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An energy-optimization method to study
gel-swelling in confinement†

Chaitanya Joshi, a Mathew Q. Giso,a Jean-François Louf, b Sujit S. Datta c

and Timothy J. Atherton *a

We recast the problem of hydrogel swelling under physical constraints as an energy optimization

problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within a

jammed matrix of rigid beads and interpret the results to determine how confinement modifies the

mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation of

strains within the bulk of the hydrogel as the strain becomes localized to an outer region. We also

explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian

behavior as a function of swelling. Our model, implemented in the Morpho shape optimization

environment and validated against an experimentally demonstrated prototypical scenario, can be applied

in any dimension, readily adapted to diverse swelling scenarios and extended to use other energies in

conjunction.

1. Introduction

Hydrogels are polymer networks that have an incredible capa-
city to absorb water while remaining intact.1 They are suitable
for a variety of practical applications such as hygiene products,
contact lenses and other areas.2 Their similarity to biological
tissues has made them a promising material candidate for
biomedical and bio-interface devices3,4 and drug delivery
applications.5 Additionally, hydrogels are used as soil condi-
tioners to improve water retention and other desirable agri-
cultural properties.6,7 The success of these improvements is
known to depend on the size of the soil particles they are
embedded in,8 but the mechanisms by which the confinement
alters the behavior of the gel are challenging to study directly.

A recent experimental work on swelling of hydrogels con-
fined in a granular medium9 characterized the 3D swelling of a
hydrogel sphere surrounded by transparent beads under con-
fining pressure. If the confining pressure is weak, the hydrogel
sphere tends to rearrange the surrounding matrix as it swells;
with strong confinement the sphere deforms and tends to fill
the interstices of the bead packing as shown in Fig. 1A. The
overall degree of swelling was found to be well described by a
model that balances swelling pressures and contact forces,

making some assumptions about the distribution of deforma-
tion. While the deformation state and the swelling ratio of the
hydrogel sphere can be measured, the internal stress and strain
distributions are not directly accessible in the experiments.

Modeling provides a complementary approach—thermody-
namic and kinetic models of hydrogel swelling have been
successfully used to predict the evolution of the concentration
and deformation of constrained hydrogels10 and tested against
experiment.11,12 However, because hydrogels are highly deform-
able, they change shape considerably when swollen or
indented. Due to the difficulty of capturing these dramatic
deformations, modeling of hydrogels has often been restricted
to simple geometries.13 Incorporation of constraints that arise
naturally in applications, such as the surrounding matrix of soil
particles, is also a challenge for modeling.14

In this paper, we aim to build a simulation methodology to
predict the structure of a swollen hydrogel bead in a realistic
matrix and determine how confinement modifies the mechan-
ical properties, such as distribution of strain, that are difficult
to resolve experimentally. To do so, we recast hydrogel expan-
sion as an optimization problem, discretize the gel using finite
elements and solve the resulting problem to identify thermo-
dynamic equilibrium states. Other finite element models of
hydrogel swelling have enabled researchers to access stress and
strain distributions.13,15 Variational approaches have been pre-
viously used to compute thermodynamic hydrogel profiles
under a certain class of constraints.14,16 The mechanics of
contact for constrained hydrogels have been also explored
analytically for prototypical geometries.17 However, there is
presently no general purpose finite element scheme to solve
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equilibrium hydrogel shapes with realistic constraints and/or
additional energetic influence, such as surface tension, applied
fields, etc.Here, we will useMorpho, a programmable environment
for shape optimization18,19 to construct and solve the model.

The rest of the paper is organized as follows: In Section 2, we
review the Flory–Rehner theory of hydrogel swelling, formulate
the equilibrium problem as a shape-driven energy optimization
problem and describe the computational method. In Section 3,
we describe the resulting simulations for hydrogel sphere
swelling in the presence of jammed beads and examine the
results. Finally, in Section 4, we discuss other applications of
our method and possible extensions to it.

2. Model

Theoretical modeling of hydrogel configurations in the litera-
ture often uses a pressure balancing approach, whereby the
mixing pressure and entropic elasticity compete to determine
the degree of swelling.20,21 Here, we wish to instead pose the
problem as optimizing a free energy to identify stationary
states. In order to do so, we review the Flory–Rehner theory of
hydrogel swelling20,22–27 and present it in a form amenable to
discretization. The theory constructed reduces to conventional
presentations of pressure balance as shown in the Appendix.

2.1. Theory

Consider a polymer hydrogel in a solvent at a fixed temperature
T with an internal mesh of permanently crosslinked polymer

chains. We note that hydrogels with dynamic or transient
crosslinks are also of interest because they give rise to new
relaxation dynamics and viscoelastic effects, but are not treated
here. Let the number of polymers be Np and the number of
solvent molecules inside the hydrogel be Ns. Let the volume
occupied by one monomer/molecule be ns, in the sense of
Flory’s lattice model15,27 Since ns is fixed, along with the
number of polymers Np in the hydrogel, the only free parameter
during the hydrogel swelling is the number of solvent mole-
cules Ns. Since the swelling process occurs at a fixed total
volume (hydrogel plus the external solvent) and temperature,
the usual Helmholtz free energy for the mixing of a polymer
with a solvent can be used:

DFmix = kBT[Np lnf + Ns ln(1 � f) + wNsf] (1)

where kB is the Boltzmann constant and f = xNp/(Ns + xNp) is
the volume fraction of the polymer molecules, with x being the
number of units per polymer. w is the Flory–Huggins mixing
parameter.27 Since we are considering highly swollen hydro-
gels, we can assume that Np { Ns, thus simplifying the free
energy as follows:

DFmix = NskBT[ln(1 � f) + wf] (2)

As we mentioned above, this formalism can be connected to the
osmotic pressure formalism by noting that the swelling process
also occurs at a constant pressure,27 and thus we can equate the
Helmholtz free energy to the Gibbs free energy: DFmix =
DGmix.

27–30 The mixing process alters the chemical potential m

Fig. 1 Hydrogel swelling under 3D confinement. (A) Snapshots of an initially spherical hydrogel (blue) embedded within a granular medium composed of glass
beads (hazy transparent circles) packed within a transparent acrylic chamber. When the hydrogel swells, it deforms strongly due to confinement. Black circles
show dyed beads used as tracers to quantify any deformations of the granular packing. The images are taken following the same experimental protocol as in
ref. 9. (B) Simulation snapshots of a swelling hydrogel surrounded by stationary hard-sphere beads (grey spheres) at various intermediate stages of energy
minimization. (C) Corresponding simulated images obtained by rasterizing the configurations in subfigure (B) and projecting the viewing plane.
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of the solvent, resulting in an osmotic pressure, which can be
derived from the Gibbs free energy:

Pmix ¼ �Dm
ns

¼ � 1

ns
@DGmix

@Ns
¼ � 1

ns
@DFmix

@Ns
: (3)

Similarly, the free energy associated with elasticity can be
written like so:

DGel ¼ DFel ¼
3kBTNc

2
½a2 � 1� ln a� (4)

where Nc is the number of polymer chains, where a chain is
defined as the polymer between two cross-link points,27 and
a = (V/V0)

1/3 = (f0/f)
1/3 is the linear swelling ratio, with V0 and f0

being a reference volume and fraction.20 The change in the free
energy, under a separability approximation, can be written as

DF = DFmix + DFel (5)

Equilibrium is defined by the extremization of this free energy,
which is equivalent to the balance of osmotic pressures, P =
qDF/qNs = 0. Note that due to the direct relationship between Ns

and f, the free energy can be written solely in terms of f, and
thus, we can cast hydrogel swelling as a free energy minimiza-
tion problem with respect to f.

2.2. Finite element modeling

We now consider a hydrogel where the volume fraction of
polymers can vary over space, defining x as a 3D spatial
coordinate. Hence, we work with a free energy density Dfmix(x),
which is now a function of a spatially varying field f(x). If this
space is discretized using simplicial elements—in this work, we
use tetrahedra in 3D, but the theory is dimensionally indepen-
dent and readily applicable to other kinds of elements—it is
useful to consider expression (1) for a single element. We will
work in the deformed frame of reference15 as this is the most
natural frame to express interpenetrability constraints as
desired for the application. Hence, the energy density locally
at a point x in the deformed frame of reference will be eqn (1)
evaluated at x divided by the volume of the element. Since this
volume would also be given by ns(xNp + Ns), we have,

Dfmix ¼
Ns

nsðxNp þNsÞ
kBT lnð1� fÞ þ wf½ � (6)

¼ ð1� fÞ
ns

kBT lnð1� fÞ þ wf½ � (7)

This can be expressed in terms of an ‘effective diameter’ of the
solvent molecule d such that d3 = ns.

9 In terms of d, this
reduces to,

Dfmix ¼
kBT

d3
ð1� fÞ lnð1� fÞ þ wfð1� fÞ½ � (8)

Similarly for the elastic energy, we can compute the free energy
density by dividing by the volume.

We wish to minimize DF ¼
Ð
Df xð Þdx, where dx is the

volume element. This shape optimization problem amounts
to minimizing this free energy with respect to all the vertex

positions xi of the mesh, qDF/qxi = 0. To compute these
derivatives, we use the chain rule,

dDF
dxi

¼ dDF
dNs

@Ns

@xi
(9)

and note that dDF/dNs p �P(x) as discussed in the previous
section. Since each element’s volume is given by V = ns(xNp +
Ns), and xNp is a constant (total number of monomers in the
system), nsqNs/qxi = qV/qxi, and hence we find,

dDF
dxi

¼ �PðxÞ@V
@xi

(10)

where V(x) is the volume of the simplicial element and P(x) is
the corresponding osmotic pressure. The volume is a known
function of its vertices, and thus an analytical derivative of the
free energy with respect to the shape of the hydrogel is
obtained, facilitating high performance of the resulting code.
We program this functional and its shape gradient inMorpho.19

In this environment, we can now minimize this functional in
the presence of additional energies and constraints19 for arbi-
trary geometries in any dimension. Details of the Morpho
implementation are provided in the Appendix and codes are
provided in the ESI.†

In this work, we assume that the chains are uniformly
distributed throughout the hydrogel, so Nc does not depend
on x, but the formulation above and the implementation in
Morpho can be easily tweaked to allow for a spatially varying
initial Nc. It can be seen that we have three non-dimensional
parameters, namely, the Flory–Huggins mixing parameter w,
the relative strength of the elastic energy to the mixing energy
Nca

3/V0 and the reference volume fraction f0.
20 Given an initial

value of f, we can vary these parameters to change the minima
of the overall free energy. Thus, we can tune the volumetric
swelling ratio, given by rsw = Vf/Vi = fi/ff = fi/feq, where the
subscripts i and f refer to initial and final (equilibrium) states.
Motivated by the experiments in ref. 9, we choose the values
w = 0.499, Nca

3/V0 = 1 and f0 B 0.036, which together set the
equilibrium value feq B 0.1. Varying the initial volume
fraction fi between 0.1 and 1, we get volumetric swelling ratios
rsw = fi/feq B 1 � 10, allowing us to access the range observed
in the experiments.

We leverage a convenient hard constraint available in Mor-
pho, where vertices are excluded from a boundary defined by
the contours or level sets of a scalar function. Inspired by the
experiments described in the introduction,9 we introduce hard-
sphere beads surrounding the hydrogel. To mimic the experi-
mental geometry, Nb hard spheres are distributed around the
hydrogel sphere in contact with its surface. An illustrative
example, Fig. 1B, shows snapshots as minimization proceeds
from an initial spherical state for Nb = 30, comparable to the
experimental scenario, and depicts the final equilibrium state.
To account for the projective imaging used in the experiment,
we compute simulated images by rasterizing the configurations
in 3D and summing them along a viewing axis as displayed
in Fig. 1C.
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3. Results

We perform simulations of the swelling hydrogel for swelling
ratios ranging from rsw A [2,6], inspired by experimental
values, and with varying sizes (Rb) and numbers (Nb) of
confining beads.

In Fig. 2A–C, we display the equilibrium configuration for a
hydrogel sphere with 10, 20 and 30 adjacent beads, respectively,
of Rb = 0.7. We observe that the resulting configurations
strongly resemble the morphologies observed in experiments,
as shown in Fig. 1A and ref. 9. We also display corresponding
cross sections of these configurations with the state of strain in
Fig. 2D–F as will be discussed later. The final volume Vf of the
hydrogel is less than that of the final volume Vf,u of the
unconstrained hydrogel with the same parameters. We then
define the percent swelling suppression due to confinement as
c = (DVf,u � DVf)/DVf,u � 100, where DV = V � Vi is the volume of
solvent absorbed. We plot this swelling suppression as a
function of the number of beads Nb in Fig. 2G for a swelling
ratio of rsw = 3 and a bead radius Rb = 0.7. The increase in
swelling suppression with confinement is consistent with the
observations in the experiments in ref. 9.

3.1. Internal strain

Next, we reconstruct the state of strain in the deformed gel as
follows. First, we run a corresponding simulation without the
bead constraints to obtain the unconfined swollen profiles.

By comparing the elements and their vertex positions in the
constrained and unconstrained swollen meshes, we can com-
pute the Cauchy–Green strain tensor (CG) for each element as
follows. First, we compute a Gram matrix for every element Vk
in the confined mesh,

Gk
ij = si�sj, i A {1, 2, 3} (11)

where, ~si ¼~vi
k �~v0

k is the vector connecting the 0th and ith
vertex of the element. We also compute the corresponding
Gram matrix for the reference unconfined element,

(Gk
ref)ij = sri�srj, i A {1, 2, 3} (12)

From these quantities, we compute the Cauchy–Green tensor
for the volume element Vk as,

CGk
ij = (Gk

ref)il
�1Gk

lj, i A {1, 2, 3} (13)

In the present work, both constrained and unconstrained
meshes have the same topology. It is however important that
if refinement or element exchanges are performed during
optimization, these can be executed on both meshes to preserve
an element-to-element map between the two final states for the
CG tensor calculation to be valid.

In Fig. 2H, we plot the Trace of this tensor (I1 = Tr(CG)),
averaged over angular variables, as a function of distance from
the center, thus probing the strain due to confinement. We also
display similar plots of the determinant of this tensor

Fig. 2 Hydrogel Swelling in 3D. (A)–(C) Swollen hydrogels with Nb = 10, 20 and 30 surrounding beads, respectively, of radius Rb = 0.7. The swelling ratio
is rsw = 3. (D)–(F) Trace of the Cauchy-Green tensor Tr(CG) sliced along the x–y plane for the simulations in (A)–(C), respectively. (G) The % suppression of
swelling as a function of Nb. (H) Tr(CG), averaged along angular variables, as a function of distance from the center of the hydrogel, plotted for various
numbers of beads. The distance is normalized by its maximum. (I) The corresponding plots for the determinant of the CG tensor.
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(I3 = det(CG)), which corresponds to the local volume change, in
Fig. 2I. We can reconstruct and visualize these quantities
spatially. Example profiles of Tr(CG) sliced across the x–y
planes for the simulations in Fig. 2A–C are shown in Fig. 2D–F,
respectively.

From this analysis, we observe that the strain is largely
confined to the outer half of the hydrogel sphere and is
increasingly localized to the outer extremities as we increase
the number of beads. For a small number of beads, the strain
profiles are markedly different from those expected from uni-
form spherical confinement, which would result in a constant
value of Tr(CG) throughout the hydrogel. Indeed, the localiza-
tion of strain a posteriori justifies a key assumption of the
model developed in ref. 9: that the sphere can be decomposed
into an undeformed core and a highly deformed outer region.

3.2. Contact mechanics

To understand the contact mechanics of the gel-constraint
interface, we compute the contact forces between the hydrogel
and the beads as follows. We obtain the swelling force at each
mesh vertex by taking the gradient of the free energy (eqn (5))
with respect to the vertex positions. The total contact pressure
per bead for various swelling ratios and bead radii are shown in
Fig. 3. We observe an increase in pressure as a function of
swelling ratio and a steeper increase with bead radius as
confinement increases. A few examples of this force at the
boundary are plotted in Fig. 4A–C. As expected, this force is the
largest at the center of the contacts due to the constraints.
To probe the mechanics of the hydrogel-bead contact, we plot

the 1D profiles of contact pressure, averaged over 1D boundary
slices of the forces and over all the beads. As shown in Fig. 4D,
this profile follows the Hertzian contact mechanics estimate of

p ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðd=d0Þ2Þ

p
close to the contact point. As discussed in

ref. 9, Hertzian contact mechanics is a good first approximation
for this system provided a few requirements, one of them is that
the linear strains remain small—(Rf,u � Rf)/Rf,u E 50%. For
the swelling ratios that we have used, our maximum value for
(Rf,u � Rf)/Rf,u is E20%, and so we are well in the linear elastic
regime. Our model also does not include any friction or
adhesion between the hydrogel and the bead, which is another
crucial requirement of Hertzian theory. Lastly, we also assume
that the gel does not undergo phase separation.31 Our results
thus provide further support for the applicability of Hertzian
contact mechanics assumed in the model developed in ref. 9
and confirmed experimentally. We also see in the right panel of
Fig. 4D that the extent to which a Hertzian profile is followed
decreases when the contacts overlap, echoing the analysis in
ref. 9 for stronger confinements, namely that the radii of
curvature of the bead and the hydrogel must remain much
larger than the radius of the area of contact between them for
the model to be applicable.

4. Discussion

In this paper, we formulated a general approach to determining
the equilibrium configurations and properties of osmotically
swollen hydrogels under arbitrary confinement in 3D. Recast-
ing the state of the system as the solution to an energy

Fig. 3 Average contact pressure. The average pressure experienced by a single bead for hydrogels with varying swelling ratios and radii of beads on the
left, with the values along the cyan and magenta dashed lines shown on the linear plot on the right, for Nb = 20 (A) and (B) and Nb = 30 (C) and (D). Panel A
shows a jump in the pressure, beyond a level of confinement.
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optimization problem enables us to take advantage of optimiza-
tion theory and permits convenient enforcement of constraints.

We applied this framework to a specific case of the swelling
of a large grain of an uncharged, macroscopically homoge-
neous, non-thermoresponsive hydrogel (i.e., polyacrylamide) as
an experimentally validated prototypical example. Our resulting
numerically optimized configurations give fresh insight into
the unusual mechanical properties of these gels that are not
experimentally accessible. Notably, we observe a transition in
the behavior as a function of confinement: for small enough
confinements, the strain is localised on the outside of the
sphere with the core of the hydrogel remaining relatively
strain-free. At higher confinement, the strain becomes more
and more uniformly distributed throughout the hydrogel
matching the configuration expected for a sphere swelling with
a fixed outer boundary. We also examined the contact
mechanics of the gel-bead system, finding a transition from
Hertzian to non-Hertzian behavior in the contact pressure
distribution as a function of swelling.

We formulated and solved the problem using our open
source shape optimization environment Morpho, which
means that we can readily accommodate a number of experi-
mentally relevant extensions to the model. We could easily
incorporate other energies such as gravitational potentials,
electric fields, surface tension and surface elasticity, for exam-
ple. By allowing the constraining beads to move with pinning
energy, we could model situations where the confinement
pressure is finite.

We note that our results are applicable to hydrogels with
uniformly distributed chains, swelling in an ideal solvent with

no ionic charge, pH variations or any other contaminants,
which could occur in soil. Furthermore, our results sought
equilibrium configurations of the hydrogels and thus do not
take into account the kinetics of the process. Finally, we did not
consider that the extent of swelling would be high enough to
cause fractures or other changes in the topology of the hydro-
gel. Studying such effects would allow further insights into the
confined swelling process.

While we investigated homogeneous hydrogels, our frame-
work can be easily used to impose a position-dependent swel-
ling ratio, elasticity, etc. which can also be used in applications
such as hydrogel bilayers32–35 or other functional hydrogels.
Furthermore, it can be readily extended to include ionic
contributions.20 Our method could also be adapted to study
the kinetics of swelling in the quasistatic limit where experi-
ments typically take place by recasting the optimization
problem as a gradient-flow problem with an appropriate time-
stepping scheme. In addition, careful application of refinement
could be used to accommodate topological changes, or strain-
dependent connectivity energies could be incorporated in order
to study the fracture of hydrogels.36,37

Author contributions
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mented the code. CJ obtained the simulation data and analyzed
the results. J-FL and SSD designed the experiment and obtained
the experimental images. All authors contributed to prepar-
ing the manuscript.

Fig. 4 Contact forces for a swollen confined hydrogel. (A)–(C) Gradient of the hydrogel functional at the boundary of the hydrogel for the number of
beads Nb, swelling ratio rsw and bead radius Rb equal to (20, 2.4, 0.5), (40, 3.0, 0.3) and (30, 2.4, 0.7) respectively. (D) The average contact force as a
function of the normalized arc-length d/Rb away from the center of the contact (as illustrated in the inset) for the simulations in (A)–(C). The dashed line
shows a fit to the Hertzian contact pressure profile, p ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðd=d0Þ2Þ

p
. We can see that the Hertzian model works well when the contacts are

independent, but starts to diverge away from it at larger d/Rb values when the contacts overlap.
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Appendix

Osmotic pressure

Conventional presentations of hydrogel swelling rely on a
pressure-balance approach. In this appendix, we show that
our optimization formalism reduces to the regular theory. To
do so, begin by noting that the mixing contribution to the free
energy, DFmix, is given by the Flory–Huggins theory. The osmo-
tic pressure contribution from this energy is

Pmix ¼ � 1

ns
@DFmix

@Ns
(14)

Because the volume fraction f depends on Ns,

f ¼ xNp

ðxNp þNsÞ
; (15)

we may re-express derivatives with respect to Ns using the chain
rule,

@

@Ns
¼ @f

@Ns

@

@f

¼ � xNp

ðxNp þNsÞ2
@

@f

¼ � 1

xNp
f2 @

@f
:

Hence,

1

kBT

@DFmix

@Ns
¼ @

@Ns
Ns lnð1� fÞ þ wf½ �f g ¼ ½lnð1� fÞ þ xf�

þNs � 1

xNp
f2

� �
@

@f
lnð1� fÞ þ wf½ �

¼ lnð1� fÞ þ wf½ � � Ns

xNp
f2

� �
�1

ð1� fÞ þ w
� �

We rearrange eqn (15),

Ns

xNp
¼ 1

f
� 1 ¼ ð1� fÞ

f
;

and use this to eliminate Ns/xNp from the osmotic pressure,

1

kBT

@DFmix

@Ns
¼ lnð1� fÞ þ wf½ � � Ns

xNp
f2

� �
�1

ð1� fÞ þ w
� �

¼ lnð1� fÞ þ wf½ � � ðfð1� fÞÞ �1

ð1� fÞ þ w
� �

¼ ½lnð1� fÞ þ xf� þ f� xfð1� fÞ

¼ fþ lnð1� fÞ þ xf2

We hence recover the standard result, expressed for example as
eqn (8) from ref. 20:

Pmix ¼ � 1

ns
@DFmix

@Ns
¼ �kBT

ns
fþ lnð1� fÞ þ wf2
� �

(16)

Note that in the literature, this osmotic pressure is sometimes
expressed in terms of an ‘effective diameter’ of the solvent
molecule:9

Pmix ¼ �kBT

d3
fþ lnð1� fÞ þ wf2
� �

; (17)

which can be readily understood, since it implies d3 = ns.

Simulation details

To compute the structure of the hydrogel inMorpho, we start by
constructing an initially spherical Mesh corresponding to the
unit ball |x|2 o 1 with Morpho’s meshgen module. An Optimi-
zationProblem object is then defined and a Hydrogel func-
tional, implementing the above-discussed free energy density,
is added to it. For hard confinements, we define level-set
constraints corresponding to the objects (spheres, ellipsoids,
planes, etc.) through the ScalarPotential object from the func-
tionals module. A ShapeOptimizer object is then created to
optimize the shape. We perform gradient descent with a fixed
step size. A Volume object is used to keep track of the volume of
the hydrogel during relaxation.

To initialize the positions of the hard spheres, we define a
dummy shell mesh with radius R + Rb with Nb number of
vertices placed randomly. We first confine the vertices to lie on
the shell by using a ScalarPotential object. We then define an
electrostatic repulsive pairwise interaction between the vertices
using a PairwisePotential object from the functionals module,
thus proceeding to solve the Thomson problem. The resulting
mesh vertex positions are used as sphere centers for the level
set constraints. We thus get equidistantly packed spheres on
the outer shell.

All 3D visualizations are made using the povray module. The
slices of the Cauchy Green strain tensor’s trace are generated
using the meshslice module.

The parameters used in the simulations are listed in Table 1.

Supplementary codes

Here, we briefly describe the codes provided in the ESI:†
Sphere.mesh: This is the 3D sphere mesh used in all the

simulations in this paper in the Morpho.mesh format.

Table 1 Parameters used for the hydrogel swelling simulations

Parameter Symbol Value

Flory–Huggins parameter w 0.499
Relative elastic strength Nca

3/V0 1
Reference volume fraction f0 0.036
Confining bead radius Rb [0.5, 1]
Swelling ratio rsw [2, 6]
Number of beads Nb [5, 10, . . . 40]
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Sphere.vtk: The same mesh as above in the.vtk format for
convenience.

ConfinedHydrogel.morpho: This script defines the Confi-
nedHydrogel Class to set up the simulation discussed above.

Main.morpho: This script uses the ConfinedHydrogel.mor-
pho file to simulate the system for a given set of parameters.
We equilibrate the confined hydrogel first, followed by the
corresponding unconfined equilibration.

ComputeCauchyGreen.morpho: This script uses the results
from the main.morpho file to compare the confined and
unconfined hydrogel meshes to compute the Cauchy-Green
strain tensor as discussed in the main text.

ComputeContactPressure.morpho: This script uses the
results from the main.morpho file to compute the average
contact pressure between the hydrogel and the beads.
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