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Integrating logic rules with other language features is increasingly sought after for advanced applica-
tions that require knowledge-base capabilities. To address this demand, increasingly more languages
and extensions for such integration have been developed. How to evaluate such languages?

This paper describes a set of programming and performance benchmarks for evaluating lan-
guages supporting integrated use of rules and other features, and the results of evaluating such an
integrated language together with logic languages and languages not supporting logic rules.

1 Introduction

As knowledge-base capabilities are increasingly needed for advanced applications, especially applica-

tions that require sophisticated reasoning, logic rules are increasingly needed together with other lan-

guage features. This leads to increasingly more languages and extensions that provide such programming

support, for using rules through libraries or directly as built-ins, in many different ways. To evaluate such

language support for integrated uses of rules with other language features, a set of benchmarking prob-

lems is needed.

Many benchmarking suites have been developed for evaluating logic languages and rule engines, and

even drastically more for imperative and other languages. In contrast, benchmarks and evaluation for

languages that support integrated use of rules together with other language features have been lacking.

This paper describes a set of programming and performance benchmarks for such evaluation, and

the uses of these benchmarks in evaluating an integrated language together with logic languages and

languages not supporting logic rules. The benchmarks are developed and organized into three sets:

OpenRuleBench—for problems focused on using rules and evaluating rule systems, including all prob-

lems from OpenRuleBench [15], but modified and organized to use more appropriate language

features for the benchmarking itself, especially imperative scripts for running and taking measure-

ments.

RBAC—for problems that require (1) frequent imperative updates interleaved with expensive queries

and (2) objects and classes with inheritance to organize system components, subsuming full Role-

Based Access Control (RBAC) [1, 17], with queries expressed in different ways of using rules and

not using rules.

PA—for problems expressed using rules together with set queries and aggregate queries and recursive

functions, from problems in program analysis (PA), because aggregate queries are particularly

important for many database, data mining, and machine learning applications, but are not in Open-

RuleBench [15].

The input data and workload for these benchmarks are designed for runs with different problem scales—

(1) large input data for queries using rules, (2) large query results from inference using rules, (3) large

number of rules, (4) frequent switches between using rules and using other features, and (5) frequent

invocations of inference using rules.
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The evaluation is for benchmark problems written in (1) Alda, (2) XSB, (3) Python, and (4) DistAlgo.

XSB [28, 32] is a top logic rule engine for queries using rules, selected for reasons stated in Sec-

tion 3.1. Python [27] is most used for its rich features including high-level queries but lacks logic rules.

DistAlgo [20, 16] extends Python for distributed programming with higher-level and faster queries but

still lacks logic rules. Alda [21] is an integrated language that supports logic rules as built-ins by building

on DistAlgo and employing XSB. The evaluation yields the following main results:

• Queries using rules in Alda and XSB are similar, and are (1) simpler than using while loops in

Python and DistAlgo, even when these loops use high-level set queries, and (2) drastically, asymp-

totically faster than while loops with high-level set queries in Python and DistAlgo.

• Benchmarking using more generic imperative scripts in Alda is drastically simpler than using

rules in XSB in OpenRuleBench; and integrated use of rules with other features for RBAC and PA

problems yields simpler programs than not using rules or only using rules.

• The performance of Alda programs is the accumulated performance of queries in XSB, other

features in Python and DistAlgo, and interface between XSB and Python. Thus it is expected

to increase accordingly when any part used is improved, including reducing the current interface

overhead to 1% of it.

• Even with the current interface overhead, Alda programs are faster or even drastically faster than

half or more of the rule engines tested in OpenRuleBench [15] for all but one benchmark, because

the overhead is only linear in sizes of data and results and number of queries, and thanks to the

XSB query performance.

Our analysis supports that similar results can be obtained by using other efficient rule engines, including

ASP systems, and other languages not supporting logic rules, including lower-level languages. Our

implementation has been available by request and will be made public pending improved documentation.

2 Language

XSB and Python are well established, and DistAlgo is subsumed by Alda. So we first introduce Alda, an

integrated language that supports rules with all of sets, functions, updates, and objects, all as built-ins,

seamlessly integrated without extra interface code. Figure 1 shows an example program in Alda.

Rules are defined using rule sets (e.g. lines 15–17, with rule set name trans_rs), and queried using

calls to an inference function, infer (e.g. on line 19, using rule set trans_rs). The two rules in trans_rs

(lines 16–17) define predicate path using predicate edge, where the first rule is the base case, and the

second rule is the recursive case. The call to infer (line 19) returns the result of querying path, i.e., the

set of pairs for which path holds, given that edge equals RH, i.e., edge holds for the set of pairs in RH.

In a rule set, predicates not in any conclusion are called base predicates; the other predicates are

called derived predicates. The key idea is that predicates are simply set-valued variables and vice versa.

So predicates can be defined and used directly as other variables, in any scope—global, object field, or

local to a rule set. The only exception is that derived predicates can only be updated by infer, and are

automatically maintained by an implicit call to infer when any non-local base predicates are updated.

The exception ensures the declarative semantics of rules.

All other features—class, inheritance, method (function and procedure), update, and set query—are

the same as in object-oriented languages. We mostly use Python syntax except for a few conventions from

Java (extends for inheritance, new for object creation, and omission of self when there is no ambiguity)

for ease of reading, and a few ideal syntax (:= for assignment, {} for empty set, and + for set union), and

pattern matching in queries (in examples explained later).

For the example in Figure 1 but without using rules, computing the transitive closure (i.e., result of

infer in function transRH) in a variable T, by adding a parameter E to function transRH and passing the

value of RH to E when calling transRH, can use a while loop in Python, as used for [17]:
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1 class CoreRBAC : # class for Core RBAC component /object

2 def setup (): # method to set up the object , with no arguments

3 self.USERS , self.ROLES , self.UR := {},{},{}

4 # set users , roles , user -role pairs to empty sets

5 def AddRole (role): # method to add a role

6 ROLES .add(role) # add the role to ROLES

7 def AssignedUsers(role): # method to return assigned users of a role

8 return {u: u in USERS | (u,role) in UR} # return set of users having the role
...

9 class HierRBAC extends CoreRBAC : # Hierarchical RBAC extending Core RBAC

10 def setup ():

11 super (). setup () # call setup of CoreRBAC , to set sets as in there

12 self.RH := {} # set ascendant -descendant role pairs to empty set

13 def AddInheritance(a,d): # to add inherit . of an ascendant by a descendant

14 RH.add ((a,d)) # add pair (a,d) to RH

15 rules trans_rs : # rule set defining transitive closure

16 path(x,y) if edge(x,y) # path holds for (x,y) if edge holds for (x,y)

17 path(x,y) if edge(x,z), path(z,y) # ... if edge holds for (x,z) and for (z,y)

18 def transRH (): # to return transitive RH and reflexive role pairs

19 return infer (path , edge=RH , rules=trans_rs ) + {(r,r): r in ROLES}

20 def AuthorizedUsers(role ): # to return users having a role transitively

21 return {u: u in USERS , r in ROLES | (u,r) in UR and (r,role) in transRH ()}
...

22 h = new (HierRBAC , []) # create HierRBAC object h, with no args to setup

23 h.AddRole (’chair ’) # call AddRole of h with role ’chair ’
...

24 h. AuthorizedUsers(’chair ’) # call AuthorizedUsers of h with role ‘chair ’
...

Figure 1: An example program in Alda, for Role-Based Access Control (RBAC), demonstrating logic

rules used with sets, functions, updates, and objects.

T = E.copy ()
W = {(x,y) for (x,z) in T for (z2 ,y) in E if z2 ==z} - T
while W:

T.add(W.pop ())
W = {(x,y) for (x,z) in T for (z2 ,y) in E if z2==z} - T

or a while loop with higher-level set queries in DistAlgo:

T := E.copy ()
while some (x,z) in T, (z,y) in E | (x,y) not in T:

T.add ((x,y))

Using rules is clearly simpler, both conceptually and in the amount of code.

Alda is implemented by extending the DistAlgo compiler [20, 16] and invoking XSB [28, 32] for

inference. DistAlgo is compiled to Python. Function infer translates data from Python to Prolog facts,

translates results back, and invokes XSB in between using command line and file passing. The obvious

overhead of this external interface can be removed with an in-memory interface between Python to XSB,

which is actively being developed by the XSB team.1 However, this has not affected Alda programs from

having generally good performance, thanks to the XSB query performance.

3 Programming and performance benchmarks

1A version working for Unix, not yet Windows, has been released, and passing lists of length 100 million in memory took

about 30 nanoseconds per element [32, release notes]. So even for the largest data in our experiments, of size a few millions, it

would take 0.1-0.2 seconds to pass in memory, instead of 10-20 seconds with the current external interface.
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Name Description Prog size Data size

Join1 non-recursive tree of binary joins as inference rules 225 *

Join2 join from IRIS system producing large intermediate result 41 *

JoinDup join of separate results of five copies of Join1 163 *

LUBM university database adapted from LUBM benchmark 377 *

Mondial geographical database derived from CIA Factbook 36 59,733

DBLP well-known bibliography database on the Web 20 2,437,867

TC classical transitive closure of a binary relation 75 *

SG well-known same-generation siblings problem 90 *

WordNet natural language processing queries based on WordNet 298 465,703

Wine well-known OWL wine ontology as rules 1103 654

ModSG modified SG to exclude ancestor-descendant relationships 38 *

Win well-known win-not-win game with non-stratified negation 24 *

MagicSet non-stratified rules from magic-set transformation 34 *

The three groups (of 6, 4, 3) in order are called large join tests, Datalog recursion, and default negation, respec-

tively. Prog size is the XSB program size in lines of code without comments and empty lines. Data size is the

input data size in number of facts; * means that scripts are used to generate input data of desired sizes.

Table 1: Benchmarks from OpenRuleBench.

This section presents three sets of benchmarks that we developed. They are written to express each given

problem in the most direct way we can think of. This helps make the benchmarks clear and easy to read.

This also avoids being unfair to any particular language or system being compared with.

3.1 OpenRuleBench—a wide variety of rule-based applications

OpenRuleBench [15] contains a wide variety of database, knowledge base, and semantic web application

problems, written using rules in 11 well-known rule systems from 5 different categories, as well as large

data sets and a large number of test scripts for running and measuring the performance. Among 14

benchmarks described in [15], we consider all except for one that tests interfaces of rule systems with

databases (which is a non-issue for Python and its extensions DistAlgo and Alda, because Python has

standard and widely-used database interfaces).

Table 1 summarizes the benchmarks. We compare with the benchmark programs in XSB, for three

reasons: (1) XSB has been the most advanced rule system supporting well-founded semantics for non-

stratified negation and tabling techniques for efficient query evaluation, and has been actively developed

for over three decades, to this day; (2) among all systems reported in [15], XSB was one of the fastest,

if not the fastest, and the single most consistent across all benchmarks; and (3) among all measurements

reported, only XSB, OntoBroker, and DLV could run all benchmarks, but OntoBroker went bankrupt,

and measurements for DLV were almost all slower, often by orders of magnitude.

We easily translated all 13 benchmarks into Alda, automatically for all except for three cases where

the original rules used features beyond Datalog, which became two cases after we added support for

negation. In all cases, it was straightforward to express the desired functionality in Alda, producing a

program that is very similar to XSB or even simpler. Additionally, the code for reading data, running

tests, timing, and writing results is drastically simpler in Alda than in XSB, because Alda extends Python.

The three exception cases and additional findings are described below.

Result set. In most logic languages, including Prolog and many variants, a query returns only the first

result that matches the query. To return the set of all results, some well-known tricks are used. The

LUBM benchmark includes the following extra rules to return all answers of query9_1:
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query9 :- query9_1(X,Y,Z), fail.
query9 :- writeln(’========query9.======’).

The first rule first queries query9_1 to find an answer (a triple of values for X,Y,Z) and then uses fail to

trick the inference into thinking that it failed to find an answer and so continuing to search for an answer;

and it does this repeatedly, until query9_1 does fail to find an answer after exhausting all answers. The

second rule is necessary, even if with an empty right side, to trick the inference into thinking that it

succeeded, because the first rule always ends in failing; this is so that the execution can continue to do

the remaining work instead of stopping from failing.

In fact, this trick is used in all benchmarks, but other uses are buried inside the code for running,

timing, etc., specialized for each benchmark, not as part of the rules for the application logic.

In Alda, such rules and tricks are never needed. A call to infer with query query9_1 returns the set of

all query results as desired.

Function symbols. Logic rules may use function symbols to form structured data that can be used as ar-

guments to predicates. Uses of function symbols can be translated away. The Mondial benchmark uses a

function symbol prov in several intermediate conclusions and hypotheses of the form isa(prov(Y,X),provi)

or att(prov(Y,X),number,A). They can simply be translated to isa(’prov’,Y,X,provi) and

att(’prov’,Y,X,number,A), respectively.

Negation. Logic languages may use negation applied to hypotheses in rules. Most logic languages only

support stratified negation, where there is no negation involved in cyclic dependencies among predicates.

Such negation can be done by set differences. The ModSG benchmark has such a negation, as follows,

where sg is defined by the rules in the SG benchmark, and nonsg is defined by two new rules.
sg2(X,Y) :- sg(X,Y), not nonsg(X,Y).

In Alda, this can be written as
sg2 = infer(sg, rules=sg_rs) - infer(nonsg, rules=nonsg_rs)

where sg_rs and nonsg_rs are the rule sets defining sg and nonsg, respectively.

Alda also supports negation in rules. Its current implementation translates negation to tabled negation

tnot in XSB. This handles even non-stratified negation by computing well-founded semantics using

XSB [3], contrasting Prolog’s negation as failure. The Win and MagicSet benchmarks have non-stratified

negation. Both of them, as well as ModSG, can be expressed directly in Alda rule sets by using not for

negation.

Benchmarking and organization. In OpenRuleBench benchmarks, even though the rules to be bench-

marked are declarative and succinct, the benchmarking code for reading input, running tests, timing, and

writing results are generally much larger. For example, the Join1 benchmark has 4 small rules and 9

small queries similar in size to those in the transitive closure example, plus a manually added tabling

directive for optimization. However, for each of the 9 queries, 19 more lines for an import and two much

larger rules are used to do the reading, running, timing, and writing.

In general, because benchmarking executes a bundle of commands, scripting those directly is sim-

plest. Furthermore, organizing benchmarking code using procedures, objects, etc., allows easy reuse

without duplicated code. These features are much better supported in languages like Python than rule

systems, for both ease of programming and performance,

In fact, OpenRuleBench uses a large number of many different files, in several languages (language

of the system being tested, XSB, shell script, Python, makefile) for such scripting. For example for Join1,

the 4 rules, tabling directive, and benchmarking code are also duplicated in each of the 9 XSB files, one

for each query; a 46-line shell script and a 9-line makefile are also used.

In contrast, our benchmarking code is in Alda, which uses Python functions for scripting. A single

45-line Alda program is used for timing any of the benchmarks, and for pickling (i.e., object serialization

in Python, for fast data reading after the first reading) and timing of pickling.
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Name Features used for computing transitive role hierarchy

RBACnonloc rule set transRH_rs with implicit infer, without transRH(), Sec. 3.2

RBACallloc rule set trans_role_rs and transRH() that has only infer, Sec. 3.2

RBACunion rule set trans_rs and transRH() that has infer and union, Sec. 2

RBACda while loop and high-level set queries in DistAlgo, Sec. 2

RBACpy while loop and high-level set comprehensions in Python, Sec. 2

Each benchmark performs a combination of updates to sets and relations USERS, ROLES, UR, and RH and queries

with function AuthorizedUsers(role), where the transitive role hierarchy is computed with a different way of

using rules, or not using rules. In AuthorizedUsers(role) of all five programs, the call to transRH(), or reference

to field transRH, is lifted out of the set query, by assigning its value to a local variable and using that variable in

the query.

Table 2: Benchmarks for RBAC updates and queries.

Aggregation. Despite the wide variety of benchmarks in OpenRuleBench, no benchmark uses aggre-

gate queries. Aggregate queries are essential for many database, data mining, and machine learning

applications. We discuss them and compare with aggregate queries in a rule language like XSB in Sec-

tion 3.3.

3.2 RBAC—rules with objects, updates, and set queries

The ANSI standard for Role-Based Access Control (RBAC [7, 1] involves many sets and query and

update functions in a total of 9 components. To program the transitive role hierarchy at a high level,

a complex and inefficient while loop was used before [17], because an efficient algorithm would be

drastically even more complex.

With support for rules, the entire RBAC standard is easily written in Alda, similar as in Python [17],

except with rules for computing the transitive role hierarchy, as shown in Figure 1, yielding a simpler yet

more efficient program.

Below, we specify more ways of using rules to compute the transitive role hierarchy and function

AuthorizedUsers(role) in Figure 1. All these ways are declarative and differ in size by only 1-2 lines.

Table 2 summarizes the benchmarks for RBAC that include all RBAC classes with their inheritance

relationships and perform update operations and these query functions in different ways.

In particular, in the first way below, a field, transRH, is used and maintained automatically; it avoids

calling transRH() repeatedly, as desired in the RBAC standard, and it does so without the extra mainte-

nance code in the RBAC standard for handling updates.

Rules with only non-local predicates. Using rules with only non-local predicates, one can add a field

transRH, and use transRH in place of calls to transRH(), e.g., in function AuthorizedUsers(role), and use

the following rule set instead of trans_rs in class HierRBAC:2

rules transRH_rs : # no need to use infer explicitly
transRH (x,y) if RH(x,y)
transRH (x,y) if RH(x,z), transRH(z,y)
transRH (x,x) if ROLES(x)

Field transRH is automatically maintained at updates to RH and ROLES by implicit calls to infer; no explicit

calls to infer are needed. This eliminates the need of function transRH() and repeated expensive calls

to it even when its result is not changed most of the time. Overall, this simplifies the program, ensures

correctness, and improves efficiency.

2The first rule could actually be omitted, because the second argument of RH is always in ROLES and thus the second rule

when joining RH with reflexive pairs in transRH from the third rule subsumes the first rule.
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Part Analysis Features used

1 Ext classes, extension relation rules (recursive if refined name analysis is used)

2 Stat statistics, roots aggregate and set queries

3 Hgt max height, roots of max height recursive functions, aggregate and set queries

4 Desc max desc, roots of max desc recursive rules, functions, aggregate and set queries

In Parts 1 and 4 that use rules, not using rules (esp. for recursive analysis, with tabling) would be drastically

worse (i.e., harder to program and less efficient). In Parts 2-4 that use aggregate and set queries, using rules or

recursive functions would be clearly worse. In Parts 3 and 4 that use functions, not using functions (with tabling,

also called caching) would be much worse.

Table 3: Benchmark PA for program analysis, integrating different kinds.

Rules with only local predicates. Using rules with only local predicates, infer must be called explic-

itly. One can simply use the function transRH() in Figure 1, which calls infer using rule set trans_rs

in the running example and then unions with reflexive role pairs. Alternatively, one can use the rules in

trans_rs plus a rule that uses a local predicate role to infer reflexive role pairs:

rules trans_role_rs : # as trans_rs plus the added last rule
path (x,y) if edge(x,y)
path (x,y) if edge(x,z), path (z,y)
path (x,x) if role(x)

def transRH (): # use infer only , pass in also ROLES
return infer(path , edge =RH , role=ROLES , rules= trans_role_rs )

Both ways show the ease of using rules by simply calling infer. Despite possible inefficiency in some

cases, using only local predicates has the advantage of full reusability of rules and full control of calls to

infer.

3.3 Program analysis—rules with aggregate queries and recursive functions

We designed a benchmark for program analysis (PA) problems, especially to show integrated use of

rules with aggregate queries and recursive functions. Aggregate queries help quantify and characterize

the analysis results, and recursive functions help do these on recursive structures. We describe programs

written in Alda and then in XSB.

The benchmark is for analysis of class hierarchy of Python programs. It uses logic rules to extract

class names and construct the class extension relation; aggregate queries and set queries to characterize

the results and find special cases of interest; recursive functions as well as aggregate and set queries

to analyze the special cases; and more logic rules, functions, and set and aggregate queries to further

analyze the special cases.

Table 3 summarizes different parts of this benchmark, called PA. A variant, called PAopt, is the same

as PA except that, in the recursive rule for defining transitive descendant relationship, the two hypotheses

are reversed, following previously studied optimizations [18, 33].

Because the focus is on evaluating the integrated use of different features, each part that uses a single

feature, such as rules, is designed to be small. Compared with making each part larger, which exercises

individual features more, this design highlights the overhead of connecting different parts, in terms of

both ease of use and efficiency of execution.

The benchmark program takes as input the abstract syntax tree (AST) of a Python program (a module

or an entire package), represented as a set of facts. Each AST node of type T with k children corresponds

to a fact for predicate T with k+1 arguments: id of the node, and ids of the k children. Lists are represented

using Member facts. A Member(lst,elem,i) fact denotes that list lst has element elem at the ith position.
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Part 1: Classes and class extension relation. This part examines all ClassDef nodes in the AST. A

ClassDef node has 5 children: class name, list of base-class expressions, and three nodes not used for

this analysis. The following rules can be used to find all defined class names and build a class extension

relation using base-class expressions that are Name nodes. A Name node has two children: name and

context.

rules class_extends_rs :
defined (c) if ClassDef (_,c,_, _,_,_)
extending (c,b) if ClassDef (_,c,baselist , _,_,_),

Member(baselist ,base ,_), Name (base ,b,_)

For a dynamic language like Python, analysis involving names can be refined in many ways to give

more precise results, e.g., [9]. We do not do those here, but Datalog rules are particularly good for such

analysis of bindings and aliases for names, e.g., [30].

Part 2: Characterizing results and finding special cases. This part computes statistics for defined

classes and the class extension relation and finds root classes (class with subclass but not super class).

These use aggregate queries and set queries, where (_,c) and (=c,_) are tuple patterns, _ matches any-

thing, c is bound to the matched value, and =c matches the value of c.

num_defined := count(defined)
num_extending := count(extending )
avg_extending := num_extending /num_defined
roots := {c: (_,c) in extending , not some (=c,_) in extending }

Similar queries can compute many other statistics and cases: maximum number of classes that any class

extends, leaf classes, histograms, etc.

Part 3: Analysis of special cases. This part computes the maximum height of the extension relation,

which is the maximum height of the root classes, and finds root classes of the maximum height. These

use a recursive function as well as aggregate and set queries.

def height(c):
return 0 if not some (_,=c) in extending

else 1 + max{height(d): (d,=c) in extending }
max_height := max{height(r): r in roots}
roots_max_height := {r: r in roots , height(r) = max_height }

For efficiency when a subclass can extend multiple base classes, caching of results of function calls is

used. In Python, one can simply add import functools to import module functools, and add @functools.cache

just above the definition of height to cache the results of that function.

Part 4: Further analysis of special cases. This part computes the maximum number of descendant

classes following the extension relation from a root class, and finds root classes of the maximum number.

Recursive functions and aggregate queries similar to finding maximum height do not suffice here, due

to shared subclasses that may be at any depth. Instead, the following rules can infer all desc(c,r) facts

where class c is a descendant following the extension relation from root class r, and aggregate and set

queries with function num_desc then compute the desired results.

rules desc_rs:
desc (c,r) if roots(r), extending (c,r)
desc (c,r) if desc(b,r), extending (c,b)

def num_desc (r):
return count{c: (c,=r) in desc }

max_desc := max{num_desc (r): r in roots}
roots_max_desc := {r: r in roots , num_desc (r) = max_desc }
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For efficiency of the last query, caching is also used for function num_desc. If the last query is omitted,

function num_desc can also be inlined in the max_desc query.

Comparing with aggregate queries and functions in rule languages. While rules in Alda corre-

spond directly to rules in rule languages, expressing aggregate queries and functions using rules require

translations that formulate computations as hypotheses and introduce additional variables to relate these

hypotheses.

Aggregate queries are used extensively in database and machine learning applications, and are es-

sential for analyzing large data or uncertain information. These queries are easy to express directly in

database languages and scripting languages, but are less so in rule languages like Prolog; most rule lan-

guages also do not support general aggregation with recursion due to their subtle semantics [19]. For

example, the simple query num_defined := count(defined) in Alda, when written in XSB, becomes:

num_defined(N) :- setof(C, defined(C), S), length(S, N).

Recursive functions are used extensively in list and tree processing and in solving divide-and-conquer

problems. They are natural for computing certain information about parse trees, nested scopes, etc.

However, in rule languages, they are expressed in a way that mixes function arguments and return values,

and require sophisticated mode analysis to differentiate arguments from returns. For example, the height

query, when written in XSB, becomes:

height(C,0) :- not(extending(_,C)).
height(C,H) :- findall(H1, (extending(D,C), height(D,H1)), L),

max_list(L,H2), H is H2+1.

4 Experimental results

We present results about running times, program sizes, and data sizes. All measurements were taken

on a machine with an Intel Xeon X5690 3.47 GHz CPU, 94 GB RAM, running 64-bit Ubuntu 16.04.7,

Python 3.9.9, and XSB 4.0.0. For each experiment, the reported running times are CPU times averaged

over 10 runs. Garbage collection in Python was disabled for smoother running times when calling XSB.

Program sizes are numbers of lines excluding comments and empty lines. Data sizes are number of facts.

Compilation times and program sizes. Table 4 shows Alda compilation times and related XSB, Alda,

DistAlgo, and Python program sizes before and after compilation. They are for all benchmarks described

in Section 3, plus three variants of TC, explained below in the paragraph on performance of classical

queries using rules. The Alda programs are 4–970 lines for OpenRuleBench benchmarks, 385–423 lines

for RBAC benchmarks, and 33 lines for PA benchmarks. For each group of benchmarks, there is a single

shared Alda file of benchmarking code, shown in the last row of each group.

The compilation times for all programs are 0.6 seconds or less, and for all but RBAC benchmarks

and Wine in OpenRuleBench are about 0.1 seconds or less.

For Alda programs that have corresponding XSB programs (OpenRuleBench in Table 1 and PA),

Alda programs are all much smaller, almost all by dozens or even hundreds of lines, and by an order

of magnitude for Join1 and TC in OpenRuleBench, because we have all the benchmarking code in the

shared benchmarking file.

Performance of classical queries using rules. We experimented with four programs for computing

transitive closure: TC, the TC benchmark from OpenRuleBench, which is the same as trans_rs except

with renamed predicates; TCrev, a well-known variant with the two predicates reversed in the recursive

rule; and TCpy and TCda, which use the Python and DistAlgo while loops, respectively, in Section 2. For

comparison, we also directly run the XSB program for TC from OpenRuleBench, and its corresponding
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Benchmark Original Alda Compilation Generated Generated

name XSB size size time (ms) Python size XSB size

Join1 225 23 33.0 32 5

Join2 41 11 18.5 16 9

JoinDup 163 42 45.6 20 36

LUBM 377 125 116.4 29 110

Mondial 36 8 16.2 16 6

DBLP 20 4 16.3 16 2

TC 75 5 7.9 16 3

TCrev *75 5 7.7 16 3

TCda – 5 4.9 18 -

TCpy – 7 6.5 11 -

SG 90 13 17.9 20 7

WordNet 298 58 76.2 44 28

Wine 1103 970 605.6 16 968

ModSG 38 14 14.8 16 12

Win 24 4 9.5 16 2

MagicSet 34 9 18.2 16 7

ORBtimer – 45 35.2 56 -

RBACnonloc – 423 346.4 538 4

RBACallloc – 387 318.4 481 4

RBACunion – 386 316.6 481 3

RBACda – 385 312.8 483 -

RBACpy – 387 314.6 476 -

RBACtimer – 44 43.3 67 -

PA *55 33 49.7 93 6

PAopt *55 33 40.8 93 6

PAtimer – 40 32.6 56 -

For Original XSB size, entries without * are from OpenRuleBench, as in Table 1; * indicates XSB programs

we added; – means there is no corresponding XSB program. For Generated XSB size, - means no XSB code is

generated.

Table 4: Compilation times and program sizes before and after compilation.

version for TCrev, except we change load_dyn to load_dync, for much faster reading of facts in XSB’s

canonical form; we call these programs TCXSB and TCrevXSB, respectively. The same data generation

as OpenRuleBench is used to return large query results—almost complete graphs.

Figure 2 shows the running times of the TC benchmarks. RawR and PickleW are times for reading

facts in XSB/Prolog form as used in OpenRuleBench and writing them in pickled form for use in Alda,

respectively. Pickling is done only once; the pickled data is read in all repeated runs and all of TC, TCrev,

TCda, and TCpy. The running time of Alda programs includes not only (1) reading data, (2) executing

queries, and (3) returning results, but also (2pre) preparing data, queries, and commands and writing data

to files for XSB before (2), and (2post) reading results from files written by XSB after (2). TC_extra and

TCrev_extra are the part of TC and TCrev, respectively, for extra work interfacing with XSB, i.e., for

2pre and 2post and for XSB to read data (xsbRdata) and write results (xsbWres). A breakdown showing

the time needed for each step in the extra work is in [22].

The results are as expected: the two Alda programs that use rules are asymptotically, drastically faster

than Python and DistAlgo while loops, and they exhibit known notable performance differences [33, 34].

Most notably but as expected, passing the query results back from XSB has a high overhead, up to 5.9

seconds, out of 29.2 seconds total, for graphs of 100K edges, but this overhead is expected to be reduced
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TCpy and TCda are not in the charts because they are asymptotically slower and took drastically longer: on 100

vertices, with cyclic data of 200 edges (2% of smallest data point in the charts), TCpy took 624.6 seconds, and TCda

took 249.9 seconds; and with acyclic data of 600 edges, TCpy took 160.4 seconds, and TCda took 65.2 seconds.

Figure 2: Running times of TC benchmarks on cyclic (left) and acyclic (right) graphs.

to 1% of it when the in-memory Python-XSB interface is used. Note that reversing the two predicates in

the recursive rule does give a linear-factor asymptotically different running time, but that barely shows

because OpenRuleBench uses almost complete graphs.

Integrating with objects, updates, and set queries. We use RBAC benchmarks in Table 2, Sec-

tion 3.2, for this evaluation, especially with frequent queries and updates and intensively frequent restart

of XSB for queries randomly mixed with updates of the queried data: 5000 users, 500 roles, 5000 UR

relation, 550 RH relation, up to 500 queries, and 230 updates of various kinds.

Figure 3 shows the running times of the RBAC benchmarks, all scaling linearly in the number of

queries, as expected. Labels with suffix _extra indicate the part of the running time of the corresponding

program for extra work interfacing with XSB. A breakdown of the time for extra work is in [22].

The results are as expected as well: RBACunion and RBACalloc are very close, and are much slower

than RBACnonloc—up to 331.7 and 333.9 seconds, respectively, vs. 97.9 seconds. Most notably but as

expected, the overhead of repeated queries using XSB is high for RBACunion and RBACalloc, but low

for RBACnonloc, up to 134.5 and 145.9 seconds, respectively, vs. 2.8 seconds. The highest overhead is

from restarting XSB 500 times, which will be totally eliminated when in-memory interface is used.

Integrating with aggregate queries and recursive functions. We use PA and PAopt benchmarks and

their corresponding programs in XSB, as described in Section 3.3, for this evaluation, and we focus on

applying the analysis to large programs as input data. The programs analyzed include 9 widely-used

open-source Python packages for a wide range of application domains: NumPy, SciPy, MatPlotLib,

Pandas, SymPy, Blender, Django, Scikit-learn, and PyTorch—with 641K–5.1M input facts total and

252K–2.2M facts used by the analysis.

Table 5 shows data sizes, analysis results, and running times of the analysis. The columns are sorted

by the total number of facts used. A breakdown of the running time into steps interfacing with XSB as

well as the remainder of the running time is in [22].
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Figure 3: Running times of RBAC benchmarks, for a workload of updates and queries over 5000 users,

500 roles, 5500 user-role assignments, and 550 role hierarchy pairs.

The results are not as expected: we found the corresponding XSB programs to be highly inefficient,

being all slower and even drastically slower than Alda programs, even 120 times slower for PyTorch.

Significant effort was spent on performance debugging and manual optimization, and we eventually

created a version that is faster than Alda—5.1 seconds vs. 15.2 seconds on the largest input, SymPy—by

using additional directives for targeted tabling that also subsumes some indexing.

As expected, the Alda programs here have a high overhead of passing the data to XSB, up to 13.1

seconds on SymPy, which again is expected to be reduced to 1% of it with in-memory Python-XSB

interface. This means that the resulting Alda programs would be faster than even the manually optimized

XSB, showing that computations not using rules, e.g., aggregations and functions, are not only simpler

and easier in Alda/Python than in XSB but also faster.

Scaling with data and rules. We use the two largest benchmarks from OpenRuleBench: DBLP, with

over 2.4 million facts, the largest real-world data set among all in OpenRuleBench; and Wine, with 961

rules, the largest rule set among all. Table 6 shows the running times for both benchmarks, for both

the Alda programs and the XSB programs. _extra is the part of the total time on 2pre, 2post, xsbRdata,

and xsbWres. OrigTotal is the Total time for the original program from OpenRuleBench, which uses

load_dyn instead of load_dync.

The results are again as expected. For DBLP, XSB is more than three times as fast as Alda, 9.5

seconds vs. 30.6 seconds, but as for PA benchmarks, the overhead of passing the large data to XSB is

large, here 26.9 seconds, and is expected to be reduced to 1% of that; note that the Alda program has

faster reading from pickled data.

For Wine, XSB is more than eight times as fast as Alda, 3.8 seconds vs. 31.0 seconds. This is due to

the use of auto_table in Alda generated code, which does variant tabling, whereas this program, through

manual debugging and optimization, was found to need subsumptive tabling [34]. Optimizations [18, 33,

34] can be added to the Alda compiler to match this efficiency automatically. Note that this slowest Alda

program is still faster than half of the systems tested in OpenRuleBench, which took up to 140 seconds

and three systems gave errors, and where XSB was the fastest at 4.47 seconds [15].
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Measure Item/Name numpy django sklearn blender pandas matplot scipy pytorch sympy

Data Total 640,715 815,551 862,031 909,600 942,315 1,064,859 1,092,466 5,142,905 5,115,105

size ClassDef 587 1,835 535 2,146 849 994 898 6,467 1,830

Name 96,076 119,077 137,066 107,638 153,664 152,357 178,754 797,072 1,063,842

Member 155,207 199,416 210,410 242,531 227,766 268,736 260,848 1,270,917 1,112,296

Total used 251,870 320,328 348,011 352,315 382,279 422,087 440,500 2,074,456 2,177,968

Ratio Used/Total 39.3% 39.3% 40.4% 38.7% 40.6% 39.6% 40.3% 40.3% 42.6%

Result #defined 519 1610 533 2118 804 935 882 4323 1786

size #extending 419 1457 710 2951 407 610 719 2207 1816

#roots 79 225 51 133 88 104 60 137 92

max_height 8 7 5 4 7 5 3 5 12

#roots_max_h 1 2 2 1 2 1 4 1 1

#desc 427 2329 822 4376 436 605 721 2174 2413

max_desc 84 309 256 1,638 65 47 353 1,045 1,078

#roots_max_d 1 1 1 1 1 1 1 1 1

Running PA 2.542 3.573 3.263 5.134 3.342 3.733 3.646 14.652 15.243

time PAopt 2.631 3.520 3.235 4.661 3.341 3.676 3.633 14.706 15.132

(in PAXSB 6.297 112.091 10.795 243.765 6.378 14.400 22.221 969.228 65.382

seconds) PAoptXSB 13.170 343.428 17.066 326.629 18.863 40.871 29.675 1773.374 181.961

PAXSBopt 0.804 1.499 1.071 2.149 1.118 1.317 1.300 5.158 5.051

Ratio PAopt 103.5% 98.5% 99.1% 90.8% 100.0% 98.5% 99.6% 100.4% 99.3%

over PAXSB 247.7% 3137.2% 330.8% 4748.0% 190.8% 385.7% 609.5% 6615.0% 428.9%

PA PAoptXSB 518.1% 9611.7% 523.0% 6362.1% 564.4% 1094.9% 813.9% 12103.3% 1193.7%

PAXSBopt 31.6% 42.0% 32.8% 41.9% 33.5% 35.3% 35.6% 35.2% 33.1%

Total is the total number of facts about each package. Total used is the sum of numbers of ClassDef, Name, and Member facts.

Table 5: Data size, analysis results, and running times for program analysis benchmarks.

Alda XSB

Name RawR PickleW 2pre xsbRdata xsbWres 2post _extra Total Total OrigTotal

DBLP 12.187 3.131 15.722 11.197 0.054 0.020 26.993 30.573 9.492 63.494

Wine 0.008 0.000 0.037 0.219 0.000 0.001 0.257 30.960 3.754 3.826

Table 6: Running times (in seconds) of DBLP and Wine benchmarks.

5 Related work and conclusion

Many benchmarking suites have been developed for evaluating the performance of queries in logic lan-

guages and rule engines, including the carefully constructed OpenRuleBench for comprehensively evalu-

ating a diverse set of problems in a wide range of systems [15]. In particular, Prolog has had benchmarks

for comparing performance of different implementations [5, 4]. Some are focused on a special class of

problems, e.g., interpreters written in Prolog [13]. Some are for evaluating the performance of a partic-

ular implementation, e.g., SWI Prolog [31]. There are also works that evaluate queries in more general

rule engines and database systems, e.g., the LUBM benchmark [11] and its extensions [24, 29] for OWL

on a range of systems, and evaluations including SQL with rules [12, 2]. There are also works focused

on evaluating interfaces, e.g., Java Prolog Interface [23]. These works study only queries.

Even drastically more benchmarking suites were developed for evaluating other systems. Works

range from systematic studies, e.g., [14, 10, 25], to a large variety of specific benchmarks, e.g., the SPEC

benchmarks for computer systems in general [25], the TPC benchmarks for transaction processing [26],

the LINPACK benchmarks [6] on solving linear equations, and many more. These benchmarks exercise

updates and many other language features but not logic rules.

In contrast, our work develops benchmarks that exercise integrated use of rules together with other
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language features. We improve OpenRuleBench benchmarks with significantly simplified benchmarking

code, and design new benchmarks that exercise tightly integrated uses of different features on problems

that test different problem scales in different ways. We also compare different ways of using rules vs.

not using rules.

In conclusion, this work presents a set of programming and performance benchmarks for evaluating

languages supporting integrated use of rules and other features, and the results of using these benchmarks

in an evaluation. Future work can perform evaluations with additional languages and systems, especially

efficient ASP systems such as Clingo [8].
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