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Abstract: Computerized assessments and interactive simulation tasks are increasingly popular and afford the collection of process data, i.e., an
examinee’s sequence of actions (e.g., clickstreams, keystrokes) that arises from interactions with each task. Action sequence data contain rich
information on the problem-solving process but are in a nonstandard, variable-length discrete sequence format. Two methods that directly
extract features from the raw action sequences, namely multidimensional scaling and sequence-to-sequence autoencoders, produce mul-
tidimensional numerical features that summarize original sequence information. This study explores the utility of action sequence features in
understanding how problem-solving behavior relates to cognitive proficiencies and demographic characteristics. This is empirically illustrated
with the process data from the 2012 PIAAC PSTRE digital assessment. Regularized regression results showed that action sequence features are
more predictive of examinees’ demographic and cognitive characteristics compared to final outcomes. Partial least squares analysis further
aided the identification of behavioral patterns systematically associated with demographic/cognitive characteristics.
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Assessment of examinee proficiency using computerized
simulation tasks is gaining increasing relevance in both
large-scale assessments, such as the Programme for the
International Assessment of Adult Competencies
(PIAAC; e.g., OECD, 2012) and the Programme for In-
ternational Student Assessment (PISA; e.g., OECD, 2014)
surveys, and in high-stakes testing, such as the US
medical licensure exam (e.g., Dillon et al., 2004). Sim-
ulation tasks are typically interactive and resemble real-
life situations, requiring examinees to demonstrate the
ability or skills to perform tasks that are often complex.
This also introduces new measurement opportunities for
the collection of process data that arise from an exam-
inee’s interaction with each task/item. Process data are
commonly logged by the computer as a time-stamped
sequence of actions, such as clickstreams and keystrokes,
performed by an examinee in pursuit of solving an item.
In carefully engineered simulation tasks, computer-
logged action sequences, which explicitly document
test-taking behavior, may reveal information about the
examinee’s response process. This affords analysis of the
test-taking process at a larger scale compared to tradi-
tional think-aloud cognitive interviews, which typically
involve a smaller number of examinees concurrently or

retrospectively describing how they arrived at their an-
swers (e.g., Ericsson & Simon, 1998).
Process data, on top of final scores, offer a wealth of

information about individual differences, test-taking
engagement, and the steps examinees take to reach
their final response. Studies have demonstrated the utility
of process data for a multitude of practical tasks: To start,
process data can provide additional information on the
measured proficiency or skills, allowing better mea-
surement via process-incorporated scoring rules (Zhang
et al., 2023) and process-based measurement models,
which typically associate continuous latent proficiency
(Chen, 2020; Han et al., 2022; LaMar, 2018; Liu et al.,
2018; Xiao & Liu, 2024) or discrete latent skill mastery
(Zhan & Qiao, 2022; Liang et al., 2022) with examinees’
choices of correct/incorrect subsequent actions, observed
action subsequences, or sequence length. Furthermore,
analyses of behavioral characteristics associated with
successful/unsuccessful final performance (e.g., Gao,
Cui, et al., 2022; Gao, Zhai, et al., 2022; Greiff et al.,
2015; He & von Davier, 2016; Qiao & Jiao, 2018; Qiao
et al., 2023; Ulitzsch et al., 2021, 2023) can inform test
validation and automated scoring. Exploratory analyses
of action sequences or sequence-derived patterns, often
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with cluster analysis (Eichmann et al., 2020; He et al.,
2019; Gao, Cui, et al., 2022; Gao, Zhai, et al., 2022; He,
Borgonovi, & Suárez-Álvarez, 2023; Hao &Mislevy, 2019;
Ulitzsch et al., 2022) or with topic modeling of actions or
subsequences (Fang & Ying, 2020; Xu et al., 2018), have
revealed different behavioral prototypes among the ex-
aminees as they face the same task, providing insights on
how individuals navigate and approach computerized
tests, digital platforms encountered in daily life, collab-
orative problems, etc. Hidden Markov and neural lan-
guage models applied to action sequences have also been
shown to reveal stages or subtasks for solving a problem
(Wang et al., 2023; Xiao et al., 2021; Xu et al., 2020).
The current paper aims to provide an approach to ex-

ploratory sequence analysis to understand the relationship
between problem-solving behavior and the test taker’s
external characteristics (i.e., background variables), for
example, cognitive constructs other than the measured
trait, demographics, and educational or job-related out-
comes. Relationships between background variables and
problem-solving behavior have been documented in many
prior studies; for instance, demographic variables such as
gender, migration status, or socioeconomic status were
found related to interaction style in the PISA 2012 complex
problem-solving assessment (Eichmann et al., 2020) and
navigation behavior in PISA 2018 multiple-source reading
tasks (He, Borgonovi, & Suárez-Álvarez, 2023). When a
pattern in the problem-solving process is found associated
with a background variable, the type of insight gained
differs depending on whether the specific sequential
pattern is theorized to provide evidence about the mea-
sured proficiency, i.e., construct-relevant: When the se-
quential pattern is theorized to be construct-relevant,
uncovering its relationship with certain external variables
can be meaningful for both test validation and instruction
(e.g., Abele & von Davier, 2019). Test validation often
involves the formation and testing of hypotheses about
how the theorized construct underlying test score should
be related to external variables of interest, for instance,
score differences across demographic groups, across
treatments or interventions, and individuals with different
outcomes of interest (AERA et al., 2014). For simulation
tasks where the test-taking process is recorded and has
implications for final scoring (e.g., based on an expert-
defined scoring rubric), the presence of relationship be-
tween a construct-relevant sequential pattern and these
external variables constitutes one source of test validity
evidence (e.g., Zumbo & Hubley, 2017) that may support
such hypotheses and, similarly, support the adoption of
scoring rubrics that consider related behavioral evidence
(Mislevy et al., 2003). From an instructional perspective,
targeted treatments and training in the attempt to close
performance gaps, thereby reducing educational and

income disparity, often require fine-grained information
on why performance gaps exist, which may be partially
informed by problem-solving process data (Bergner & von
Davier, 2019). Educators and policymakers benefit from
understanding how different subgroups solve questions
differently, how interventions and available resources
might explain problem-solving differences, and how test-
taking process relates to key outcomes. On the other hand,
if a sequential pattern associated with a background
variable is theorized to be construct-irrelevant, then, from a
test fairness perspective (Ercikan et al., 2020), the design
of the simulation task and the associated scoring rubric
should be examined in terms of whether the final score is
free from influence by such construct-irrelevant behavior.
The analytical method introduced in the current study
serves as an initial, purely exploratory approach to ex-
amining the relationship between the problem-solving
process and external covariates. Hypotheses generated
from these analyses can subsequently be scrutinized in
more theory-oriented follow-up investigations.
Two overarching pursuits in exploratory sequence

analysis for the process-background relationship are (1) to
quantify the strength of association between a background
variable and problem-solving process and, where there is a
substantial association, (2) to extract and interpret
background-relevant sequential patterns. Despite its rich
information, action sequence is in a nonstandard format:
On a simulation task, each examinee’s observed process
data come in a temporally ordered sequence of computer-
logged events. This precludes the use of applicable ex-
ploratory techniques that require structured input data.
Therefore, the first step of the proposed approach is to
transform the process data into structured data, specifi-
cally numerical feature variables that are learned to
maximally preserve original sequence information. The
current study adopts two recent methods for data-driven
feature extraction, namely multidimensional scaling
(MDS; Tang et al., 2020) and sequence-to-sequence au-
toencoders (Seq2seq; Tang, Wang, et al., 2021). Both
methods automatically extract numerical features from
raw action sequences and do not require a priori feature
engineering using domain knowledge or a term-document
matrix. To quantify the strength of the association between
a background variable and the problem-solving process on
a simulation task, the second step builds a regression
model for the background variable using the extracted
sequence features, and the prediction accuracy on new
samples helps quantify the amount of information on a
background variable provided by the action sequences.
Process features are high-dimensional and contain noise
that is irrelevant to specific background variables of in-
terest. We thus employ regularized regression to perform
variable selection in the regression. Process features
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extracted in a data-driven manner are high-dimensional
dense vectors and lack inherent interpretations. To fa-
cilitate the identification of specific sequential patterns
that explain the process-background relationship, the third
step employs partial least squares analysis, which iden-
tifies a few principal variables that maximally explain the
covariance between sequence features and a specified
background variable. This affords inspection of how se-
quential pattern changes as the principal variables vary
from lowest to highest. We illustrate these steps via an
empirical analysis of the Problem Solving in Technology-
Rich Environments (PSTRE) assessment and background
questionnaire data from the 2012 PIAAC survey, but our
approach can generalize to the analysis of other
simulation-based assessments that collect action se-
quences and background information.
The rest of the paper is organized as follows. The

section Motivating Example introduces the 2012 PIAAC
survey and the PSTRE assessment as well as the current
research questions. The next section provides a review of
the literature on sequence analysis applied to PIAAC
PSTRE and introduces the proposed approach to ex-
ploratory sequence analysis of the process-background
relationship. The Empirical Analysis Methods and Em-
pirical Analysis Results sections present the methods and
results of the empirical study. The Discussion section
provides a discussion of the empirical findings, as well as
their practical implications for assessment design and
interventions.

Motivating Example

The PIAAC (e.g., Schleicher, 2008) is an international
large-scale assessment carried out by the Organization for
Economic Co-operation and Development (OECD) to
assess the cognitive and workplace skills of working-age
individuals worldwide. In its first cycle in 2012, working-
age individuals (16–65 years) across 25 countries and re-
gions were measured on literacy, numeracy, and PSTRE.
In addition to the three cognitive assessments, participants
were also administered a background questionnaire,
which collected self-reported information on their edu-
cation, social background, engagement in literacy, nu-
meracy, and use of informational and communicative
technology (ICT) at home and at work, educational
background, language background, employment infor-
mation, and others such as health status and political
efficacy (Kirsch & Thorn, 2013).
The PSTRE assessment consisted of two test blocks, with

14 items in total. For each PSTRE item, the test environment
resembled commonly seen ICT platforms, such as e-mail

clients, web browsers, and spreadsheets. Examinees were
prompted to complete specific tasks on these interactive
platforms. Under the PIAAC framework, PSTRE is defined
as the use of digital technology, communication tools, and
the internet to obtain and evaluate information, commu-
nicate with others, and perform practical tasks (OECD,
2012). As actual PSTRE items are unreleased, Figure 1

Figure 1. PSTRE sample item. Reprinted from Sample Questions and
Questionnaire, OECD, http://www.oecd.org/skills/piaac/Problem%
20Solving%20in%20TRE%20Sample%20Items.pdf.
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presents an item from the OECD Education and Skills
Online assessment, which illustrates the interface of the
PSTRE items. An examinee works in the simulated web
browser to complete the task described on the left: Five web
pages (1st subfigure) are returned from a search of “Job
search” and examinees are asked to bookmark all pages that
do not require registration or fees. Clicking on each link will
direct them to the corresponding website. For example,
clicking the second link, “Work Links,” directs an examinee
to the second subfigure, and further clicking on “Learn
More” directs the examinee to the third subfigure. To finish
and exit the item, they can click on the right arrow icon
(“Next”) below the item instructions, and therewill be a pop-
out window with two options, namely confirming exit
(“Next_OK”) or returning to the task (“Next_Cancel”). An
action sequence on the task will consist of the clicks and
keystrokes by the examinee on the simulated browser, with
“Start” as the initial action and “Next_OK” at the end. For
example, if an examinee clicked the second link (“Work
links”) on the initial page, clicked “Learn More” on the next
page, clicked the “Back” button on the toolbar twice to return
to the home page, and clicked “Next” in the left panel and
“OK” in the pop-upwindow, this examinee’s action sequence
will be recorded as “Start, Click_W2, Click_Learn_More,
Toolbar_Back, Toolbar_Back, Next, Next_OK.” Based on
predefined scoring rubrics, the PSTRE assessment computed
a final binary or polytomous score for each item, which was
used to estimate individuals’ PSTRE proficiency.
The PSTRE assessment measured adults’ abilities to solve

problems in personal, work, and civic contexts using digital
environments to better understand how working-age adults
utilize digital tools in practical problem-solving, thereby
providing insights to policymakers and educators on fos-
tering digital literacy and addressing skill gaps. Across sev-
eral studies, it was found that PSTRE proficiency was
associated with demographic characteristics as well as em-
ployment outcomes of the participants (He et al., 2019; Liao
et al., 2019; Nwakasi et al., 2019). Although differing across
countries that varied in policies, labor market structures, and
social contexts, PSTRE proficiencywas found to be positively
associated with self-reported income in many countries or
regions. Participation in adult education and training, which
is expected to increase exposure to ICT tools, was consis-
tently found associated with higher PSTRE proficiency.
Furthermore, gender and age differences were found in

PSTRE proficiency, with female and older adult participants
receiving lower PSTRE scores in many countries and regions
(He et al., 2021; Liao et al., 2019).
The high demand for digital literacy in most economic

activities preordains the importance of PSTRE skills for
the workforce. This calls for understanding of the se-
quential patterns in digital problem-solving that explain
the differences in PSTRE scores observed for individuals
with varying demographics, exposure to adult training
and ICT tools, and employment outcome, as documented
by the existing literature. The current study explores the
relationship between how adults solve PSTRE problems,
as reflected through the PSTRE action sequence data,
and background variables. Six demographic variables
were considered: This includes two demographic vari-
ables, namely age (in years) and gender (male or female),
one employment outcome variable, namely log of
country median-adjusted hourly income (log(Income)),
and three variables related to education and ICT expo-
sure, namely self-reported ICT skill use at home (IC-
THome) and at work (ICTWork) and country median-
adjusted total years of education (YRSEdu).1 As some of
the PSTRE tasks appeared to also involve numeracy skills
(e.g., spreadsheets), performance (i.e., plausible values2)
on numeracy was also included as an external cognitive
variable. Specifically, the following research questions
are addressed:

Research Question (RQ1): How related is each back-
ground variable to the 14 items’ action sequences? Do
action sequences provide additional information about
each background variable on top of final scores?

Research Question (RQ2): What are the specific be-
havioral patterns in the action sequences that explain
the sequence-background association?

Essentially, RQ1 seeks to quantify the strength of associ-
ation between the participants’ background and the test-
taking process on a task, and RQ2 seeks to interpret se-
quential patterns associated with the background vari-
ables, which aids in generating initial hypotheses as to
whether the association of problem-solving patterns with
the participants' background is construct-relevant or
construct-irrelevant.

1 In the PIAAC background survey, scores reported on ICTHome and ICTWork were derived based on examinees’ responses to a series of
corresponding survey items. Specifically, eight items in ICTHome (i.e., H_Q03a, H_Q03b, H_Q03c, H_Q03d, H_Q03e, H_Q03f, H_Q03g, and
H_Q03h) and eight items in ICTWork (i.e., G_Q05a, G_Q05b, G_Q05c, G_Q05d, G_Q05e, G_Q05f, G_Q05g, and G_Q05h) were included. See details
in Chapter 3 in PIAAC Tech Report (OECD, 2016).

2 The PIAAC survey derived plausible values of individuals’ cognitive performance (e.g., numeracy performance) based on both the responses to
cognitive assessments and background variables. The numeracy performance variable used in the current study is based on the mean of the
numeracy plausible values recorded in the official PIAAC data.
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Analysis of PSTRE Action Sequence
and Background-Process
Relationship

The PIAAC PSTRE process data have been shown in
multiple previous studies to provide valuable additional
information on individuals’ problem-solving processes
beyond the final scores. For example, on tasks involving
spreadsheets, He and von Davier (2016) used n-gram
language modeling and identified subsequences related
to final performance, such as the use of searching and
sorting tools, and country differences in problem-solving,
e.g., individuals from the Netherlands weremore likely to
perform double-checking. With clickstream analysis
using graph-modeled clustering (Ulitzsch et al., 2021,
2023) and multidimensional scaling (Tang et al., 2020),
studies consistently found that, even within the group of
examinees who received the same final score, there was
remarkable heterogeneity in the problem-solving pro-
cess, including how the problem was approached, per-
forming of nonessential actions for the task, and how one
arrived at an incorrect response. This provided empirical
support for the development of scoring rules that in-
corporated process information, which achieved re-
markably higher measurement reliability than the final
score-based proficiency estimator on the PSTRE as-
sessment (Zhang et al., 2023). This finding was further
strengthened in a recent study of He, Shi, and Tighe
(2023), where the sequential problem-solving process
patterns were found robust to significantly enhance the
prediction power of low-skilled adults’ PSTRE profi-
ciency level via a hierarchical machine learning ap-
proach. Cluster analyses on the planning duration and
interaction frequency on the 14 PIAAC PSTRE items and
on the navigation trajectory in the browser-based tasks
also revealed general problem-solving styles on simula-
tion tasks (Gao, Zhai, et al., 2022) and different ways
adults navigate multilayered hypertext environments to
obtain information (Gao, Cui, et al., 2022).
The relationship between the PSTRE problem-solving

process and background variables has also been explored
in several previous studies. Some examined demographic
differences in globally defined problem-solving charac-
teristics. For example, He et al. (2021) employed the
longest common subsequence approach to examine how
problem-solving efficiency and sequence similarity to a
reference sequence (reflecting optimal problem-solving)
on the seven items in the 2nd PSTRE block relate to
demographic characteristics such as gender, age, and
familiarity with digital platforms. A few studies also ex-
plored the demographic differences in task-specific be-
havior, for instance, key actions or short subsequences of

actions (i.e., n-grams; He & von Davier, 2016) on PSTRE
tasks that were associated with participants’ income,
education level, and other characteristics, such as age
(Liao et al., 2019). The current study investigates this
process-background relationship on the task level for all
14 PSTRE items. We adopt a different approach based on
extracting and examining data-driven features extracted
to preserve raw action sequence information, which we
describe below.

Feature Extraction From Action Sequences

Action sequences come in a nonstandard format. As a toy
example, below are three arbitrarily selected participants’
observed action sequences on itemU06b, omitting “Start”
and “Next, Next_OK” at the beginning and the end:

• Examinee 1: “Click_W4, Toolbar_Web_Back, Re-
sponse_Open, Response_4, Response_Close”

• Examinee 2: “Click_W2”
• Examinee 3: “Click_W1, Toolbar_Web_Back, Click_W2”

On the same item, the number of actions performed by
each individual differed. An examinee’s observed sequence
contains a list of temporally ordered categorical actions (e.g.,
“Click_W4”), with the number of possible actions ranging
between 26 and 636 on the 14 items. A common approach in
sequence analysis is to first transform the original variable-
length, ordered, categorical sequences, which precludemost
statistical methods, into rectangular data: In doing so, a set
of numeric features are extracted to preserve original se-
quence information. There are many methods to fill this
task. One approach is via a bag-of-words (or bag-or-phrases)
model, which assumes that a sequence can be represented
by the actions or subsequences (i.e., n-grams) that occur in
them. In this case, the observed sequence data are sum-
marized into a term-document matrix where each row is an
observed sequence, and each column contains the
(weighted) frequency of a particular action or length-n
subsequence (i.e., n-grams) within that observed sequence.
With the inclusion of n-grams in the term-document matrix,
this approach can preserve short-term information of up to n
consecutive steps in an examinee’s action sequence, where n
is typically small (less than 4) to keep the computations
manageable. As a result, long-term dependencies in the
action sequences, such as two actions that are related but
more than n steps apart in the sequence or a long keystroke
pattern that spans more than n words or characters, are not
preserved. To reveal demographic differences in long-term
or overall test-taking behavior on a task, the current paper
approaches the action sequence feature extraction task using
two sequence-based feature extractionmethods,MDS (Tang
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et al., 2020) and Seq2seq (Tang, Wang, et al., 2021). We
briefly introduce the rationale behind the two methods
below, and a technical description is provided in the Elec-
tronic Supplementary Material, ESM 1, Appendix I.
The goal is to extract K-dimensional numerical features

that preserve original sequence information from the raw
action sequences. For each observed sequence i ¼ 1; . . . ;N,
MDS learns a K-dimensional feature xi by performing
multidimensional scaling, an unsupervised dimension re-
duction technique, on a sequence pairwise dissimilarity
matrix. The dissimilarity matrix is an N × N symmetric
matrix, with the ½i; j�th entry (dij) describing how dissimilar
the action sequence of examinee i is from that of examinee j.
In quantifying sequence dissimilarity, we adopt the order-
based sequence dissimilarity measure (Gómez-Alonso &
Valls, 2008; Tang et al., 2020), which takes into consid-
eration the dissimilarity in both the choice of actions and
their temporal ordering. TheMDS features (x s) are learned
so that the pairwise Euclidean distances (between every pair
xi; xj) is as close as possible to the sequence dissimilarity
(dij), so intuitively, MDS features preserve individual dif-
ference information: Features are optimized to best recover
the pairwise dissimilarity of examinees’ action sequences in
terms of the types of actions taken and their ordering.
Seq2seq feature extraction (Tang,Wang, et al., 2021), on

the other hand, aims to preserve information that can be
used for sequence reconstruction: The task is achieved by
training on the N observed action sequences a deep
learning model that consists of two recurrent neural
networks, namely an encoder that first compresses an
original sequence into features (x s), followed by a decoder
that subsequently predicts the original sequence based on
the compression (x). The Seq2seq model is learned so that,
across the observed sequences, the distribution of the
reconstruction (i.e., output from the decoder) is as close as
possible to the original action sequence.
MDS and Seq2seq both perform sequence-based feature

extraction in that the feature extraction is conducted to
reconstruct original sequences or individual pairwise dif-
ferences on the original sequences. Compared to term-
document-matrix-based methods for sequence feature

extraction, which often adopts matrix factorization (e.g.,
latent semantic analysis, non-negative matrix factoriza-
tion; Deerwester et al., 1990; Lee & Seung, 1999) to find
lower dimensional features that can reconstruct the term-
document matrix, MDS and Seq2seq are expected to
capture additional information beyond standalone fre-
quencies of single actions or short subsequences, including
ordering of actions and long-term effects. On the PSTRE
data, feature extraction based on MDS and Seq2seq has
documented performance in preserving original sequence
information (e.g., Tang et al., 2020; Tang, Wang et al.,
2021; Zhang et al., 2023), and software for both is available
in the ProcData (Tang, Zhang, et al., 2021) R package. We
chose MDS and Seq2Seq for feature extraction since the
objective of both methods is to maximally preserve the
original sequence information. This preservation allows
for the relationships between background variables and
sequential patterns to be retained as much as possible in
the transformed feature space.

Quantifying Sequence-Background
Association

For each examinee and item, the extracted MDS or
Seq2seq features are dense K-dimensional numerical
features that preserve individual differences in the action
sequences. To illustrate, Table 1 presents 5-dimensional
MDS and Seq2seq features extracted from U06b for the
three examinees’ action sequences in the toy example. In
practice, the choice of dimension K should be based on
cross-validation (see Tang et al., 2020) and often needs to
be larger than five to adequately preserve the rich infor-
mation in the action sequences. To quantify the strength of
association between the test-taking process on a task and a
background variable, one way is to evaluate how well the
background variable can be predicted with the task’s MDS
or Seq2seq sequence features, a surrogate to the original
sequences that are expected to well preserve their infor-
mation. Because the process features are high-
dimensional and contain information irrelevant to the

Table 1. Action sequence features on U06b for the three examinees, extracted usingMDS (left) and with Seq2seq (right), both with K = 5 dimensions

K

MDS Seq2seq

Examinee 1 Examinee 2 Examinee 3 Examinee 1 Examinee 2 Examinee 3

1 0.04 0.16 �0.04 �0.56 0.09 �0.62

2 0.15 �0.27 �0.15 0.90 0.08 0.89

3 0.20 �0.07 �0.04 �1.00 �0.90 �1.00

4 �0.07 �0.09 0.13 0.94 0.62 0.94

5 �0.01 �0.17 �0.21 �0.72 �0.36 �0.73

Note. k = dimension (1–5) of the MDS/Seq2seq features. The ranges of the features differed across dimensions and for MDS and Seq2Seq. For instance,
across all 3,645 examinees, dimension 1 of the Seq2seq features ranged between �.92 and .27, and dimension 2 ranged between �.18 and .97.
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background variable, we recommend performing cross-
validation combined with variable selection to prevent
overfitting. One option is fitting on the training data a
regularized generalized linear model (GLM), e.g., via the R
glmnet package (Friedman et al., 2009), with the back-
ground variable as the outcome, combined with a logit link
function for predicting binary variables and an identity link
for continuous variables. The MDS or Seq2seq process
features are treated as predictors, with a weight penalty,
such as the L2 norm penalty for ridge regression, to shrink
the parameter estimates toward 0. Prediction accuracy can
then be evaluated on test data unseen during model
training. The area under the curve (AUC) of the receiver
operating characteristic curve may be used as an evalu-
ation metric for binary outcome variables, and out-of-
sample Pearson correlation (O.S.R), the correlation on
test data, can be used for continuous variables. Higher
prediction accuracy indicates a stronger association be-
tween the sequence patterns on the task and the back-
ground variable.

Interpretation of Sequence-Background
Association

When an outcome variable is well-predicted with the
sequence features of an item, interpretations can be
sought to uncover the specific sequential patterns asso-
ciated with the variable. Although the sequence features
are high-dimensional, one may conjecture that patterns
relevant to the background may be represented with just
a few principal dimensions. Partial least squares (PLS;
Wold et al., 2002) decomposition can perform dimension
reduction on the K-dimensional sequence features to
extract principal features that maximally account for the
covariance between the features (x) and the dependent
variable (y). PLS differs from principal component
analysis (PCA) in that the top M components capture the
most covariance between x and y instead of the variance
of x (as in PCA). The output contains M orthogonal
components, the first component being a projection of
the action features that maximally explain the covariance
between sequence features and background, and the
second orthogonal to the first one, maximally explaining
the remaining unexplained sequence-background co-
variance, etc. For each of the M PLS components, ob-
served action sequences can then be sorted from lowest
to highest on the component score, and inspecting how

the observed action sequence patterns change as the PLS
component score increases can help pinpoint specific
pattern(s) that explain the covariance between process
features and the predicted variable.
The dimension for the PLS approximation, M, can be

chosen based on the root-mean-squared error of prediction
(RMSEP; e.g., Wehrens & Mevik, 2007) on cross-validation
data: This starts with running PLS with largeMmax. For each
M9 2f1; . . . ;Mmaxg, the method evaluates uses the first
M9 PLS components to predict y in a linear regressionmodel
and computes the root-mean-squared error for the pre-
diction (RMSEP) on validation samples, i.e.,

RMSEPM9 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

�
yi � byi

�2

N

vuuut
; (1)

as well as the standard error of RMSEP. The number of PLS
components to retain, M, was then chosen to be the smallest
number of dimensions that achieves an RMSEP within 1
standard error from the minimum: Specifically, suppose that
across all possible M9s between 1 and 100, Mmin achieves the
lowest RMSEP. Then, this approach chooses the smallest M
whose RMSEP is within 1 standard error above that ofMmin’s.
In this case, M is often smaller than Mmin, which trades small
additional y variance explained for parsimony. In the sub-
sequent section, we illustrate this on the PIAAC data.

Empirical Analysis Methods

Data and Instruments

The current study used the PSTRE item-level sequence data
and background questionnaire data from 3,645 examinees
in five countries or regions, including the United Kingdom
(England and Northern Ireland), Ireland, Japan, the
Netherlands, and the United States. These examinees were
administered all 14 PSTRE items, presented as two blocks
of seven items each.3 Action sequence data were available
for each participant at the item level. Table 2 presents a
brief description of the 14 PSTRE items, including task
names, the types of environments involved, percent of
individuals who received full credit, and descriptive sta-
tistics of the action sequences. The background variables
were available in the PIAAC background questionnaire

3 In the PIAAC computer-based assessment, examinees were routed to modules of PSTRE, literacy, or numeracy items. See details in Chapter 1 in
PIAAC Tech Report (OECD, 2016). Each respondent was assigned two modules. The current study used participants who received two PSTRE
modules.
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data. Here, to reduce the nuisance introduced by country
effects, we converted hourly income to US dollars based on
2012 exchange rates and adjusted income and YRSEdu by
subtracting the country’s median on that variable. There
was missingness for a few background variables, including
log(Income), ICTHome, ICTWork, and YRSEdu. For pre-
dicting a particular variable, individuals withmissing values
were case-wise deleted. In particular, two outcome vari-
ables, ICTWork and log(Income), contained a substantial
amount ofmissingness across all countries or regions (31%–

45%). ICTHome and YRSEdu contained a small to mod-
erate amount of missingness across countries or regions
(0%–13%). The missingness proportions on these variables
for each of the five countries and regions are reported in
Table E1 in ESM 1, Appendix III.M, SD, and the number of
nonmissing observations of each continuous variable, as
well as their pairwise Pearson correlations, are reported in
Table 3. Compared tomale participants, female participants
on average showed lower log hourly income, ICTWork, and
numeracy performance, with small Cohen’s d effect sizes.
Additionally, the correlations between each variable and
the overall PSTRE performance (derived from PSTRE final
scores) are also presented.

Feature Extraction From Action Sequences

In the current study, K = 100 features were extracted from
each item and for both MDS and Seq2seq based on the
action sequences of the 3,645 participants. Following
feature extraction, principal component analysis (PCA;
Hotelling, 1933) was applied to the 100MDS (and similarly

Seq2seq) features of each item. The purpose of performing
the PCA is to decorrelate the extracted features by rotating
them into directions that incrementally explain the original
feature (MDS/Seq2seq) variance. This facilitates subse-
quent variable selection in regularized regression.

Prediction and Evaluation

To draw predictions about each background variable, for
each item, three different types of predictors were con-
sidered, namely (1) the polytomous final score on the item,
(2) the 100-dimensional principal sequence features
extracted using the Seq2seq, and (3) the 100-dimensional
principal features from MDS. For each item and back-
ground variable, 10 replications were carried out for each
prediction model. In each replication, the data were ran-
domly partitioned into three subsets, a training set (70%),
a validation set (10%), and a test set (20%). The param-
eters of the GLM were estimated based on the training
data, the optimal weight penalty for L2 regularization was
chosen to minimize the loss function on the validation
data, and the prediction accuracy of the background
variable was evaluated on the test data. The average
prediction accuracy on the test data (i.e., O.S.R or AUC)
across the 10 replications is reported.

Feature Interpretations

For select items whose process features demonstrated
especially high associations with a specific background

Table 2. Descriptive information of the 14 PSTRE items

Item ID Item name Environment p min(L) max(L) mean(L) N

U01a Party invitations Email .56 3 114 18.21 40

U01b Party invitations Email .50 3 132 25.65 47

U02 Meeting room Email/Web .14 3 153 25.81 96

U03a CD Tally Web/SS .39 3 51 8.96 67

U04a Class attendance Email/SS .12 3 304 37.38 636

U06a Sprained ankle Web .27 3 57 10.04 30

U06b Sprained ankle Web .53 3 68 15.39 26

U07 Book order Web .49 3 79 19.05 40

U11b Locate e-mail Email .23 3 256 25.17 124

U16 Reply all Email .61 3 267 32.98 362

U19a Club membership Email/SS .76 3 357 17.64 85

U19b Club membership Web/SS .48 3 396 19.38 244

U21 Tickets Web .38 3 77 19.74 138

U23 Lamp return Web/Email .37 3 138 21.62 136

Note. p refers to the proportion of subjects who answered the item correctly; min(L), max(L), and mean(L) refer to the minimum, maximum, and average
sequence length across all subjects, respectively; N refers to the number of types of actions on the item; SS = spreadsheet.
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variable, interpretations for the process-variable associa-
tions were further sought. PLS decomposition was applied
to the 100-dimensional sequence features to find the top
M components that maximally explain the background-
feature covariance. For each of theM PLS components, we
searched for patterns in the action sequences associated
with the component. To do this, we first ranked all 3,645
examinees based on the PLS component, and then, from
lowest to highest, at an interval of 50, we inspected their
observed sequences. By looking at how the sequences
changed as the component score increased, patterns in the
action sequences associated with the PLS component were
identified. We further verify the relationship between the
visually spotted patterns and the PLS component by
plotting how the pattern changes with the PLS component
score with locally weighted scatterplot smoothing
(LOWESS; Cleveland, 1981), as well as computing the
Pearson correlation between the PLS score and the se-
quential pattern.

Empirical Analysis Results

Quantifying Background-Sequence
Relationship (RQ1)

For each item, the prediction accuracy of the continuous
variables and gender are reported in Figures 2 and 3. In
each subplot, the x-axis represents the item used for
prediction, the y-axis represents the evaluation metric,
i.e., averaged test sample O.S.R or the AUC across 10
replications, and the three bars with different shades
represent the prediction results based on polytomous
score, 100 Seq2seq features, and 100 MDS features,
respectively. As was mentioned in the item descriptions,
most of the PSTRE items involved one or two of the

following environments: spreadsheet (SS), web browser
(Web), or e-mail box (Email), and items involving similar
environments could share some common actions. Items
are grouped by ICT environment(s) involved. Comparing
the prediction results across items, MDS sequence fea-
tures on a task tended to achieve the highest prediction
accuracy on each background variable, followed by
Seq2seq features (slightly lower) and polytomous final
scores. It is also worth comparing the prediction accuracy
of each outcome variable based on an item’s polytomous
scores to that based on process features. All variables
tended to be predicted with consistently higher accuracy
using process features than based on the final score,
suggesting process features contain additional informa-
tion on these external variables that were not considered
in scoring. At this stage, the results on prediction accu-
racy can only aid with quantifying the amount of infor-
mation related to each external variable. Generating
initial hypotheses as to whether this information is
construct-relevant, on the other hand, requires inter-
pretation of the sequential patterns associated with the
sequence features (RQ2).
Although all 14 items were designed to measure the

same trait (PSTRE), there was noticeable heterogeneity
across items in their strengths of associations with
various background variables. Despite that features
extracted from an item’s action sequences frequently
showed a remarkable amount of prediction power on
the background variables, the magnitudes of the pre-
diction power differed vastly, both across background
variables and across items. The sequence features in
general showed higher associations with participants’
age and numeracy than with some of the employment
outcome-related (i.e., income) and education/ICT
exposure-related variables. For the same background
variable, the strength of sequence-background associ-
ation also showed great variability across items: Taking

Table 3. Descriptive statistics of the background variables and cognitive scores

Age log(Income) ICTHome ICTWork YRSEdu Numeracy PSTRE

N 3,645 2,214 3,375 2,289 3,479 3,645 3,645

M 38.930 �3.581 2.076 2.081 �0.135 0.443 �0.173

SD 13.546 0.404 0.937 1.012 2.618 0.750 0.748

Correlation

Age — 0.269 �0.111 0.065 0.018 �0.050 �0.307

log(Income) — — �0.047 0.310 0.318 0.276 0.149

ICTHome — — — 0.335 0.181 0.174 0.297

ICTWork — — — — 0.22 0.176 0.245

YRSEdu — — — — — 0.35 0.315

Numeracy — — — — — — 0.796

Note. N stands for the number of nonmissing observations for each variable.
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age as an example, the O.S.R ranged from .16 (U07) to
.43 (U16). This variability holds even for items sharing
the same environment. An example is the prediction of
ICTHome using two e-mail items, U01a and U01b,
where U01b showed much higher prediction power (.37)
than U01a (.24) despite that their final scores were
similarly predictive of ICTHome. In subsequent inter-
pretations of sequential patterns associated with a
background variable, one may prioritize items that show
a particularly strong association, for instance, U01b
which showed the highest O.S.R. in predicting ICT use
at home. Such interpretations help understand how ICT
exposure relates to test-taking behavioral patterns on
the item.

Figure 2. Prediction accuracy of continuous variables from polytomous scores, Seq2seq features, and MDS features of each PSTRE item. O.S.R
stands for test-sample (out-of-sample) correlation between observed and predicted values.

Figure 3. Prediction accuracy of gender from polytomous scores,
Seq2seq features, and MDS features.
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Interpretations for Associations (RQ2)

From the results on the general prediction accuracy, it
was observed that not only do sequence features provide
additional information about the examinees, but the
prediction powers of different items also differed widely.
This calls for a closer look at action sequences on tasks
with strong background associations. As the MDS fea-
tures often demonstrated the highest prediction power,
for each continuous variable, we performed PLS de-
composition on a selection of items where the MDS
features had the highest predictive power of the external
variable. Depending on the item and the external vari-
able, the number of PLS components extracted based on
the RMSEP criterion differed. Table 4 presents a

summary of the PLS components identified for each
background variable and item, the Pearson correlation
between the PLS component score with the external
variable (ρY), interpretations on the sequence pattern
associated with the PLS component score, and the
Pearson correlation between the PLS component score
and the identified pattern (ρpattern). Relationships be-
tween PLS component scores and many variables were
found to be nonlinear, in which case, the Pearson cor-
relation will not adequately capture the relationships. For
ease of presentation, Pearson correlations are reported
here, but we recommend inspecting the LOWESS curves
for potential nonlinear relationships. LOWESS plots for
the relationships between each PLS score, background
variables, and identified sequential patterns are included

Table 4. Interpretation of MDS PLS features for each external variable and correlations between PLS component score and external variable/
sequence pattern

Variable (Y ) Item PLS ρY Sequence pattern ρpattern

Age U01a 1 .39 Moving e-mails to correct folders �.75

2 .14 Usage of toolbar icons �.31

U01b 1 .34 Creation of new folder for e-mails �.84

2 .20 Max number of consecutive clicks of e-mail folders .40

U16 1 .26 Dichotomized score on U16 �.65

2 .26 Usage of keyboard shortcut for copy/paste �.44a

3 .20 Frequency of alternation between typing/not typing .29

4 .17 Logarithm of the number of manual keystrokes .20

U19a 1 .27 Dichotomized score on U19a �.68

2 .25 Usage of dropdown menu to send e-mail .44

3 .15 Correct response to U19a without “search” �.74

Income U16 1 .18 Usage of copy/paste .35

U19a 1 .17 Usage of “search” in spreadsheet .63

U19b 1 .19 Usage of “sort” in spreadsheet .88

ICTHome U01b 1 .35 Creation of new folder for e-mails .84

2 .21 Japanese keyboard entry �.75

U16 1 .31 Logarithm of keystroke count (excl. backspace) .93

2 .26 Usage of keyboard shortcut for copy/paste .39

ICTWork U01b 1 .29 Creation of new folder for e-mails .84

YRSEdu U04a 1 .27 Number of correct numerical entries in spreadsheet .79

U16 1 .18 Usage of cc or “reply to all” to cc e-mail recipients .58

2 .25 Usage of keyboard shortcut for copy/paste .50

Numeracy U04a 1 .64 Number of correct row/column titles in spreadsheet .91

2 .17 Logarithm of the ratio between number of correct numerical entries
and number of correct row/column

.71

Title entries in the spreadsheet.

3 .16 Logarithm of the ratio between number of switches between spreadsheet
and e-mail environments and

.50

The number of spreadsheet entries.

Note. aJapanese participants were excluded due to keystroke coding differences in the log file. Binary sequential pattern variables are italicized.
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in ESM 1, Appendix II. In what follows, we summarize the
findings from the PLS decomposition and pattern
interpretations.

Age
We performed PLS decomposition on four items whose
MDS sequence features showed high associations with
age, namely U01a, U01b, U16, and U19a. By inspecting the
PLS components for age across items, we found the fol-
lowing trends:

– Senior examinees were less likely to complete the steps
necessary for receiving full scores (PLS 1 of all four
items). These sequential patterns are construct-relevant
and are already considered in final scoring. For in-
stance, the sequential pattern corresponding to PLS 1 on
item U01a, interpreted as moving e-mails to the correct
folders, was correlated with score on U01a at ρ ¼ :88
and with overall PSTRE proficiency at ρ ¼ :58:

– Senior examinees were more likely to perform a task,
e.g., sort a spreadsheet, using text-based drop-down
menus than graphical icons (e.g., an arrow icon for
“sort”) in the toolbar (U01a and U19a, PLS 2). These
sequential patterns are clearly construct-irrelevant
and do not influence final scores. For instance, the
sequential pattern corresponding to PLS 2 on item
U01a, interpreted as the usage of toolbar icons, was
correlated with score on U01a at ρ ¼ �:01 and with
overall PSTRE proficiency at ρ ¼ �:01:

– Senior examinees were less likely to use shortcuts
when sending e-mails, e.g., using “reply all” to re-
spond to multiple recipients and copy/pasting, and
were more likely to type text contents manually (U16,
PLS 2–4).

– One particular age PLS component to note was PLS 3
on item U19a, where participants were prompted to
identify a person’s information from a long spread-
sheet. There were three ways to identify the requested
row, namely to eyeball all rows, to search for the
person’s name directly, or (more rarely) to sort the
spreadsheet alphabetically by names. While inspect-
ing the sequences ranked on this component, it was
found that examinees on the lower end of this com-
ponent managed to submit the correct answer, but
without using search. Examinees on the higher end,
however, rarely answered correctly without using
“search.” This observation was confirmed as the
component was found negatively related to the con-
ditional probability of responding correctly, given that
the subject did not use “search.” This component
increased as age increased: Without using “search” or
“sort,” one had to eyeball the long spreadsheet to find
the row, which can be visually taxing for older adults.

This pattern is speculated to reflect some construct-
irrelevant variance that influenced scores, namely the
ability to work with visually demanding interfaces.
This speculation was supported with the additional
observation that, although the 0/1 indicator for
whether the examinee answered the question cor-
rectly without search/sort was correlated with the
current item’s score at :44, its correlation with scores
on the remaining 13 items ranged between �:09 and
:03, suggesting that these examinees did not perform
better on other PSTRE tasks.

Income
When it comes to the participants’ hourly income, the
MDS features from U16, U19a, and U19b demonstrated
higher prediction accuracy compared to the others. PLS
decomposition was hence applied to these three items.
The identified PLS components were uniformly found to
reflect efficient strategies for problem-solving, specifi-
cally the use of keyboard shortcuts for copy/pasting
(i.e., Ctrl + C, Ctrl + V, item U16) and the tendency to
use “search” or “sort” in spreadsheets (items U19a,
U19b). These patterns related to efficient problem-
solving tended to contain information that is relevant
to the assessed PSTRE proficiency but was not directly
considered in final scoring. For instance, on item U16,
regardless of whether the examinee used keyboard
shortcuts for copy/pasting, full score was given if the
examinee completed the task (sending the requested
information via e-mail). However, among participants
who received full score on the item, those who used
copy/pasting had higher overall PSTRE proficiency (M =
.47) versus those who did not (M = .19, two-sample t-test
t ¼ 8:94; p < :001, 95% confidence for PSTRE proficiency
difference: ð:22; :34Þ).

ICT Use at Home and at Work
PLS decomposition was performed on two items showing
larger MDS features-ICTHome association, namely U01b
and U16. On item U01b, it was observed that individuals
with more self-reported use of ICT tools at home were
more likely to create e-mail folders, which was a key step
to correctly solving U01b. The second PLS component on
U01b was a country artifact: Participants from Japan
generally had lower usage of ICT at home, and the PLS
score was associated with Japanese keystrokes. On U16,
higher ICTHome individuals were generally higher on PLS
components for (1) more keyboard entry (PLS 1) and
(2) more usage of keyboard shortcuts for copy/pasting
(PLS 2). For self-reported use of ICTWork, we performed
PLS analysis on one item, U01b, and one PLS component
was found, which was related to the creation of new folders
for e-mails.
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Total Years of Formal Education
We report the PLS analysis results and interpretations of
two items with relatively high prediction power on the
examinees’ total years of education, namely U04a and
U16. On U04a, which involved creating a spreadsheet
based on the information described in an e-mail, a PLS
component positively related to years of education was
found. This component was associated with a higher
number of correct numerical entries in the spreadsheet.
On U16, two PLS components positively associated with
years of education were found, the first related to cc’ing
(either typing in the “cc” field or using “reply all”) other
recipients when drafting the e-mail, and the second related
to using keyboard shortcuts for copy/paste.

Numeracy
For numeracy, we focused on the interpretation of item
U04a, which required examinees to synthesize the in-
formation from the e-mail into a spreadsheet table.
Participants needed to enter both the column/row titles
and the numerical entries. Three PLS components
positively correlated with numeracy proficiency were
found. The first PLS component was associated with the
correct choice of spreadsheet row and column titles. The
second PLS component was associated with the ratio
between the number of correct numerical entries in the
spreadsheet cells and the number of correct entries in
the spreadsheet’s row/column titles. The third compo-
nent was related to the ratio between the number of
times the examinee alternated between the spreadsheet
and e-mail environments and the number of times the
examinee worked on the spreadsheet entries/titles. Note
that the relationship between the third PLS component
and numeracy proficiency was clearly nonmonotonic
(see ESM 1, Appendix II Figure E10 for LOWESS plot).
The score on PLS 3 was highest for individuals with a
moderate level of numeracy proficiency. Those with
higher numeracy proficiency might have higher working
memory capacity, allowing them to fill in more
spreadsheet entries before referring back to the e-mail
for the information. Those with low numeracy profi-
ciency could not synthesize the relevant information in
the e-mail into a spreadsheet table, thus referring back to
the e-mail less often.

Discussion

This paper introduces a sequence feature-based approach
to evaluating and interpreting the relationship between
action sequences on computerized simulation tasks and
participants’ backgrounds. MDS and Seq2seq were

adopted for extracting features from raw action sequences
to preserve as much information as possible. Sequence
feature-based regularized regression further quantifies the
strength of association between a background variable and
test-taking process on a task. The results on the prediction
of different background variables showed that action
sequence-derived features, especially those extracted
from MDS, consistently showed a higher association with
background variables compared to polytomous final scores
on the PSTRE items. This suggests that the sequences of
actions an individual performs on a simulation task con-
tained unique information about a variety of background
variables: In these cases, individuals with different back-
grounds (e.g., age, income, ICT skills, year of education,
numeracy basic skills) tended to demonstrate different
problem-solving patterns on a task, but the associated
behavior might not have been used as part of proficiency
scoring. PLS analysis on the specific items’ MDS features
further unveiled sequential patterns that differentiate
participants on specific background variables. Many of the
identified patterns, such as the tendency to arrive at a
correct response without using “search” on a spreadsheet
(associated with age) and the number of correct numerical
entries on the table construction problem (associated with
years of education and numeracy) required a holistic in-
spection of the full action sequence. This showcases the
utility of sequence-based feature extraction methods in
identifying background-related long-term and overall se-
quential patterns, which action- or short-subsequence-
based methods may not give rise to.

Implications

Quantifying the association between action sequence-
derived features and external variables offers a data-
driven perspective on the evaluation, design, and scor-
ing of simulation-based assessments, which has implica-
tions for both measurement and career counseling. To
start, evaluating the prediction accuracy of a particular
background variable based on extracted features presents
a generic way to quantify the informativeness of the action
sequence on a task for that variable: If a subset of items is
to be selected for constructing a short test that can best
differentiate examinees on the variable, priority may be
given to items whose sequence data show a higher asso-
ciation. This is most relevant when the variable of interest
is an external criterion variable that the test intends to
predict, e.g., job performance, rather than demographic
background variables such as age or gender. Potential
applications to the workforce include the construction of
simulation-based assessments for personnel selection
(Tippins, 2015) optimizing predictive validity of job
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performance, as well as the prediction of readiness (in
knowledge, skills, or abilities) for a job that fits an indi-
vidual’s vocational interest, a predictor of job perfor-
mance, satisfaction, and commitment (Nye et al., 2012). In
a separate analysis, PSTRE action sequence features were
found predictive of several knowledge, skills, and abilities
required for the participants’ self-reported occupation
(e.g., computers and electronics, reading comprehension,
and judgment/decision making), when we linked the oc-
cupation category to O*NET expert ratings on knowledge,
skill, and abilities required on that job (Fleisher &
Tsacoumis, 2012). A brief graphical summary of the pre-
diction results is provided in Figure E11 in ESM 1, Appendix
III. This may see applications in predicting the gap be-
tween job-seekers’ current capabilities and their occupa-
tional interests, which can inform the choice of targeted
interventions for skill development and career readiness
interventions.
However, test development goes beyond maximizing

predictive validity. In particular, if differences in sequential
patterns are found associated with a background variable, a
test developer may inspect the specific sequential patterns
that contribute to the association to understand its mea-
surement implications. This evaluation depends onwhether
the sequential pattern is construct-relevant, examining
which requires both interpretations of the sequential pat-
tern and gathering of additional evidence. In the current
study, we attempted to identify these patterns by inter-
preting the PLS components, and we subsequently looked
at the relationship between the identified sequential pattern
and either final response, response on other PSTRE tasks,
or overall PSTRE proficiency to examine (1) whether the
pattern affected scoring and (2) whether it appeared
construct-relevant.
For example, age was found in the current study to be

related to examinee’s choice to either use a text-based
drop-down menu or click a toolbar graphical icon for
performing a step, e.g., creating a folder or sorting. This
was found uncorrelated either with final item score or with
overall PSTRE proficiency. Clicking an icon or navigating
through the drop-down menu achieves the same goal, but
the former was found to be less common among senior
participants, which may indicate lower familiarity with
toolbar icons for them. When such construct-irrelevant
behaviors are correlated with external background vari-
ables, test developers need tominimize their impact on the
examinees’ chance of successfully solving the question, as
such nuisance can compromise test fairness by producing
differential item functioning. Demographic differences in
how a key step is approached signify the importance of
universal design principles for assessment interface design
(see Steinfeld & Maisel, 2012): Whereas the availability of
both drop-down menu and toolbar icons allowed

participants from different age groups to perform a key
step despite potential differences in familiarity with one
option, the observations from item U19a suggested the
potential need to allow zooming or font size adjustments.
When this option is unavailable, for two equally capable
participants, both not knowing how to identify information
from a spreadsheet using search or sort, one who is
younger might be less visually burdened by scanning
through an entire spreadsheet with small font sizes, thus
having a higher chance of correct response.
On the other hand, the exploratory findings suggest

that some action sequence patterns associated with in-
come, education, and ICT exposure, such as the use of
tools for efficient problem-solving, were associated with
individual differences on PSTRE proficiency, i.e., were
construct-relevant, despite that efficiency was not con-
sidered in applicable items’ final scoring. This finding
concurred with those found from select PSTRE assess-
ment items in prior studies (e.g., item U02 in Liao et al.,
2019), where across tasks, individuals with higher income
and years of education showed a tendency to utilize
appropriate tools (e.g., keyboard shortcuts, spreadsheet
searching/sorting) to facilitate efficient problem-solving,
and when process data were used to improve PSTRE
scoring precision (Zhang et al., 2023), the process-
incorporated scoring algorithm picked up on such pat-
terns. Scoring of open-ended questions is a nontrivial task
and often requires specification of behavioral evidence
that is indicative of the measured proficiency (Mislevy
et al., 2003). Construct-relevant behavioral patterns can
often contribute to more reliable scoring, as they provide
additional proficiency information, but whether they
should be incorporated into the scoring rule requires
broader considerations, e.g., potential scoring conse-
quences for different subgroups, which is partially ad-
dressed by examining how a pattern relates to test takers’
external characteristics.

Limitations and Future Directions

Some limitations are worthwhile to merit discussions. First,
all analyses were conducted on merely five out of 28
countries who participated in the PIAAC 2012 cycle, al-
though they ranked at significantly different positions in
PSTRE proficiency (OECD, 2016). These five countries are
relatively high-income developed countries and areas, with
small differences in sample proportion by PSTRE profi-
ciency levels, which is identical as reported in previous
studies by He et al. (2021). We thus caution against the
generalizations of the empirical findings, both in terms of
the sequence features’ prediction of various external vari-
ables and in terms of the interpretations found on sequential
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patterns to the general population of working-age adults
worldwide. Second, the current analysis of adult digital
problem-solving was only conducted on the PIAAC PSTRE
assessment, which was specifically designed to assess
problem-solving in personal, work, and civic contexts in
three common digital platforms (web browser, spread-
sheets, e-mail client) and was a low-stakes assessment. This
could limit the generalizability of the findings to adult digital
problem-solving behavior in general and to high-stakes
situations. Third, while this study has shed light on vari-
ous aspects of the relationship between background vari-
ables and sequential patterns, it is important to acknowledge
its limitations with the PLS. The identification of sequential
patterns through examination of original sequences ranked
by PLS remains a speculative process; the variability in the
PLS components could not always be fully accounted for by
the identified patterns, suggesting that there may be other
sequence characteristics that were not captured. In addition,
the exploratory nature of our study, based on predictions
and correlations, should be considered when interpreting
the results – these findings should not be construed as es-
tablishing causal relationships or conclusions about inter-
relationships among the variables under investigation.
Moreover, it is crucial to note that the relationships observed
between scores or extracted features and demographic
variables do not inherently validate the score or the process
data. These associations are speculative in nature and
should not be interpreted as confirmatory evidence for the
validity of the measures used. Future research is needed to
rigorously corroborate these preliminary interpretations.
Methodologically, there is also room for future de-

velopment. To start, to afford a fair comparison across
items, the dimension K of the MDS and Seq2seq features
was set uniformly to a large number, 100, although the
selection of optimal dimension K via cross-validation
would be more plausible in practice. Second, only lin-
ear models were considered in the prediction of different
background and cognitive variables despite that the re-
lationship between certain features and the dependent
variables could be nonlinear. While the current empirical
results suggested that MDS tended to outperform
Seq2seq in the action sequence features’ prediction
power of external traits, one cannot conclude that MDS in
general outperforms Seq2seq in preserving sequence
information, due to an assortment of potential method-
ological confounds, including the adoption of a linear
prediction model, the researcher’s degrees of freedom in
choosing tuning parameters during feature extraction,
and sequence characteristics (e.g., action variability,
length) of the PSTRE data. Finally, behavioral patterns
corresponding to the PLS components were identified by
visually inspecting the ranked sequences, which was
labor-intensive and speculative. As a direction for future

research, visualization and explainable AI methods that
aid with the interpretation of action sequence features
may be developed.

Electronic Supplementary Materials

The electronic supplementary material is available with
the online version of the article at https://doi.org/10.
1027/2151-2604/a000554.
ESM 1. Appendix I: Feature Extraction with MDS and
Seq2seq. Appendix II: MDS PLS component LOWESS
plots. Appendix III: Supplementary tables and figures.
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Appendix I: Feature Extraction with MDS and Seq2seq

Multidimensional Scaling

The purpose of MDS is to find a multidimensional numeric representation of the

observed action sequence that can best preserve the pairwise dissimilarities between

individuals (Tang et al., 2020). Denote the action sequence of individual i ∈ {1, . . . , N} on

an item by si, MDS finds a mapping of each si to a K-dimensional numerical

representation θi ∈ RK which minimizes

N∑
i=1

N∑
j=i+1

(dij − ∥θi − θj∥)2, (1)

where dij = d(si, sj) is the dissimilarity between si and sj, the action sequences by

examinees i and j, according to some predefined distance measure d(·).

∥θi − θj∥ =
√

(θi − θj)′(θi − θj) is the Euclidean distance between the MDS

representations of examinees i and j, θi and θj. Intuitively, MDS transforms each

observation into a point in the K-dimensional Euclidean space, so that observations that

are similar to each other (i.e., low on dij) remain similar in the Euclidean space (i.e., low

on ∥θi − θj∥), and observations that are dissimilar are farther apart in the Euclidean space

after the transformation.

Crucial to MDS is the choice of an appropriate distance measure, d, to capture the

dissimilarity between individual observations. When observations are action sequences on

interactive items, Tang et al. (2020) proposed to use an order-based sequence similarity

measure (OSS; Gómez-Alonso & Valls, 2008), which allows for the quantification of the

dissimilarity between ordered, categorical, variable-length event sequences. For examinee i

with action sequence si = (si1, . . . , siLi
), let sit be the tth action performed by the subject,

Li be the total number of actions, and La
i be the number of occurrences of a particular

action a. The dissimilarity between the action sequences of any two examinees, dij, is given

https://doi.org/10.1027/2151-2604/a000554
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by

dij = f(si, sj) + g(si, sj)
Li + Lj

, where

f(si, sj) =
∑

a∈Cij

∑Ka
ij

m=1 |sa
i (m) − sa

j (m)|
max{Li, Lj}

, and

g(si, sj) =
∑

a∈Uij

La
i +

∑
a∈Uji

La
j .

Here, Cij is the set of common actions occurred in both sequences, Ka
ij = min{La

i , L
a
j },

sa
i (m) is the serial position of the mth occurrence of event a, and Uij is the set of unique

actions taken by examinee i but not by j. Intuitively, f(si, sj) quantifies how the serial

positions of common actions in the two examinees’ action sequences differ, and g(si, sj)

counts the number of actions unique to each examinee. In turn, the dissimilarity between i

and j, dij, takes into account the differences both in the ordering of the same actions and

the types of actions taken.

After calculating the dissimilarities (dij) between each pair of individuals’ action

sequences, the optimization problem that minimizes Equation (1) is solved to find

θ1, . . . ,θN . As the transformed θ’s preserve as much as possible the pairwise dissimilarities

in the observed action sequences, θi could be seen as a K−dimensional latent feature

vector which contains information of the original action sequence si.

Sequence-to-sequence autoencoder

Seq2seq is another method that extracts K-dimensional numerical features from the

action sequence si (Tang et al., 2021). Commonly used for information compression from

phrases or sentences in natural languages, an autoencoder seeks to encode categorical event

sequences into lower-dimensional latent vectors, which can then be used to restore the

original sequences. A Seq2seq autoencoder is an artificial neural network with two main

components, an encoder function ϕ(·) that transforms the original input sequence si into a

fixed-dimensional latent vector θi, and a decoder function ψ(·) that maps the latent vector

θi to a reconstructed version of the original sequence, ŝi. The action sequence feature

extraction procedures proposed in Tang et al. (2021) employed a recurrent neural
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network-based autoencoder with multiple hidden layers. The model is structured as follows.

In the encoding stage, each action in the sequence is mapped to a K−dimensional

continuous representation (i.e., an embedding, eit) based on the surrounding context using

an embedding layer (Mikolov et al., 2013). Following the action embedding, a recurrent

layer is applied to the embedded sequences. The recurrent layer creates a K−dimensional

hidden state (θit) for each time step t = 1, . . . , Li. The hidden state at time t, θit is a

function of the hidden state at the previous time step, θit−1, and the embedded action

performed at time t, eit, that is, θit = f(θit−1, eit). Different choices for the recurrent

function, f(·), have been proposed, including the long short-term memory (LSTM;

Hochreiter & Schmidhuber, 1997) architecture and the gated recurrent unit (GRU; Cho

et al., 2014) architecture. For feature extraction from action sequences, Tang et al. (2021)

adopted the GRU for the recurrent function, which learns from the observed data to

update or reset the hidden states depending on the context and the action type. In this

way, the recurrent states (θi1, . . . ,θiLi
) accumulate information in the action sequence over

time, and the hidden state at the final time step, θiLi
, summarizes the information

contained in the entire action sequence. We simplify the notation for the last recurrent

state (i.e., the encoder output, θiLi
) to θi, which will be used to reconstruct the observed

sequence in the decoding stage.

The first layer of the decoding stage is also a recurrent layer with Li time steps, with

initial hidden state yi1 = 0 and the tth hidden state obtained by yit = f ′(yit−1,θi). Here,

f ′ is another recurrent function with a different set of parameters from f . Note that the

decoder recurrent states are obtained by feeding in the same encoder output, θi, for Li

times and accumulating the information over time through f ′(·). The last layer of the

decoder is a softmax layer, where, for each time point 1 ≤ t ≤ Li, the decoder hidden state

at time t (yit) is used to predict the probability that individual i takes each possible action.

Intuitively, the decoder aims at reconstructing the distribution of the original action

sequence si using the encoder output θi.
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A graphical illustration of the Seq2seq is presented in Figure 1. Action sequence

features extracted with Seq2seq are θi, the last state of the encoder which summarizes the

information throughout the entire sequence and is used in the decoder to reconstruct the

original sequence.

Figure E1

An illustration of the structure of the sequence-to-sequence autoencoder.
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Appendix II: MDS PLS component LOWESS plots
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Figure E2

Distribution of U01a PLS component scores with respect to examinees’ age. Dashed lines: 

LOWESS plot of age against the PLS component score (y-axis ticks on the right); solid 

lines: LOWESS plot for sequence pattern against PLS score (y-axis ticks on the left).
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Figure E3

Distribution of U01b PLS component scores with respect to examinees’ age.
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Distribution of U16 PLS component scores with respect to examinees’ age.
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Distribution of U19a PLS component scores with respect to examinees’ age.
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Figure E6

Distribution of PLS component scores with respect to examinees’ income on items U16,

U19a, and U19b.
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Figure E7

Distribution of PLS component scores with respect to examinees’ ICT usage at home on 

items U01b and U16.
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Distribution of PLS component scores with respect to examinees’ ICT usage at work on 

item U01b.
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Figure E9

Distribution of PLS component scores with respect to examinees’ education level on items

U04a and U16.
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Figure E10

Distribution of PLS component scores with respect to examinees’ numeracy proficiency on 

item U04a.
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Appendix III: Supplementary tables and figures

Country or Region ICTHome ICTWork log(income) YRSEdu

GB 0.08 0.39 0.39 0.07

IE 0.09 0.42 0.45 0.00

JP 0.09 0.36 0.34 0.00

NL 0.01 0.31 0.37 0.00

US 0.10 0.37 0.41 0.13
Table E1

Missingness proportion on background variables by country or region.



EXPLORATION OF ACTION SEQUENCE IN PIAAC PSTRE 15

S:Reading Comprehension
S:Writing

A:Written Comprehension
A:Written Expression
K:English Language

K:Computers and Electronics
S:Programming

S:Active Learning
S:Active Listening

S:Complex Problem Solving
S:Critical Thinking

S:Judgment and Decision Making
A:Deductive Reasoning
A:Inductive Reasoning
A:Information Ordering

cor(predicted, observerd)

0.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.4

Figure E11

Out-of-sample correlation between observed and predicted values of the participant’s 

occupation’s knowledge (K), skill (S), and ability (A) requirements, based on O*NET expert 

ratings. Pink bars are the out-of-sample correlations based on 14 PSTRE items’ final 

responses. Pink and orange bar combined are the out-of-sample correlations based on 14 

items’ MDS features (first 20 principal components) combined.
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