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Abstract

Sections

Earth system modelling (ESM) is essential for understanding past,
present and future Earth processes. Deep learning (DL), with the data-
driven strength of neural networks, has promise forimproving ESM by
exploiting information from Big Data. Yet existing hybrid ESMs largely
have deep neural networks incorporated only during the initial stage of
model development. In this Perspective, we examine progress in hybrid
ESM, focusing on the Earth surface system, and propose a framework
thatintegrates neural networks into ESM throughout the modelling
lifecycle. In this framework, DL computing systems and ESM-related
knowledge repositories are set up inahomogeneous computational
environment. DL caninfer unknown or missing information, feeding it
backinto the knowledge repositories, while the ESM-related knowledge
can constraininference results of the DL. By fostering collaboration
between ESM-related knowledge and DL systems, adaptive guidance
plans canbe generated through question-answering mechanisms and
recommendation functions. As users interactiteratively, the hybrid
system deepens its understanding of their preferences, resulting
inincreasingly customized, scalable and accurate guidance plans

for modelling Earth processes. The advancement of this framework
necessitates interdisciplinary collaboration, focusing on explainable
DL and maintaining observational data to ensure the reliability of
simulations.
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Perspective

Introduction

Earthisacomplex, dynamic and adaptive system, with diverse interac-
tions driven by energy, matter and organisms’. Human activities are
increasingly disturbing the Earth system, for example through releasing
greenhouse gases and pollutants and destroying habitats”. Understand-
ing these multifaceted and interconnected Earth processes requires
integration of observational measurements with physical models of
the environment®. In particular, identification of the underlying mecha-
nisms and anticipation of potential feedback cycles in Earth systems
is essential to more fully understand the impacts of human pressures
and how they can be mitigated®.

Earth system modelling (ESM, Fig. 1) represents a primary tool for
characterizing and quantifying the spatiotemporal variations and inter-
nalinteractions of the Earth across the past, present and future®”. ESMs
are composed of aset of physics-based equations that simulate physical,
chemicalandbiological processes withinthe Earth system, suchas carbon
and nitrogen cycles, solar radiation dynamics and terrestrial ecosys-
tem dynamics®'°. These process-based models merge all aspects of the
Earth system together, unlike their predecessors (such as global climate
models) that just focused on the atmosphere and oceans. However,
owingto their complexity, ESMs are very computationally demanding,
time-consuming and expensive. The vast volume of data available has
created analytical barriers to ESM research and necessitates the adoption
of sophisticated machine learning technologies to streamline processing
times and overcome computational bottlenecks"".

Deep learning (DL; Fig.1) hasadvanced many research fields, includ-
ing computer vision, natural language processing (such as ChatGPT")
and proteinstructure prediction™, asit has the ability toimprove the pre-
diction accuracy and computational efficiency of other computational
models. It also has the beneficial ability to process multimodal data,
whichisespeciallyimportantin Earthsciences, where vast quantities of
heterogeneous and noisy raw observational data are gathered onadaily
basis (for example satellite data from different sensors, ground-based
observations and socioeconomic data)">*°. As such, geoscientific applica-
tions of deep learning"'? have shown potential to address the analytical
and computational challenges faced by ESMresearch™*°. However, the
data-intensive nature of DL has underlying abstract formulations that
are often not visible to the user, and insufficient quantities of labelled
and preprocessed machine-readable data” can make it challenging for
DL modelstorecognize patterns and generate trustworthy trends. Hence
it must be stressed that any deep or machine learning model is only as
good as the quality of the input data’***, except when they are trained
with prior domain expertise and physical principles®®*.

Hybrid ESM, which combines the strengths of ESM and DL, isacur-
rentresearch trend thatisleading toimproved emulation of Earth sur-
face processesin highresolution®?® (Fig.1). DL enhances the analysing
efficiency of observational datainto ESMs to accelerate discovery**.
Inaddition, hybrid ESMs have also broadened the application scope of
DL, suchasextraction of information from remote-sensingimagery and
prediction of climate variables”. However, existing research has primar-
ily focused on combining approaches at the initial model-integration
level. Such approaches can have potential for subjective bias towards
one system over the other leading to an imbalance between the two
systems, potentially impeding their successful integration. Integra-
tionover the modellinglifecycle could help to build compatible model
deployment that can better understand and solve given tasks.

In this Perspective, we review the development of hybrid Earth
surface system modelling (ESSM) and propose a conceptual framework
for intelligent ESSM in which DL and human insights are integrated

throughout the modelling lifecycle. We focus on the Earth surface
system, thatis, the interacting system of processes occurring at or near
the Earth’s surface, such as hydrological, geological, (near-surface)
atmospheric, biological and social subsystems*~° (Fig. 1). To align
with this focus, we narrow the broad concept of ESM to a more specific
subset of ESSM. The proposed framework is primarily designed for
ESSM, but has the potential for broader applicability inthe overall field
of ESM. Finally, we envisage future directions toward advancing ESM
research throughits integration with DL.

Challenges of current Earth surface system
modelling

Numerous process-based models have been developed and applied
in Earth surface system science throughout the evolution of the geo-
sciences. To analyse more comprehensive issues involving numerous
processes, communities have developed aseries of integrated ESSMs
thatare able to depict complicated interactions among multiple sub-
systems™’. The scientific lifecycle of ESSM generally has five methodo-
logical stages, namely: problem definition and contextualization; data
preparation and processing; model development and integration;
model evaluationand optimization; and model simulation and applica-
tion****, These stages need iterative fine-tuning to ensure that the key
modelling processes areincorporated and the purposes or objectives
are sufficiently considered®**. Table 1 lists examples of prominent
modellingapplicationsin distinct domains. Asindicated below, we have
identified four notable challenges facing ESSM.

Completeness of understanding problems

Tounderstand the dynamics of the Earth surface system, which exhibit
self-organization, emergent and hierarchical properties, we should
consider the intrinsic interactions and feedbacks among different
subsystems®**.

In ESSM, macroscopic problems are often hierarchically decom-
posed into less complex and more manageable pieces to aid analysis
and problem-solving, while underlining the importance of interac-
tions and emergent properties across multiple scales®®*, Yet some
currentmethodologies in ESSM, particularly those designed for large-
scale simulations, might not fully capture the intrinsic connections
among related subsystems, potentially resulting in a reductionist
approach**™*2, Furthermore, these methods could lead to incom-
plete understanding and computational challenges. Specifically,
decomposed subproblems with too few geographical objects (such
aslandforms, vegetation or rivers) in subsystems might not provide a
comprehensive view of the relevant Earth surface states>*. By contrast,
those with many geographical objects might not necessarily address
the nonlinearity problem effectively and could introduce additional
formulating complexities***.

Capability of handling Big Data

Aplethoraof sensors continue to produce unstructured observational
datathat capturestates, fluxes and interactions of the Earth’s surface*.
Theseinclude Earth observation satellites, the global positioning sys-
tem, in situ observations and social media, and they generate quintil-
lions of bytes every day**%. Although this data availability has created
numerous opportunities for ESSM, it has also led to unprecedented
technological obstacles, namely, volume, variety, veracity, velocity
and value*°. It is generally difficult to fully process the various data
sources and further extract deep-level patterns, let alone discover
knowledge from them, through conventional ESSM approaches®*,
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Observational data from
Earth surface systems

o Hydrological subsystem
» Geological subsystem

o Atmospheric subsystem
» Biological subsystem

o Social subsystem

Earth system modelling
o Conceptualization

e Parameterization

o Calibration

o Validation

o Uncertainty analysis

» Simulation

Deep learning
e CNNs
* RNNs
* LSTM
* GNNs
* GANs
» Transformers

Environmental grand challenges
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Fig.1| Answering the grand environmental
challenges through integrating Earth system
modelling and deep learning. Earth surface system
dynamics and their interactions can be interpreted
and simulated through Earth system modelling
(ESM). Integration of ESM with deep learning
methods increases the predictive power, accuracy
and interpretability. These features make hybrid
ESMs promising tools to better understand and
mitigate the environmental grand challenges such
as climate change, biodiversity loss, and pollution
impacts on human health and the environment.
CNNs, convolutional neural networks; GANSs,
generative adversarial networks; GNNs, graph neural
networks; LSTM, long short-term memory network;
RNNs, recurrent neural networks.

Precision of modelling dynamics

The construction of ESSM needs to be fundamentally grounded in
established physical principles, such as heat transfer or fluid dynamics,
and adheres to well-established scientific knowledge. Nevertheless,
expertbias canstill have aroleinthe process®. Hence, model architec-
ture and configuration are potentially affected by subjectivity and are
prone to bias, errors and unexpected simulation results®*. This issue
could be aggravated when the derived models consist of physical or
(semi-)empirical models also encounter the challenging of effectively
addressing complex nonlinear dynamics*»*>*°, Although data assimi-
lation strategies can improve the performance of these models, the
pace of creating data frequently far exceeds the ability of models to
assimilate it sensibly®.

Efficiency of computational technology

The computational efficiency of process-based models is crucial,
particularly for high-resolution or (near-) real-time modelling (for
example, natural disaster assessment), where delays in results and
knowledge production could narrow the window of opportunity in
decision-making processes®”*. In terms of hardware, current ESSM
research often relies on multiple central-processing-unit (CPU)-based
computers or supercomputers, which have been outperformed by
expanding computational demands®*®°. A three-year study of fine-
grained climate simulations on supercomputers shows that graphics
processing units (GPUs) outperform CPUs by at least an order of mag-
nitude during high-resolution simulations®. Regarding software, ESSM
lifecycle processes typically require manual operations or intermediate
datatransfers, which canimpede the computing pipeline. Inaddition,
some models with computationally expensive modules, such as the
solution of optimization problems and partial differential equations,
necessitate time-intensive iterative simulations.

These four challenges have the potential to disrupt a more com-
plete understanding of Earth system dynamics, dilute the insights
gleaned from ever-expanding data reserves, introduce discrepan-
cies and inaccuracies in model constructions and slow down crucial,
time-sensitive decisions. To transcend these barriers, it is imperative
that current ESSM frameworks are enhanced with forward-thinking
methodologies, such as deep learning.

Neural strengths of deep learning

Asaspecific subfield of artificial intelligence, DL comprises alarge class
of approaches based on different variations of deep neural network
architectures. For example, convolutional neural networks, archi-
tectures that focus on local connections through multidimensional
convolutions, are often used to extract patterns from various data
modalities (for instance, 1D convolutions for sequences, 2D convolu-
tions for images and 3D convolutions for videos)'. Recurrent neural
networks, particularly those equipped with memory cells known as
long short-term memory networks®, are commonly adept at learn-
ing features and long-term dependencies from sequential inputs®.
More sophisticated networks, such as graph neural networks, genera-
tive adversarial networks and transformers, expand the applicability
of neural networks beyond relatively specific uses and demonstrate
greater flexibility and adaptability for various tasks;*>**** in particular,
transformers have been shown to be applicable across diverse purposes
with outstanding performance in geoscientific applications, such as
modelling spatiotemporal patterns of climate variables®® and tectonic
plate movement®’.

Compared with conventional process-based models, deep neural
networks generally exhibit superior prediction performance interms
of fitting observational data'. Although it is important to acknowl-
edge that these networks typically have limited interpretability for
understanding decision processes®®, with the research community
actively working to address these shortcomings, the characteristics
of deep learning still pave the way for data-driven discovery of pat-
ternsin Earth surface system dynamics. Table 1 contains some existing
examples of DL-integrated ESSM options for the different domains.
On a broader note, the opportunities that DL brings to mitigate the
challenges of ESSM can be seen from four perspectives, as described
inthe following sections.

Maximum use of multimodal data

Dataderived across space and time are often characterized by multimo-
dalities; that is, they are multisource, heterogeneous, unstructured or
multitemporal®. Integrating information from various modalities into
ahomogeneous space helps to uncover distinctive characteristics and
explain the observed processes’*”". Techniques for multimodal data
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Table 1| Examples of conventional Earth system modelling
approaches and integrated deep learning options

Domain Scientificchallenge Conventional DL-integrated
ESMexamples options
Hydrological Rainfall-runoff SAC-SMA™* MLP™®
system simulation
Groundwater MODFLOW'™® CNN-BiLSTM™
modelling (CNN- and
LSTM-based)
Geomorphological ~ Soil erosion WEPP™® ANFIS™®
system modelling (MLP-based)
Sediment estimation SEDD'®° CNN'™'
Atmospheric Air quality Gaussian CNN'®®
system assessment plume model'®
Weather prediction ~ WRF'® GNN®®
Biological system Forest carbon SEIB-DGVM™®®  MLP'®®
estimation
Wetland monitoring ~ WSM'®’ MLP'®
Social system Epidemic spread Susceptible- LSTM"™
modelling infected-
susceptible
model'®
Human migration Gravity Deep gravity
simulation model"® model"”'

(MLP-based)

ANFIS, adaptive network-based fuzzy inference system; BiLSTM, bidirectional long short-
term memory network; CNN, convolutional neural network; DL, deep learning; ESM, Earth
system modelling; GNN, graph neural network; LSTM, long short-term memory network;
MLP, multilayer perceptron; MODFLOW, US Geological Survey modular finite-difference
flow model; SAC-SMA, Sacramento soil moisture accounting model; SEDD, sediment
delivery distributed model; SEIB-DGVM, spatially explicit individual-based dynamic global
vegetation model; WEPP, water erosion prediction project model; WRF, weather research
and forecasting model; WSM, wetland shrinkage monitoring model.

fusion are numerous. Those techniques that rely heavily on manual
encoding with domain-specific expertise inevitably impair the fusion
results’™. In contrast, deep neural networks canadapt to unstructured
multimodal dataand uncover complicated correlations among them”.
The ability to tackle the challenges of ESSM using this aspect of DL is
amajor advantage. For instance, DL-based approaches can fuse the
various multimodal dataderived from decomposed problems, thereby
affording an efficient and comprehensive way to understand Earth’s
surface processes.

Self-adaptive feature representation

Even datagenerated by natural laws exhibit considerable uncertainty
and high dimensionality**”. To extract information from and under-
stand such data, scientific communities have a strong interest in rep-
resenting their features. Traditional methods, such as scale-invariant
feature transform, term frequency-inverse document frequency and
principal component analysis, commonly extract low- or mid-level fea-
turesand are only suitable for certainworkloads”. In contrast, DL-based
approaches have received considerable attention in geoscientific
applications because of the self-adaptive learning mechanism (com-
monly based on supervised learning and labelled data). Specifically,
deep neural networks canreveal patterns and relationships from data,
such as interpreting various objects within complex backgrounds in
observed images, which can be challenging to formulate using tradi-
tional methods and a priori knowledge’®””. The feature representation

ability of DL aids the extraction of deep-level features without tedious
feature engineering. Furthermore, unsupervised or self-supervised
approaches can automatically adapt to latent domainsin heterogene-
ous data at a fraction of manual and computational cost’®”’. Model-
lers can use pretrained models on public datasets like ImageNet*° to
transition to geoscientific applications, reducing time-consuming
labelling efforts.

Superior fitting precision

DL-based approaches performwellin complex Earth system dynamics
as universal functional approximators®.. For example, DL-based fore-
casting or nowcasting of climate variables (such as precipitation,
temperature and humidity) can achieve better results, spatially and
temporally, including the exact timing, location and intensity”>*.
By contrast, traditional models such as optical flow frequently strug-
gle to effectively capture nonlinear climate dynamics (such as moist
convection and cloud formation)®>*?, which can be attributed to the
separation of internal processes and the presence of non-optimizable
parameters®. DL has been used in some tasks, such as visual question-
answering for geographic scenes®, synthetic spatiotemporal data
generation®® and extreme weather prediction®” and has notably
improved these tasks’ simulation accuracy, which seems impossible
for traditional process-based models. All of the preceding examples
rely on the ability of deep neural networks to fit with superior precision.
Thereis, however, one caveat torecognize herein that, as with allmod-
elling, the parameterization of deep neural networks depends on the
training dataset(s), which greatly affects fitting performance®*, Biases
embedded in training data can be encoded into a model, making it
essential to consider data quality and the conditions that affect their
parameterizations and extracted patterns®®”.

Highinferencing speed
Itis undeniable that training deep neural networks requires a substan-
tial amount of time®?, ranging from several hours to multiple weeks.
However, the inferencing speed of trained networks can be orders of
magnitude faster than conventional process-based models®, such as
numerical methods, which frequently require lengthy simulation dura-
tions to yield reliable outcomes on simulating complex dynamics®-*.
The computational efficiency of these conventional models canbe sub-
stantially improved with trained networks as a substitute”. End-to-end
network architecture and parallel computing explain the computational
advantage of inferencing. First, end-to-end setups enable networks to
learn complex representations of data, frominputs to targets, by feeding
given datadirectly without manual manipulations, thereby being highly
beneficial for large-scale simulation®. Second, the data in deep neural
networks are usually structured asacouple of tensors or matrices, which
is suitable for parallel computation®. The resulting inferencing speed
canbeincreased by several orders of magnitude with GPUs and TPUs”".
Leveraging DL-based approaches provides a transformative
approach to processing abundant observational data and modelling
Earth system dynamics. By integrating DL’s strengths, the scientific
community canenhanceits comprehension of the fundamental mech-
anisms driving Earth’s surface processes, paving the way towards
surmounting the outlined challenges in ESSM more effectively.

Integrating ESSM and DL

Theintegration of ESSM and DL offers a promising avenue for advanc-
ing our understanding of Earth surface system dynamics. Although
these two approaches are distinct — theory-simulation-driven and
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data-driven — they complementeach other in principle?®. ESSM offers a
strong theoretical foundation forinterpreting and representing Earth
surface processes but can struggle with handling complex dynamics
and feedbacksin the context of big observational data. By contrast, DL
excels atextractinginformationandidentifying trendsinlarge datasets.
However, it lacks interpretive equations and physical constraints, and its
forecasting capabilities for new scenarios are limited, asitrelies entirely
on previously observed relationships (even complex ones) among
variables. Hence, by leveraging the integration of both approaches,
hybrid ESSM demonstrates enhanced prediction and interpretability
capacities, potentially expediting the discovery of underlying Earth
surface system dynamics and interactions”'° (see Fig. 2).

Existing hybrid ESSM research primarily focuses on integrating
process-based models with deep neural networks during the initial
stage of model development and integration in the modelling life-
cycle. The main integration modes can be categorized into three
fundamental modes: the cascading mode, the parallel mode and the
embedding mode (Fig. 3). It is worth noting that complex tasks often
require acombination of these fundamental modes.

Observational models
a FLUXCOM

Results of ESSM models

b Process-based model

Cascadingmode

The cascading mode consists of acomputational pipeline that sequen-
tially runs process-based models and deep neural networks, transmit-
ting intermediate results between them. This cascading mode can be
categorized into two cases.

Inthe first case, the process-based model is executed before the
deep neural network (diagram1in Fig. 3). Common functionsinclude
using a process-based model to generate training data or perform
feature engineering for a deep neural network or using the latter to
downscale the output variables of the former. For instance, process-
based models can filter high-quality samples based on physics-based
criteriaor construct simulated datasets to train deep neural networks
forachieving high prediction accuracy with less ground-truth data'®'%%,
Deep neural networks can statistically downscale the coarse outputs
of process-based models, crucial for predicting climate variables'>
and reconstructing real-world landscapes'®*. Moreover, deep neural
networks could identify attractor states and characterize uncertainty
incomplex, multidimensional output from process model ensembles,
for example from parameter sweeps'®.

Results of hybrid models
€ Hybrid model

0 20 40 60 80 100 120 140 0 20 40 60

Evaporation (mm month™)

d ErRAS reanalysis

Evaporation (mm month-")

€ Process-based model

80 100 120 140 0 20 40 60 80 100 120 140

Evaporation (mm month-")

f Hybrid model

Precipitation (mm day")

Fig. 2| Comparison between outputs from Earth surface system models
and hybrid models. a, The seasonal aggregates of terrestrial evaporation
from amodel trained directly on evaporation from FLUXNET sites'*°. FLUXNET
sites refer to a global network of measurement stations equipped with high-
frequency sensors, which collect data on carbon dioxide, water vapour and
energy exchanges between the biosphere and atmosphere across diverse
ecosystems. b, Evaporation predicted by a process-based Earth surface system
model'”’. ¢, Evaporation predicted by hybrid model'*’. d, Daily precipitation
above 1 mmday™ from ERAS reanalysis’. The ERAS reanalysis, produced by
the European Centre for Medium-Range Weather Forecasts (ECMWF), is a
comprehensive dataset of past global climate conditions, providing hourly

Precipitation (mm day™)

Precipitation (mm day™)

estimates of various atmospheric, land and oceanic variables from 1950

to near real-time. e, Results from CM2Mc-LPJmL model based on quantile
mapping-based post-processing’. CM2Mc-LPJmL is the result of coupling

the well-validated dynamic global vegetation model LPJmLS (Lund-Potsdam-
Jenamanaged land) with the coupled climate model CM2Mc, which is founded
on the atmosphere model AM2 and the ocean model MOMS (Modular

Ocean Model 5). f, Results from CM2Mc-LPJmL model based on physically
constrained GAN-based post-processing’’. GAN, generative adversarial
network. Owing to the incorporation of deep learning mechanisms, the hybrid
model simulates Earth’s surface processes more effectively than traditional
process-based models.
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Fig. 3| Computational logics of hybrid models. a, Cascading mode is a
computational pipeline consisting of process-based models and deep neural
networks that runs sequentially and transmits intermediate results. There are
two cases according to the sequential order of the models. b, Parallel mode
iswhen both types of models are run simultaneously. ¢, The embedding mode is
when the two types of models are embedded into each other as plug-in modules.
According to the embedding relationship, they can also be divided into two
cases depending on which modelisembedded into the other. Among the three
integration modes, the cascading approach is the most simplistic, whereas the
embedded mode provides greater flexibility and broader potential in simulating
Earth surface processes.

Inthe second case, the deep neural network s used first, followed
by the process-based model (diagram 2in Fig. 3). Process-based models
can, for example, constrain or refine deep neural network outputs to
adhere to physical mechanisms'®, such as the law of conservation of
energy”. In addition, deep neural networks can be used to calibrate
process-based models, reducing parameterization complexity when
solving partial differential equations'*”'%%, Deep neural networks could
also propose process model algorithms to minimize developer biases
or clarify non-intuitive relationships that could be incorporated into
process models'”’.

Parallel mode
In parallel mode, process-based models and deep neural networks
run simultaneously (diagram 3 in Fig. 3). This parallel mode offers
three practical advantages due to its concurrent nature: addressing
complex issues using a divide-and-conquer approach; processing
multimodal data; and facilitating parallel computing. Specifically,
the divide-and-conquer strategy, generally built for decomposed sub-
problems, leverages both the process-based model and deep neural
network simultaneously to tackle challenges in their respective areas
of expertise"*'™, For instance, a modified susceptible-exposed-
infectious-removed model canbe used to derive the COVID-19 epidemic
curve based on population migration data, while a long short-term
memory network trained on SARS data predicts the epidemic™.
Furthermore, process-based models tend to handle specific file
formats (for example Shapefile and NetCDF) more efficiently than
deep neural networks in terms of preprocessing and encoding these

raw datasets. Consequently, using process-based models or deep
neural networks to process datathey can handle most efficiently while
working with heterogeneous datasources canimprove computational
efficiency™"™. Parallel computing not only uses supercomputer tech-
nology to enhance computational performance' but also divides
the modelling environment, preventing incompatibilities caused by
heterogeneous computing resources between process-based models
and deep neural networks**"¢,

Embedding mode

Theembedding mode enables process-based models and deep neural
networks to function as plug-and-play components™’ ", Specifically,
these two approachesserve as complementary plug-ins. Theembedding
mode can be further subdivided into two cases.

Thefirst caseinvolvesintegrating deep neural networksas surrogate
modules into process-based models (diagram 4 in Fig. 3). Trained deep
neural networks canactas neural surrogates or solvers using emulation-
style algorithms for computationally intensive process submodules,
such as those based on partial differential equations'®, optimization
procedures™ and high-dimensional tasks'”’. These neural surrogates
or solvers allow for the automatic parameterization and modification
oflocalmodules in process-based models'??, improving computational
efficiency with less resources needed in simulation complex dynamics'>.

The second case entails incorporating process-based models
into deep neural networks (diagram 5 in Fig. 3) to include physical
mechanisms and principles, thereby constructing physics-informed
architectures', suchas Physics-Informed Neural Networks (PINNs)®,
For example, designing specific loss functions for network optimiza-
tion is a straightforward and effective way for constraining inferred
results to adhere to domain-specific understanding'”. Methods for
determining the network’s structure, like hidden layers, have been
explored based on domain laws or physical techniques. Although chal-
lenging, groundbreaking results have been achieved, such as neural
ordinary differential equations and geographically weighted artificial
neural network'”. Another promising area of researchisincorporating
physical constraintsinto deep neural networks to derive new equations
that characterize Earth surface dynamics'*.

The integration of ESSM and DL, achieved through diverse strat-
egies such as cascading, parallel and embedding modes, opens new
doorsinthe geosciences. This fusion of theory-simulation-based and
data-driventechniques offers amore expansive and clearer perspective
for predicting and understanding Earth surface processes.

Shortcomings of hybrid ESSM

Despite years of continuous research and development, hybrid ESSM
is stillin its infancy. Highly heterogeneous data, insufficient ground-
truth data and low interpretability of outcomes have been previously
described as the main challenges™. This section examines further theo-
retical and practical shortcomingsinexisting hybrid ESSM, with the aim
toidentify opportunities forimprovementsin hybrid ESSM capabilities.

Restricted integration scenarios

Existing hybrid ESSM research concentrates mainly on model-level
integration. Nevertheless, the ESSM lifecycle is more comprehensive
and generally includes the five indispensable stages in the scientific
methodology summarized in the introduction. These stages are all
essential for determining the quality and relevance of the solution so
that the modelling is suitable for the purpose, such as is captured by
the notions of usability, feasibility and reliability**.
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Subjectivity in the modellinglifecycle

Subjective factors can be the primary obstacles to achieving highly
accurate outcomes in hybrid ESSM. As noted previously, researchers
areproneto use their expertise or criteria, likely making the modelling
logic less precise and potentially biased. For example, modellers can
favour physical or numerical models, whereas others with a strong
background in DL prefer a more data-driven approach. Both can lead
tosuboptimal hybrid models for aspecific task’. Another underlying
challenge is that numerous innovative ideas and techniques about DL
continue to inundate scientific communities, necessitating research-
ersto comprehend the most current technical advancements™’. When
it comes to choosing configurations (for example, architectures or
hyperparameters) for deep neural networks, many experienced ESSM
researchers might be ataloss.

Incompatible computational environment
Incompatibilities between ESSM and DL in terms of hardware, soft-
ware stack and operating environment could impair computational
efficiency. Specifically, process-based models are often executed on
multi-CPU computers or high-performance computing facilities™”,
whereas the training and inferencing phases of deep neural networks
aretypically deployedin GPU-based and container-based (like Docker)
environments', Further, process-based models, particularly mecha-
nistic ones, are often constructed using Fortran and C++, whereas deep
neural networks in specific environments use Python and packages
such as Tensorflow and PyTorch. Thislatter distinction hasbecomeless
problematic as many scientists are starting toembrace Python and the
emerging technique of scientific machinelearning (SciML) developed
with theJulia programming packages™. But these discrepancies in devel-
opment and deployment methodologies generally result in separating
DL and ESSM workloads. This substantially affects data and message
transmission and limits the computing capacity of hybrid ESSM.
Despite notable progress, hybrid ESSM still has substantial ground
to cover. Overcoming these hurdles calls for expansion of integra-
tion approaches, deeper scrutiny of modelling biases, and harmony
between the computational environments of ESSM and DL.

Towards iterative hybrid ESSM

Constructing appropriate and effective solutions to ascertain the
dynamics of the Earth surface systemis generally challenging. Aninitial
undertaking is to fully understand the problem contexts and associ-
ated geographic objects. Handling big and multimodal data, especially
extractingusefulinformation or knowledge fromit, isalso alaborious
task. Further, it is essential to focus on the trade-offs between model
complexity and computational efficiency, as well as to calibrate the
derived models and quantify or at least indicate model performance
including uncertainty aspects. Finally, when applying constructed
models, computational environments and software stacks are not easy
tocomprehend for those domain experts who are often not also experts
incomputation. Given the possible challenges and shortcomings ana-
lysed earlier, our goal is to put forward a hybrid ESSM-deep learning
framework that holds the potential to deliver customized, scalable and
accurate solutions to given ESSM tasks so as to lower technical barriers.

Conceptual framework

We propose a conceptual framework designed to intelligently guide
the entire modellinglifecycle, ultimately generating accurate solutions
for specific tasks through collaboration between human insights and
the strengths of neural networks (Fig. 4). Furthermore, this framework

notonly possesses self-renewal capabilities throughits internal mecha-
nisms, but also continuously improves its performance by incorpo-
rating user feedback from practical applications. For example, our
iterative hybrid-ESM framework can generate customized responses
based onuser queries and promptsinasimilar way to ChatGPT, butitis
specifically designed for the ESSM field and has potential for broader
applicationsin ESM. Notable differences between our framework and
ChatGPT include the output form (multimodal outputs and modelling
resource assignment versus pure-text outputs), technical ESM founda-
tion (knowledge-constrained inference versus inference by large-scale
deep neural networks) and learning strategy (online self-learning versus
periodic background updates)™"**,

The framework consists of three major components. First, there
is amodelling-related knowledge repository (representing human
insights), which organizes diverse knowledge established by previous
modelling of Earth surface processes. For example, there should be
knowledge about formulated geophysical mechanisms, data, methods,
models (both conventional and DL-based approaches) and computa-
tional infrastructure (software and hardware basis for running and
analysing developed models). Second, thereisa DL computing system
that encompasses various deep neural networks (for example, trans-
formers for language understanding, convolutional neural networks
for image processing and graph neural networks for knowledge rea-
soning), enhanced by effective learning strategies such as self-taught
learning, online learning and Bayesian learning. Third, there are adap-
tive guidance plans, which result from interactions between the first
two components and improve the modelling of lifecycle processes.

Ideally, the modelling-related knowledge repository and the
DL computing system are built within a homogeneous environment,
sharing cloud-based services and high-performance computing sup-
port. This configuration offers potential practical advantages. For
example, a homogeneous environment enables efficient interaction
and communication between the two components. In addition, it
aids data acquisition from the Internet and crowdsourcing, online
updates of deep neural networks and dynamic extension of the
modelling-related knowledge repository. Finally, it allows generated
models or computational solutions to be deployed and runinseparate
environments, avoiding incompatibility issues.

The knowledge repository not only organizes various types of
knowledge but also serves as aknowledge graph, providinga priori con-
straintstoimprove the inference performance of the DL computing sys-
tem. Consequently, the generated outputaligns with the currentscope
of knowledge or logically inferred derivations from existing information,
rather thanbeingarbitrarily generated by deep neural networks (which
can contradict domain principles or modelling logic). In constructing
the knowledge repository, both ‘top-down’ and ‘bottom-up’ strategies
are used. Top-down strategies depend on domain experts or commu-
nities for the structure and items of the repository, resulting in amore
scientific but potentially biased approach that typically involves manual
manipulation. Bottom-up strategies use natural language processing
and computer vision methods to automatically extract knowledge about
Earthsurface process concepts, entities and relationships from publicly
available authoritative data (for example peer-reviewed research litera-
ture and web corpora). This approach generates more comprehensive
and up-to-date knowledge through an automated process, but it relies
on existing information and knowledge extraction technologies.

The deep neural networks within the DL computing system are
ideally pretrained using authoritative datasets, which require further
preprocessing, such as converting them into question-answer pairs
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Fig. 4 | A framework for iterative integration of Earth surface system
modelling and deep learning. a, Interactions between the hybrid Earth
surface system model (ESSM) and the user allow the system to deepen its
understanding of their questions or preferences, resulting in increasingly
customized, scalable and accurate guidance plans. b, Adaptive guidance plans
areintelligently generated within a homogeneous environment (central box)
to guide modelling tasks and allocate modular resources throughout the
modelling lifecycle. These plans result from question-answering mechanisms

and recommendation functions, powered by a modelling-related knowledge
repository and adeep learning (DL) computing system. The guidance

plans can direct modellers to build customized solutions to solve given
environmental or Earth process problems. This guidance can be divided into
five stages according to the ESSM lifecycle (outer ring). When users interact
iteratively with amodelling platform that adopts this framework, the outcomes
of the guidance plans can be more precise and tailored to specific tasks.

and supplementing them with user-iteminteraction datasets (such as
click-throughs or historical modelling logs) available from open ESSM
platforms. The developed DL computing system can help complete
the existing knowledge repository by inferring unknown or missing
information (entities or their relations) using graph-based networks
and Bayesian learning strategies. Furthermore, it can extract subjects
fromusers’inputs (questions or preferences) and feed them into neural
networks constrained by the knowledge graph to generate answers and
recommendations. However, data deficiency, or thelack of high-quality
labelled data, might pose a challenge for the DL computing system after
sometime. Insuch cases, semi- or unsupervised learning or self-taught
learning offer promising solutions. Deep neural networks can update
their parameters based on unlabelled data and maintain online learn-
ing on the backend, facilitating self-renewal of both the deep neural
networks and the knowledge repository.

Adaptive modelling guidance plans, a comprehensive term for
inference results derived from question-answering mechanisms and
recommendation functions, are generated through the collabora-
tion between the modelling-related knowledge repository and the
DL computing system. These plans are multimodalin nature, producing
outputsinvarious forms, such as text,images and video. Additionally,
given the homogeneous deployment environment of the framework,
modular modelling resources such as data, methods and models canbe
allocated accordingly. As users engage initerative interactions witha
platformimplementing our proposed framework, the system deepens
itsunderstanding of their questions or preferences, resultinginincreas-
ingly customized, scalable and accurate guidance plans. Generated
throughout the entire modelling lifecycle, these adaptive guidance
plans serve as clear guidelines and modelling resource allocators for
arising modelling tasks. In the end, they aid complete and effective
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computational solutions by integrating all modular resources within
separate spaces in the deployment environment.

The guidance plans provided by theiterative hybrid ESSM can be
divided into five stages. Stage 1 involves the problem definition and
contextualization. A given topic can be hierarchically decomposedinto
multiple sub-analyses or interactions of the subsystemsinvolved. Geo-
graphicobjects and their relations inspace and time can berecognized
and visualized automatically, giving modellers a clearer understanding
of what to analyse before investigation commences. Stage 2 forms
the data preparation and processing. Relevant data is retrieved, with
adaptive recommendations for processing techniques. Therefore, ben-
eficial patterns and interior knowledge can be acquired from various
types of datarather than through manual manipulation. Stage 3is the
model development and integration step. A modular strategy organ-
izes model modules, allowing knowledge-based reasoning methods
to build customized models for specific needs. Automatic methods,
including calibration and uncertainty estimation, improve prediction
results and computational efficiency. Stage 4 is where the model is
evaluated and optimized. Suitable metrics for evaluating performance
will also be selected at this stage. The probabilistic inferencing and
other methods will be used to estimate the statistical confidence in
the models and other ways to represent uncertainties. Finally, stage 5
iswhere the model simulation and application are produced. Consid-
ering the data and model characteristics, an efficient computational
infrastructure will be developed by allocating resources to create
separate environments. Simulated results will be effectively visualized
and communicated to relevant stakeholders or the general public.

Potential application case

The COVID-19 pandemic has had unprecedented impacts on human
behaviour and decision-making, leading to effects on Earth surface
processes at local to global scales'. As we navigate the post-COVID-19
era, with all countries adapting to living with the virus, it is crucial to
reflect on the pandemic’simpacts over the past three years and antici-
pate future trends. Understanding the questions related to COVID-19
impacts will aid in analysing the pandemic’s effects on the socioeco-
nomicenvironment, as well as discerning causality in the Earth surface
system response, ultimately promoting sustainable developmentin
the post-COVID-19 era®.

The ensuing discussion assumes that this framework has been
implemented and integrated in a modelling platform. The aim is
to elucidate the application of our framework to this macroscopic
and multifaceted problem and to explain the mechanisms of oper-
ation and interaction between the modelling-related knowledge
repository and the DL computing system contained within the frame-
work. In addition, the potential generation of modelling guidance
plansis explored, contributing to acomprehensive understanding of
the underlying principles and goals of our framework.

Upon receiving a user’s enquiry, such as “What are the various
impacts of the changed travel behaviours adapted to the post-COVID-19
era?”, the platform processes the input using natural language pro-
cessing techniques. Specifically, it extracts key terms and concepts,
including “changed travel behaviours”, “post-COVID-19 era” and “vari-
ousimpacts.” The DL computing system then consults the knowledge
graph maintained by the modelling-related knowledge repository,
searching for relevant concepts, entities and relationships associated
withthe extracted key terms. Graph neural networks within the comput-
ing system infer potential answers and recommendations based on user
preferences, using connections and patterns in the knowledge graph.

Simultaneously, if necessary, other deep learning models such as
transformers for language understanding and convolutional neural
networks for image processing are used to generate coherent and
meaningful responses. Inference processes take place throughout
the entire modelling lifecycle stages, and the DL computing system’s
output is validated by the knowledge repository, ensuring that the
generated guidance plans adhere to the current scope of knowledge
and domain principles.

Generated guidance plans will progress through modelling lifecy-
clestages, starting with the decomposition of the primary questioninto
finer subtopics. Initially, the overarching questionis divided intointer-
mediate-level concerns, such as impacts on the natural environment
(emissions, air quality and climate) and the socioeconomic environ-
ment (poverty, food and globalization). These intermediate topics are
further divided into finer details, including spatiotemporal variations
inlocal travel behaviours', energy supply and consumption®®, and air
pollution changes'. These issues span local to global scales and short
tolong-term timescales. By visualizing geographical objects and their
relationships, the decomposed subproblems enable users to gain a
comprehensive understanding of the causal relationships and interac-
tionsamong changed humanbehaviours, theirimpacts ontheeconomy
and society, and the resulting Earth surface system responses.

Furthermore, the guidance plans will include recommendations
for datasources and their associated processing methods. Forinstance,
the suggested data can encompass a broad range of Earth observa-
tion data, such as satellite remote-sensing products, measurement
networks, and ground-based sensor data. Additionally, long-term
socioeconomic data related to energy, trade, and transportation are
valuable, but their time lags might hinder real-time modelling and
analysis, necessitating the use of licensed and shared private sector
data'. The generated plans will also propose suitable data processing
methods. These methods caninclude datacleaning to eliminate incon-
sistencies and errors, normalization to standardize values across dif-
ferentscales, feature extraction to identify relevant variables, and data
fusion or integration techniques to merge disparate data typesinto a
coherent dataset. Moreover, the guidance plans could suggest appro-
priate techniques for handling missing data, such as interpolation or
imputation methods, and for reducing dimensionality through meth-
ods such as principal component analysis or ¢-distributed stochastic
neighbour embedding.

During the model development and integration stage, adaptive
guidance plans will recommend a cohesive and potentially hybrid
approach, combining process-based and data-driven models. These
plansemphasize the significance of modelintegration, comparing and
calibrating various models to achieve acomprehensive understanding
of the problem while evaluating their performance against observa-
tional data or benchmarks. For instance, process-based models, such
asthoseinthe Coupled Model Intercomparison Project (CMIP), could
besuggested to simulate complexinteractions between different sub-
systems, while data-driven models like machine learning or statistical
models can analyse correlations between travel behaviours and envi-
ronmental or socioeconomicimpacts. The integrated hybrid approach
aids simultaneous simulation of both human and natural environ-
ments, ensuring a thorough investigation of post-COVID-19 travel
behaviour impacts by leveraging the strengths of process-based and
data-driven models while enhancing parameterization or developing
simulators to reduce computational costs.

In stage 4, model evaluation and optimization, the guidance
plans will recommend suitable metrics and methodologies, such as
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cross-validation, mean squared error and precision-recall curves,
to assess model performance and conduct uncertainty analysis,
ensuring trustworthiness. Furthermore, optimization strategies
such as parameter tuning and model ensembles can be suggested
and performed to enhance model accuracy and generalization capa-
bilities. For model simulation and application, human travel dataand
Earth observation data are often heterogeneous and large, and the
models built are often complex. The guidance plans will therefore
emphasize the effectiveness and efficiency of data processing and
model computation, optimizing the compatibility and performance
of the computational pipeline by dynamically allocating and config-
uring computational resources with appropriate operating systems
andsoftware applications. The plans will also propose visualization and
communication tools for effectively presenting and sharing results
with stakeholders, while highlighting potential avenues for further
research or real-world implementation.

During the modelling guidance generation process, users can
offer feedback and prompts on the plans, which can be used to refine
the plans further and potentially enhance the performance of the
DL computing system while fine-tuning the modelling-related knowl-
edgebase. Thisiterativeinteractionloop enablesthe platformtolearn
fromand adaptto users’needs and preferences, ensuring increasingly
customized and precise guidance. Additionally, the platform can foster
collaborationamong users, allowing them to exchange insights, experi-
ences, and best practices for modelling the impacts of altered travel
behaviours in the post-COVID-19 context. This collaborative element
contributes to the ongoing growth and refinement of the knowledge
repository and the platform asawhole.

Insummary, thisiterative hybrid ESSM framework, consisting of
amodelling-related knowledge repository (which represents human
insights), aDL computing system (embodying the strengths of neural
networks) and adaptive guidance plans (derived from the synergy of
the two), could help to enhance the intricacies of ESSM.

Summary and future perspectives

ESSM is confronted at present with substantial technical challenges,
primarily in discerning the complexities of the problem space and in
executing efficient, precise analysis of voluminous observational data.
DL, noted for its potent data-driven proficiencies in processing and rep-
resenting featuresinherentinlarge-scale data, has the potential to aug-
ment the performance of ESSMin simulating Earth surface processes,
and displays considerable promise inintegrating with ESSM, thus con-
tributing to the development of a hybrid ESSM. However, integration of
ESSM and DL approachesis an emerging technique for understanding
Earth surface system dynamics. Most research focuses on integrat-
ing process-based models and deep neural networks during the initial
development of hybrid models, rather than exploring the advantages
of acomprehensive approach that covers allmodelling lifecycle stages.
We propose aconceptual frameworkinwhich DLisiteratively integrated
into ESSM throughout the modelling lifecycle. This framework aims to
enable customized, scalable and accurate solutions for modelling Earth
surface processes by iteratively integrating ESSM-related knowledge
with the data-harnessing strengths of DL. Suchintegration could reduce
subjective biases in the modelling processes and provide compatible
computational environments between the approaches.

ESM’s interdisciplinarity nature necessitates an open knowledge
sharing community, open resources (for example, datasets, codes
and models) and open research cooperation. These requirements
underscore the importance of practices such as adhering to the ‘FAIR’

principles, which ensure data findability, accessibility, interoperabil-
ity, and reusability"*°, Research organizations, such as the OMF (Open
Modeling Foundation)™, the OpenGMS (Open Geographic Modeling
and Simulation)™?, the CSDMS (Community Surface Dynamics Mod-
eling System)™* and the CoMSES Net (Network for Computational
Modeling in Social and Ecological Sciences)'****, have already con-
tributed to collaboration and sharing. In conjunction with similar
scientific entities, it is hoped that these environments will encourage
the collaboration of scientists from various disciplines to address
complex problems. Building a virtual online platform for researchers
to experiment and discuss will also enhance the transparency and
reproducibility of modelling.

The underlying abstract formulations of DL networks present a
unique challenge for geoscientific applications, as they are not easily
interpretable despite producing precise simulationresults. Explainable
or interpretable artificial intelligence using explanatory approaches
(such as layer-wise relevance propagation, integrated gradients and
occlusion analysis) do however allow users to understand internal
mechanics of deep neural networks'*®. Merging process-based models
with domain-specific knowledge as surrogates in deep neural networks
can enhance the transparency of these typically abstract systems'"’.
Related research projects are still evolving, but there remains asubstan-
tial trade-off between model performance in terms of explainability
and simulation accuracy of model outputs.

Moving forward, theintelligent development of customized ESMs
couldbe achieved through theiterative ESM framework. However, the
pathway inthis framework might not align entirely with geoscientists’
thought processes, as generated solutions predominantly depend on
the inference results of deep neural networks. Therefore, our frame-
work advocates for enhancingthe accuracy of the DL computing system
based on specific objective functions and alsoimplementing contextu-
ally appropriate logic constraints that are compliant with the mindset
of the geoscience community. These considerations should be taken
into account throughout the entire modelling lifecycle, ultimately
enhancing the trustworthiness of results and outcomes.

Moreover, twotypical characteristics reduce confidenceinthe pre-
dictiveaccuracy of ESMintegrated with DL. The firstis the difficultyin
accurately simulating certain extreme events due to the highly dynamic
character of the Earth’s surface system'. For instance, hybrid models
canstruggle to precisely predict heavy rainfall or landslides triggered
by acombination of geophysical factors such as seismic activities, soil
saturation and steep topography'®’. Second, disruptions in observed
data due to climate change, which alters weather patterns and envi-
ronmental conditions, along with human-induced alterations such
assedimentredistribution, pose additional challenges to the efficacy
of models created to predict Earth surface processes™*"*'. To mitigate
these issues, maintaining regular updates of models and software is
crucial, asis using data assimilation, lifelong learning techniques, and
explainable or interpretable artificial intelligence. In addition, acquir-
ing up-to-date and widespread data and processing the vulnerable
observations using hybrid models can effectively improve modelling
performance. Ultimately, the community needs to recognize that
uncertainty will always be present, but adherence to good modelling
practices can enhance the trustworthiness and credibility of results>**,
Theseinclude deliberating on fitness for purpose, applying systematic
procedures, characterizing and discussing uncertainties, justifying
choices, and clearly stating assumptions and limitations™. Ensuring
transparency through thorough documentation further strengthens
thereliability of the outcomes*'%,
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In conclusion, we believe the integration of ESSMand DL is a con-
siderable step towards more accurate and reliable models of Earth’s
surface processes. As this synergy spans across multiple disciplinar-
ies and is still an evolving field of science, the capability and capacity
should be increased through the collaboration of an open scientific
community and the adherence of good modelling practices.

Published online: 11 July 2023
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