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A B S T R A C T

Saturated soil thermal conductivity (λsat) is the maximum soil thermal conductivity value of a given soil. 
Although it can be determined accurately with a heat pulse sensor, there are challenges to prepare fully saturated 
soil samples. Numerous models have been developed to estimate λsat, and among these, the geometric mean 
method (GMM) generally performs well. The GMM requires soil mineral composition or quartz content infor
mation, which is unavailable for most soils. Earlier studies commonly used assumed that quartz content (fquartz) 
was equal to sand content (fsand) or to 0.5 × fsand, which led to significant λsat estimation errors especially on 
coarse-textured soils. We derived a novel method to estimate λsat from soil porosity (ϕ) based on a combination of 
the GMM and differential effective medium theory (DEM). The new DEM-GMM approach has a single parameter, 
cementation exponent (m). Using a calibration dataset of 43 soils, we determined best fit m values for soils in 
three groups: 1.66 for Group I (fsand < 0.4), 1.62 for Group II (0.4 <= fsand < 1) and m = -1.34ϕ+1.70 for Group 
III (fsand = 1). Using best fit m values for different groups, the new model can estimate λsat values from ϕ. In
dependent validation results on another 46 soils showed that the new model outperformed the GMM method 
with the assumption that fquartz = fsand or fquartz = 0.5 × fsand. The mean RMSE, Bias and R2 values of the DEM- 
GMM approach were 0.202 W m−1 K−1, 0.013 W m−1 K−1 and 0.89, respectively, and corresponding values of the 
GMM with the two assumptions were 0.295 and 0.476 W m−1 K−1, 0.056 and -0.28 W m−1 K−1, 0.80 and 0.82, 
respectively. The robust performance of the DEM-GMM approach suggests that it can be incorporated into 
thermal conductivity models to accurately estimate the thermal conductivity of unsaturated soils.   

1. Introduction

Soil thermal conductivity (λ) is directly related to a soil’s capability
to conduct heat (Bristow, 2002). As soil is a three-phase system, soil λ is 
influenced by the thermal conductivity and volume fraction of each 
phase (e.g., porosity (ϕ) and water content (θ)). Thermal conductivity of 
soil solids (λs) is much greater than that of the other two phases (water 
and air) and water has a much larger thermal conductivity than does air. 
For a given soil, the magnitude of soil λ depends largely on θ and varies 
from dry to saturated states (de Vries, 1963). Dry soils can be regarded 
as a mixture of solid and air having relatively low thermal conductivity 
(λdry); in contrast, water-saturated soils have their highest value of 
thermal conductivity (λsat). There are many λ(θ) models available to 
estimate the thermal conductivity of unsaturated soils. Most of the 

models require λdry and λsat as inputs, particularly the normalized 
thermal conductivity models, which were first proposed by Johansen 
(1975) and later included in many empirical models (Côté and Konrad, 
2007; Lu et al., 2007; He et al., 2017). They can be written in a general 
form as follows: 

λ = λsatKe + λdry(1 − Ke) (1)  

where Ke is the Kersten coefficient as a function of θ. Thus, the effect of 
uncertainty in λdry and λsat estimates on the λ(θ) curve over the entire 
range of saturation (0 ≤ θ ≤ ϕ) are expressed as: 

δλ = δλsat

∫ ϕ

0
Kedθ (2a)  
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δλ = δλdry

∫ ϕ

0
(1 − Ke)dθ = δλdry

(

ϕ −

∫ ϕ

0
Kedθ

)

(2b)  

where δλ, δλdry and δλsat represent the uncertainties in estimating the 
thermal conductivity values of unsaturated soils, dry soils and water- 

saturated soils, respectively. Because the λ(θ) curve is sigmoidal, 
∫ϕ

0 
Kedθ is always greater than ϕ/2 (e.g., Fig. 1 in Lu et al. (2007)). Also, 
because λsat is much greater than λdry, Eq. (2a) is expected to influence 
the λ(θ) curve much more than λdry. Therefore, it is critical to accurately 
determine or estimate λsat for soil heat conduction calculations. 

Benefiting from progress in measurement techniques (e.g., heat pulse 
method), λsat can generally be accurately determined (Bristow, 1998; 
He et al., 2018; Dixon et al., 2023). However, the preparation of satu
rated soil samples, particularly for fine-textured soils, poses serious 
problems caused by the difficulty of removing entrapped air, and due to 
soil swelling (Tarnawski et al., 2009). Therefore, it is unsurprising that 
many of the published λ(θ) datasets do not have measurements at or near 
saturated conditions. Consequently, there are numerous thermal con
ductivity models available in the literature to estimate λsat (Tarnawski 

et al., 2018; Wang et al., 2020). They can generally be categorized into 
three types: theoretical models; semi-empirical models; and empirical 
models. Wang et al. (2020) reviewed a total of 52 models that estimate 
λsat, and they reported that none of the empirical models were accurate. 
The geometric mean method (GMM) performed the best, followed by 
seven theoretical models which all required thermal conductivity of soil 
solids λs as an input parameter. However, λs cannot be directly deter
mined as “soil is a porous medium and there is no way to compact the 
soil to a continuous solid state without any pore spaces.” Thus, λs values 
are not known for most soils (He et al., 2020b). 

He et al. (2020b) summarized three types of approaches to estimate 
λs: (1) inverse estimation from λsat using the GMM; (2) empirical esti
mation using texture and porosity; (3) fitting models to 
saturation-dependent thermal conductivity (λ(θ)) measurements, which 
treats λs as a model fitting parameter. Among the three approaches, the 
third type provides the best estimates of λs (Côté and Konrad, 2007; He 
et al., 2020b), but there are some limitations. First, model fitting results 
depend on the number and range of fitted λ(θ) datapoints, particularly in 
the range near saturation. Côté and Konrad (2007) reported that when 
using a single λ(θ) measurement, the Côté and Konrad (2005) model 
estimated λs values from 4.92 to 5.67 W m−1 K−1, whereas the estimated 

Notation 

a semi-major axial dimension, m 
b semi-minor axial dimension, m 
c semi-minor axial dimension, m 
D effective depolarization factor, unitless 
Da depolarization factor at the semi-major axis, unitless 
Db depolarization factor at the semi-minor axis, unitless 
Dc depolarization factor at the semi-minor axis, unitless 
Di depolarization factor at ith direction, unitless 
F electrical formation factor, unitless 
fj volume fraction of the jth phase, cm3 cm−3 

fquartz quartz content, cm3 cm−3 

fsand sand content, g g−1 

Ke Kersten coefficient, unitless 
m cementation exponent, unitless 
T* relative temperature, K 
Vw Volume of water, cm3 

Vs Volume of solids, cm3 

Greek letters 
λ thermal conductivity, W m−1 K−1 

λdry thermal conductivity of dry soils, W m−1 K−1 

λj thermal conductivity of the jth phase, W m−1 K−1 

λk thermal conductivity at step k, W m−1 K−1 

λ0 thermal conductivity of other minerals, W m−1 K−1 

λq thermal conductivity of quartz, W m−1 K−1 

λs thermal conductivity of solids, W m−1 K−1 

λsat saturated thermal conductivity, W m−1 K−1 

λi sat saturated thermal conductivity at ith direction, W m−1 K−1 

λw thermal conductivity of water, W m−1 K−1 

λw* relative thermal conductivity of water, W m−1 K−1 

σs electrical conductivities of solid particles, S m−1 

σsat saturated electrical conductivities, S m−1 

σw electrical conductivities of water, S m−1 

θ water content, cm3 cm−3 

ϕ porosity, cm3 cm−3 

α soil texture dependent parameter, unitless  

Fig. 1. The iterative process of the DEM theory.  
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λs value was 5.08 W m−1 K−1 when five λ(θ) values were used. Model 
fitting results are also influenced by the robustness of the selected fitting 
equation. Lu et al. (2007) reported that Côté and Konrad (2005) model 
could not well capture the trend of λ(θ) curves at low and intermediate θ 
ranges as its hyperbolic form. Thus, if one uses λ(θ) datapoints at low 
and medium saturation to estimate λs, errors from the Côté and Konrad 
(2005) model itself are included in the λs estimations. For example, Côté 
and Konrad (2007) found the largest RMSE of λs for a crushed rock 
inversely estimated with the Côté and Konrad (2005) model, when λ(θ) 
datapoint at θ = 0.009 cm3 cm−3 were used. 

Differential effective medium (DEM) theory was introduced by Sen 
et al. (1981) and Bussian (1983) to model high-frequency dielectric 
permittivity and DC-electrical conductivity of rocks, respectively 
(Cosenza et al, 2009). Revil (2000) and later studies (Cosenza et al., 
2003; Jougnot and Revil, 2010) then adopted DEM theory to estimate 
thermal conductivity values of various porous media. The DEM theory 
had two parameters: λs and cementation exponent (m). The exponent m 
was first defined by Archie’s law and typically ranges from 1.2 to 4.0 for 
porous media (Friedman, 2005). Both GMM and DEM theory require λs 
as inputs, which, however, is difficult to be determined thus not known 
for most soils. Thus, in this study, GMM and DEM theory are combined 
to develop a new relationship between λsat and ϕ (assuming a constant 
value of thermal conductivity of water (λw)). The best fitted m values for 
three textural groups (depending on sand content) were determined for 
43 soils. The performance of the GMM-DEM approach to estimate λsat 
was then tested on another 46 soils and compared with GMM estimates 
of λsat using known quartz content or sand content. 

2. Model development 

2.1. Geometric mean model 

The classical geometric mean model (GMM) was first proposed by 
Lichtenecker (1924). Woodside and Messmer (1961) applied the GMM 
to calculate the effectivity thermal conductivity of two-phases porous 
medium, i.e., a solid phase and a saturating fluid phase (e.g., air, water 
and oil), randomly distributed in the pore space with respect to the di
rection of heat flow, 

λ = λ1−ϕ
s λϕ

f (3)  

where λf is the thermal conductivity of the fluid phase. Woodside and 
Messmer (1961) showed that Eq. (3) gives reliable estimates for un
consolidated sands when the ratio of λs to λf is less than 20. For most soil 
minerals, λs ranges from 1.8 to 8.8 W m−1 K−1 (Horai, 1971), and 
thermal conductivity of water (λw) is 0.598 W m−1 K−1 at 20 ◦C. Thus, 
Eq. (3) can be used to calculate the thermal conductivity of 
water-saturated soils, 

λsat = λ1−ϕ
s λϕ

w (4)  

This equation has been extensively used in empirical thermal conduc
tivity models (Donazzi et al., 1979; Ewen and Thomas, 1987; Côté and 
Konrad, 2005; Lu et al., 2007; Chen, 2008; He et al., 2017). As stated 
earlier, it is difficult to directly measure λs. When the complete mineral 
composition is known, λs can be indirectly estimated using the GMM: 

λs =
∏

j
λfj

j with
∑

j
fj = 1 (5)  

where λj (W m−1 K−1) and fj are the thermal conductivity and volume 
fraction of the jth forming mineral, respectively. Because the thermal 
conductivity of quartz (λq) is considerably larger than most other soil 
minerals (λo), Johansen (1975) simplified Eq. (5) to include quartz and 
other minerals only. Then Eq. (5) becomes, 

λs = λfq
q λ1−fq

o (6)  

where λq is 7.7 W m−1 K−1; and λo is 2.0 W m −1 K−1 for soils with quartz 
content (fq) > 0.2, and 3.0 W m −1 K−1 for soils with fq ≤ 0.2, 
respectively. 

Combining Eqs. (4) and (6) leads to 

λsat =
(

λfq
q λ1−fq

o

)1−ϕ
λϕ

w (7)  

With Eq. (7), one can estimate λsat from quartz content and porosity. 
However, quartz content is usually measured with a combination of X- 
ray diffraction/X-ray fluorescence techniques, which is expensive and 
rarely used (Schönenberger et al., 2012). Consequently, quartz content 
is not commonly known for most soils and is often assumed to be equal 
either to sand content (fsand) ((Peters-Lidard et al., 1998; Lu et al., 2007; 
Fu et al., 2021b) or to 50 % of the sand content (Hu et al., 2017; Zhao 
et al., 2018; He et al., 2021). For Eq. (7), the use of the assumption that 
fq = fsand leads to overestimations of λsat especially for sands (Lu et al., 
2007), and using fq = 0.5fsand significantly underestimates λsat (He et al., 
2020a). Tarnawski et al. (2012) found that for 40 Canadian soils, there 
was only a weak correlation (R2 = 0.33) between fq and fsand. Similarly, 
Calvet et al. (2016) also reported a linear correlation between fq and fsand 
with R2 of 0.67 based on 14 soils in southern France. 

2.2. Differential effective medium (DEM) theory 

Saturated soil can be regarded as a two-phase mixture of solid and 
water. Its thermal conductivity can be described by the Maxwell-Garnett 
equation which was first used for dielectric permittivity (Maxwell, 
1873): 

λsat − λw

λsat + 2λw
= (1 − ϕ)

λs − λw

λs + 2λw
(8)  

where a small volume fraction of 1-ϕ of spherical inclusions (i.e., solid) 
with a thermal conductivity of λs are embedded as isolated spheres in a 
background or host (i.e., water) with thermal conductivity of λw, and λsat 
is the effective thermal conductivity of the mixture. The symbols for 
thermal conductivity in Eq. (8) can also be replaced by dielectric 
permittivity or electrical conductivity. However, Eq. (8) is only valid for 
dilute suspensions of spherical solids, which assumes that “the solid 
spherical inclusions ‘see’ only the permittivity/electrical conductivity of 
the background around themselves” (Robinson and Friedman, 2005). 
Thus, Eq. (8) cannot compute the thermal conductivity of 
water-saturated soils accurately, because the soil solids are in close 
contact with each other, and most of the solid particles are 
non-spherical. 

Differential effective medium (DEM) theory is a more realistic way to 
integrate the thermal interaction between solids and water than the 
dilute approximation in Eq. (8). The iterative process of the DEM theory 
can be explained briefly as follows (Fig. 1): at Step 0, the initial homo
geneous medium filled with water has a thermal conductivity of λw and a 
volume of Vw; at Step k (integer), an infinitesimal increment (dVs) of the 
inclusion phases (e.g, spherical solids) of any size is added into the host 
phase (i.e., water), then the mixture has an effective thermal conduc
tivity of λk and constitutes the initial medium of the next step (i.e., Step 
k+1); sequential iterative inclusion of solids into water continues such 
that at Step n, the desired porosity (ϕ = Vw/(Vw + Vs)) and thermal 
conductivity (λn = λsat) are reached. Here we use DEM theory to estimate 
thermal conductivity of water-saturated soils with the following 
equation: 
(

λi
sat − λs

λw − λs

)(
λw

λi
sat

)Di

= ϕ (9)  

where Di and λi sat are the depolarization factor and the saturated 
thermal conductivity in the ith direction with respect to the heat flow 
direction. Eq. (9) was developed based on a self-similar assumption, 
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which Robinson and Friedman (2001) stated should be applied to a 
fractal medium of infinitely wide particle size distribution. Theoreti
cally, Di describes the extent to which the inclusion polarization is 
reduced according to its shape and orientation with respect to the 
applied temperature gradient (Lesmes and Friedman, 2005). For a spe
cial case of spheroids, Di can be empirically computed as (Jones and 
Friedman, 2000): 

Da =
1

1 + 1.6(a/b) + 0.4(a/b)
2 (10a)  

Db = Dc = 0.5(1 − Da) (10b)  

where a, b and c represent the semi-major axial dimension and two semi- 
minor axial dimensions (b = c), respectively. Specifically, Da = Db = Dc 

= 1/3 for spherical solids for which Eqs. (8) and (9) form lower and 
upper bounds for the estimation of λsat of water-saturated soils (Rob
inson and Friedman, 2001). 

An isotropic version of Eq. (9) can be obtained by averaging the 
depolarization factors over all possible particle orientations (Mendelson 
and Cohen, 1982): 

λsat = λwϕm
(

1 − λs/λw

1 − λs/λsat

)m

(11)  

where m is the effective cementation exponent depending on the particle 
shape, with an arithmetic correction by Sen (1984) for randomly ori
ented spheroids: 

m =

〈
(5 − 3D)

3
(
1 − D2

)

〉

(12)  

where D is the depolarization factor along the principal axis of a sphe
roidal grain and < > denotes an average over the distribution in D at all 
possible particle orientations. For ith direction, the cementation expo
nent mi and depolarization factor Di can be related as mi = 1/ (1 – Di). 
The effective cementation exponent m values as a function of D from Eq. 
(12) are shown in Fig. 2. D = 0 represents long, needle-like solids with 
random orientations (e.g., clay tactoids), with a cementation exponent m 
of 5/3, which is the upper limit of m for prolate particles; for spherical 
solids, D = 1/3 thus m = 3/2 which is the lowest value of m; whereas for 
oblate, disk-like particles, D approaches 1 and m becomes infinity 
(Lesmes and Friedman, 2005; Friedman, 2005). More details about the 
relationship between m and D can be found in Mendelson and Cohen 
(1982) and Sen (1984). 

If we replace all λ terms in Eq. (11) with electrical conductivity 
terms, Eq. (11) becomes the Bruggeman-Hanai-Sen equation, 

σsat = σwϕm
(

1 − σs/σw

1 − σs/σsat

)m

(13)  

where σsat, σs and σw are electrical conductivities of water-saturated 
soils, solid particles and water, respectively. At its high-salinity limit 
(σw→∞), Eq. (13) reduces to Archie’s law (Archie, 1942) 

lim
σw→∞

σsat = σwϕm (14)  

Thus, Revil (2000) stated that m in Eq. (11) is rigorously identical to the 
cementation exponent in Archie’s law and can be obtained from elec
trical conductivity measurements. For electrical conduction in sand with 
negligible surface conduction (i.e., σs = 0), the Bruggeman-Hanai-Sen 
equation (Eq. (13)) reduces to Archie’s law (Eq. (14)) at the 
high-salinity limit. However, for heat transfer in soils, because λs (1.8 to 
8.8 W m−1 K−1) >> λw (~0.6 W m−1 K−1), heat conduction through the 
soil solids is the dominant pathway. Therefore, we should not expect 
that m in Eq. (11) is identical to the cementation exponent in Archie’s 
law. In this study, we refer to m as the cementation exponent based on 
the analog for electrical conductivity, but we did not estimate it from 
electrical conductivity measurements nor consider any cementation 
process. 

2.3. Derivation of GMM from DEM theory 

Although lacking a physical basis, the GMM (Eq. (4)) usually gives 
reliable λsat estimates of water-saturated soils and rocks (Woodside and 
Messmer, 1961; Sass et al., 1971; Johansen, 1975; Wang et al., 2020). 
There have been some attempts to derive a physical basis of the GMM. 
Zakri et al. (1998) provided a physical basis of GMM from the symmetric 
Bruggeman equation for ellipsoidal inclusions where their main axes are 
parallel to the external field, and the ‘equivalent depolarization coeffi
cient’ follows a special case of a uniform distribution. Simpkin (2010) 
showed that the GMM can be derived by applying Maxwell’s equation 
(Eq. (8)) and the principle of charge conservation to a mixture in which 
the components are randomly distributed. However, a more robust 
theoretical basis for the GMM derived from DEM theory, also known as 
the asymmetric Bruggeman equation, has never been provided. In this 
section, starting with DEM theory (Eq. (11)), we present a derivation of 
the GMM (Eq. (4)). 

Eq. (11) can be rewritten as 
(

λsat − λs

λw − λs

)(
λw

λsat

)1−1/m

= ϕ (15) 

Taking the logarithm of both sides of Eq. (15) gives 

ln

(
λ1−1/m

sat

λs − λsat

)

− ln

(
λ1−1/m

w

λs − λw

)

= ln
1

1 − (1− ϕ)
− ln

1
1 − 0

(16) 

Eq. (16) can be rewritten in an integral form as 

∫λsat

λw

(
λ + (1 − 1/m)(λs − λ)

(λs − λ)λ

)

dλ =

∫1−ϕ

0

dϕs

1 − ϕs
(17) 

Eq. (17) represents the iteration process such that after n steps, a 
total volume fraction of 1-ϕ of solid inclusions is added into the water 
phase and the corresponding λ changes from λw representing a homog
enous water phase to λsat representing a water-saturated soil. For an 
infinitesimal increment of soil solids, dϕs, at Step k+1 (Fig. 1), Eq. (17) 
yields, 

λk + (1 − 1/m)(λs − λk)

(λs − λk)λk
(λk+1 − λk) ≅

dϕs

1 − k × dϕs
(18) 

Eq. (18) can be rearranged to give the thermal conductivity ratio λk+1
λk 

as 

Fig. 2. The effective cementation exponent m as a function of the depolariza
tion factor D for an isotropic medium (Eq. (12)). 
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λk+1

λk
= 1 +

dϕs

1 − k × dϕs

(
λs
λk

− 1
)

1 + (1 − 1/m)

(
λs
λk

− 1
) (19) 

We considered a special case that k = 0 (i.e., λk = λw) first, 

λ1

λ0
=

λ1

λw
= 1 + dϕs

(
λs
λw

− 1
)

1 + (1 − 1/m)

(
λs
λw

− 1
) >

(
λs

λw

)dϕs

(20)  

The inequality in Eq. (20) holds when m satisfies that, 

m >
1

1 −

⎡

⎢
⎢
⎣

(
λs
λw−1

)

ln

(
λs
λw

) − 1

⎤

⎥
⎥
⎦

/(
λs
λw

− 1
)

(21)  

A detailed derivation of Eq. (21) is provided in Appendix A. As k in
creases, λk increases and thus λk+1

λk 
in Eq. (19) decreases. When k ap

proaches n-1, 

lim
k→n−1

λk+1

λk
= 1 <

(
λs

λw

)dϕs

(22) 

Thus, we specified a value of m  
⎛

⎜
⎝m > 1

1−

[
( λs

λw
−1)

ln( λs
λw)

−1

]/

( λs
λw−1)

⎞

⎟
⎠ satisfying, 

λsat

λw
=

λsat

λn−1

λn−1

λn−2
⋅⋅⋅

λk+1

λk
⋅⋅⋅

λ1

λw

=
∏k=n−1

k=0

⎡

⎢
⎢
⎣1 +

dϕs

1 − k × dϕs

(
λs
λk

− 1
)

1 + (1 − 1/m)

(
λs
λk

− 1
)

⎤

⎥
⎥
⎦ =

(
λs

λw

)n×dϕs

(23)  

where n × dϕs represents the total volume fraction of inclusion phases 
(1−ϕ) during the iteration process, thus 1−n × dϕs is exactly ϕ. Then Eq. 
(22) becomes the GMM between λsat, λw and λs as represented by Eq. (4). 

In summary, the derivations above provide a firm justification for the 
GMM from DEM theory, which means that the GMM and DEM become 
identical with appropriate m values. If we rewrite the GMM (Eq. (4)) as, 

Table 1 
Soil name, texture, particle size distribution, porosity (ϕ) and sources of soils in the calibration dataset.  

Soil ID Soil name Texture Particle size distribution ϕ Sources    

Sand Silt Clay cm3 cm−3  

1 Accusand 12/20 sand 1.00 0.00 0.00 0.317 Deepagoda et al. (2016) 
2 Accusand 20/30 sand 1.00 0.00 0.00 0.332 Deepagoda et al. (2016) 
3 Accusand 30/40 sand 1.00 0.00 0.00 0.336 Deepagoda et al. (2016) 
4 Accusand 40/50 sand 1.00 0.00 0.00 0.347 Deepagoda et al. (2016) 
5 Accusand 50/70 sand 1.00 0.00 0.00 0.336 Deepagoda et al. (2016) 
6 - sand 0.94 0.01 0.05 0.40 Lu et al. (2007) 
7 - sand 0.93 0.01 0.06 0.40 Lu et al. (2007) 
8 - sandy loam 0.67 0.21 0.12 0.48 Lu et al. (2007) 
9 - loam 0.40 0.49 0.11 0.58, 0.51, 0.47 Lu et al. (2007) 
10 - silt loam 0.27 0.51 0.22 0.50 Lu et al. (2007) 
11 - silt loam 0.11 0.70 0.19 0.51 Lu et al. (2007) 
12 - silty clay loam 0.19 0.54 0.27 0.55, 0.51, 0.47 Lu et al. (2007) 
13 - silty clay loam 0.08 0.60 0.32 0.51 Lu et al. (2007) 
14 - clay loam 0.32 0.38 0.30 0.51 Lu et al. (2007) 
15 - loam 0.50 0.41 0.09 0.48 Lu et al. (2007) 
16 - sand 0.92 0.07 0.01 0.40 Lu et al. (2007) 
17 - silty clay 0.07 0.50 0.43 0.52 Lu et al. (2011) 
18 - sand 0.94 0.01 0.05 0.40 Lu et al.(2013) 
19 - silt loam 0.02 0.73 0.25 0.55 Lu et al. (2007) 
20 - sand 0.91 0.03 0.06 0.47, 0.43, 0.40 Fu et al. (2021a) 
21 - sandy loam 0.52 0.36 0.12 0.53, 0.49, 0.45 Fu et al. (2021a) 
22 - silt loam 0.34 0.53 0.13 0.57, 0.53, 0.49 Fu et al. (2021a) 
23 - sand 1.00 0.00 0.00 0.43, 0.40, 0.37 Fu et al. (2021a) 
24 - silt loam 0.21 0.67 0.12 0.60, 0.57, 0.53 Fu et al. (2021a) 
25 - clay loam 0.24 0.49 0.27 0.60, 0.58, 0.55 Fu et al. (2021a) 
26 Pale brown silt loam 0.25 0.58 0.17 0.44 Hailemariam et al. (2017) 
27 Brown silt loam 0.27 0.53 0.20 0.46 Hailemariam et al. (2017) 
28 Pale black silt loam 0.10 0.65 0.25 0.48 Hailemariam et al. (2017) 
29 Ottawa sand sand 1.00 0.00 0.00 0.37 Nikolaev et al. (2013) 
30 Richmond Hill loam 0.52 0.32 0.15 0.57 Nikolaev et al. (2013) 
31 A sand 1.00 1.00 1.00 0.49, 0.46, 0.42, 0.34 Chen (2008) 
32 B sand 1.00 1.00 1.00 0.55, 0.51, 0.47, 0.43 Chen (2008) 
33 C sand 1.00 1.00 1.00 0.55, 0.51, 0.47, 0.43 Chen (2008) 
34 D sand 1.00 1.00 1.00 0.47, 0.43, 0.40, 0.35 Chen (2008) 
35 L-soil sand 0.89 0.06 0.05 0.43 Campbell et al. (1994) 
36 Mokins silt loam 0.20 0.55 0.25 0.55 Campbell et al. (1994) 
37 Palouse-A silt loam 0.11 0.68 0.21 0.52 Campbell et al. (1994) 
38 Palouse-B silty clay 0.09 0.44 0.47 0.57 Campbell et al. (1994) 
39 Royal sandy loam 0.54 0.32 0.15 0.49 Campbell et al. (1994) 
40 Salkum silt loam 0.19 0.59 0.23 0.59 Campbell et al. (1994) 
41 Walla Walla silt loam 0.23 0.63 0.14 0.53 Campbell et al. (1994) 
42 Volkmar sandy loam 0.72 0.16 0.12 0.46 Campbell et al. (1994) 
43 Norfolk sandy loam 0.75 0.10 0.15 0.41 Hopmans and Dane (1986)  
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λs =

(
λsat

λϕ
w

) 1
1−ϕ

(24) 

Then by inserting Eq. (24) into Eq. (11), we obtained the following 
expression: 

λsat = λwϕm

⎛

⎜
⎜
⎜
⎜
⎝

1 −

(
λsat
λw

) 1
1−ϕ

1 −

(
λsat
λw

) ϕ
1−ϕ

⎞

⎟
⎟
⎟
⎟
⎠

m

(25)  

Eq. (25), denoted hereafter as “DEM-GMM”, is developed based on a 
combination of differential effective medium theory and the geometric 
mean method. Once m is known, one can estimate λsat from ϕ with Eq. 
(25), where λw is assumed to have a constant value (i.e., 0.598 W m−1 

K−1) at room temperature (influence of temperature on Eq. (25) will be 
investigated in Section 4.2). Several facts regarding Eq. (25) need be 
stated here. First, as stated earlier, m is not identical to the cementation 
exponent defined by Archie’s law, thus it is not expected to be accurately 
estimated from electrical conductivity measurements. Second, the ef
fects of grain contact are assumed to be zero (i.e., dilute assumption at 

each iteration step) during the iteration process in the DEM theory. 
However, continuous solid phase or the solid-to-solid contact through a 
thin water film (i.e., water bridge) in saturated soils cannot be neglected, 
thus fitting m also accounts for the errors from this assumption. Third, 
except for the special case of m = 2, numerical methods must be used to 
solve Eq. (25) for λsat implicitly (e.g., Glover et al., 2010; Niu et al., 
2016; Revil 2000). In this study, we used the Solver in Excel to solve Eq. 
(25) implicitly. Besides, the DEM-GMM approach has been implemented 
into the Python programming language: the source code as well as 
additional documentation are also provided in the Acknowledgements. 

3. Datasets 

In this study, data representing 89 soils were collated from the 
literature and used to develop and validate the DEM-GMM approach. 
Constraints were imposed on the dataset such that all of the soils had λsat 
values measured with standard techniques at room temperature (i.e., 
20–25 ◦C), particle size distribution, and porosity. These soils were then 
divided into a calibration dataset of 43 soils and a validation dataset of 
46 soils, spanning a range of soil textures and porosities. The 46 soils in 
the validation dataset also had available quartz content to evaluate the 

Table 2 
Soil name, texture, particle size distribution, quartz content, particle density (ρs), porosity (ϕ) and sources of soils in the validation dataset.  

Soil ID Soil name Texture Particle size distribution Quartz content ρs ϕ Sources    

Sand Silt Clay  g cm−3 cm3 cm−3  

44 Acadia silt loam 0.33 0.57 0.10 0.51 2.71 0.55 Tarnawski et al. (2015) 
45 Cumberland sandy loam 0.61 0.34 0.05 0.61 2.71 0.45 Tarnawski et al. (2015) 
46 Pugwash sandy loam 0.57 0.37 0.05 0.63 2.68 0.40 Tarnawski et al. (2015) 
47 Stable Island sand 1.00 0.00 0.00 1.00 2.66 0.36 Tarnawski et al. (2015) 
48 Cornwallis-Annapolis-V loamy sand 0.85 0.12 0.03 0.72 2.66 0.4 Tarnawski et al. (2015) 
49 Pugwash-Annapolis Valley sandy loam 0.56 0.38 0.06 0.65 2.68 0.51 Tarnawski et al. (2015) 
50 Queens-Annapolis Valley silt loam 0.22 0.66 0.12 0.34 2.78 0.57 Tarnawski et al. (2015) 
51 Orthic Podzol-1 loam 0.50 0.42 0.08 0.66 2.64 0.44 Tarnawski et al. (2015) 
52 Orthic Podzol-2 loam 0.51 0.40 0.09 0.58 2.66 0.42 Tarnawski et al. (2015) 
53 Orthic Podzol-3 loamy sand 0.83 0.14 0.03 0.54 2.66 0.41 Tarnawski et al. (2015) 
54 Caribou silt loam 0.03 0.82 0.15 0.57 2.59 0.54 Tarnawski et al. (2015) 
55 Victoria silt loam 0.00 0.83 0.17 0.56 2.54 0.45 Tarnawski et al. (2015) 
56 Juniper silt loam 0.24 0.66 0.1 0.55 2.57 0.62 Tarnawski et al. (2015) 
57 Queens silt loam 0.26 0.64 0.1 0.60 2.59 0.54 Tarnawski et al. (2015) 
58 Fundy silty clay loam 0.00 0.67 0.33 0.39 2.71 0.54 Tarnawski et al. (2015) 
59 Beach sand 0.93 0.05 0.02 0.35 2.73 0.43 Tarnawski et al. (2015) 
60 Field 9 loamy sand 0.79 0.17 0.03 0.42 2.69 0.48 Tarnawski et al. (2015) 
61 Brainsville silt loam 0.36 0.56 0.08 0.28 2.70 0.43 Tarnawski et al. (2015) 
62 North Gower silt loam 0.07 0.75 0.18 0.17 2.76 0.51 Tarnawski et al. (2015) 
63 Matilda loamy sand 0.71 0.25 0.04 0.41 2.71 0.46 Tarnawski et al. (2015) 
64 Uplands sand 0.89 0.10 0.01 0.38 2.76 0.39 Tarnawski et al. (2015) 
65 Lyons sandy loam 0.56 0.37 0.07 0.36 2.75 0.38 Tarnawski et al. (2015) 
66 Uplands loamy sand 0.84 0.14 0.02 0.38 2.74 0.44 Tarnawski et al. (2015) 
67 North Gower silt loam 0.32 0.54 0.14 0.25 2.76 0.45 Tarnawski et al. (2015) 
68 Byerson series silt loam 0.17 0.69 0.14 0.38 2.69 0.55 Tarnawski et al. (2015) 
69 Inwood series silt loam 0.22 0.55 0.23 0.20 2.79 0.41 Tarnawski et al. (2015) 
70 Osborne series silt loam 0.03 0.76 0.21 0.21 2.74 0.63 Tarnawski et al. (2015) 
71 Almassippi series loamy sand 0.81 0.16 0.03 0.61 2.71 0.47 Tarnawski et al. (2015) 
72 Paddockwood silt loam 0.00 0.74 0.26 0.48 2.69 0.41 Tarnawski et al. (2015) 
73 Gronlid Orthic sandy loam 0.67 0.27 0.06 0.61 2.70 0.45 Tarnawski et al. (2015) 
74 Fox Valley silt loam 0.02 0.83 0.15 0.37 2.70 0.53 Tarnawski et al. (2015) 
75 Asquith Orthic loamy sand 0.83 0.14 0.03 0.67 2.68 0.42 Tarnawski et al. (2015) 
76 Bradwell Orthic sandy loam 0.68 0.27 0.05 0.63 2.68 0.45 Tarnawski et al. (2015) 
77 Lethbridge silt loam 0.38 0.52 0.1 0.55 2.64 0.55 Tarnawski et al. (2015) 
78 FSJ # 1 silty clay 0.00 0.58 0.42 0.21 2.74 0.51 Tarnawski et al. (2015) 
79 FSJ # 2 silty clay 0.00 0.58 0.42 0.19 2.72 0.50 Tarnawski et al. (2015) 
80 Vanderhoof silty clay loam 0.00 0.70 0.30 0.27 2.71 0.51 Tarnawski et al. (2015) 
81 PG # 1 silty clay 0.00 0.59 0.41 0.17 2.78 0.52 Tarnawski et al. (2015) 
82 PG # 2 silty clay loam 0.00 0.67 0.33 0.17 2.77 0.53 Tarnawski et al. (2015) 
83 9718 SW silt loam 0.32 0.58 0.1 0.37 2.76 0.52 Tarnawski et al. (2015) 
84 Ottawa sand C-109 sand 1.00 0.00 0.00 1.00 2.65 0.32, 0.40 Tarnawski et al. (2013) 
85 Ottawa sand C-190 sand 1.00 0.00 0.00 1.00 2.65 0.32, 0.40 Tarnawski et al. (2013) 
86 Toyoura sand 1.00 0.00 0.00 0.87 2.65 0.38, 0.40 Tarnawski et al. (2013) 
87 Toyoura sand 1.00 0.00 0.00 0.87 2.65 0.40 Kasubuchi et al. (2007) 
88 Red Yellow silty clay loam 0.34 0.23 0.43 0.58 2.70 0.60 Kasubuchi et al. (2007) 
89 Kuroboku loam 0.28 0.58 0.14 0.45 2.44 0.65 Kasubuchi et al. (2007)  
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performance of the DEM-GMM approach by comparing results to the 
GMM (Eq. [7]) estimates using quartz contents as inputs. Tables 1 and 2 
present the basic soil physical properties and the sources of the 89 soils. 

4. Results and discussion 

4.1. Factors affecting the DEM-GMM estimated λsat values 

The DEM-GMM (Eq. [25]) λsat estimates depend on λw, ϕ and m. The 
thermal conductivity of water λw depends on temperature and is 
approximately 0.6 W m−1 K−1 at room temperature (temperature effect 
will be discussed later). Porosity ranges from 35 % to 50 % for most 
coarse-textured soils and from 40 % to 60 % for most fine-textured soils 
(Hao et al., 2008). If the ϕ value is known, m is the only unknown 

parameter. Fig. 3a illustrates the influence of m on DEM-GMM λsat es
timates (Eq. (25)) as a function of ϕ. In general, for all m values, λsat 
decreases as ϕ increases. As ϕ increases, the number of contacts between 
soil solids and the fraction of soil solids in the bulk soil decrease, thus, 
the magnitude of λsat decreases. At ϕ = 1, λsat = λw for all m values. 
Porosity equal to unity means that there are no soil solids present, thus 
the λsat value is indeed λw. It is obvious that as m increases, both the 
magnitude of λsat and the rate of decrease in λsat with respect to ϕ 
decrease. For small m values, the DEM-GMM approach gives unreason
ably large λsat values at low ϕ. For example, when ϕ = 0.1 and m = 1.5, 
the DEM-GMM λsat estimate is 23.9 W m−1 K−1, which is twice the value 
of λq, i.e., the highest among all mineral compositions within soils. This 
is not a major problem for the DEM-GMM approach when applied to 
natural soils for which ϕ values generally range from 0.4 to 0.6. At m =
2.0, λsat becomes independent of ϕ and is nearly equal to λw (i.e., 0.598 
W m−1 K−1). In this study, 43 soils in the calibration dataset yielded m 
values ranging from 1.50 to 1.71 and the lower bound is exactly the 
theoretical lower limit of m from Eq. [13] when soil solids are uniformly 
packed spheres. 

In the prior analysis, we assumed the value of λw to be constant (i.e., 
0.598 W m−1 K−1) at room temperature. However, as temperature (T) 
increases, λw also gradually increases, thus affecting λsat estimates with 
the DEM-GMM approach. The dependence of λw on T for 0 ◦C < T <
90 ◦C (Ramires et al., 1995) is expressed as, 

λ∗
w = −1.48445 + 4.12292 T∗ − 1.63866 T∗2 (26a)  

Fig. 3. Saturated thermal conductivity λsat values determined by the DEM-GMM approach (Eq. (25)) as a function of (a) porosity (ϕ) for various m values and λw =

0.598 W m−1 K−1; (b) the effect of temperature (T) on λsat for various groups of ϕ and m. The two dash curves in Fig. 3a represent the λsat values determined by the 
GMM using two representative λs values. 

Fig. 4. The cementation exponent (m) as a function of sand content (fsand) 
determined via the DEM-GMM approach for Soils 1–43 in the calibra
tion dataset. 

Table 3 
Number of soils and fitted m values for three textural groups (i.e., Group I (fsand 
< 0.4), Group II (0.4 ≤ fsand < 1) and Group III (fsand = 1)) in the calibration and 
validation datasets.   

Calibration dataset Validation dataset  

Group 
I 

Group 
II 

Group III Group 
I 

Group 
II 

Group 
III 

Number of 
soils 

18 14 11 24 17 5 

m 1.659 1.618 -0.34ϕ+1.70 - - -  

Fig. 5. The cementation exponent (m) as a function of porosity (ϕ) for soils in 
Group III (fsand = 1) of the calibration dataset. 
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T∗ =
T + 293.15

298.15
(26b)  

λ∗
w =

λw

0.6065
(26c)  

where T* and λw* are relative temperature and relative thermal 

conductivity of water with respect to those at 298.15 K (25 ◦C), 
respectively. From Eq. (26a), λw and T show a quadratic relationship 
such that as T increases, λw increases, thus also leading to an increase in 
λsat estimated with the DEM-GMM approach (Eq. (25)). For saturated 
soils, there is no void space through which vapor can move, thus latent 
heat transfer is small and conductive heat transfer is the dominant 

Fig. 6. Comparison of λsat values estimated with the geometric mean method (Eq. (7)) using inputs of measured quartz content, or setting quartz content equal to 
sand content, or setting quartz content equal to 0.5 × sand content, and by the DEM-GMM approach (Eq. (25)) versus measured λsat for Soil 44-89 in the validation 
dataset. The solid lines are the 1:1 lines. Groups I, II and III represent soils with fsand < 0.4, 0.4 ≤ fsand < 1 and fsand = 1, respectively. 

Table 4 
Estimated λsat values for the validation set of Soils 44–89 calculated with the geometric mean method (Eq. [5]) using inputs of quartz content, quartz content equal to 
sand content, quartz content equal to 0.5 × sand content, and the DEM-GMM approach (Eq. (22)). Groups I, II and III represent soils with fsand < 0.4, 0.4 ≤ fsand < 1 and 
fsand = 1, respectively. The superscript numbers represent the order of performance (e.g., 1 indicates the best and 4 indicates the worst).   

Group I Group II Group III All  

RMSE Bias RMSE Bias RMSE Bias RMSE Bias 

Quartz content 0.183 0.032 0.104 -0.037 0.097 -0.053 0.1471 -0.0051 

Sand content 0.217 -0.064 0.415 0.227 0.165 0.053 0.2953 0.0563 

0.5 × sand content 0.186 -0.027 0.362 -0.272 1.001 -0.978 0.4764 -0.2684 

DEM-GMM 0.173 -0.029 0.245 0.094 0.172 -0.036 0.2022 0.0132  
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mechanism (Smits et al., 2013). In Fig. 3b, we examine λsat versus T from 
0 ◦C to 90 ◦C and find similar trends for various groups of m and ϕ. With 
increasing T, λsat gradually increases and finally becomes stable when T 
approaches 90 ◦C. For all groups of m and ϕ, λsat increases by 20.6 % 
from 0 ◦C to 90 ◦C, which is also the percentage of increase in λw over 
this range. This agrees with the results reported by Nikolaev et al. (2013) 
that λsat of Ottawa sand and Richmond Hill fine sandy loam increased by 
about 20 % from 2 ◦C to 92 ◦C. Note that, at the range of room tem
perature (20–25 ◦C), λsat increases by only 0.034, 0.025, 0.019 and 
0.012 W m−1 K−1 for ϕ = 0.4 and m = 1.6, ϕ = 0.5 and m = 1.6, ϕ = 0.6 
and m = 1.6, ϕ = 0.6 and m = 1.8, respectively. Thus, we hypothesize 
that temperature effects on λsat at room temperature can be ignored, and 
we use λw at 20 ◦C, 0.598 W m−1 K−1, in the following sections. 

4.2. Factors affecting m 

By fitting Eq. (25) to the measured λsat (ϕ) values, we obtained 
parameter m values for the 43 soils in the calibration dataset. We then 

analyzed possible correlations between m and particle size distribution 
and porosity and found that correlations were relatively weak. In Fig. 4, 
the strongest correlation is plotted as the fitted parameter m ranging 
from 1.50 to 1.71 versus fsand ranging from 0.02 to 1 g g−1 with R2 =

0.64. Generally, the m values decrease as fsand increases and their rela
tion behaves more like a step function or a piecewise-constant function. 
This is because sand grains are generally more spherical (m close to 1.5), 
while clay particles are flat, disk-like or long, needle-like tactoids, thus 
having a greater value of m (Mendelson and Cohen, 1982; Friedman, 
2005). For example, Soils 1–5 are silica sand with high sphericity (≥ 0.9) 
which have m values ranging from 1.575 to 1.607, not far from the 
theoretical lower bound of m for mixtures of spherical grains. Sand 
content can also be regarded as an indicator of particle size range, which 
also influences the value of m. Although effective medium theory sug
gests that m is independent of particle size range (Sen et al., 1981; 
Mendelson & Cohen, 1982), Niu and Zhang (2018) report that this only 
holds at ϕ > 0.65 for granular soil samples. For the 43 soils in our 
calibration dataset, porosities range from 0.32 to 0.60. Thus, for these 

Fig. 7. Comparison of λs values estimated with the geometric mean method (Eq. (6)) using inputs of measured quartz content, or by setting quartz content equal to 
sand content or to 0.5 × sand content, and by the DEM-GMM approach (Eq. [25]) versus λs indirectly estimated from measured λsat (Eq. (24)) for Soil 44–89 in the 
validation dataset. The solid lines are the 1:1 lines. Groups I, II and III represent soils with fsand < 0.4, 0.4 ≤ fsand < 1 and fsand = 1, respectively. 
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soil conditions the particle size range is also expected to influence m 
such that the larger the mean particle size (e.g., sands) the smaller the m 
values, as shown in Fig. 4. 

Based on our observations, we divided the soils into three textural 
groups depending on their sand contents: Group I (fsand < 0.4), Group II 
(0.4 ≤ fsand < 1) and Group III (fsand = 1). We noticed that such a 
classfication is similar to textural groups based on λ(θ) of unsaturated 
soils by Fu et al. (2023), in which three groups were: Group I (fsand <

0.4), Group II (Remainder) and Group III (sand). The number of soils 
included in each group in the calibration and validations steps are 
presented in Table 3. For Groups I and II, fitted m values are distributed 
in relatively narrow ranges, 1.62 to 1.70 and 1.56 to 1.71, respectively. 
The average m values for soils in Group I and II are 1.66 and 1.62, 
respectively. For the 11 soils in Group III, fitted m values range from 
1.50 to 1.61. Because all of the soils in Group III have fsand = 1, we 
correlated the m with porosity and found a strong linear relationship (m 
= -1.34ϕ+1.70) with an R2 of 0.85 (Fig. 5). This indicates that m is not 
only affected by the particle size but also by porosity. This agrees with 
Niu and Zhang (2018) who report that m decreases as ϕ increases for 
granular soil samples (Fig. 2 in their study). Glover (2009) reports that 
the value of the cementation exponent m increases as the degree of 
connectedness of the pore network diminishes, which is affected by 
porosity and pore connectivity (see Eq. (18) in Glover, 2009). 

4.3. DEM-GMM estimates of λsat 

With the fitted m values for each group determined in the previous 
section, one can estimate λsat from ϕ with the DEM-GMM approach (Eq. 
(25)). The DEM-GMM approach does not require estimates of quartz 
content. In this section, we compare DEM-GMM estimates to the GMM 
estimates (Eq. (7)) for three quartz input conditions: (i) quartz content 
(hereafter QC), (ii) the assumption that sand content is equal to the 
quartz content (hereafter SC), or (iii) 0.5 × sand content is equal to the 
quartz content (hereafter 0.5SC). Fig. 6 shows the estimated λsat values 
versus the measured ones for Soils 44-89 in the validation dataset which 
are classified into Groups I, II and III as defined earlier. For Group I, the 
four λsat estimate approaches perform very similarly such that the 
measured and estimated results are depicted together for most data 
points, except for some scattered data points for the SC approach. The 
RMSEs and bias values range from 0.173 to 0.217 W m−1 K−1 and -0.064 
to 0.032 W m−1 K−1, respectively (Table 4). Although earlier studies 
show that the QC approach gives accurate λsat estimates (Woodside and 
Messmer, 1961; Johnsen, 1975; Côté and Konrad, 2005; Wang et al., 
2020), we found the QC approach to overestimate λsat for soils in Group 

I, which agreed with the findings of Barry-Macaulay et al. (2015) that 
the QC estimated and measured values on five fine-textured soils showed 
a very large scatter and overestimation (Fig. 1b in Barry-Macaulay et al., 
2015). Côté and Konrad (2007) also found that for several clay soils, 
minerals other than quartz play an important role in determining λs 
which undermines simplification of Eq. (5) to Eq. (6). 

The performances of the four approaches differ most for Group II: the 
QC approach performs best with RMSE of 0.104 W m−1 K−1 and a bias of 
-0.037 W m−1 K−1, which are much better than the other three ap
proaches. The DEM-GMM is second best (RMSE and bias are 0.247 W 
m−1 K−1 and 0.094 W m−1 K−1, respectively), and it provides more 
accurate estimates than either SC or 0.5 SC approaches. The SC approach 
over predicts λsat with the largest RMSE of 0.415 W m−1 K−1 and a bias of 
0.227 W m−1 K−1. This is in accordance with overestimations reported 
by others using the assumption that quartz content is close to the sand 
content, especially for coarse-textured soils (Bristow, 2002; Lu et al., 
2007). In contrast, the 0.5SC approach significantly underestimates λsat 
for soils in Group II with a bias of -0.272 W m−1 K−1. Similar results were 
also presented in Fig. 2 in He et al. (2020a). All approaches except 0.5SC 
give reliable λsat estimates for soils in Group III with RMSEs ranging from 
0.097 to 0.172 W m−1 K−1 and biases ranging from -0.053 to 0.053 W 
m−1 K−1. Alternately, 0.5SC consistently underestimates λsat and the 
extent of underestimation increases with increasing λsat values. Overall, 
QC performs best among the four approaches benefiting from the 
availability of quartz content for all soils in the validation dataset. 
However, as stated previously, quartz contents and soil mineral 
composition information are usually not reported for soils, which typi
cally limits the application of QC. DEM-GMM outperforms the other 
approaches that do not use measured quartz content as an input, with 
RMSE, bias and R2 of 0.202 W m−1 K−1, 0.013 W m−1 K−1 and 0.89, 
respectively. The superior performance of DEM-GMM is particularly 
obvious in Group II where estimates using SC and 0.5SC significantly 
over- or under- estimate λsat values. 

4.4. Estimate λs using the DEM-GMM approach 

The new DEM-GMM approach provides accurate λsat estimates, 
which offers the possibility to estimate λs from porosity only. By 
combining Eqs. [4] and [11], the following expression can be obtained: 
(

λs

λw

)1−ϕ

= ϕm

(
1 − λs/λw

1 − (λs/λw)
ϕ

)m

(27)  

With Eq. (27), one can estimate λs from porosity with the DEM-GMM 
approach using the fitted m values for each group reported in the pre
vious section. Although it is impossible to determine the λs directly, we 
used indirect λs values estimated from measured λsat values (Eq. (24)) as 
benchmarks to evaluate the performance of the DEM-GMM approach 
and for comparisons with GMM (Eq. (6)) using QC, SC and 0.5SC to 
estimate λs for Soils 44–89 in the validation dataset. In Fig. 7 the general 
performance order of the four approaches is: QC > DEM-GMM > SC >
0.5SC. The performances of QC and DEM-GMM are similar, their RMSEs 
range from 0.743 to 0.872 W m−1 K−1, and their bias values range from 
-0.016 and 0.000 W m−1 K−1. Such a robust performance indicates that 
when quartz content is unknown, the DEM-GMM approach provides 
reliable λs estimates, which can be used as inputs to several λ models, e. 
g., the widely-used de Vries (1963) model. 

5. Conclusion 

We developed a DEM-GMM approach to estimate λsat values from 
sand content and porosity using a combination of differential effective 
medium theory and the geometric mean method. The effective cemen
tation exponent (m) is the only unknown DEM-GMM parameter. The 43 
soils in the calibration dataset were divided into three textural groups 
based on sand content: Group I (fsand < 0.4), Group II (0.4 < fsand < 1) 

Fig. A.1. Cementation exponent (m) values determined via the DEM-GMM 
approach for Soils 1-43 in the calibration dataset versus their lower bound 
values (i.e., right side of Eq. (A.4)). 
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and Group III (fsand = 1). The best-fitted values for m were 1.67 for 
Group I, 1.62 for Group II and -0.34ϕ+1.70 for Group III. The DEM- 
GMM approach provided accurate λsat and λs estimates for another 46 
soils when quartz content was not known. Once incorporated into 
existing thermal conductivity models, this can be further applied in 
more scenarios in the future. 
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Appendix A. Physical constraint on the cementation exponent m in the DEM-GMM approach 

Eq. (20) can be rearranged as, 

Fig. B.1. Comparison of λ values estimated with the Lu et al. (2007) model (Eq. (B.1)) where λsat is estimated with the geometric mean method (Eq. (7)) using either 
measured quartz content, or quartz content equal to sand content or to 0.5 × sand content, and by the DEM-GMM approach (Eq. (25)) versus measured λsat for Soil 
44-89 in the validation dataset. The solid lines are the 1:1 lines. Groups I, II and III represent soils with fsand < 0.4, 0.4 ≤ fsand < 1 and fsand = 1, respectively. 
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(A.1) 

For an infinitesimal increment of soil solids, dϕs, the right side of Eq. [A.1] can be rewritten by applying L’Hôpital’s rule, 
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Then the inequality in Eq. [21] is obtained, 
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Combining Eqs. [24] and [A.3] yields, 
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(A.4)  

While fitting the DEM-GMM approach (Eq. (25)) to the measured λsat (ϕ) values, we used Eq. (A.4) as the lower bound to obtain parameter m values for 
the 43 soils in the calibration dataset. As shown in Fig. A.1, none of the values reached the lower constraints during fitting, which, in turn, justifies that 
our derivation from DEM to GMM is robust. 

Appendix B. Application: Incorporating the DEM-GMM approach into λ(θ) models 

As stated earlier in Eq. (2a), any errors in λsat estimation will further lead to changes in λ of unsaturated soils. Thus, here we took the Lu et al. (2007) 
model as an example to investigate the performance of the DEM-GMM approach when incorporating into a λ(θ) model for soils 44–89 in the validation 
dataset. Lu et al. (2007) described Ke as an exponential equation of θ based on twelve soils: 

Ke =
λ − λdry

λsat − λdry
= exp

{

α
[

1 −

(
θ
ϕ

)(α−1.33)
]}

(B.1)  

where λdry is the thermal conductivity of dry soil, α is a soil texture dependent parameter (i.e., 0.96 for coarse-textured soils with sand fraction (fsand) ≥
0.4 and 0.27 for fine-textured soils with fsand < 0.4) and 1.33 is a shape factor. Subsequently, λsat in Eq. (B1] is estimated with the DEM-GMM 
approach, and the GMM (Eq. (5)) using QC, SC or 0.5SC. For a fair comparison, we use the measured λdry values for all cases. The λ estimations 
presented in Fig. B.1 show similar trends as those reported for λsat: QC performs best with a lowest RMSE of 0.178 W m−1 K−1 and a bias closest to zero 
(i.e., 0.002 W m−1 K−1); the DEM-GMM performs second best with a slightly greater RMSE of 0.195 W m−1 K−1 and bias of 0.015 W m−1 K−1; followed 
by SC, and 0.5SC is the worst among the four approaches. Our results are consistent with He et al. (2020a) who also found that using the quartz content 
can improve the performances of all normalized λ(θ) models. However, when quartz content is unavailable, the DEM-GMM approach developed in this 
study, which only requires soil porosity, can be used to accurately estimate λsat and λ from λ(θ) models. 
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