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A B S T R A C T

Thermal conductivity (λ) is a property characterizing heat transfer in porous media, such as soils and rocks, with 
broad applications to geothermal systems and aquifer characterizations. Numerous empirical and physically- 
based models have been developed for thermal conductivity in unsaturated soils. Recently, Ghanbarian and 
Daigle (G&D) proposed a theoretical model using the percolation-based effective-medium approximation. An 
explicit form of the G&D model relating λ to water content (θ) and equations to estimate the model parameters 
were also derived. In this study, we calibrated the G&D model and two widely applied empirical λ(θ) models 
using a robust calibration dataset of 41 soils. All three λ(θ) model performances were evaluated using a vali
dation dataset of 58 soils. After calibration, the root mean square error (RMSE), mean absolute error (MAE) and 
coefficient of determination (R2) of the G&D model were 0.092 W−1 m−1 K−1, 0.067 W−1 m−1 K−1 and 0.97, 
respectively. For the two empirical models, RMSEs ranged from 0.086 to 0.096 W−1 m−1 K−1, MAEs from 0.063 
to 0.071 W−1 m−1 K−1, and R2 values were about 0.97. All three metrics indicated that calibration improved the 
performance of the G&D model, and it had an accuracy similar to that of the two empirical λ(θ) models. Such a 
robust performance confirmed that the theoretically-based G&D model can be applied to study soil heat transfer 
and potentially other related fields.   

1. Introduction

Thermal conductivity (λ) is an important property involved with heat
conduction in soils. It is defined as the coefficient between heat flux 
under steady state conditions and temperature gradient through the 
macroscopic Fourier equation. Generally, soil thermal conductivity is 
affected by various physical properties, such as bulk density, porosity 
(ϕ), particle size distribution, soil structure, temperature, and especially 
water content (θ) (Shiozawa and Campbell, 1990; Abu-Hamdeh and 
Reeder, 2000; Usowicz et al., 2013). 

Because of the dominant role that θ plays in moderating λ, a large 
number of λ(θ) models are available to estimate the thermal conduc
tivity of unsaturated soils. Roughly, these models can be classified into 
two major categories: (1) empirical and (2) physically-based. Empirical 
models are typically developed based on the flexibility of a mathemat
ical equation to produce the correct trend in observed values. Various 
empirical thermal conductivity models have been proposed (e.g., 
Johansen, 1975; Côté and Konrad, 2005a; Lu et al., 2007; Chen, 2008; 

He et al., 2017; Zhao et al., 2019). However, model parameters are 
unknown a priori, and their physical meanings are not fully clear. Model 
parameters can be determined by directly fitting the model to obser
vations. Optimized parameters are database-dependent, meaning that 
they may not be ideal for use on soil types not included in the optimi
zation process. Some physically-based models consider different com
ponents, such as solids and fluids contributing to thermal conductivity in 
a combination of series and parallel in the cubic cell or representative 
elementary volume (de Vries, 1963; Tong et al., 2009). Some others 
provide a different but relatively close configuration to that of a real soil 
in order to simulate heat transfer within soil (i.e., they usually assume 
one dimensional heat transfer) (Gori and Corasaniti, 2013; Haigh, 
2015). However, these models are either over-simplified in comparison 
to real soil micro-structures (i.e., particle geometry, particle/pore size 
distribution, pore-water arrangement, and interfacial properties) or are 
in a complex form, which makes it difficult to determine their param
eters, and thus they lack prediction accuracy (Dong et al., 2015; Jia 
et al., 2019). 
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One of the theoretical thermal conductivity models is based on the 
percolation-based effective-medium approximation presented by 
Ghanbarian and Daigle (2016) (hereafter G&D model). Ghanbarian and 
Daigle (2016) explicitly derived θ as a function of λ, and showed that 
their theoretical model reasonably well described fine- and coarse- 
textured soil observations. Then, Sadeghi et al. (2018) presented an 
explicit λ(θ) form of the G&D model and demonstrated that the G&D 
model could reduce to other existing λ(θ) models as its special cases 
(section 4 in their study). Sadeghi et al. (2018) also proposed regression- 
based relationships to estimate parameters of the G&D model using the 
clay content of a soil. 

Compared to other models, the G&D model has three main advan
tages: (i) its parameters are physically meaningful, (ii) two parameters 
can be easily estimated from clay content using linear relationships, and 
(iii) independent validation on four sand packs demonstrate its reli
ability. Thus, the G&D model appears to provide the potential for broad 
usage in predicting soil heat transfer. However, the linear regressions 
proposed by Sadeghi et al. (2018) are based on only 17 soil samples and 
show limitations because of using only clay content as an input (shown 
later in section 2.1), thus more robust model calibration and validation 
for additional soils are warranted. 

The objectives of this study, therefore, are to calibrate and validate 
the G&D model using a broader range and larger number of soils and 
obtain best-fitting parameters for three textural groups, then compare 
the calibrated G&D model results to those derived from two widely used 
empirical λ(θ) models. 

2. Materials and methods 

2.1. Percolation-based effective-medium approximation model 

Using concepts of the percolation-based effective-medium approxi
mation (McLachlan, 1987), Ghanbarian and Daigle (2016) developed 
the following theoretical relationship to model thermal conductivity in 
unsaturated soils 

(ϕ − θ)
λ1/ts

dry − λ1/ts

λ1/ts
dry + [(ϕ − θc)/θc ]λ1/ts

+ θ
λ1/ts

sat − λ1/ts

λ1/ts
dry + [(ϕ − θc)/θc ]λ1/ts

= 0 (1) 

Eq. (1) can be rewritten to implicitly link thermal conductivity λ to 
water content θ 

θ =

[
λ1/ts − λ1/ts

dry

][
θcλ1/ts

sat + (ϕ − θc)λ1/ts
]

[
λ1/ts

sat − λ1/ts
dry

]
λ1/ts

(2)  

where λdry and λsat are thermal conductivity at dry and saturated soil 
conditions, respectively, ts is the scaling exponent, and θc is the critical 
water content at which the high-conductivity component first forms a 
continuous percolation path (i.e., water capillary bridges surrounding 
grain-grain contacts). 

Sadeghi et al. (2018) derived an explicit λ(θ) form of the G&D model: 

λ =

[

b1 + b2θ + sgn(ts)b2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√ ]ts

(3)  

where sgn is the sign function (i.e., sgn(ts > 0) = 1, sgn(ts < 0) = -1) and 
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−θcλ1/ts

sat + (θs − θc)λ1/ts
dry
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Theoretically, ts > 0, and, thus, the sign function in Eq. (3) can be 
eliminated. Sadeghi et al. (2018) proposed two regression-based re
lationships to estimate ts and θc from clay content (fclay) based on 17 soil 
samples with clay contents ranging from 0.01 to 0.43: 

θc = 0.33f clay (5)  

ts = −0.25f clay + 0.342 (6) 

In combination with Eqs. (5) and (6), Sadeghi et al. (2018) used the 
G&D model to successfully estimate λ values of four sand packs. How
ever, further assessments are required using a wider range of soils to 
support the model’s applicability. Furthermore, Eqs. (5) and (6) are 
derived using only 17 soil samples and, thus, they are not expected to 
accurately estimate θc and ts values and accordingly saturation- 
dependent thermal conductivity for all soil types, particularly those 
with clay contents>0.43. 

Eqs. (5) and (6) use clay content as the only predictor, which in
troduces some issues at both low and high clay contents. When fclay is 
low (e.g., < 0.1), the estimated λ(θ) curve by Eqs. (4)-(6) shows typical 
characteristics of sandy soils: less pronounced ‘flat tail’ behavior and 
sharp increase in the pendular regime (Fig. 1). Thus, the G&D model is 
expected to perform well on sandy soils (e.g., four sand packs as reported 
by Sadeghi et al. (2018)) but poorly for finer-textured soils with similar 
fclay. For example, Soils 2 and 26 have the same fclay (i.e., 0.06), but the 
former is a sand soil and the latter is a silt loam soil. Figure 2 presents the 
thermal conductivity versus the water content curves using Eqs. (4)-(6) 
on these two soils. Obviously, the G&D model can capture the λ(θ) curve 
trend for Soil 2, but λ was overestimated particularly in the low θ range 
for Soil 26. As the fclay increases, the θc increases but ts decreases. Thus, 
the estimated λ(θ) curves by Eqs. (4)-(6) have more pronounced flat 
regions at low saturation values but drastic increases at medium satu
ration values with high clay content (Fig. 1). The curve at high fclay (e.g., 
0.5), however, does not mimic those of coarse-textured or fine-textured 
soils: the former has a rapid increase of λ with increasing θ but a less 
pronounced flat tail at low θ, whereas the latter has more static behavior 
at the dry end and also a more gradual λ response as θ increases. 
Therefore, it is necessary to calibrate and validate the G&D model using 
a large number of soils and develop new equations, in place of Eqs. (5) 

Fig. 1. Thermal conductivity, λ, as a function of water content, θ, determined 
via the G&D model (equation 4) for various clay contents (fclay). The θc and ts 
model parameters are estimated from fclay using Eqs. (5) and (6), respectively. 
We set λdry = 0.5 W m−1 K−1 and λsat = 2.5 W m−1 K−1. 
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and (6), to estimate ts and θc. 

2.2. Côté and Konrad (2005a) model 

Côté and Konrad (2005a) proposed a hyperbolic equation incorpo
rating a texture-dependent parameter κ that relates λ to saturation Sr as 
follows: 

Ke =
λ − λdry

λsat − λdry
=

κSr

1 + (κ − 1)Sr
(7)  

where Ke is the normalized thermal conductivity, and Sr is water satu
ration. Using data of 10 soil samples reported by Kersten (1949), Côté 
and Konrad (2005a) found κ = 3.55 for medium and fine sands and 1.90 
for silty and clayey soils. 

2.3. Lu et al. (2007) model 

To address the tail behavior of λ(S) curves at low Sr for fine-textured 
soils, Lu et al. (2007) established an exponential λ equation in terms of 
Sr: 

Ke =
λ − λdry

λsat − λdry
= exp

{
α

[
1 − S (α−β)

r

] }
(8)  

where α and β are two empirical parameters. Lu et al. (2007) divided 
eight soil samples into two groups according to their sand contents 
(fsand): (i) four coarse-textured soils (i.e., fsand ≥ 0.4) and (ii) four fine- 
textured soils (i.e., fsand < 0.4). By directly fitting Eq. (8) to the sam
ples, they found α values of 0.96 and 0.27 for coarse- and fine-textured 
soils, respectively. β, another empirical parameter in Eq. (8), was re
ported to be 1.33. 

2.4. Datasets 

In this study, data representing 99 soils were collated from the 
literature to calibrate and independently validate the G&D, Côté and 
Konrad (2005a) (hereafter C&K), and Lu et al. (2007) (hereafter Lu) 
models. All of the soils satisfied the following criteria: (1) data collection 
was via reliable experimental techniques (details can be found in asso
ciated publications) and setup at room temperature (i.e., 20–25 ◦C, as 
temperature effects were not be considered in this study); (2) at least five 
measured values on the λ-θ curve from dryness to saturation (with 
sigmoidal shape) were available; (3) complete information, such as 
sand, silt, and clay contents (fsand, fsilt and fclay) and porosity (ϕ), was 
known for all samples. Measured λdry and λsat values were required in
puts for the three models. If they were not available, they were indirectly 
estimated from soil quartz content (fquartz) and porosity (ϕ) using the 
following relationships proposed by Johansen (1975) and Lu et al. 

(2007), respectively: 

λsat =
(

λfquartz
q λ1−fquartz

o

)1−ϕ
λϕ

w (9)  

λdry = −0.56ϕ + 0.51 (10)  

where λq is the thermal conductivity of quartz (7.7 W m−1 K−1), and λo is 
the thermal conductivity of other minerals and equal to 2.0 W m -1 K−1, 
when fquartz > 0.2, and 3.0 W m -1 K−1, when fquartz ≤ 0.2. 

Eq. (9) is based on the geometric mean method, which can only give 
reliable estimates when the ratio of λs/λw is<10 (Woodside and 
Messmer, 1961; Côté and Konrad, 2005a; Tarnawski and Leong, 2016). 
For most soil minerals, λs ranges from 1.8 to 8.8 W m−1 K−1 (Horai, 
1971) and thermal conductivity of water (λw) is 0.598 W m−1 K−1 at 
20 ◦C. Thus, it is unsurprising that Eq. (9) has been extensively used in 
empirical thermal conductivity models (Donazzi et al., 1979; Lu et al., 
2007; Chen, 2008; He et al., 2017), and its reliability on estimating the 
λsat also has been tested (Woodside and Messmer, 1961; Johansen, 1975; 
Tarnawski et al., 2018; Wang et al., 2020) when quartz content is 
available and used. Dry soils can be regarded as a mixture of soil solids 
and air, and λs is dominant compared to thermal conductivity of air 
(0.025 W m−1 k−1). For such a case, the geometric mean method is no 
longer valid, and various models to estimate the λdry with porosity or 
bulk density as indicators have thus been proposed. He et al. (2021a) 
reviewed 48 models for estimating the λdry and found that Eq. (10) was 
one of the best performing models with RMSE of 0.09 W m−1 K−1 (i.e., 
lowest among all models), Nash-Sutcliff Efficiency (NSE) of 0.40 (i.e., 
17th among all models) and Akaike information criterion (AIC) of -3103 
(i.e., 7th among all models). Therefore, Eqs. (9) and (10) were used to 
indirectly estimate the λdry and λsat values for the soils that did not have 
directly measured values. 

The 99 soils were then divided into a calibration dataset of 41 soils 
(Soils 1–41), listed in Table 1, and a validation dataset of 58 soils (Soils 
42–99), listed in Table 2, to ensure that both groups covered a variety of 
soil textures (Fig. 3), which was a major factor controlling the λ-θ curves. 
Note that Soils 1–8, Soils 1–13 and Soils 15–24 in the calibration dataset 
were used, respectively, to determine the α value for coarse- and fine- 
textured soils by Lu et al. (2007), to develop Eqs. (5) and (6) by Sade
ghi et al. (2018) and to fit the parameter κ for medium and fine sands 
and silty and clayey soils by Côté and Konrad (2005a). For a thorough 
and fair comparison, we used a relatively large dataset consisting of 
more than these 23 soils to calibrate texture-dependent α and κ values 
and to develop improved relationships for ts and θc. Tables 1 and 2 
present the basic soil physical properties and the sources of the 99 soils. 

2.5. Fitting model parameters to thermal conductivity data 

Three models were fitted to the λ(θ) (or λ(S)) measurements with a 

Fig. 2. Thermal conductivity, λ, as a function of water content, θ, determined via the G&D model (equation 4) for Soils 2 and 26. The θc and ts model parameters are 
estimated from fclay using Eq. (5) and (6), respectively. 
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least squares method by minimizing the following objective function: 

Oλ(p) =
∑Nλ

i=1

(
λi − λ′

i

)2
(11)  

where λi and λi
’ are the measured and fitted thermal conductivity values, 

respectively, Nλ is the number of measured λ(θ) (or λ(S)) data points in 
each group and p are the parameter vectors, which are {κ} for the C&K 
model, {α, β} for the Lu model, and {θc, ts} for the G&D model. 

2.6. Statistical analysis 

In this study, we compared the estimated λ values via different 
models with the measured λ values. The model performances were 
evaluated using: (1) root mean square error (RMSE) describing the 
spread of the errors around the measured λ values, and a value of 0 in
dicates a perfect model estimation; (2) mean absolute error (MAE) 
describing the average absolute errors, and MAE = 0 indicates a perfect 
model estimation; and (3) coefficient of determination (R2) describing 
how well observed outcomes are replicated by the model, and a R2 value 
of unity indicates the model values perfectly match the measured values. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(λestimated − λmeasured)
2

N

√

(12)  

MAE =

∑
|λestimated − λmeasured|

N
(13)  

R2 = 1 -
∑

(λestimated − λmeasured)
2

∑ (
λestimated − 1

N

∑
λestimated

)2 (14)  

where N is the number of data points, and p is the number of model 
parameters, and λestimated and λmeasured are the model estimates and 
measured values, respectively. 

3. Results and discussion 

3.1. Soil textural groups 

It is well known that the thermal conductivity functions, expressed as 
normalized thermal conductivity (Ke) with respect to the degree of 
saturation (Sr), are influenced by the grain-size distribution of soils 
(Kersten 1949; Johansen 1975; Côté and Konrad, 2005a; Lu et al., 2007). 
Thus, it is unsurprising that previous studies often divided soils into 
different textural groups. For example, Johansen (1975) derived Ke 
functions in terms of Sr for fine- and coarse-textured soils, respectively. 
Côté and Konrad (2005a) obtained the best-fitted κ values for gravel and 
coarse sand, medium and fine sand, and silty and clayey soils, respec
tively. However, these studies do not define explicitly the boundary 

Table 1 
Soil ID, texture, particle size distribution, quartz content, porosity (ϕ) and sources of soils in the calibration dataset including 41 soil samples. The star symbol rep
resents the sum of gravel and sand contents. The hash symbol represents soil samples having no λdry or λsat values measured.  

Soil ID Texture Particle size distribution Quartz content ϕ Sources 

Sand Silt Clay cm3 cm−3 

1 sand  0.94  0.01  0.05  – 0.40 Lu et al. (2007) 
2 sand  0.93  0.01  0.06  – 0.40 Lu et al. (2007) 
3 sandy loam  0.67  0.21  0.12  – 0.48 Lu et al. (2007) 
4 loam  0.40  0.49  0.11  – 0.55, 0.51, 0.47 Lu et al. (2007) 
5 silt loam  0.27  0.51  0.22  – 0.50 Lu et al. (2007) 
6 silt loam  0.11  0.70  0.19  – 0.51 Lu et al. (2007) 
7 silty clay loam  0.19  0.54  0.27  – 0.55, 0.51, 0.47 Lu et al. (2007) 
8 silty clay loam  0.08  0.60  0.32  – 0.51 Lu et al. (2007) 
9 clay loam  0.32  0.38  0.30  – 0.51 Lu et al. (2007) 
10 loam  0.50  0.41  0.09  – 0.48 Lu et al. (2007) 
11 sand  0.92  0.07  0.01  – 0.40 Lu et al. (2007) 
12 silty clay  0.07  0.50  0.43  – 0.52 Lu et al. (2011) 
13 sand  0.94  0.01  0.05  – 0.40 Lu et al.(2013) 
14 silt loam  0.02  0.73  0.25  – 0.55 Lu et al. (2007) 
15 sand#  0.97*  0.03  0.00  0.12 0.33–0.43 Kersten (1949) 
16 sand#  1.00*  0.00  0.00  0.08 0.34–0.46 Kersten (1949) 
17 sand#  1.00  0.00  0.00  0.72 0.30–0.46 Kersten (1949) 
18 sand#  1.00  0.00  0.00  0.99 0.35–0.42 Kersten (1949) 
19 clay#  0.02  0.20  0.78  0.23 0.33–0.60 Kersten (1949) 
20 silty clay loam#  0.09  0.64  0.27  0.05 0.40–0.66 Kersten (1949) 
21 silt loam#  0.08  0.81  0.11  0.13 0.35–0.58 Kersten (1949) 
22 sandy loam#  0.69*  0.21  0.10  0.59 0.20–0.50 Kersten (1949) 
23 sandy loam#  0.54*  0.28  0.18  0.51 0.25–0.48 Kersten (1949) 
24 silt loam#  0.22*  0.64  0.14  0.02 0.32–0.56 Kersten (1949) 
25 sand#  0.95  0.03  0.02  0.63 0.43 McInnes (1981) 
26 silt loam#  0.30  0.64  0.06  0.42 0.53 McInnes (1981) 
27 silt loam#  0.30  0.61  0.09  0.42 0.53 McInnes (1981) 
28 silt loam#  0.20  0.68  0.12  0.38 0.53 McInnes (1981) 
29 silt loam#  0.20  0.57  0.23  0.45 0.53 McInnes (1981) 
30 sand#  0.89  0.06  0.05  0.61 0.43 Campbell et al. (1994) 
31 silt loam#  0.20  0.55  0.25  0.38 0.55 Campbell et al. (1994) 
32 silt loam#  0.11  0.68  0.21  0.36 0.52 Campbell et al. (1994) 
33 silty clay#  0.09  0.44  0.47  0.35 0.57 Campbell et al. (1994) 
34 sandy loam#  0.54  0.32  0.15  0.49 0.49 Campbell et al. (1994) 
35 silt loam#  0.19  0.59  0.23  0.38 0.59 Campbell et al. (1994) 
36 silt loam#  0.23  0.63  0.14  0.39 0.53 Campbell et al. (1994) 
37 silt loam#  0.17  0.70  0.13  0.00 0.71 Campbell et al. (1994) 
38 sandy loam#  0.75  0.10  0.15  0.56 0.41 Hopmans and Dane (1986) 
39 sand  1.00  0.00  0.00  1.00 0.32, 0.40 Tarnawski et al. (2013) 
40 sand  1.00  0.00  0.00  1.00 0.32 Tarnawski et al. (2013) 
41 sand  1.00  0.00  0.00  0.88 0.38, 0.40 Tarnawski et al. (2013)  
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between each textural group, which can lead to improper selections of κ 
in Eq. (7) (He et al., 2017; Lu et al., 2007). He et al. (2021b) summarized 
detailed standards used in earlier studies to distinguish various texture 
groups. 

Figure 4 presents the Ke values as a function of Sr for the 41 soils in 
the calibration dataset using six different classifications. Details of these 
classifications can be found in Table 3. Overall, three of six classifica
tions divide soils into coarse-textured and fine-texture soils depending 
on sand or clay content. Among them, the division suggested by 
Johansen (1975) is the worst as the distribution of Ke(Sr) curves for fine- 
textured soils are too scattered. The classification results by Kersten 
(1949) and Lu et al. (2007) are quite similar, because they used similar 

sand contents, 0.5 and 0.4, respectively, as the boundary. As expected, 
the coarse-textured soils show a more drastic increase of λ in the 
pendular regime (where discrete menisci are formed, and individual 
water bridges are built near particle contacts) and larger λ values than 
do the fine-textured soils over the range of saturations. In contrast, the 
fine-textured soils exhibit long flat tails at low Sr and delay the onset of 
the rapid increases in λ as Sr increases. This is because, compared to the 
coarse-textured soils, fine-textured soils have larger surface area and, 
thus, hold more water on the solid surfaces. Changes in the water con
tent due to hydration result in small variations in heat transfer paths 
and, therefore, thermal conductivity (Lu and Dong, 2015). However, 
even in Figs. 4a and 4e, compared to the fine-textured soils, the 

Table 2 
Soil ID, texture, particle size distribution, quartz content, porosity (ϕ) and sources of soils in the validation dataset including 58 soil samples.  

Soil ID Texture Particle size distribution Quartz content ϕ Sources     

Sand Silt Clay  cm3 cm−3  

42 silt loam 0.33 0.57 0.10 0.51 0.55 Tarnawski et al. (2015) 
43 sandy loam 0.61 0.34 0.05 0.61 0.45 Tarnawski et al. (2015) 
44 sandy loam 0.57 0.37 0.06 0.63 0.40 Tarnawski et al. (2015) 
45 sand 1.00 0.00 0.00 1.00 0.36 Tarnawski et al. (2015) 
46 loamy sand 0.85 0.12 0.03 0.72 0.40 Tarnawski et al. (2015) 
47 sandy loam 0.56 0.38 0.06 0.72 0.51 Tarnawski et al. (2015) 
48 silt loam 0.22 0.66 0.12 0.34 0.57 Tarnawski et al. (2015) 
49 loam 0.5 0.42 0.08 0.66 0.44 Tarnawski et al. (2015) 
50 loam 0.51 0.40 0.09 0.58 0.42 Tarnawski et al. (2015) 
51 loamy sand 0.83 0.14 0.03 0.54 0.41 Tarnawski et al. (2015) 
52 silt loam 0.03 0.82 0.15 0.57 0.54 Tarnawski et al. (2015) 
53 silt loam 0 0.83 0.17 0.56 0.45 Tarnawski et al. (2015) 
54 silt loam 0.24 0.66 0.1 0.55 0.62 Tarnawski et al. (2015) 
55 silt loam 0.26 0.64 0.1 0.60 0.54 Tarnawski et al. (2015) 
56 silty clay loam 0 0.67 0.33 0.38 0.54 Tarnawski et al. (2015) 
57 sand 0.93 0.05 0.02 0.35 0.43 Tarnawski et al. (2015) 
58 loamy sand 0.79 0.17 0.03 0.42 0.48 Tarnawski et al. (2015) 
59 silt loam 0.36 0.56 0.08 0.28 0.43 Tarnawski et al. (2015) 
60 silt loam 0.07 0.75 0.18 0.17 0.51 Tarnawski et al. (2015) 
61 sandy loam 0.71 0.25 0.04 0.41 0.46 Tarnawski et al. (2015) 
62 sand 0.89 0.10 0.01 0.38 0.39 Tarnawski et al. (2015) 
63 sandy loam 0.56 0.37 0.07 0.36 0.38 Tarnawski et al. (2015) 
64 loamy sand 0.84 0.14 0.02 0.38 0.44 Tarnawski et al. (2015) 
65 silt loam 0.32 0.54 0.14 0.25 0.45 Tarnawski et al. (2015) 
66 silt loam 0.17 0.69 0.14 0.38 0.55 Tarnawski et al. (2015) 
67 silt loam 0.22 0.55 0.23 0.20 0.41 Tarnawski et al. (2015) 
68 silt loam 0.03 0.76 0.21 0.21 0.63 Tarnawski et al. (2015) 
69 loamy sand 0.81 0.16 0.03 0.61 0.47 Tarnawski et al. (2015) 
70 silt loam 0 0.74 0.26 0.48 0.41 Tarnawski et al. (2015) 
71 sandy loam 0.67 0.27 0.06 0.61 0.45 Tarnawski et al. (2015) 
72 silt loam 0.02 0.83 0.15 0.37 0.53 Tarnawski et al. (2015) 
73 loamy sand 0.83 0.14 0.03 0.67 0.42 Tarnawski et al. (2015) 
74 sandy loam 0.68 0.27 0.05 0.63 0.45 Tarnawski et al. (2015) 
75 silt loam 0.38 0.52 0.1 0.55 0.55 Tarnawski et al. (2015) 
76 silty clay 0 0.58 0.42 0.21 0.51 Tarnawski et al. (2015) 
77 silty clay 0 0.58 0.42 0.19 0.50 Tarnawski et al. (2015) 
78 silty clay loam 0 0.70 0.30 0.27 0.51 Tarnawski et al. (2015) 
79 silty clay 0 0.59 0.41 0.17 0.52 Tarnawski et al. (2015) 
80 silty clay loam 0 0.67 0.33 0.17 0.53 Tarnawski et al. (2015) 
81 silt loam 0.32 0.58 0.1 0.37 0.52 Tarnawski et al. (2015) 
82 sand 0.91 0.03 0.06 – 0.47, 0.43, 0.40 Fu et al. (2021) 
83 sandy loam 0.52 0.36 0.12 – 0.53, 0.49, 0.45 Fu et al. (2021) 
84 silt loam 0.34 0.53 0.13 – 0.57, 0.53, 0.49 Fu et al. (2021) 
85 sand 1.00 0.00 0.00 – 0.43 Fu et al. (2021) 
86 silt loam 0.21 0.67 0.12 – 0.6 Fu et al. (2021) 
87 clay loam 0.24 0.49 0.27 – 0.55 Fu et al. (2021) 
88 sand 1.00 0.00 0.00 0.69 0.4 Tokoro et al. (2016) 
89 sandy clay loam 0.53 0.22 0.25 0.07 0.52 Tokoro et al. (2016) 
90 sand 1.00 0.00 0.00 0.34 0.31 Tokoro et al. (2016) 
91 silt loam 0.25 0.58 0.17 – 0.44 Hailemariam et al. (2017) 
92 silt loam 0.27 0.53 0.20 – 0.46 Hailemariam et al. (2017) 
93 silt loam 0.10 0.65 0.25 – 0.48 Hailemariam et al. (2017) 
94 sand 1.00 0.00 0.00 0.87 0.4 Tarnawski and Leong (2016) 
95 clay 0.34 0.23 0.43 0.58 0.6 Tarnawski and Leong (2016) 
96 silt loam 0.28 0.58 0.14 0.45 0.65 Tarnawski and Leong (2016) 
97 sand 0.92 0.05 0.03 0.52 0.42 Tarnawski and Leong (2016) 
98 loamy sand 0.71 0.26 0.03 – 0.44, 0.5 McCombie et al. (2016) 
99 sand 0.91 0.07 0.02 – 0.45 Cass et al. (1981)  
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measured values of coarse-textured soils are more scattered, possibly 
due to the wider range of sand contents. Cox et al. (1999) and Côté and 
Konrad (2005a) separated soils into fine-, medium- and coarse-textured 
soils. However, the former approach resulted in a wide distribution of 
Ke(Sr) curves for coarse-textured soils but a limited number for fine- 
textured soils (3); in contrast, the latter obtained 25 fine-textured soils 
but only 4 medium-textured soils. Overall, none of these five studies give 
satisfactory classification results. In this study, we recommend dividing 
the soil samples into three textural groups: Group I (fsand < 0.4), Group II 
(other than Groups I and III), and Group III (sand). Group I represents 
fine-textured soils, and Group III only includes sand soils. Soils in Group 
II show intermediate characteristics between typical coarse- and fine- 
textured soils. Overall, there are 20 soils in Group I, 8 soils in Group 
II, and 13 soils in Group III in the calibration dataset. In the validation 
dataset, the number of soil samples in Groups I, II and III are 29, 19, and 
10, respectively. Obviously, compared with the classifications discussed 
above, the group boundary values used in this study give a fairly uniform 
classification, and thus result in concentrated distributions of Ke(Sr) 
curves in each textural group. 

3.2. Model performances before calibration 

Figure 5 compares λ values estimated via the three models against 
the measured values for the 58 soils in the validation dataset. The MAE, 
RMSE, and R2 values were < 0.105 W m−1 K−1, < 0.08 W m−1 K−1, and 
> 0.95, respectively, for the C&K and Lu models. Both models provided 
quite accurate λ estimates. The G&D model with MAE = 0.125 W m−1 

K−1, RMSE = 0.089 W m−1 K−1, and R2 = 0.95 was slightly less accurate 
than the C&K and Lu models. 

The C&K model performed better than the Lu model for soils in 
Group I. This differed from Lu et al. (2007) and Dong et al. (2015) who 
reported that the Lu model better described the λ-θ curve, especially for 
fine-textured soils. Fu and Horton (in review) found that the Lu model 
used a relatively low α parameter value (i.e., 0.27) for fine-textured 
soils, which enabled a good model performance at low Sr values but 
had poorer accuracy at intermediate saturation values. Among the three 
models, the G&D model performed best on Group III soils but worst on 
Group I and Group II soils (Table 4). 

Measurements from a range of additional soil samples confirmed 

these findings. We determined the value of θc and ts by fitting Eq. (2) to 
the data from Soils 1–41 then linked them to the fclay (Fig. 6). Interest
ingly, we found a linear relationship between θc and fclay, similar to Eq. 
(5). Our new coefficient and intercept values (i.e., 0.31 and 0.02) were 
close to 0.33 and 0 in Eq. (5) reported by Sadeghi et al. (2018) based on 
Soils 1–13. However, Fig. 6c is more scattered compared to Fig. 6a. Even 
after excluding an outlier, we found that the R2 of 0.66 was lower than 
that for the original Sadeghi et al. (2018) coefficients. The ts relationship 
with the fclay (R2 = 0.01) was weak. Thus, it is essential to calibrate the 
G&D model using the soils in the calibration dataset. For fair compari
son, we also calibrated the C&K and Lu models using the same data. 
Because the relationships between parameters of the G&D model and 
clay content were not strong, we chose to determine the fitting θc and ts 
values for the three soil groups as we did for the C&K and Lu models. 

3.3. Determination of parameters after calibration 

The three models were fitted to all the λ-θ curves in each group to 
determine the model fitting parameters. Table 5 summarizes the pa
rameters for the three models before and after calibration. Before cali
bration, the C&K and Lu models have fitting values for each textural 
group to represent the parameters. In contrast, the parameters of the 
G&D model are dependent on the clay content as reported by Sadeghi 
et al. (2018). 

For the C&K model, fitted κ values after calibration were 1.64 for 
Group I soils, 2.17 for Group II soils and 5.41 for Group III soils. It was 
not surprising that Group III had the largest κ value as large κ led to large 
λ at a given S, which was typical for coarse soils. For the Lu model, 
Group II soils and Group III soils yielded α and β values similar to the 
original values from the earlier calibrations. The Group I α value is 0.59 
after calibration, which is more than twice the value reported by Lu et al. 
(2007). Recall that the Lu et al. (2007) α value of 0.27, determined on 
only four fine-textured soils, was found to be low leading to over
estimations of λ, especially at medium saturation values (Fu and Horton, 
in review). Through calibration of the G&D model using 41 soils, the θc 
and ts values were determined. We found θc = 0.08 and ts = 0.385 for 
Group I soils, θc = 0.03 and ts = 0.415 for Group II soils, and θc = 0.01 
and ts = 0.276 for Group III soils. Among the three groups, Group I had 
the highest θc value, indicating that the amount of water required to 

Fig. 3. Texture classes of the soils in the calibration and validation datasets. The number represents the number of soils in each textural group.  

Y. Fu et al.                                                                                                                                                                                                                                       



Geoderma 438 (2023) 116631

7

Fig. 4. Normalized thermal conductivity (Ke) as a function of degree of saturation (S) for Soils 1–41 in the calibration dataset. In each subplot, soils are separated into 
two or three groups according to the classification suggested by six different studies. The subplot (f) represents the classification used in this study: soils are classified 
into three groups: Group I (fsand < 0.4), Group II (remainder) and Group III (sand). The number represents the number of soils in each textural group. 
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form a continuous heat flow path through the water phase was consid
erable. This was consistent with the fact that among the three groups, 
Group I had the highest average fclay value (i.e., 0.25), thus likely the 
largest surface area. A positive correlation between the critical water 
content and surface area was experimentally reported by Moldrup et al. 
(2001). The fitted ts values did not show any relationship with clay 
content. Group II had the highest ts of 0.415 followed by 0.385 of Group I 
and 0.276 of Group III. 

3.4. Model comparisons after calibration 

Using the calibration optimized model parameters, we compared the 
performances of the three models. Fig. 7 shows the estimated λ values 
versus the measured ones for Soils 42–99 in the validation dataset after 
calibration. Overall, all three models provided accurate estimates, and 

RMSEs ranged from 0.086 to 0.096 W−1 m−1 K−1, MAEs from 0.063 to 
0.071 W−1 m−1 K−1, and R2 values were around 0.97. Based on Figs. 5 
and 7 all three model performances improved after calibration. How
ever, the extent of improvement among the models differed. The G&D 
model improved the most, and RMSE decreased by 26.4% and MAE by 
24.7%. The C&K model improved the least, and RMSE and MAE 
decreased by only 6.8% and 5.3%, respectively. The C&K model’s hy
perbolic function did not capture the sigmoidal shape of the λ(θ) curve 
well. The Lu model performed best on Group I soils and Group II soils, 
and the G&D model performed best on Group III soils. Overall, after 
calibration, the G&D model performance was similar to the C&K and Lu 
models. This is a somewhat surprising and favorable result, as the 
capability of most theoretical λ(θ) models is generally limited due to 
simplified and idealized soil structure assumptions (Wang and Pan, 
2008). This was especially noteworthy because the C&K and Lu models 
were the best performing models among a group of empirical models 
(Barry-Macaulay et al., 2015; He et al., 2020; Zhang and Wang, 2017). 
The C&K and Lu model parameters are empirical, which restricts their 
application other than to predict heat conduction in soils. In contrast, 
the theoretical foundation of the G&D model enables the model pa
rameters (θc and ts) to have physical meanings. Ghanbarian and Daigle 
(2016) proposed that θc could be roughly estimated from the residual 
water content (θr) and that the scaling exponent ts could be related to the 
fractal dimension of the solid matrix or pore space. Therefore, the G&D 
model parameters are expected to be related to soil hydraulic properties 
and should be further investigated in future studies. 

3.5. Further discussion 

Although 99 soils covering 11 major textural classes (all except for 
sandy clay) are used in this study to calibrate and validate the perfor
mances of the G&D model and two other empirical models, there are 
only a few clay soils and no peat soils. Clay soils are different from other 
soils in many aspects, e.g., smaller particle size and higher specific 
surface area, which significantly affect the heat transfer process within 
the soils (Liu et al., 2021). For example, in clay soils where clay minerals 
(e.g., kaolinite, or magnetite and hematite) are predominant, quartz 
content is low. Eq. (9), which has been widely used in many previous 
studies to estimate the λsat values, may yield differences of up to 50% 
compared to measured values for 0% quartz content soils (Côté and 
Konrad, 2005b). Compared with mineral soils, peat soils have much 
higher organic matter content and are easily affected by soil shrinkage, 
which, however, received limited consideration (Zhao and Si, 2019). 
Zhao et al. (2019) developed a thermal conductivity model for peat soils 

Table 3 
The statistical results of each textural group using Soils 1–41 after six different 
classifications.    

Note N Average 
fsand 

Average 
fclay 

Kersten 
(1949) 

Fine- 
textured 

fsand ≤ 0.5 22  0.18  0.24  

Coarse- 
textured 

fsand > 0.5 19  0.85  0.05 

Johansen 
(1975) 

Fine- 
textured 

fclay ≤ 0.05 29  0.30  0.21  

Coarse- 
textured 

fclay > 0.05 12  0.97  0.02 

Cox et al. 
(1999) 

Fine- 
textured 

fclay ≥ 0.35 and 
fsilt ≤ 0.65 

3  0.05  0.56  

Medium- 
textured 

Remainder 11  0.18  0.25  

Coarse- 
textured 

fsand ≥ 0.65 or 
fclay ≤ 0.18 

27  0.67  0.07 

Côté and 
Konrad 
(2005a) 

Fine- 
textured 

fsand < 0.60 25  0.22  0.23  

Medium- 
textured 

0.60 ≤ fsand <

0.90 
4  0.75  0.22  

Coarse- 
textured 

fsand ≥ 0.90 12  0.97  0.02 

Lu et al. 
(2007) 

Fine- 
textured 

fsand < 0.40 20  0.16  0.25  

Coarse- 
textured 

fsand ≥ 0.40 21  0.81  0.07 

This study Group I fsand < 0.4 20  0.16  0.25  
Group II Remainder 8  0.56  0.14  
Group III Sand 13  0.96  0.02  

Fig. 5. Comparison of the C&K model, Lu model and G&D model λ values versus measured values for Soils 42–99 before calibration. The solid lines are the 1:1 lines. 
Groups I, II and III represent soils with fsand < 0.4, 0.4 ≤ fsand < 1 and fsand = 1, respectively. The number represents the number of soils in each textural group. 
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by assuming a universal logarithmic function between Ke and Sr (i.e., 
Ke = log2(1 + Sr)), which needed only λdry and λsat as inputs and per
formed well on peat soils. However, their model is not suitable for other 
types of soils as the shape of Ke with respect to Sr curves depends on soil 
texture, and thus cannot be represented by a universal function. In 
summary, additional soil types, particularly clay and peat soils, are 
needed in future studies to further evaluate and improve the perfor
mance of the G&D model. 

In this study, we used measured λdry and λsat values rather than 
estimated results to avoid the potential influences on the calibration 
accuracy. For practical application, it would be valuable to further 
examine the performance of G&D model in conjunction with the models 
for estimating the λdry and λsat. However, as reviewed by He et al. 
(2021a) and Wang et al. (2020), there have been a large number of λdry 

Table 4 
Validation results of Soils 42–99 for the C&K model, Lu model, and G&D model before and after calibration. Group I, II and III represent soils with fsand < 0.4, 
remainder and sand, respectively. The superscript numbers represent the order of performance (e.g., 1 indicates the best and 3 indicates the worst).   

Parameters Before calibration After calibration  

Group I Group II Group III Group I Group II Group III   

N = 29 N = 19 N = 10 N = 29 N = 19 N = 10 
C&K RMSE 0.0841 0.1262 0.1112 0.0773 0.1013 0.1353 

MAE 0.0611 0.0922 0.0792 0.0563 0.0733 0.1053 

R2 0.971 0.952 0.972 0.973 0.963 0.973 

Lu RMSE 0.0962 0.1181 0.1153 0.0661 0.0931 0.1282 

MAE 0.0702 0.0821 0.0823 0.0481 0.0681 0.0942 

R2 0.952 0.951 0.973 0.971 0.971 0.972 

G&D RMSE 0.1273 0.1353 0.1031 0.0752 0.0972 0.1241 

MAE 0.0923 0.0923 0.0781 0.0542 0.0722 0.0901 

R2 0.943 0.943 0.971 0.962 0.972 0.971  

Fig. 6. Parameters θc and ts of the G&D model as a function of clay content (fclay) for Soils 1–13 (6a-6b) or Soils 1–41 (6c-6d). The solid lines represent the regression 
lines and white symbols identify outliers in subplots 6b and 6c. 

Table 5 
Best fitting parameters of the C&K model, the Lu model, and the G&D model 
before and after calibration using Soils 1–41 in this study.   

Parameters Before calibration After calibration  

Fine- 
textured 

Coarse- 
textured 

Group 
I 

Group 
II 

Group 
III  

N = 20 N = 21 N = 20 N = 8 N = 13 

C&K κ 1.9 3.55 1.64 2.17 5.41 
Lu α 0.27 0.96 0.59 1.05 0.94 

β 1.33 1.33 1.35 1.48 1.23 
G&D θc θc = 0.33fclay 0.08 0.03 0.01 

ts ts = -0.25fclay + 0.342 0.385 0.415 0.276  
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and λsat models but none of them consistently provided accurate esti
mates. For example, Eq. [9], the geometric mean method, provided the 
best λsat estimates, but it required complete mineral composition infor
mation, thus making it impractical to apply. Thus, it is essential to 
develop a new model for estimating λsat with attainable soil properties 
rather than mineral composition in the future. 

4. Conclusion 

Although there exist numerous empirical thermal conductivity 
models in the literature, the number of theoretical models is very 
limited. One theoretical approach, the G&D model, is based on the 
percolation-based effective-medium approximation, which encompasses 
several other existing models as its special cases. In this study, we cali
brated the parameters of the theoretical G&D model and two other 
empirical λ(θ) models using a dataset of 41 soils. For this purpose, three 
soil groups based on the sand content were defined (Group I: fsand < 0.4, 
Group II: other than Groups I and III, and Group III: sand). After cali
bration, the performances of the three λ(θ) models were evaluated using 
an independent dataset including 58 soil samples. The performances of 
all of the calibrated models improved compared to the original models, 
and they provided accurate estimations of measured λ values in an in
dependent validation dataset. More importantly, the G&D model has 
two physically-meaningful parameters, i.e., critical water content (θc) 
and scaling exponent (ts) which may be estimated from residual water 
content and fractal dimension of the solid matrix or pore space, 
respectively, as suggested by Ghanbarian and Daigle (2016). Once these 
correlations were developed, the robust performance after calibration in 
this study provided the basis to further establish pedo-transfer functions 
to estimate the soil hydraulic properties from λ(θ) measurements or 
basic soil properties (e.g., texture and porosity). 
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