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In a classical-type flag variety, we consider a Schubert variety
associated to a vexillary (signed) permutation, and establish
a combinatorial formula for the Hilbert-Samuel multiplicity of
a point on such a Schubert variety. The formula is expressed
in terms of excited Young diagrams, and extends results for
Grassmannians due to Krattenthaler, Lakshmibai-Raghavan-
Sankaran, and for the maximal isotropic (symplectic and or-
thogonal) Grassmannians to Ghorpade-Raghavan, Raghavan-
Upadhyay, Kreiman, and Ikeda-Naruse. We also provide a new
proof of a theorem of Li-Yong in the type A vexillary case.

The main ingredient is an isomorphism between certain neigh-
borhoods of fixed points, known as Kazhdan-Lusztig varieties,
which, in turn, relies on a direct sum embedding previously
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used by Anderson-Fulton to relate vexillary loci to Grassman-
nian loci.
© 2023 Published by Elsevier Inc.

1. Introduction

Singularities of Schubert varieties have been the subject of much study for decades.
At a coarse level, there are efficient criteria for determining whether a given Schubert
variety is smooth or singular (e.g., via pattern avoidance); see [5] for a detailed survey of
this and related problems. In sufficiently large flag varieties, nearly all Schubert varieties
are singular, so one is led to consider the question of finer invariants of singularities. For
instance, one can ask about the Hilbert-Samuel multiplicity of a point. This is a positive
integer which measures singularities: it equals 1 if and only if the point is nonsingular,
and larger multiplicities correspond to more complicated singularities.

Schubert varieties €2, and torus-fixed points p, are both indexed by the Weyl group,
with p, € Q,, iff w < v in Bruhat order. So for any pair (w,v) with w < v, a natural
problem arises:

Find an explicit formula for the positive integer mult, (1,,.

(Using a Borel group action, any point = € €2, may be translated to some torus-fixed
point p,, so answering this question for fixed points solves the problem for arbitrary
points.)

The main goal of this article is to solve the above problem in the case where the
ambient flag variety is of classical type, and the Schubert variety €2, is indexed by a
vezxillary element of the Weyl group (in the sense of [3], see §3 for the definition).

In the case of Grassmannians—including the (co)minuscule Grassmannians of maxi-
mal isotropic subspaces in types B, C, and D—several combinatorial, determinantal, and
Pfaffian formulas are known, and due to many mathematicians. In type A, Lakshmibai-
Weyman [22], and Rosenthal-Zelevinsky gave a determinantal formula [29], while Krat-
tenthaler [19] and Lakshmibai-Raghavan-Sankaran [23] gave combinatorial formulas, in
terms of non-intersecting lattice paths. The last of these results was reinterpreted by
Kreiman [20] and Ikeda-Naruse [13] in terms of combinatorial objects called excited
Young diagrams. In other classical types, Pfaffian formulas for maximal isotropic Grass-
mannians were given by ITkeda [12] and Tkeda-Naruse [13]. Combinatorial formulas for
the Lagrangian Grassmannian were given by Ghorpade-Raghavan [10], Kreiman [21],
and Tkeda-Naruse [13] independently. For the maximal orthogonal Grassmannian, com-
binatorial formulas were given by Raghavan-Upadhyay [27] and Ikeda-Naruse [13].

Some of these authors ([12,13,20,21,23]) used torus actions to compute an equivariant
multiplicity; in the (co)minuscule case, this leads directly to a formula for the usual
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multiplicity, e.g., as explained in [13, Proposition 9.1]. Outside of the cominuscule setting,
this technique is not available, because the ideals are no longer homogeneous with respect
to the natural torus action. Partly for this reason, less is known beyond the Grassmannian
case.

The class of wvezillary permutations is a natural generalization of Grassmannians.
These were Lascoux and Schiitzenberger in the context of determinantal formulas for
Schubert polynomials in type A. An analogous notion for signed permutations (in the
other classical types) was introduced by Billey and Lam [6]; this was later revisited in a
geometric context, better adapted to our situation [3].

Li and Yong took this first step beyond Grassmannians: in the type A flag variety, they
computed the multiplicity of a Schubert variety indexed by a vexillary permutation [25].
Their methods involve a detailed analysis of the ideal defining such a Schubert variety,
and include a Groébner basis for such ideals. Their combinatorial language is that of
flagged semistandard tableauzx, which is in natural bijection with others mentioned above
(lattice paths, excited Young diagrams) and also admits a determinantal formula.

The type A results of Li and Yong inspired our investigation of vexillary Schubert
varieties in the other classical types. To state the theorem, we need some notation, which
will be reviewed in more detail below (see §3). Each vexillary permutation w comes with
a partition A, and to any v > w we associate an outer shape p O A. An excitation (or
excited Young diagram) of A in u is a collection of boxes C' C p which are obtained from
those of A by a sequence of certain local moves (whose precise description depends on
type). We write &,()) for the set of all such excitations.

Here is an example in type A, where a permutation is vexillary if and only if it avoids
the pattern 2143, and the local moves generating excited Young diagrams are of the
form

For the vexillary permutation w = 1254367, the corresponding partition is A = (2, 1).
The permutation v = 5264173 is above w in Bruhat order, and the associated outer
shape is ¢ = (3, 3,2). Then &,(\) consists of the 5 diagrams

Theorem. Let w be a vexillary (signed) permutation, and v any element such that w < v.
Let p, € Q, be the corresponding fixed point and Schubert variety, and let A\ C p the
corresponding partition and outer shape. Then

mult,, Q= #Eu(N),
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where &, (N) is the set of excited states of A inside p.

In the setting of the above example, the theorem says mult, €2, = 5.

Our approach yields an a priori reason for the fact that multiplicities of points on
vexillary Schubert varieties are computed by a formula which also computes multiplici-
ties on Grassmannian Schubert varieties; in particular, we provide an alternative proof
of [25, Theorem 6.2]. The main innovation is an explicit isomorphism, up to irrele-
vant factors of affine spaces, between canonical affine neighborhoods of fixed points in
Schubert varieties in the flag variety and Grassmannian. These neighborhoods are some-
times called Kazhdan-Lusztig varieties, and they have been studied by many authors
[7,17,24,25,30,31]; see §7 for details.

The isomorphism is set up using a direct-sum embedding of a flag variety in a larger
one. When §,, is a vexillary Schubert variety in the (ordinary or isotropic) flag variety for
a vector space V', we construct local isomorphisms with the Schubert variety {2 in the
Grassmannian of (ordinary or isotropic) half-dimensional subspaces of V@ V. This allows
us to reduce the computation of local invariants of points on vexillary Schubert varieties
to a known calculation on Grassmannian Schubert varieties. We expect this method will
find further use; see [15] for an application to Kazhdan-Lusztig polynomials.

The arguments proceed in parallel for all classical types. All the essential ideas appear
in type A, so the reader is encouraged to digest that case first.

One can consider more refined invariants, such as the Hilbert series. For Schubert
varieties in any (co)minuscule Grassmannian—including types Eg and E7, as well as the
maximal Grassmannians in classical types—Lakshmibai and Weyman gave a positive
recursive formula for the Hilbert series and multiplicity [22]. For classical-type Grass-
mannians, the Hilbert series was computed explicitly by Kodiyalam-Raghavan [18] in
type A, Ghorpade-Raghavan [10] in type C, and Raghavan-Upadhyay [27] in type D.
Using equivariant K-theory and variations on excited Young diagrams, these invariants
were also studied by Graham-Kreiman [11]. For vexillary Schubert varieties in type A,
the Hilbert series was studied by Li-Yong in connection with Kazhdan-Lusztig polyno-
mials [24]. It would be interesting to see analogues of these results for vexillary Schubert
varieties in other classical types.

Some of our results were announced at FPSAC XXXI (2019) and appeared in the
proceedings of that meeting [4]. The proof sketch given there ([4], §4) contains an in-
correct assertion and a major gap; however, it is replaced by the significantly stronger
isomorphism of Kazhdan-Lusztig varieties given here in §7.

Acknowledgments. T1 is particularly indebted to K. N. Raghavan and Vijay Ravikumar
for stimulating discussions in the early stages of this project. We also thank Tomoo
Matsumura for valuable discussions, and the anonymous referee for helpful comments

and corrections.
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2. Notation and definitions

We work over an algebraically closed field K of characteristic' not equal to 2.

Let G be a semisimple linear algebraic group defined over K. Fix a maximal torus T
and a Borel subgroup B such that T'C B C G. Let W = Ng(T')/T be the Weyl group.
The fixed points of G/B under the left action of T are naturally indexed by the Weyl
group W of G with respect to T": given w € W, we write p,, € G/B for the associated
fixed point.

Let B_ be the opposite Borel subgroup, so BN B_ = T. The Schubert cell €2, is the
B_ orbit B_ - p,. The closure of a Schubert cell is the Schubert variety ., = Q2 a
subvariety of codimension ¢(w), where ¢(w) is the length of w. The Weyl group is partially
ordered by Bruhat order, defined by w < v if and only if p, € Q,,. The Schubert variety
Q,, is a disjoint union of Schubert cells 27 such that v > w.

We will also occasionally consider opposite Schubert cells X, = B - p,. These are
affine spaces of dimension ¢(w).

In what follows, we quickly review type-specific notation for Schubert varieties in
Grassmannians and flag varieties. More discussion can be found in sources such as [9].
In each case, after fixing a basis, G will be a particular matrix group, 7" will be diagonal
matrices in G, B upper-triangular matrices in G, and B_ lower-triangular matrices in

G.

Type A. Let V be a vector space of dimension n with basis e1,...,e,, and G =
SL(V) = SL,. The Weyl group is S,, the symmetric group of permutations of
[n] == {1,...,n}. We write permutations w € S,, in one-line notation, by recording
values: w = w(1) w(2)---w(n).

The flag variety G/B is the variety FI(V) of complete flags

E,:{0}CE,CEyC---CE,=K", dim(E;,) =17 (1<i<n).

For w € S, the corresponding T-fixed point p,, is given by E; = span{e, 1), - -,€uw()}-

The B_-fixed flag F'* is given by subspaces F* = span{e,, ..., €;+1}, of codimension
i. Schubert varieties are defined by intersection conditions with F'*, as follows. For each
w € Sy, the function k,, is defined on the n x n grid by

kw(a,p) =#{s € [n]|s <p, w(s) >q}, (gp) € [n]x[n].
The Schubert variety is

Qy ={E, | dim(E, N F9) > ky(g,p) for all 1 < g,p < n}. (1)

1 'We rely on some sources where results are stated over C—e.g., [13] and [20,21]—but the same proofs work
over arbitrary algebraically closed fields. See [22], which implies that for (co)minuscule Schubert varieties,
the multiplicity is independent of characteristic; the question of whether this is true in general is raised at
the end of [25, §8]. In type A, our methods work in arbitrary characteristic, but in other types, we must
avoid characteristic 2.
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An alternative description is
Qy ={E, | rank(E, — V/F?) < ry(¢,p) for all 1 < ¢,p < n},
where

rw(q,p) = #{s € [n]|s <p, w(s) < q}, (g,p) € [n] x[n]
=p—ku(qgp).

Let d be an integer such that 1 < d <n = dim(V). In the Grassmannian Gr(d, V) of
d-dimensional subspaces, T-fixed points and Schubert varieties are indexed by partitions
A whose Young diagram fits inside the d x (n — d) rectangle; that is,

A=(n—d>X > >\ >0).

Each such A determines a Grassmannian permutation wy, with unique descent at d, as
follows. Let I(A) = {i1 < --- < i4} be defined by i, = k 4+ Agy1-%, and let J(A) = {j1 <
<o < Jp—at = [n] ~ I(XA) be the complement. Then

Wy =11 %d J1°°* Jn—d-

This has length is equal to the number of boxes in A, that is, £(wy) = [A| := > M.

We refer the reader to the example in the introduction and [13, Section 3.3] for the
relation between a partition A and its Young diagram as well as w.

The T-fixed point p) € Gr(d,V) corresponds to the subspace spanned by {e;|i €
I(\)}. This is the same as the d-dimensional component of the T-fixed flag corresponding
to wWH.

The Schubert variety Qy C Gr(d, V) is the closure of the Schubert cell QS = B_ - py.
It can be described as

O\ ={E € Gr(d,V)| dim(En FM»t1=k) >k for 1 < k < d}.

This has codimension |A| in Gr(d, V).

The projection 7y : FI(V) — Gr(d, V') which sends a flag F, to Ey is a locally trivial G-
equivariant fiber bundle, with smooth fibers; the fiber over E4; C V is naturally identified
with FI(Ey) x FI(V/Eg). Furthermore, one has

-1
Qw/\ = 7Td Q)\,

so in particular €, is a smooth fiber bundle over .

Type C. Let V' be a vector space of dimension 2n with basis ez, ...,ef,e1,...,e,. Let
us define a skew-symmetric bilinear form on V by (e;,e;) = (es,e;) = 0 and (e;,e;) =

Please cite this article in press as: D. Anderson et al., The multiplicity of a singularity in a vexillary
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—(ej,ez) = 0;; for 1 < 4,5 < n. (The bar is meant to indicate a negative number, so

@ = —a.) The Gram matrix looks like this:

- _1 -
Let G = Sp(V') = Spa, be the symplectic group with respect to the form. As we noted
above, we choose a torus T consisting of diagonal matrices in Sps,(K), a Borel group
B of the upper triangular matrices in Spy,(K), and an Borel subgroup B_ opposite to
B of the lower-triangular matrices. The Weyl group is the group of signed permutations

W, = Spx{%1}"™. This is often realized as the subgroup W,, of Sa,, such that w(7) = w(i)
for all 7. Here we consider Sa,, as the group of permutations of {+1,..., +n}. We usually
write a signed permutation w in “one-line notation” w(1)---w(n) (note that we only
need to record w(i) (i € [n]).

An isotropic flag is a sequence of linear subspaces

Ey:{0}CE,CE, C---CE CcV=2K" dim(E)=n+1—i (1<i<n),

where F; are all isotropic. In particular, F; is a Lagrangian subspace, i.e., a maximal
isotropic subspace of V. The variety FI®(V) = Spa,/B is identified with the set of all
isotropic flags.

The unique B_-fixed isotropic flag is given by F, = span{e,,...,e;} for 1 < g < n.
This is extended to a complete flag by setting

L .
Fy=Fg, =span{e,,...,eqe1,..., €5}

for1 <g<n.
Given w € W,,, the Schubert variety is described as

Q= {Eo | dim(E, N Fy) > ky(q,p) forallp e {1,...,n}, g€ {m,...,1,1,...,n}},
where the function k., associated to w is defined by
kw(q,D) = #{s | s <P, w(s) = q}.
As in type A, the Schubert variety can also be written

Qw = {E, | rank(Ep — V/Fq> S Tw(Q»]_?)}

Please cite this article in press as: D. Anderson et al., The multiplicity of a singularity in a vexillary
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forall1<p<mnandqe{n,...,1,1,...,n}. Here

rw(q,p) =#{se€{m, ..., 1} | s <p, w(s) < ¢}

=n+1 i 2 kw(qap)‘

We write LG(V) for the Lagrangian Grassmannian parametrizing n-dimensional
isotropic subspaces of V. The index set for the Schubert varieties and T-fixed points
is the set of strict partitions A = (A1,..., A,) satisfying

n>A>--->AN>0,and \; =0forr<i<n (2)

for some r < n. Equivalently, A is an r-element subset of {1,...,n}. We denote by
r = £()\), the length of A. Given such a A, the corresponding Schubert variety is

Oy = {W € LG(V) | dim(W N Fy,) > for 1 <4 < ((\)}, (3)

of codimension |A|.

Thinking of A\ as a subset of {1,...,n}, the fixed point p) corresponds to the
isotropic subspace spanned by e; for ¢ € A, together with e; for ¢ ¢ \. For example,
pp = span{es, ... e}, and p,,.. 21y = F1 = span{es,...,e,}. The Schubert variety (2
is the closure of the Schubert cell 2§ = B_ - py.

Each strict partition A = (A1,..., \.) corresponds to a Grassmannian signed permu-
tation

w) :Xl"')‘rjl"'jn—ra

where {j1 < -+ < jn_r} = [n]\{A1,---, Ar}. See, e.g., [14, Section 3.4].

Let 7: FI°(V) — LG(V) be the projection sending an isotropic flag E, to the max-
imal isotropic subspace F;. As for type A, this is a G-equivariant fiber bundle, where
each fiber is smooth and the fiber over F; is isomorphic to the flag variety FI(FE;). We
have 771Q, = Q,,, and Q,, is a fiber bundle over the Schubert variety 2.

Type B. Let V be a vector space of dimension 2n+1, with basis e, ..., e1,ep,€1,...,€y.
We have a symmetric bilinear form on V, defined by (ei,e;) = (e;,e5) = (eo,€;) =
(eo,e5) = 0, (ei,e5) = d;j for 1 < i,j < n, and (eo,e9) = 1. So its Gram matrix looks

like this:

1
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Let G = SO(V) = SOa2,+1 be the special orthogonal group with respect to the form. The
Weyl group is the same as in type C, the group of signed permutations W,, = S, x {£1}".

The isotropic flag variety FIP(V) = SOq,11/B consists of a sequence of linear sub-
spaces

Ey:{0}CE,CE, C---CE cVK""! dimE)=n+1-—i (1<i<n),

where F; are all isotropic. In particular, F; is a maximal isotropic subspace of V. Let
us define

F; = spang{e;,...,e,} forl<i<n.

Then Fy = (F} D -+- D Fy,) is the unique isotropic flag fixed by B_. Note that F} is a
maximal isotropic subspace.

Inside the odd Orthogonal Grassmannian OG(n, V) of n-dimensional isotropic sub-
spaces of V| the Schubert variety associated with X is given by the same conditions (3) as
in type C. The correspondence between T-fixed points of OG(n, V') and strict partitions
inside the n-staircase is also the same as in type C.

Type D. We consider a vector space V of dimension 2n with a basis indexed by the set

{m,...,1,1,...,n}. Let us define a symmetric bilinear form on V' by (e;, e;) = (e;,e5) =

0, <el-,e;> = ;5 for 1 <4, j < n. Its Gram matrix is

1

1

Let G = SO(V) = SO, be the special orthogonal group with respect to the form.
The Weyl group is the subgroup W, C W, consisting of signed permutations with even
number of sign changes.

Let FIP (V) = SO, /B. Here an isotropic flag is a chain of subspaces

E.Z{O}CEn_lC"'CE1CE0CV§K2n,

with dim(E;) =n — i for 1 < ¢ < n, where Ej is a maximal isotropic subspace of V. We
fix F, given by F, = spang{eg+1,...,€,} for 0 < ¢ < n — 1 as the reference isotropic
flag, extended to a complete flag by Fy = Fql for 1 < ¢ < n. (Here F,, =0.)

The type D flag variety FIP (V) is the set of all isotropic flags in V, with the additional
condition that dim(Ey N Fp) is even.
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Given w € W}, the corresponding Schubert variety in €, C FIP (V) is the closure of
the cell

2, = {E. | dim(E, N F,) = ky(¢,p) for 0<p<n—1
and g€ {n—1,...,0,0,...,n—1}},

where now k,(q, D) = #{s <p|w(s) > q}.

The (even) orthogonal Grassmannian OG™ (n, V) is the set of maximal isotropic sub-
spaces W in V such that dim(W N Fy) is even. For a strict partition A, the corresponding
Schubert variety in OG™(n, V) is the closure of

S={W eO0G"(n,2n) | dim(WNFEy,) =ifor1 <i< (N}

Its codimension in OG™(n,2n) is ||
Fixed points in OG™(n,2n) are parametrized as follows. Let A = (A\; > -+ > A, > 0)
be a strict partition. We may ensure r = ¢()) is even by including or omitting a 0

part, as needed. The fixed point py is the maximal isotropic subspace spanned by e; for
i€{M,...,}ande; fori e {0,...,n} ~{A1,..., A}

For instance, we have a T-fixed point py = span{es,...,eg}. If n is even, then
Pn-1,.,1) = Pmn-1,..,1,00 — Span{61;627"'aen}; it n is Odda then Pn-1,.,1) =
span{et,es, ..., e, }.

Given A = (A\; > -+ > A\, > 0) with r even, set A\t = (A +1 > --- > X\, +1). The
type D Grassmannian signed permutation associated to A is the type C one associated
to AT, i.e.,

3. Vexillary (signed) permutations and Schubert varieties

Here we review the notions we need related to vexillary permutations. For type A,
this is standard by now (see, e.g., [8,26]). For other types, vexillary elements were first
considered by Billey and Lam [6]. We use a variation introduced in [2,3], which is adapted
to the geometry of Schubert varieties: in each type, a vexillary (signed) permutation w
corresponds to a triple (k,p,q), which in turn records a set of essential conditions defining
the Schubert variety §2,,.

We also recall the shape \ of a vexillary element w. What is new here is the notion
of an outer shape p O A associated to any v > w. (In type A, this turns out to recover
notation used by Li and Yong [25].)
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3.1. Type A
For w € S, there is a subset &ss(w) of the grid [n] x [n] of boxes such that
Q, ={E,. | dim(E, N F9) > k,(q,p) for all (¢,p) € &ss(w)}. (4)

&ss(w) is called the essential set of w, which is defined as follows. The Rothe diagram
D(w) of w is a collection of boxes (g, p) € [n] x [n] (arranged as in the matrix indices)
defined by

D(w) = {(i,5) | i < w(j), j <w™(i)}.

One way to obtain D(w) is to put dots in the boxes (w(j),j) for 1 < j < n, and then
remove (or shade) all the boxes which are south or east of a dot. The set of remaining
(unshaded) boxes is D(w). Then &ss(w) is the set of south-east corners of D(w). For
example, take w = 1357426 (which is vexillary). As shown in the following figure,
D(w) is the set of unshaded boxes, and &ss(w) is the set of boxes with stars.

A permutation w can be recovered by knowing &ss(w) and the values of dimension
function k,, at all (¢,p) € &ss(w) ([8, Lemma 3.10 (a)]). We also remark that w < v if
and only if k,(g,p) < ky(q,p) for all (g, p) € Ess(w).

3.1.1. Vexillary permutations
A permutation w is vezillary if the boxes in &ss(w) can be ordered ¢y, ..., ¢s, pro-
ceeding (weakly) from south-west to north-east — that is, if we set ¢; = (¢;, p;), then we
have
1<pr<---<ps<n and n>q >-->¢>1 (5)
Let k; = ky(e;) (1 <4 <s). Then (4) reads

0 = {E. | dim(E,, N F%) > k; fori =1,...,s}. (6)

For the above example, we have ¢ = (6,4), ¢2 = (4,4), e3 = (2,5), and
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p=(4,4,5), q=(6,4,2), k=1(1,2,4).
It is known from [2] that we have

0<ky < <hks<m, (7)

G —pi+ki>qis1 —pig1 + kg for 1 <i<s—1, andgs —ps + ks > 0.  (8)

If, on the other hand, we have integer vectors k,p,q satisfying (5), (7), (8), we call
7 = (k,p,q) a triple. For each triple 7, there is a unique vexillary permutation w (see
[2,3]). We may use the notation w(7) to indicate the vexillary permutation corresponding
to a triple 7.

Let S7 denote the set of all vexillary permutations in S,,. These can be characterized
in terms of &ss(w), and recovered from the restriction of dimension function to &ss(w),
as follows. A permutation w is vexillary if and only if the boxes in &ss(w) can be ordered
e1,...,¢s, proceeding (weakly) from south-west to north-east—that is, ¢; = (g;, p;), with
p1 <---<psand g >+ >qs. Let k; := ky(qi,p:), for 1 <i < s. Then w is the unique
minimal permutation (in Bruhat order) which has k; dots strictly south and weakly west
of box ¢;, for each i. For the above example, we have ¢; = (6,4), ea = (4,4), es = (2,5),
and

p=(4,4,5), q=(6,4,2), k=1(1,2,4).

3.1.2. Shape of a vexillary permutation
For each vexillary w(7), there is an associated partition A, the smallest partition such
that

Mo, =i —pi + ki (1< <s).

The shape A can also be obtained from the diagram. If we set r; = r,,(e;), we have
r; = p; — k;, and the partition A = sh(w) is obtained as follows: We move each ¢;
diagonally north-west by r; units, denoted by e}. Next we make a Young diagram fitting
at north-west corner of the n x n grid having ¢;’s as corners. Then X is the transpose
(conjugate) of the partition. For example, we have sh(w) = (3,2,1,1).

. o
! x| ®
)

i e

x|

[ ]
* °
[ ]
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3.1.8. Outer shape

Let w be a vexillary permutation, and let v be a permutation with w < v. For each
essential box ¢ in &ss(w), let ¢’ be the box obtained by moving ¢ diagonally north-west
by 7, (e) units. The outer shape p is the transpose of the smallest Young diagram sitting
at north-west corner of the n x n grid and containing all the boxes ¢/. For example,
consider w = 54617283 and v = 87654321 > w. Then we obtain the outer shape
u = (4,3,3,3,3) with the diagram below. (Since r,(e1) = ry(e2) = ry(es) = 0, these
boxes do not move; and r,(e4) = 2, so this box moved 2 units NW to ¢.)

(%) €3| ® (¢4

(41 °

The outer shape for w < v can also be obtained from a weak triple " = (K',p,q)
associated to the pair (w,v). Since w is vexillary, it has a corresponding triple 7 =
(k,p,q). Then 7' is formed by setting k; = k,(qi,p;). (If kj = kj_;, which is possible,
then the coming from (k., p;, ¢;) dominates; this is the stronger condition.) Since v > w,
we have k; > k; for each i. The partition p is the one associated to 7' by the previous
formula: i, = q; — pi + ki, with other parts filled in minimally. (In case ki = k;, ;, one
uses fp; = q; — pi + k;, as this will be the larger of the two possibilities.)

Remark 3.1. It was shown in [25] that there is a unique vexillary ©,, such that a
subset of ¢’’s obtained by moving ¢ € &ss(w) form the essential boxes of O, ,. In fact,
this vexillary permutation can be constructed from the weak triple 7/, by a procedure
similar to the one constructing w from 7. For our example, we have ©, ,, =54627138.

3.2. Type C

Let W# = S;'; N W,, be the set of vexillary signed permutations. For w € W#, we

have a subset &ss~ (w) C {m,...,1,1,...,n} x {7m,...,1} such that the Schubert variety
is given by

Qy ={E. | dim(E, N F,) > ky(q,p) for all (¢,p) € &ss™(w)}. (9)
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An element ¢ € {m,...,1,1,...,n} x {m,...,1} is an essential bozx of w if ¢ is a south-
east corner of D™ (w) := D(w) N ({m,...,1,1,...,n} x {m,...,1}), and not in the set
{(i,1) | i < T}. Let &ss~(w) be the set of essential boxes of w.?

The following example shows the essential position for a signed vexillary permutation
w =12 354, with diagram shown below.

54321

€3
€| @

€1

G W N = =N W oy

We note that the position (4,1) is not an essential box.

3.2.1. Vexillary signed permutations
Let eq,...,¢s be the elements in &ss™ (w) arranged from south-west to north-east. Let
us define a triple (k,p,q) of integer sequence associated with w by

ki = ky(e;), p; = —(column index of ¢;), ¢; = (row index of the box just below ¢;).
Then we have 1 < p;, ¢; < n (see [1,3]). Here we adopt a different convention from the one
for type A in §3.1. The Schubert variety (9) associated to a vexillary signed permutation
w can be defined by
Qy = {FE. | dim(Ep, N Fy,) > k; fori=1,...,s}. (10)
The triple 7 = (k,p,q) of integer sequences satisfies
k:0<ki<---<ks, prn>pr>---2ps>1, and g:n>q > 2>qs>1,

(11)

and

g +pi+ki>qr1+pip1 ki forl <i<s—1. (12)

2 For general signed permutations, the definition of essential set is slightly more complicated [1]. Here we
use a simplified version which is valid in the vexillary case (see [3, p. 8, lines 16-17]).
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€1

SNV S B S ROV NS
~
1G]
ksl
W

Fig. 1. Shape of w =123 54.

€1 [ )

CUR W N = = Nl | Ot
I
N
~
)

Fig. 2. Outer shape.

One can recover a vexillary (signed) permutation w := w(7) in W;# from a triple 7; see
[2,3].

3.2.2. Shape of a signed vexillary permutation
For each vexillary signed permutation w, A := A(7) is the smallest strict partition

such that

My =¢i+pi—1 (1<i<s).

In other words, the strict partition A(7) = (A; > -+ > Ag, > 0) has parts A\, =
pi + ¢ — 1+ k; — k whenever k;_1 < k < k;. (We use the convention ky = 0.)

A graphical construction is given as follows. If we set r; = r,(¢;), the partition A =
sh(w) is obtained as follows: We move each ¢; diagonally north-west by r; units, denoted
by e¢;. Next we make a Young diagram hy fitting at north-west corner of the n x n grid
having e/’s as corners (as in type A). Then we remove boxes strictly upper to the diagonal
from the Young diagram X. The desired strict partition is the transpose of this along the
diagonal.

The vexillary element w = 12 3 5 4 has shape A = (8,7,3,1), which can be seen in
Fig. 1.

3.2.3. Outer shape
Given a vexillary element w and any v > w, the outer shape p is the smallest shifted
diagram containing all the ¢ with ¢ € &ss(w). For instance, given w as above and
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v=23154in W5, we move the essential boxes and take the smallest shifted diagram
to get the outer shape = (8,7,3,2,1), in Fig. 2.

As in type A, there is a weak triple 7" = (K, p, q) associated to w < v, obtained by
setting k] = ky(qi,Pi).- The outer shape ;i can be determined by setting ux = p; +q; — 1,
and filling in other parts minimally to obtain a strict partition. (If k] = kj_;, we use the
same convention as before, setting px; = p; +¢; — 1.)

3.3. Type D

We define W;H# = W 0S¥ | where W is the index 2 subgroup of W,, consisting
of signed permutations with an even number of sign changes.

The vexillary signed permutation w associated to 7 in type D is the same as the
vexillary permutation w of type C after replacing p; by p; + 1 and ¢; by ¢; + 1. The
Schubert variety €, is described by the same conditions as in (10). A type D triple 7

for the Schubert variety satisfies

k:0<ki<---<ks, P:p1>---2ps>0, q:q1>---¢s>0

of length s, with

Di + @i + ki > pig1+ qig1 + kit (13)

for 1 < i < s—1 (see [2]). In particular, the triple 7 is given by the same sequences
in type C, but the last components of each sequence, that is, ps and ¢, can be 0. If
ps = qs = 0, then k, is required to be even. If kg is odd, we replace the triple by one
with ks41 = ks +1 and ps+1 = qgs+1 = 0.

3.8.1. Shape of a signed vexillary permutation
Given a vexillary signed permutation w with a triple 7, the smallest strict partition
A= A(7) is defined by

Ay =pi+q (1<i<s),

and A\p = A, + ki — k for ki1 < k < k; with the convention ky = 0. Note that
A, = 0 if pg = g5 = 0. Also if we set the strict partition AT = A(7") defined by
AT =(A1+1,...,A + 1), AT becomes the strict partition for type C.

The shape of a vexillary permutation can also be seen from its diagram. For example,
let us take w = 3124 5. The type C shape is AT = (4,2). Then we remove the diagonal
boxes from the shape A" to obtain the shape A = (3, 1) of type D, as in Fig. 3.
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Fig. 3. Shape of w =3T1245.
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Fig. 4. Outer shape.

3.8.2. Outer shape

Given a type D vexillary permutation w with triple 7, and v > w, the associated
outer shape u can be defined as before from the weak triple /. Alternatively, u™ =
(1 +1,...,ug, + 1) is the type C outer shape for the pair w < v.

For example, consider w =3124 5 and v =32415, so w is vexillary (as before)
and v > w. Then from Fig. 4, we get u™ = (5,4, 3,2). By removing the diagonal parts,
we have the outer shape = (4,3,2,1).

3.4. Type B

This is essentially the same as type C. The Weyl group is W = W,,. We use the same
parametrization of vexillary signed permutations by (type C) triples, and the description
of Q, in terms of the triple looks the same as (10). The shape A(7) is the same as in
type C, as is the outer shape p.

4. The multiplicity formula

Now we turn to our main theorem. First, we recall the definition and basic properties
of the multiplicity we are computing.

Let X be an algebraic variety containing a point p. Let R = Ox ;, be the local ring of
X at p, with maximal ideal m. The Hilbert-Samuel polynomial of R is given by

Pr(n) = dimg (R/m") = (u/d!) n® + - --
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for sufficiently large n, where d is the Krull dimension of R and u is a nonnegative
integer. The Hilbert-Samuel multiplicity of R is the leading coefficient: it is defined as

mult, (X) = u.
The following properties hold:

(1) f U C X is a (Zariski or étale) neighborhood of p, then mult,(X) = mult,(U).
(2) If (X,p) = (X’,p’) is an isomorphism, then mult,(X) = mult, (X’).
(3) For any affine space A™ with origin 0, we have mult,(X) = mult, o) (X x A™).

These properties may be expressed concisely as follows: if X’ — X is a smooth morphism,
sending p’ — p, then mult, (X’) = mult,(X).

Next, we review the notion of ezcited Young diagram, following [13]. Consider a pair
(ordinary or shifted) Young diagrams A C p. An ezcitation of A is a collection of boxes
inside p which are obtained from A by a sequence of elementary excitations. These depend
on type. In type A, an elementary excitation is a local move of the form

In type C, an elementary excitation is one of the following;:

In types B and D, elementary excitations are of the form

~ ) ~ . (14)

In each case, we write &£,(\) for the set of excitations of A inside p, the type being
understood from context.

For Schubert varieties in Grassmannians (ordinary, Lagrangian, or maximal orthogo-
nal), we have the following formula for the multiplicity, due in this form to Ikeda-Naruse

[13, §9]:
mult, Qx = #E,(N). (15)

Now we can state our main theorem. Let G be a classical group, so one of SL,,
Span, SO2p,1+1, or SOq,, with Weyl group W. We consider Schubert varieties in the
corresponding flag variety G/B (which is one of FI(V), FI°(V), FIB(V), or FIP(V),
for an appropriate vector space V).
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Theorem 4.1. Let w and v be elements of W, with w vezillary and v > w. Let A = sh(w)
be the shape of w, and let v be the outer shape associated to w and v. Then the Hilbert-
Samuel multiplicity of Q. at py is given by the formula

mult,, () = #Eu(N).
We illustrate the theorem with examples in each type.

Example 4.2 (Type A). Consider permutations v = 87654321 > w = 54617283. The
shape of w is A = (4,3,3,2,1) and the outer shape is u = (4,3,3,3,3). Then we have
mult,, () = 2, computed from the excited Young diagrams shown below.

More generally, in type A there are bijections between several combinatorial objects:
flagged set-valued tableaux, pipe dreams, and excited Young diagrams (see [25]). These
sets are also enumerated by certain binomial determinants [13,19,25].

Example 4.3 (Type C). Take w =123 4, v =2 3 4 1. We know that w < v such that
A = sh(w) = (3,1) and p = (4,3,1). By the type C elementary excitations, we have
mult,, () = 6.

Example 4.4 (Type D). Let w =31245 and v =324 15. We know w < v in Bruhat
order, so that p, € Q,,. Since A = (3,1) and p = (4, 3,2,1), by applying the theorem, we
get mult,, (€2,,) = 5 with the following excited states.

Example 4.5 (Type B). Let us consider a vexillary permutation w = T 2 3 4 with a
fixed point p, in €, for v = 2 3 4 1. Since the inner shape is (3,1) and the outer
shape is (4,3,1), by using Theorem 4.1 with type B excited Young diagrams, we get
mult,, () = 2.
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To prove Theorem 4.1, we reduce to the Grassmannian case, where the formula is given
by (15). The details occupy the remainder of the paper; here we give a brief outline.

In each type, the vexillary Schubert variety Q,, C FI(V) is the preimage of an analo-
gously defined Schubert variety in a partial flag variety, Q) C Fi(p, V) (see §6 for the
definition). Using smooth invariance of multiplicities, we work with Schubert varieties in
these partial flag varieties. Here, we employ a direct sum embedding to map a vexillary
Schubert variety £2,, to an inverse-Grassmannian Schubert variety wa in a larger (par-
tial) flag variety. This embedding sends p, to Pyyz1s up to an action by a group which
preserves ngl.

The main technical step is an isomorphism (up to product with affine space) between
local neighborhoods of p, in €, and of Pt in ngl. More precisely, we show the
corresponding Kazhdan-Lusztig varieties, X, N, and X'S)III N ngl, are isomorphic up
to a product with affine space (Theorem 7.1).

At this point we have demonstrated mult,, ., = multpw;1 ngl. To finish, we apply a

general local isomorphism—valid for all Schubert varieties in any G/ B—between (Qy,, py)
and (-1, py-1), to conclude

rnultpw;1 Qw;1 = multp,, Qw, = mult, Oy,

using the smooth invariance of multiplicities (and the projection to the Grassmannian)
in the last equality. The theorem then follows from (15).

5. A local isomorphism

We need a lemma which relates w to w™1.

Lemma 5.1. Let X,, C G/B be a B-invariant (opposite) Schubert variety, with p, € X,
a fized point corresponding to v < w. Then the local ring of Xy, at p, is isomorphic to
the local ring of X,—1 at p,-1.

Proof. Consider the subvariety Z(w) C G/B x G/B defined by

Z(w) =G- (pe7pw>-

Let pry and pry be the projections Z(w) — G/B. Then pri ' (p.) = X, while pry * (p.) =
X,-1. Both of these are locally trivial fiber bundles, so there is a neighborhood U, C G/B
such that pri'(U.) = U, x Xy, and pry 1 (U.) 2 X,,-1 x U,. So, up to a product with
affine space, we have local isomorphisms of Z(w) at (pe,p,) with X,, at p,, and of
Z(w) at (py-1,pe) with X,,—1 at p,—1. Multiplication by (a coset representative for) v=1,
diagonally on G/B x G/B, defines an automorphism of Z(w) which sends (pe,p,) to
(py-1,Dpe). Composing these isomorphisms proves the lemma. O
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Remark 5.2. It is not true, in general, that the Schubert varieties X,, and X,,-1 are
(globally) isomorphic. See, e.g., [28] for counterexamples and a criterion for global iso-
morphism.

Remark 5.3. Let Q, = B_ - py, = Wo - Xw,w, Where w, is the longest element of W.
A direct translation of the lemma establishes a local isomorphism of (€,,,p,) with
(s 01wy » Pwgv—1w, ). But using an isomorphism G/B = G/B_, one can identify €,
with Qu,ww,, sending p, to pu,ow,. Applying this, we obtain a local isomorphism of
(Qw,pv) with (Qw—lvpv_l)‘

6. The direct sum embedding

Here we describe the direct sum embedding ¥, which we will use repeatedly in what
follows. For us, the key property is that a vexillary Schubert variety is the transverse
intersection of the image of ¥ with an inverse-Grassmannian Schubert variety in the
(larger) target flag variety. The construction is similar in each type; while we spell out
the details in each case, the reader is encouraged to focus on the type A case, which
contains all the necessary information.

First, we make a general remark. Let P be a parabolic subgroup containing the Borel
subgroup B of G. The projection 7: G/B — G/P is a locally trivial fiber bundle, with
smooth fibers isomorphic to P/B. Schubert varieties and fixed points of G/P are indexed
by cosets W/Wp, where Wp C W is the Weyl group of P. The projection sends a point
wB to m(wB) = [w]P, where the coset [w] is in W/Wp. Any w € W can be uniquely
decomposed into w™wp for some wp € Wp, where w™™ is the minimal representative
for [w]. With this notation, we have 7 Q] = Qymin, so the restriction Qymin — Q) is
also a fiber bundle with smooth fibers. In particular, the multiplicity of a point pj,; € Q[

is the same as that of p, € Qmin.

Type A. Let w be a vexillary permutation in S#, with triple (k,p,q). The partial fixed
flag F9* C --- C F% C V suffices to define the Schubert variety €2,,. We also consider
the partial flag variety Fi(p;V) parametrizing flags F,, C --- C E,, C V, with the
projection 7: FI(V) — Fl(p; V). By the main fact about essential sets—and as noted in
the previous paragraph—we have Q,, = 7'('_19[“,], where Q) C Fl(p; V) is the subvariety
defined by the same conditions, dim(Epi N F%) > k; for 1 < i < s. This is because, by
construction, a vexillary permutation w coming from (k,p,q) is minimal in its coset for
the projection to Fl(p; V).

Since 7 is a smooth morphism, this reduces the study of singularities of 2, to those
of Q. (The analogous statements hold, for the same reasons, in other types.)

Given p and g, let r; = p; +n — ¢;, and write r = (r1,...,75). We have an embedding

S: Fl(p; V) < Fl(r; V& V) (16)

defined by sending
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E, C---CE,,CV to E, ®@F*C---CE, @Ft=cVaoV
We call this the direct sum embedding.
Let A = {(v,v)|v €V} CV &V be the diagonal subspace, and consider the locus

Qo= {Ge | dim(G,, NA) > k; for 1 <i < s}

in FI(V @ V). Indeed, Q-1 s exactly the Schubert variety in FI(V@V) labeled by wy *:
using any fixed flag in V @ V which contains A as its n-dimensional component, this
locus is the Schubert variety associated to the inverse of the Grassmannian permutation
wy € Say, of descent n, where A is the shape of w, so Ay, = ¢; — p; + ki. The Schubert
variety €,,-1) C Fi(r;V @ V) is defined by the same conditions. So Qo = H_lQ[
where IT: FI(V @ V) — Fi(r;V @ V) is the projection.

The key fact about the direct sum embedding is this: for the vexillary permutation w
with triple (k,p,q) and shape A,

wi ']

Q[w] = Eilg[w;l] (17)

in Fl(p; V). All this can be summarized by the diagrams of fiber squares:

Fi(p;V) —== Fl(r;VaV)

J J

Q[w] —— Q; 1
[wy ]

Q, — FI(V) Qo1 — FlVeV)
| |+ | Jm
Q) — Fl(p; V) Q[w;l] —— Fl(r;VaV).

Type C. Let w be a vexillary signed permutation in W7, with (type C) triple (k,p,q).
We use the notation FI%(p,V) to denote the partial isotropic flag variety of subspaces
E, Cc---CE, CV,withdimkE, = n-+1-—p;, all isotropic with respect to the
symplectic form w. Similarly, we have the fixed isotropic partial flag F,,, C --- C F,, C V.

On the vector space V @ V there is a canonical symplectic form ( , ), defined by

{(v1 ® v2, w1 B wa)) = (v1,w1) — (va, w2),

where ( , ) is the given symplectic form on V. This has the property that EGF C V@V
is isotropic whenever both E, F' C V are isotropic, and also that the diagonal subspace
A CV @V is isotropic.
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The direct sum embedding is defined as before:
¥: FI%p; V) — FI°(r;V e V)
sends
E,C---CE,, CV to E,,®F, C---CE, ®@F, CVaV.

Here r; = p; + ¢; — 1, and in accordance with our type C conventions, the subspace
Gr, CV @V has dimension 2n+1—r,=(n+1—p;) + (n+1—q).
Also as before, for a strict partition A, we have the locus

Qw;l ={G, | dim(G,, NA) > k; for 1 <i < s}, (18)
an inverse-Grassmannian Schubert variety in FI¢(V @ V), and
Q[w] = E_lﬂ[w;l]. (19)

The type C direct sum embedding is compatible with the type A one, requiring only
notational changes. That is, having fixed our isotropic flag F,, the diagram

Fi(p;V) —=— FIFV & V)

] ! g

FI°(p;V) <= FI°(r;V @ V)

commutes, where p; =n+ 1 —p; and 7; = 2n+ 1 — r; (so these index the dimensions of
the subspaces parametrized by the partial flags).
Later it will be useful to embed isotropic flag varieties in type A flag varieties by
remembering the coisotropic spaces as well, so FI¢(p;V) < FI(p;V) sends E,, C
C E,, to the flag E,, C --- C E,, C E, C --- C E,. In this case,
P=(P1, -, Ds;Pst1;--->P2s), Where p; = n+1—p; for 1 <i < s, and p; = n—1+pasy1-i
for s+ 1 < i < 2s. Also extending the fixed flag F, to include coisotropic spaces, this
embedding is compatible with direct sum in the same way, as indicated by diagram (20).

Type D. The construction is exactly the same as type C, using the symmetric form {( , )

on V @V defined by

{(v1 @ v2, w1 B wa) = (v1,w1) — (vV2, wWa),

where (, ) is the given symmetric form on V.
The direct sum embedding %: FIP (p;V) < FIP(r;V @ V) works as for type C,
where this time r; = p; + ¢;- We have the locus -y in FIP(r; V@ V) as in (18), with
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Q) = E’lﬁ[wgl]. And this embedding is compatible with the type A one, just as in the
diagram (20).

Type B. Given an odd-dimensional vector space V' with symmetric bilinear form, and a
vexillary permutation w € W with (type B) triple (k,p,q), the direct sum map is

Y: FIP(p;V) = FIP(r;Va V),

where the symmetric form {(, )) on V @ V is defined as before. Here r; = p; + ¢; — 1.
Note that, in contrast to types C and D, this takes a type B flag variety to a type D one.
Similarly, we have the locus Q[wgl] inside FIP (r; V @ V), defined by the same conditions
as in type C (18).

7. Isomorphisms of Kazhdan-Lusztig varieties

Recall that X, denotes an opposite Schubert cell, the B-orbit of a fixed point p,, so it
is an affine space of dimension ¢(v), and 2, is a Schubert variety, of codimension £(w).

For any v € W, an affine neighborhood of p, is given by v Q7;. To study the Schubert
variety €2, locally at the point p, (w < v), we only need to understand the affine variety
Q, Nv Q. However, as observed by Kazhdan and Lusztig [16, Lemma A.4], there is an
isomorphism

Qu N QLY 22 (2 N X2) x ALE/B)=E)

So we study the affine variety ,, N X, often called a Kazhdan-Lusztig variety.

In our setting, w = w(7) is the vexillary (signed) permutation associated to a triple
7 = (k,p,q), and v > w. Recall that we defined a sequence k' = (k] < -+ < k)
by setting k; = k,(pi,q:) for each 4, obtaining a weak triple 7" = (k’,p,q). We have
partitions A and p associated to 7 and 7/, respectively; A is the shape of w, and p is the
outer shape of the pair v > w. These partitions, in turn, have associated Grassmannian
(signed) permutations wy and w,,.

Theorem 7.1. With notation as above, so w is vexillary and v > w, with corresponding
partitions p 2 A, we have an isomorphism

Quw ﬂX;; = (Q -1 ﬂXofl) X Ae(”)—‘lﬂ.
wy w

Proof. We begin the proof with some reductions. First, consider the projection to the
partial flag variety 7: G/B — G/Pp, where G/P, parametrizes partial flags E,, C

- C E,, C V. (For example, in type A, P, is block-upper-triangular, with blocks
of size p1, p2 — p1, etc.) We have Q,, = w‘lﬂ[w], and the map X, — X[‘;] identifies
X5 = X % AL@)=™) where v™ is the minimal representative of the coset [v]. This
shows
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min)

Qo N XY 22 (Qpy N XG,) x AT,

n

So from now on we may assume v = v™ ie. v is minimal in its coset with respect to
) )

Pp.

Next we turn to the direct sum embedding. Let us write G/P, for the target of ¥.
(So in type A, G = GLo, and G/P, is Fl(r;V & V), where r; = p; +n — ¢;.) With our
assumption that v = v™", the composition

X5 X5 = G/P;

is an embedding, since the projection is an isomorphism.
As in Section 6, let Qw;1 C G/ P, be defined by intersection with the diagonal sub-

space A C V @ V. And let Q C G be the parabolic subgroup preserving A, so @ acts
on Qw;l. (Choosing an appropriate basis for V' @ V, this subgroup, @ is given by block

lower-triangular matrices in G.)
Since E’le_l = Q,,, we have
A

X9 N0, = R(X) N, 0.

Then by Lemma 7.2 below, the statement follows. In fact, because @) preserves , -1, and
the unipotent subgroup U is isomorphic to affine space, the map of the lemma induces
an isomorphism

E(X’L(])) N Qw;1 = (X;;1 n ngl) X AZ(U)_‘M"

as required. O

min

‘We continue to assume v = v

Lemma 7.2. There is an element g € QQ and a unipotent subgroup U C @ such that the
multiplication map defines an isomorphism of affine spaces

UxX°_, = 2(XD), (21)
Wy,
(u,2) »u-g-x.

To prove the lemma, we carry out computations in matrices: the argument consists of
keeping track of reduction to row echelon form. Nearly all the essential details appear in
type A, so we will describe that case carefully, indicating what changes for other types.

7.1. Type A

Recall that A\, = ¢; — p; + ki, with the other parts filled in minimally, and similarly
pr, = qi — pi + kj. We set r; = p; +n — ¢;. The target of ¥ is the partial flag variety
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Fl(r;V@V) = G/Py,, where G = GLa,, and P, is the block-upper-triangular parabolic
subgroup stabilizing a flag. To establish the isomorphism (21), we first represent 2(X?)
by 2n X 2n matrices.

Choose a basis e, ..., e, for V, such that F'% is the span of e, ...,eq11. Start with
the standard n x n matrix representatives for X;. This is the B-orbit of the permutation
matrix for v, so matrices for X9 have 1’s in positions (v(j), ), free entries (to be written
as *’s) in positions (i, j) such that v(j) > ¢ and v=1(i) > j, and 0’s elsewhere. Say the
columns of this n X n matrix are ¢y, ...,¢,.

In the course of the proof, we will use a labeling of the free entries in such matrices,
coming from the positions (g;, p;) as follows. Start with the northwest submatrix whose
southeast corner lies at (q1,p1). Assign the label ‘1’ to each * in this submatrix not
having a pivot 1 in its row or column, within this same submatrix. Continue for each
1 from 1 to s: assign label ‘4’ to each previously unlabeled * in the northwest g; X p;
submatrix, if there is no pivot 1 lying in the same row or column within the submatrix.
Some entries may be left unlabeled.

For a running example, let us take 7 = (k,p,q) = (12356,35567,66421), so
w=137584269. And v=679384512has k' =(23467). So

7 =k pq) =(23467,35567,66421),

and u = (5,5,4,3,2,2,1). It is worth noting that in this example, the triple 7 is in fact
not essential, since the last condition is redundant, and A¢ =1 — 7+ 6 = 0. So, one can
omit the final entries in 7 to get an essential triple. In Fl(p; V'), we have:

%3 %1 %1 |%x4 %9 | k4 [*¥5,|1 0
k3 k1 kp|kg kg kg, x (01
* %1 k|1 0] 0] 01|00
>|<3>|<1>|<10>I<2J 1 0100
X,=1| % % %x|0 %[ 0]1]00
1 00,J0 0,]0|01]0O0
01 0|0 0]J0|0]|0O0
00 x/1 0(0]|01J0O0
0010 0010|100

(The conditions imposed by intersecting with €, say: the northwest 6 x 3 submatrix
has rank < 2; the northwest 6 x 5 submatrix has rank < 3; the northwest 4 x 5 submatrix
has rank < 2; the northwest 2 x 6 submatrix has rank < 1; and the northwest 1 x 7
submatrix has rank 0. We will not need this in what follows, except to observe that these
conditions are preserved by all operations.)

Lemma 7.3. There are exactly || labeled entries.
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Proof. From the definition of k', there are p; — k} pivot 1’s in the northwest ¢; x p;
submatrix representing X7. So there are ¢; — p; + k} = pu; Tows having no pivot. And
there are k! columns having no pivot, of which k}_; were labeled in previous steps. So
one sees (kj — kj_; )y, entries labeled ‘i Summing over i proves the lemma. O

Using the basis (e1,0),..., (e, 0),(0,e1),...,(0,e,) for V@&V, matrix representatives
for the embedded cell ¥(X?) have columns

(€1,0),...,(€p;,0),(0,€9,41),---,(0,e5),
(Cp1+1,0), Ty (cp2a0>7 (Oveqz-‘rl)a LR ) (anq1)7

(€p.+1,0),...,(€n,0),(0,e1),...,(0,e,.).

These columns are separated into s + 1 blocks, as indicated. We will make the labels
follow corresponding entries as they are embedded.
Continuing our example, the embedding in Fi(r;V @ V) is

k3 %1 k1 0 0 O|%q4 *2]{0 O)|xq4 0 Ofx5 0|2 00

k3 k1 k1 0 0 Of%q4 2|0 O|xq4 0 O % 0|0 10

* %1 % 000[/1 0{00|/0 00{0 0/00O

x3 %1 %1 00 0|0 %/00{1 00/0 0000

* %1 %1 000]0 %/00/0 00{1 0/00O0

10 0000{0 O|0O0C/O 000 0Cl0OO0O

01 0000/{0 O|/0OOC/O 000 0Cl0OO0O

00 «x000{0 1/100({0 000 0j00O0
S(X°) = 0 01000/{0 O|0O0O/OO0CO0/0O0Cl0OO0O0
v 00 0O0O0OO0O|O O/0O|O OO0 0Oj001
00 0O0OOO0O|{O O|/0O|O OO0 1j00O0

0 00O0OOO0O|O O/00O|{0O 10/00l00O

0 00O0OO0OO0O|{O O/00|{O0 010 0l00O

00 0000{O0O O|20({0 0010 0l0O0O0

00 0000{O0 O0/01(0 000 0l0O0O

00 0100/{0 O|/0O0C|{O 000 0Cl0OO0O

00 0010{0 O|00|{O 000 0l0OO0O

L0 0 00010 0{00]0 0OO0[{0 000 O ||

Since we will impose conditions on intersections with A, we change to a basis bet-
ter adapted to the diagonal subspace. With respect to the basis (e1,0),...,(e,,0),
(e1,e1),..., (en,en), the matrix representatives for 3(X7) have columns

(61,0), EERR} (cp170)7 (_eQ1+1’eQ1+1)a EREN} <_enven)’
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(cP1+1, O)a tey (sz,O), (_eq2+1a eqz+1)a BN (_equetn)a
(cp5+1; O)’ ceey (Cn,O), (—61,61), ceey (_eqsaeqs)'

In our running example, this is

¥3 %1 %1 0 0 O |4 %] 0 0fx4 0O O (x5 0]10 —1
%3 %1 k1 0 0 O |%4 %] 0 O x4, O O|x —1|01 O
*x x%1% 0 0 0|1 0|0 0|0 -1 0|0 0OJ00 O
%3 %1 %1 0 0 0|0 %|0 0|1 0 —1/0 0|00 O
x k1410 0 0 0[]0 %|—-1 0|0 0O O0{1 000 O
1000 O O0O|0OO|O0O —1{0 0 0|0 0|00 O
010-10 0(0O0]0 O|O O OO O|00 O
00« 0 -10(01{]0 0|0 O OO0 0|00 O
0010 0O -1/0 0{0 0|0 O OO 0|00 O
000O0O O OlOO0O|]O O|O O OO 0|00 1
000O0O O O(OO0O|]O O|O O OjO 11000
000O0O O Ol0OO0|]O O|O 1 OO0 0|00 O
000O0O O OlOO0|]O O|O O 1(0 0|00 O
000O0O O O(OO0O|]1T 0|0 O OO O|00 O
000O0O O O(OO0|]O 1|0 0O OO0 0|00 O
0001 0 0(00]0 O|O O OO O|00 O
000O0OT1T 0O(00]0 0|0 O OO 0|00 O
1000 0 0 1{0 040 0jO 0O 00 0|00 O |

Now we work with this matrix representation of ¥ (X¢). Column operations within the
s+1 blocks do not change the underlying partial flag in Fi(r; V@ V); nor do “rightward”
column operations, which take a column from one block and add it to a column from a
block to the right—these are precisely the operations coming from right-multiplication
by Py. (Sometimes we’ll call these admissible column operations.)

Recall that X(Xo) N wit is defined by imposing conditions on intersections with A.
In our chosen basis, these are equivalent to requiring that, for each 4, the northwest n x r;
submatrix of X(XJ) has rank at most r; — k;. The subgroup @ C GLs, preserving A
consists of block lower-triangular matrices, with two blocks of size n. The action of @
by left-multiplication (i.e., row operations) preserves €, NG Since the conditions defining
Q, L1 concern only the ﬁrst n rows, from now on we focus on the top n x 2n submatrix.
We will use admissible column operations and row operations from @ to reduce X(X?)
to echelon form.

Consider the n x 2n matrix representing X (Xy), divided into s + 1 blocks as before,
so the ith block is on columns r;_1 + 1 through r; (with the convention ro = 0). We take
this matrix to be generic, i.e., the * entries are filled by independent variables. In our
example, it looks like this:
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[k3 %151 0 0 0 [xgx2[ 0 0 |xg O 05 0|10 —1]
%3 k1 k1 0 0 0 |*%4 x| O 0 |x4 O * —1/01 0
* ¥1% 0 0 0|1 00 0|0 -1 0|0 0|00 O
x3 %3 %1 0 0 0|0 %[0 0|1 0 —-1/{0 0|00 O
% %16, 0 0 0]0%|-10/0 0 0|1 000 0 (22)
1000 O 0000 —-1{0 0 0|0 O|0O0 O
010-10 0000 OjO O OO O|0OO0 O
00« 0 -10/01f0 0|0 O 0|0 O|0O0 O
L0010 0 -10040 0j0 0 00 0|00 0 |

Claim 1. The submatriz formed by the first i blocks—i.e., on the first r; columns—has
rank at least n — py;. Furthermore, block i has minimal rank py;  — py:. (And block 1

has minimal rank n — ;)

Proof. Consider this n x r; matrix. By construction, each column has a “pivot” 1 or —1
in it, so there are r; such entries. Also by construction, there are exactly k; rows which
contain both a 1 and a —1. In such rows, mark the first (leftmost) of them as a pivot. So
therearer, — kil =p;+n—q, —k; =n— e pivots. Without changing the rank, we may
rearrange and scale columns so that these pivots are all 1’s and proceed NW to SE in
the first n — piz; columns. The square submatrix on these columns, and rows containing
their pivots, are upper unitriangular. The claim about the rank follows.

An analogous argument, applied to individual blocks, establishes the claim about the
rank of block i. That is, we consider the n x (r; — r;_1) matrix of block i. Each column
has a pivot 1 or —1 so that there are ; —r;_; such entries. There are precisely (k; —k}_;)
rows among the kj rows having both a 1 and a —1 in the n x r; matrix. This implies

that there are exactly (r; —r;—1) — (k.

i —kiy1) = pr_ — py such pivots. One concludes

as before. 0O

Next we use row operations, and admissible column operations, on this nx 2n matrix to
put it into echelon form, keeping track of where the free entries end up. These operations
preserve ranks of each block. So in its echelon form, this means the ¢th block has an
identity matrix of size py; | — pyg; in its northwest corner, and its free entries must fit
inside the complementary southeast corner, which has size ji; - (k] — ki_,). We will see
that, in fact, the entries labeled ¢ land in block 7 of this echelon form.

That is, the reduced matrices all belong to XZ;;“ in its usual matrix form. In our

example, X;’},l is this:
n
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10000 0[00[0 000 0/00[000]
01000 O0OOIOOI0O0O0 0|0 0000
00100 O0OOIOOI0O0O0 0|0 0|000
00010 OOOIOOI0OO0 0|0 01000
0000 %, %1 0[0 0|00 O|0O0O00O0 . (23)
0000 *; #1{0 %1 0|0 0 010 0000
0000 *; 1[0 %20 %31 0 0|0 0000
0000 #1 %1|0 #9]0 *3|0 %4 *4/1 0000
_0000*1 *10*20*30*4*40*5100_

The key point now is that the labeled free entries of (22) are exactly those which
survive in echelon form (23); the unlabeled ones are eliminated by upper-triangular row
operations, accounting for the unipotent group U.

Before reduction, the free entries of (22) occur as one of the following possible types:

| % oo £1 -0 F1
(a) |: (within a block), or | : : ;
1 1. 1
or
KRR +1 * +1
Ol EEEE
1 1 11

Case (a) corresponds to unlabeled entries. Here the free entry = is eliminated by row
operations, so such entries are absorbed into the unipotent subgroup U. Carrying out
these operations, we obtain an isomorphism

S(X0) 2 U x M

where M is the locus of matrices in X(X?) having free entries only of type (b) (the
labeled entries).

In case (b), the free entry is not eliminated by row operations, and survives in the
reduced echelon form. So there is an isomorphism M — M’ given by left-multiplication
by an element ¢ € @, where M’ is a locus of matrices in echelon form, of the type
identified above (as in (23)).

So to complete the proof of Lemma 7.2, it remains to see that M’ = Xf;;l. Since both
are affine spaces, and M’ C X;;1 by the above considerations, it suffices to compute
dim M’, that is, the number of inversions of type (b).

Claim 2. There are precisely |u| free entries of type (b).
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Indeed, the entries of type (b) are exactly the labeled entries, so the claim follows
from Lemma 7.3.

This completes the proof in type A. Before turning to other types, we observe that the
row operations used in the proof—left multiplication by elements of Q—actually come
from the subgroup GL(V) =GL(V ®0) C Q C GL(V @ V).

7.2. Type C

The isomorphisms in other (classical) types are constructed exactly as in type A.
In fact, via standard embeddings of isotropic flag varieties in the usual (type A) flag
varieties, the row operations described above for type A induce the required isomorphisms
in other types. We will spell this out in detail for type C; types D and B require only
minor adjustments.

In outline, here is how we proceed. The embedding FI¢(p; V) — Fl(p;V) also de-
termines an embedding of Schubert cells X; < X2 such that X2 = X2 N FI%(p; V)
(usually not transversally), and similarly one has Q,, < Qg with Q, = Qz N FI°(p; V).

As noted in §6, these embeddings are compatible with the direct sum map. For a
triple 7 = (k p,q) of type C, with corresponding strict partltlon A, there is an extended
triple 7 = (k D,q) of type A, with corresponding partition X. These have corresponding
vexillary (signed) permutations w and w. For v > w, we have a type C weak triple
7' = (k',p,q) and an extension to a type A weak triple 7' = (k ,D,q). We will consider
matrix representatives for $(X¢) C X(X2) inside FI¢(r;V & V) C FI(F;V @ V). The
isomorphism of the type A Schubert cells ¥(X?) = U x X -1, described above, induces
the required isomorphism (X)) = U x qu_l. As before, thig comes from row operations
coming from left multiplication by a copy of GL(V) C GL(V & V). Using an appropriate
choice of basis—adapted to the diagonal subspace A C V @ V, as before—this copy of
GL(V) lies inside the subgroup preserving the bilinear form {(, ) on V@ V.

Now let us spell out the details. Given a type C triple T = (k,p, q), the corresponding
strict partition has A\, = p; + ¢; — 1, with the other parts filled in minimally so that
A1 > oo+ > A, Similarly, given 7/ = (k’,p,q), we have pp, = p; + q; — 1. We set
r; = p; + ¢; — 1. The target of the direct sum map is FI°(r;V @ V) = G/P,, where

G = Spy, and P, is the block-upper-triangular matrix preserving a standard isotropic

flag.
Asin type A, we start by choosing an appropriate basis. Write e, . . . ,e1,e1,. .., e, for
the standard basis of V, as in our conventions for type C, so Fy, is the span of e, ..., eg,.

The standard 2n x 2n matrix representatives for X2 are given by the B*t-orbit of the
permutation matrix for the signed permutation v (extended to a permutation in Ss;,).
Such representatives have 1’s in positions (v(j),J) (for j € {m,...,1,1,...,n}, and in
positions (4,5) such that v(j) > i and v=1(i) > j, the entries are either free (written x)
or constrained by the isotropic condition (written o). Elsewhere there are 0’s. See, e.g.,
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[9, §6] for this way of parametrizing Schubert cells (but note the conventions there are
different from ours).
These matrix representatives naturally embed X° C FI®(p; V) C Fl(p;V), where

" n+1—p; forl1 <i<s;
pi =

’ n—1+pasy1—; for s+1<4<2s.

These numbers are the dimensions of F, and E[J;. The labeling of * and e entries is done
just as in type A.

For our running example, take n = 5, and let 7 = (k,p,q) = (12, 31, 32), so
w=21345. With v =13542, we find k' = (23), so

' =(k',p,q) = (23, 31, 32)

and p = (6,5,2). The isotropic flag E3 C E; C V extends to F3 C Fy = Ef C Ef C V,
and p = (3557). Matrix representatives are

%9 %1 k1 |@ e3 ey e4|1 0 0
%9 %1 1|0 o3 |e; 0,/0 10
* %1 %11 010 0,/000
%9 @1 @10 @3 | [0 01
Yo _ * %1 x/0 1|0 0{00O0
Y ke k%10 001 0]000
1 00,0 0|0 0j]00O
0 = (0 0]0 1|000
0100 0|0 0000
0010 0|0 0000

(The conditions imposed by intersecting with €, namely (1) dim(£3N F3) > 1 and (2)
dim(E; NFy) > 2, say that (1) the northwest 7 x 3 submatrix has rank at most 3—1 = 2,
and (2) the northwest 6 x 5 submatrix has rank at most 5 — 2 = 3. Again, we will not
need this in the proof, except to note these conditions are preserved.)

~/

Given 7' = (k’,p,q), the extension 7' = (k ,p,q) is defined by

" n—14g; for1 <i<s;
G =
’ n+1—qosp1—; fors+1<i<2s;
and

~, K. forl1 <i<sg;

k. =

1 .

Past1—i + Qast1—i + koo —2 fors+1<i<2s.
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The numbers Z;; are computed using (E, N Fq)J- = EIJ; + F qJ- for isotropic spaces £, and
F,. So if dim(E, N F,) = k, then dim(E,- + F;-) = 2n — k; together with the formulas
for dim(E;-) and dim(F;"), this implies dim(Ey N F5) = p+q+k —2.

When ps; = ¢gs; = 1, the formulas produce (Eg+1,ﬁg+1,@g+1) = (E;,ﬁs,@g) and we
usually omit this repetition. The partition [ is the one associated to the (type A) triple
~/

In our running example, 7/ = (23, 31, 32), and ¥ = (2346, 3557, 7643), so
n=(6,6,4,3,2,2).

There is some flexibility in the placement of e entries—that is, in deciding which
entries are dependent on the others. We will exchange e; in position (a,bd) with *; in
position (a’,b") whenever i < j, v(b) = a’, and v(b') = a.

e x1 x1|0 e3 /e, 041100
e 1 o0 o3 |0, 0,010
* %1 %11 010 0,/000
%9 %1 %10 o3 ,| e e |00 1
o * %1 x1/0 110 0{00O0
v %9 %1 %1/0 0,1 0[000O0
1 00,0 0|0 0(000
0 = «x/0 0|0 1|]000O0
0100 0|0 0(000
L0 0O 10 0|0 0(0O0 O]

Lemma 7.4. There are |u| labeled free entires.

Proof. The proof is similar to type A. In fact, Lemma 7.3 shows there are || labeled
entries * and e. The isotropic conditions account for the e’s: listing ks columns in any
order compatible with the labels (so columns with %; come first, then x5, etc.), there are
k — 1 entries e in the kth column. For 1 < i < s, then, there are

> G-k-0= Y m
k=ki_1+1 k=k;_1+1

free entries *;. Summing over i proves the lemma. 0O

Using the basis (ex,0), ..., (€,,0),(0,exz),...,(0,e,) for V@V, matrix representatives
for X(X2) Cc FI°(r;V @ V) C FI(r;V @ V) are given by a 4n x 4n matrix, similar to
type A. In our example, this is
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(Lines are added as visual aids, to distinguish both the blocks corresponding to the
partial flag variety FI(7;V @ V) as before, as well as the axes of symmetry arising from
the isotropic conditions.)

Next, we change basis to work with one which is both adapted to A C V&V, and with
respect to which the bilinear form ( , )) has antidiagonal Gram matrix. A convenient
choice is

1 1
§(eﬁ, —er), ..., 5(6"’ —en), (eém,en)y ..., (en,e,). (24)

(Here we require char(K) # 2.) In this basis, the top half of the matrix for ¥(X?) has a
similar form to the one described above in type A. In our example, it is

exx 0 0O O|lee 0|0| 0|0 ee—-1 0 0 100
exe 0 0 Ojlee O0|0||0]|0 e¢/0 —1 0 010
*x+% 0 0 010 0|0JO0O|0O 00[O0O O —-1000
*xx+% 0 0 0|/0e 0|0||0O|-1eef 0O O O 001
*x% 0 0 0|01 O|-1)f0|0 00O[O O O 00O
*x+% 0 0 0|00 O0|0|—-21/0 10/0 O O 00O
1000 O 0O|0OO0O—-1/0( 0|0 O00/]O O O0OO0OO0O
0xx—-10 000 O[O O]0O0 010 O O0O0OO0O
0100 -1 000 0O O]0O0O00]O0 O O0OO0O
10010 0O —-100 O[O0} O|0O O0/O O O 0O0O]
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The bottom half of such a matrix has many more nonzero entries than the one we used
in type A, but only the top half will be relevant.
The key features of this basis are:

o The diagonal subspace A is spanned by the last 2n vectors of the basis, so conditions
on dim(G,, NA) are equivalent to rank conditions on the first 2n rows of the matrix
representatives.

o The first 2n vectors span a subspace A* C V@&V which is also isotropic with respect
to {(, ), so a copy of GLa, C Sps, acts by (arbitrary) row operations on the first
2n rows (combined with compensating simultaneous row operations on the last 2n

rows).

In our example, the conditions imposed by intersecting with Q[wgl] say that the northwest
10 x 6 submatrix has rank at most 6 — 1 = 5, and the northwest 10 x 9 submatrix has
rank at most 9 —2 =17.

With this in mind, together with the observation made after the conclusion of the
type A argument, we may preform the same row operations as in type A, and end with
matrix representatives lying in 3(X? _,). But since each row operation preserves ((, )),

the result in fact lies in the subset £(X?° ;) C X(X?_,). In our running example, these
I

[e]
w;l
are matrices of the following form:

[100000/000|0[[0j[000|00000O0T
010000[00O0f0fj0O|0OOO0OO0OO0OOO
001000[00O0f0fj0O|0OOO0OO0OOOO
000100{00000|0OOO0O0OO0O00O00O
0000 = ={100(0j0j000000000O0
0000 = =«{010[0j0j0O00O0OO0O0OO0OO
0000 *=%|00 *[1{|/0J000/0O0O00O0O0
0000 * %00 %[{0||ej2100/000000
0000 % %00 e0]||le|]0 e eI 00000
1000000 e|0fje|0ee01000O0,

To complete the proof of Lemma 7.2 in type C, we observe that a counting argument
analogous to the one used in type A shows that all such matrices appear. In addition to
the free entries * of type (a) and (b), which appear in configurations exactly as in type
A, the e entries appear in two types:

...._1 ....:l:l...:':l
(@) |: (within a block), or | : ;

or
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|0 o
1 -1 -1 1

Just as in type A, row operations eliminating type (a) (and (a’)) entries are absorbed
into the unipotent group U. Claim 2 shows that there are || entries of types (b) and
(b’), combined, and that these are precisely the labeled entries. Then Lemma 7.4 shows
that there are |u| (free) entries of type (b), as required.

7.8. Type D

Only a few changes are required to modify the type C argument into one which
works for type D. Given a type D triple 7 = (k,p,q), the corresponding partition has
Ak, = pi + @i, and similarly, 7 = (k’,p,q) has partition with s, = p; +¢;. The extension

~/

of "is ¥ = (k ,p,q), with

=~ n—pi for 1 <i<s;
pi=
' n+posi1—; for s+ 1 <4< 2s;
~ n+q; for 1 <i<s;
q- =
' N —q2s4+1—i for s+ 1 <1i < 2s;
and
T/ ki for 1 <i <s;
k, =
¢ .
P2s41—i + Qasp1—i + Kooy for s+ 1<i < 2s.

The reasons for these numbers are the same as in type C. In the case p; = ¢s = 0, the
formulas produce (E;+1,ﬁs+1, Gs+1) = (Eg,ﬁs, gs) and as in type C, we usually omit this
repetition.

The matrix manipulations are essentially the same as in type C. We briefly illustrate
with an example, for n = 5. Take 7 = (12, 20, 21), so w = 21345 and A = (4,1).
With v = 13542, we find ky(q1,p1) = 2 and ky(q2,p2) = 3. So we get a weak triple
7' = (k,p,q) = (23, 20, 21), with u = (5,4,1,0). Then 7 = (2346, 3557, 7643),
with i = (6,6,4,3,2,2)).
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In matrices,
(% % o|o o|® |1 0 0]
*xooleooee(010
* % x(1 0|0 0|0 00
eeoo()ejeel001
Yo * % %0 0{10{000
v * % %[0 10 0|0 0 0
100(00/00|00O0
0= x%{00/01|00O0
010/00(00{00O0
L0 0 1[0 0/0 0|0 0 O ]

Under the direct sum embedding, after re-arranging the e entries and changing to the
basis (24), the top half of the matrix representing ¥(XJ) is

exe 0 0O O|lee 0|0Y||0|0 ee/—1 0 0 100
eoee 0 O O|lee 0|0} 0|0 e/0 —1 0 010
*%x%x 0 0 020 0]0|O0O]0 00]0 O —-1000
exx 0 0 0|0e 0|0||0O|-1eef0 O 0 001
*%x*%x 0 0 000 O]O0|—-1{0 10/0 O 0 00O
*%x%x 0 0 001 O|—-1)0|0 00j]0 O O 00O
1000 O 0|00—-1{0Y|JO0O]J0O0 O0OO0jJ]O O O O0O00O
0O«x«—-10 0|00 O|0O}OJO 020 O O O0OO0CO
010 0 -1 0|00 O|O}OJO OO0 O OOOCO
10010 0 -1100 0|0} 0|0 00[0 O O O0O0O]

After performing row operations, the reduced form is

0000000007
000/000000
000/000000O
000/000000O
000/000000
000/000000
000/000000
100000000
Oeef100000
©0ee010000]|

[100000[000
010000000
001000000
000100000
0000=x*=%100
0000=x*=x«010
0000 %[00 *
0000*«=%00 e
0000 =x«e00e
|10000ee00e

e O OO O O o o

O O O =R OO0 O O O O

The proof of the type D version of Lemma 7.2 again follows from the analogous
counting argument.
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7.4. Type B

Here there is nothing new, apart from the formulas for the extended triple. Given
triples 7 = (k,p,q) and 7" = (k’,p,q) (of type B, which is the same as C), we extend 7’
by

_ n+1—p; for1 <i<s;

pi= N+ past1—; for s +1 <i < 2s;
N n—+q for 1 <i<s;
= ntl—gosp1—i fors+1<i<2s
and
" for 1 <14 <'s;

k=
' Past1—i + Qast1—i +kho 1, —1 fors+1<i<2s.

Remark 7.5. In [30], Woo and Yong introduce the notion of “pattern interval embedding”
as a tool for comparing singularities of Schubert varieties lying in different flag varieties.
The underlying geometry of their method uses isomorphisms between Richardson vari-
eties. By contrast, even in the case where £(v) = |u/, the isomorphism of our Theorem 7.1

does not extend to one between Richardson varieties Q,, N X, and Qw;1 N Xw‘:l. In

1

fact, there are many examples where the Bruhat intervals [w, v] and [w} ", w, '] are not

equinumerous.
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