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Abstract. The most common macrofossils in the highly diverse flora from Laguna del Hunco
(early Eocene of Chubut, Argentina) are "Celtis" ameghinoi leaves, whose true affinities have
remained enigmatic for a century. The species accounts for 14% of all plant fossils in
unbiased field counts and bears diverse insect-feeding damage, suggesting its high biomass
and paleoecological importance. The leaves have well-preserved architecture but lack cuticles
or reproductive attachments. We find that the fossils only superficially resemble Celtis and
comparable taxa in Cannabaceae, Ulmaceae, Rhamnaceae, Malvaceae, and many other
families. However, the distinctive foliar morphology conforms in detail to Dobinea
(Anacardiaceae), a genus with two species of shrubs and large herbs ranging from India's Far
East and Tibet to Myanmar and central China, and we propose Dobineaites ameghinoi (E.W.
Berry) gen et. comb. nov. for the fossils. This discovery strengthens the extensive
biogeographic links between Eocene Patagonia and mainland Asia, provides the first fossil
record related to Dobinea, and represents a rare Gondwanan macrofossil occurrence of
Anacardiaceae, which was widespread and diversified in the Northern Hemisphere at the
time. The diverse leaf architecture of Anacardiaceae includes several patterns usually
associated with other taxa, and many other leaf fossils in this family may remain

misidentified.

Key words. Anacardiaceae. Argentina. Chinese flora. Dobinea. Gondwana. Herbivory.

Laguna del Hunco. Leaf architecture.

Resumen. HOJAS DE "CELTIS" DEL EOCENO DE PATAGONIA VINCULADAS CON
ANACARDIACEAE ASIATICAS. Los macrofésiles mas comunes en la flora altamente
diversa de la Laguna del Hunco (Eoceno temprano de Chubut, Argentina) son hojas de
"Celtis" ameghinoi, conocidas desde hace un siglo y cuyas afinidades han sido enigmaticas.
La especie representa el 14% del total de las hojas fosiles en censos imparciales de campo, y

los ejemplares exhiben diversos dafios producidos por alimentacion de insectos, lo que
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sugiere que habrian tenido elevada biomasa e importancia ecologica. Las hojas presentan la
arquitectura bien conservada, pero carecen de cuticulas o conexiones con estructuras
reproductivas. Encontramos que los fosiles solo se parecen superficialmente a Celtis y a
taxones comparables de Cannabaceae, Ulmaceae, Rhamnaceae, Malvaceae, y muchas otras
familias. Sin embargo, la morfologia foliar distintiva se ajusta en detalle a Dobinea
(Anacardiaceae), un género con dos especies de arbustos y grandes hierbas que se distribuye
desde el Oriente de la India y el Tibet hasta Myanmar y China central. Proponemos
Dobineaites ameghinoi (E.W. Berry) gen et. comb. nov. para las hojas fosiles. Este hallazgo
refuerza los ya extensos vinculos biogeograficos entre el Eoceno de Patagonia y Asia
continental, proporciona el primer registro f6sil relacionado con Dobinea y representa una
rara presencia macrofosil gondwanica de Anacardiaceae, una familia que estaba muy
extendida y diversificada en el hemisferio norte en ese momento. La diversa arquitectura
foliar de las Anacardiaceae incluye varios patrones comunmente asociados con otros grupos
de plantas por lo que muchos fosiles de hojas de esta familia pueden permanecer aun mal

1dentificados.

Palabras clave. Anacardiaceae. Argentina. Arquitectura foliar. Dobinea. Flora de China.

Gondwana. Herbivoria. Laguna del Hunco.

THE EARLY EOCENE FOSSIL-LAKE BEDS at Laguna del Hunco in the Piedra Parada Caldera of
northwestern Chubut, Argentina, contain a well-preserved, highly diverse plant and animal
biota that has been known for a century (Clark, 1923; Berry, 1925; Dolgopol de Saez, 1941).
The pace of discovery has increased significantly over the past 25 years because of intensive,

stratigraphically controlled collecting, resulting in over 8,000 specimens of more than 180
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plant macrofossil species from more than 30 quarries in a 170 m stratigraphic section (e.g.,
Wilf et al., 2003, 2005a, 2023). More than 30 well-vetted plant families are present in the

flora, including palynological occurrences (Barreda et al., 2020).

Recent systematic work has vastly improved understanding of the floristic
composition of the late-Gondwanan Laguna del Hunco flora and its biogeographic
connections to living genera in South America, Africa, and especially Australasia and
Southeast Asia (e.g., Zamaloa et al., 2006; Gandolfo et al., 2011; Wilf et al., 2013, 2019;
Kooyman et al., 2014). Most dominant plant species in the flora have been revised. For
example, the second most abundant leaf species by field-census leaf counts, initially
identified to the family Myrtaceae (Wilf et al., 2005a), is now resolved in Eucalyptus and is
associated with infructescences and flowers bearing in situ pollen of that genus (Gandolfo et
al.,2011; Hermsen et al., 2012; Zamaloa et al., 2020). The third most common, “Tetracera”
patagonica leaves with putative affinities to Dilleniaceae (Berry, 1925), are fagaceous, now
placed in Castaneophyllum, and associated with Castanopsis infructescences and dispersed
castaneoid pollen (Wilf et al., 2019; Barreda et al., 2020). The seventh most abundant leaf
type, the putative Cycadaceae “Zamia tertiaria,” actually represents the araucarian conifer
Agathis, supported by co-occurring Agathis pollen cones, seed cones, and ovuliferous
complexes bearing in situ seeds (Wilf et al., 2014; quotation marks indicate uncertain

botanical affinities for a published name or other nomenclatural issues).

Despite these advances, the most common leaf species at Laguna del Hunco, "Celtis"
ameghinoi E.W. Berry (1925), remains unrevised, leaving a gap in the fundamental
knowledge of the assemblage and its paleoecology and biogeography. Notwithstanding its
long collection history, the species is known only from leaf adpressions without cuticles, but

its leaf architecture is well preserved.
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Berry (1925) described "Celtis" "ameghenoi" based on three type specimens (Fig. 1)
in the first report of plant fossils from Laguna del Hunco (also known then as El Mirador,
Mirhoja, Laguna del Junco, and Laguna de los Huncos), from a small sample discovered by
geologist Burton Clark (1923). The specific epithet honored this journal's namesake,
Florentino Ameghino (1853—1911), whom Berry (1925: 200) referred to as "my lamented
friend." Later, Berry (1938: 41) credited Ameghino for his initial inspiration to study South
American geology and referred to "long drawn out discussions" about the ages of South
American fossils. Berry (1938) corrected the typographic error in the species epithet as

"ameghinoi," which we follow here.

The "Celtis" ameghinoi syntypes (Fig. 1) include one small leaf with a narrow,
lanceolate aspect (Fig. 1.1) and two that are larger, wider, and cordate (Fig. 1.2, 1.3).
Specimens since collected (Figs. 2—4) display a more complete spectrum of variation that
encompasses the morphologies of the three types, sharing characters such as a pinnate,
unlobed blade; prominent, closely spaced, irregular to compound teeth that occur on nearly
all of the blade margin; secondary veins that increase in angle toward the base; widely
spaced, weakly percurrent tertiary veins; and perpendicular vein branching from tooth
principal veins to a vein knot just inside or at the tooth sinuses. Other common characteristics
include a symmetrical ovate blade, cordate base (mostly on larger specimens), acute-to-
acuminate apex, deflected major veins, and secondary veins that branch well inside the
margin. The overall feature combination makes the species easily recognizable. Berry (1925)
noted that "C." ameghinoi was the most abundant form in the assemblage, which remains true
today (Wilf et al., 2005a). He (Berry, 1925: 198—199) considered the fossils "very well
marked and characteristic of Celtis" (Cannabaceae, formerly in Ulmaceae and Celtidaceae),
and he also found them similar to the New World genera Momisia (now a synonym of Celltis),

Trema (Cannabaceae), and Ampelocera and Phyllostylon (Ulmaceae). Other genera that Berry
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listed as similar to the fossils were Gouania (Rhamnaceae) as well as Grewia and Triumfetta

(both Malvaceae).

In his classic monograph of the middle Eocene (47.7 Ma; Wilf, 2012) Rio Pichileuft
flora from Rio Negro province, Argentina, Berry (1938) reported but did not illustrate
"Celtis" ameghinoi as a rare element. Rossetto-Harris (2023) re-examined the type and cohort
Rio Pichileufu collections that Berry studied (housed in the Division of Paleobotany,
Smithsonian Institution, Washington, D.C.). She located four specimens labeled as "Celtis
ameghinoi" in Berry's handwriting, finding that these specimens differ from the Laguna del

Hunco type material and do not represent the same species.

Joaquin Frenguelli and Rodolfo Maldonado Bruzzone made significant early
collections from Laguna del Hunco in the late 1930s and the early 1940s, housed at the
Museo de La Plata (e.g., Frenguelli, 1943a, 1943b). Traverso (1951) described ca. 60
specimens of "Celtis" ameghinoi from these collections in an unpublished thesis. Many years
later, Gonzalez (2008), also in an unpublished thesis, made the only other taxonomic
interpretations of "Celtis" ameghinoi to date. She studied the species using fossil collections
housed at several institutions from Laguna del Hunco and Arroyo Chacay, an Eocene site in
Rio Negro Province (e.g., Machado et al., 2023). In preparing the present manuscript, we
found the Arroyo Chacay material to represent another species; thus, we consider Laguna del
Hunco to be the only known site where "Celtis" ameghinoi occurs. Gonzalez (2008)
concluded that "C." ameghinoi differed substantially from all the living genera that she
compared, including extant Celtis, Trema, Aphananthe, and Phyllostylon (see Discussion for

updated comparisons incorporating these observations).

"Celtis" ameghinoi is occasionally referenced as a true representative of Celtis (e.g.,

Barreda & Palazzesi, 2007, 2010; Vento & Pramparo, 2018; Romero-Lebron ef al., 2020).
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More often, it serves as a morphotype in paleoecological analyses. From field-census data,
"C." ameghinoi leaves were the most abundant fossils across all quarries at Laguna del
Hunco, accounting for 597 of the 4,303 total specimens (13.9%; Wilf et al., 2005a). The
species also had the highest leaf counts at two of the four principal census quarries (21.7% at
LHO2 and 27.6% at LHO4; Eucalyptus frenguelliana was dominant at the other two). Based
on modern analog studies, ranked leaf counts correlate well with ranked source biomass by
species (Burnham et al., 1992; Burnham, 1997), implying a high biomass of the source
plants. From the same field census, "C." ameghinoi showed insect damage in 12.5% of leaves
(Wilf et al., 2005b) and a substantial diversity of 26 damage types (DTs; Labandeira ef al.,
2007) across all functional groups: external feeding, piercing-and-sucking, galling, mining,
and oviposition. Two mining occurrences on "C." ameghinoi were illustrated as exemplar
specimens of DT91 and DT93 in the standard guide for fossil insect damage (Labandeira et
al.,2007; Fig. 4.6-4.8). Some oviposition damage (Fig. 4.9) was subsequently described
under the ichnospecies Paleovoidus arcuatum (Sarzetti et al., 2009) and further analyzed
morphometrically and behaviorally (Romero-Lebron et al., 2020, 2023). Its elevated
abundance, diverse insect damage, and unknown biogeographic relationships all highlight the

significance of understanding the botanical affinities of "Celtis" ameghinoi.

Taxonomic descriptions of isolated leaf taxa without cuticles have well-known
caveats, especially when based on superficial comparisons with living genera, as historically
practiced (see Dilcher, 1971; Hill, 1982). However, leaf fossils that are described using a full
suite of well-defined leaf-architectural characters (Ellis ef al., 2009) and compared carefully
with living analogs advance our understanding much more than historical names in scare
quotes or informal, often unillustrated morphotypes. Several angiosperm leaf taxa with no
associated reproductive organs have been described from Laguna del Hunco, including

species of Akania (Akaniaceae), Ripogonum (Ripogonaceae), Proteaceae,
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Atherospermataceae, and Monimiaceae (Romero & Hickey, 1976; Gonzélez et al., 2007,
Knight & Wilf, 2013; Carpenter ef al., 2014). Leaves from the site that are associated with,
but not attached to, related reproductive organs include species of Eucalyptus (Myrtaceae),
Macaranga (Euphorbiaceae), castaneoid Fagaceae, and Menispermaceae (Gandolfo et al.,
2011; Jud et al., 2018; Wilf et al., 2019, 2023). Here, we present compelling similarities of
the "C." ameghinoi fossils to an unexpected group, the Anacardiaceae, particularly the living
Chinese species Dobinea delavayi. We consider the implications of our results for the
paleoecology of Laguna del Hunco, biogeographic connections of late-Gondwanan

Patagonia, and the fossil history of Anacardiaceae.

Institutional abbreviations. Acronyms for repositories and their corresponding institutions
(when distinct) denote individual specimens or institutions, respectively. USNM, National
Museum of Natural History, Smithsonian Institution, Washington, D.C., USA (institutional
acronym NMNH); MPEF-Pb, Paleobotanical Collection of Museo Paleontologico Egidio
Feruglio, Trelew, Argentina (MEF); LPPB, Paleobotanical Collection of Museo de La Plata,
La Plata, Argentina (MLP); BA-Pb, Paleobotanical Collection of Museo Argentino de
Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina (MACN); MJHG,
Museo Jorge H. Gerhold, Ingeniero Jacobacci, Argentina; LILPB, Paleobotanical Collection
of Fundacion Miguel Lillo, Tucuman, Argentina (LIL); K, Royal Botanic Gardens, Kew, UK
BAB, Instituto Nacional de Tecnologia Agropecuaria, Castelar, Argentina; SI, Instituto de
Botanica Darwinion, San Isidro, Argentina; CTES, Instituto de Botanica del Nordeste,
Corrientes, Argentina; BH, L.H. Bailey Hortorium, Cornell University, Ithaca, USA; L,
Naturalis Biodiversity Center, Leiden, The Netherlands; US, United States National
Herbarium of the Smithsonian Institution, Washington, D.C., USA; P, Muséum National

d'Histoire Naturelle (MNHN), Paris Herbarium, France; NY, New York Botanical Garden,
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New York, USA. Several additional herbaria mentioned in the text are cited by their standard

acronyms according to the Index Herbariorum, https://sweetgum.nybg.org/science/ih.

MATERIALS AND METHODS

All fossils discussed here came from the Tufolitas Laguna del Hunco, a unit of mixed
siliciclastic-volcaniclastic fossil-lake beds of the Eocene Huitrera Formation in the middle
Rio Chubut region of northwest Chubut, Argentina (Petersen, 1946; Aragén & Mazzoni,
1997; Gosses et al., 2021). The Tufolitas record rapid infilling of the subsiding Piedra Parada
Caldera following a series of massive eruptions (estimated >300 km® emplacement) recorded
in the underlying Ignimbrita Barda Colorada (IBC; Aragon ef al., 2018). The Tufolitas are
exposed throughout the extensive caldera (ca. 30 km in diameter). The strata are visually
spectacular; they weather a brilliant white and are underlain by thick ignimbrites, intruded by
extensive dikes and laccoliths, and capped with basalt flows (Petersen, 1946; Aragon &

Mazzoni, 1997; Aragon et al., 2001, 2004).

Fossil preservation in the Tufolitas is outstanding along a 1.3-km long escarpment in
its northeastern exposures near Cerro Mirador at Laguna del Hunco ("Lake of Rushes," a
small playa lake), possibly because of reduced igneous disturbance of the strata in the area.
Jason Hicks (in Wilf et al., 2003) established a 170 m composite stratigraphic section of the
Tufolitas at Laguna del Hunco, incorporating 25 fossil quarries (LHO1-LH25), two
paleomagnetic reversals, and three *°Ar/*°Ar dated primary airfall tuffs. Additionally, the
youngest ignimbrites in the IBC have an “°Ar/*°Ar age of 52.54 = 0.17 Ma, which provides a
maximum age for all fossils found in the superposed Tufolitas (Gosses et al., 2021). As most
recently summarized elsewhere from these and other constraints (Gosses et al., 2021; Wilf et

al., 2023), all fossils at Laguna del Hunco date to the interval 52.2—-52.0 Ma, coinciding with


https://sweetgum.nybg.org/science/ih

220

225

230

235

240

10

the early Eocene climatic optimum and the final stages of Gondwana. The paleoenvironment
is well established as an everwet (perhumid), mesic, lake-margin rainforest, based on the
documented drought tolerances and climatic ranges of the living relatives of the fossil plants
(e.g., Wilf, 2012; Merkhofer et al., 2015) and the preservation of extraordinarily drought-
sensitive accessory transfusion tissue in the leaves of the fossil podocarp conifer Acmopyle

grayae (Andruchow-Colombo ef al., 2023).

Several collections have been made at Laguna del Hunco over the past century;
however, until comparatively recently (Wilf ez al., 2003), no precise locality data have been
recorded. Many older collections appear to have the characteristic lithology of quarry LH04
of Wilf et al. (2003), the most accessible site and the only location we have seen showing
definite evidence of prior excavations (Wilf, 2020). The three syntypes of " Celtis" ameghinoi
(Fig. 1) are now housed in the Laguna del Hunco type collection (Berry, 1925) at NMNH.
Subsequent collections were made for several Argentine institutions, including MLP, the
University of Buenos Aires (made by Edgardo Romero, currently uncatalogued), MACN (E.

Romero), MJHG (made by Rodolfo Casamiquela, see Wilf et al. 2023), LIL, and MEF.

Since the late 1990s, international expeditions to Laguna de Hunco have been
launched from the MEF, leading to extensive collections tied to precise stratigraphy and age
control that have supported most subsequent research on the site (Wilf ez al., 2003, 2005a).
Field censuses of 4,303 total specimens from 25 individual quarries (LHO1-LH25) in 1999
and 2002 (Wilf et al., 2003, 2005a) established the high abundance of "C." ameghinoi fossils
(see Introduction). Additional material of the species was collected during several subsequent
MEF field expeditions, including two newer quarries, LH27 and LH29 (see Gandolfo et al.,

2011; Deanna et al., 2020).
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A total of 280 specimens of "C." ameghinoi were studied at NMNH, MEF, MLP, LIL,
MACN, and (by A. Iglesias, see Acknowledgments; Fig. 3.12) MJHG. At least 50 additional
specimens that remain uncatalogued and unavailable for validation are held at the University
of Buenos Aires. Photography began in the late 1990s and involved a series of film and
digital cameras. More recently, Nikon D90, D700, and D850 DSLRs with 60 mm and 105
mm macro lenses and polarizing filters have been used. Due to the lack of cuticular or other
micromorphological preservation, little microscope photography was required. A library
containing original-resolution images of the fossils, a specimen list, and high-resolution
versions of Figures 14 is deposited on Figshare at

https://doi.org/10.6084/m9.figshare.24451249.

The extant material consulted included the recent open-access digital compilation of
more than 26,000 cleared and x-rayed leaves and many of the corresponding physical slides,
representing more than 350 families and 4,500 genera in total (Wilf et al., 2021; Fig. 5).
Herbarium surveys by CCG at BAB, SI, CTES, BH, and US extensively covered the
comparable genera of Cannabaceae and Ulmaceae. We also used several online herbaria to

examine relevant taxa (Fig. 6), including those of L, https://bioportal.naturalis.nl, US,

https://collections.nmnh.si.edu/search/botany, P,

https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form, and NY via the C. V.

Starr Virtual Herbarium, http://sweetgum.nybg.org/science/vh. Aggregator sites included the

Chinese Virtual Herbarium, https://www.cvh.ac.cn, and JSTOR Global Plants,

https://plants.jstor.org. For Anacardiaceae, additional sources included the literature

(especially Gentry, 1993; Martinez-Millan & Cevallos-Ferriz, 2005; Ming & Barfod, 2008;
Andrés-Hernandez & Terrazas, 2009; Pell et al., 2010; Zich et al., 2020; Mitchell et al.,

2022) and inspection of Dobinea species by T. Wang at K (see Acknowledgments; Fig. 6.2).
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For increased readability, taxonomic authorities are only provided in the text where
necessary to support new taxonomic descriptions. However, all nomenclature and use of
authorities for extant taxa follow standard compilations, including Tropicos,

https://www.tropicos.org, World Flora Online, https://www.worldfloraonline.org, and Kew's

Plants of the World Online, https://powo.science.kew.org. Authorities for fossil taxa can be

found in the corresponding cited literature. Leaf-architectural terminology follows Ellis et al.

(2009).

SYSTEMATIC PALEONTOLOGY

Family ANACARDIACEAE R. Brown, 1818: 431

Genus Dobineaites Wilf, C. Gonzalez, Gandolfo & Zamaloa gen. nov.

Generic diagnosis. Leaves opposite, simple, petiolate. Blade ovate, unlobed, usually
symmetrical; primary venation pinnate, deflected. Secondary veins craspedodromous,
dichotomizing laterally; secondaries increase in angle and decrease in spacing basally.
Agrophic veins compound, the first set expressed only along the basal margin. Tertiary veins
thick, moderately and irregularly spaced, weakly to strongly opposite percurrent, angle
increasing basally. Margin serrate; teeth prominent, closely spaced, continuous nearly to the
blade base. Teeth simple or compound, apex simple and apiculate, sinuses angular, principal
vein medial and prominent with near-perpendicular branches to vein junctions near or at the

sinuses.
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Type species. Dobineaites ameghinoi (E.W. Berry) Wilf, C. Gonzalez, Gandolfo & Zamaloa

comb. nov.

Figures 1-4

Basionym. Celtis ameghenoi E.W. Berry, 1925, Johns Hopkins University Studies in Geology

6:198.

Lectotype here designated. USNM 222678 (Fig. 1.1). Tufolitas Laguna del Hunco, Huitrera
Formation, early Eocene (Ypresian), collected in the early 1920s by Burton Clark, exact date

and collection site unknown.

Syntypes. USNM 222679 (Fig. 1.2), USNM 222680 (Fig. 1.3); provenance as for the

lectotype.

Referred material (277 specimens). From quarry LHO1: MPEF-Pb 7700, 7701. From LH02:
MPEF-Pb 1053, 3168, 77027725, 7794-7818. From LH03: MPEF-Pb 7726, 7727. From
LHO04: MPEF-Pb 995, 2329, 3169, 7728-7762, 7819-7839, 78587864, 7870, 7871, 7881—
7895. From LHO06: MPEF-Pb 7763-7769, 7840—7846. From LHO08: MPEF-Pb 7770. From
LH13: MPEF-Pb 3171, 77717776, 7847-7854, 7896, 7897. From LH15: MPEF-Pb 7777,
7865. From LH16: MPEF-Pb 7778, 7779, 7907. From LH17: MPEF-Pb 7780-7787. 7855—
7857. From LH18: MPEF-Pb 7788. From LH20: MPEF-Pb 7789. From LH22: MPEF-Pb
7790. From LH23: MPEF-Pb 7791, 7792. From LH25: MPEF-Pb 7866—7872. From LH27:
MPEF-Pb 7869, 7873-7879, 7898. From LH29: MPEF-Pb 7899-7901. From float, unknown,
or out-of-section locations (at MEF): MPEF-Pb 1449, 1450, 7793, 7880, 7902—7906. Exact
collection site unknown, other: BA-Pb 12633; MJHG 45Pb—53Pb; Lil-Pb 5815, 5825, 5913,

5920, 5931; LPPB 739, 741-746, 749, 759-762, 765767, 773, 775, 781, 782, 898, 920, 943,
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2470-2472, 24752477, 24832485, 2487, 2490, 2492, 2497-2502, 2504, 2506, 20417,

20418, 20420, 20437.

Emended specific description. Leaves (Figs. 1-4) are opposite (Fig. 4.1-4.4), simple, and
petiolate with marginal insertion. The lamina is unlobed, and the margin is strongly serrate.
Petioles are eight to >23 mm in length and 0.8-2.0 mm wide. Laminar size (from Merkhofer
et al. 2015, n=101) is 75-15,000 mm? (nanophyll to mesophyll), with a mean area of 1133
mm? (based on means of natural logs; microphyll). Laminar length is 2.5-14.5 cm, width is
1.0-10.2 cm, and length-width ratio is 1.1-2.9:1. Small axillary leaves are present (Fig. 4.1—
4.4). The blade shape is ovate to lanceolate (Fig. 3.11), sometimes elliptic (Fig. 4.5), and
symmetrical or slightly asymmetrical basally (e.g., Fig. 3.1). The base is convex to slightly
cordate (e.g., Fig. 2.2) but may be cuneate (Fig. 3.12); the base angle is variably acute or
obtuse. The apex shape is usually straight to slightly acuminate, sometimes convex, and the
angle is acute. The overall leaf form varies with size (Figs. 1-3). Smaller leaves, such as the
lectotype (Fig. 1.1), more often have a non-cordate base, ovate-lanceolate shape, and higher
aspect ratios; larger leaves, such as the syntypes (Fig. 1.2, 1.3) tend to have broad-ovate

blades with cordate bases and lower aspect ratios (e.g., Fig. 2.1).

Primary venation is pinnate, and the midvein course is often deflected at secondary
junctions. Secondary veins are decurrent in ca. 5—10 offset pairs, craspedodromous, and
dichotomize up to 3—4 times. The secondary course is weak, moderately recurved, and often
slightly deflected at junctions with minor secondary and tertiary veins. Secondary spacing
decreases, and the secondary angle markedly increases basally (from ca. 35-55° to 70—100°).
Most leaves have one or more abruptly thinner, high-angled or obtuse basal secondary pairs
that diverge near the petiole insertion (e.g., Fig. 2.2, Fig. 3.3). Agrophic veins are usually
compound, and the first agrophic complex is restricted to a small area near the basal margin

of the blade because of the high-angled basal secondaries that limit its potential extent. The



335

340

345

350

355

15

major and minor secondaries terminate at the tooth apex, often with perpendicular tertiary
branches to vein junctions (vein knots) near or at the nadirs of the sinuses. A thin fimbrial

vein is present (Fig. 2.3). Intersecondary veins are absent.

Tertiary venation (e.g., Figs. 2.2, 3.4) is moderately spaced, thick, and usually weakly
opposite percurrent but may be mixed percurrent or reticulate. The tertiary spacing and angle
are irregular. The departure of percurrent tertiaries from the midvein and major secondaries is
generally perpendicular but inconsistently obtuse or acute. The tertiary angle to the midvein
markedly increases toward the base. The tertiary course is usually convex but may be straight
or sinuous or form a concentric pattern near the base. The tertiary distal course is basiflexed,
and the junction with the subjacent secondaries is generally perpendicular. Tertiaries that
reach the margin terminate in the tooth apices or vein knots located at or near the sinuses
(Fig. 2.3). The quaternary venation is weakly mixed percurrent to irregular reticulate, and the
quinternary venation is regular to irregular reticulate. Areolation is well developed, with

freely ending veinlets mostly one-branched at the sixth order.

The teeth (e.g., Fig. 2.3) are irregular in size and always prominent, projecting from
the margin up to 4.4 mm (measured medially from the tooth apex to a line projected
orthogonally from the basal sinus nadir). Teeth are present continuously over nearly the full
blade margin, and the only untoothed area is the immediate vicinity of the petiole insertion.
The teeth are simple or once compound, closely spaced (ca. 2—7 major teeth per cm), with
angular sinuses. The tooth shape is generally flexuous with an apiculate apex; flank shapes
include flexuous/flexuous, flexuous/convex, straight/flexuous, convex/convex,
straight/straight (triangular aspect), or straight/convex. The tooth apex is apiculate and simple
(non-glandular; Fig. 2.3). The principal vein is a major secondary, minor secondary, or
exterior tertiary vein that is usually deflected by vein junctions before entering the tooth. The

principal vein is medial and prominent, and its course is slightly curved, basally deflected, or



16

360 nearly straight. The accessory veins emerge roughly perpendicular to the principal vein and
form irregular loops, reticulate, or run toward the adjacent sinus nadir, joining a knot with

other minor veins.

The insect damage types (Figs. 2.5, 3, 4.5-4.8) previously recorded (Wilf et al.,
2005b; Labandeira et al., 2007; Sarzetti et al., 2009) include external feeding (DTs 1-5, 7,
365  12-17, 22, 26, 29, 57), piercing-and-sucking (DT46), galling (DTs 32-34), mining (DTs 41,
90, 91), and oviposition (DTs 54, 76), to which we add an occurrence of mining DT93 on a

specimen here identified to the species (Fig. 4.6, 4.7).

DISCUSSION

370  Affinities of Dobineaites ameghinoi comb. nov.

The characters of the fossils observed in the three type specimens (Fig. 1) are
consistent with hundreds of subsequently collected fossils (Figs. 2—4), which fill the
morphological continuum between the types (Fig. 1) and support Berry's (1925) hypothesis of
a single species. Despite the elevated diversity of the Laguna del Hunco leaf flora,

375  Dobineaites ameghinoi is rapidly identifiable based on the combination of obtuse basal
secondary veins and prominent, densely spaced, apiculate, often flexuous, frequently
compound teeth with non-glandular apices. The fossils can often be confidently identified
even without the margin or base preserved (e.g., Fig. 4.6) because of their distinctive
deflected major veins, branching secondaries, and thick, usually weakly opposite percurrent,

380 irregularly spaced, and angled tertiaries.

Our leaf architectural survey indicates that all groups previously considered for the
fossils (e.g., Berry, 1925) have only superficial similarities, such as the presence of an ovate

blade and large or compound teeth in some species. Due to the substantial number of
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compared taxa and the low similarity of nearly all of them to the fossils, we expedite the

discussion below using a set of cleared leaf exemplars as visual references (Fig. 5).

Despite their basionym, the fossils only superficially resemble Celtis (Fig. 5.1, 5.2).
Celtis leaves are alternate and often have markedly asymmetrical petiole insertions and
laminae, unlike the fossils; the primaries may be pinnate like the fossils or palmate, usually
with three primaries. The basal pair of Celtis lateral primaries or secondaries is robust, often
runs on (naked basal veins) or close to the margin near the petiole insertion, and is usually
abruptly acute, set well below the next set of secondaries and generating prominent agrophic
veins that extend well up the blade. This architecture contrasts sharply with the secondaries
that basally decrease in spacing and increase in angle in the fossils (Figs. 2—4), leaving little
space for the basalmost set of agrophic veins to develop. Celtis secondary veins usually loop
inside the margin (Manchester et al., 2002), unlike the craspedodromous secondary veins of
the fossils. Celtis leaves may be toothed or entire; however, when present, Celtis teeth are not
usually compound and never markedly compound like the fossils. This discussion also
applies to other Cannabaceae genera with comparable leaves (Fig. 5.3-5.5), such as
Aphananthe, Lozanella, Pteroceltis, and Trema. Thus, we can confidently eliminate affinities
of the fossils to Cannabaceae. The only remaining South American Celtis fossils that are still
valid (e.g., Manchester et al., 2002) appear to be well-preserved C. santosi endocarps from

the Paleogene Itaborai beds in Rio de Janeiro State, Brazil (Beurlen & Sommer, 1954).

Regarding Ulmaceae, Berry (1925) mentioned Ampelocera (Fig. 5.8) and
Phyllostylon, but neither has many comparable features. Some Moraceae (Morus,
Broussonetia) and Urticaceae (Boehmeria, Leucosyke) have species with similar leaves to the
fossils, such as large, compound, or densely spaced teeth; however, they also have markedly
acute, robust basal secondaries and several other differences (Fig. 5.6, 5.7). In Rhamnaceae,

leaves most like the fossils typically have markedly acute, robust basal secondaries (or
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acrodromous lateral primaries) that run close to or on the margin, set back from the next pair,
and generate well-developed agrophic veins over much of the blade, unlike the high-angled,
crowded, weak basal secondaries and reduced agrophic veins in the fossils. Rhamnaceae
secondary veins are strong, regular, and smoothly recurved apically rather than deflected like
the fossils; when present, the teeth are often reduced and glandular and rarely compound like
the fossils. Examples include the ziziphoid genera Gouania (Fig. 5.9), Ceanothus, and
Paliurus, which also have distinctive interior secondary venation not seen in these fossils (see

Wilf et al. 2022), as well as Colubrina, Hovenia, and Ziziphus.

In Rosaceae, many genera have species with large, densely spaced teeth superficially
similar to the fossils but few other shared features. Rhodotypos scandens (the sole species of
its genus, with opposite leaves) and Rubus species (Fig. 5.10, 5.11) have obtuse basal
secondaries and compound teeth; however, the secondary veins are more numerous and
regular and less deflected, and the often-glandular teeth do not resemble the fossils.
Moreover, Rubus species frequently have compound leaves and lobed leaf blades. Other
families of Rosales (as defined in Chase et al., 2016) show no significant similarities to the
fossils, which also lack the characteristic glandular teeth that are widespread in the order
(Hickey & Wolfe, 1975). We conclude that the fossils do not belong to Rosales as long

suggested (Berry, 1925).

Outside Rosales, the leaves of some Euphorbiaceae species (Malpighiales; Fig. 5.12)
show only a superficial resemblance to the fossils. Malvaceae (Malvales) is also not suitable
for this material. The family tends to have alternate leaves as well as higher-ranked leaf
organization and other features that are unlike the fossils, such as palmate venation with
strong, markedly acute lateral primary veins or basal secondaries that emerge from the base;
well-developed and organized agrophic veins; and thin, closely spaced, regularly opposite

percurrent tertiaries (Hickey & Wolfe, 1975; Carvalho et al., 2011; Wilf et al., 2022). This
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syndrome includes the taxa mentioned by Berry (1925), Triumfetta and Grewia (Fig. 5.14,

5.15), and many others such as Melochia (Fig. 5.13).

In Sapindales, entire-margined, compound-leaved taxa are prevalent, and very few
species remotely resemble the toothed, simple-leaved fossils. Some maples have some
similarities, such as Acer tataricum (Sapindaceae; Fig. 5.16), which has simple, lobed or
unlobed, cordate-ovate leaves and compound teeth. However, among other differences,
analogs of the frequent shallow to more incised lobes would be apparent in the large sample
size of the fossil species. Partial similarities to the fossils occur in some species of Bursera

(Burseraceae, e.g., B. epinnata) and Brucea (Simaroubaceae).

Like the other sapindalean families, the Anacardiaceae usually display entirely
dissimilar leaf architecture to these fossils, as described in surveys (Martinez-Millan &
Cevallos-Ferriz, 2005; Andrés-Hernandez & Terrazas, 2009; Mitchell et al., 2022). Many of
the more than 870 Anacardiaceae species have alternate, compound leaves with a
characteristic general appearance of the leaflets that is unlike the fossils, including various
combinations of asymmetrical blades (usually due to compound leaf organization), irregular
cladodromous or craspedodromous secondaries, secondaries and intersecondaries that
terminate in tooth sinuses, ramified to elaborately ramified tertiary veins, and irregularly
sized teeth when present. There are seven genera (Schinus, Lithraea, Mauria, Astronium,
Loxopterygium, Myracrodruon, and Schinopsis) of the family in Argentina, none of which
resembles the fossils (but see Passalia et al., 2019 for Miocene Lithraea). However, the leaf
architecture of Anacardiaceae encompasses diverse forms similar to other plant groups, and
many fossils of the family probably remain unrecognized for this reason (e.g., Passalia et al.,
2019). These include clusioid venation in species of Ozoroa and Abrahamia (which usually
have some degree of cladodromous secondary branching and ramified tertiaries); Myrtaceae-

like architecture in several Spondias species (which have asymmetrical blades and some
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ramifications of the tertiaries); and several architectural similarities with the closely related
families Sapindaceae and Burseraceae as well as Lauraceae, in the case of simple-leaved
Anacardiaceae (Gentry, 1993). Only a few genera of Anacardiaceae have species with simple,
toothed leaves, such as Cotinus, Rhus, and Schinus (the range of S. roigii includes the Laguna
del Hunco site), none of which resembles the fossils, and Dobinea Buchanan-Hamilton
(1825) ex D. Don (Figs. 5.17, 6), whose leaves provide unexpected and compelling

similarities.

Dobinea is a dioecious Asian genus containing two species. The type species, D.
vulgaris Buchanan-Hamilton (1825) ex D. Don., is opposite-leaved like the fossils but
entirely dissimilar in leaf architecture (Fig. 6.4), whereas D. delavayi (Baillon) Baillon
(1890), is alternate-leaved, like most Anacardiaceae species, but has leaf architecture
identical to that of the fossils (Figs. 5.17, 6.1-6.3; Wu, 1979, 1986; Ming & Barfod, 2008).
Dobinea vulgaris is a hill-forest dwarf shrub (elevation 1300-1400 m) with a broad, generally
subtropical range, including Bangladesh, Assam, and the eastern Himalaya to south-central
China and Myanmar, whereas D. delavayi is a perennial shrub-like herb with a more
temperate, restricted distribution in grasslands and woodlands at 1100-2300 m elevation in
southwestern Sichuan and central northwestern Yunnan (Ming, 1980; Ming & Barfod, 2008).
Ming (1980) considered south-central China the likely area of origin for several
anacardiaceous genera, including Dobinea. The most conspicuous feature of this genus, not
yet observed in the fossil record, is its terminal female inflorescence containing accrescent,
foliose, papery bracts. The bracts have venation and teeth similar to the regular leaves but
include several sets of obtuse basal secondary veins. The pedicel is adnate to the bract
midvein and bears unicarpellate, perianth-free flowers and subsequent small fruits (Fig. 6.1;

Baillon, 1887; Engler, 1896; Ming & Barfod, 2008; Pell et al., 2010). These elm-like winged
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fruits enable wind dispersal, and the genus is wind-pollinated, which is unusual in the

Anacardiaceae (Pell ef al., 2010).

The systematic placement of Dobinea has varied historically among a separate family
(Podoaceae, along with Campylopetalum, a monotypic herb endemic to Thailand),
Sapindaceae (as a member of the former Aceraceae), and Anacardiaceae. Molecular analyses
have resolved the two species of Dobinea as a monophyletic group in Anacardiaceae,
estimated the species divergence at ca. 10.8 Ma, and estimated the genus divergence as 40-50
Ma, similar to the age of these fossils (Pan et al., 2008; Pell et al., 2010; Weeks et al., 2014;
Liuet al., 2021; Joyce et al., 2023). Campylopetalum has resolved as a sister genus to
Dobinea (Weeks et al., 2014; Joyce et al., 2023), and the two genera together resolved as
sister to the large A2 clade of Joyce ef al. (2023; the A2 clade is equivalent to the
Anacardioideae with Campnosperma removed). Campylopetalum and Dobinea share winged
fruits, chromosome number (n = 7), and several pollen characters, such as a small overall size
of ca. 10—15 um, suboblate-oblate spheroidal shape, three (four) compound apertures, and

exine with reticulate sculpture (Erdtman, 1952; Forman, 1953; Pell ez al., 2010).

Comparisons of vegetative characters show close similarities between the fossils and
Dobinea (Figs. 5.17, 6), especially D. delavayi (£ 1 X, roughly translated as Goat's Horn

Weed). Stipules are absent in Dobinea, as for Anacardiaceae as a whole (Pell et al., 2010);
however, we observed stipule-like small or immature leaves that are often present on axils or
axillary shoots in both extant species (Fig. 6.3, 6.4) and the fossils (Fig. 4.1-4.4). Dobinea
leaves are simple, petiolate, unlobed, toothed, and either opposite, with rounded to cuneate
bases, oblong to lanceolate blade shape, and a regularly serrulate margin (D. vulgaris), or
alternate, with cordate to convex bases, ovate to lanceolate blade shape, acuminate apex, and
an irregularly serrated margin, the leaf size decreasing markedly along the shoot (D. delavayi;

Fig. 6.1, 6.3; Baillon, 1887; Wu, 1986, 1988; Ming & Barfod, 2008). Interestingly, in the
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basionym description of the species (as Podoon delavayi Baillon), Baillon (1887: 682) noted,
“Ses organes de végétation sont ceux d'un Morus ou d'un Celtis” (its vegetative organs are

those of a Morus or a Celtis).

Like D. delavayi, the fossil leaves are petiolate, symmetrical, or slightly asymmetrical
at the base. In both the fossil and living species, the primary and secondary venation is weak
and frequently deflected; there is usually a thin, basal pair of secondaries diverging near the
petiole insertion, the secondaries are craspedodromous and often dichotomize inside the
margin, intersecondaries are absent, and the secondary vein angle increases markedly towards
the base. Agrophic veins are compound and slightly irregular, and the high-angled basal
secondaries restrict the basalmost set to a small portion of the basal margin. Tertiary veins are
weakly percurrent, moderately and irregularly spaced, and become more obtuse basally.
Higher-order venation is reticulate, and mostly once-branched freely ending veinlets are
present. The tooth features are also the same (e.g., Fig. 6.2), including coverage nearly to the
blade base, close spacing, irregular sizes, angular sinuses, simple or compound organization,
flexuous and other flank shapes, and non-glandular, apiculate apices (which appear thickened
due to abrupt apical narrowing around the principal vein but have no glandular tissue). The
tooth venation includes a prominent medial vein that generates perpendicular branches to

vein knots inside or at the sinuses.

Additional features of the fossils are also consistent with Dobinea delavayi. With
decreasing blade size, the fossils generally show increasing aspect ratios and a gradation from
cordate to ovate-lanceolate blade shapes (e.g., Fig. 3), as seen distally along single branches
of D. delavayi (Fig. 6.1). Moreover, the discovery of a single fossil specimen with attached
leaves (Fig. 4.1-4.4) confirms that the fossil species had simple leaves and shows small
axillary leaves, a feature often seen in both living Dobinea species (Fig. 6.3, 6.4). Perhaps the

only difference between the fossils and D. delavayi is that the fossil leaves are opposite (Fig.
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4.1), a rare trait in Anacardiaceae that nonetheless occurs in the other living species in the
genus (D. vulgaris). We conclude that the fossil leaves of D. ameghinoi are strikingly similar
to those of extant D. delavayi and only superficially comparable with the other taxa examined
(Fig. 5), which nearly all have strong, acute lateral primaries or secondaries emerging from
the petiole insertion (vs. obtuse, weak basal secondaries in the fossils) and robust major-vein

courses (vs. deflected major veins and bifurcating secondaries in the fossils).

Although we consider the leaf fossils to be closely related to living Dobinea, we
maintain caution by placing them in the new extinct genus Dobinaeites due to the absence to
date of other evidence for Dobinea at the site, including the distinctive winged fruits (Fig.
6.1). Dobinea-like pollen (Radlkofer, 1888; Erdtman, 1952; Forman, 1953) was also not
found in the dispersed associated palynoflora (Barreda et al., 2020), although Anacardiaceae
grains are rare in the assemblage overall, and many other abundant macrofossil taxa in the
flora are not yet matched with associated palynotaxa (Barreda et al., 2020). More
circumstantially, the impressive abundance of the fossil leaves, suggesting high biomass, as
discussed earlier, appears to be inconsistent with the herb and shrub habits of the living

Dobinea species.

Contribution to the Anacardiaceae fossil record

Dobineaites ameghinoi fossils from Laguna del Hunco represent a rare macrofossil
occurrence of Anacardiaceae in Gondwana, the first report of a fossil allied with Dobinea,
and one of the few fossil occurrences affiliated with living Asian-endemic Anacardiaceae.
The Anacardiaceae have a rich macrofossil record, especially from the Eocene onwards in
North America and Europe (e.g., Manchester, 1999; Manchester et al., 2009; Herrera et al.,

2012; Mitchell et al., 2022; Del Rio et al., 2023; Joyce et al., 2023), but they have little
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representation in Gondwana. Examples of numerous Laurasian Paleogene occurrences based
on reproductive materials include fossil cashew nuts (4nacardium) with characteristic
inflated hypocarps from the middle Eocene Messel locality (Germany; Manchester et al.,
2007), the extinct fruit genus Pentoperculum (Spondeae) from the early Eocene London Clay
and the middle Eocene Clarno flora of Oregon (Reid & Chandler, 1933; Manchester, 1994),
and Rhus fruits from Clarno (Manchester & Judd, 2022). Rhus has a rich record of fossil
leaves since the Eocene, although much of the foliage may belong to extinct genera
(Manchester & Judd, 2022). Paleogene leaf records attributed to RAhus and other genera
mostly come from several Eocene sites in the western USA and the Oligocene of Puebla,
Mexico (e.g., MacGinitie, 1953, 1969; Wolfe & Wehr, 1987; Meyer & Manchester, 1997,
Manchester, 2001; Ramirez & Cevallos-Ferriz, 2002; Flynn et al., 2019; Mitchell et al.,
2022). Reliable fossil evidence for living endemic genera of Asian Anacardiaceae includes
Choerospondias endocarps from the London Clay and several Oligocene and younger sites in
Eastern Europe, China, and Japan (summarized by Manchester et al., 2009; Wang et al.,
2020), along with Dracontomelon endocarps from the late Eocene of Panama (Herrera ef al.,

2012).

There are almost no macrofossil records of Anacardiaceae in the Southern
Hemisphere outside of South America. One important exception is fossil wood consistent
with the Anacardioideae subfamily (Anacardioxylon semecarpoides; Wheeler et al., 2017)
from the ca. 66 Ma Deccan sequence in Maharashtra, India, which was located in the
Southern Hemisphere tropics at the time, long after India had separated from Gondwana.
Several palynological occurrences have been resolved at the family level in Australia (e.g.,

compilation in Kooyman et al., 2014).

In Gondwanan South America, putative occurrences of Anacardium nuts from Peru,

Ecuador, and Colombia, also reported by Berry in the 1920s (Berry, 1924a, 1924b, 1929a,
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1929b), are doubtful because of the lack of attached hypocarps (Manchester et al., 2007). As
reviewed by Burnham and Carranco (2004), there are numerous historical reports of putative
fossil anacardiaceous foliage from several South American countries that should be
considered unconfirmed, including "Schinopsis" patagonica from Laguna del Hunco (Berry,
1925) and several species from Rio Pichileufu (Berry, 1938). Post-Gondwanan occurrences in
northern South America include fossil wood with features of Anacardium and Mangifera
from the late Eocene Piedra Chamana Fossil Forest of Pera (Woodcock ef al., 2017) and a

winged fruit of Loxopterygium from Ecuador (Burnham & Carranco, 2004).

Nevertheless, there is growing evidence for the presence of Anacardiaceae in southern
South America since the early Paleocene. At Laguna del Hunco, supporting data include
pollen occurrences of the family mentioned earlier (Barreda et al., 2020) and several other
leaf morphotypes that appear to belong to Sapindales and potentially Anacardiaceae (Wilf et
al., 2005a). An older record, and potentially the oldest macrofossil occurrence worldwide,
consists of isolated foliage with characteristic admedially ramified venation from the early
Paleocene (early Danian) Salamanca Formation in southern Chubut (Iglesias et al., 2021:
morphotype SA050), which was validated in a recent specialist review (Mitchell et al., 2022).
The Salamanca Formation has also yielded anacardiaceous pollen, as has the Danian portion
of the Lefipan Formation in northwest Chubut (see compilation in Kooyman et al., 2014).
Post-Gondwanan Anacardiaceae in the Southern Cone include diverse fossil-wood
occurrences (none related to Dobinea) from Oligocene to Pleistocene strata of Argentina
(e.g., Lutz, 1979; Franco, 2009; Pujana, 2009; reviewed by Pujana, 2022). Additional leaf
records attributed to Anacardiaceae come from the ?Paleogene of Chile (Troncoso, 1992) and
several Neogene sites in Chile and Argentina (e.g., Troncoso and Encinas 2006; Anzdtegui et
al., 2007). However, per Burnham and Carranco (2004), additional documentation is needed

to confirm some of these occurrences as Anacardiaceae. One notable revision is Lithraea
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australis from the Miocene Nirihuau Formation in Rio Negro, Argentina, which Passalia et
al. (2019) recently transferred from its historical assignment as foliage of the cycad Zamia

(Berry, 1928).

Paleoecology and biogeography

The diverse Eocene Laguna del Hunco rainforest had multiple strata, from a rich understory
with, among many other taxa, ferns, Asteraceae, Solanaceae, and Rubiaceae, to large
angiosperm trees of Myrtaceae and Fagaceae and probable coniferous emergents in the
Cupressaceae, Araucariaceae, and Podocarpaceae (Gandolfo et al., 2011; Wilf et al., 2014,
2019; Barreda et al., 2020; Deanna et al., 2020; Pujana et al., 2020). The dominance by leaf
count of Dobineaites ameghinoi suggests high original biomass near the depocenter (e.g.,
Burnham et al., 1992; Burnham, 1997), comparable to the conifers in the assemblage and
Eucalyptus, and contrasts sharply with the shrubby or perennial herbaceous habit of extant
Dobinea, which inhabits more open and seasonally dry environments. These observations
indicate that the ancient species had different ecological roles from its living relatives. To the
best of our knowledge, there are no published data on Dobinea folivore damage for
comparison with the fossils. An herbarium survey could be productive for testing the idea of
host tracking through time (e.g., Donovan et al., 2023); however, insect mines appear to be
very rare on hundreds of Dobinea herbarium sheets examined, suggesting that a field study

would be necessary.

The proposed affinities of the D. ameghinoi fossils to an Asian endemic genus are
striking but not surprising because numerous other lineages with extant ranges on the Asian
mainland and in maritime Southeast Asia co-occur with D. ameghinoi in the same fossil beds

at Laguna del Hunco, including Agathis (Araucariaceae), Dacrycarpus (Podocarpaceae),
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Castanopsis (Fagaceae), Macaranga (Euphorbiaceae), and engelhardioid Juglandaceae (Wilf,
2012; Wilf et al., 2014, 2019, 2023; Hermsen & Gandolfo, 2016). Many other Laguna del
Hunco genera reach Australasia and Malesia but not the Asian mainland, as summarized
elsewhere (e.g., Wilf et al., 2013, 2023; Kooyman et al., 2014). Similarly, Weeks et al. (2014)
found from molecular data that long-distance movements characterize the entire evolutionary
history of Anacardiaceae. The floristic connections from ancient Patagonia to modern Asia
are thought to represent post-Gondwanan lineage survival on the Australian plate (Sahul),
followed by exchange with Asia during the Neogene Sahul-Sunda collision (Wilf et al., 2013;
Kooyman et al., 2014, 2019; Wilf & Kooyman, 2023). No reliable macrofossils of Laguna
del Hunco genera have yet been found in Paleogene (i.e., pre-collision) Asia that would

contradict this idea.

CONCLUSIONS

Fossil leaves known since the 1920s as "Celtis" ameghinoi are the most abundant
plant fossils at the extraordinarily diverse Laguna del Hunco locality, early Eocene of
Patagonian Argentina. Based on their well-preserved leaf architecture, we could not place
these fossils in any previously considered taxa, including the Cannabaceae or any Rosales
family. However, we found compelling similarities with the Asian genus Dobinea
(Anacardiaceae), particularly D. delavayi, which is endemic to south-central China. Given its
high abundance, Dobineaites ameghinoi comb. nov. probably had high biomass, unlike the
small-statured living Dobinea species, and its diverse insect damage also indicates its
paleoecological significance. Our analysis presents a new floristic link from West Gondwana
to mainland Asia, as seen in several angiosperm and conifer genera at the same fossil site, and

a rare Gondwanan macrofossil record of Anacardiaceae.
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Figure 1. Type specimens of Dobineaites ameghinoi comb. nov. 1, Lectotype, USNM
222678 (drawn in Berry, 1925: pl. 3, fig. 1). 2, Syntype, USNM 222679 (Berry, 1925: pl. 3,

fig. 2). 3, Syntype, USNM 22680 (Berry, 1925: pl. 3, fig. 3). Scale bars: 1 cm.

Figure 2. Dobineaites ameghinoi comb. nov., selected larger leaves similar to the two
syntypes (Fig. 1.2, 1.3). 1-3, MPEF-Pb 7839, with details of base and margin. Note the pair
of thin, obtuse secondary veins emerging near the petiole insertion. 4, MPEF-Pb 7833. 5,
MPEF-Pb 7857a, with a curvilinear, frass-filled mine (DT90) oviposited adjacent to the
midvein (upper arrow), separate oviposition sites on the midvein (DT76, lower arrow), hole

feeding (DT2), and margin feeding (DTs 12, 15). Scale bars: 5 cm (1), 1 cm (2-5).

Figure 3. Dobineaites ameghinoi comb. nov., selected specimens showing general variation
with decreasing size and shape, from often larger, broad-cordate forms similar to the two
syntypes (Fig. 1.2, 1.3; see also Fig. 2) to smaller, narrow-aspect forms similar to the
lectotype (Fig. 1.1). The same variation occurs along single stems in extant D. delavayi (Fig.
6.1). Colorization of the leaves results from replacement by secondary minerals. 1, MPEF-Pb
7778, compressed with an unidentified angiosperm leaf(let) at upper right. 2, MPEF-Pb 7819.
3, MPEF-Pb 7763, with numerous galls (DT32), hole feeding (DTs 2, 3), and a pair of thin,
obtuse basal secondaries emerging near the petiole insertion (arrow), as found on most of the
fossils. 4, MPEF-Pb 7803, with hole feeding (DTs 1, 3) and skeletonization (DT16). 5,
MPEF-Pb 7890. 6, MPEF-Pb 7787. 7, MPEF-Pb 7892 8, MPEF-Pb 7754b. 9, MPEF-Pb
7806. 10, MPEF-Pb 7797, with a small, probably aborted curvilinear mine oviposited
adjacent to the midvein (DT90, arrow). 11, MPEF-Pb 7829, with margin feeding (DT12). 12,

MJHG 49Pb. 13, MPEF-Pb 1450, with margin feeding (DT12). Scale bars: 1 cm.
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Figure 4. Dobineaites ameghinoi comb. nov., branch segment with wide-cordate, attached
opposite leaves (4.1-4) and selected insect damage (4.5-9). 1, MPEF-Pb 7901, showing pair
of opposite, petiolate leaves. 2, detail from (4.1) showing pair of small axillary leaves (lower
arrows) and a second node with opposite leaf scars (upper arrows) subtending one remaining
axillary leaf. 3, Detail from (4.2, see upper arrows) after preparation, showing the distal leaf
node with opposite scars and the remaining axillary leaf, which has marginal teeth and other
standard leaf architecture of D. ameghinoi, further validating the attached large leaves (1, 2).
4, Detail from (4.2, see lower arrows) of the paired small, axillary leaves. 5, MPEF-Pb 7751a,
with extensive hole feeding (DTs 1, 2, 3). 6, MPEF-Pb 7749b, with several serpentine mines
preserving sinusoidal, then particulate frass trails (the DT93 exemplar in Labandeira ef al.,
2007). 7, detail of one mine in (6), oviposited adjacent to the midvein. 8, MPEF-Pb 7772,
with a wide, possibly aborted mine containing medial particulate frass (the DT91 exemplar in
Labandeira et al., 2007). 9, MPEF-Pb 1053b, with more than 90 oviposition scars (DT54, the
scars separately cataloged as MPEF-IC 1370) arrayed in several arcs, previously described as
the ichnospecies Paleovoidus arcuatum (Sarzetti et al., 2009). Scale bars: 2 cm (1), 5 mm (2),

2mm (3,4,7),1cm (5, 6,8,9).

Figure 5. Selected cleared leaves representing taxa compared with the fossils (see
Discussion) from the Jack A. Wolfe and Leo J. Hickey components of the National Cleared
Leaf Collection, housed in the Division of Paleobotany, NMNH, and the Daniel I. Axelrod
Cleared Leaf Collection, housed at the University of California Museum of Paleontology,

Berkeley. The images are available at https://doi.org/10.25452/figshare.plus.14980698.v1

(Wilf et al., 2021). Names are updated here using World Flora Online. Parentheses denote the
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cleared leaf collection (Wolfe, Hickey, or Axelrod), the respective catalog number, and the
source herbarium voucher, where applicable. (5.1-5.5), Cannabaceae. 1, Celtis bungeana
(Axelrod 162). 2, Celtis tetrandra (Wolfe 9002; A s/n, December 1952, Taiwan). 3,
Aphananthe aspera (Wolfe 153; UCH M008603, Panamd). 4, Trema orientalis (Hickey
2834; FM Hueber s/n, Fiji). 5, Lozanella enantiophylla (Wolfe 7036; CAS 422782, Mexico).
6, Broussonetia kazinoki (Moraceae; Hickey 6448; YU, Li Hao-Min 13038, China). 7,
Leucosyke alba (Urticaceae; Hickey 6784; YU, Ahern 88, Philippines). 8, Ampelocera
hottlei (Ulmaceae; Wolfe 5557; F 1599211, Belize). 9, Gouania longispicata (Rhamnaceae,
Wolfe 4863; MO 2053220, Burundi). 10, Rubus idaeus (Rosaceae; Wolfe 1468b; UCH
1092750, Alaska). 11, Rhodotypos scandens (Rosaceae; Hickey 3705; US 03703771, Japan).
12, Croton hircinus (Euphorbiaceae; Hickey 6223; US 01229157, Panama. (5.13-5.15),
Malvaceae. 13, Melochia lupulina (Hickey 5555; US 01092271, US Virgin Islands). 14,
Triumfetta columnaris (Hickey 5444; US 00535720, Mexico). 15, Grewia vitiensis (Wolfe
11369; UC 1016242, Fiji). 16, Acer tataricum (Sapindaceae; Wolfe 8576; A, Muroi 4232,
Japan). 17, Dobinea delavayi (Anacardiaceae; Wolfe 82065 A, Rock 6026, Yunnan, China).

Scale bars: 1 cm.

Figure 6. Herbarium vouchers of (6.1-6.3) Dobinea delavayi and (6.4) Dobinea vulgaris. 1,
US 03349094 (Yunnan), showing leaf size and shape variation along a single axis from larger
broad-cordate to smaller narrow-lanceolate leaf forms, encompassing much of the variation
seen in the fossils (Figs. 1-4), and fertile axes of elm-like fruits. Image courtesy of US via

https://collections.nmnh.si.edu/search/botany. 2, K, G Forrest 15318 (Yunnan), detail of

marginal teeth and venation, including thin fimbrial vein (compare, e.g., Fig. 2.3). 3, P
04860032 (Yunnan), showing wide-cordate leaf morphology and miniature axillary leaves

similar to the fossils (Fig. 4.1-4.4). Image courtesy of P via
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http://coldb.mnhn.fr/catalognumber/mnhn/p/p04860032. 4, NY 2592273 (cultivated),

showing bases of the opposite elliptical leaves of D. vulgaris, with miniature axillary leaf-
bearing branches similar to the fossils (Fig. 4.1-4.4). Image courtesy of the C. V. Starr Virtual

Herbarium, http://sweetgum.nybg.org/science/vh. Scale bars: 5 cm (1, 3), 1 cm (2, 4).
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