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ARTICLE INFO ABSTRACT
Keywords: Saturated soil thermal conductivity (Asy) is the maximum soil thermal conductivity value of a given soil.
Thermal conductivity Although it can be determined accurately with a heat pulse sensor, there are challenges to prepare fully saturated

Geometric mean method
Differential effective medium theory
Saturation

soil samples. Numerous models have been developed to estimate s, and among these, the geometric mean
method (GMM) generally performs well. The GMM requires soil mineral composition or quartz content infor-
mation, which is unavailable for most soils. Earlier studies commonly used assumed that quartz content (fguartz)
was equal to sand content (fsand) Or to 0.5 X fsand, Which led to significant Asy estimation errors especially on
coarse-textured soils. We derived a novel method to estimate Agy¢ from soil porosity (¢p) based on a combination of
the GMM and differential effective medium theory (DEM). The new DEM-GMM approach has a single parameter,
cementation exponent (m). Using a calibration dataset of 43 soils, we determined best fit m values for soils in
three groups: 1.66 for Group I (fsang < 0.4), 1.62 for Group II (0.4 <= fsana < 1) and m = -1.34¢+1.70 for Group
II (fsand = 1). Using best fit m values for different groups, the new model can estimate Agy¢ values from ¢. In-
dependent validation results on another 46 soils showed that the new model outperformed the GMM method
with the assumption that fquartz = fsand OF fquartz = 0.5 X fsand. The mean RMSE, Bias and R? values of the DEM-
GMM approach were 0.202 Wm ™! K%, 0.013 Wm ™! K~! and 0.89, respectively, and corresponding values of the
GMM with the two assumptions were 0.295 and 0.476 W m! K’l, 0.056 and -0.28 W m™! K’l, 0.80 and 0.82,
respectively. The robust performance of the DEM-GMM approach suggests that it can be incorporated into
thermal conductivity models to accurately estimate the thermal conductivity of unsaturated soils.

models require Agqry and Asye as inputs, particularly the normalized
1. Introduction thermal conductivity models, which were first proposed by Johansen
(1975) and later included in many empirical models (Coté and Konrad,
Soil thermal conductivity (1) is directly related to a soil’s capability 2007; Lu et al., 2007; He et al., 2017). They can be written in a general

to conduct heat (Bristow, 2002). As soil is a three-phase system, soil A is form as follows:
influenced by the thermal conductivity and volume fraction of each
phase (e.g., porosity (¢) and water content (6)). Thermal conductivity of
soil solids (Ag) is much greater than that of the other two phases (water
and air) and water has a much larger thermal conductivity than does air.
For a given soil, the magnitude of soil A depends largely on 6 and varies
from dry to saturated states (de Vries, 1963). Dry soils can be regarded
as a mixture of solid and air having relatively low thermal conductivity
(Aary); in contrast, water-saturated soils have their highest value of
thermal conductivity (Asy). There are many A(0) models available to
estimate the thermal conductivity of unsaturated soils. Most of the

A= )“salKe + j'dry(l 7Ke) (1)

where K. is the Kersten coefficient as a function of 6. Thus, the effect of
uncertainty in Aqry and Asy; estimates on the A(6) curve over the entire
range of saturation (0 < 6 < ¢) are expressed as:

b
S\ = 8Au / K.do (2a)
0
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Notation Greek letters
A thermal conductivity, W m~! K1
a semi-major axial dimension, m Mdry thermal conductivity of dry soils, W m ™~ K™!
b semi-minor axial dimension, m A thermal conductivity of the j, phase, Wm ™! K!
c semi-minor axial dimension, m Ak thermal conductivity at step k, W m1K!
D effective depolarization factor, unitless Ao thermal conductivity of other minerals, W mtK!
D® depolarization factor at the semi-major axis, unitless Aq thermal conductivity of quartz, W m~! K1
D depolarization factor at the semi-minor axis, unitless As thermal conductivity of solids, W mtK!
D° depolarization factor at the semi-minor axis, unitless Asat saturated thermal conductivity, W m™! K~}
D! depolarization factor at iy, direction, unitless M sat saturated thermal conductivity at iy, direction, W mlK!
F electrical formation factor, unitless Aw thermal conductivity of water, W m1K!
fi volume fraction of the jy, phase, cm® em ™2 A relative thermal conductivity of water, W m1K!
fquartz quartz content, cm® em ™3 O electrical conductivities of solid particles, S m™?
fsand sand content, g g~! Gsat saturated electrical conductivities, S m ™!
K. Kersten coefficient, unitless Ow electrical conductivities of water, S m ™!
m cementation exponent, unitless 0 water content, cm® cm™3
T* relative temperature, K ) porosity, cm® em 3
Vw Volume of water, cm> o soil texture dependent parameter, unitless
Vs Volume of solids, cm®
b p et al., 2018; Wang et al., 2020). They can generally be categorized into
04 = Olary /0 (1= K.)d0 = Sdary <¢ - /;/ Ked0> (2b) three types: theoretical models; semi-empirical models; and empirical

where 8, SAgry and Sy represent the uncertainties in estimating the
thermal conductivity values of unsaturated soils, dry soils and water-
¢
saturated soils, respectively. Because the A(0) curve is sigmoidal, /
0
K.do is always greater than ¢/2 (e.g., Fig. 1 in Lu et al. (2007)). Also,
because Agy is much greater than Aqry, Eq. (2a) is expected to influence
the A(6) curve much more than Aqyy. Therefore, it is critical to accurately
determine or estimate A, for soil heat conduction calculations.
Benefiting from progress in measurement techniques (e.g., heat pulse
method), Ay can generally be accurately determined (Bristow, 1998;
He et al., 2018; Dixon et al., 2023). However, the preparation of satu-
rated soil samples, particularly for fine-textured soils, poses serious
problems caused by the difficulty of removing entrapped air, and due to
soil swelling (Tarnawski et al., 2009). Therefore, it is unsurprising that
many of the published A(0) datasets do not have measurements at or near
saturated conditions. Consequently, there are numerous thermal con-
ductivity models available in the literature to estimate Agy¢ (Tarnawski

models. Wang et al. (2020) reviewed a total of 52 models that estimate
Asat, and they reported that none of the empirical models were accurate.
The geometric mean method (GMM) performed the best, followed by
seven theoretical models which all required thermal conductivity of soil
solids A5 as an input parameter. However, s cannot be directly deter-
mined as “soil is a porous medium and there is no way to compact the
soil to a continuous solid state without any pore spaces.” Thus, As values
are not known for most soils (He et al., 2020Db).

He et al. (2020b) summarized three types of approaches to estimate
At (1) inverse estimation from Agy using the GMM; (2) empirical esti-
mation using texture and porosity; (3) fitting models to
saturation-dependent thermal conductivity (M(6)) measurements, which
treats A5 as a model fitting parameter. Among the three approaches, the
third type provides the best estimates of As (Coté and Konrad, 2007; He
et al., 2020b), but there are some limitations. First, model fitting results
depend on the number and range of fitted A(0) datapoints, particularly in
the range near saturation. Coté and Konrad (2007) reported that when
using a single M(0) measurement, the Coté and Konrad (2005) model
estimated A values from 4.92 to 5.67 W m ™! K™}, whereas the estimated
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Fig. 1. The iterative process of the DEM theory.
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As value was 5.08 W m~! K~ when five A(0) values were used. Model
fitting results are also influenced by the robustness of the selected fitting
equation. Lu et al. (2007) reported that Coté and Konrad (2005) model
could not well capture the trend of A(0) curves at low and intermediate 0
ranges as its hyperbolic form. Thus, if one uses A(0) datapoints at low
and medium saturation to estimate A, errors from the Coté and Konrad
(2005) model itself are included in the A5 estimations. For example, Coté
and Konrad (2007) found the largest RMSE of Ag for a crushed rock
inversely estimated with the Coté and Konrad (2005) model, when A(6)
datapoint at 6 = 0.009 cm® cm ™ were used.

Differential effective medium (DEM) theory was introduced by Sen
et al. (1981) and Bussian (1983) to model high-frequency dielectric
permittivity and DC-electrical conductivity of rocks, respectively
(Cosenza et al, 2009). Revil (2000) and later studies (Cosenza et al.,
2003; Jougnot and Revil, 2010) then adopted DEM theory to estimate
thermal conductivity values of various porous media. The DEM theory
had two parameters: A; and cementation exponent (m). The exponent m
was first defined by Archie’s law and typically ranges from 1.2 to 4.0 for
porous media (Friedman, 2005). Both GMM and DEM theory require A
as inputs, which, however, is difficult to be determined thus not known
for most soils. Thus, in this study, GMM and DEM theory are combined
to develop a new relationship between Asy¢ and ¢ (assuming a constant
value of thermal conductivity of water (Ay)). The best fitted m values for
three textural groups (depending on sand content) were determined for
43 soils. The performance of the GMM-DEM approach to estimate gyt
was then tested on another 46 soils and compared with GMM estimates
of Agar using known quartz content or sand content.

2. Model development
2.1. Geometric mean model

The classical geometric mean model (GMM) was first proposed by
Lichtenecker (1924). Woodside and Messmer (1961) applied the GMM
to calculate the effectivity thermal conductivity of two-phases porous
medium, i.e., a solid phase and a saturating fluid phase (e.g., air, water
and oil), randomly distributed in the pore space with respect to the di-
rection of heat flow,

A=2000 (3)

where )¢ is the thermal conductivity of the fluid phase. Woodside and
Messmer (1961) showed that Eq. (3) gives reliable estimates for un-
consolidated sands when the ratio of As to A¢is less than 20. For most soil
minerals, s ranges from 1.8 to 8.8 W m~! K~! (Horai, 1971), and
thermal conductivity of water (Ay) is 0.598 W m ! K1 at 20 °C. Thus,
Eq. (3) can be used to calculate the thermal conductivity of
water-saturated soils,

Asar = /1;74’/1:{), @

This equation has been extensively used in empirical thermal conduc-
tivity models (Donazzi et al., 1979; Ewen and Thomas, 1987; Coté and
Konrad, 2005; Lu et al., 2007; Chen, 2008; He et al., 2017). As stated
earlier, it is difficult to directly measure A;. When the complete mineral
composition is known, A can be indirectly estimated using the GMM:

A=A wih > fi =1 (5)
j i

where 2; (W m~ ! K1) and fj are the thermal conductivity and volume
fraction of the jy, forming mineral, respectively. Because the thermal
conductivity of quartz (Aq) is considerably larger than most other soil
minerals (,), Johansen (1975) simplified Eq. (5) to include quartz and
other minerals only. Then Eq. (5) becomes,

A= Haa (6)
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where \gis 7.7 W m ' K~ }; and A, is 2.0 W m ~* K~ for soils with quartz
content (fg) > 0.2, and 3.0 W m 1 K1 for soils with fq £ 0.2,
respectively.

Combining Egs. (4) and (6) leads to

A = (,1{? A};fv) T )

With Eq. (7), one can estimate g from quartz content and porosity.
However, quartz content is usually measured with a combination of X-
ray diffraction/X-ray fluorescence techniques, which is expensive and
rarely used (Schonenberger et al., 2012). Consequently, quartz content
is not commonly known for most soils and is often assumed to be equal
either to sand content (fsang) (Peters-Lidard et al., 1998; Lu et al., 2007;
Fu et al., 2021b) or to 50 % of the sand content (Hu et al., 2017; Zhao
et al., 2018; He et al., 2021). For Eq. (7), the use of the assumption that
fq = fsand leads to overestimations of Agy especially for sands (Lu et al.,
2007), and using fq = 0.5fsang significantly underestimates Ag, (He et al.,
2020a). Tarnawski et al. (2012) found that for 40 Canadian soils, there
was only a weak correlation (R? = 0.33) between fq and feang. Similarly,
Calvet et al. (2016) also reported a linear correlation between fy and fsang
with R? of 0.67 based on 14 soils in southern France.

2.2. Differential effective medium (DEM) theory

Saturated soil can be regarded as a two-phase mixture of solid and
water. Its thermal conductivity can be described by the Maxwell-Garnett
equation which was first used for dielectric permittivity (Maxwell,
1873):

Asal - /IW _
A+ 20

As — Aw

(1 —41’)/L Y

(8

where a small volume fraction of 1-¢ of spherical inclusions (i.e., solid)
with a thermal conductivity of As are embedded as isolated spheres in a
background or host (i.e., water) with thermal conductivity of Ay, and Agat
is the effective thermal conductivity of the mixture. The symbols for
thermal conductivity in Eq. (8) can also be replaced by dielectric
permittivity or electrical conductivity. However, Eq. (8) is only valid for
dilute suspensions of spherical solids, which assumes that “the solid
spherical inclusions ‘see’ only the permittivity/electrical conductivity of
the background around themselves” (Robinson and Friedman, 2005).
Thus, Eq. (8) cannot compute the thermal conductivity of
water-saturated soils accurately, because the soil solids are in close
contact with each other, and most of the solid particles are
non-spherical.

Differential effective medium (DEM) theory is a more realistic way to
integrate the thermal interaction between solids and water than the
dilute approximation in Eq. (8). The iterative process of the DEM theory
can be explained briefly as follows (Fig. 1): at Step 0, the initial homo-
geneous medium filled with water has a thermal conductivity of Ay, and a
volume of Vy; at Step k (integer), an infinitesimal increment (dV;) of the
inclusion phases (e.g, spherical solids) of any size is added into the host
phase (i.e., water), then the mixture has an effective thermal conduc-
tivity of Ax and constitutes the initial medium of the next step (i.e., Step
k+1); sequential iterative inclusion of solids into water continues such
that at Step n, the desired porosity (¢ = Vy/(Vy + V5)) and thermal
conductivity (A, = Asat) are reached. Here we use DEM theory to estimate
thermal conductivity of water-saturated soils with the following
equation:

A=A\ A\

S ! — 9
(ﬂw - /1:) (ﬂ;a) / ©
where D' and Ai sat are the depolarization factor and the saturated

thermal conductivity in the iy, direction with respect to the heat flow
direction. Eq. (9) was developed based on a self-similar assumption,
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Fig. 2. The effective cementation exponent m as a function of the depolariza-
tion factor D for an isotropic medium (Eq. (12)).

which Robinson and Friedman (2001) stated should be applied to a
fractal medium of infinitely wide particle size distribution. Theoreti-
cally, D' describes the extent to which the inclusion polarization is
reduced according to its shape and orientation with respect to the
applied temperature gradient (Lesmes and Friedman, 2005). For a spe-
cial case of spheroids, D' can be empirically computed as (Jones and
Friedman, 2000):

1

D' = . (10a)
1+ 1.6(a/b) + 0.4(a/b)

D" =D =05(1-D") (10b)
where @, b and ¢ represent the semi-major axial dimension and two semi-
minor axial dimensions (b = ¢), respectively. Specifically, D* = D’ =p°
= 1/3 for spherical solids for which Egs. (8) and (9) form lower and
upper bounds for the estimation of As¢ of water-saturated soils (Rob-
inson and Friedman, 2001).

An isotropic version of Eq. (9) can be obtained by averaging the
depolarization factors over all possible particle orientations (Mendelson
and Cohen, 1982):

1= 2/ \"
sat — Aw " - 11
Asaw = Aup (1 7/15//1“) 1D

where m is the effective cementation exponent depending on the particle
shape, with an arithmetic correction by Sen (1984) for randomly ori-
ented spheroids:

(5-13D)

m= <3(1 —D2)> (12)
where D is the depolarization factor along the principal axis of a sphe-
roidal grain and < > denotes an average over the distribution in D at all
possible particle orientations. For iy, direction, the cementation expo-
nent m; and depolarization factor D' can be related as m=1/(1- Di).
The effective cementation exponent m values as a function of D from Eq.
(12) are shown in Fig. 2. D = 0 represents long, needle-like solids with
random orientations (e.g., clay tactoids), with a cementation exponent m
of 5/3, which is the upper limit of m for prolate particles; for spherical
solids, D = 1/3 thus m = 3/2 which is the lowest value of m; whereas for
oblate, disk-like particles, D approaches 1 and m becomes infinity
(Lesmes and Friedman, 2005; Friedman, 2005). More details about the
relationship between m and D can be found in Mendelson and Cohen
(1982) and Sen (1984).

If we replace all A terms in Eq. (11) with electrical conductivity
terms, Eq. (11) becomes the Bruggeman-Hanai-Sen equation,
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Gt = Cup” (ﬂ) a3)

1 - Gs/osal

where o4, 05 and oy, are electrical conductivities of water-saturated
soils, solid particles and water, respectively. At its high-salinity limit
(6w—0), Eq. (13) reduces to Archie’s law (Archie, 1942)

lim Og = Owp™ a4

Ow—00

Thus, Revil (2000) stated that m in Eq. (11) is rigorously identical to the
cementation exponent in Archie’s law and can be obtained from elec-
trical conductivity measurements. For electrical conduction in sand with
negligible surface conduction (i.e., 65 = 0), the Bruggeman-Hanai-Sen
equation (Eq. (13)) reduces to Archie’s law (Eq. (14)) at the
high-salinity limit. However, for heat transfer in soils, because A5 (1.8 to
88Wm K )>> Aw (=0.6 W m! K’l), heat conduction through the
soil solids is the dominant pathway. Therefore, we should not expect
that m in Eq. (11) is identical to the cementation exponent in Archie’s
law. In this study, we refer to m as the cementation exponent based on
the analog for electrical conductivity, but we did not estimate it from
electrical conductivity measurements nor consider any cementation
process.

2.3. Derivation of GMM from DEM theory

Although lacking a physical basis, the GMM (Eq. (4)) usually gives
reliable Ag,¢ estimates of water-saturated soils and rocks (Woodside and
Messmer, 1961; Sass et al., 1971; Johansen, 1975; Wang et al., 2020).
There have been some attempts to derive a physical basis of the GMM.
Zakri et al. (1998) provided a physical basis of GMM from the symmetric
Bruggeman equation for ellipsoidal inclusions where their main axes are
parallel to the external field, and the ‘equivalent depolarization coeffi-
cient’ follows a special case of a uniform distribution. Simpkin (2010)
showed that the GMM can be derived by applying Maxwell’s equation
(Eq. (8)) and the principle of charge conservation to a mixture in which
the components are randomly distributed. However, a more robust
theoretical basis for the GMM derived from DEM theory, also known as
the asymmetric Bruggeman equation, has never been provided. In this
section, starting with DEM theory (Eq. (11)), we present a derivation of
the GMM (Eq. (4)).

Eq. (11) can be rewritten as

/1531 - /‘ls /‘Lw o
2w = 15
(/‘Lw - /‘Ls) <ﬁsal> ¢ ( )
Taking the logarithm of both sides of Eq. (15) gives
J1=1/m J-1/m 1 1
I sat —1 W =1 —In—— 1
“(zszsm N4 " "1- e "1-0 (16)

Eq. (16) can be rewritten in an integral form as

/ (G / % )

Eq. (17) represents the iteration process such that after n steps, a
total volume fraction of 1-¢ of solid inclusions is added into the water
phase and the corresponding A changes from A, representing a homog-
enous water phase to Ag representing a water-saturated soil. For an
infinitesimal increment of soil solids, d¢s, at Step k+1 (Fig. 1), Eq. (17)
yields,

A+ (L= 1m)(d — &)
(ﬂs flk)lk

o

1—k x dgh, (18)

(Aesr — ) &

Eq. (18) can be rearranged to give the thermal conductivity ratio ’ﬁ—‘kl
as
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Table 1
Soil name, texture, particle size distribution, porosity (¢) and sources of soils in the calibration dataset.

Soil ID Soil name Texture Particle size distribution ¢ Sources

Sand Silt Clay em® em

1 Accusand 12/20 sand 1.00 0.00 0.00 0.317 Deepagoda et al. (2016)

2 Accusand 20/30 sand 1.00 0.00 0.00 0.332 Deepagoda et al. (2016)

3 Accusand 30/40 sand 1.00 0.00 0.00 0.336 Deepagoda et al. (2016)

4 Accusand 40/50 sand 1.00 0.00 0.00 0.347 Deepagoda et al. (2016)

5 Accusand 50/70 sand 1.00 0.00 0.00 0.336 Deepagoda et al. (2016)

6 - sand 0.94 0.01 0.05 0.40 Lu et al. (2007)

7 - sand 0.93 0.01 0.06 0.40 Lu et al. (2007)

8 - sandy loam 0.67 0.21 0.12 0.48 Lu et al. (2007)

9 - loam 0.40 0.49 0.11 0.58, 0.51, 0.47 Lu et al. (2007)

10 - silt loam 0.27 0.51 0.22 0.50 Lu et al. (2007)

11 - silt loam 0.11 0.70 0.19 0.51 Lu et al. (2007)

12 - silty clay loam 0.19 0.54 0.27 0.55, 0.51, 0.47 Lu et al. (2007)

13 - silty clay loam 0.08 0.60 0.32 0.51 Lu et al. (2007)

14 - clay loam 0.32 0.38 0.30 0.51 Lu et al. (2007)

15 - loam 0.50 0.41 0.09 0.48 Lu et al. (2007)

16 - sand 0.92 0.07 0.01 0.40 Lu et al. (2007)

17 - silty clay 0.07 0.50 0.43 0.52 Lu et al. (2011)

18 - sand 0.94 0.01 0.05 0.40 Lu et al.(2013)

19 - silt loam 0.02 0.73 0.25 0.55 Lu et al. (2007)

20 - sand 0.91 0.03 0.06 0.47, 0.43, 0.40 Fu et al. (2021a)

21 - sandy loam 0.52 0.36 0.12 0.53, 0.49, 0.45 Fu et al. (2021a)

22 - silt loam 0.34 0.53 0.13 0.57, 0.53, 0.49 Fu et al. (2021a)

23 - sand 1.00 0.00 0.00 0.43, 0.40, 0.37 Fu et al. (2021a)

24 - silt loam 0.21 0.67 0.12 0.60, 0.57, 0.53 Fu et al. (2021a)

25 - clay loam 0.24 0.49 0.27 0.60, 0.58, 0.55 Fu et al. (2021a)

26 Pale brown silt loam 0.25 0.58 0.17 0.44 Hailemariam et al. (2017)

27 Brown silt loam 0.27 0.53 0.20 0.46 Hailemariam et al. (2017)

28 Pale black silt loam 0.10 0.65 0.25 0.48 Hailemariam et al. (2017)

29 Ottawa sand sand 1.00 0.00 0.00 0.37 Nikolaev et al. (2013)

30 Richmond Hill loam 0.52 0.32 0.15 0.57 Nikolaev et al. (2013)

31 A sand 1.00 1.00 1.00 0.49, 0.46, 0.42, 0.34 Chen (2008)

32 B sand 1.00 1.00 1.00 0.55, 0.51, 0.47, 0.43 Chen (2008)

33 C sand 1.00 1.00 1.00 0.55, 0.51, 0.47, 0.43 Chen (2008)

34 D sand 1.00 1.00 1.00 0.47, 0.43, 0.40, 0.35 Chen (2008)

35 L-soil sand 0.89 0.06 0.05 0.43 Campbell et al. (1994)

36 Mokins silt loam 0.20 0.55 0.25 0.55 Campbell et al. (1994)

37 Palouse-A silt loam 0.11 0.68 0.21 0.52 Campbell et al. (1994)

38 Palouse-B silty clay 0.09 0.44 0.47 0.57 Campbell et al. (1994)

39 Royal sandy loam 0.54 0.32 0.15 0.49 Campbell et al. (1994)

40 Salkum silt loam 0.19 0.59 0.23 0.59 Campbell et al. (1994)

41 Walla Walla silt loam 0.23 0.63 0.14 0.53 Campbell et al. (1994)

42 Volkmar sandy loam 0.72 0.16 0.12 0.46 Campbell et al. (1994)

43 Norfolk sandy loam 0.75 0.10 0.15 0.41 Hopmans and Dane (1986)

A dopg

A1 dg, (“ 1) lim 2 g < (& (22)
T =1+ e d¢ (19) k—n—1 j-k ﬂ.w

‘ -y (5-) -

Thus, we specified a value of m
We considered a special case that k = 0 (i.e., Ax = Ay) first,
satisfying,
)y
T s

b by () o0

0 A 1+(171/m)(j7;71) v b _ s K A

}Vw ln—] /‘Ln—Z /1k /‘Lw
The inequality in Eq. (20) holds when m satisfies that, P di (ﬁ -1 1\ s
1 = 1T s :(/1_) 23

m> (21) k0 x dg, 1+(1_1/m)<;_z_1> v

A detailed derivation of Eq. (21) is provided in Appendix A. As k in-
creases, A increases and thus Aj—Ll in Eq. (19) decreases. When k ap-
proaches n-1,

where n x d¢s represents the total volume fraction of inclusion phases
(1—¢) during the iteration process, thus 1—n x d¢y is exactly ¢. Then Eq.
(22) becomes the GMM between Ag,¢, Ay and A as represented by Eq. (4).

In summary, the derivations above provide a firm justification for the
GMM from DEM theory, which means that the GMM and DEM become
identical with appropriate m values. If we rewrite the GMM (Eq. (4)) as,
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Table 2

Soil name, texture, particle size distribution, quartz content, particle density (ps), porosity (¢p) and sources of soils in the validation dataset.
Soil ID Soil name Texture Particle size distribution Quartz content Ps ¢ Sources

Sand Silt Clay g cm 3 cm® em
44 Acadia silt loam 0.33 0.57 0.10 0.51 2.71 0.55 Tarnawski et al. (2015)
45 Cumberland sandy loam 0.61 0.34 0.05 0.61 271 0.45 Tarnawski et al. (2015)
46 Pugwash sandy loam 0.57 0.37 0.05 0.63 2.68 0.40 Tarnawski et al. (2015)
47 Stable Island sand 1.00 0.00 0.00 1.00 2.66 0.36 Tarnawski et al. (2015)
48 Cornwallis-Annapolis-V loamy sand 0.85 0.12 0.03 0.72 2.66 0.4 Tarnawski et al. (2015)
49 Pugwash-Annapolis Valley sandy loam 0.56 0.38 0.06 0.65 2.68 0.51 Tarnawski et al. (2015)
50 Queens-Annapolis Valley silt loam 0.22 0.66 0.12 0.34 2.78 0.57 Tarnawski et al. (2015)
51 Orthic Podzol-1 loam 0.50 0.42 0.08 0.66 2.64 0.44 Tarnawski et al. (2015)
52 Orthic Podzol-2 loam 0.51 0.40 0.09 0.58 2.66 0.42 Tarnawski et al. (2015)
53 Orthic Podzol-3 loamy sand 0.83 0.14 0.03 0.54 2.66 0.41 Tarnawski et al. (2015)
54 Caribou silt loam 0.03 0.82 0.15 0.57 2.59 0.54 Tarnawski et al. (2015)
55 Victoria silt loam 0.00 0.83 0.17 0.56 2.54 0.45 Tarnawski et al. (2015)
56 Juniper silt loam 0.24 0.66 0.1 0.55 2.57 0.62 Tarnawski et al. (2015)
57 Queens silt loam 0.26 0.64 0.1 0.60 2.59 0.54 Tarnawski et al. (2015)
58 Fundy silty clay loam 0.00 0.67 0.33 0.39 2.71 0.54 Tarnawski et al. (2015)
59 Beach sand 0.93 0.05 0.02 0.35 2.73 0.43 Tarnawski et al. (2015)
60 Field 9 loamy sand 0.79 0.17 0.03 0.42 2.69 0.48 Tarnawski et al. (2015)
61 Brainsville silt loam 0.36 0.56 0.08 0.28 2.70 0.43 Tarnawski et al. (2015)
62 North Gower silt loam 0.07 0.75 0.18 0.17 2.76 0.51 Tarnawski et al. (2015)
63 Matilda loamy sand 0.71 0.25 0.04 0.41 2.71 0.46 Tarnawski et al. (2015)
64 Uplands sand 0.89 0.10 0.01 0.38 2.76 0.39 Tarnawski et al. (2015)
65 Lyons sandy loam 0.56 0.37 0.07 0.36 2.75 0.38 Tarnawski et al. (2015)
66 Uplands loamy sand 0.84 0.14 0.02 0.38 2.74 0.44 Tarnawski et al. (2015)
67 North Gower silt loam 0.32 0.54 0.14 0.25 2.76 0.45 Tarnawski et al. (2015)
68 Byerson series silt loam 0.17 0.69 0.14 0.38 2.69 0.55 Tarnawski et al. (2015)
69 Inwood series silt loam 0.22 0.55 0.23 0.20 2.79 0.41 Tarnawski et al. (2015)
70 Osborne series silt loam 0.03 0.76 0.21 0.21 2.74 0.63 Tarnawski et al. (2015)
71 Almassippi series loamy sand 0.81 0.16 0.03 0.61 2.71 0.47 Tarnawski et al. (2015)
72 Paddockwood silt loam 0.00 0.74 0.26 0.48 2.69 0.41 Tarnawski et al. (2015)
73 Gronlid Orthic sandy loam 0.67 0.27 0.06 0.61 2.70 0.45 Tarnawski et al. (2015)
74 Fox Valley silt loam 0.02 0.83 0.15 0.37 2.70 0.53 Tarnawski et al. (2015)
75 Asquith Orthic loamy sand 0.83 0.14 0.03 0.67 2.68 0.42 Tarnawski et al. (2015)
76 Bradwell Orthic sandy loam 0.68 0.27 0.05 0.63 2.68 0.45 Tarnawski et al. (2015)
77 Lethbridge silt loam 0.38 0.52 0.1 0.55 2.64 0.55 Tarnawski et al. (2015)
78 FSJ#1 silty clay 0.00 0.58 0.42 0.21 2.74 0.51 Tarnawski et al. (2015)
79 FSJ # 2 silty clay 0.00 0.58 0.42 0.19 2.72 0.50 Tarnawski et al. (2015)
80 Vanderhoof silty clay loam 0.00 0.70 0.30 0.27 2.71 0.51 Tarnawski et al. (2015)
81 PG#1 silty clay 0.00 0.59 0.41 0.17 2.78 0.52 Tarnawski et al. (2015)
82 PG #2 silty clay loam 0.00 0.67 0.33 0.17 2.77 0.53 Tarnawski et al. (2015)
83 9718 SW silt loam 0.32 0.58 0.1 0.37 2.76 0.52 Tarnawski et al. (2015)
84 Ottawa sand C-109 sand 1.00 0.00 0.00 1.00 2.65 0.32, 0.40 Tarnawski et al. (2013)
85 Ottawa sand C-190 sand 1.00 0.00 0.00 1.00 2.65 0.32, 0.40 Tarnawski et al. (2013)
86 Toyoura sand 1.00 0.00 0.00 0.87 2.65 0.38, 0.40 Tarnawski et al. (2013)
87 Toyoura sand 1.00 0.00 0.00 0.87 2.65 0.40 Kasubuchi et al. (2007)
88 Red Yellow silty clay loam 0.34 0.23 0.43 0.58 2.70 0.60 Kasubuchi et al. (2007)
89 Kuroboku loam 0.28 0.58 0.14 0.45 2.44 0.65 Kasubuchi et al. (2007)
f = each iteration step) during the iteration process in the DEM theory.
As = /1%;‘ 24) However, continuous solid phase or the solid-to-solid contact through a
w

Then by inserting Eq. (24) into Eq. (11), we obtained the following

expression:
ﬁ
_(a
1 (AW )

doa = A" | ——— (25)

Eq. (25), denoted hereafter as “DEM-GMM”, is developed based on a
combination of differential effective medium theory and the geometric
mean method. Once m is known, one can estimate Ag¢ from ¢ with Eq.
(25), where My is assumed to have a constant value (i.e., 0.598 W m
K1) at room temperature (influence of temperature on Eq. (25) will be
investigated in Section 4.2). Several facts regarding Eq. (25) need be
stated here. First, as stated earlier, m is not identical to the cementation
exponent defined by Archie’s law, thus it is not expected to be accurately
estimated from electrical conductivity measurements. Second, the ef-
fects of grain contact are assumed to be zero (i.e., dilute assumption at

thin water film (i.e., water bridge) in saturated soils cannot be neglected,
thus fitting m also accounts for the errors from this assumption. Third,
except for the special case of m = 2, numerical methods must be used to
solve Eq. (25) for Agy implicitly (e.g., Glover et al., 2010; Niu et al.,
2016; Revil 2000). In this study, we used the Solver in Excel to solve Eq.
(25) implicitly. Besides, the DEM-GMM approach has been implemented
into the Python programming language: the source code as well as
additional documentation are also provided in the Acknowledgements.

3. Datasets

In this study, data representing 89 soils were collated from the
literature and used to develop and validate the DEM-GMM approach.
Constraints were imposed on the dataset such that all of the soils had At
values measured with standard techniques at room temperature (i.e.,
20-25 °C), particle size distribution, and porosity. These soils were then
divided into a calibration dataset of 43 soils and a validation dataset of
46 soils, spanning a range of soil textures and porosities. The 46 soils in
the validation dataset also had available quartz content to evaluate the
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tion dataset.

Table 3

Number of soils and fitted m values for three textural groups (i.e., Group I (fsand
< 0.4), Group II (0.4 < fang < 1) and Group III (fsang = 1)) in the calibration and
validation datasets.

Calibration dataset Validation dataset

Group Group Group IIT Group Group Group
1 11 1 I I
Number of 18 14 11 24 17 5
soils
m 1.659 1.618 -0.34¢+1.70 -

performance of the DEM-GMM approach by comparing results to the
GMM (Eq. [7]) estimates using quartz contents as inputs. Tables 1 and 2
present the basic soil physical properties and the sources of the 89 soils.

4. Results and discussion
4.1. Factors affecting the DEM-GMM estimated Asq; values

The DEM-GMM (Eq. [25]) Agy¢ estimates depend on Ay, ¢ and m. The
thermal conductivity of water )\,, depends on temperature and is
approximately 0.6 W m~ K™ ! at room temperature (temperature effect
will be discussed later). Porosity ranges from 35 % to 50 % for most
coarse-textured soils and from 40 % to 60 % for most fine-textured soils
(Hao et al., 2008). If the ¢ value is known, m is the only unknown
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Fig. 5. The cementation exponent (m) as a function of porosity (¢) for soils in
Group III (feana = 1) of the calibration dataset.

parameter. Fig. 3a illustrates the influence of m on DEM-GMM Ag,; es-
timates (Eq. (25)) as a function of ¢. In general, for all m values, Agyt
decreases as ¢ increases. As ¢ increases, the number of contacts between
soil solids and the fraction of soil solids in the bulk soil decrease, thus,
the magnitude of gy decreases. At ¢ = 1, Aggt = Ay for all m values.
Porosity equal to unity means that there are no soil solids present, thus
the Ay value is indeed Ay,. It is obvious that as m increases, both the
magnitude of Ay and the rate of decrease in Agy with respect to ¢
decrease. For small m values, the DEM-GMM approach gives unreason-
ably large Aot values at low ¢. For example, when ¢ = 0.1 and m = 1.5,
the DEM-GMM Aqy estimate is 23.9 W m™* K1, which is twice the value
of Ay, i.e., the highest among all mineral compositions within soils. This
is not a major problem for the DEM-GMM approach when applied to
natural soils for which ¢ values generally range from 0.4 to 0.6. At m =
2.0, Agat becomes independent of ¢ and is nearly equal to Ay (i.e., 0.598
W m~! K1), In this study, 43 soils in the calibration dataset yielded m
values ranging from 1.50 to 1.71 and the lower bound is exactly the
theoretical lower limit of m from Eq. [13] when soil solids are uniformly
packed spheres.

In the prior analysis, we assumed the value of A, to be constant (i.e.,
0.598 Wm ™! K’l) at room temperature. However, as temperature (T)
increases, Ay, also gradually increases, thus affecting Asy¢ estimates with
the DEM-GMM approach. The dependence of A, on T for 0 °C < T <
90 °C (Ramires et al., 1995) is expressed as,

AL = —1.48445 + 4.12292 T — 1.63866 T** (26a)
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Table 4

Estimated A, values for the validation set of Soils 44-89 calculated with the geometric mean method (Eq. [5]) using inputs of quartz content, quartz content equal to
sand content, quartz content equal to 0.5 x sand content, and the DEM-GMM approach (Eq. (22)). Groups I, II and III represent soils with fsang < 0.4, 0.4 < fiana < 1 and
fsana = 1, respectively. The superscript numbers represent the order of performance (e.g., 1 indicates the best and 4 indicates the worst).

Group I Group II Group III All
RMSE Bias RMSE Bias RMSE Bias RMSE Bias
Quartz content 0.183 0.032 0.104 -0.037 0.097 -0.053 0.147* -0.005!
Sand content 0.217 -0.064 0.415 0.227 0.165 0.053 0.295° 0.056°
0.5 x sand content 0.186 -0.027 0.362 -0.272 1.001 -0.978 0.476* -0.268*
DEM-GMM 0.173 -0.029 0.245 0.094 0.172 -0.036 0.2022 0.0132
. T+293.15 (26b) conductivity of water with respect to those at 298.15 K (25 °Q),
T 298.15 respectively. From Eq. (26a), Ay and T show a quadratic relationship
such that as T increases, A, increases, thus also leading to an increase in
= 5 2365 (26¢) Asat estimated with the DEM-GMM approach (Eq. (25)). For saturated

where T* and A,* are relative temperature and relative thermal

soils, there is no void space through which vapor can move, thus latent
heat transfer is small and conductive heat transfer is the dominant
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mechanism (Smits et al., 2013). In Fig. 3b, we examine Agy¢ versus T from
0 °C to 90 °C and find similar trends for various groups of m and ¢. With
increasing T, Asyt gradually increases and finally becomes stable when T
approaches 90 °C. For all groups of m and ¢, Ay increases by 20.6 %
from 0 °C to 90 °C, which is also the percentage of increase in A, over
this range. This agrees with the results reported by Nikolaev et al. (2013)
that Asat of Ottawa sand and Richmond Hill fine sandy loam increased by
about 20 % from 2 °C to 92 °C. Note that, at the range of room tem-
perature (20-25 °C), Mgyt increases by only 0.034, 0.025, 0.019 and
0.012Wm 'K !for¢p =0.4andm=1.6,p=05andm=1.6, p =0.6
and m = 1.6, ¢ = 0.6 and m = 1.8, respectively. Thus, we hypothesize
that temperature effects on Ag,¢ at room temperature can be ignored, and
we use Ay at 20 °C, 0.598 W m ! K1, in the following sections.

4.2. Factors affecting m

By fitting Eq. (25) to the measured Asy (¢p) values, we obtained
parameter m values for the 43 soils in the calibration dataset. We then

analyzed possible correlations between m and particle size distribution
and porosity and found that correlations were relatively weak. In Fig. 4,
the strongest correlation is plotted as the fitted parameter m ranging
from 1.50 to 1.71 versus fyand ranging from 0.02 to 1 g g~ ! with R? =
0.64. Generally, the m values decrease as fang increases and their rela-
tion behaves more like a step function or a piecewise-constant function.
This is because sand grains are generally more spherical (m close to 1.5),
while clay particles are flat, disk-like or long, needle-like tactoids, thus
having a greater value of m (Mendelson and Cohen, 1982; Friedman,
2005). For example, Soils 1-5 are silica sand with high sphericity (> 0.9)
which have m values ranging from 1.575 to 1.607, not far from the
theoretical lower bound of m for mixtures of spherical grains. Sand
content can also be regarded as an indicator of particle size range, which
also influences the value of m. Although effective medium theory sug-
gests that m is independent of particle size range (Sen et al., 1981;
Mendelson & Cohen, 1982), Niu and Zhang (2018) report that this only
holds at ¢ > 0.65 for granular soil samples. For the 43 soils in our
calibration dataset, porosities range from 0.32 to 0.60. Thus, for these
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soil conditions the particle size range is also expected to influence m
such that the larger the mean particle size (e.g., sands) the smaller the m
values, as shown in Fig. 4.

Based on our observations, we divided the soils into three textural
groups depending on their sand contents: Group I (fsang < 0.4), Group II
(0.4 < faand < 1) and Group III (fsand = 1). We noticed that such a
classfication is similar to textural groups based on A(0) of unsaturated
soils by Fu et al. (2023), in which three groups were: Group I (fsand <
0.4), Group II (Remainder) and Group III (sand). The number of soils
included in each group in the calibration and validations steps are
presented in Table 3. For Groups I and II, fitted m values are distributed
in relatively narrow ranges, 1.62 to 1.70 and 1.56 to 1.71, respectively.
The average m values for soils in Group I and II are 1.66 and 1.62,
respectively. For the 11 soils in Group III, fitted m values range from
1.50 to 1.61. Because all of the soils in Group III have fng = 1, we
correlated the m with porosity and found a strong linear relationship (m
= -1.34¢+1.70) with an R? of 0.85 (Fig. 5). This indicates that m is not
only affected by the particle size but also by porosity. This agrees with
Niu and Zhang (2018) who report that m decreases as ¢ increases for
granular soil samples (Fig. 2 in their study). Glover (2009) reports that
the value of the cementation exponent m increases as the degree of
connectedness of the pore network diminishes, which is affected by
porosity and pore connectivity (see Eq. (18) in Glover, 2009).

4.3. DEM-GMM estimates of Asqt

With the fitted m values for each group determined in the previous
section, one can estimate A, from ¢ with the DEM-GMM approach (Eq.
(25)). The DEM-GMM approach does not require estimates of quartz
content. In this section, we compare DEM-GMM estimates to the GMM
estimates (Eq. (7)) for three quartz input conditions: (i) quartz content
(hereafter QC), (ii) the assumption that sand content is equal to the
quartz content (hereafter SC), or (iii) 0.5 x sand content is equal to the
quartz content (hereafter 0.5SC). Fig. 6 shows the estimated Asye values
versus the measured ones for Soils 44-89 in the validation dataset which
are classified into Groups I, II and III as defined earlier. For Group I, the
four Mgy estimate approaches perform very similarly such that the
measured and estimated results are depicted together for most data
points, except for some scattered data points for the SC approach. The
RMSEs and bias values range from 0.173 to 0.217 Wm ™! K~! and -0.064
to 0.032 W m™! K™}, respectively (Table 4). Although earlier studies
show that the QC approach gives accurate Ag,; estimates (Woodside and
Messmer, 1961; Johnsen, 1975; Coté and Konrad, 2005; Wang et al.,
2020), we found the QC approach to overestimate Agy for soils in Group

10
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I, which agreed with the findings of Barry-Macaulay et al. (2015) that
the QC estimated and measured values on five fine-textured soils showed
a very large scatter and overestimation (Fig. 1b in Barry-Macaulay et al.,
2015). Coté and Konrad (2007) also found that for several clay soils,
minerals other than quartz play an important role in determining Ag
which undermines simplification of Eq. (5) to Eq. (6).

The performances of the four approaches differ most for Group II: the
QC approach performs best with RMSE of 0.104 W m ™! K~! and a bias of
-0.037 W m~! K™, which are much better than the other three ap-
proaches. The DEM-GMM is second best (RMSE and bias are 0.247 W
m K and 0.094 W m~! K™, respectively), and it provides more
accurate estimates than either SC or 0.5 SC approaches. The SC approach
over predicts Ag¢ with the largest RMSE of 0.415 W m~ 'K ! and a bias of
0.227 W m~! K1, This is in accordance with overestimations reported
by others using the assumption that quartz content is close to the sand
content, especially for coarse-textured soils (Bristow, 2002; Lu et al.,
2007). In contrast, the 0.5SC approach significantly underestimates Ayt
for soils in Group II with a bias of -0.272 W m ' K., Similar results were
also presented in Fig. 2 in He et al. (2020a). All approaches except 0.5SC
give reliable Ay estimates for soils in Group III with RMSEs ranging from
0.097 to 0.172 W m~! K~! and biases ranging from -0.053 to 0.053 W
m~! KL Alternately, 0.5SC consistently underestimates Agy; and the
extent of underestimation increases with increasing A, values. Overall,
QC performs best among the four approaches benefiting from the
availability of quartz content for all soils in the validation dataset.
However, as stated previously, quartz contents and soil mineral
composition information are usually not reported for soils, which typi-
cally limits the application of QC. DEM-GMM outperforms the other
approaches that do not use measured quartz content as an input, with
RMSE, bias and R? of 0.202 W m™! K™', 0.013 W m™! K* and 0.89,
respectively. The superior performance of DEM-GMM is particularly
obvious in Group II where estimates using SC and 0.5SC significantly
over- or under- estimate Agy; values.

4.4. Estimate s using the DEM-GMM approach

The new DEM-GMM approach provides accurate Ag¢ estimates,
which offers the possibility to estimate As from porosity only. By
combining Egs. [4] and [11], the following expression can be obtained:

1-¢ n

(&) _ (/,M< 1= A/A )
A 1= (a)’

With Eq. (27), one can estimate As from porosity with the DEM-GMM
approach using the fitted m values for each group reported in the pre-
vious section. Although it is impossible to determine the A directly, we
used indirect Ag values estimated from measured Agy values (Eq. (24)) as
benchmarks to evaluate the performance of the DEM-GMM approach
and for comparisons with GMM (Eq. (6)) using QC, SC and 0.5SC to
estimate A for Soils 44-89 in the validation dataset. In Fig. 7 the general
performance order of the four approaches is: QC > DEM-GMM > SC >
0.5SC. The performances of QC and DEM-GMM are similar, their RMSEs
range from 0.743 to 0.872 W m~! K~ and their bias values range from
-0.016 and 0.000 W m ! K™L. Such a robust performance indicates that
when quartz content is unknown, the DEM-GMM approach provides
reliable )¢ estimates, which can be used as inputs to several A models, e.
g., the widely-used de Vries (1963) model.

27)

5. Conclusion

We developed a DEM-GMM approach to estimate Agy; values from
sand content and porosity using a combination of differential effective
medium theory and the geometric mean method. The effective cemen-
tation exponent (m) is the only unknown DEM-GMM parameter. The 43
soils in the calibration dataset were divided into three textural groups
based on sand content: Group I (fsgand < 0.4), Group II (0.4 < fsana < 1)



Y. Fu et al.

Quartz content

4.0
e Groupl
= Group ll
< 3.2-
& e Grpl A 1:1line
E L
; 24-
< A A
< [ ]
2 1.6- e
£ o«
= , M-=- y=0.87x+0.18
w g . RMSE =0.178
» it Bias = 0.002
s R2=0.91
0.0 T T T T 1
0.0 0.8 1.6 24 3.2 4.0
Measured A (W m™! K1)
0.5*Sand content
4.0
e Groupl
= Groupll
3.2+
T N Gpil 1:1 line
=
2.4+
= A
< ,/"A
o [ ] A -
o) a 1] AA
5 1.6 ? oy
= % aut s y = 0.50x+0.28
“ 0.8 s 4 RMSE=0282
n at Bias =-0.140
[ ]
R2=0.79
00 1 1 1 1 1
0.0 0.8 1.6 24 3.2 4.0

Measured A (W m™ K1)

Agricultural and Forest Meteorology 342 (2023) 109743

Sand content

4.0
e Groupl
= Groupll
o 32" ’
Y & Groupli A 1:1line
£
S 24'I
<
2 164
E .
% sy =0.91x+0.13
w g o RMSE = 0.219
. Bias = 0.037
R2=0.88
00 1 1 1 | 1
0.0 0.8 1.6 24 3.2 4.0
Measured A (W m™ K1)
DEM-GMM
4.0
e Groupl
® Group
321+ crow 2 1:1line
5 y/uh
E 4
> 24+ Kk s
= T _£a
< - A4
S 1.6+ A%
g N
= A a—- y=0.88x+0.14
LIUJJ e Ada _
0.84 b RMSE = 0.195
; i Bias = 0.015
[}
R2=0.90
0.0 T T 1 1 1
0.0 0.8 1.6 2.4 3.2 4.0

Measured A (W m™ K1)

Fig. B.1. Comparison of A values estimated with the Lu et al. (2007) model (Eq. (B.1)) where Ay is estimated with the geometric mean method (Eq. (7)) using either
measured quartz content, or quartz content equal to sand content or to 0.5 x sand content, and by the DEM-GMM approach (Eq. (25)) versus measured A, for Soil
44-89 in the validation dataset. The solid lines are the 1:1 lines. Groups I, II and III represent soils with fna < 0.4, 0.4 < fana < 1 and faana = 1, respectively.

and Group III (fgang = 1). The best-fitted values for m were 1.67 for
Group I, 1.62 for Group II and -0.34¢+1.70 for Group III. The DEM-
GMM approach provided accurate Ase and Ag estimates for another 46
soils when quartz content was not known. Once incorporated into
existing thermal conductivity models, this can be further applied in
more scenarios in the future.
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Appendix A. Physical constraint on the cementation exponent m in the DEM-GMM approach

Eq. (20) can be rearranged as,
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m > (A1)

)
- |-—agt-1 (jf;fl)
(.A) —1

For an infinitesimal increment of soil solids, d¢s, the right side of Eq. [A.1] can be rewritten by applying L’Hopital’s rule,
1 1

lim = (A.2)
dp—~0
Then the inequality in Eq. [21] is obtained,
m> ! (A3)
®
Aw 2
1- —1 (r - 1)
In '1—‘
Combining Egs. [24] and [A.3] yields,
1
(A9

T
N -4
(Aﬁl) - A =
1-— T —1 (ﬁ:‘) —1
1 sat
Aw

While fitting the DEM-GMM approach (Eq. (25)) to the measured Ag, (¢p) values, we used Eq. (A.4) as the lower bound to obtain parameter m values for
the 43 soils in the calibration dataset. As shown in Fig. A.1, none of the values reached the lower constraints during fitting, which, in turn, justifies that
our derivation from DEM to GMM is robust.

Appendix B. Application: Incorporating the DEM-GMM approach into A(0) models

As stated earlier in Eq. (2a), any errors in A, estimation will further lead to changes in A of unsaturated soils. Thus, here we took the Lu et al. (2007)
model as an example to investigate the performance of the DEM-GMM approach when incorporating into a A(8) model for soils 44-89 in the validation
dataset. Lu et al. (2007) described K, as an exponential equation of 6 based on twelve soils:

1— /‘!fdry 0 (a—1.33)
K= 29 — 1-(= B.1
¢ Asal - ;’-dry e (¢) ( )

where Ay is the thermal conductivity of dry soil, a is a soil texture dependent parameter (i.e., 0.96 for coarse-textured soils with sand fraction (fsand) >
0.4 and 0.27 for fine-textured soils with fsng < 0.4) and 1.33 is a shape factor. Subsequently, Ag¢ in Eq. (B1] is estimated with the DEM-GMM
approach, and the GMM (Eq. (5)) using QC, SC or 0.5SC. For a fair comparison, we use the measured Agry values for all cases. The A estimations
presented in Fig. B.1 show similar trends as those reported for Asai: QC performs best with a lowest RMSE of 0.178 W m~! K1 and a bias closest to zero
(i.e., 0.002 Wm™! K~1); the DEM-GMM performs second best with a slightly greater RMSE of 0.195 W m~ K~! and bias of 0.015 W m~ ! K™!; followed
by SC, and 0.5SC is the worst among the four approaches. Our results are consistent with He et al. (2020a) who also found that using the quartz content
can improve the performances of all normalized A(0) models. However, when quartz content is unavailable, the DEM-GMM approach developed in this
study, which only requires soil porosity, can be used to accurately estimate Agy; and A from A(6) models.
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