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ABSTRACT: We present an experimental characterization of the
gravity-driven Rayleigh−Taylor instability in viscoelastic solids.
The instability creates periodic patterns on the free surface of the
soft solids that are distinct from the previously studied elastic
Rayleigh−Taylor instability. The experimental results are sup-
ported by the linear stability analysis reported here. We identify the
dependence of the steady-state pattern of deformations on the gel’s
geometry, complex shear modulus, and surface tension. This study
provides quantitative measures applicable to the design of tunable
surface textures, soft machines, and 3D structures.

■ INTRODUCTION
Viscoelastic gels exhibit properties of elastic solids and viscous
liquids depending on the mechanical conditions and the
timescale over which stress is applied. Some gels can recover
from damage or fracture,1,2 have strong adhesive properties,3−5

and/or exhibit various surface instabilities and patterns,6−8

which are all functions of the composition of the gel. One way
to create a pattern on the surface of “soft” materials is via the
Rayleigh−Taylor instability, which is typically associated with
the instability at the interface of two fluids of different densities
due to the competition between gravitational, inertial, capillary,
and viscous effects.9,10 Similar dynamics can occur with elastic
materials. Hence, the Rayleigh−Taylor instability can cause the
surface of liquids and gels11 to form a wavy pattern when the
free surface of a material is oriented downward so that it is
deformed in the direction of gravity. Specifically, gravity-driven
deformations on soft gels often appear as a periodic pattern of
dimples with a characteristic wavelength determined by the
shape, size, and chemical and mechanical properties of the
material;12 in some cases, the patterns are reversible upon
inverting the sample, while in other cases, there is irrecoverable
strain.
Initially, the Rayleigh−Taylor instability was recognized as a

phenomenon occurring at the interface of a Newtonian liquid
and a gas or two Newtonian liquids. Numerous theoretical
studies have appeared over the decades to discuss the
Rayleigh−Taylor instability in viscoelastic liquids.13−16 Re-
cently, a new feature of the instability�the existence of a
steady-state pattern of deformations�was identified by several
research groups that experimentally characterized the Ray-
leigh−Taylor instability in elastic solids.11,17,18 In addition,

several groups have developed theoretical models of the
Rayleigh−Taylor instability in viscoelastic solids.19,20 However,
to the best of our knowledge, there has not yet been
experimental research specific to the Rayleigh−Taylor
instability in viscoelastic solids, which is the goal of this paper.
Therefore, we experimentally study the Rayleigh−Taylor

instability for initially planar configurations of viscoelastic gels
of various material properties and thicknesses. We investigate
the effects of viscoelasticity and capillarity. In addition, using
linear stability analysis, we identify four dimensionless groups
that affect the onset of pattern formation and the typical
wavenumber, allowing us to predict and characterize the
Rayleigh−Taylor instability-driven surface waves and deforma-
tion wave modes. By analyzing the images of deforming gels,
we are able to describe the time development of the pattern
and, in the case of a steady-state pattern possible with
viscoelastic solids, the geometry of the stable deformed surface.

■ EXPERIMENTAL PROCEDURE
Material Fabrication and Experiment. The viscoelastic gels we

used consist of vinyl-terminated polydimethylsiloxane (PDMS,
Gelest), silicone oil (Sigma-Aldrich), a cross-linker, and a catalyst.
The catalyst was platinum-divinyltetramethyldisiloxane complex, 2%
Pt in xylene (Gelest), and we used (25−35% methylhydrosiloxane)�
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dimethylsiloxane copolymer, trimethylsiloxane terminated, 25−35 cSt
(Gelest) as a cross-linker. The mass ratio between PDMS and silicone
oil was 1:1. This liquid-filled polymer network is known to produce
gels with tunable viscoelastic properties.21,22 Depending on the
desired gel composition, we used silicone oils with dynamic viscosities
of μ = 0.019, 0.096, and 0.338 Pa·s (reported by the manufacturer).
For each sample, 0.0077 wt % of catalyst was added. The weight
percent of the catalyst was kept constant to maintain a relatively
uniform rate of polymerization between experiments. The cross-linker
concentration, cc, ranged from 0.225 to 0.248 wt %, based on the
desired mechanical properties of the gel. For imaging purposes, select
viscoelastic gels were prepared with a small amount of oil-compatible
fluorescent dye (Dye-Lite) in a 1:62 mass ratio between dye and
silicone oil. The addition of dye was the only difference between the
dyed and undyed gels prepared in this study. All materials were used
as received.

To form the viscoelastic gels, all components were mixed
thoroughly and poured into square Petri dishes (with side lengths
of either 115 or 90 mm). The mixture was then degassed in a vacuum

chamber. Next, the mixtures were cured overnight in an ≈ 63 °C
oven. The gels were then brought to room temperature (23−25 °C).

To highlight the differences in the Rayleigh−Taylor instability in
various classes of materials, we also produced elastic Rayleigh−Taylor
instability in agarose-based hydrogels. To form the hydrogel,
powdered agarose (Invitrogen) was added to deionized water such
that the final mixture was 0.08 wt % agarose. We then boiled the
mixture and poured it into rectangular Petri dishes (side length 210
mm and width 60 or 40 mm). The Petri dishes were covered with a
lid to prevent evaporation and were left to cure at room temperature
for 6 h.

The experimental setup is illustrated in Figure 1a. For imaging, a
Nikon D5100 camera with a Nikon DX18�55 mm lens was used. All
gels are transparent, so we were able to capture the deformation by
imaging from above. Fully cured gels were initially planar and flat.
They were quickly inverted in the air and placed above a light panel.
Images of a fully deformed gel are provided in Figure 1b,c.

Material Characterization. To quantitatively characterize the
flow behavior of the viscoelastic gels, we performed shear rheology

Figure 1. Instability of a viscoelastic gel. (a) Schematic of the experimental setup. (b,c) Inverted viscoelastic gel at steady state, shown in the (b)
side view and (c) top view. Scale bars are 10 mm. (d) Schematic representation of the Rayleigh−Taylor instability. A viscoelastic gel of density ρ,
dynamic modulus G, and thickness h is placed on top of air with density ρair and viscosity μair. For sufficiently soft gels, a characteristic perturbation
of the wavelength λ develops along the gel−air interface. (e) Material flows and deforms under the influence of gravity. Deformations of a
characteristic wavelength develop while the material tries to maintain its shape through elastic and capillary forces.

Figure 2. Rheological characterization of select elastic and viscoelastic gels. (a) Star: |G*|; circle: viscoelastic; triangle: elastic; filled: storage
modulus; and empty: loss modulus. Subscript “e” stands for the hydrogel. The storage modulus of the hydrogel was measured constant at Ge′ ≈ 9.6
Pa at all frequencies tested. Hence, we consider the hydrogel as an elastic solid. The rubbery plateau modulus of the viscoelastic gel G0 was fitted
with the following function: G* = G0[1 + (iωτ)n]. Images of gels with these material properties are provided in Figure 4b. (b) Gels with different
cross-linker concentrations, cc. (Top) 0.10 Pa·s silicone oil with 0.244 wt % cc. G0 = 4.2 Pa, τ = 8.8 s, and n = 0.68, and (bottom) 0.35 Pa·s silicone
oil with 0.233 wt % cc. G0 = 2.7 Pa, τ = 14 s, and n = 0.67. We call the top and bottom gels, gel 1 and gel 2, respectively. Images of gels with these
material properties are provided in Figure 5a.
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using a parallel plate rheometer (Anton Paar, MCR 302e) to measure
their storage modulus, G′, and loss modulus, G″; see Figure 2. To
minimize slip of the oil-based material on the top and bottom plates,
we executed the measurements with a sand-blasted parallel plate of 50
mm diameter and a 1.0 mm gap between the plates. In particular, the
gels were fully cured in the oven, loaded onto the rheometer, allowed
to reach room temperature, and then measurements were made using
a constant shear strain γ = 0.1%; the variable frequency f was
logarithmically increased from 0.01 to 10 Hz.

To measure the rheological properties of the hydrogels, which were
essentially elastic solids, we pipetted an uncured solution of 0.08 wt %
agarose onto the rheometer. The solution was left to reach room
temperature so that it would fully cure. Once the solution was fully
cross-linked, we executed measurements using constant shear strain γ
= 0.1%, and variable frequency f logarithmically increased from 0.01
to 10 Hz. We denote the storage and loss moduli of hydrogels as Ge′
and Ge″, respectively. Ge′ is plotted in Figure 2; we were unable to
accurately measure Ge″ due to the low-torque limit of the rheometer.

The rheological measurements provided G′ and G″. The relaxation
time, τm, was taken to be the inverse of the crossover frequency, where
the crossover frequency is defined as the frequency at which G′ = G″.
Generally, as the cross-linker concentration cc increased, the complex
modulus of the gel increased and τm decreased. Similarly, for two

viscoelastic gels with the same cc but different silicone oil viscosity, μ,
gels with higher μ had a larger complex shear modulus.

To simply describe the dynamic modulus, we follow ref 23 and
approximate the complex modulus (G* = G′ + iG″) with a power-law
model in the form of G* = G0[1 + (iωτ)n] to fit to the rheological
measurements. G0 is interpreted as the rubbery plateau modulus, ω is
the angular frequency of the shear (ω = 2πf), τ is the fitted relaxation
time, and n is the power-law exponent. More details on the
rheological characterization can be found in the Supporting
Information. We observed that the relaxation time τm and the fitted
time scale τ are similar in magnitude but not exactly the same. The
fitted shear flow characteristics were then used to predict the
Rayleigh−Taylor instability-driven deformations on the gels. Rheo-
logical characterization of select viscoelastic gels is provided in Figure
2. We note that the PDMS gels are viscoelastic solids, as the low
frequency, long-time response has G′ > G″.

In our study, we approximate the surface stress of the partially
cross-linked viscoelastic gel to equal the surface tension γ of uncured
PDMS (γ ≈ 21 × 10−3 N/m), due to the gel’s large sol fraction.24,25

Surface stress is defined as the energy per unit area required to stretch
a soft interface into a different shape. For liquids, the surface stress
and surface tension are equal. The surface stress has been used in
many works in the literature to account for the surface properties of
soft materials.21,26

Figure 3. Development of the viscoelastic Rayleigh−Taylor instability. (a) Images of a viscoelastic gel at various times throughout its deformation,
where the time after inversion of the Petri dish is indicated as hr:min:s. (b) Normalized Frobenius norm NF of all of the pixel intensities in each gel
image as a function of time since inversion. NF is plotted with a solid line, and the line of best fit is plotted with a dashed line. (c) Overlaid intensity
profiles of the slice (white line) indicated in image (vi) at various times during the first 38 s of deformation. The profiles were smoothed with a
moving average. (d) Kymograph of the indicated slice throughout the gel’s evolution. The state of the gel slice immediately after inversion is shown
at the top of the figure, and the bottom of the figure refers to the slice at a steady state. Seven regions, labeled at the top of the figure, are marked
with vertical dashed lines going through the kymograph. (e) Average intensity of the seven regions indicated in (d) as a function of time. After a
sharp decrease in the intensity of dark regions, the gel gradually reaches its steady-state pattern.
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■ RESULTS AND DISCUSSION
Development of the Rayleigh−Taylor Instability. To

visualize the development of the instability, we dyed a gel (μ =
0.019 Pa·s, cc = 0.260 wt %, initial thickness h = 6 mm, and 0.8
wt % dye) and measured the intensity of light transmitted
through the gel by recording images while it deformed. The
gels, cast and cured in a Petri dish, were initially flat, and the
interface became unstable upon inversion of the Petri dish.
The pixel intensities in the images, which vary both spatially
and temporally, are a qualitative indicator of the relative
thickness of the gel, where higher intensities correspond to
thinner regions, and decreasing pixel intensity generally
indicates increasing thickness. We note that highly curved
regions of the gel tend to appear as the lowest pixel intensities
in the images but do not reflect the relative thickness of those
regions; rather, these are regions of rapid shape change of the
gel.
A time series of images of a representative dyed gel sample

during deformation is provided in Figure 3a. We denote h and l
as the initial thickness of the gel and the side length of the
container, respectively. Immediately after inversion, the gel
appeared mostly undeformed with a uniform thickness [Figure
3a(i)]. One of the first inhomogeneities occurred along the

perimeter of the gel, where the gel slid down along the side
walls of the dish, as seen by the dark line around the outside of
the gel, suggesting a region of high curvature [Figure 3a(ii)].
This change was accompanied by thinning in other areas of the
gel, specifically, the high pixel intensity regions close to the
gel’s perimeter and at the gel’s center. The thinning in the gel’s
center was partially encircled by a border of dark intensity,
indicating a rapid change in the gel’s thickness. These
deformations became more pronounced by 29 s, as a grid-
like pattern started to form [Figure 3a(iii)]. For the square-
shaped containers, we use this “grid” of deformed regions to
define the dimensionless wave mode N = l/λ, where the
wavelength λ refers to the size of the grid. Due to the variation
in size and shape of the deformed regions, the majority of our
analysis will focus on N.
As time progressed, the grid pattern became more well

defined, and each thin deformed region was bordered by
narrow regions of dark intensity, indicating that these regions
were separated from each other by long hanging sections of the
gel [Figure 3a(iv−vi)]. By 2.5 min, the pattern had almost
reached a steady state, exhibiting a dominant wave mode of N
≈ 4 [Figure 3a(vi)]. For each experiment in the square
containers, we counted the number of distinctly deformed
regions and reported the square root of that number as N.

Figure 4. Comparison between the elastic and the viscoelastic Rayleigh−Taylor instabilities. (a) Control of the parameters that select the
wavenumber. (i) Most unstable wavenumber κm for a fixed α = ρgh/G0 ≈ 13.7, σ = ρgγ/G0

2 ≈ 7.7, and n = 0.65 starts from κm ≈ 2.07 and decreases
to κm ≈ 1.68 as the viscoelastic relaxation time τ increases. (ii) Dependence of κm on σ. Increasing σ stabilizes the interface, decreasing κm. The
circle and triangle markers in parts (i) and (ii) represent experimental data points from (c). (b) Experimental observations of the most unstable
wave mode N = κm/(2πδ) versus aspect ratio δ = h/l. For this range of δ, the elastic gels constantly have N = 5, whereas the viscoelastic gels
transition from N = 3 to N = 5 as δ decreases. Scale bars are 20 mm. Rheological characterization of these gels is provided in Figure 2a. (c)
Experimental observation is supported by the linear stability model. Lines are the linear stability theory, and markers are the experiments. The wave
mode N from the experiment is the square root of the number of deformed regions. Error bars indicate the max/min number of deformed regions
in one direction in a gel; e.g., the bottom right gel in (b) has Nmax = 5, Nmin = 4, and N ≈ 4.8.
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From the time series of images, we observed that the amplitude
changed at different rates in different locations on the surface
of the gel.
To quantitatively represent the overall state of the gel

pattern at every time point, we calculated the time-dependent
normalized Frobenius norm, NF(t) = ||P||F/||P(t = tf)||F, shown
in Figure 3b. Each image of a deforming gel was converted to a
matrix of pixel intensities, pij, and the norm of the pixel
intensity matrix was calculated with the equation

=P p( ( ) )i j ijF ,
2 1/2. Normalization was achieved by divid-

ing by ||P||F at the gel’s steady state, time t = tf, such that NF →
1 at large times. More details on NF are provided in the
Supporting Information. After the first ≈ 30 s of the gel’s
deformation, NF(t) was best fitted by an exponential function
in time of the form = +N t a b( ) e t

F
/ b , where we define τb

as the characteristic time describing the rate of change of the
gel’s bulk deformation. Consequently, some aspect of the gel’s
overall deformation can be captured over a single characteristic
time (in this case, τb = 0.76 min). When considering the fitted
relaxation time τ and viscous relaxation time τm defined in the
previous section, softer gels (smaller G′), with larger τ or τm,
tend to deform faster (see Figure 6c below), leading to lower
τb.

To better understand the evolution of a viscoelastic gel to a
steady state, we analyzed the time dependence of a specific
slice of the deforming gel, indicated by the white horizontal
line in Figure 3a(vi). The pixel intensities along this slice are
shown for different times in Figure 3c and indicate that the rate
of deformation was spatially nonuniform, as expected, as
nonlinearity influences the shape changes. We also note that
this reconstructed profile is not an exact profile of the
deformed gel.
The deformation dynamics within a specified slice can also

be represented by a kymograph, as shown in Figure 3d. Each
row of pixels in the kymograph gives the slice at a different
time in the gel’s deformation history. Seven regions are labeled
at the top of the plot, and their corresponding pixel intensities
are shown in Figure 3e. In agreement with features evident in
Figure 3c, the formation of two distinct low-intensity (long-
hanging) regions occurred between 0.5 and 1 min. The
kymograph also shows the later development of a third long-
hanging region going through the center of the slice. The
trends of the thin gel regions, plateauing at high pixel intensity,
can be fit to exponentially decaying functions in time, with
characteristic times ranging from 0.43 to 0.61 min. These
characteristic times are comparable to but less than the
characteristic time of the gel’s overall deformation determined

Figure 5. Influence of the gel thickness on wave mode selection. (a) Gels at four different aspect ratios δ = h/l = 0.13, 0.09, 0.055, and 0.044. Scale
bars are 10 mm. Rheological characterization is provided in Figure 2b, with gels 1 and 2 described by the top and bottom plots of Figure 2b,
respectively. (b) Comparison between the experimental observations and the linear stability model. Rheological characterization of the material
gives predictions of the shape mode at each aspect ratio δ.
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from NF in Figure 3b. One may notice that regions 2 and 6 in
Figure 3e develop earlier than region 4. In the experiment, the
larger cells appear first, and then the smaller cells emerge,
which is due to the boundary effect; the gel deforms first in the
regions near the boundary.
Viscoelastic Linear Stability Model. Having discussed

the Rayleigh−Taylor instability-driven pattern formation
within a single viscoelastic gel, we next characterize the
relationships between a gel’s material properties and its
resulting pattern of deformations. We performed a linear
stability analysis to identify the parameters that affect the
deformation and quantitatively predict the most unstable
wavenumber. A reader not interested in the mathematical
details can skip this section and proceed directly to the results.
The initially planar gel−air interface becomes unstable over

time due to gravitational forces. For a material with density ρ
(and neglecting the density of air), surface tension γ, viscosity
μ, relaxation time τ in a container of length l where the gel has
thickness h, and gravitational acceleration g, we write the
linearized momentum equation, incompressibility relation, and
constitutive equation for the stress versus rate-of-strain relation
as

= +u
t

p
x x

gi

i

ij

j
i

(1a)

=u
x

0i

i (1b)

= = +
i
k
jjjjjj

y
{
zzzzzz

u
x

u

xij ij
i

j

j

i (1c)

where p is the pressure field, σij and εij are the stress and strain
tensors, respectively, and ui is the velocity component in the ith
direction. Below, we will allow the viscosity to be a function of
the time scale of deformation, but it is independent of the
spatial position. Next, we look for the solutions with frequency
ω and so define μiω = G*(ω).
In the formulation of the linear stability problem, we assume

a two-dimensional configuration, e.g., uz(x, z, t), seek the form
of the solution as uz(x, z, t) = Uz(z) eiωt eikx = (A e−kz + B ekz +
C e−mz + D emz) eiωt eikx with unknown coefficients A, B, C, and
D, along with frequency ω and the wavenumbers k = 2π/λ and

Figure 6. Secondary buckling instability. (a) Potential mechanism of secondary buckling. Sections of the soft gel flow downward over time (i−iii)
and a larger portion of its mass is then supported by a decreased contact area. (i) Onset of Rayleigh−Taylor instability, (ii) gel deformation enters
nonlinear growth, and (iii) the system develops tension, which manifests in wrinkling instability. (b) Typical gel that displays secondary buckling
seen from the side at its maximum stretch, equivalent to the state described in (a iii). Scale bars are 20 mm. (c) α = ρgh/G0 versus τm, with gels
labeled according to the presence of secondary buckling in their steady-state pattern of deformations. τm is the inverse of the crossover frequency
and is interpreted as the relaxation time. Circles indicate no secondary buckling; diamonds indicate the onset of secondary buckling, and triangles
indicate globally buckled gels.
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= *m k G( )/ ( )2 2 ; the corresponding growth rate is
Re{iω}. We write no-slip and kinematic boundary conditions
on the solid boundary (z = h) and normal and tangential
stresses on the free interface, respectively, as27
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Note that the last two boundary conditions address the
continuity of the normal and tangential stresses at the
perturbed interface z = η(x, t), where ∂η/∂t = uz|z=0. For
small deformations, the pressure discontinuity at the interface
can be approximated as γ∂2η/∂x2,28 which gives the −k2γ term
in eq 2c. A nontrivial solution to the system of equations that
results from applying these boundary conditions exists only
when the corresponding determinant of the coefficient matrix
C is set to zero: det(C) = 0. The detailed derivation is
described in the Supporting Information. We determine a
dimensionless form of this solvability condition, using G* =
G0[1 + (iωτ)n] = μiω, and dimensionless parameters α = ρgh/
G0, σ = ρgγ/G0

2, and = g G/2 2
0 , in the form
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+ +
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which gives the dimensionless wavenumbers κ = kh = 2πh/λ
and = = +mh /(1 (i / ) )n2 2 as a function of the

dimensionless growth rate = h G/2 2
0 , through dimen-

sionless parameters α, σ, ζ, and δ. Here, α relates the geometry
(h) and the rubbery plateau modulus (G0) and, through g, is
the driving parameter for the Rayleigh−Taylor instability, i.e., a
ratio of gravitational to elastic stresses.11,19 Next, σ relates the
surface stress (γ) to the shear modulus of the gel. In the case
where the thickness of the gel is much larger than the
elastocapillary length of the system, i.e., h ≫ γ/G0, σ can be
neglected, and the analysis of the system can be simplified.11,21

ζ, which is the viscoelasticity parameter, compares the
viscoelastic relaxation time to the elasto-gravity time scale
g G( / )2

0
1/2. We note that one recovers the result given by

Mora et al.11 by setting σ = 0 and ζ = 0. Lastly, δ is the aspect
ratio of the gel and is defined as h/l, where l is the length of the
container.
Effect of Viscoelastic Properties on the Pattern

Selection. We first consider the effect of the viscoelastic

parameter ζ on the most unstable wavenumber κm [Figure
4a(i)]. The model suggests that κm decreases rapidly and then
saturates to a minimum value specific to each combination of
the other parameters (α, σ, and n). In this calculation, we used
α = 13.7, σ = 7.7, and n = 0.65. The most unstable
wavenumber at the elastic limit (ζ = 0) is κm ≈ 2.07 and then
decreases to κm ≈ 1.68 with increasing ζ. This result suggests
that the Rayleigh−Taylor mechanism will develop a shorter
wavelength λ in elastic gels in comparison to that in
viscoelastic solid gels. We then investigate the effect of surface
tension on the most unstable wavenumber [Figure 4a(ii)]. We
observe that for both elastic and viscoelastic gels, increasing σ
= ρgγ/G0

2 decreases κm. This result was anticipated, as the
surface stress acts to stabilize the interface against deformation.
To experimentally test the above predictions, we prepared

elastic and viscoelastic gels with equal α and σ. The value of σ
was fixed throughout the entire experiment, while we chose
four different aspect ratios (δ) of the gels to vary α, as shown
in Figure 4b (α and δ are related through the gel thickness, h).
Specifically, we have conditioned the surface tension parameter
σ of both the elastic and viscoelastic gels to be as close as
possible to σ = 7.7. In the Supporting Information, we provide
values of all of the parameters that we conditioned to
experimentally produce the viscoelastic effect in the
Rayleigh−Taylor instability. Note that the values of α and σ
are at most within ±1.5% of their mean values (between elastic
and viscoelastic), while the ζ parameter is varied significantly.
Unfortunately, we were limited by the choice of our material to
achieve either ζ ≈ 0 or ζ ≈ O(103).
Elastic and viscoelastic gels with σ ≈ 7.7 and four values of δ

are shown in Figure 4b. Elastic gels exhibited N = 5 for all δ,
while viscoelastic gels exhibited varying wavenumber N,
ranging from 3 to 5. A comparison is made in Figure 4c
between the model and the experiments. Note that we
observed 5 × 1 or 5 × 2 grid patterns with the hydrogels cast in
the longer aspect ratio rectangular containers. For that
geometry, we also performed two separate linear stability
analyses in the length (210 mm) and the width (40 or 60 mm)
directions and the model predicted 5 cells and 1−2 cells,
respectively. Hence, we believe that the length ratio did not
govern the resulting 5 × 1 pattern. These results confirm that
the linear stability model (eq 3) is a reliable tool to predict the
wavelength of the pattern that develops on the free surface of
hanging soft solid materials.

Effect of Gel Thickness on the Pattern Selection. We
next investigated the effect of gel thickness on the steady-state
pattern selection. This effect is only manifested through the
parameters α or δ. The linear stability model (eq 3) suggests
that the characteristic wavelength decreases as the slab
thickness decreases. We chose two examples of the gel
composition to investigate how the wave modes differed as we
varied the aspect ratio of the gels (Figure 5a). As shown in
Figure 4a, all viscoelastic gels in this study had the ζ parameter
far from the elastic limit. Hence, the ζ and σ parameters were
set constant in the experiments in Figure 4a and only the
thickness was varied. By comparing Figure 5b(i,ii), we observe
that the α parameter governs the onset of the instability.11

Surface tension also affects the stability of thinner gels (h ∼ γ/
G0), as the surface tension tries to stabilize the interface. In our
experiments, the elastocapillary length was γ/G0 ≈ 5−7 mm,
meaning that gels thinner than h < 5 mm were less likely to
deform. Although the gels in Figure 5a(i,ii) had different
rubbery plateau moduli (G0(i) ≈ 4.2 Pa and G0(ii) ≈ 2.7 Pa), the
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thickness of the gel had a stronger influence on the selection of
the wavenumber.
Tension-Induced Surface Instability in Viscoelastic

Gels. In very soft gels, the wave amplitude grew substantially;
for example, the typical amplitude of the long-time
deformation ranges from less than 1 mm to more than 10
times the initial thickness. For larger deformations, one could
observe secondary buckling along the outlines of the basic
pattern (Figure 6a). The secondary buckling was characterized
by the formation of fractal-like protrusions along the long-
hanging walls. In all gels, the onset of secondary buckling was
preceded by the development of the Rayleigh−Taylor
instability-driven pattern of deformations.
We observed that viscoelastic gels with higher α values were

prone to developing these fractal-like structures. As the
crossover frequency decreased (increased relaxation time,
τm), more intricate buckling patterns were observed. The
amplitude of the perturbations increased as the modulus of the
gel decreased and as the initial thickness increased. This trend
implies that, for softer gels, a larger volume of material moved
toward the long-hanging borders of the dimples, stretching far
below the substrate (Figure 6b), while less material remained
in the thin flat dimples, which we assume leads to an
accumulation of tension in the system. Several previous studies
have reported that when tension is present in a soft material
system adhered to a rigid surface, instability occurs along the
soft material-rigid substrate contact line, consistent with our
experimental observations.17,29,30 However, in the case of
viscoelastic gels, the tension in the system develops gradually
[Figure 6a(i−iii)]. Therefore, the amplitude of this tension-
induced instability is a function of time associated with
material properties. Hence, in Figure 6c, we compare the
relaxation time, τm with α = ρgh/G0. We observe that at smaller
τm or α, gels are more rigid and secondary buckling does not
occur. On the other hand, for softer gels, corresponding to
larger values of τm and α, wavy protrusions start to form near
the center of the dish (“locally buckled” in Figure 6c). For even
softer gels, buckling propagates to a wider area, as shown in
Figure 6a,c as “globally buckled”.

■ CONCLUSIONS
In this study, we present experimental observations and
theoretical confirmation of the gravity-driven Rayleigh−Taylor
instability of viscoelastic solid gels. Through linear stability
analysis, we identified that the viscous effect decreases the
most unstable (dimensionless) wavenumber N. Hence, for the
viscoelastic Rayleigh−Taylor instability, we observe surface
patterns that are distinct from those predicted by the elastic
Rayleigh−Taylor instability. Furthermore, we suggest that the
viscoelastic Rayleigh−Taylor mechanism is sensitive to the
initial thickness of the slab (as visualized in Figure 4c). From
this, we conclude that viscoelastic solids can be of use in
pattern-forming applications due to their ability to hold their
shape and show various surface patterns/textures and the
tunability of their final resulting surface pattern with the
additional parameter ζ. Also, the growth rate of the instability
determined from the linear stability analysis qualitatively
agreed with the experimental observations. A future study
can attempt to quantitatively describe the wave growth and
amplitude through a nonlinear analysis. We believe that a study
probing the effect of the boundary shape (e.g., applying a wavy
substrate) may produce a passively reconfigurable textured
surface.
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This paper was published on December 19, 2023. Equation 3
has been updated and the revised version was re-posted on
December 20, 2023.

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.3c02564
Langmuir 2024, 40, 1567−1575

1575

https://doi.org/10.1557/mrs2007.80
https://doi.org/10.1557/mrs2007.80
https://doi.org/10.1103/PhysRevLett.106.186103
https://doi.org/10.1103/PhysRevLett.106.186103
https://doi.org/10.1002/admi.202000731
https://doi.org/10.1002/admi.202000731
https://doi.org/10.1002/admi.202000731
https://doi.org/10.1016/j.jmps.2023.105219
https://doi.org/10.1016/j.jmps.2023.105219
https://doi.org/10.1016/j.jmps.2023.105219
https://doi.org/10.1112/plms/s1-14.1.170
https://doi.org/10.1112/plms/s1-14.1.170
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1103/PhysRevLett.113.178301
https://doi.org/10.1103/PhysRevLett.113.178301
https://doi.org/10.1016/j.jmps.2018.07.024
https://doi.org/10.1016/j.jmps.2018.07.024
https://doi.org/10.1016/0377-0257(93)85021-2
https://doi.org/10.1016/0377-0257(93)85021-2
https://doi.org/10.1016/j.jmaa.2019.04.014
https://doi.org/10.1016/j.jmaa.2019.04.014
https://doi.org/10.1016/j.jmaa.2018.03.018
https://doi.org/10.1016/j.jmaa.2018.03.018
https://doi.org/10.1007/BF00404190
https://doi.org/10.1007/BF00404190
https://doi.org/10.1039/C9SM00625G
https://doi.org/10.1039/C9SM00625G
https://doi.org/10.1016/j.nima.2007.02.058
https://doi.org/10.1016/j.nima.2007.02.058
https://doi.org/10.1016/j.eml.2020.100940
https://doi.org/10.1016/j.eml.2020.100940
https://doi.org/10.1103/PhysRevE.104.025110
https://doi.org/10.1103/PhysRevE.104.025110
https://doi.org/10.1038/nphys3181
https://doi.org/10.1038/nphys3181
https://doi.org/10.1039/C8CS00963E
https://doi.org/10.1039/C8CS00963E
https://doi.org/10.1039/C7SM00690J
https://doi.org/10.1039/C7SM00690J
https://doi.org/10.1103/PhysRevLett.101.074503
https://doi.org/10.1103/PhysRevLett.101.074503
https://doi.org/10.1103/PhysRevLett.101.074503
https://doi.org/10.1146/annurev-conmatphys-031016-025326
https://doi.org/10.1090/qam/63198
https://doi.org/10.1090/qam/63198
https://doi.org/10.1103/PhysRevLett.85.4329
https://doi.org/10.1039/C8SM01033A
https://doi.org/10.1039/C8SM01033A
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.3c02564?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

