their associated processing methods. For instance, 
the suggested data can encompass a broad range of Earth observa-
tion data, such as satellite remote-sensing products, measurement 
networks, and ground-based sensor data. Additionally, long-term 
socioeconomic data related to energy, trade, and transportation are 
valuable, but their time lags might hinder real-time modelling and 
analysis, necessitating the use of licensed and shared private sector 
data135. The generated plans will also propose suitable data processing 
methods. These methods can include data cleaning to eliminate incon-
sistencies and errors, normalization to standardize values across dif-
ferent scales, feature extraction to identify relevant variables, and data 
fusion or integration techniques to merge disparate data types into a 
coherent dataset. Moreover, the guidance plans could suggest appro-
priate techniques for handling missing data, such as interpolation or 
imputation methods, and for reducing dimensionality through meth-
ods such as principal component analysis or t-distributed stochastic 
neighbour embedding.

During the model development and integration stage, adaptive 
guidance plans will recommend a cohesive and potentially hybrid 
approach, combining process-based and data-driven models. These 
plans emphasize the significance of model integration, comparing and 
calibrating various models to achieve a comprehensive understanding 
of the problem while evaluating their performance against observa-
tional data or benchmarks. For instance, process-based models, such 
as those in the Coupled Model Intercomparison Project (CMIP), could 
be suggested to simulate complex interactions between different sub-
systems, while data-driven models like machine learning or statistical 
models can analyse correlations between travel behaviours and envi-
ronmental or socioeconomic impacts. The integrated hybrid approach 
aids simultaneous simulation of both human and natural environ-
ments, ensuring a thorough investigation of post-COVID-19 travel 
behaviour impacts by leveraging the strengths of process-based and 
data-driven models while enhancing parameterization or developing 
simulators to reduce computational costs.

In stage 4, model evaluation and optimization, the guidance 
plans will recommend suitable metrics and methodologies, such as 
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cross-validation, mean squared error and precision-recall curves, 
to assess model performance and conduct uncertainty analysis, 
ensuring trustworthiness. Furthermore, optimization strategies 
such as parameter tuning and model ensembles can be suggested 
and performed to enhance model accuracy and generalization capa-
bilities. For model simulation and application, human travel data and 
Earth observation data are often heterogeneous and large, and the 
models built are often complex. The guidance plans will therefore 
emphasize the effectiveness and efficiency of data processing and 
model computation, optimizing the compatibility and performance 
of the computational pipeline by dynamically allocating and config-
uring computational resources with appropriate operating systems 
and software applications. The plans will also propose visualization and 
communication tools for effectively presenting and sharing results 
with stakeholders, while highlighting potential avenues for further 
research or real-world implementation.

During the modelling guidance generation process, users can 
offer feedback and prompts on the plans, which can be used to refine 
the plans further and potentially enhance the performance of the 
DL computing system while fine-tuning the modelling-related knowl-
edge base. This iterative interaction loop enables the platform to learn 
from and adapt to users’ needs and preferences, ensuring increasingly 
customized and precise guidance. Additionally, the platform can foster 
collaboration among users, allowing them to exchange insights, experi-
ences, and best practices for modelling the impacts of altered travel 
behaviours in the post-COVID-19 context. This collaborative element 
contributes to the ongoing growth and refinement of the knowledge 
repository and the platform as a whole.

In summary, this iterative hybrid ESSM framework, consisting of 
a modelling-related knowledge repository (which represents human 
insights), a DL computing system (embodying the strengths of neural 
networks) and adaptive guidance plans (derived from the synergy of 
the two), could help to enhance the intricacies of ESSM.

Summary and future perspectives
ESSM is confronted at present with substantial technical challenges, 
primarily in discerning the complexities of the problem space and in 
executing efficient, precise analysis of voluminous observational data. 
DL, noted for its potent data-driven proficiencies in processing and rep-
resenting features inherent in large-scale data, has the potential to aug-
ment the performance of ESSM in simulating Earth surface processes, 
and displays considerable promise in integrating with ESSM, thus con-
tributing to the development of a hybrid ESSM. However, integration of 
ESSM and DL approaches is an emerging technique for understanding 
Earth surface system dynamics. Most research focuses on integrat-
ing process-based models and deep neural networks during the initial 
development of hybrid models, rather than exploring the advantages 
of a comprehensive approach that covers all modelling lifecycle stages. 
We propose a conceptual framework in which DL is iteratively integrated 
into ESSM throughout the modelling lifecycle. This framework aims to 
enable customized, scalable and accurate solutions for modelling Earth 
surface processes by iteratively integrating ESSM-related knowledge 
with the data-harnessing strengths of DL. Such integration could reduce 
subjective biases in the modelling processes and provide compatible 
computational environments between the approaches.

ESM’s interdisciplinarity nature necessitates an open knowledge 
sharing community, open resources (for example, datasets, codes 
and models) and open research cooperation. These requirements 
underscore the importance of practices such as adhering to the ‘FAIR’ 

principles, which ensure data findability, accessibility, interoperabil-
ity, and reusability140. Research organizations, such as the OMF (Open 
Modeling Foundation)141, the OpenGMS (Open Geographic Modeling 
and Simulation)142, the CSDMS (Community Surface Dynamics Mod-
eling System)143 and the CoMSES Net (Network for Computational 
Modeling in Social and Ecological Sciences)144,145, have already con-
tributed to collaboration and sharing. In conjunction with similar 
scientific entities, it is hoped that these environments will encourage 
the collaboration of scientists from various disciplines to address 
complex problems. Building a virtual online platform for researchers 
to experiment and discuss will also enhance the transparency and 
reproducibility of modelling.

The underlying abstract formulations of DL networks present a 
unique challenge for geoscientific applications, as they are not easily 
interpretable despite producing precise simulation results. Explainable 
or interpretable artificial intelligence using explanatory approaches 
(such as layer-wise relevance propagation, integrated gradients and 
occlusion analysis) do however allow users to understand internal 
mechanics of deep neural networks146. Merging process-based models 
with domain-specific knowledge as surrogates in deep neural networks 
can enhance the transparency of these typically abstract systems147. 
Related research projects are still evolving, but there remains a substan-
tial trade-off between model performance in terms of explainability 
and simulation accuracy of model outputs.

Moving forward, the intelligent development of customized ESMs 
could be achieved through the iterative ESM framework. However, the 
pathway in this framework might not align entirely with geoscientists’ 
thought processes, as generated solutions predominantly depend on 
the inference results of deep neural networks. Therefore, our frame-
work advocates for enhancing the accuracy of the DL computing system 
based on specific objective functions and also implementing contextu-
ally appropriate logic constraints that are compliant with the mindset 
of the geoscience community. These considerations should be taken 
into account throughout the entire modelling lifecycle, ultimately 
enhancing the trustworthiness of results and outcomes.

Moreover, two typical characteristics reduce confidence in the pre-
dictive accuracy of ESM integrated with DL. The first is the difficulty in 
accurately simulating certain extreme events due to the highly dynamic 
character of the Earth’s surface system148. For instance, hybrid models 
can struggle to precisely predict heavy rainfall or landslides triggered 
by a combination of geophysical factors such as seismic activities, soil 
saturation and steep topography149. Second, disruptions in observed 
data due to climate change, which alters weather patterns and envi-
ronmental conditions, along with human-induced alterations such 
as sediment redistribution, pose additional challenges to the efficacy 
of models created to predict Earth surface processes150,151. To mitigate 
these issues, maintaining regular updates of models and software is 
crucial, as is using data assimilation, lifelong learning techniques, and 
explainable or interpretable artificial intelligence. In addition, acquir-
ing up-to-date and widespread data and processing the vulnerable 
observations using hybrid models can effectively improve modelling 
performance. Ultimately, the community needs to recognize that 
uncertainty will always be present, but adherence to good modelling 
practices can enhance the trustworthiness and credibility of results34,152. 
These include deliberating on fitness for purpose, applying systematic 
procedures, characterizing and discussing uncertainties, justifying 
choices, and clearly stating assumptions and limitations32. Ensuring 
transparency through thorough documentation further strengthens 
the reliability of the outcomes34,153.
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In conclusion, we believe the integration of ESSM and DL is a con-
siderable step towards more accurate and reliable models of Earth’s 
surface processes. As this synergy spans across multiple disciplinar-
ies and is still an evolving field of science, the capability and capacity 
should be increased through the collaboration of an open scientific 
community and the adherence of good modelling practices.
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