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A B S T R A C T   

We present a generic model framework for coupled heat and water transfer (CHWT) in deformable (non-rigid) 
soils with spatial variations of soil properties. The model backbone is a mixed finite element method (FEM), 
which solves the Philip and de Vries (1957) CHWT model and achieves conservation of mass and energy on both 
local and global scales. Spatial variations occur in soil hydraulic and thermal properties due to transient water 
content and temperature distributions. Based on the mixed FEM scheme, a gradient measure and a clustering 
model (“k-means”) are proposed to trace the regions with large spatial variations of soil properties, and an 
adaptive mesh refinement technique is developed to improve the spatial resolution and simulation accuracy. 
Deformation perturbates local soil topography and alters transient soil water and temperature regimes in the 
deformed regions. A quasi-static deformation model is presented, and the deformation effects are incorporated 
into the mixed FEM scheme. When external load exists, soil deformation is simulated with an updated Lagrangian 
formulation, and the local water content and temperature variations due to soil volume changes are also updated 
in the CHWT model. Numerical examples, including thermally induced soil water transfer and water infiltration, 
illustrate the model ability to provide plausible CHWT results, especially the refined solutions near the wetting 
fronts and the water content and temperature distributions when the soil is deformable. In conclusion, the 
proposed model framework provides an effective pipeline to incorporate and process the spatial variations of soil 
properties and soil deformation in CHWT simulations.   

1. Introduction 

In coupled heat and water transfer (CHWT) simulations, despite the 
combination of multiple physical processes and nonlinearity, spatial 
variations of soil properties become a challenge in numerical modeling 
(Rienzner and Gandolfi, 2014; Shangguan et al., 2014). Following the 
development of large-scale geospatial models, an increasing amount of 
effort is invested to address physical processes in porous media with 
spatial heterogeneities (Hou and Wu, 1997; Hou et al., 1999). 

Spatial variations of soil properties include two components. (a) Soil 

heterogeneity is due to the non-uniformity of soil texture and structure, 
such as saturated hydraulic conductivity, which is usually expressed 
using random field methods, such as Karhunen–Loeve expansion (Li 
et al., 2019; Phoon et al., 2002; Phoon et al., 2005) and Markov chain 
Monte Carlo (MCMC, Winkler, 2003). (b) Transient variation of soil 
properties is caused by instantaneous fluctuations in soil water content 
or temperature values, which occurs in actual (unsaturated) hydraulic 
conductivity or apparent thermal properties even if the soil texture and 
structure are uniform (Lu et al., 2014; Xie et al., 2018). Although 
existing studies focus on soil heterogeneity (He and Ren, 2005; He and 
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Ren, 2009; Li et al., 2016; Luo et al., 2022), the magnitude of transient 
variations can be much larger. For example, spatial variations of satu
rated hydraulic conductivity may have an order of 104-105 (He and Ren, 
2006), while transient variations of unsaturated hydraulic conductivity 
can have a magnitude > 1010, due to the nonlinear relations between 
soil water content and hydraulic conductivity [see the exponential K(h,

T) function in Table 1]. Moreover, locations with large transient varia
tions of soil properties may change during soil heat and water redistri
bution. Thus, transient variation of soil properties becomes a temporal- 
spatial factor in vadose zone soil models that should be emphasized 
under diurnal and seasonal weather conditions. In contrast, heteroge
neity is mainly considered in saturated zones or in reservoir models, 
where all pores are filled by water or petroleum. Nonlinearities of hy
draulic conductivity in reservoir models are mainly expressed via the 
mobility of water or petroleum, as well as the oil-cut or water-cut in 
liquid fluxes (Efendiev and Hou, 2009), which has a narrow fluctuation 
range compared to the nonlinearities in vadose zone soils. 

Spatial variations of soil properties are related to soil deformation. 
When a uniform soil is deformed, soil structure, porosity and bulk 
density near the deformed regions are changed, leading to heterogene
ities in soil hydraulic and thermal properties. Moreover, local volu
metric water content is changed due to soil compaction or expansion, 
which leads to transient variations in soil hydraulic properties. Such 
transient variations can be mitigated under soil water and heat re
distributions between the deformed region and its neighboring area, 
while the deformation induced heterogeneity will persist. The effects of 
deformation induced heterogeneity on soil properties can be repre
sented by systematic constitutive relations. However, most of the 
existing studies report experimental and empirical results. For example, 
McCullough et al. (2001) performed a field study of hydraulic conduc
tivity under a range of soil bulk density. Tian et al. (2021) proposed 
empirical equations of soil water characteristic curves with changing 
soil bulk density. Zhang et al. (2023) reported the use of thermo-time 
domain reflectometry in measuring soil hydraulic and thermal proper
ties during soil shrinking and swelling. 

Adaptively incorporating both soil heterogeneity and transient var
iations of soil properties into CHWT models, and providing high reso
lution simulations are not fully studied yet. Existing numerical methods 
mainly address soil heterogeneity, such as the homogenization theory or 
multiscale models (He and Ren, 2005; He and Ren, 2009; Li et al., 2016; 
Luo et al., 2022). Furthermore, implementing soil deformation with 
CHWT remains a challenge in soil physics and vadose zone hydrology 
(Tian et al., 2019), where quantifying spatial variations of soil properties 
is the prerequisite. Including spatial variations of soil properties and soil 
deformation requires sophisticated designs for the numerical solvers and 
the overall model architecture, which are not fully supported by existing 
2D soil and crop simulators, such as HYDRUS or 2DSOIL (Simunek et al., 
2016; Timlin et al., 1996). 

Thus, the objective of this study is to develop a numerical model 
framework that can incorporate spatial variations of soil properties 
and soil deformation into CHWT models and demonstrate the 
model performance with numerical and application examples. The 
starting point is a baseline numerical solver for CHWT, which performs 
computation in irregular and moving mesh grids, and conserves mass 
and energy at both local and global scales. Mixed finite element methods 
(mixed FEM) satisfy the two requirements and have been applied to soil 
water transfer (Chounet et al., 1998; Putti and Sartoretto, 2009). How
ever, implementation of mixed FEM in CHWT problems has not been 
fully studied in soil physics. 

Therefore, the main objective is divided into three steps. (Step A) 
Formulate mixed FEM as the baseline numerical solver for CHWT in 
Section 2. (Step B) Design a mesh refinement technique to trace the 
spatial variations of soil properties and improve the accuracy and res
olution of CHWT simulations in Section 3. (Step C) Incorporate soil 
deformation in the CHWT model via a soil mechanics module and a 

mesh deformation technique in Section 4. Step (A) establishes the 
foundation, and the objective of this study is fulfilled in Steps (B) and (C) 
based on Step (A). Soil deformation in Step (C) also depends on the mesh 
refinement technique in Step (B), for deformation can induce soil 
property changes. 

Illustrative examples are provided along with the model develop
ment. Sections 2-4 presents three relatively independent examples, and 
each example is designed to emphasize the accomplishment of that 
section. When the model development is complete, an application 
example is provided in Section 5. All the examples presented are typical 
vadose zone problems or abstracted from real world applications to 
ensure their representativeness, but the proposed model framework is 
not limited to specific problems or applications. A computer imple
mentation is developed using the MATLAB programming language 
(Mathworks, MA). Detailed numerical techniques and model validations 
against benchmark simulations and experiments are provided in the 
supplementary material. Because theories and constitutive relations for 
soil hydraulic and thermal properties under elastic–plastic deformation 
have not been fully established, assumptions are made and clarified as 
the model is presented. However, newly discovered constitutive re
lations can be easily embedded as add-on functions without substantial 
changes of the model architecture. 

2. The mixed finite element scheme for coupled heat and water 
transfer (Step A) 

Despite the mathematical theory of mixed FEM (Brezzi, 1974), the 
mixed FEM numerical scheme for CHWT has not been formulated. In this 
section, we establish the mixed FEM scheme as the baseline model. 
Different from existing methods (Chounet et al., 1999), liquid water, 
vapor, conductive heat fluxes, and soil water content and temperature, 
are discretized and solved from a single system of equations. Therefore, 
soil heat transfer and soil water transfer are “fully coupled”. 

2.1. Coupled heat and water transfer and the mixed finite element scheme 

Philip and de Vries (1957) model is a widely used formulation in 
CHWT problems (Sophocleous, 1979; Milly, 1982; Nassar and Horton, 
1989; Nassar and Horton, 1997). The governing equations are given in 
Eq. (1), from which the soil water potential (h, cm) and soil temperature 
(T, K) are solved as functions of time (t, s) and space [(x, y), cm ]. Local 
thermal and water potential equilibrium at the liquid water-vapor 
interface is assumed (Vanderborght et al., 2017). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ql + K(h, T)∇h + DTl(h, T)∇T = −K(h, T)ŷ (1a)

qv + Dmv(h, T)∇h + DTv(h, T)∇T = 0 (1b)

qh + λ(h, T)∇T = 0 (1c)

−∇⋅ql − ∇⋅qv = Cθθ(h, T)∂th + CθT (h, T)∂tT (1d)

−∇⋅qh − clρl(T − T0)∇⋅ql

−[L0 + cv(T − T0) ]ρl∇⋅qv
= CTθ(h, T)∂th + CTT (h, T)∂tT (1e)

Eq. (1a) is a generalized Darcy-Buckingham Law, where ql
(
cm s−1)

is the 
liquid water flux density, K(h, T)

(
cm s−1)

is the soil hydraulic conduc
tivity, DTl

(
cm2 s−1 K−1)

is the liquid water diffusion coefficient under 

temperature gradients, ∇ =
[
∂x, ∂y

]T is the differential operator. 
−K(h, T)ŷ represents the gravitational liquid water flux. Hereafter, if a 
2D soil spatial domain is in a vertical plane, the y-axis represents the 
vertical coordinate and ŷ is the unit vertical vector. If a 2D soil spatial 
domain is in a horizontal plane, the gravity term “ −K(h, T)ŷ” is ignored 
and both x-axis and y-axis are perpendicular to the local gravity. Eq. (1b) 
is analogous to Fick’s Law, where qv

(
cm s−1)

is the vapor flux density, 
and Dmv(h, T)

(
cm s−1)

and DTv(h, T)(cm2 s−1 K−1) are coefficients of 
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vapor flux under water potential and temperature gradients. A vapor 
diffusion enhancement included in DTv(h, T) quantifies the vapor 
transfer assisted by liquid water islands within the soil profile (Cass 
et al., 1984). Eq. (1c) represents Fourier’s Law, where qh(W cm−2) is the 
conductive heat flux density and λ

(
W cm−1 K−1)

is the soil thermal 
conductivity. 

Eqs. (1d) and (1e) present the conservation of mass and energy in the 
soil profile, where Cθθ(cm−1), CθT(K−1), CTθ

(
J cm−3 cm−1)

and 
CTT

(
J cm−3 K−1)

are the capacity coefficients for h and T, changing with 
respect to soil water content (θ, cm3 cm−3) and soil temperature (see the 
supplement material). ∂t is the partial differentiation with respect to 
time t(s). cl ≈ 4.187J g−1 K−1 is the specific heat of liquid water. cv ≈

1.864
(
J g−1K−1)

is the specific heat of water vapor. L0 ≈

2453
(
J g−1 at 20◦ C

)
is the heat of vaporization of water at a reference 

temperature T0 (in this study, T0 = 20◦ C). ρl ≈ 1.0g cm−3 is the density 
of liquid water. Solutions of Eq. (1) can be presented based on either soil 
water potential or soil water content converted using a soil water 
characteristic curve. A detailed derivation of Eq. (1) is given in the 
supplementary material, which is a summary of Nassar and Horton 
(1997), Heitman et al. (2008), Wang et al. (2017) and Wang et al. 
(2022). 

The CHWT model is a mixed formulation, where Eqs.1a-c are vector 
equations representing fluxes and Eqs. (1d and 1e) are scalar equations 
representing the conservation laws (Boffi et al., 2013). To obtain the 

mixed FEM scheme, let Ω be a given soil profile and let H(div, Ω) =
{

ϕ ∈

H(Ω) :
∫

Ωϕ2ds < ∞,
∫

Ω(∇⋅ϕ)
2ds < ∞

}
be the Hilbert space on Ω, where 

the vector (flux) functions ϕ and their divergence ∇⋅ϕ are square- 
integrable. Then, the trial spaces for the vector equations and scalar 
equations are V = {ϕ ∈ H(div, Ω) : n̂⋅ϕ = g on ∂Ω } and W = L

2
(Ω) =

{
ψ :

∫

Ωψ2ds < ∞
}
, respectively, where g is the flux boundary condi

tions, n̂ is the outer normal vector of ∂Ω, and L 2
(Ω) is the space of 

(scalar) Lebesgue square-integrable functions. Let V0 = {v ∈ H(div, Ω) :

v⋅n̂ = 0 on ∂Ω } be the test space for the vector equations. Then, the 
CHWT problem in Eq. (1) can be transformed into a saddle-point 
problem, where the goal is to find (ql, qv, qh, h, T) ∈ V3⨂W2 satisfying 
Eq. (2).  

V3⨂W2 is a 5D trial functional space for the mixed FEM scheme 
proposed in this study, and 〈⋅, ⋅〉 represents the inner product for vectors, 
〈a,b〉 =

∫

Ω
(
aTb

)
ds, or scalars, 〈a,b〉 =

∫

Ω(ab)ds. 
For numerical implementation, the soil profile Ω can be discretized 

into a triangular mesh grid. In the mesh grid, three sets (E, N, S) 
represent the edges, nodes, and surfaces (the element in traditional 
FEM), and the total numbers of edges, nodes and surfaces are nE, nN, and 
nS. Given the triangular grid, the trial and test spaces should be 
restricted to certain types of functions to ensure the solvability of the 
saddle-point problem in Eq. (2) and the well-posedness of the numerical 
system. A commonly used basis function for V is the zero order Raviart- 

Thomas (RT0) function on each edge, and the basis function for W is the 
piecewise constant function on each surface. 

A graphical definition of the RT0 function and the piecewise constant 
basis function in a triangular grid is given in Fig. 1. In Fig. 1a, the RT0 
basis function for edge e0 ∈ E is shown as follows. 

ϕe0(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

[ x − x1 y − y1 ]
T /

2As1 (x, y) ∈ s1

[ x2 − x y2 − y ]
T /

2As2 (x, y) ∈ s2

0 otherwise

, ϕe0 ∈ V (3) 

As1 and As2 are the areas of surfaces s1 and s2. At the middle point of 
e0 (dark blue ✦), ϕe0( x→)⋅n̂e0le0 = 1, where n̂e0 is the normal vectors of e0 

Fig. 1. Basis functions in the mixed FEM scheme. (a) shows a zero order 
Raviart–Thomas (RT0) function ϕ ∈ V representing a “unit flux density” on the 
normal direction of edge e0 ∈ E, from surface s1 ∈ S to surface s2 ∈ S. x→ is the 
middle point of e0. (b) shows a piecewise constant basis function ψ ∈ W rep
resenting the scalar quantities, such as soil water potential, soil water content or 
soil temperature, within each surface. The example piecewise constant basis 
function in (b) takes value ψ = 1 on the solid element s0 ∈ S, while ψ =

0 otherwise. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ql, ϕ〉 − 〈∇⋅ϕ, K(h, T)h〉 − 〈∇⋅ϕ, DTl(h, T)T〉 = −〈K(h, T)ŷ, ϕ〉, ∀ϕ ∈ V0

〈qv, ϕ〉 − 〈∇⋅ϕ, Dmv(h, T)h〉 − 〈∇⋅ϕ, DTv(h, T)T〉 = 0, ∀ϕ ∈ V0

〈qh, ϕ〉 − 〈∇⋅ϕ, λ(h, T)T〉 = 0, ∀ϕ ∈ V0

−〈∇⋅ql, ψ〉 − 〈∇⋅qv, ψ〉 =
〈
Cθθ(h, T)∂th, ψ

〉
+ 〈CθT (h, T)∂tT, ψ〉, ∀ψ ∈ W

−〈∇⋅qh, ψ〉 − 〈clρl(T − T0)∇⋅ql, ψ〉

−〈[L0 + cv(T − T0) ]ρl∇⋅qv, ψ〉
=

〈
CTθ(h, T)∂th, ψ

〉
+

〈
CTT (h, T)∂tT, ψ

〉
, ∀ψ ∈ W

(2)   
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and le0 is the length e0. However, the vector field of ϕe0 is parallel to all 
other edges ek, ∀k = 1,2,3,4. Thus, ϕe0 represents a “unit flux density” 
across edge e0. For the liquid water flux, vapor flux and conductive heat 
flux in Eq. (1), their components on edge e0 can be expressed by ϕe0 with 
some coefficients. Extending the definition of the RT0 basis function to 
all the edges, liquid water flux, vapor flux and conductive heat flux on 
the entire soil profile can be expressed in Eq. (4), where q̂t

l,e, q̂
t
v,e, and q̂t

h,e 

are the liquid water, vapor and conductive heat flux values on edge e at 
time t. 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ql(x, y, t) =
∑

e∈E
q̂t

l,eϕe(x, y)

qv(x, y, t) =
∑

e∈E
q̂t

v,eϕe(x, y)

qh(x, y, t) =
∑

e∈E
q̂t

h,eϕe(x, y)

, ϕe ∈ V (4) 

Similarly, in Fig. 1b, the piecewise constant function for surface s0 ∈

S has the scalar form in Eq. (5). Each basis function ψ s ∈ W achieves the 
value “1″ only on one surface of the triangular grid. 

ψs0(x, y) =

{
1 (x, y) ∈ s0
0 otherwise , ψs0 ∈ W (5) 

Extending the definition of the piecewise constant basis functions to 
all the surfaces, the FEM expansions of soil water potential and soil 

temperature can be given in Eq. (6), where ĥ
t
s and T̂

t
s are the soil water 

potential and temperature values of surface s at time t. 
⎧
⎪⎨

⎪⎩

h(x, y, t) =
∑

s∈S
ĥ

t
sψs(x, y)

T(x, y, t) =
∑

s∈S
T̂

t
sψs(x, y)

, ψs ∈ W (6) 

Insert Eqs. (4) and (6) into the saddle-point problem in Eq. (2), the 
spatial discretization of the CHWT model is obtained. Temporal differ
entiation can be approximated using the implicit Euler scheme, and local 
linearization for each time step can be performed using Picard iteration 
(see the supplementary material). Then, the fully discretized CHWT 
model is presented in Eq. (7). For conciseness, the summation conven
tion on subscripts e ∈ E and s ∈ S is assumed, and independent variables 
for the coefficient functions, such as K, DTl, etc., are omitted.   

In Eq. (7), the superscript t indicates the current time step, and t +1 
indicates the next time step. Δt is the time step. On the left-hand side of 
the last equation, the differences between the current temperature and 
the reference temperature (T − T0) should be evaluated using the tem
perature values in the up-stream directions to satisfy the “upwind 
scheme”. Because the up-stream directions of liquid water flux ql and 
vapor flux qv may not be the same, the two (T − T0) terms may take 

different values. 
In principle, the inner products in Eq. (7) correspond to integrations 

over the entire soil profile Ω, i.e., 〈ϕe, ϕe′〉 =
∫

ΩϕT
e ϕe′ds, 〈∇⋅ϕe′, ψ s〉 =

∫

Ω(∇⋅ϕe′)ψ sds, 〈ψ s, ψs′〉 =
∫

Ωψ sψ s′ds, and 〈ŷ, ϕe′〉 =
∫

Ω ŷTϕe′ds. However, 
using the basis functions in Eqs. (3) and (5), those integrands achieve 
non-zero values only on one or two surfaces, and hence the integrals can 
be computed as polynomials of the vertex coordinates of those surfaces. 
Moreover, the fully discretized CHWT model in Eq. (7) is a linear system 
with a sparse coefficient matrix. Therefore, solving Eq. (7) is not 

computationally expensive. After solving the unknowns 
(

q̂t+1
l,e , q̂t+1

v,e ,

q̂t+1
h,e , ĥ

t+1
s , T̂

t+1
s

)
from Eq. (7), the mixed FEM scheme for the increment 

of the current time step, from t to t + Δt, is complete. 

2.2. Illustrative example 

A thermally induced water redistribution is presented to demon
strate the workability of the mixed FEM scheme. “Thermally induced” 
means the soil temperature gradient serves as the driving force for vapor 
transfer. The combination of liquid water evaporation, vapor transfer 
and vapor condensation in the soil sample becomes a path for soil water 
redistribution. Thus, the coupling of heat transfer and water transfer is 
emphasized in both physical and numerical perspective. 

For the numerical settings, consider a horizontally placed 2D rect
angular soil sample, which is 30 cm in width (x-axis) and 60 cm in length 
(y-axis). Hereafter, the directions of x-axis and y-axis are denoted in the 
associated figures. The soil physical properties are listed in Table 1. 
Values of the soil physical properties were supported by experiments, 
and soil heat and water transfer with those values were validated with 
both experimental and numerical studies (see the supplementary ma
terial for validation examples, also see Heitman et al., 2007; Heitman 
et al., 2008; Wang et al., 2017; Wang et al., 2022). 

Suppose the soil sample has a uniform initial water content θini =

0.15 cm3 cm−3 and temperature Tini = 25.0◦ C. No heat flux occurs on the 
two boundaries along the long side of the soil sample (x = 0, x = 30). At 
one boundary along the short side of the soil sample (y = 0), the 
boundary temperature linearly decreases from 25◦ C to 10◦ C, Ty=0 =

25 −0.5x. On the opposite side (y = 60), the boundary temperature 
linearly decreases from 40◦ C to 25◦ C, Ty=60 = 40 −0.5x. All the 

boundaries are impermeable to liquid water and vapor fluxes. The 
simulation is performed until the steady state is reached, and the final 
soil temperature and water content regimes, as well as the heat and 
water fluxes are presented in Fig. 2. 

The spatial distributions of soil water content and soil temperature 
are presented in Fig. 2a and b. Low temperature regions tend to have 
high water contents. That is because liquid water in soil vaporizes near 
high temperature regions, transports to low temperature regions 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ϕe, ϕe′〉q̂t+1
l,e − K〈∇⋅ϕe′, ψs〉ĥ

t+1
s − DTl〈∇⋅ϕe′, ψs〉T̂

t+1
s = −K〈ŷ, ϕe′〉, ∀ϕe′ ∈ V0

〈ϕe, ϕe′〉q̂t+1
v,e − Dmv〈∇⋅ϕe′, ψs〉ĥ

t+1
s − DTv〈∇⋅ϕe′, ψs〉T̂

t+1
s = 0, ∀ϕe′ ∈ V0

〈ϕe, ϕe′〉q̂t+1
h,e − λ〈∇⋅ϕe′, ψs〉T̂

t+1
s = 0, ∀ϕe′ ∈ V0

〈∇⋅ϕe, ψs′〉Δtq̂t+1
l,e + 〈∇⋅ϕe, ψs′〉Δtq̂t+1

v,e

+Cθθ ĥ
t+1
s 〈ψs, ψs′〉 + CθT T̂

t+1
s 〈ψs, ψs′〉

=
Cθθ ĥ

t
s〈ψs, ψs′〉

+CθT T̂
t
s〈ψs, ψs′〉

, ∀ψs′ ∈ W

clρl(T − T0)〈∇⋅ϕe, ψs′〉Δtq̂t+1
l,e + [L0 + cv(T − T0) ]ρl〈∇⋅ϕe, ψs′〉Δtq̂t+1

v,e

+〈∇⋅ϕe, ψs′〉Δtq̂t+1
h,e + CTθ ĥ

t+1
s 〈ψs, ψs′〉 + CTT T̂

t+1
s 〈ψs, ψs′〉

=
CTθ ĥ

t
s〈ψs, ψs′〉

+CTT T̂
t
s〈ψs, ψs′〉

, ∀ψs′ ∈ W

(7)   
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following the temperature gradient and condenses. Hence, “thermally 
induced soil water transfer” is demonstrated. Using the mixed FEM 
scheme, the water content and temperature are computed on each sur
face, rather than for each node or edge. Therefore, the soil temperature 
values near the boundaries may not exactly match the temperature 
given at the boundaries. For example, the minimum and the maximum 
temperature values in the soil sample are 12.3◦C and 37.8◦C, while the 

pre-specified minimum and the maximum boundary temperature values 
are 10.0◦C and 40.0◦C (at two corners of the computing domain). 

Liquid water flux, vapor flux and conductive heat flux are presented 
in Fig. 2c-e, and the flux density values range 0-9.16 × 10−7 cm s−1, 
0-9.35 × 10−7 cm s−1, and 0-0.25 W cm−2, respectively. The flux di
rections and flux density values are plotted as vectors across each inte
rior edge. Two regions with relatively large liquid water fluxes exist in 
Fig. 2c. The first region is near the low temperature corner with high soil 
water content (x = 30, y = 0). The second region forms an arc from (x =

0, y = 40) to (x = 30, y = 60), where the water potential gradient is 
relatively large, but the soil water content, hence the hydraulic con
ductivity, is relatively low. In Fig. 2d, the vapor flux magnitude near the 
high temperature corner (x = 0, y = 60) achieves the smallest value due 
to the lack of soil water, despite the large soil temperature gradients in 
that region. For the conductive heat flux in Fig. 2e, the maximum flux 
magnitudes are achieved near the two corners with the maximum and 
minimum temperature values (x = 0, y = 60) and (x = 30, y = 0), and 
hence, the conductive heat flux magnitude is roughly proportional to the 
soil temperature gradients. 

This example illustrates the ability of using mixed FEM scheme to 
solve soil CHWT problems. Comparisons of the mixed FEM scheme on 
some (simpler) benchmark numerical or experimental studies can be 
found in the supplementary material. 

2.3. Additional remarks for the mixed finite element scheme 

In the mixed FEM scheme, flux values are computed on each edge, 
while soil water potential, water content and temperature are computed 
on each surface. Thus, the conservation of mass and energy are satisfied 
locally in each surface as well as globally in the whole soil profile. In 
contrast, traditional FEM only supports global conservation (see the 
numerical fluctuations in Fig. 1, Pan et al., 1996). Finite difference 
method (FDM) supports global and local conservation, but it is usually 
applied in rectangular mesh grids. Convective and latent heat fluxes are 
not explicitly presented in Fig. 2, because they are “secondary quanti
ties” relying on liquid water and vapor transfer. In other words, 
convective and latent heat fluxes are determined after the liquid water 
and vapor fluxes are solved. 

To enhance the simulation performance, a modification is applied to 
the mixed FEM scheme. Consider the discretized liquid water flux across 
edge e0 in Fig. 1a. 
∑4

k=0
〈ϕek, ϕe0〉q̂t+1

l,ek −
(
Ks1 ĥ

t+1
s1 − Ks2 ĥ

t+1
s2

)
−

(
DTl,s1 T̂

t+1
s1 − DTl,s2 T̂

t+1
s2

)
= 0

(8) 

When the soil water potential difference between the two adjoined 
surfaces is large, or when the hydraulic conductivity function is not 

appropriately chosen, there is a possibility that 
⃒
⃒ĥ

t+1
s1 /ĥ

t+1
s2

⃒
⃒ < |Ks1/Ks2|, 

even if ĥ
t+1
s1 > ĥ

t+1
s2 , which implies Ks1 ĥ

t+1
s1 < Ks2 ĥ

t+1
s2 , and hence the di

rection of liquid water transfer is wrongly determined. To avoid that, the 
effective conductivity 

(
Keff

)
and diffusivity 

(
DTl,eff

)
are adopted. 

∑4

k=0
〈ϕek, ϕe0〉q̂t+1

l,ek − Keff
(

ĥ
t+1
s1 − ĥ

t+1
s2

)
− DTl,eff

(
T̂

t+1
s1 − T̂

t+1
s2

)
= 0 (9) 

In soil science, Keff =
̅̅̅̅̅̅̅̅̅̅̅̅̅
Ks1Ks2

√
and DTl,eff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
DTl,s1DTl,s2

√
, since con

ductivity and diffusivity are assumed to be log-normally distributed. 
This modification applies to all the examples in this study, except for 
Section 3.4. With this modification, the mixed FEM scheme shares 
similarities with the finite volume method (FVM). 

3. Transient spatial variations of soil properties and adaptive 
mesh refinement (Step B) 

The baseline mixed FEM scheme is exploited under spatial variations 
of soil properties, especially the transient variations changing with 

Fig. 2. Simulation results of the CHWT model using the new mixed FEM 
scheme. Five quantities are directly solved from the mixed FEM scheme. They 
are (a) soil water content (or soil water potential), (b) soil temperature, (c) 
liquid water flux, (d) vapor flux, and (e) conductive heat flux. For optimal 
presentation, the length of the vectors in subfigures (c), (d) and (e) are scaled 
individually, such that comparisons of vector length are not valid. 

Table 1 
Physical Properties of the Ida Silt (Heitman et al., 2008).  

Ida Silt (fine-silty, mixed, superactive, calcareous, mesic Typic Udorthents) 

Soil Textural Properties 
Sand 

(
fsand, g g−1)

0.022 
Silt 

(
fsilt , g g−1)

0.729 

Clay 
(

fclay, g g−1
)

0.249 

Organic matter 
(
g g−1)

0.044 
Bulk density 

(
ρb , g cm−3)

1.20  

Hydraulic Properties 
Saturated water content 

(
θs, cm3 cm−3)

0.547 
Saturated hydraulic conductivity at T0

(
Ks,

cm s−1)
3.80 × 10−4 

Water characteristic function h = −13.0 × (θ/θs)
−6.53 

Hydraulic conductivity 
(
K, cm s−1)

K = [μ(T0)/μ(T) ] × (θ/θs)
16.06Ks†

Thermal Properties 
Thermal conductivity 

(
λ, W cm−1 K−1)

λ = 0.00952 + 0.0431θ + 0.06
̅̅̅
θ

√

†μ(T) represents the dynamic viscosity of water, as a function of soil tempera
ture.  
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respect to time. Tracing the spatial variations and adjusting the mesh 
size and the numerical scheme are the two critical components to ensure 
the simulation resolution and accuracy. Water infiltration is presented as 
the illustrative example, where relatively large soil water content dif
ferences in front of and behind the wetting front form a typical soil water 

transfer problem with transient spatial variations of soil (hydraulic) 
properties (He and Ren, 2005; He and Ren, 2009; Li et al., 2016). 
However, the model proposed can be generalized to any other transient 
spatial variations of soil physical or chemical properties, such as tem
perature or chemical concentration in solute transfer. Soil heterogeneity 
can also be fitted into the model formulation by adding spatial positions 
(x, y) to the soil properties, e.g., changing K(h, T) to K(x, y, h, T). How
ever, in this study, we emphasize transient variations of soil properties 
due to the instantaneous soil water and temperature regimes. 

3.1. Localization of spatial variations of soil properties 

When soil properties present relatively large spatial variabilities, 
such variabilities may not be fully captured by the baseline mixed FEM 
scheme, and incorrectly representing the spatial variabilities may induce 
computational errors (Luo et al., 2022). Moreover, handling transient 
variations of soil properties is challenging because the location and 
magnitude of such variations change with respect to time. Therefore, the 
soil property-of-interest (POI) and its distribution over the whole soil 
profile should be considered when constructing the mesh grid and 
establishing the mixed FEM scheme. 

As a motivation example, Fig. 3 presents two possible relations be
tween the triangular grid and the wetting front during water infiltration. 
The blue areas represent the high water content regions behind the 
wetting front. The white areas represent the low water content regions 
in front of the wetting front. Considering the liquid water flux across 
edge e0, in Fig. 3a, the high water content region stays in s1, and the 
wetting front does not reach e0. Thus, there exists a neighborhood of e0 
containing only dry soil, where the relatively low hydraulic conductivity 
limits the liquid water flux and creates a barrier to water infiltration. As 
the wetting front moves downwards and intersects with e0 in Fig. 3b, a 
portion of e0 with relatively high water content forms a path for liquid 
water flux from s1 to s2. Comparing Fig. 3a and b, the soil water content 
in s1 and s2, and the associated water potential gradient between s1 and 
s2, may be similar. However, relatively large differences in liquid water 
fluxes across e0 may occur. 

Thus, solving the liquid water flux with the triangular grid in Fig. 3 
may not achieve the optimum result, because in mixed FEM, each sur
face only has one soil water content value, and the sub-grid geometry of 
the wetting front is not recorded. To obtain a better numerical result, 
transient variations of soil properties (soil water content and hydraulic 
conductivity in this example) within individual surfaces should be 
considered. For the water infiltration example in Fig. 3, the transient 
variations should be described based on the wetting front location 
relative to e0 (intersecting or roughly parallel), and the spatial resolution 
near the wetting front. 

We define a gradient measure in Eq. (10) to trace the transient spatial 
variations of a given POI. Location with a relatively large gradient 
corresponds to the region where the POI has relatively high transient 
spatial variations. 

∇̃p =

⃒
⃒psi − psj

⃒
⃒

maxp − minp + ε, ε > 0, si, sj ∈ S (10) 

In Eq. (10), p is the POI (for example, p = θ in Fig. 3). psi and psj are 
the POI values in two adjoined surfaces si and sj. ε is a small positive 
number to avoid zero denominator. ∇̃p is not a typical gradient measure, 
for the denominator is not a distance value. That is because we focus on 
the relative magnitude of the stepwise differences of POI near the edge 
between si and sj. 

After computing ∇̃p, a “k-means” clustering procedure assigns ∇̃p 

into two categories. The representative values for the “high ∇̃p” category 
and the “low ∇̃p” category, as well as the threshold between the two 
categories are determined via an iterative process (an instructive dia
gram of a “k-means” can be found in Fig. 9-3 and -4, Géron, 2019). “K- 

Fig. 3. Wetting front position relative to edge e0. (a) The wetting front is 
approaching from s1 and roughly parallel to e0. There exists a neighborhood of 
e0 containing dry soil, which forms a barrier for the liquid water flux. (b) The 
wetting front is approaching from s1 but half of e0 is included in the wet region. 
The water flux will be dominated by the wet portion of e0, which can be 
considered as a path for liquid water transfer. 
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means” is an unsupervised learning method, so the ∇̃p data is the only 
required input. 

The following numerical experiment emphasizes the necessity of 
considering transient spatial variations of soil properties and demon
strates the detection of the wetting fronts using the gradient measure 
and “k-means”. Given a horizontally placed soil sample of 40 cm wide 
(x-axis) and 100 cm long (y-axis), with physical properties in Table 1. 
The initial water content and temperature are θini = 0.1 cm3 cm−3 and 
Tini = 25.0◦ C. The boundaries are impermeable to heat flux. Water 
infiltration occurs at the two boundaries along the short side of the soil 
sample: along y = 0, the water infiltration flux is ql,y=0(x) = 5.0 ×

10−3(x/40)
10 cm s−1; along y = 100, the water infiltration flux is 

ql,y=100(x) = 5.0 × 10−3(1 − x/40)
10 cm s−1. Therefore, most of the 

infiltration occurs at the two opposite corners of the soil sample at (x =

0, y = 0) and (x = 40, y = 100). Numerical simulations are performed 
on a coarse triangular grid (229 surfaces, mesh size ≈ 10 cm) and a fine 
triangular grid (3084 surfaces, mesh size ≈ 2 cm). The simulated soil 
water contents at 3 h and 6 h after the start of infiltration are shown in 
Fig. 4. 

Different from the commonly studied uniform surface infiltration 
(He et al., 2005; He et al., 2006), water infiltration here is artificially 
created as a challenging example. More than one wetting front exists, 
and the wetting fronts are curved rather than straight lines with a uni
form propagation speed. Using challenging examples is important for 
exploiting the model ability, while a simple uniform surface infiltration 

example (with validation and performance analyses) is given in the 
supplementary material. 

Fig. 4A and B present the soil water content distributions using the 
coarse triangular grid. Eight water content contours are shown, corre
sponding to θ = 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5 cm3 cm−3. 
Linear interpolations are used to estimate and plot the water content 
contours. Fig. 4C and D present the simulated soil water contents using 
the fine triangular grid. Multiple water content contours are concen
trated nearby the two wetting fronts, indicating the rapid changes in soil 
water content. Moreover, the two wet regions in Fig. 4C and D are 
symmetric, and the wetting fronts have smooth arc shapes, which is 
reasonable based on the boundary conditions. 

However, in Fig. 4A and B, because of the lack of sub-grid informa
tion for the soil water content, the contours near the wetting fronts 
cannot represent the geometry of the wetting fronts as well as the con
tours in Fig. 4C and D. Additionally, the contours in Fig. 4A and B are 
jagged due to the geometry of the underlying triangular grid. Numerical 
fluctuations of soil water content arise near the wetting fronts, where 
adjoined surfaces achieve high or low water contents alternately (see the 
surfaces pointed to by the white arrows in Fig. 4A). That is because the 
mixed FEM scheme strives to present rapid water content changes using 
coarse surfaces. Thus, based on the simulation in Fig. 4A and B, it is 
necessary to manipulate the mixed FEM scheme and the triangular grid 
to achieve a better presentation of the wetting fronts. 

Histograms of the gradient measure for the soil water content dis
tributions in Fig. 4A–D are shown in Fig. 4a–d, respectively. Most of the 
values are small, indicating relatively uniform soil water contents near 
those edges. The vertical lines in Fig. 4a–d are the thresholds determined 
with “k-means”. Edges with gradient values larger than the thresholds 
are considered as the approximations to wetting fronts and colored red 
in Fig. 4A–D. In general, the red polylines match the wetting fronts. 
However, some errors exist, including “dead ends” (★), “double con
nections” (●) and “isolated triangles near the boundaries” (▴). There
fore, the red polylines need to be polished. The “dead ends” and the 
“isolated triangles” can be simply removed by a searching procedure. 
For the “double connections”, the edges with the larger water content 

Fig. 4. Simulated soil water content under the imposed infiltration boundary 
conditions. (A) and (B) show the soil water content 3 h and 6 h after the 
infiltration started using the coarse grid. (C) and (D) show the soil water con
tent simulated with the fine grid. (a-d) are the histograms of the gradient 
measure corresponding to (A-D), and the red vertical lines are the thresholds 
determined with “k-means”. In (A-D), the yellow curves present the eight soil 
water content contours, which are θ = 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 
0.5cm3 cm−3. The red polylines present the approximations to the wetting 
fronts, which need additional polish to remove “dead ends” (★), “double con
nections” (●) and “isolated triangles near the boundaries” (▴). The white ar
rows in (A) show the numerical fluctuations of soil water content near the 
wetting front in the coarse grid, where relatively high (darker blue) and rela
tively low (lighter blue) water content values alternate in adjoined surfaces. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. Adaptive refinement of the mixed FEM grid and the “virtual-split” of the 
neighbor surfaces. (a) presents a coarse grid (black) and a nested fine grid (red). 
(b) presents a combined grid, based on the two (polished) approximations of 
wetting fronts (red) in Fig. 4B. The fine grid is invoked near the wetting front 
(blue), while the coarse grid is maintained for the rest regions. The neighbor 
surfaces are marked with yellow color. (c) and (d) present the “virtual-split” of 
a neighbor surface s0, when computing the fluxes between s0 and fine surfaces 
(c), and when computing the fluxes between s0 and adjoint coarse surfaces (d). 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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gradients are selected. The polishing approach is similar to edge 
detection in image processing, especially the Canny filter (Canny, 1986). 
Examples of polished approximations to the wetting fronts are shown in 
Section 3.2 and Fig. 5b. 

3.2. Adaptive mesh refinement 

Based on the approximations to the wetting fronts, the mesh grid 
near the approximated wetting fronts should be refined to better 
represent the soil water regime. In the spatial grid, refinements can be 
different for each surface, such that performing mesh refinement via 
hierarchical iterations during simulations would lead to a slow 
computing speed [see the quad-tree graph method in Clément et al. 
(2021) or the computational cost for updating local transient variations 
in He and Ren (2009)]. An alternative way is to pre-define a fine grid and 
a coarse grid, where the fine grid is statically nested within the coarse 
grid. When local refinement is required, the fine grids in the refined 
regions are automatically invoked. 

Fig. 5a presents an example of the nested grids, where the fine grid 
(red) serves as the refinement for the coarse grid (black). Fig. 5b presents 
the polished approximations (red polylines) to the wetting fronts in 
Fig. 4B, with “dead ends”, “double connections” and “isolated triangles” 

removed. Local mesh refinement occurs in the coarse surfaces that share 
nodes or edges with the approximated wetting fronts. The fine grid in the 
refined regions (blue), plus the remaining portion of the coarse grid, 
form a combined grid based on the current water content distribution. 
Near the boundary of the soil sample, the refined region is expanded to 
ensure computational stability. The mixed FEM scheme can be applied 
to the combined grid, but modifications are needed for the yellow sur
faces in Fig. 5b. The yellow surfaces are “neighbor surfaces”, for they 
belong to the coarse grid but share at least one edge with the refined 
regions. From the perspective of finite element grid, the neighbor sur
faces are no longer triangles but polygons. For example, the neighbor 
surfaces s0 (yellow) demarcated with the purple rectangle in Fig. 5b has 
six edges, presented by ek, k = 1, 2, ⋯, 6 in Fig. 5c and d. Thus, a “vir
tual-split” of the neighbor surfaces is facilitated to ensure the triangu
larity of the mesh grid. 

The idea of “virtual-split” is presented using s0 in Fig. 5c and d. When 
computing the flux variables between the neighbor surface and the fine 
surfaces, s0 is split into four segments (Fig. 5c) s*

k, k = 1, 2, 3, 4, with 
three (interior) virtual edges e*

k, k = 1,2,3. The RT0 basis function can 
be defined for each of the fine edges ek, k = 3, 4, 5, 6, and the virtual 
edges e*

k,k = 1,2,3. In general, s*
k’s do not belong to the fine grid but are 

temporarily created to facilitate the discretization of the flux variables in 
Eq. (4). When computing the flux variables between the neighbor sur
face and the coarse surfaces, s0 is treated as one single surface (Fig. 5d). 
Therefore, in the combined grid, s0 is thought to be split or unsplit, 
depending on which fluxes are computed. In addition, whether s0 is split 
or not, s0 and s*

k, k = 1, 2, 3, 4, share the same soil water potential and 
temperature values. Thus, this procedure is called “virtual-split”. 

The mesh refinement is invoked automatically, and only relies on the 
instantaneous distribution of the POI (soil water content in this section). 
The regions that need to be refined follow the wetting fronts propaga
tion. Hence, the mesh refinement procedure is called “adaptive mesh 
refinement”. 

The adaptive mesh refinement in the mixed FEM scheme is demon
strated as we redo the infiltration example in Section 3.1 using the two 
nested grids in Fig. 5. The simulated results are presented in Fig. 6, and 
the numerical performance is summarized in Table 2. The coarse and 
fine grids in Figs. 5 and 6 are the same ones in Fig. 4. But in Fig. 4, they 
are treated as two independent grids. Thus, the simulation results in 
Figs. 4 and 6 can be compared directly. 

First, we provide a qualitative evaluation of the simulation results. 
Fig. 6a and d present soil water content 3 h and 6 h after the onset of 
infiltration. The combined grids are presented with gray triangles, and 
contours are shown in the same way as in Fig. 4. The adaptive mesh 
refinement near the wetting fronts and the neighboring surfaces are 
emphasized in Fig. 6b and e. The refined regions move automatically 
following the wetting fronts. The water content contours are emphasized 
in Fig. 6c and f. For comparison, the contours solved using the fine grid 
are also presented (see Fig. 4C and D). With adaptive mesh refinement, 
the contours are close to the wetting fronts and similar to the contours 
solved solely on the fine grid. This indicates the mesh refinement im
proves the accuracy of soil water content simulation near the wetting 
fronts. 

Moreover, mesh refinement also affects the soil water contents 
outside of the refined regions. For example, as marked with the purple 
rectangle in Fig. 6f, the contour close to the refined region has a shape 
similar to the one in the fine grid (see Fig. 4D). However, the shape and 
locations of the contour in the purple rectangle in Fig. 6c are similar to 
the one in the coarse grid (see Fig. 4A) rather than to the corresponding 
contour in the fine grid. Therefore, the contours outside of, but near to, 
the refined regions, tend to receive benefits from the adaptive mesh 
refinement. 

Second, we provide a quantitative evaluation for numerical perfor
mance. In Table 2, the fine grid soil water contents in Fig. 4C and D are 
assumed as the reference. The “Relative Error (Global)” represents the 

Fig. 6. Simulation results using the mixed FEM scheme with adaptive mesh 
refinement. (a) and (d) present the simulated soil water contents 3 h and 6 h 
after the onset of infiltration. (b) and (e) emphasize the refined regions (blue) 
and the “neighbor surfaces” (yellow). (c) and (f) compare the contours of the 
soil water content between the adaptively refined mesh and the fine mesh grid 
in Fig. 4C and D. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Z. Wang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 634 (2024) 131068

9

errors of simulated soil water contents in the mesh refinement or the 
coarse grid relative to the reference values for the whole soil sample, 
based on l1-norm. The “Relative Error (Local)” represents the same er
rors but only in the refined regions near the wetting fronts. With respect 
to elapsed time, the number of refined elements varies due to the change 
of the wetting front positions. The “Relative Error (Global)” and “Rela
tive Error (Local)” of the mesh refinement results are about 1.5 % and 3 
%, respectively, which are 1/3 and 1/6 of corresponding errors for the 
coarse grid results. To fulfill the adaptive mesh refinement, additional 
computing time is consumed compared to the coarse grid simulation. 
However, to achieve similar presentation of the wetting fronts, using 
adaptive mesh refinement still saves time compared to directly using the 
fine grid. In the simulations, the maximum time step in Picard iteration 
is restricted to 5 s, while in applications, such a restriction can be 
released for faster computing speed. 

3.3. Additional remarks for the adaptive mesh refinement 

To perform adaptive mesh refinement, POI is the only required in
formation. The gradient measure, “k-means”, and wetting front 
approximation are not based on soil physics but belong to machine 
learning methods. Therefore, the mixed FEM scheme with adaptive 
mesh refinement can be considered as a “learning-assisted process-based 
model”. 

Adaptive mesh refinement can be easily facilitated through the 
mixed FEM scheme, since the soil water content and temperature are 
computed on each surface rather than at each node in traditional FEM or 
FDM. In mesh refinement and “virtual-split”, soil water content and 
temperature from the coarse surfaces can be directly assigned to the fine 
or virtual-split surfaces without computation. After mesh refinement, 
soil water content and temperature in the fine surfaces can be merged 
via weighted average and assigned back to the corresponding coarse 
surfaces. Such a simple procedure cannot be applied in traditional FEM 
or FDM because they focus on nodal values, where soil water content 
and soil temperature present linear or polynomial patterns in each 
surface depending on the choice of shape functions. 

3.4. Discussion: Applying the wetting front approximations to upscaling 
model 

Besides the adaptive mesh refinement, upscaling model is another 
method to conduct simulations with spatial heterogeneities. “Upscaling” 

means adaptive estimation of the effective conductivity, diffusivity and 
capacity based on local soil information, which enhances numerical 
accuracy without mesh refinement (Hunter, 2004; Li et al., 2016). For 
the water infiltration example in Fig. 3, rather than using the geometric 
means in Eq. (9), the “effective” hydraulic conductivity at e0 should be 
calculated in two ways to emphasize the water barrier in Fig. 3a and 
liquid water path in Fig. 3b. 

Table 2 
Numerical performance of the water infiltration simulations using adaptive mesh refinement, coarse grid and fine grid.  

Elapsed 
Time (h) 

Number of 
Refined Surfaces 
†

Adaptive Mesh Refinement (Fig. 6a and d) Coarse Grid (Fig. 4A and B) Fine Grid (Fig. 4C 
and D) 

Relative Error 
(Global) ‡

Relative Error 
(Local) §

Cumulative 
Computing Time (s) 
※ 

Relative Error 
(Global) 

Relative Error 
(Local) 

Cumulative 
Computing Time (s) 

Cumulative 
Computing Time (s) 

0 0/229 – – – – – – – 
1 32/229 0.010 0.028 116 0.049 0.172 22 3459 
2 37/229 0.014 0.033 272 0.049 0.172 37 5320 
3 49/229 0.015 0.032 464 0.053 0.165 51 7141 
4 55/229 0.016 0.034 671 0.058 0.185 66 8911 
5 64/229 0.016 0.028 889 0.058 0.163 78 10,790 
6 54/229 0.015 0.029 1114 0.049 0.179 92 12,774 

† The total number of coarse surfaces that need to be refined, relative to the total number of coarse surfaces (229 coarse surfaces). 
‡ The l1 error of the simulated soil water content over the whole soil domain, relative to the fine grid simulation results. 
§ The l1 error of the simulated soil water content within the refined regions (near the wetting fronts), relative to the fine grid simulation results. 
※ The hardware environments are Intel (R) Core (TM) i9-7900X CPU (with Turbo Boost off), a HyperX(R) Predator (TM) DDR4 RAM (3600 MHz, 32G) and an ASUS(R) 
Prime (TM) X299-Deluxe motherboard. The software environment is MATLAB R2021a. The max time step used in the Picard iteration is 5 s.  

Fig. 7. Simulated water contents with the mixed FEM scheme in a coarse grid 
with upscaling. (a) presents the simulated water content 6 h after initiating the 
infiltration, with the upscaling model. (b) compares the water content contours 
in the coarse grid with or without upscaling, where the fine grid contours are 
shown as a reference. (c) and (d) compares the simulated soil water content for 
a 5 cm strip along the soil long side (x = 0) and a 5 cm strip along the soil short 
side (y = 0). Fluctuations in the fine grid results in (c) and (d) do not imply 
numerical oscillations but are due to the projection of the soil water content 
within the 5 cm strips onto the horizontal or vertical axes. 
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⎧
⎪⎪⎨

⎪⎪⎩

Fig.3a : Keff =
2

1/Ks1 + 1/Ks2
∼ min(Ks1, Ks2) for e0

Fig.3b : Keff =
1
2

(Ks1 + Ks2) ∼ max(Ks1, Ks2) for e0

(11) 

In Eq. (11), harmonic and algebraic means are used to determine the 
effective hydraulic conductivity, and “∼” indicates the two sides are of 
the same order. To apply Eq. (11), we need to identify which edge is the 
barrier (similar to Fig. 3a), which edge serves as a path (similar to 
Fig. 3b), and which edge is far away from the wetting fronts such that the 
geometric mean in Eq. (9) can be used. This can be resolved with the 
wetting front approximation method in Section 3.1. 

An example of the upscaling model is presented by repeating the 
previous water infiltration problem. Because of symmetry, only one half 
of the soil sample is presented in Fig. 7. Soil water transfer is simulated 
with three methods: “coarse grid with upscaling”, “coarse grid without 
upscaling” [apply Eq. (9) for all edges], and “fine grid without upscal
ing”. Fig. 7a presents the soil water content 6 h after initiating the 
infiltration, using coarse grid with upscaling. The yellow water content 
contours and the red wetting front are obtained in the same way as those 
in Figs. 4 and 6. Fig. 7b compares the water content contours among the 
three methods. Similar to the coarse grid results, the simulated contours 
with upscaling cannot provide sufficient geometrical details for the soil 
water distributions near the wetting fronts. However, as an advantage of 
the upscaling model, Fig. 7c and d present the simulated water contents 
for two 5 cm strips along x = 0 and y = 0, which shows the upscaling 
model improves the accuracy of the coarse grid water content, partic
ularly near the wetting front demarcated by the red rectangles. The good 
matching between the upscaling results and the fine grid results can be 
easily observed in Fig. 7d. In Fig. 7c, the benefits are subtle. Neverthe
less, the coarse grid result without upscaling, indicated by the red arrow, 
is slightly smaller than the other two simulation results. Therefore, 
compared to the adaptive mesh refinement, upscaling model is a 
“lightweight” method to use when accurate coarse-scale water contents 
are necessary, but the detailed geometry of the wetting fronts is not 
needed. 

Throughout Step (B), when solving soil water content, the shapes and 
positions of the wetting fronts can be considered as global information, 
which means the information is based on the whole soil profile rather 
than one or two nearby surfaces in the mesh grid. Using global infor
mation is an ongoing and promising research topic in numerical PDEs 
with spatial heterogeneities (Chen et al., 2003; Durlofsky et al., 2007; 
Aarnes et al., 2008; Jiang et al., 2010). 

4. Soil and mesh deformation (Step C) 

The mesh deformation model for a deformable soil under an external 
load is presented, and it is prefixed to the mixed FEM scheme as an add- 
on module. In geotechnical engineering, soil deformation and (satu
rated) water transfer are solved together since shallow or confined 
groundwater supports soil stress (Lewis and Schrefler, 1999). However, 
for agricultural soils, implementing soil deformation as a separate 
module is desirable. That is because (a) agricultural soils are non- 
compacted and unsaturated, where external load is mainly born by 
soil particles. (b) Soil deformation can be implemented as a “quasi- 
static” process (Xie and Leo, 2004; Zhang et al., 2021) and easily added 
to CHWT model without substantial changes of existing CHWT model 
structures. (c) Nonlinear interactions between soil deformation and 
CHWT exist. For example, the porosity change induced by soil defor
mation can perturbate soil water distribution, which inversely affects 
the soil effective stress (Fredlund et al., 2012). It is preferred to decouple 
those interactions and hence simplify the numerical computation. (d) 
Soil deformation model should be invoked or bypassed automatically 
based on the existence of an external load. 

4.1. The soil deformation model 

An updated Lagrangian formulation in Eq. (12) is adopted as the 
governing model from the current time step t to the next time step t +

Δt, where summation convention with respect to i and j is assumed 
(Bathe, 2014). 
∫

t S

t+Δt
t S ij δ t+Δt

t ∊ij dts=t+ΔtδR (12) 

t+Δt
t S ij(N cm−2) is the second Piola-Kirchhoff stress during the time 

interval [t, t + Δt]. t+Δt
t ∊ij is the (dimensionless) Green-Lagrange strain. 

tS is the integral domain at time t, which can be either a single surface in 
the triangular grid or the whole soil profile Ω. δ represents the variation. 
t+ΔtδR (J) is the virtual work from external load. Eq. (12) is originally 
written in 3D spaces in Bathe (2014). If 2D soil deformation is simulated, 
the unit of stress t+Δt

t S ij can be adjusted to N cm−1, where we implicitly 

Fig. 8. Deformation of a triangular surface s0 ∈ S in a single time step under 
external load. For a 2D soil profile, a unit thickness (1cm, along the “virtual” 
third dimension) is assumed. The nodal coordinates 

{(
xi, yi

) }3
i=1, nodal dis

placements {(ui, vi) }
3
i=1, and the coordinate (x, y) and displacement (u, v) for an 

arbitrary interior point are presented. F is the external load, which represents 
“force per unit length” in 2D space. Normal and shear stresses are only pre
sented on one side, but they exist on all the edges. From t to t + Δt, s0 is 
deformed and rotated from (a) to (b), which are represented by the nodal 
displacement {(ui, vi) }

3
i=1. 

Z. Wang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 634 (2024) 131068

11

assume the 2D soil profile have unit thickness along a “virtual” third 
dimension (see Fig. 8). 

t+Δt
t S ij and t+Δt

t ∊ij in Eq. (12) can be linearized with the following 
incremental decompositions. 
∫

t S
tC ijrs ters δteij dts +

∫

t S

tσij δtηij dts = t+ΔtδR −

∫

tS

tσij δteij dts

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t+Δt
t S ij = tσij + tS ij = tσij + tC ijrs ters

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
tS ij

t+Δt
t ∊ij = teij + tηij =

1
2

(
∂tui

∂xj
+

∂tuj

∂xi

)

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
t eij

+
1
2

∂tuk

∂xi

∂tuk

∂xj
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

t ηij

(13) 

tσij and tC ijrs are the Cauchy stress and the stress-strain constitu
tive tensor at time t. teij and tηij are the linear and nonlinear portions of 
t+Δt

t ∊ij, expressed using the displacement u for each small segment in the 
soil profile. The subscripts i, j, k, r, s = 1, 2 represents the two coordinate 
axes for the 2D soil profile. Although tηij has a quadratic form, its 
variation δ tηij is linear because δ tηij = 1

2
∂ t δuk

∂xi

∂ t uk
∂xj

+ 1
2

∂ t uk
∂xi

∂ t δuk
∂xj

, where 
uk is the unknown and δuk is an arbitrary virtual displacement. 

Using FEM to solve 2D soil deformation, the goal of numerical dis
cretization is to express the integrands in Eq. (13) with the nodal co
ordinates and displacements of a given triangular grid. Considering 
surface s0 in Fig. 8a, the nodal coordinates and displacements are 

(
xi, yi

)

and (ui, vi), i = 1, 2, 3. Under the external load, s0 is deformed and 
rotated to the position in Fig. 8b. The displacement (u, v) of an arbitrary 
point (x, y) in s0 can be expressed using a “displacement-interpolation” 
relationship. 
{

u = au + bux + cuy
v = av + bvx + cvy (14) 

Nodal coordinates and displacements also satisfy Eq. (14). Hence, the 
coefficients (au, bu, cu) and (av, bv, cv) for s0 can be obtained as in Eq. (15). 
⎡

⎢
⎢
⎣

au

bu

cu

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤

⎥
⎥
⎦

−1⎡

⎢
⎢
⎣

u1

u2

u3

⎤

⎥
⎥
⎦ =

def

⎡

⎢
⎢
⎣

AT
0

AT
1

AT
2

⎤

⎥
⎥
⎦U→

⎡

⎢
⎣

av
bv
cv

⎤

⎥
⎦

=

⎡

⎢
⎣

1 x1 y1
1 x2 y2
1 x3 y3

⎤

⎥
⎦

−1⎡

⎢
⎣

v1
v2
v3

⎤

⎥
⎦ =

def

⎡

⎢
⎢
⎣

AT
0

AT
1

AT
2

⎤

⎥
⎥
⎦ V→ (15) 

With the vectors A0, A1, A2, U→, and V→ defined in Eq. (15), spatial 
derivatives in Eq. (13) can be expressed using the nodal displacement. 

∂u
∂x

= bu = AT
1 U→;

∂u
∂y

= cu = AT
2 U→

∂v
∂x

= bv = AT
1 V→;

∂v
∂y

= cv = AT
2 V→

(16) 

Therefore, the linear and nonlinear portions of t+Δt
t ∊ij, namely teij 

and tηij, can then be rewritten using Eq. (16) as the following “dis
placement–strain” relationship. 

te11 = AT
1 U→; te12 = te21 =

1
2

(
AT

2 U→ + AT
1 V→

)
; te22 = AT

2 V→

tη11 =
1
2

(
U→

T
A1AT

1 U→ + V→
T
A1AT

1 V→
)

; tη12 =
1
2

(
U→

T
A1AT

2 U→ + V→
T
A1AT

2 V→
)

tη21 =
1
2

(
U→

T
A2AT

1 U→ + V→
T
A2AT

1 V→
)

; tη22 =
1
2

(
U→

T
A2AT

2 U→ + V→
T
A2AT

2 V→
)

(17) 

From Eq. (17), the variations δteij and δtηij can be derived using the 
chain rule and product rule.  

Fig. 9. The original soil (a) and the deformed soil under the external loads F =

20 N cm−1(b), F = 30 N cm−1(c) and F = 40 N cm−1(d), applied between x =

20 cm and x = 40 cm. The cyan lines indicate the original soil surface, the black 
lines and circles indicate the coarse grid edges and nodes, and the red lines 
indicate the fine grid edges. In (d), ★ denotes the compacted region under the 
external load, and ▴ denotes the uplifts outside of the loading region. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Expanding Eqs. (14)–(18) to the whole triangular grid, Eq. (13) can 
be written using U→, V→, δU→ and δ V→ [see Table 6.4 in Bathe, 2014, and 
Eqs. (10)–(12) in Yuan et al., 2019, for the definition of the interpolation 

matrix in Eq. (19)]. In Eq. (19), U→, V→, δU→ and δ V→ are the displacements 
and virtual displacements of all the nodes, and Ω represents the whole 
soil profile. 

[
δU→T , δ V→T

][∫

t Ω
BT

LC BLdts
][

U→

V→

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

∼
∫

t S tC ijrs t ers δteij dt s

+
[
δU→T , δ V→T

][∫

t Ω
BT

NL
tσBNLdts

][

U→

V→

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

∼
∫ t

t S
σij δtηij dt s

=t+ΔtδR

+
[
δU→T , δ V→T

][∫

t Ω
BT

NL
tσdts

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

∼
∫ t

t S
σij δt eij dt s

(19) 

Each term in Eq. (19) corresponds to one integral in Eq. (13) marked 
under the integrals. The principle of virtual work implies that Eq. (19) 
must be satisfied for arbitrary δU→ and δ V→. Thus, Eq. (19) is essentially a 
linear system for the nodal displacements U→ and V→, which are directly 
related to the mesh deformation. 

tC ijrs ters is the incremental of Cauchy stress from t to t + Δt. In this 
study, it is expressed with a hypoplastic model, where a simple mathe
matical equation can approximate the stress–strain constitutive re
lations, and the separation of elastic and plastic portions in the 
traditional method is not required (Wang and Wu, 2011; Peng et al., 
2015). The stress–strain constitutive relation for s0 in Fig. 9 is expressed 
as follows.  

In general, Eq. (20) should be written using the time differentiation 
of tσ, for the Jaumann stress σJ is usually expressed as a stress rate. 

Under the “quasi-static” assumption, we simply assume the stress rate of 
σJ is constant, such that the change of σJ in Δt can be written as ΔσJ. tω 
is the skew-symmetric spin tensor. ci, i = 1, 2, 3, 4 are (dimensionless) 
empirical parameters. Based on Eqs. (13) and (17), te and tω have the 
following matrix forms.   

Therefore, the hypoplastic model in Eq. (20) can be implemented in 
the discretized formulation in Eq. (19), because all the terms in Eq. (20) 
are written in the nodal displacement as shown in Eq. (21). 

4.2. Illustrative example 

Soil deformation induces two effects on CHWT simulations. (a) Local 
soil bulk density and water content may change in the deformed regions. 
For example, when surface soil is consolidated, the volume of the 
shallow soil decreases, such that the volumetric water content will in
crease even if there is no water transfer. (b) Deformation alters the local 
soil properties, especially the hydraulic properties, due to changes in 
local porosity and connectivity. 

For (a), soil water content is changed inversely proportional to the 
soil volume, and we assume that deformation does not induce soil 
temperature changes in this study. However, (b) is challenging due to 
the lack of systematic constitutive relations for soil hydraulic and ther
mal properties. In this study, the following assumptions are adopted. 
First, the soil water characteristic curve and the soil saturated hydraulic 
conductivity follows the von Genuchten type equation in Tian et al. 
(2019). 

θ = ρbθro +

[
ρs − ρb

ρs − ρbo
θso − ρbθro

]

×

[
1

1 + (ρ−3.97
b α0|h| )

n

]1−1/n

Ks = Kso

⎡

⎣

ρs−ρb
ρs−ρbo

θso − ρbθro

θs,ini − θro

⎤

⎦

2.5

× ρ−7.96
b

(22) 

In Eq. (22), θso and θro(cm3 cm−3) are the original saturated and res
idue soil water content, where “original” indicates the soil before any 

δ te11 = AT
1 δU→; δ te12 = δ te21 =

1
2

(
AT

2 δU→ + AT
1 δ V→

)
; δ te22 = AT

2 δ V→

δ tη11 = δU→
T
A1AT

1 U→ + δ V→
T
A1AT

1 V→; δ tη12 =
1
2

(
δU→

T
A1AT

2 U→ + δ V→
T
A1AT

2 V→ + δU→
T
A2AT

1 U→ + δ V→
T
A2AT

1 V→
)

δ tη21 =
1
2

(
δU→

T
A2AT

1 U→ + δ V→
T
A2AT

1 V→ + δU→
T
A1AT

2 U→ + δ V→
T
A1AT

2 V→
)

; δ tη22 = δU→
T
A2AT

2 U→ + δ V→
T
A2AT

2 V→

(18)   

tC ijrs ters = Δ tσ = tω tσ + tσ tωT + c1Tr( tσ) te + c2Tr( te) tσ + c3
Tr( tσte)

Tr( tσ)
σ + c4( tσ + tσ*)‖ te‖

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

=
def

ΔσJ (20)   

teij =
def 1

2

(
∂ tui

∂xj
+

∂ tuj

∂xi

)

⇒ te =
1
2

⎡

⎣ 2AT
1 U→ AT

2 U→ + AT
1 V→

AT
1 V→ + AT

2 U→ 2AT
2 V→

⎤

⎦ tωij =
def 1

2

(
∂ tui

∂xj
−

∂ tuj

∂xi

)

⇒ tω =
1
2

⎡

⎣ 0 AT
2 U→ − AT

1 V→

AT
1 V→ − AT

2 U→ 0

⎤

⎦ (21)   
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deformation. ρs ≈ 2.65(g cm−3) is the soil particle density, ρbo(g cm−3) is 
the original soil bulk density, n and α0 are coefficients depending on the 
soil type, Kso(cm s−1) is the original soil saturated hydraulic conductiv
ity. Second, the soil thermal conductivity follows a Kozeny-Carman type 
equation (Côté and Konrad, 2005). 

λs = λ1−ϕ
so × 0.6ϕ (23) 

λso(W cm−1 K−1) is the original thermal conductivity at the saturated 
soil water content, and ϕ is the soil porosity. In this study, λso is equal to 
λ(θ = θs) in Table 1, and then the actual thermal conductivity can be 
computed using λs and θ. Third, we assume the vapor diffusivity, as well 
as the related latent heat transfer, vary proportionally with respect to 
soil porosity during deformation. These assumptions may not neces
sarily represent real-world conditions, but they enable us to illustrate 
the model architecture. 

An idealized water infiltration experiment is presented to illustrate 
the concatenation of the soil deformation module and the CHWT model. 
In surface infiltration measurements, the infiltrometer not only supplies 
liquid water flux, but also acts as an external load at soil surface 
(Mohanty et al., 1994; Ankeny et al., 1988; Luo et al., 2019), especially 
when the shallow soil profile is recently tilled (Nishiwaki and Horton, 
2020). Therefore, soil deformation should be considered to correctly 
interpret the infiltration experiments. This is a synthetic example, where 
external load is emphasized, and temperature boundary conditions are 
also included to fulfill a complete CHWT problem. 

A vertically placed soil sample of 60 cm wide (x-axis) and 50 cm deep 
(y-axis) is considered in this example. The soil physical properties are 
listed in Table 1, but the soil water characteristic curve, hydraulic 
conductivity and thermal conductivity are substituted by Eqs. (22) and 
(23), with θro = 0.02

(
cm3 cm−3)

, α0 = 0.027, and n = 1.3. The initial 
water content and temperature are θini = 0.1 cm3 cm−3 and Tini = 25◦ C. 
The boundaries along the vertical side (x = 0, x = 60) are impermeable 
to heat and water fluxes. The soil bottom (y = 0) is impermeable to 
water flux but has a constant temperature of 25◦ C. On the soil surface 
(y = 50), a constant temperature of 15◦ C is assumed and liquid water 
infiltration ql = 1.0 × 10−3 cm s−1 occurs between x = 20 and x = 40. 

A 3-hour CHWT simulation of water infiltration is performed. At 0.5 
h, soil surface receives an external load of F = 20 N cm−1 between x =

20 and x = 40. Then, the external load is increased by 10 N cm−1 twice 
at 1.5 h and 2.5 h after the simulation onset. Thus, the soil sample is 
deformed three times. The (dimensionless) empirical parameters in Eq. 
(20) are c1 ≈ −43, c2 ≈ −430, c3 ≈ −184, and c4 ≈ −120 (those values 

are averaged from Tables 3.8 and 3.10 in Wang and Wu, 2009). The 
external load is assumed to be the only driving force for soil deforma
tion, and gravity is considered in liquid water flux. As a comparison, the 
infiltration simulation is also performed for soil without external load, 
such that the effects of soil deformation on soil water and temperature 
regimes can be presented. 

Fig. 9 presents the original and the deformed soil grids. The coarse 
grid is colored black, and the fine grid is colored red. The magnitude of 
soil deformation increases with respect to the external load. Compared 
to Fig. 9a, the maximum compaction ratios in Fig. 9b-d are 0.93, 0.89 
and 0.84. Because the external load is only applied on the middle 1/3 of 
the whole soil surface, a concave furrow is formed in that region and 
marked with ★ (Fig. 9d). In addition, the compaction pressure will not 
only transfer vertically under the loading region, but also transfer 
laterally. Therefore, small uplifts occur outside the loading region and 
marked with ▴ (Fig. 9d). 

The simulated soil water content and temperature 1 h, 2 h, and 3 h 
after initiating the infiltration are presented in Fig. 10. Due to symmetry, 
only half of the soil sample is included. Since the external load is applied 
or increased at 0.5 h, 1.5 h and 2.5 h, soil in Fig. 10a1–a6 can represent 
soil deformation after the application and increasing of the external 
load, while Fig. 10b1–b6 present soil water content and temperature 
without deformation. The water content contours are presented in the 
same way as those in Figs. 5, 7 and 8. As time evolves, for both deformed 
and non-deformed soils, the wetting front propagates, and the cold re
gion expands in the soil due to the relatively low surface temperature at 
y = 50. 

When soil deformation occurs, the hydraulic conductivity near the 
compressed portion decreases. Therefore, although the infiltration is 
applied between x = 20 and x = 40, soil water tends to redistribute 
laterally rather than transfer downwards. As a result, deep percolation of 
the wetting fronts occurs near x ≈ 10 in Fig. 10a1–a3, while at x = 30, 
the wetting fronts stay at relatively shallow positions. However, for the 
simulated soil water content in non-deformed soil, rapid propagation of 
the wetting fronts occurs near x ≈ 30 in Fig. 10b1–b3, right under the 
surface where infiltration is applied. Thus, the water content contours 
near the wetting fronts follow different patterns between Fig. 10a1–a3 
and Fig. 10b1–b3, and such differences in soil water transfer also induce 
variations in soil temperature regimes between Fig. 10a4–a6 and 
Fig. 10b4–b6. 

Moreover, due to soil compression, relatively high soil water content 
is achieved in the deformed soil in Fig. 10a1–a3, compared to the non- 
deformed soil in Fig. 10b1–b3. In Fig. 10a1–a3, a relatively large 

Fig. 10. Simulated soil water content and soil temperature regimes 1 h (the first row), 2 h (the second row) and 3 h (the third row) after initiating the infiltration for 
the deformed soil (a) and the non-deformed soil (b), respectively. Soil deformation due to the external loads applied or increased at 0.5 h, 1.5 h and 2.5 h are 
presented by the shapes of the soil surface. The CHWT simulations are performed for both deformed soil (under the external load) and the non-deformed soil (without 
the external load), such that the effects of soil deformation on soil water and temperature regimes can be presented. 
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contrast gradient is used between cyan and dark blue to exaggerate the 
soil water content variations in the deformed regions behind the wetting 
fronts, and hence a relatively large color difference does not imply a big 
change in soil water content. 

4.3. Additional remarks for the soil deformation model 

Incorporating soil deformation emphasizes the flexibility of adaptive 
mesh refinement, where local mesh refinement can be performed with 
moving mesh grids (Fig. 10). As an advantage of the mixed FEM scheme, 
during soil deformation, water and heat are conserved in individual 
surfaces of the triangular grid and moved together with the surfaces 
following the deformation pattern. Therefore, there is no need to 
compute the convective coordinate changes of water and temperature. 
In other words, the motion of soil matrix, soil water and soil heat during 
deformation can be treated solely based on the Lagrange perspective. 
However, the influence of soil pore water on soil effective stress (the 
negative pressure from the meniscus) is not included. 

In the illustrative example, assumptions are made for soil hydraulic 
and thermal properties under deformation. Obtaining valid systematic 
constitutive relations for soil hydraulic and thermal properties is an 
open and challenging topic in soil physics because of the following 

reasons. First, the constitutive relations, such as Eqs. (22) and (23), are 
from separate (experimental) studies. When coupling Eqs. (22) and (23) 
in one numerical model, their consistency, compatibility and perfor
mance are not fully validated. Second, the constitutive relations are 
measured under static and uniform soil bulk densities. However, during 
soil deformation, soil bulk density changes dynamically and may not be 
uniform. Moreover, the constitutive relations should not only include 
soil bulk density and porosity as independent variables but also include 
the soil deformation history, since soil deformation is irreversible. For 
example, given a soil sample with initial bulk density ρb0 and porosity 
ϕ0, it can be compacted to the final density ρbt and porosity ϕt suddenly 
or gradually. The final soil hydraulic and thermal properties under the 
two compaction methods may not be the same. 

Even though valid systematic constitutive relations are not fully 
established, it is still meaningful to develop the model framework in this 
study. New constitutive relations of soil hydraulic and thermal proper
ties can be simply incorporated in this model framework, and this model 
framework can serve as a platform to test future constitutive relations. 

4.4. Additional remarks for the difference between model development 
and model application 

Up to this point, the three model construction steps are complete. We 
start with the mixed FEM scheme and follow by including spatial vari
ations of soil properties and soil deformation. Illustrative examples are 
designed to emphasize the accomplishments of individual steps. For 
model applications, we follow a reversed procedure. (a) In each time 
step, we first determine soil deformation based on external loads. If soil 
deformation occurs, the mesh grid is reshaped and the soil water content 
or porosity in the deformed regions are recomputed. (b) Local mesh 
refinement is performed if needed based on the spatial variations of soil 
properties, especially the soil water content in this study. (c) Finally, 
simulation of CHWT with the mixed FEM scheme is conducted in that 
time step. 

5. Simulating coupled heat and water transfer in soil with 
subsurface membranes: An application example 

We present a potential application example to demonstrate the entire 
model framework. Subsurface membranes can perform a range of 
functions in agriculture and civil engineering. For example, in road 
foundation, a cup-shaped subsurface membrane can concentrate water 
and encourage drainage to stabilize surface pavement (see the J-Drain 
webpage https://www.j-drain.com/edge-drain.html). In arid regions, a 
buried double-layered membrane with holes can be designed as a “water 
vapor diode”, which traps water vapor near the double-layered mem
brane (see Fig. 1 in Wang et al., 2017). One recent application of sub
surface membranes is the SWRT (subsurface water retention technology, 
Guber et al., 2015), where a “bowl-shape” membrane is placed under 
plant roots to partially reduce the deep percolation of soil water and 
improve the root zone water storage. A simple version of SWRT is pre
sented as the application example, with the “bowl-shape” membrane 
shown in Fig. 11. 

From the water management perspective, immediate questions for 
SWRT are (a) how it affects soil heat and water redistributions, (b) how 
much water can be preserved, and (c) when surface soil is compacted 
such that the membrane loses its geometrical shape during soil defor
mation, whether the membrane can maintain its function to preserve 
water. From the modeling perspective, the subsurface membrane creates 
two challenges. (a) It is an interior boundary that perturbates water and 
heat fluxes. For example, during infiltration, even if the infiltration flux 
is uniform on the soil surface, the “bowl-shape” membrane can fragment 
the wetting front into multiple pieces and affect the soil water distri
bution. (b) Under surface compaction, soil near the membrane could be 
deformed such that the shape of the membrane and its effects on soil 
heat and water transfer could change. Moreover, evaluating soil water 

Fig. 11. Simulated soil water contents under surface infiltration with no sur
face compaction (column a) or with nonuniform surface compaction (column 
b). In each column, 6 figures present soil water distribution for every 0.5 h. 
Surface infiltration only lasts for 1.5 h, so the figures a4-a6 and b4-b6 present 
soil water redistributions without infiltration. The elapsed time since the 
initiation of the simulation is presented for each row. Local mesh refinements 
are presented by the gray mesh grid. 
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management under (long-term and slow) soil deformation is rarely 
studied. Thus, from both practical and modeling perspectives, SWRT 
with subsurface membrane not only provides a proper example to 
demonstrate the model applications, but also implies future research on 
the long-term stability of soil water management. 

In this example, consider a vertically placed soil sample of 100 cm 
wide (x-axis) and 40 cm deep (y-axis) in Fig. 11a1. The initial soil water 
content and temperature are 0.15 cm3 cm−3 and 25◦ C. The boundaries in 
the vertical direction (x = 0, x = 100) are impermeable to heat and 
water fluxes. The soil bottom (y = 0) is impermeable to water flux. The 
SWRT “bowl-shape” membrane placed near the soil surface (yellow) 
blocks the liquid water and water vapor fluxes but exerts no effects on 
conductive heat transfer. Soil physical properties are the same as the 
example in Section 4.2. 

Liquid water fluxes are modeled with a 3-hour simulation. In the first 
1.5 h, liquid water infiltration ql = 0.75 × 10−3 cm s−1 is uniformly 
placed on the soil surface (y = 40), and after that, the soil surface is 
impermeable to water flux. Temperatures at the two horizontal 
boundaries (y = 0, y = 40) are 25◦ C. In one case, soil deformation is not 
included, corresponding to the SWRT design in Guber et al. (2015). In 
the other case, 15 min after the simulation launched, soil surface re
ceives an external load of F = 5 N cm−1 in x ∈ [20, 40] and x ∈ [60, 80], 
and for every 0.5 h, the load is increased by 5 N cm−1 with the terminal 
value equal to F = 30 N cm−1. In that way, interrow traffic compaction 
can be approximated with a ridge forming near the planting row at (x =

50,y = 40). Thus, the geometrical configuration and the water storage 
above the “bowl-shape” membrane with or without soil compaction are 
compared. 

The simulated soil water contents for each 0.5 h are shown in Fig. 11, 
where the left column (Fig. 11a) presents the classical SWRT without soil 
deformation, and the right column (Fig. 11b) presents the SWRT under 
surface compaction. First, the wetting fronts are successfully traced by 
the adaptive mesh refinement. For example, 0.5 h after the initiation of 
the infiltration (Fig. 11a1 and b1), the wetting fronts are fragmented by 
the “bowl-shape” membrane, and each piece is associated with an in
dividual refined region. As the infiltration proceeds, the fragmented 
wetting fronts bypass the membrane and merge below the membrane 
(Fig. 11a2, a3, b2 and b3). In Guber et al. (2015), HYDRUS-2D uses 
relatively fine grids near the “bowl-shape” membrane to depict the ge
ometry of the subsurface membrane (see Fig. 3 in their paper), while the 
adaptive mesh refinement uses a fine grid to provide detailed soil water 
dynamics. Even close to the “bowl-shape” membrane, if the soil water 
content is uniform, using a fine mesh grid is unnecessary. However, far 
away from the “bowl-shape” membrane, if the soil water content is 
rapidly fluctuating (near the wetting front), it is necessary to invoke the 
fine mesh grid to reveal the small-scale soil water distributions. Second, 
even though surface compaction deforms the membrane, soil water 
content above the membrane still increases during the infiltration 
period, for the dominant liquid water flux is downward and the 
deformed membrane can intercept the liquid water flux. Third, with or 
without surface compaction, after the 1.5 h of infiltration, the water 
stored above the membrane decreases (Fig. 11a4–a6 and b4–b6), 
because water stored above the membrane gradually leaks through the 
left and right edges of the membrane following soil matric potential 
gradients. However, the water leaking rate for the deformed soil is 
smaller than the rate for the non-deformed soil, such that in 
Fig. 11b4–b6, relatively large soil water contents can be observed 
compared to Fig. 11a4–a6. That is because surface compaction could 
decrease the soil hydraulic conductivity near the edges of the subsurface 
membrane, marked with two arrows in Fig. 11b4. Hence, the liquid 
water above the membrane is partially trapped above the subsurface 
membrane. 

When presenting Fig. 11, we use a relatively large color contrast in 
the high water content regions (mainly above the subsurface mem
brane). Therefore, the color changes between cyan and dark blue in 

Fig. 11b5 and b6 imply a relatively small water content fluctuation. 
Moreover, when surface infiltration is terminated, we assume the sur
face is impermeable to liquid water and water vapor fluxes, such that the 
water cumulated above the membrane in Fig. 11b4–b6 can be obvious. 
In reality, the surface water could be lost via evaporation, and therefore, 
SWRT with “bowl-shape” membranes are supposed to only create high 
soil water content regions temporarily. 

In this example, SWRT can preserve soil water, and its water pre
serving function relates to the subsurface membrane geometry and soil 
deformation. However, water stored by the membrane should be used 
before it leaks away. In general, the geometric configuration of the 
“bowl-shape” membranes, the depth of burial, the irrigation method 
(surface or subsurface) and the soil properties may vary in field exper
iments (For example, in Guber et al., 2015, coarse sand is used, and the 
bowl-shape membranes are placed at multiple places). Thus, this 
example mainly illustrates a potential application of the proposed model 
framework. Moreover, potential applications of the model framework 
are not limited to SWRT but can be expanded to a variety of soil and 
agriculture problems, such as (interrow) subsurface irrigation under 
surface compaction or surface covering. 

6. Conclusion 

In this study, a model framework of the coupled heat and water 
transfer (CHWT) problem is presented. First, a baseline mixed FEM 
scheme is formulated for the fully coupled CHWT governing equations. 
Soil water potential, temperature, liquid water flux, vapor flux and 
conductive heat flux are explicitly solved, and local and global conser
vation of mass and energy are achieved. Second, an adaptive mesh 
refinement is designed to improve the simulation accuracy and resolu
tion under spatial variations of soil properties. Gradient measure and 
clustering model trace the spatial variations, and nested FEM mesh grid 
and “virtual-split” process facilitate the mesh refinement for the mixed 
FEM solver. Third, a mesh deformation model for soil non-rigidity is 
presented. When external load exists, soil deformation is computed 
using an updated Lagrangian formulation, and the deformation results 
are transferred to the CHWT model via the deformed mesh grid. 
Therefore, the model framework proposed in this study provides a 
generic and adaptive way to perform CHWT simulations in non-rigid 
soils with spatial variations of soil properties. 

The main accomplishment of this study is the model establishment. 
The illustrative examples are typical soil physics problems or abstracted 
from real-world applications. In addition, using the “k-means” model is 
an attempt to include machine learning methods in soil process-based 
models. The soil hydraulic and thermal properties, as well as the 
empirical stress–strain relations can be updated to improve real-world 
applications without substantial changes of the model architecture. 
Obtaining systematic constitutive relations for soil strain–stress and soil 
hydraulic and thermal properties under soil deformation is critical but 
challenging. Therefore, it should be treated as a future research topic. 

Future studies should also include the following topics. (a) In nearly 
saturated soil, soil compaction may cause water exfiltration and surface 
runoff, and low temperature may freeze the water in surface soil. 
Therefore, the CHWT model should be combined with soil surface 
models or freezing-thawing models (Wang et al., 2020; Wang et al., 
2021a, Zheng et al., 2021). (b) The three transfer components, including 
the liquid water, vapor and conductive heat fluxes in Eq. (1), can be 
expressed in a partially coupled form (Wang et al., 2022; Luo et al., 
2022), and the mixed FEM scheme can be revised for each component to 
facilitate a modularized programming architecture similar to the exist
ing HYDRUS or 2DSOIL simulators (Saito et al., 2006; Timlin et al., 
1996). (c) The numerical scheme can be generalized to include crop 
growth, root development and soil-root interaction models (Wang et al., 
2021b). (d) With a tetrahedral mesh grid, the model framework can be 
generalized to 3D soil CHWT simulations. 
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Data availiability 

The model proposed in this study will be available at (https://github. 
com/cauwzj). Model development and validation examples are 
composed in a supplementary material and released in that repository. 
Soil data in the validation examples can be found in Celia et al. (1990) 
and Heitman et al. (2008). 
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