CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Local Fréchet Permutation

Jonathan James Perry*

Abstract

In this paper we consider computing the Fréchet dis-
tance between two curves where we are allowed to lo-
cally permute the vertices. Specifically, we limit each
vertex to move at most k positions from where it started,
and give fixed parameter tractable algorithms in this
parameter k, whose running times match the standard
Fréchet distance computation running time when k is
a constant. Furthermore we also show that computing
such a local permutation Fréchet distance is NP-hard!
when considering the weak Fréchet distance.

1 Introduction

A polygonal curve in R? is defined by linearly interpolat-
ing an ordered sequence of points. In this paper we con-
sider the well studied topic of polygonal curve similar-
ity, as measured by the standard Fréchet distance, but
where we are allowed to permute the ordered sequence of
vertices defining each curve. Specifically, we seek to de-
termine if there are permutations such that the Fréchet
distance of the resulting curves is at most §, where § > 0
is some given distance parameter. Here we will limit
each permutation to only allow for local reordering of
the points. Namely, we consider k-permutations, where
a point at position i before permutation must end up
at a position j after permutation such that |i — j| < k.
Limiting to the case when k is small, intuitively means
the orderings before and after the permutation are close,
and thus in some sense the resulting curves as well. In
particular, it can model scenarios where the input curve
has some local corruptions or where local faults in the
ordering occurred when collecting the data. Critically,
limiting k£ allows us to achieve efficient algorithms for
the (strong) Fréchet distance, whereas conversely it ap-
pears to aid our proof of hardness for weak Fréchet.

Prior Work.

Several previous papers ([1, 2, 6, 9, 10]) have consid-
ered a variant of the Fréchet distance sometimes referred
to as the Curve/Point Set Matching problem (CPSM).

*Department of Computer Science, University of Texas
at Dallas, USA {jperry,benjamin.raichel}Qutdallas.edu.
Work on this paper was partially supported by NSF CAREER
Award 1750780 and CCF Award 2311179.

L As it is trivially in NP, NP-hardness implies NP-completeness,
though for consistency throughout we use NP-hardness.

Benjamin Raichel*

Here one is given a curve 7 (i.e. an ordered sequence of
points) of length n and an unordered point set P of size
m, and asked whether a subset of P can be selected and
ordered such that its Fréchet distance to 7 is at most
some given threshold §. The results in these papers vary
based on whether (i) discrete or continuous Fréchet dis-
tance is used, (ii) a proper subset or all points of P
is used (subset vs. all-points), and (iii) points can be
repeated or not (non-unique vs. unique).

We briefly review prior results on CPSM. [9] gave an
O(nm?) time algorithm for the continuous, subset, non-
unique variant. Subsequently, [10] considered the dis-
crete version, showing NP-hardness for both the subset
and all-points unique cases, and giving polynomial time
algorithms for both the subset and all-points non-unique
cases. The papers [1, 2] then filled out the remaining
continuous cases showing that both unique and non-
unique all-points as well as the unique subset variant
are NP-hard. Finally, [6] showed that if both curves are
point sets, then the all-points unique discrete Fréchet
distance problem can be solved in O((m + n)log(mn))
time, but is NP-hard in the continuous case.

Related to our motivation of having errant data, other
methods have been proposed for fixing curves so as to
minimize Fréchet distance. There are many prior works
in this direction, though they are perhaps further away
from our permutation problem than the CPSM prob-
lem. Here we mention only [5] and [7], as we will utilize
their techniques as discussed below (for other related
works see references in [5, 7]). [5] considered the strong
and weak Fréchet distance where points on the curves
are uncertain, meaning there is some given set of po-
tential locations where the point may be realized. [7]
considered the strong and weak Fréchet distance when
deletions or insertions are allowed on one or both curves.

Our Results.

We introduce and study the k,/-permutation Fréchet
distance, where one is allowed to k-permute the first
curve and /-permute the second curve, with the goal
of making the Fréchet distance of the resulting curves
below some threshold §. For both the continuous and
discrete variants, we provide fixed parameter tractable
algorithms in terms of k and ¢. Our running times
match the corresponding quadratic running times for
the standard Fréchet distance algorithms when k and
¢ are constants. Namely, for curves of lengths n and
m, and for both the discrete and continuous cases, we

36'" Canadian Conference on Computational Geometry, 2024

give a running time of O(nmk24*) when one curve is
permuted and running time of O(nmk24%¢24%) if both
curves are permuted.

Observe that the unrestricted permutation case, i.e.
when £k = n and £ = m, has already been studied
as this is equivalent to the all-points unique CPSM
problem discussed above. The prior results on unre-
stricted permutations can then be compared to our re-
sults on restricted permutations, as seen in Table 1.
This connection to prior work implies our restriction
to k-permutations is required in order to achieve poly-
nomial time algorithms for many of the cases. Further-
more, for our restricted setting, if we set k = ¢ = 0,
then our problem is equivalent to the decision version
of computing the Fréchet distance, for which [3] proved
that for both the discrete or continuous version there
is no strongly subquadratic algorithm unless the Strong
Exponential Time Hypothesis (SETH) fails. (In fact it
was shown that assuming SETH no constant factor ap-
proximation exists, and the constant was subsequently
improved in [4].) Thus our O(mn) running time (i.e.
O(n?) when n = m) for constant k and ¢ is essentially
tight up to lower order factors assuming SETH. In par-
ticular, while [6] achieve a near linear running time for
the special case when unrestricted permutations are al-
lowed on both curves for discrete Fréchet distance, such
a result is not possible in our restricted permutation
setting assuming SETH.

Unrestricted Prior Results

One Curve Both Curves
Discrete NP-hard [10] | O((m + n)log(mn)) [6]
Continuous | NP-hard [2] NP-hard [6]
Our Restricted Results : Theorem 5
One Curve Both Curves
Discrete O(nmk*4F) | O(nmk?4*024%)
Continuous | O(nmk?4%) | O(nmk?4F24")

Table 1: Comparison of our restricted k, /-permutation
results with prior unrestricted permutation results. The
one curve results are obtained by dropping ¢ terms.

Additionally, we provide algorithmic results for these
problems when the goal is minimization rather than de-
cision, either when minimizing k& when 9 is fixed, or min-
imizing ¢ when k is fixed. Specifically, to find the mini-
mal k, which we call k, for both continuous and discrete
Fréchet distance, we give a running time of O(nm#x24~)
when one curve is permuted and O(nmx*16%) when
both curves are permuted (in which case we require
both curves to be restricted to x-permutations). When
minimizing ¢ for discrete Fréchet distance we pro-
vide a running time of O(nmk24F) for one curve and
O(nmk24F¢24%) for two curves. When minimizing § for
continuous Fréchet distance, let n = max{|r|,|o|} and
let 7 = max{k, ¢}. We then provide a running time of
O(n274167 (log n + 7)) regardless of whether one or both

curves are permuted, where the time bound holds with
probability at least 1 — 1/n¢, for any constant ¢ > 0.
These results are summarized in Table 2.

Min-K : Corollary 6
One Curve | Both Curves
Disc./Cont. | O(nmrxZ4%) | O(nmrx*16™)

Min-§ : Corollary 9 (Disc.) : Corollary 8 (Cont.)

One Curve Both Curves
Disc. O(nmk?4%) O(nmk?4%¢%4")
Cont. | O(M*7%167 (logn + 7)) | O(n*7*167 (logn + 7))

Table 2: Minimization results, where x is the minimum
k, n = max{|n|, |o|}, and T = max{k, ¢}.

Finally, we consider the four decision problems but
using weak Fréchet distance, which allows one to back-
track while traversing the curves, unlike the standard
strong Fréchet considered in our algorithmic results. For
the weak discrete Fréchet distance we reduce from 3SAT
to show that permuting one curve or both curves is NP-
hard even in R!. This reduction carries over to weak
continuous Fréchet distance when raised to R2. In com-
parison, the prior NP-hardness results in Table 1 are all
done in R2.

Both our algorithmic and hardness results follow a
similar approach to that used in [7] for Fréchet edit
distance. Specifically, our algorithmic results solve the
problem by modeling potential solutions using DAG
complexes, introduced in [8] and further utilized and
expanded in [7]. Our hardness results for the weak case
are inspired by the reduction used in [5], which was also
used in [7] to prove weak variants of the Fréchet edit
distance problem are NP-hard.

2 Preliminaries

Throughout, given points p,q € R?, ||p — ¢|| denotes
their Euclidean distance. Moreover, given two (closed)
sets P,Q C RY, ||P— Q|| = minyepqeq |lp—gf| denotes
their distance, where for a single point z € R? we write
||z—P|| = ||{z}— P||. We use angled brackets to denote
an ordered list (x1,...,z,), and use L; o Ly to denote
the concatenation of ordered lists L; and Lo. We use
[n] to denote the set {1,...,n}.

Fréchet Distance.

The following definitions are standard, but in partic-
ular here we state the definitions directly as given in
[7]. A polygonal curve is a sequence of n points 7 =
(m1,...,m,) where m; € R? for all . Such a sequence
induces a continuous mapping from [1,n] to R?, which
we also denote by 7, such that for any integer 1 < i < n,
the restriction of 7 to the interval [i, ¢ + 1] is defined by
(i +a) = (1 —a)m + amiq for any a € [0,1], ie. a
straight line segment. We will view 7 as both a discrete

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

point sequence and a continuous function interchange-
ably, and when it is clear from the context, we also may
use 7 to denote the image 7([1,n]). We use [i, j], for
i < 7, to denote the restriction of 7 to the interval [4, j].
Given a curve m = (my,...,7T,), we write |7| = n to
denote its size.

A reparameterization for a curve 7 of length n is a
continuous non-decreasing bijection f : [0,1] — [1,n]
such that f(0) = 1, f(1) = n. Given reparameteriza-
tions f, g of an n length curve m and an m length curve
o, respectively, the width between f and g is defined as

widthy.g(m,0) = max |[7(f(a)) —o(g(a))l].
a€gl0,1]
The (standard, i.e. continuous and strong) Fréchet dis-
tance between 7 and o is then

dg(m,0) = ifnf widthy q(m,0).
9

where f,g range over all possible reparameterizations
of m and o. Informally, the Fréchet distance is often
described as the shortest leash length needed for a man
on one curve and a dog on the other to walk from their
respective starting to ending points of the curves.

The discrete Fréchet distance is similar to the above
defined Fréchet distance, except that we do not traverse
the edges but rather discontinuously jump to adjacent
vertices. Specifically, define a monotone correspondence
as a sequence of index pairs ((i1,71),.-., (ix, Jk)) such
that (i1,71) = (1,1), (ig,jx) = (n,m), forany 1 < z < k
we have 1 < i, < mnand 1 < j, < m, and for any
1 <z <k we have (ip41,J.41) € {(iz +1,72), (iz,J +
1), (i.+1,j.+1)}. Let C denote the set of all monotone
correspondences, then the discrete Fréchet distance is
dpg (7, 0) = infeec max(; jye. ||m — oy

Both the Fréchet distance and the discrete Fréchet
distance have a corresponding weak variant, which is
defined analogously except that one is allowed to back-
track on the curves. Specifically, the weak Fréchet dis-
tance, denoted d¥{m, o), is defined similarly to the stan-
dard Fréchet distance above, except that when defining
the width f and ¢ are no longer required to be non-
decreasing bijections, but are still required to be contin-
uous and have f(0) =1,¢(0) =1 and f(1) =n,g(1) =
m. Similarly, the weak discrete Fréchet distance, de-
noted d¥j{(m, o), is defined similarly to the discrete
Fréchet distance above, except that we no longer re-
quire the correspondence to be monotone. Specifically,
a (non-monotone) correspondence is a sequence of in-
dex pairs ((i1, 1), - - -, (ik, jx)) such that (i1, j1) = (1,1),
(i, jr) = (n,m), for any 1 <z < k we have 1 <1i, <n
and 1 < j, < m, and for any 1 < z < k we have
(iz+17j2+1) € {(ZZ + 17jz)7 (i27jz + 1)’ (iz +1,7.+ 1)}

Permutation Fréchet Distance.
Viewing a polygonal curve m = (my,...,7,) as a se-
quence of points, a permutation of 7 is a bijection

f : [n] = [n], which induces a new curve f(m) =
(T¢1)s -+ Tpm))- Given a permutation f of 7, we refer
to f as a k-permutation if |f(i)—i| < kforall 1 <i <n,
and we let Py(m) denote the set of all k-permutations
of m.

The k, £-permutation Fréchet distance is then

dpg(m,0) = i dg(f(m), 9(o))

= min
fEPK(),9€P(0)

Observe that Py(m) consists only of the identity func-
tion. Thus if we wish to consider the problem
where permutations are only allowed on 7 then we
write (1, 0) = di55 (7, 0) = minjep, (x) d5(f(7), o).
Moreover, observe that dg(m, o) = d%g(ﬂ, o).

We now define several problems based on the above:

e In the min-k permutation Fréchet distance prob-
lem, denoted MinK-PF, for a given § > 0 we seek
the smallest value k such that dff;’:’;(ﬂ', o) <é.

e In the min-d permutation Fréchet distance prob-
lem, denoted Mind-PF, for given k and ¢ we seek
the smallest value ¢ such that d%g(ﬂ, o) <4.

e For the MinK-PF and Mind-PF problems if we in-
stead ask if d%q(m,0) = d%g(mo) < 0, then we
respectively refer to it as the one-sided MinK-PF or
Miné-PF problem.

All of the above definitions and problems immediately
extended to the discrete, weak, or discrete weak Fréchet
distance by replacing ds(f(7), g(c)) respectively with
d'fo(f(Tr)vg(U))v d?}(f(ﬂ),g(()’)), or d%fr"(f(ﬁ)’g(a))v in

the definition of &, f-permutation Fréchet distance.

DAG Complexes.

We will utilize the work of [8] and [7], the first of which
defines the following generalization of a curve. Con-
sider a directed acyclic graph (DAG) with vertices in
R?, where a directed edge p — q is realized by the
directed segment pq. We refer to such an embedded
graph as being a DAG complez, denoted C, with em-
bedded vertices V(C) (i.e. points) and embedded edges
E(C) (i-e. line segments). We denote the size of the com-
plex as |C| = |EXC)| + [V(C)|. Note that a DAG complex
is allowed to have crossing edges and overlapping ver-
tices. Call a polygonal curve 7 = (mq,...,7k) compliant
with C if m; € V(C) for all ¢ and m;m; 1 € E(C) for all
1 < i < k. (Note this implies 7 traverses each edge
in the direction compliant with its orientation from the
DAG.)

The following theorem was given in [7], who observed
that the original theorem from [8] easily generalizes to
the case where one allows sets of points for the start and
end rather than individual points.

36'" Canadian Conference on Computational Geometry, 2024

Theorem 1 Given two DAG complexes C1 and Co, ini-
tial vertices S1 C V(C1) and Sa C V(Cq), target vertices
T, C V(C1) and Ty C V(C3), and a value §, then in
O(|C1]|C2|) time one can determine the set of all pairs
t1 € T1 and ty € Ty, such that there are curves w1 and
o such that

o 7, is compliant with C; fori=1,2.

e T; starts at some s; € S; and ends att;, fori=1,2.

o dy(my,me) < 0.

The standard Fréchet distance decision problem is
typically computed by considering the product com-
plex of two curves (i.e. a grid), and propagating the
the reachable space according to a topological order-
ing of the cells in this product. The above theorem is
thus obtained by observing that when the input con-
sists of DAG complexes (which generalize curves), then
the same approach works as the product complex still
consists of cells with a topological order.

For the discrete Fréchet distance between two curves,
one can again propagate reachability through the prod-
uct, except the product is no longer a continuous space
but rather simply a discrete grid graph. Thus again
we can generalize to the case when the input is a pair
of DAG’s. Specifically, given graphs G; = (V1, Eq) and
Go = (Va, Es), their product is G x Gg = (Vi x Vo, F),
where (u1,u2) = (w1, ws) € F if and only if (i) u; = wy
and ug — wo € Fa, (ii) ug = wy and uy — wy € Ey,
or (iii) u1 — wy € E; and us — we € Ey. Observe,
that since G; x G is also a DAG, there is thus again
a topological ordering and so we immediately have the
following corollary.

Corollary 2 Given DAG’s G; = (V1,Es) and Gy =
(Va, Ey), with vertices in R?, initial vertices S; C V;
and Sy C Vh, target vertices Ty C Vi and To C Vs, and
a value 0, then in O(|G1]|Gz|) time one can determine
the set of all pairs t, € Ty and ty € Ty, such that there
are paths w1 in G1 and wo in Go such that

e T; starts at some s; € S; and ends att;, fori=1,2.

[dDg:(T('l,?TQ) S d.

3 Permutation Fréchet Distance

Given a polygonal curve m = (7, ..., 7,) and a param-
eter k, our goal is to construct a DAG complex where
the set of compliant paths between specified start and
end vertices is the same as the set of all k-permutations
of m. To this end, consider constructing an arbitrary
k-permutation of 7, denoted f(7), one vertex at a time.
Observe that since f is a k-permutation, there are at
most 2k + 1 possible candidates for the vertex g (;
for any ¢, namely the set {m; | [j —] < k}. View-
ing these candidates as an ordered set (m;_,..., Titk),
any subset can be represented by a binary vector v =
(v1,...,vak41) € {0,1}?8T1 where v; = 1 represents

that m;_g4(;j—1) is in the subset and v; = 0 repre-
sent that it is not. In particular, when considering
the possibilities for my;) we wish to restrict to the
subset of (m;_g,...,m+x) which did not occur already
in (mf(1),...,Tfi—1)). Thus rather than remembering
this entire prior sequence, it suffices to pass a single
2k 4 1 length binary vector representing the subset of
(Tiky- -, Titk) that has occurred already.

The construction of our DAG complex C is thus as
follows. The vertices of C are copies of the vertices from
m. Specifically, for each original vertex m; we create
a copy m" (iLe. m; and 7" have the same location)
where j represents that m; is the jth vertex in the per-
mutation f, and v € {0,1}2**! represents the subset
of the (2k + 1) possible vertices for 7s(; 1) that have
already occurred, as described above. Thus we have
VEC) ={r"|1<i<nlj—il <kwve {01}
and observe that |V (C)| = O(nk2%) = O(nk4F).

For the edge set E(C), consider some vertex W{’v.
We add an edge from 77" to aJ+L% if and only if
|7+ 1— 2 <k, m, did not occur already (i.e. was not
represented by a 1 in v), and w is consistent with v. In
order for w to be consistent with v, w must represent
the subset of the (2& + 1) possible vertices for ;12
that have already occurred, given that v represented
the subset of the (2k 4 1) possible vertices for 7 1)
that have already occurred. Thus w = (wq, ..., Wogt1
being consistent with v = (vy,...,v95+1) means that
wok+1 = 0 and w; = wv;yq for all ¢ < 2k + 1, with
the exception that the entry in w for 7, must be set
to 1. Thus the degree of vertex m"" is O(k) and so
ICl = O0(|V(C)| + |E(C)]) = O(k - nkdk) = O(nk?4%).

The last thing we must define is the allowed start-
ing vertices S and ending vertices T in the DAG com-
plex. Naturally, S consists of all vertices of the form
7T,L-1 'Y where v is the all 0 vector except for the position
representing m; being 1, as such a vertex represents that
m; will be the first vertex in the permutation and it
thus is the only vertex excluded from possibilities for
Tr(2)- Similarly, T consists of all vertices of the form
m;"", where here we can allow v to be any binary vector
(since if the bit setting is invalid, it will not be reachable
from a vertex in 5).

As the above described complex C can be constructed
in linear time in its size, we have the following.

Lemma 3 Given a polygonal curve m = (my,...,7p)
and a parameter k, in O(nk?4F) time one can construct
a DAG complex C of size O(nk?4F) with vertex subsets
S and T, such that the set of compliant paths in C that
start at a vertex in S and end at a vertex in T is the
same as the set of all k-permutations of .

It is easy to see that the above immediately applies
to discrete Fréchet distance, by simply constructing the

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

corresponding DAG’s for the curves, rather than the
DAG complexes. Thus we have the following.

Corollary 4 Given a curve 7 = (my,...,m,) and a pa-
rameter k, in O(nk?4*) time one can construct a DAG
G of size O(nk?4*) with vertex subsets S and T, such
that the set of paths in G that start at a vertex in S
and end at a verter in T is the same as the set of all
k-permutations of .

3.1 Algorithms and Results

Given curves m and o of lengths n and m, respec-
tively, along with integer parameters k and ¢, and a
value § > 0, Lemma 3 can be used to determine if
d%g(w,a) < 4. First, using Lemma 3, for the curve
m and the parameter k£ we build a complex C, along
with sets S, and T. Similarly for the curve ¢ and the
parameter ¢ we build a complex C, with sets S, and 7.
By definition, dff,’f}(w,a) < 4 if there exists f € Py(nm)
and g € Pe(o) such that dg(f(7),g(c)) < 4, which by
Lemma 3 is true if and only if there is a compliant path
in C, that starts at a vertex in S, and ends at a vertex
in T, along with a compliant path in C, that starts at
a vertex in S, and ends at a vertex in 7,, such that
their Fréchet distance is at most §. Thus by applying
Theorem 1 we have the following. Note by instead us-
ing Corollary 4 and Corollary 2 we can also handle the
discrete case.

Theorem 5 Given curves w and o of lengths n and m,
respectively, along with integers k and £, and a value
§ > 0, in O(nmk?4*024%) time one can determine if
d%g(w,cr) < 8, for either the discrete or continuous
Fréchet distance. The one sided problem can be solved

in O(nmk24F) by setting if £ to 0.

Recall the MinK-PF problem defined in Section 2,
where our goal is to find the minimum value & such that
d%g(w,a) < §. Note that k cannot exceed max{n,m}.
Thus using Theorem 5, we search for the smallest k such
that d%g(ﬂ,a) < 4. Observe that the running time in
the theorem is exponential in k, and in particular the
running time for k + 1 is a constant factor larger than
that for k. Thus if we search for the minimum value, by
successively incrementing k by 1, the times of the calls
will behave like an increasing geometric series, and thus
the overall time will be proportional to the last call.

Corollary 6 Let x be the optimal wvalue for the
MinK-PF problem. Then the MinK-PF problem can be
solved in O(nmk*16") time, for either the discrete or
continuous Fréchet distance. The one-side MinK-PF
problem can be solved in O(nmx24%) time.

[8] showed how to turn the decision procedure of The-
orem 1 into an optimization procedure, using a simple

sampling based approach which avoids the more com-
plicated parametric search technique typically used to
compute the Fréchet distance. The algorithm is guar-
anteed to be correct, and while its running time is a
random variable (i.e. it is a Las Vegas algorithm), with
polynomially high probably it achieves an efficient run-
ning time.

We remark that technically the following theorem
from [8] was originally stated with only a single start
and end vertex in each complex, whereas we require al-
lowing sets of start and end vertices, although it imme-
diately generalizes to this case. Specifically, [8] searches
over a set of critical values using a decision procedure.
The decision procedure was already generalized in [7] to
sets of start and end vertices, as stated above in Theo-
rem 1. Moreover, the critical values remain exactly the
same when generalizing to starting and ending vertex
sets. (This holds as [8] considered all vertex to vertex
pairs as critical events, not simply just the pair of start-
ing vertices and pair of ending vertices.) Thus we have
the following.

Theorem 7 ([8], Theorem 6.3) LetCy and Cs be two
DAG complezes, of total complexity n, with start and
end vertex sets S1,Ty C V(Cy1), Sa,To C V(C2). Then
there is an algorithm which computes two curves w1 and
o such that m (resp. me) is compliant with Cy (resp.
Cs), starts at a vertex in Sy (resp. S2), and ends at a
vertex of Ty (resp. Ta). Moreover, dg (w1, ma) is mini-
mum among all such curves. The running time of the al-
gorithm is O(n?logn) with probability at least 1 —1/n¢,
for any constant ¢ > 0.

Corollary 8 Let n = max{|n|,|o|} and let 7 =
max{k, {}. Then both the one-sided and two-sided ver-
sions of the continuous Mind-PF problem can be solved
in O(n?t*167 (logn + 7)) time, where the time bound
holds with probability at least 1 —1/n¢, for any constant
c>0.

It is well known that for the discrete Fréchet dis-
tance both the decision and optimization problem can
be solved in O(nm) time, since rather than propagat-
ing reachability in the free space we can propagate the
minimum cost to reach the given vertex (which works
as the free space is a discrete DAG). Again, in our case
even though the input is now two DAG’s rather than
simply two curves, the product is still just a DAG. Thus
we also can solve the optimization problem in the same
time as our decision algorithm, yielding the following.

Corollary 9 Given curves and o of lengths n and m,
respectively, along with integers k and ¢, one can solve
the discrete Mind-PF problem in O(nmk24F¢%24°) time,
which becomes O(nmk?24¥) time for the one sided case.

36'" Canadian Conference on Computational Geometry, 2024

4 Hardness for Weak Permutation Fréchet

We now shift focus to weak Fréchet distance and prove
NP-hardness for both the discrete and continuous cases
dypi(m,o) < 6 in R' and d%5"(m,0) < & in R? for
any constants £k > 1 and ¢ > 0. Our reductions are
from 3SAT and closely follow those of [5] and [7]. We
consider discrete curves in R! first before moving to R2.

We set § to 1 and rely on the resulting Free Space Di-
agram (ex. Figure 1), which is built by listing 7-values
as rows, o-values as columns, and drawing empty cir-
cles where |m; — ;| < ¢ (free spaces). We use teal
to show paths between free spaces, with movement re-
stricted to adjacent spaces (including diagonals). With
this, dj(m, o) < 1 if and only if there is a way to tra-
verse through the teal from the bottom left corner to
the top right corner.

7T’I’L2 \x“‘ | ‘\x\ \‘)
s o —~o—++o o o#o—
‘ ot+o Lo o |
4«)»00 o#oo o
i RAEROE S
0 O ‘ b e O
T 0833676393581 109472
o1 > O0m

Figure 1: Generic Free Space Diagram.

We can now show the abstract Figure 2, where we em-
bed the 3SAT instance with ¢ clauses into o with clause
gadgets and walls such that ¢ = (wall) o (clause 1) o
(wall) o - - - o {wall) o (clause c) o (wall). We construct 7 in
three sections m = (lower) o (variable layer) o (upper). The
interaction between the curves will force the length of 7
to be traversed for each clause, with 3 options represent-
ing satisfying one literal each. The clauses are placed
in series, alternating going up or down, such that all
clauses must have at least one literal satisfied in order
to traverse to the end of o.

next clause

7
& N
&
F&
4‘2'\% S
5
& //
S

start \\ /‘

wall Clause 1 wall Clause 2 wall

Clause 3 wall

Figure 2: Abstract figure with sections of 7 and o la-
beled. Purple, green, and orange illustrate the 3 ways
to get through a clause.

The variable layer holds pairs of values where each
pair represents a variable. Whether the pair is per-
muted or not determines if the variable is set to True

or False. We call these permutations sanctioned (and
all others unsanctioned) as these are the only ones that
correspond to 3SAT actions. Further, our construction
ensures only sanctioned permutations will be useful.

Precise Reduction.

Having seen the general idea, the following is the precise
construction for 7 and o given a 3SAT instance I with
v variables and ¢ clauses, an example of which is shown
in Figure 3. Note that we will insert copies of a special
point p and duplicate others, both of which serve only
to discourage unsanctioned permutations.

Let p = oo in R! for discrete and p = (0, 00) in R? for
continuous.? Note that when working in R2, all other
points will be of the form (z,0) for some value z. Ad-
ditionally let S[* be the concatenation of z instances
of ordered set S (e.g. (5,1)l = (5,1) 0 (5,1)). For any
ordered set S we define S¥ as that set in reverse order.
.................... construct m

e Let ® represent ‘o (p)l2++1] o,
o Let L= (15)® (25) ®... ® (10v + 5).

e Let L be L but with the value 10j + 5 replaced by
(10 + 4,105 + 6) for all 1 < j <w.

e Let 7= (0)®(10) © L® (10(v + 1)) © LR ® (10) ©
Lo (10w +1))© (10(v + 2)).

.................... construct o
e Let ® represent ‘o (p)2+1] o,
e Let L =(15)®(25)®...® (10v + 5).

o Let Lj+ be obtained from L by replacing the value
105 4+ 5 with (105 + 4)l+1 o (105 + 6)l¢+1,

e Let L) be obtained from L by replacing the value
107 + 5 with (105 4 6)[“F1 o (105 + 4)1+1).

e Let o represent clause ¢ of I which contains vari-
ables Xj,, Xj,, and X}, and therefore o = (10) ®
L ©(10(w+1))@(L})Re(10)@ LT, ® (10(v+ 1)),
where Li = L; if X;, appears as a positive literal
and Ljf = L; it X}, appears as a negated literal.

e Leto=(0)@cl®(10(v+2)@(c?) e (0)®...0
0 ® (10(v + 2)) (if ¢ is even, duplicate one clause
so the total number of clauses is odd).

From this reduction comes the following two theorems
which we spend the remainder of the paper proving.

Theorem 10 Determining ifd;;;z;(ﬂ', o) <4 inR! for
any constants k > 1 and £ > 0 is NP-hard.

2

oo can be replaced with a sufficiently large finite value far
away from the other values as explained in [7].

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

| [L] ! I B { \
35 otoo o o o
25 o o oo oo o
15440 o oto o oof<it
10~ ! L |
T o oto o f—o
11 — x, © oo OO0~ Xy
TQ o o+ o o
2 o 1lo . X5 O o
32 o4 o o o
ls 0 x50 o o o
0 : - ‘
35 oloo o o o
25 o o oo o o +
15+ 0 o ot o 00100+
o | Y | [\
L [T 1] RN
0 10141625 35 40 251510 15 262435 40 50 40 35 262415 10 16 1125 35 ¢

(7 V-dXs vV X YA (A VoA

Figure 3: An example where X5 is set to False and other
variables to True as seen in circled pairs on the left. p
values are not shown, and ¢ = 0. Figure faded out after
second literal of second clause.

Theorem 11 Determining ifdwplgr’z(w, o) < 6§ inR? for
any constants k > 1 and £ > 0 is NP-hard .

Proof of correctness for Theorem 10.

We now argue correctness. First, we argue that if only
sanctioned permutations are made, the distance is < ¢
if and only if I is satisfiable. Second, we argue that
unsanctioned permutations are futile and will not result
in the distance being < § unless it would have been
possible without them.

So suppose that only sanctioned permutations are al-
lowed. Consider the variable layer, where the jth vari-
able X is represented by consecutive rows (i.e. a sanc-
tioned permutation pair of vertices from 7) with value
105 + 6 followed by value 105 + 4, which we can either
leave in that order or permute (see Figure 3). We argue
that leaving this pair unpermuted corresponds to set-
ting the variable to True and permuting it corresponds
to setting the variable to False. Specifically, consider the
variable layer restricted to the columns of the ith clause,
represented by o?. If X does not appear in this clause,
then because the corresponding value 105 4+ 5 in o? is
within distance § = 1 of both 105 4+ 4 and 10j + 6, the
three paths through the variable layer (again see Fig-
ure 2) will be unobstructed at the rows corresponding
to &}, regardless of whether we permute this sanctioned
permutation pair or not.

Conversely, if &} is in the ith clause then rather than
105 + 5 in o we have the values 105 + 4 and 105 + 6
(possibly with repetition if £ > 0). The portion of o°
corresponding to & is either ascending or descending,
depending on the parity of ¢ and whether & is the first,
second, or third variable in the clause. For simplicity,
assume it is descending (the ascending case is symmet-
ric). In this case, by construction, the pair of values
105 +4 and 105 + 6 will appear in decreasing order if X;

occurs as a positive literal in clause ¢, and in increas-
ing order if X; occurs as a negated literal in clause i.
So suppose X; appears a positive literal, and consider
the sanctioned permutation pair on 7 corresponding to
X;. As the values in the variable layer are also de-
scending (before any permutation occurs), in order to
pass through the rows of this sanctioned permutation
pair along the path corresponding to positive literal X
in this clause, we must not permute the sanction pair
(i.e. the rows and columns must both agree to descend
in value for this pair). Conversely, if X; appears as a
negated literal then 1057 + 4 and 105 + 6 will appear
in increasing order on ¢ and so we must permute the
sanctioned permutation pair to match if we want to pass
along the corresponding path. As at least one of three
paths through the variable layer for this clause must
be passable, this corresponds to setting the variables in
such a way that at least one of the literals in the clause
is True, as required for the 3SAT instance I to be sat-
isfiable. Therefore, if only sanctioned permutations are
allowed, dg,’f‘é(w, o) < ¢ if and only if I is satisfiable.

To complete the proof we now argue that even if un-
sanctioned permutations are allowed, they will not lower
the Fréchet distance, and hence are futile. Specifically,
by inserting a sufficiently large number of p points be-
tween adjacent pairs of non-p points, we insured that
k, l-permutations could not change the ordering of the
those pairs. On 7 the only time p was not inserted was
between points in pairs whose permutation was sanc-
tioned. On o the only time p was not inserted was be-
tween points in pairs that enforce a literal.®> However,
for each such pair (x, y) we duplicated and y both ¢+1
times. This means regardless of any ¢-permutation, the
first copy of = must come before the first of y and the
last copy of x before the last of y. This is sufficient since
when the path of this literal is broken due to incorrect
variable assignment, it is because the free space of both
the first x and the last y become disconnected from the
rest of the path.* If this disconnect exists before per-
mutation, it will remain as the first = and last y remain.
Finally, observe that a p point on one curve must map
to a p point on the other curve, but the initial construc-
tion inserted p points between all pairs that were neither
sanctioned on 7 nor representing a literal on o, and we
inserted enough such that there must remain at least
one p between these pairs even after k,[-permutation.
Therefore futility is established.

Proof of correctness for Theorem 11.
As was done in [5] and [7], we can extend the argument
to the continuous Fréchet distance by raising to R?, us-

3Inserting p between these would have given 7 issues traversing
its sanctioned permutation pairs

4Note that permutation does not change the free spaces, just
their order. Thus we refer to incorrect assignment as ‘disconnect-
ing’ the free spaces rather than making them ‘no longer free’.

36'" Canadian Conference on Computational Geometry, 2024

ing p = (0,00), and converting — (x,0) for any other
point z in the above reduction. We now argue this lim-
its continuous to have Fréchet distance < § if and only
if discrete would have as well.

Consider a pair of traversals, one on each curve, such
that their Fréchet distance is finite. Then on both
curves, these traversals must simultaneously start at the
first vertex, and go the next vertex (which is p) which
is always possible in both continuous and discrete. The
same is true for traversing between the second to last
vertex (which is p) and the last on both curves. We
break the remaining traversals of both curves into sub-
traversals that start at a p, traverse some potentially
different number of non-p vertex(es), and end at a p.
Let =, (resp. E,) be the non-p vertices traversed in
an arbitrary one of these sub-traversals on 7 (resp. o)
where vertices may appear multiple times due to using
weak Fréchet distance. Recall because the Fréchet dis-
tance is finite, that a p on the traversal of one curve
must map to a p on the other. This means that a sub-
traversal between p vertices on one curve must map to
such a sub-traversal on the other, and one can argue
that whether such sub-traversals are within Fréchet dis-
tance 0 is equivalent to whether the corresponding =,
and E, are within Fréchet distance . (We can assume
=. and =, are non-empty, since if they were both empty
we did not make any actual progress in traversing either
curve. If 2, was empty and =, = (x...) then for the
Fréchet distance to be < §, the sub-traversal of m must
be approaching a vertex y where ||z — y|| < J, and so
one can argue y could have been included.)

The above implies it suffices to show that
dps(Er,Ep) <0 <= d5(Es,Z,) <9 for all =, and
Es. There are two types of Z,: i) individual points, and
ii) those including at least two vertices in a pair repre-
senting a variable assignment. Likewise there are two
types of E,: 1) individual points, and ii) those including
at least two vertices in a pair (duplicated if ¢ > 0) which
enforces a literal.

If either =, or =, is a single point, then the discrete
and continuous Fréchet distances are < ¢ iff. all points
on the other curve are within ¢ of it. This shows the
equivalence for all the cases except the distance between
type ii of Z; and type ii of Z,, so consider this case. =,
cannot contain vertices from more than one variable,
and the same is true for =, w.r.t literals. Additionally,
if they do not refer to the same variable/literal, or they
refer to the same variable/literal but the variable is not
set in such a way that the literal is satisfied, then the
the Fréchet distance is > § since the first vertices are too
far from one another. Now observe that if both =, and
=, refer to the same variable/literal and the variable is
set in such a way to satisfy the literal, then the Fréchet
distance < ¢ if and only if they start and end with the
same value, regardless of discrete or continuous.

References

[1] Paul Accisano and Alper Ungér. Approximate match-
ing of curves to point sets. In Proceedings of the
26th Canadian Conference on Computational Geom-
etry (CCCG). Carleton University, Ottawa, Canada,
2014. URL: http://www.cccg.ca/proceedings/2014/
papers/paper65. pdf.

[2] Paul Accisano and Alper Ungér. Hardness results on
curve/point set matching with fréchet distance, 2012.
arXiv:1211.2030.

[3] Karl Bringmann. Why walking the dog takes time:
Frechet distance has no strongly subquadratic algo-
rithms unless seth fails. In Proceedings of the 2014 IEEE
55th Annual Symposium on Foundations of Computer
Science, FOCS '14, page 661-670, USA, 2014. IEEE
Computer Society. doi:10.1109/F0CS.2014.76.

[4] Karl Bringmann and Wolfgang Mulzer. Approximabil-
ity of the discrete Fréchet distance. JoCG, 7(2):46-76,
2016.

[6] Kevin Buchin, Maarten Loffler, Tim Ophelders, Alek-
sandr Popov, Jérome Urhausen, and Kevin Verbeek.
Computing the Fréchet distance between uncertain
curves in one dimension. Comput. Geom., 109:101923,
2023. d0i:10.1016/j.comgeo.2022.101923.

[6] Maike Buchin and Bernhard Kilgus. Fréchet distance
between two point sets. Computational Geometry,
102:101842, 2022. URL: https://www.sciencedirect.
com/science/article/pii/S0925772121000985, doi:
10.1016/j.comgeo.2021.101842.

[7] Emily Fox, Amir Nayyeri, Jonathan James Perry, and
Benjamin Raichel. Fréchet edit distance, 2024. arXiv:
2403.12878.

[8] Sariel Har-Peled and Benjamin Raichel. The Fréchet
distance revisited and extended. ACM Trans. Algo-
rithms, 10(1):3:1-3:22, 2014. doi:10.1145/2532646.

[9] Anil Maheshwari, Jorg-Riidiger Sack, Kaveh Shah-
baz, and Hamid Zarrabi-Zadeh. Staying close to
a curve. In Proceedings of the 23rd Annual Cana-
dian Conference on Computational Geometry (CCCGQG),
2011. URL: http://www.cccg.ca/proceedings/2011/
papers/paper97.pdf.

[10] Tim Wylie and Binhai Zhu. Following a curve with
the discrete fréchet distance. Theoretical Computer
Science, 556:34—44, 2014. Combinatorial Optimization
and Applications. URL: https://www.sciencedirect.
com/science/article/pii/S0304397514004629, doi:
10.1016/j.tcs.2014.06.026.

	Introduction
	Preliminaries
	Permutation Fréchet Distance
	Algorithms and Results

	Hardness for Weak Permutation Fréchet

