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1. Introduction

For a smooth, algebraic surface X over C, the Hilbert scheme of n points on X
parametrizes length n, zero-dimensional subschemes of X. A well-known theorem due to
Fogarty states that this Hilbert scheme, denoted X[ is a smooth, irreducible variety
of dimension 2n [6]. In this paper we study effective divisors on the Hilbert schemes of
points on toric surfaces using methods from the theory of Newton-Okounkov bodies.

Newton-Okounkov bodies are convex bodies associated to divisors on algebraic vari-
eties, generalizing the connection between Newton polytopes and toric varieties. These
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convex bodies were introduced in passing by Okounkov [17][18], and their theory was fur-
ther developed by Kaveh-Khovanskii [14] and Lazarsfeld-Mustata [16]. We briefly recall
the construction. Let Y be a d-dimensional irreducible variety and D a Cartier divisor on
Y. The Newton-Okounkov body of D depends on a choice of valuation v : C(Y)* — Z4
with one-dimensional leaves defined on the field of rational functions C(Y"). After fixing
v, the valuations obtained from sections of O(D) and its multiples can be assembled into
a graded semigroup,

I(D) = @ Tw(D) = @{(m.v(f)) | € H(Y,O(mD))*} CZ x 2,

m>0 m>0

and the Newton-Okounkov body A(D) is defined to be the closed convex hull,

A(D) = conv ( U %Fm(D)> C {1} x R* ~R%

m>0

When Y is projective and D is a big divisor, the convex set A(D) C R? is bounded
([16] Lemma 1.1), and has the property that its Euclidean volume is equal to the volume
of D as a divisor after normalizing by a factor of d! ([14] Corollary 3.11, [16] Theorem
2.3). It is sometimes more convenient to talk about the Newton-Okounkov body A(.Z)
of a line bundle .Z on Y, which is defined by replacing O(mD) with .£®™ in the above
construction.

We first study the Hilbert scheme of n points on C2. In [11], Haiman identifies (C2)!"
with an explicit blowup of the symmetric power (C2)(™). This identification equips (C?2)["!
with an ample line bundle, which we denote by O(1). Our first result is a computation of
the Newton-Okounkov body of this line bundle with respect to a trailing term valuation
v defined in Definition 3.1.

Theorem 1.1. The Newton-Okounkov body of the line bundle O(1) on (C?)[M with respect
to v is the closed convex hull of the set of n-tuples of distinct pairs (a1,b1), ..., (an,by) €
2220, labeled in increasing lexicographic order. This unbounded, convexr polyhedron is
defined by the inequalities

(a u 0<a;<as<---<ay,, and
A= et by > (G —i) (1 —aj) Fai+ - +aj,
br,--,bn) €R foralll<i<j<n

This theorem is proved in Section 3. Haiman’s construction identifies the global
sections of O(m) with certain polynomials, and the Newton-Okounkov body above is
computed using a trailing term valuation on these polynomials (Definition 3.1). As
(C?)I" is not projective, the spaces of global sections of O(m) are infinite-dimensional,
and accordingly the polyhedron A(O(1)) is unbounded. However, A(O(1)) still encodes
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asymptotic information about the sections of O(m) equivariantly, via the Duistermaat-
Heckman measure (see Section 3.6). These polyhedra have interesting combinatorial
structure: for instance their top-dimensional bounded faces are enumerated by Catalan
numbers.

Next we study the Hilbert schemes of points on smooth, projective, toric surfaces.
We recall Fogarty’s description of the Picard group Pic(X[™) from [7]. Let X be a
smooth projective surface with irregularity ¢(X) = 0 (which is the case whenever X
is toric). There is a linear embedding Pic(X) C Pic(X ™), which we denote D — D,,.
Geometrically, if D is the class of a smooth, irreducible curve C' C X, then D,, is
represented by the locus of length n subschemes of X whose supports meet the curve
C. The exceptional locus of the Hilbert-Chow morphism is an irreducible divisor on
X[ consisting of the nonreduced subschemes of X, whose class we denote by B. For
notational convenience we often use the divisor class F = —%B , which corresponds more
directly to the line bundle O(1) on (C?)[") instead of the geometrically defined divisor
B. With this identification, there is an isomorphism Pic(X™) ~ Pic(X) x ZE.

When X is a smooth, projective, toric surface, Pic(X) is generated by torus invariant
divisors. In Section 2.2 we recall the definition of the Newton polytope Pp of such a
divisor D and identify Pp with a subset of R?, writing

for some constant ¢, and piecewise linear functions ¢ and w.

Theorem 1.2. Let D be a torus invariant divisor on a smooth, projective, toric surface X,
with Pp as above. For any r € Z, the Newton-Okounkov body A(D,, + rE) is contained
in the convex set

0<a1<as<---<a,<c and
(aty-..,an, by > laj)+ (j—1)(r—aj)+a;,+---+a;_1,
bi,...,by) €R?™ | b <wlaj)— (k—35)(r+aj)+aji1+-+ ak,
foralll<i<j<k<n

This is proved in Section 4. For Pp = R2207 the convex set defined above recovers the

Newton-Okounkov body of O(r) on (C?)[™. We refer to the convex body appearing in
Theorem 1.2 as A(D,, + 7E), so the theorem asserts the inclusion

A (D, +7E)C A(D, +rE).

For most toric surfaces X, this is a strict containment, but based on explicit computations
for small n we propose the following.
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Conjecture 1.3. If the surface X is P2, P! x P', or a Hirzebruch surface, then the con-
tainment in Theorem 1.2 is sharp for all torus invariant divisors D € Pic(X) and all
r € Z. In other words, we conjecture the equality

A (D, +rE)=A(D, +rE)
for all divisors D,, + rE € Pic(X[™) in these cases.

In Section 4.4 we verify this conjecture in the case of n = 4 points on P? to illustrate
the methods leading to Conjecture 1.3, as well as the geometric information that these
convex sets encode about the Hilbert schemes.

Of particular interest are the cones of effective divisors on X[, which have been
studied extensively [1], [2], [13], [19]. Huizenga [13] has computed the effective cones of
(P2)["] for all n, but for other surfaces the effective cones are known only for small n.
Theorem 1.2 implies an upper bound for the cone of effective divisors on X[™. Indeed,
effective divisors ¢ € Pic(X[™) have nonempty Newton-Okounkov bodies A(€), so if the
upper bound Z(é) D A(¢) is empty, then £ is not effective. To compute the implied
upper bound on the effective cones, it is convenient to use the global Newton-Okounkov
body and its convexity properties, as explained in Section 4.5.

Conjecture 1.3 would imply that this method computes the exact effective cones for
the Hilbert schemes of points on P2, P! x P!, and Hirzebruch surfaces. We have verified
that this upper bound agrees with the effective cones of (]P’Z)[”] computed by Huizenga
for all n < 171 numerically (see Section 4.5). Ryan [19] has computed the effective cones
for the Hilbert schemes of n < 16 points P! x P!, and the upper bound is sharp in these
cases as well. We have also computed similar bounds for Hirzebruch surfaces.

Upper bounds on the effective cone are often obtained by intersecting with moving
curve classes. This differs from the approach described above, which comes instead from a
valuation on the effective divisors. The valuation records order-of-vanishing information
about individual effective divisors, whereas intersection products with curves depend
only on the linear (indeed numerical) equivalence class of the divisor. Characterizing
the set of valuations of all effective divisors in a given linear equivalence class is a large
refinement of the problem of characterizing which classes contain an effective divisor.
Given Conjecture 1.3, however, this finer invariant appears to yield simpler results, at
least asymptotically. Indeed, the conjectural global Newton-Okounkov body is described
by a list of explicit inequalities, uniform in the number of points n. Explicit descriptions
of the effective cones however, which are projections of the global Newton-Okounkov
bodies, appear to depend on the arithmetic properties of n [2]. A table containing some
data on effective cones computed using this method can be found at the end of Sec-
tion 4.5.

Acknowledgments: 1 thank the authors of [1] and [10], whose exposition enabled me
to learn about Hilbert schemes of surfaces. I am grateful to Izzet Coskun for helpful
discussion during the early stages of this project. Most of all I thank David Anderson for
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teaching me about Newton-Okounkov bodies, providing detailed comments on the many
iterations of this document, and suggesting the problem of computing Newton-Okounkov
bodies of Hilbert schemes in the first place.

Conventions: We use the term variety to mean algebraic variety over C, and divisor
always means Cartier divisor. We equip Z¢ with the lexicographic order.

2. Background
2.1. Newton-Okounkov bodies

We refer to [14] and [16] for proofs of the results stated in this section. Let Y be a
d-dimensional, irreducible variety over C. A wvaluation on Y is a group homomorphism
v:C(Y)* — Z% such that

e v(f+g) > min{v(f),v(g)} forall f,g € C(Y)* (with the lexicographic order on Z<,
as always), and
e v(A\) =0 for all nonzero constant functions A € C* C C(Y)*.

One says that v has one-dimensional leaves if for any a € Z% the leaf at a,

Fo={f € CY)*v(f) z a}/{f € CY)"|v(f) > a},

is a vector space of dimension at most one. This property implies that for any finite-
dimensional linear subspace V' C C(Y), the set {v(f)|f € V' \ {0}} C Z¢ has exactly
dim (V') elements.

Fix a divisor D on Y, and a valuation v with one dimensional leaves. We consider
H°(X,0(D)) C C(Y) identified with the set of rational functions f such that D +
div(f) > 0. The graded semigroup of D with respect to v is defined as

0, (D) == {(v(f), k) | 0# f € HYX,O(kD)).k = 0} C Z° x Z.

The grading here refers to the recording of which multiple O(kD) that each valuation
comes from. One checks that ', (D) indeed forms a semigroup under the usual coordinate-
wise addition of vectors.

We consider T, (D) C Z? x Z C R**! in the obvious way. The cone of I', (D), denoted
Y, (D), is the smallest closed, convex, cone containing the entire semigroup I', (D) C
R?*1. The Newton-Okounkov body A, (D) of D is the intersection of the cone ¥, (D) with
the affine subspace R? x {1} C R¥*1. We consider A, (D) C R?, and write A(D),T'(D),
and 3(D) for these objects when the choice of valuation is clear, or is unimportant.

In our computations, we identify the global sections of divisors O(D) with certain
sets of polynomials (see Section 2.4). Importantly, these identifications are compatible
with multiplication of global sections. In other words, if sections s € H°(Y,O(D)) and
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t € H(Y,O(E)) are identified with polynomials f and g respectively, then the section
s®@t € H(Y,O(D)® O(E)) ~ H°(Y,O(D + E)) is identified with f - g. We use a
leading/trailing term valuation on the associated polynomials, and this multiplication
property ensures that the resulting sets of valuations still form a semigroup.

The volume of a divisor D on a projective variety Y is the asymptotic growth rate of
sections of its multiples,

o H.O(D))

voly (D) i= lim —= 7

A divisor D is said to be big if vol(D) > 0. The following fundamental result relates
the Euclidean volume of the Newton-Okounkov body A(D) C R? to the volume of the
divisor D under these hypotheses.

Theorem 2.1. [[14] Corollary 3.11, [16] Theorem 2.3] Let D be a big divisor on a projec-
tive variety Y. Then for any valuation v on'Y with one-dimensional leaves, we have

volga(A, (D)) = %voly(D).

2.2. Toric surfaces

For the relevant background on toric surfaces we follow Section 6.1 of [16], but restrict
to the two-dimensional case. We use the notation and definitions established in [8] and
[4].

A toric surface is constructed from a fan ¥ in Ng ~ R? where N ~ Z2 is
a two-dimensional lattice. Each cone o in the fan corresponds to an affine variety
U, = Spec(CloY N M]), where o¥ is the dual cone to o, and M is the dual lattice
to N. These affine varieties are then glued together to form the toric surface X = Xs;.
In particular, the cone o = {0} gives an open set T = Spec(C[M]) =~ (C*)? inside of
X, the two-dimensional algebraic torus. The action of T on itself by coordinate-wise
multiplication extends to an action of T' on the whole surface X. Lattice points m € M
index rational functions x" on X.

We assume that X is smooth and projective, and both of these properties can be
detected from the fan ¥ ([4] Theorem 3.1.19). The surface X is smooth if and only if
each two-dimensional cone o € ¥ is spanned by integral vectors v,v" € N such that v
and v’ generate the lattice N. Since X is two-dimensional it is projective if and only if
it is complete ([4] Proposition 6.3.25), and X is complete if and only if the cones in X
cover the whole vector space Ng.

Fix an ordering vq,...,vs for the generators of the rays in ¥ so that the two-
dimensional cones are spanned by consecutive rays [vi,vs],...,[vs—1,vs], and [vs,v1].
By the orbit-cone correspondence ([4] Theorem 3.2.6), the torus fixed points of X are
indexed by two dimensional cones o € ¥, and the T-invariant curves of X are indexed
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by the rays of X. Let D; denote the T-invariant curve corresponding to the ray spanned
by v;. Let D = Y7_, d;D; be a T-invariant divisor on X. The Newton polygon of D
is

Pp={me Mg | di+ (m,v;) >0foralli=1,...,s}

A key fact ([4] Proposition 4.3.3) is that the lattice points in Pp index a basis of T-
equivariant functions for the global sections of the line bundle O(D),

H(X,0D))= @ C-x™
mePpNM

Indeed, div(x™) = >_,(m,v;)D;, so the defining condition of Pp says that the divi-
sor D + div(x™) has nonnegative order of vanishing along each of the T-equivariant
divisors D1,...,Ds. It follows from the definition that changing D within its linear
equivalence class translates the Newton polytope accordingly, Ppidiv(ym) = Pp —
m.

To relate these Newton polytopes to Newton-Okounkov bodies, we choose coordinates
on X. Let o be the two dimensional cone in ¥ with boundary rays spanned by v; and
vg. Define my and my to be primitive generators of the dual cone ¢V, with (m;, v;) = d;;
for 4,7 = 1,2. Since we assumed X to be smooth, m; and my form a Z-basis of M. We
denote the coordinates on U, ~ C2 by  and v, so that the torus character yP™1Tamz |,
corresponds to xPy?. This implies that D;|y, is defined by = 0, Ds|y, is defined by
y =0, and Ds,..., Dy are all disjoint from U, .

By Theorem 4.2.1 of [4] there is a short exact sequence

0 M VA Pic(X) — 0,

where Z° is the set of T-invariant divisors generated by D1, ..., D, the first map sends
a lattice point m to the principle divisor div(x™) = >_;_, (m,v;) D;, and the second map
sends a divisor to its class. By Proposition 4.2.5 of [4] the Picard group of X is torsion
free. This shows that Pic(X) is isomorphic to Z*~2, freely generated by the divisor classes
Ds, ..., Ds.

For the rest of the paper we identify M ~ Z? with generators m; and ms correspond-
ing to our choice of open set U,. We use coordinates (a, b) to denote amj +bmg in either
M ~ 7?2 or Mg ~ R2. We also identify Pp with its image in R?, writing

H°(X,0(D)) ~ @ C - 2Py

(p,q)€EPpNZ?

Each divisor class in Pic(X) has a unique representative of the form D = Y"7_, d;D;. For
such divisors, the inequalities on Pp corresponding to d; = ds = 0 impose the conditions
a,b > 0 on points (a,b) € Pp C R?. This polygon can therefore be defined as
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for some constant ¢, and piecewise linear functions ¢ and u. This convex set is equal to
the Newton-Okounkov body of D, with valuation given by the order of vanishings along
Dy and Dy, as explained in [16] Section 6.1. We abuse terminology by referring to this
Newton-Okounkov body as the Newton polytope of the entire class of D in Pic(X).

2.3. Hilbert schemes of points on surfaces

Let X be a smooth, irreducible surface over C, and n > 2 an integer. We assume
that the irregularity of the surface vanishes ¢(X) = h'(Ox) = 0, which is the case when
X is a toric surface. The Hilbert scheme of n points on X, denoted X[, parametrizes
zero-dimensional subschemes of X of length n. The simplest such subschemes are the
reduced subschemes supported on n distinct points of X, which is why X[ is referred
to as the Hilbert scheme of points on X.

Let X(") = X™/S,, denote the symmetric power of X. The Hilbert scheme X[ comes
equipped with the Hilbert-Chow morphism X" — X which maps a length n sub-
scheme Z C X to its support counted with multiplicity. A fundamental result of Fogarty
states that the Hilbert scheme X[ is a smooth, irreducible, variety of dimension 2n ([6]
Theorem 2.4). It follows from its construction [9] that X" is projective whenever the
surface X is projective. The Hilbert-Chow morphism X[ — X (") is a birational resolu-
tion of singularities, and an isomorphism over the dense open set of reduced subschemes
U C X" ([6] Corollary 2.6).

When X is a toric surface, X" is not typically a toric variety, but it does inherit a
two-dimensional torus action from that on X. This is the diagonal torus action, where
t € T sends the reduced subscheme supported on {p1,...,p,} to the reduced subscheme
supported on {t - p1,...,t - p,}. In general, t € T determines an isomorphism X — X
and the action of ¢ on a subscheme Z € X[ is defined as the pushforward of Z under
this map.

In [7], Fogarty constructs a linear embedding of divisors Pic(X) < Pic(X[") as
follows: A divisor D € Pic(X) determines a symmetric divisor 7§D+ ---+ 7D on X",
where 71,...,m, are the coordinate projections X™ — X. By symmetry this divisor
descends to a divisor D(,) on the symmetric power X, The divisor D,, € Pic(X[)
is defined to be the pullback of D, via the Hilbert-Chow morphism. The exceptional
divisor of the Hilbert-Chow morphism, the locus of nonreduced schemes, is an irreducible
divisor which we denote by B. As noted in the introduction, we often express divisors
in terms of the class £ = —%B rather than B. Under the hypotheses ¢(X) = 0, Fogarty
shows ([7] Theorem 6.2) that there is an isomorphism

Pic(X!") ~ Pic(X) x Z - E.
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2.4. An algebraic model of (C?)M]

In this section we mainly follow Haiman’s study of the Hilbert scheme (C?)! from
[11]. Consider the polynomial ring C[x,y] = Clz1,...,%n,Y1,..-,Yn), with the di-
agonal action of the symmetric group S,. This means that S, permutes the pairs
(1,y1),-- -, (Tn,yn) in blocks, i.e.

WT; = Toy(is WYi = Yu(2) for all w € S,,.

With respect to this diagonal action, let A C C[x,y] be the space of symmetric
polynomials, and A! C C[x,y] the space of alternating polynomials. For r > 1, define
A" to be the linear span of all r-fold products of alternating polynomials. These spaces
can be assembled into a graded ring, which we denote by S = A’ A' @ A2 @ ---.

Theorem 2.2 (Haiman [11]). The Hilbert scheme of points (C2)", equipped with the
Hilbert-Chow morphism, is isomorphic to Proj(S) as a scheme over the symmetric power
(C?)(™ = Spec A°.

The above isomorphism equips (C?)[™ with an ample line bundle O(c2)mi (1), or simply
O(1). The line bundle O(1) is linearly equivalent to O(E) ~ O(—4B), where B is the
divisor of nonreduced subschemes of C2. The space of global sections HO((C?)[", O(r)) is
isomorphic to the degree r piece of the integral closure of S' ([12], Section 2 Ex. 5.14). In
fact S is already integrally closed, a result which we later deduce from Haiman’s results,
along with our study of valuations (Corollary 3.10). This may be known to experts, but
we have been unable to locate a reference.

Let J C C[x,y] denote the ideal generated by A'. Using his proof of the Polygraph
Theorem, Haiman (Proposition 4.3 of [10]) proves that J is equal to the radical ideal

J =@ —zj,u — ),
i#£]
and more generally
J" = (V@i — 25,9 — v;)"
i#]

2r+1

for all » > 1. Define S = ZO@Zl EBZQG} -- where ZZT = A'NJ? and A = AlnJj?r+t

for all » > 0.
Lemma 2.3. For all v > 0, we have
AT C HO(C*)M o(r)) C 4

In the cases r = 0,1 there is equality A = ZO, and Al =A".
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Proof. The equalities A = A and A' = A" follow from the definitions, and the inclusion
A" C A" is also straightforward. Since HO((C2)["), O(r)) is the degree r part of the
integral closure of S, it suffices to show that S is integrally closed.

Haiman’s description of the ideals J" above shows that C[x,y][tJ] C C[x,y,t] is
integrally closed. The following argument is also due to Haiman ([11], p. 218): Consider
the action of S, on C[x,y,t] extending the diagonal S,, action on C[x,y] by setting
o(t) = sgn(o)t. The ring of invariants C[x,y, ] is A°@tA' @12 A°©13A' @ - - - which
implies that this ring is also integrally closed.

These two facts imply that S is integrally closed as well, as it is the intersection of
two integrally closed subrings of C[x,y, ], completing the proof. O

The line bundles O(r) are T-linear, where T ~ (C*)? acts on (C2)["! diagonally as in
the previous section. The T-action on O(r) induces a Z?2-grading on the global sections
of O(r). Under the inclusion H°((C?)["), O(r)) C C[x,y], this Z*-grading is inherited
from the grading on C[x,y| in which the monomial zi* .- aPryf* ... yi» has degree
(p1+---+Pn, @1+ - -+¢,). In other words, the spaces of global sections H((C?)["], O(r))

are graded subspaces of C[x,y] with respect to this Z2-grading.
3. The Hilbert scheme of points on C2

The main goal of this section is to compute the Newton-Okounkov body of the line
bundles O(r) on (C2)I", defined in the previous section. This computation is based on
Lemma 2.3, which identifies the global sections of O(r) with certain sets of polynomials.
In the notation introduced in the previous section, Lemma 2.3 states that

AT C HO(€H)M o(r)) € A" C Cx,y]

for all r > 0. We show that A” = A" for all r > 0 (Corollary 3.10), characterizing the
spaces of sections exactly. The main step in the proof is to show that the sets of trailing
terms obtained from polynomials in A” are the same as those obtained from ZT, with
respect to a certain term order. We use the corresponding trailing term valuation, so this
computation also provides the valuations out of which the Newton-Okounkov bodies are
constructed. Finally, we use this description of the sets of valuations to compute the
Newton-Okounkov bodies (Theorem 3.13).
More specifically, we use the following valuation.

Definition 3.1. Let v : C[x,y] \ {0} — Z>" be the trailing term valuation in the lexico-
graphic term order, with 1 > xo > - > X, > y1 > Y2 > -+ > Y.

The valuation v has one-dimensional leaves, as do all leading/trailing term valuations
on polynomials. Indeed, if f and g are two polynomials with the same trailing term,
then there is some nonzero linear combination f — Ag which cancels the trailing term
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and therefore either has a larger valuation or is 0. This shows that the leaf at the common
valuation must be one-dimensional.

We use coordinates (ai,...,an,b1,...,b,) on Z?", so that the a; coordinates corre-
spond to the exponents of the z;’s, and the b; coordinates correspond to the exponents
of the y;’s. For example, the terms of the polynomial f = x2z3ys + m12397Yy5 €
Clz1, 22, y1,y2] have exponent vectors (a1,as,b1,b2) = (2,2,0,1), and (1,4,5,3). So
v(f) = (1,4,5,3), the smaller vector lexicographically.

For later reference, we define sets I',., which turn out to be the sets of valuations of
polynomials in A" (and therefore in H°((C2)"), O(r)) as well).

Definition 3.2. For integers r > 0, set

p1 < p2 < <Py,

Fr — (pla <o Pn;y on if Pj = Pj+1 then qj+1 > q; +r, and
ai, ... 7(]n) € Zzo q; > Zizl’m’jfl(?" — Dy +pi) for all j
Pj—Pi<T
Equivalently,

p1<p2 <+ < Pn,
(p1s---sPn, if p; = pj41 then g;41 > ¢; + 7, and
Qo) €285 | 5 2 (=) (r —pj) +pi o+ P
forall1<i<j<n

T, =

These descriptions are indeed equivalent, because p; < --- < p,, implies that

> (r—pitp)= _maX,{i(r—pj +Pe)}

=1,....j—-1
Pj—Pe<T

i .

= flla?fj {G =) r—p;j)+pi+-+pj-1}

for all j, as the first sum is over precisely the terms (r — p; + p¢) which are positive.
In Sections 3.1 and 3.3 we give simpler descriptions of the sets I',., but it is convenient
to take the explicit description above as the definition.

3.1. Bases for A° and A'

The spaces A° and A" have well-known bases that realize I'y and I'; as their respective
sets of valuations.

For any n-tuple (p,q) = ((p1,¢1),---» (Pn,qn)) € (Z%,)™, possibly with repetitions,
there is a monomial symmetric polynomial -

Mp.q) (X, y) =2 - abryl -yl + (symmetric terms) € A°.
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The polynomials mp q)(x,y) form a linear basis for the space of all symmetric polyno-
mials A° as (p,q) ranges over all such n-tuples up to reordering. We label (p,q) so that
(p1,q1) < (p2,q2) < -+ < (pn, ¢n) in lexicographic order, which implies that

V(m(p,q)(xﬂ y)) = (pla ceeyPnyq, - a(In)

Since each basis element has a different valuation, these are all of the valuations that
can be obtained from A°. In other words, we have

) | feAO\{O}}z{<p1,...,pn,q1,...,qn>eZ“ga <”1’q”§“'§(p"’q")}.

in lex

Similarly, for any n-tuple (p,q) = ((p1,q1),-- -, (Pn,@n)) € (Z%,)" of distinct pairs
there is an alternating polynomial

dipq)(x,y) = det(z}7 " )1<; j<n € A"

The determinants d(p.q)(x,y) form a linear basis for the space of all alternating polyno-
mials A! as (p, q) ranges over all such n-tuples up to reordering. Just as before, we label
(p,q) so that (p1,q1) < (p2,92) < -+ < (Pn,qn) in lexicographic order, which implies
that

V(d(p,q)(xvy)) = (p17 Y Z X AR 7qn)

By the same argument, we therefore have

(p1,q1) <+ < (pmqn)}_
in lex

{w(f) | fe A\ {0}} = {(pl,...,pn,ql,...,qn) EZQZ%

Lemma 3.3.

(plaql) S S (men)}’

POZ{(p17'~‘7pn7Q17“‘7qn)622;6 X
= in lex

and

(Pl;(h) << (pn7Qn)}

1"1:{(ph...,pn,qh...,qn)622;6 _
= n lex

Proof. In both cases, we study the inequalities

4> Y, (r—pj+p)
i=1,...j—1
pj—pPi<T
for j =1,...,n appearing in the definition of I',.. When r = 0 the inequalities p; < pa <
.-+ < pp, imply that p; — p; < r is never satisfied. These inequalities therefore reduce to
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gj > 0 for all 5. One checks that the remaining conditions defining I'y precisely describe
the set in the statement of the lemma.

Similarly, when r» = 1 the condition p; — p; < r is equivalent to p; = p;, so the
inequalities above reduce to

sz#{izla""j_l | pi:pj}'

This condition is redundant though, because the other conditions imply that 0 < ¢; <
gi+1 < --- < g; whenever p; = pi41 = -+ = pj. As before, the remaining conditions
defining I'; precisely describe the set in the statement of the lemma. O

Finally, we note that each polynomial d, q)(%,y) and m g q)(X,y) is homogeneous
with respect to the Z2-grading on C|[x,y] defined in Section 2.4.

3.2. Valuations from A forr>1

We aim to show that for any r > 1, I',. contains the valuations v(f) of all nonzero
polynomials f € A" We prove a slightly more general result, Proposition 3.5, relating
the Newton polytope of a polynomial f € A" to its valuation. This general version has
essentially the same proof, and is used in Section 4 when we turn to the general toric
surface case. For brevity, we say that a polynomial f is (anti-)symmetric if it is either
symmetric or alternating with respect to a specified symmetric group action.

Lemma 3.4. Let [ be a polynomial in x,2',y,y’, and possibly other variables. Suppose
that f is (anti-)symmetric with respect to the Sy action exchanging x and y with ' and
y'. Additionally, suppose that f is contained in the ideal

I'=@—2,y—y) =(z—-2),@-2)V"y—y),....(u—y)")

for some fized r > 0. Let p denote the largest integer such that xP|f. For any fized
p=p,p+1,....,p+7r— 1, the polynomial [xp(:v’)p']f is divisible by (y — y/)'rfpti»p'

Here we use the coefficient extraction operator: [zP(2/)?']f is defined to be the poly-
nomial obtained by summing all the terms of f whose exponents on = and =’ are exactly
p and p’ respectively, then dividing by the common factor zP(x’ )”/.

Proof. By assumption, f is divisible by zP, so by (anti-)symmetry it is also divisible by
(2")P. Dividing f by (za’)?, we may assume without loss of generality that p = 0.

The assumption f € I" implies that, replacing ' by x in the expression for f, we
can write f|y—» = (y — y’)"go for some polynomial gy which does not depend on z’. It
follows that f — (y —y')"go is divisible by (x — z’), and we define f; to be the polynomial
such that f = (y —y')"go + (x — ') f1. This fi is contained in the ideal I"~!, so we can
repeat this argument to get an expression
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T

F= (= y—y) " a

k=0
in which none of the polynomials g, ..., g.—1 depend on z’. It follows that

T

[2°f = fla=o = Y _ (&) (y — )" *gy,

k=0

where g, is obtained from ¢; by setting x = 0, and possibly changing the sign. But since
none of the polynomials g, . .., g,_; depend on z’, the terms of [2°] f are grouped in this
sum according to their exponent on 2’. One sees from this expression that [2°(2')*]f =
(y—y) Fg, forallk =0,...,r — 1, as desired. O

The Newton polytope of a polynomial in d variables is the convex hull in R¢ of
the exponent vectors of the nonzero terms of the polynomial. The Newton polytope of
a product of polynomials is the Minkowski sum of the Newton polytopes of its factors.
Lemma 3.4 allows us to establish a lower bound for the Newton polytope of a polynomial
in 4" with a given valuation.

Proposition 3.5. For anyr > 1, let f € A bea polynomial with valuation (p1,...,Pn,q1,

.oy Qn). For each j = 1,...,n, there exist points in the Newton polytope of f whose
(aj,b;) coordinates are

pinai— >, (r=pi+p) |, and |pjg;+ Y, (r—pr+p;)

i=1,...,5—1 k=j+1,...,n
P —pi<rT Pr—p; <r
Furthermore, for any j =1,...,n —1 such that p; = pj+1, we have gj4+1 > q; + 7.
As usual, we use coordinates (ay,...,an,b1,...,b,) on Z?" so that the aj-coordinate

corresponds to the exponent on x;, and the b;-coordinate corresponds to the exponent
on yj.

Corollary 3.6. For any r > 1 and nonzero f € ZT, we have v(f) € T,..

Proof of Corollary 3.6. Let f € A be a nonzero polynomial. By Definition 3.1, v(f) =
(P1y--sDns iy - -5 qn) is in T, if and only if

Lopr<pa<--- < pp,
2. p; = pj+1 implies that ¢;41 > ¢; +r, and

3.¢; > > i=1,..j—1(r—pj+p;)forall j=1,...,n.
Pj—pi<r
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Also by definition, we have A" C A for even r, and A" C A for odd r. By Lemma 3.3
we have (p1,q1) < -+ < (pn, qn) in lex, and in particular p; < ps < --- < p,. The second
condition is explicitly stated to hold in Proposition 3.5. Finally, since f is a polynomial,
the coordinates of any point in its Newton polytope are nonnegative. Proposition 3.5
therefore implies that

4> Y. (r—pj+p)
i=1,...,5—1
Pj—pi<r

forall j =1,...,n, as desired. O

Proof of Proposition 3.5. Let g = g(y1, ..., yn) be the polynomial [z]* - - - zP»] f. For any
two indices 1 < ¢ < k < n such that py — p; <7, let

ik :gik(xiaxkaylv"'ayn) [ ﬁli‘li‘kx?ﬁn]f

By hypothesis, the lex trailing term of f is 2" -+ aPryf* ... yi» so the lex trailing term

of g is y{" -~y and the lex trailing term of g;, is a¥aP*y? ... ydn. Since f € A" by

assumption, g;; is (anti-)symmetric in the pairs of variables (z;,y;) and (zk,yx) and is

contained in the ideal (z; — z, y; — yr)". We apply Lemma 3.4 to gk, using (x;,y;) and

(zk,yr) for (z,y) and (z/,y’) respectively. In the notation of Lemma 3.4 we have p = p;,

and choose p’ = pj. The lemma then says that (y; — y)""P*Pi divides g = [z a}*]g;.
Since g is divisible by these factors for all such ¢ and k, we have

WY1y Yn) =h(Y1,- .-, Yn) H (yi — yp)"—PrHPe

1<i<k<n
Pr—Pi<T
for some polynomial h(yi,...,y,). The lex trailing term of g is y7' -+ -y, and since
the tralhng term of each factor (y; — y)" "PE*Pi is y, P**Pi) the trailing term of h is
y1 e yn , where qj satisfies
1=1,...,5—1
pj— pz<7’
foreach j=1,...,n

For any i < k such that py,—p; < r, let A be the Newton polytope of (y; —yg )" PxHPi]
which is the convex hull of the two vectors in the directions of the coordinates b; and by,
with lengths (r — pr + p;). By the expression of g as a product, and the definition of g,
the Newton polytope of f contains the Minkowski sum

A= {(p17apnaq;_7aq;l)}+ E Azk
1<i<k<n
Pr—Pi<T
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For each j = 1,...,n, the a; coordinate is constant equal to p; over the whole set
A, so we study the maximum and minimum values of the b; coordinates. The minimum
value of the b; coordinate on A is

G=aq— >, (r—pi+p),
i=1,...,j—1
pj—pi<T
obtained by taking points from all the A;,’s whose b; coordinate is zero. Taking points
in Ay, whose b; coordinate is as large as possible shows that the maximum value of b,
coordinate on A is

G+ > (r=pitp)+ > (r—petp)=q¢+ >, (r—ptp)
i=1,...,5—1 k=j+1,...,n k=j+1,...,n
pj—pi<r Pr—pP;j<T Pr—P; <T
This proves the first claim of the proposition.
As for the second claim, fix some j = 1,...,n—1 such that p; = p;+1. By hypothesis, f
is (anti-)symmetric under swapping (z;,y;) with (z;11,9;4+1). These assumptions imply
that

g(yla”-ayn) = h(y1,...,yn) H (yz —yk)T_Pk‘f‘Pi
1<i<k<n

Pr—Pi<T
is (anti-)symmetric in the variables y;,y;+1, as ¢ consists of terms of f whose exponents
on z; and x;11 are equal. Swapping y; and y;41 in the factored expression for g fixes
the pairs of factors

(yi — yj)  PItP(y; — yjur)" PP

for i < j and

(yj _ yk)T—Pk-‘er (yj-i-l _ yk)T—Pk+Pj+1

for k > j + 1. The factors not including y; or y;41 are unaffected by the exchange, and
the remaining factor (y; — y;41)" is multiplied by (—1)". This implies that h is (anti-
)symmetric in y; and y;41, so we have q} < q;- 4 1- All the pairs of factors above contribute
equally to the exponents on y; and y;41 in the trailing term of g. The remaining factor
(yj — yj+1)" has lex trailing term Yj41, which implies that ¢;j+1 > ¢; +r as desired. O

3.8. An alternate description of ',
In Section 3.1 we showed that I'g and I'y admit simple descriptions in terms of non-

decreasing (resp. strictly increasing) n-tuples of points. In this section, we characterize
the remaining sets I, for 7 > 1 in terms of I';.
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Proposition 3.7. For r > 1, ', is equal to the r-fold Minkowski sum I'y 4+ --- +T';.

Proof. For the containment I'y + --- + 'y C I',., we use the second description of
[, given in Definition 3.2. Let (p"),qM),...,(p",q") € Ty with (p,q®) =
(pﬁz), e 717%), q££)7 ce qg)), and define

(p7Q) = (pla <oy Pnsdq1y - - aQn) = (p(l)aq(l)) +oeee (p(r)7q(r))

The inequalities p1 < --- < p, and ¢; > (j —9)(r —p;) + p; + --- + pj—1 are immediate
since these conditions are homogeneous in r. If p; = p;41, then we also have py) = p;Ql
for all ¢, and therefore

G=¢ @) (@D ) =g
as desired. This completes the first containment.

For the containment T',, CT7 +---+ T, let (p,q) = (p1,- -, Pns Gy -« qn) € ['r. We
aim to construct an r-tuple (p™",qM), ..., (p,q(") € I'; whose sum is (p,q), but
first we make some reductions.

Reduction 1: Suppose there is an index j = 1,...,n — 1 such that p;41 > p; +r. By
the first description of I',. in Definition 3.2, we have

(p/7ql> = (p17"'apj7pj+l - 17' cesPn — 17q1a"'7qn) € F’N

If we have (p™,qM),..., (p"),q")) € I'; whose sum is (p’,q’) then we may take any
of these, say (p"),q("), and replace it by
1 1) @ 1
(pg )7' .. 7p§ )7p§-121 + 17 s 7p$Ll) + 17‘]% )a LN aqr(Ll)) S Fl-
The new r-tuple sums to (p,q), which shows that if (p’,q’) is in the r-fold Minkowski
sum, then (p,q) is as well. It therefore suffices to consider only those (p,q) € I', such
that pj41 <pj+rforall j=1,...,n—1. By a similar argument we may reduce to the
case p1 = 0.
Reduction 2: Suppose there is an index j such that

q5 > Z (r—pj +pi)

i=1,...5—1
pj—pi<r
Let k be the largest index such that p; = p; 41 = - - - = pg. In this case, we subtract one

from the bj, ..., by coordinates of (p,q), defining

(plvq/):(p17'~'7pn7q17'~'7qj_1a"~7qk_]-7"'7qn)'

One checks that (p’,q’) € T,.. Suppose we have (p),qM),..., (p",q(")) € I'; whose

sum is (p’,q’). Then since p; = - - = py, any index £ = 1,...,7 also haspy) = :p,(f).
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By the maximality of k, we either have k = n or there is an index ¢ such that p,(f) < p,(fj_l.

For such an ¢ (if k = n then any choice of ¢ works), replace (p¥),q(¥)) by
(pg@a s apg)7Q§£)v s 7q](‘£) + ]'7 T ’ql(cl) + 1. ’qg))

Again, one checks that this new vector still lies in I'y, and that the resulting r-tuple now
sums to (p,q). This shows that it suffices to consider (p,q) such that

q; = Z (r—mpj + i)

i=1,...,5—1
pj—pi<T

forallj=1,...,n.
The remaining cases are covered by the following lemma. 0O

Lemma 3.8. Let (p,q) = (p1,- - Pns 1, - - qn) € I be such that

® p1:07
o i1 <pj+rforallj=1,...,n—-1, and

o ¢ = i=1,.j-1(r—pj+pi) forallj=1,...,n.
Pj—pi<T

There exist (p™M),qM), ..., (p"),q")) € 'y whose sum is (p,q), and such that qﬁlk) =
#{i=1,...on=1|pn—pi<r—k+1} forallk=1,...,r.

The condition specifying the q,(Lk) coordinates is not important to the result, but
recording this extra information helps with the induction step.

Proof. The proof is by induction on n. The case n = 1 is trivial, as the conditions imply
that p; = g1 = 0. In this case we take (pgk), qgk)) =(0,0) forallk=1,...,n.

Now let (p,q) = (p1,---,Pn,q1,---,qn) € I be as in the statement of the lemma.
Apply the inductive hypothesis to (p1,...,Pn_1,q1,--,qn_1) € [, C Z?"~2 to obtain
(pgk), . ,pglk_)l,qgk), . ,qﬁlk_)l) el CzZ?>2fork=1,...,r. Define £ = p, — p,_1, and
note that ¢ € {0,1,...,r} by assumption. We extend these tuples by defining

(p), g9 = e*, +1,00  fork=1,...,¢ and
o ¢ 4 1) fork=041,....n

It follows from the definition that (pgC ),q%k)) > (pglkzl,qfll?l) in lex for all k, so by

Lemma 3.3 we have (pgk)7 . ,pgk),qgk), .. .,q,(Lk)) € I'y C Z2". It also follows from the
construction that pg) 4+ +p£f) = pgll +- 1+ pf:ll +l=pp_1+L=pp.
The equality qr(Ll) +t Q7(1T)

terms. To meet this stronger condition, however, we must reorder the vectors as

= ¢, is a consequence of the explicit formula for the qff)
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P .q ) L ,d™), W, qM),. . (9, q?).

For k =/¢+1,...,r corresponding to the indices kK — ¢ = 1,...,r — £ in the reordering

above, we have

¢ =14+ =1+ #li=1 -2 po—pi<r—k+1}
=#{i=1,....n—=1|pp—pi<r—(k—10)+1}.

For k=1,...,¢ corresponding to the indices r —¢+k =r—+£¢+1,...,r in the reordering

above, we have

¢ =0=#{i=1,....n—1 | pp—pi<r—(r—_L+k)+1}.
These are precisely the required formulas for the q,(Lk) coordinates for the reordered vec-
tors, which completes the proof. 0O

3.4. The coordinate ring and graded semigroup of (C?)M

With the results from the previous sections, we can compute the sets of valuations
obtained from A", A", and H((C2)", O(r)).

Proposition 3.9. For all r > 0, we have

Lr={v(f) | f € A0} = {w(f) | Fed \{0}}.

Proof. The cases r = 0,1 are proved in Section 3.1, so assume r > 1. We establish the
following chain of inclusions

L, C{u(f) | FeAN{0}} C{v(f) | feA \{0}} CT,.

The middle inclusion follows from A" C A', and the final inclusion is precisely the
statement of Corollary 3.6. For the first inclusion, take ¥ € I',.. By Proposition 3.7, ¥/ is
in the r-fold Minkowski sum T’y + --- 4+ I';. But as shown in Section 3.1, every vector
in I'y is the valuation of some determinant d(p, q,)(X,y). This implies that ' is attained
as the valuation of some r-fold product of these determinants, and all such products are
contained in A" by definition. This establishes the chain of inclusions, completing the
proof. O

This result, along with Lemma 2.3, already implies that I',. is precisely the set of val-
uations obtained from H°((C?)"O(r)). However, it also affords a proof of the following
result, which clarifies the situation greatly.
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Corollary 3.10. For all r > 0, we have A" = A In particular, the ring S = A° @ Al @
A% @ - in integrally closed, and therefore

HO((C*)IM, O(r)) ~ A7
for allr > 0.

This result may be known to experts, but we have been unable to find a reference.
The equality A" = A essentially comes from the fact that the sets of valuations from
A" and A" are the same. It is certainly possible, however, to have a strict inclusion
of vector spaces V' C W and a valuation on W such that every valuation from W is
obtained on V. For example take the subspace {(x + 1)f(z) | f € Clz]} C C[z] with
the trailing term valuation. The key additional fact used in the proof of Corollary 3.10
is the Z2-grading (defined at the end of Section 2.4) into finite-dimensional pieces in a
way that is compatible with the valuation.

Proof. The assertion A” = A" follows from the definitions for r = 0,1, so we assume
r > 1. The containment A C A" is clear, so for the reverse containment we fix f € A
a nonzero polynomial. Define M to be the set of valuations (p,q) € ', such that f has
a nonzero term in the (p1 + -+ pn,q1 + -+ + gn) graded piece. M is finite because f
has terms from only finitely many graded pieces, and each graded piece has only finitely
many possible valuations. It is also clear that v(f) € M.

By Proposition 3.9 there is a polynomial g € A" with v(g) = v(f), and as in the proof
of the proposition we may take g to be an r-fold product of determinants dp 4)(x, y). The
critical observation is that g is taken to be homogeneous with respect to the Z2-grading.
There is a unique linear combination f — Ag that cancels the common trailing terms, and
we set f' = f — Ag. If f/ =0 then we certainly have f € A", so assume f’ # 0. In this
case we have v(f') > v(f) in the lex order, but v(f’) is still in M since g was taken to
be homogeneous. Repeat this process of reducing f modulo A", in each step obtaining a
polynomial with larger valuation in M. Since M is finite this process terminates, giving
an expression for f as a linear combination of elements of A™ as desired. O

Remark 3.11. The bases constructed in Section 3.1 for A° and A! provide all of the
valuations of polynomials in A° and A', and we have now shown (by Propositions 3.7
and 3.9) that the graded semigroup of O(1) is o @'y @'y @ - - -, which is generated in
degree one. For valuations coming from other term orders, the same bases still provide
all the valuations from A° and A!, as the basis elements don’t share any common terms.
However, for different choices of term order the graded semigroup of valuations can fail
to be generated in degree one.

One can also compute the sections and valuations of O(r) for negative 7.
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Lemma 3.12. For even r < 0 we have H°((C?)"M, O(r)) =~ A°, and for odd r < 0 we
have HO((C?)IM O(r)) ~ A'

The main part of the proof is a geometric argument identical to that of Proposition
3.2 in [2].

Proof. Fix n — 1 general points py,...,p,_1 in C2, and let R be the curve in (C?)"!
consisting of subschemes whose multiplicity at each of the points pi,...,p,_o is one,
and whose multiplicity at p,,_1 is two. Let D C (C2)[”] be an effective divisor linearly
equivalent to kB for some half integer £ > 0. The intersection product R- B = —2 so
the curve R cannot meet D transversely, and thus R C D set theoretically. But curves
of class R cover a dense subset of the divisor B C (C?)[" so there is a set theoretic
inclusion B C D. This implies that D — B is effective.
Since we have an isomorphism O(1) ~ O(—%B), there are maps

HO((CH, 0(r +2) — HO((C*), O(r))

for all integers 7, given by multiplication by a section defining the divisor B. The argu-
ment above implies that these maps are isomorphisms for all » < 0. The desired result
is obtained by composing these isomorphisms, starting from the global sections of O or
o). o

3.5. The Newton-Okounkov body of (C?)

For consistency of notation we define A” = A% for even r < 0, and A” = A® for odd
r < 0, and define T, similarly for r < 0. With these conventions, the results from the
previous section can be summarized as saying that

HO((CHM, O(r)) >~ AT,

and
Lo ={v(f) | feA"\{0}}
for all r € Z. Following the usual construction, we therefore define the Newton-Okounkov
bOdy of O((C2)[n] (’I") to be
1
A(O(r)) = closed convex hull U — - Tym
m>1

for all r € Z.
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Theorem 3.13. Forr > 0 the Newton-Okounkov body A(O(r)) is the closed convex hull of
I, € R?". The Newton-Okounkov body A(O) C R?" is a simplicial cone, and for r < 0
we have A(O) = A(O(r)). These Newton-Okounkov bodies are defined by the inequalities

(a “ 0<a; <as<---<ay, and

1y Un, . .

AOW) =14, pyeren | 20— —a) tait-+aj-, 0,
1eeesbo) € foralll<i<j<n

forallr € Z.

Proof. First suppose r > 0. Proposition 3.7 implies that for any m > 1, the set %Frm =

i(l"r + --- 4 T,) is already contained in the convex hull of T',., and so the Newton-

m

Okounkov body of O(r) is given by

1
A(O(r)) = closed convex hull U e Trm

m>1

= closed convex hull (T',.)

as claimed.

It follows from Lemma 3.3 that I'g = I'g + I'g. The same argument therefore implies
that A(O) is the closed convex hull of Ty.

We temporarily use A(O(r)) to denote the convex polyhedron in the statement of the
theorem, before showing that it is equal to A(O(r)).

Suppose r > 0. Comparing the inequalities defining A(O(r)) to Definition 3.2, one
sees that T, C A(O(r)) N Z>". Furthermore the only integer points of A(O(r)) omitted
from T, lie on the boundary of A(O(r)), so we have

AO(r)° NZ2 C T, C AO(F)) N Z2".

Similarly for any m > 1 we have

A(O(rm))° NZ* C Ty € A(O(rm)) N Z2".

Since the inequalities defining A(O(r)) are homogeneous in r, we may divide by m to
obtain

— 1
., CA —72,
rm = (O(T» N m

— 1 1
A(O(r))° N —2*" C —

Oy N~z L
This holds for all m > 1, so A(O(r)) is a closed convex subset of A(O(r)) that con-
tains all of its interior rational points. We conclude that A(O(r)) = A(O(r)) for all

r > 0.
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The same argument given after Definition 3.2 for I',. shows that for all r € Z, A(O(r))
has the alternate description,

0<a; <ay<---<ay, and
Z(O(T)) — [()611’17 Z;:;zye RQn bj Z Zizjll'a';j%;l(r — aj —+ ai)
o for all j

When r < 0, the condition a; — a; < r never holds, as a; < a; by the first inequali-
ties. Therefore for r < 0, the second inequalities simply say that b1,...,b, > 0, and so
A(O(r)) = A(O) = A(O) is a simplicial cone.

It remains to check that A(O(r)) = A(O) for r < 0. For even r < 0 the
semigroup of O(r) is T'o @ Ty & Ty @ -+, identical to that of O. For odd r < 0,
the semigroup of O(r) is I'g @ T @ Ty ® Iy @ ---. One checks that in both cases
the Newton-Okounkov body A(O(r)) is the same as A(Q), which completes the
proof. O

The qualitative statements in Theorem 3.13 are illustrated in the following figure,
which is intended to represent a portion of the global Newton-Okounkov body of (C2)[".
In particular, there is homogeneity A(O(r)) = rA(O(1)) for integers r > 1, and A(O(r))
degenerates to a simplicial cone for r < 0.

O(-1) o o(1) 0(2)

The polyhedra A(O(1)) have interesting combinatorics. For example, we showed in
the proof of Theorem 3.13 that A(O(1)) has the alternate expression

0<a; <az <---<ay, and

(aty...,an , .
A(O(1)) = LR bj > > i=1,...,j-1(1 —a; +a;
CIDES RGNS DED SESEIENS
for all j
From this expression, one can show that a point (a1, ...,b,) € A(O(1)) lies on a bounded

face of A(O(1)) precisely when

L) a1:O7
e aj41 <a;j+1foralj=1,...,n—1, and
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o bj=>i=1,..j-1(r—a;+a;) forall j=1,...,n.

aj;—a;<

The points on the bounded faces of A(O(1)) are therefore determined by the values
az,...,an, where each a; ranges from a;_; to aj_; + 1. In other words, the points on the
bounded faces of A(Oc2mi(1)) are parametrized by an (n — 1)-cube, with coordinates
given by as —aq, ..., a, —ap—1. The combinatorics of these bounded faces corresponds to
a polyhedral subdivision of the (n — 1)-cube into regions depending on which of the pairs
1 <i < j <nhave a; —a; < 1. The number of top-dimensional cells in this polyhedral
subdivision of the (n — 1)-cube, and therefore the number of top-dimensional bounded
faces of A(c2yim(O(1)), is the Catalan number Cy, 1.

3.6. The moment polytope and Duistermaat-Heckman measure for ((Cz)[”]

In this section we show how the unbounded polyhedron A(O(1)) € R2?" encodes
asymptotic information about the sections of O(r) equivariantly.
The spaces A” ~ H((C?)"], O(r)) decompose into graded pieces

AT = @ Alpa)

(P.a)€EZY,

with respect to the Z2-grading defined at the end of Section 2.4. The main observation
of this section is that the valuation v is compatible with this grading. In other words,

each valuation v € I', obtained from a polynomial f € A" is also obtained from a
T

(P.q)
uniquely determined by the vector v € T',.. This fact was already used in the proof of

homogeneous polynomial f € A for some (p,q) € 22207 and the degree (p,q) is

Corollary 3.10, and follows from the proof of Proposition 3.9.

Corollary 3.14. For all (p,q) € Zzzo, the set of valuations v(f) obtained by nonzero

ng,q)

homogeneous polynomials f € A(p Q) is equal to , where

p1+...+pn:p
Fg»pﬂ) - {(pla"'7p7L7QI7"'7qn) EFT }

Gt =q

The dimension of the (p,q)-graded piece of H((C?)" O(r)) is therefore given by
(p,a)
#I:7Y . 0O

Following [3], the dimensions of the graded pieces of H°((C?)!™, O(r)) can be encoded
as Dirac measures,

DL HPD b,

(p.9)€Z,
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The Duistermaat-Heckman measure of ((C2), O(1), T), which we denote by DH(n),
is the weak limit of the rescaled Dirac measures,

. #D(}uq)
DH(n) := rlggo Z W&p/r,q/r)v

(p,9) €23,

considered as a measure on R2. The measure DH(n) is equal to a piecewise-polynomial
function times the usual Lebesgue measure on R?. The Newton-Okounkov body A(O(1))
encodes this measure as follows. Let w7 : R2" — R? denote the linear projection
(a1, yan, b1y b)) = (a1 + -+ an, by + -+ by).

Corollary 3.15. The Duistermaat-Heckman measure DH(n) is equal to the pushforward
T (dplao(1))), where dp|ao(ry) is the Lebesgue measure on R27™ restricted to A(O(1)).

Okounkov’s original construction was in a similar context [18], and results of this form
hold much more generally (cf. Theorem 1.7 of [15]). Since we have explicit descriptions
of the sets 1“5!’ ‘D and the Newton-Okounkov body, the proof is straightforward, so we
include it for completeness.

Proof. As in the proof of Theorem 3.13, we have
A(O(r)°NZ* CT,. C A(O(r)) N Z*",

and by homogeneity

—_

A(O(1))° N %ZQ" C T, C A(O(1))N %ZQ".

This implies the weak convergence,

1 1 T—>00
D b= D b o dilaoqy):
vel, velr,

Pushing forward by m we obtain the desired result. 0O

This result is depicted in the following diagram. The point masses in the measure
obtained from O(r) approximately count the number of 1/r-integer points in the fibers
of A(O(1)). In the limit » — oo, the density function is given by the volumes of the
fibers.
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v

> R?

A

(p,q)

4. The Hilbert schemes of points on projective toric surfaces

Let X be a smooth, projective, toric surface. As recalled in Section 2.3, any divisor on
the Hilbert scheme X" is linearly equivalent to D,,+rE for some divisor D € Pic(X) and
r € Z. We identify the sections of O(D,, +rFE) with a subset of the sections of O(cz2)m (1)
that satisfy a term restriction coming from the Newton polytope of D (Proposition 4.2).
This identification allows us to study the Newton-Okounkov body of X[ using our
results on (C?)l",

The main difference is that for projective surfaces we only obtain upper bounds for
the graded semigroups (Proposition 4.7) and Newton-Okounkov bodies (Theorem 4.8).
The extra difficulty over the C? case is that the semigroups in the projective case are
not generated in degree one.

For most toric surfaces X, these upper bounds are not sharp. We conjecture, how-
ever, that for the Hilbert schemes of points on P2, P! x P!, and Hirzebruch surfaces, the
convex bodies appearing in Theorem 4.8 are the exact Newton-Okounkov bodies (Con-
jecture 4.10). This conjecture is supported by calculations on these surfaces for small n.
In fact, the inequalities appearing in Theorem 4.8 (and Theorem 3.13) were originally
found based on explicit computations on (IP’Q)["} for n = 2,3,4. To illustrate these tech-
niques, we verify Conjecture 4.10 for the Hilbert scheme of 4 points on P2, computing
the global Newton-Okounkov body A((P?)H).

In Section 4.5 we apply these results to study the effective cone of X",

4.1. Global sections of line bundles on X"

Let X be a smooth, projective, toric surface and D a T-invariant divisor on X. In
Section 2.2 we recalled the definition of the Newton polytope of D, and made the iden-
tification Pp C R2. The polygon Pp controls the sections of O(D) via the formula

H°(X,0(D)) ~ @ C - aPy?.
(p,q)€PDNZ?
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The identification Pp C R? depends on a choice of coordinates C2~U, CX. Fixing
such an isomorphism C2 ~ U, — X yields open embeddings ((CQ)[”] ~ U([,n] — X" for
all n, by which we can identify sections of line bundles on X" with their restrictions to
(C?)IM, In Section 3.4 we proved that

HO((C?H)M O(r)) ~ A7

for all r € Z (with A" defined as in Section 3.5 for r < 0). The sections of O(D,, +rE) €
Pic(X[™) can be expressed as follows:

Definition 4.1. For a divisor D € Pic(X) on a smooth, projective, toric surface X with
Newton polygon Pp C R? and r € Z, define

A(D,+rE)=A"N @ C - iy . gPryyln,

(pi,qi)€PpNZ2

Proposition 4.2. Let D € Pic(X) be a divisor on a smooth, projective, toric surface X
with Newton polygon Pp C R2. Then for any r € Z, we have

HO (X[”], O (D, + rE)) ~ A(D,, +rE).

As with the corresponding result for C? (Corollary 3.10), this description may be
known to experts, but we have been unable to locate a reference.

Proof. For r = 0, 1, these isomorphisms are the well-known identifications
HO (X["],O(Dn)) ~ Sym" H(X,O(D)),

and

H° (X[”l, O (D, + E)) ~ /n\HO(X,O(D)).

See, for example, the proof of Lemma 5.1 in [5].
Since E = —1B, there is a section s € H(X[™, O(—2E)) defining the divisor B.
Multiplication by s defines maps

H (X["],O (D + (r + 2)E)) & HO (XW,O (D + rE))

for all integers . The same argument as in the proof of Lemma 3.12 (and [2] Proposition
3.2) shows that these maps are isomorphisms for all » < 0. Composing these isomor-
phisms from either O(D,,) or O(D,, + E) proves the claim in the case r < 0, by the
definition of A" for r < 0.
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For r > 1, we can again compose these embeddings to identify the global sections of
O(D,, + rE) with the subspace of sections of O(D,,) or O(D,, + F) that vanish along B
to the appropriate order. To compute this order of vanishing, we may first restrict the
section to (C?)I", where the section is identified with a polynomial in A or A', then
compute the order of vanishing along B\(Cz)[n]. Corollary 3.10 can be interpreted as say-
ing that the filtrations of A° and A' according to order of vanishing of the corresponding
sections along B are given by

A"D A’ DAY D
and
At D AP D AP D ..
This, along with the known cases r = 0, 1, establishes the identification for » > 1. O

This result, combined with Corollary 3.10, implies a pleasant identification of
the sections of O(D,, + rE) for » > 0 with the set of polynomials in C[x,y] =
Clz1, ., Tn,Y1,-- -, Yn] that:

1. Are symmetric (when r is even) or alternating (when r is odd),

2. Are contained in the ideal J" = ﬂi<j(1’i -2,y —Y;)", and

3. Have Newton polytope contained in Pp, when considered as a polynomial in any one
of the pairs of variables (z;,y;).

One can translate constructions of divisors on X" into the language of these (anti-
)symmetric polynomials. The following examples are enlightening, although we do not
need them in this paper.

Example 4.3. Let C' C X be an irreducible curve representing the divisor class D. Re-
stricting to the affine open C? ~ U, C X, C is defined as the vanishing locus f(z,y) = 0
for some polynomial f whose Newton polygon is contained in Pp. The divisor D, is
represented by the locus of length n subschemes of X whose support meets the curve C.
This representative corresponds to the polynomial

n

H f(zi,yi) € A(Dy)

i=1

Example 4.4. Fix a divisor D on X, and let f1,..., f, be linearly independent sections
of O(D). The span of fi,..., f, corresponds to a linear system of curves in X, and the
divisor D,, + F is represented the locus of length n subschemes Z C X such that there
exists a curve Cyz in this linear system that contains Z as a closed subscheme. This
representative corresponds to the polynomial
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det(fi(x;,v5))i; € A(Dn + E).

Example 4.5. Let F' be a vector bundle on X of rank » with sq,..., s,, general sections
of F. The restricted sections s;|cz can be represented as r-tuples of polynomials,

silc2 = (fia -+ fir)"
Consider the polynomial d(x,y) defined by

f1,1(9€1,y1) fl,r(xlayl) f1,1($n,yn) f1,r($myn)
det :

frn,l(xlvyl) frn,r(mlayl) frn,l(xnvyn) frn,r(mnvyn)

If the polynomial d is not identically zero, then F is said to satisfy interpolation for n
points, and d corresponds to a divisor of class ¢;(F),, + rE. In this case one can check
directly that d € A(c1(F)y + rE). Indeed, exchanging any pair of variables (z;,y;) with
(x,y;) in the matrix above swaps r columns, so d is multiplied by a factor of (—1)". We
also have

de ﬂ(l“i — 5,9 —Y;),
i<j

since setting ; = x; and y; = y; makes r pairs of columns repeat in the matrix above.
Finally, in each pair of variables (z;,y;), d is expressed as a linear combination of deter-

minants
f{,1($iayi) f{,r(fﬂi,yi)
d' = det :
f;,l(xivyi) f;’,r(xiayi)
where the vectors (f{,--- f{,)" fori =1,...,7 represent r general sections of F. Each

d’ represents a general section of A" F, and therefore has Newton polytope contained in
Pz~ Fy = Pey(r)- This establishes the Newton polytope restriction for d as well, which
shows that d € A(ci(F),, + rE) as desired.

4.2. The graded semigroup of X"

Let D be a T-invariant divisor on a smooth, projective, toric variety X with Newton
polygon

for some constant ¢, and piecewise linear functions £ and u. By analogy with the sets of
valuations I', from A", we define a candidate set of valuations from A(D,, + rE).
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Definition 4.6. With D and Pp as above, and r > 0, let I'(D,, + rE) be

0<p1<p2<---<pp<eg

if pj = pj41 then gj41 > g5 + 1,

qj = p;) + (G —0)(r—p;) +pi+ - +pj-1,
qj < u(pg) — (k= 3)(r +pj) +pjy1 + -+ pr,
forall1<:<j<k<n

(p17"'7pn,
Q17"'7QTL) S ZQZ'%

For even r < 0 define I'(D,, + rE) = I'(D,,), and for odd r < 0 define I'(D,, + rE) =
(D, + E).

Proposition 4.7. For all r € 7. we have

I'(Dn +1E) 2{v(f) | f € A(Dn+rE)\{0}},
and for r < 1 we have

I(D, +rE) = {v(f) | f € A(D,+7E)\ {0}}.

Proof. Suppose r > 0, and fix a nonzero polynomial f € A(D,, + rE) with v(f) =
(P1y--sDns Qs - -5 qn). Since f € A” we have 0 < p; < py < --- < p,. By the definition
of A(D,, + rE), the Newton polytope of f is contained in (Pp)™, so Proposition 3.5
implies that Pp contains the points

Pj> 45 — Z (r—pj+pi)| and |pjq + Z (r —pr +pj)
i=1,j—1 k=j+1,...,n
Pj—pi<r Pr—pP; <T

for all j =1,...,n. By the definition of Pp, this is equivalent to p; < c and

lp))<qi— Y. (r=pi+p)<g<qg+ Y  (r—petp;)<ulp;)

i=1,...,j—1 k=j+1,...,n
Pj—Pi<rT Pr—P;<T
for all j =1,...,n. The same argument given for I',. after Definition 3.2 shows that the

inequalities above are equivalent to the final inequalities in the definition of T',.(D). That
Dj = Dj+1 implies gj+1 > g; + r follows from Proposition 3.5, which completes the proof
that v(f) € T,..

By the same argument as in the proof of Lemma 3.3, I'(D,,) and I'(D,, + E) can be
described as

F(D ): (plv"'apna (P17Q1) S S (pn,qn)
" qi,--,qn) € Z*" | in lex, and (p;,q;) € Pp forall j |’

and
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(P15 Pn, (p1,q1) <+ < (Pn,qn)
I'(D, + FE) = . L.
(Dn + E) {ql, .y qn) €Z* | inlex, and (p;,q;) € Pp for all j

These are precisely the sets of valuations obtained by the bases mp q)(X,y) and
d(p,q)(X,y) of Section 3.1 with (p;,q;) € Pp for all j. This implies the equality
D(Dp+rE)={v(f) | f € A(Dn+7rE)\{0} for r = 0, 1. By the definitions of T'(D,,+rE)
and A(D,, +rE) for r < 0, we obtain the same equality for all » < 0 as well. O

4.3. The Newton-Okounkov body of X"

By Proposition 4.2, the Newton-Okounkov body of D,, + rE € Pic(X[") can be
defined as

A(D,, + rE) = closed convex hull ( U % . {V(f) ‘ feAmD, +mrE)\ {0}}) )

m>0

Theorem 4.8. For all D,, +rE € Pic(X™), the Newton-Okounkov body A (D,, 4+ rE) is
contained in the set Z(Dn + rE), which is defined by the inequalities

0<a1 <ay<---<a,<c, and
(al,...,an, bj 2E(aj)—|—(j—i)(r—aj)—i—ai—i—-n—i—aj,l,
bl,...,bn)ERzn bj §u(aj)—(k—j)(r+aj)+aj+1—l—-~-+ak,
foralll<i<j<k<n

For r <0, we have A(D,, + 7E) = A(D,, + 7E) = A(D,,), and the simpler description,

< < <ay, d
A(Dn)—{(al,...,an,bl,,,.,bn)ERzn a; <ag < < ay,, an }

(aj,b;) € Pp forallj=1,...,n

Proof. It follows from the definitions that for all D and r, we have I'(D,, + rE) C
Z(Dn +rE). By the homogeneity of the Newton polygons P,,p = mPp, the inequalities
defining Z(Dn + rE) are homogeneous in the input, so for any m > 0 we have

1 _ _
—T'(mD,, + mrE) C —A (mD, + mrE) = A (D, +rE)
m

1
m

By Proposition 4.7, I'(mD,,+mrE) contains all the valuation vectors from polynomials
in A(mD,, + mrE), so we have

1 _

A(D,, + rE) C closed convex hull ( U —T'(mD,, + mrE)) CA(D,, +rE).

m
m>0

To establish the equality A(D,,) = A(D,,) in the case r = 0, we note that for any m >
0, LT'(mD,,) contains all of the interior L-integer points of A(D,,). By Proposition 4.2,
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I'(mD,,) is precisely the set of valuations of polynomials in A(mD,,). This implies that
the Newton-Okounkov body A(D,,) contains all the interior rational points of A(D,,),
which establishes the remaining inclusion A(D,,) D A(D,,).

Finally, we check the case 7 < 0. By the homogeneity of Newton-Okounkov bodies,
we may assume r < 0 is even. In this case, we have by definition A(mD,, + mrE) =
A(mD,,) for all m > 1, so A(D,, + rE) = A(D,,) = A(D,,). It remains to check that
A(D,, +7E) = A(D,,). This can be seen from the alternate expression for A(D,, +rE),
which holds for all r,

0<a;<ay<---<a, <c and

) bj > laj)+ D i=1,..j-1(r —aj + a;),
a;~«~,an,b,...,bn € R*" aj—a; <r
(a1 1 ) b; < u(ay) _Zk=j+1,.<“,n(7“—ak+aj),
ak—a]' s
forall j=1,...,n.

This alternate description can be established by the same argument given for I, after
Definition 3.2. With this description one can see that whenever » < 0, the conditions
aj —a; < rand ap —a; < r never hold, since i < j < k implies a; < a; < ag. Thus
for all 7 < 0 these final conditions reduce to the inequalities ¢(a;) < b; < u(a;) for all
j = 1,...,n. This establishes the alternate description of A(D,,) in the statement of
the theorem, and shows that A(D,) = A(D,, + rE) whenever r < 0, completing the
proof. O

Remark 4.9. By a similar argument given in the case r = 0 above, one can show that

A(D,, + rE) is equal to

1
closed convex hull ( U — -I'(mD,, + mrE))

m>0
for all divisors D,, + rE € Pic(X[")).

In the case r = 0, the divisors D,, € Pic(X ["]) are obtained by pulling back from X (™)
via the Hilbert-Chow morphism. The convex sets A(D,,) can therefore be interpreted as
Newton-Okounkov bodies on X (™). By the previous theorem, A(D,,) is identified with the
set of n-tuples (a1,b1),..., (an,bn) € Pp such that a; < --- < a,. From this description
one sees that the Euclidean volume of A(D,,) C R?" is given by

1
V01R2n (Dn) = - (VOle (PD))n
n

By Theorem 2.1 on volumes of Newton-Okounkov bodies, this gives

volxm (Dn) 1 (volx(D)\"
)((;;L)! —a( ;! ) ‘
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The Newton-Okounkov body A(D,,) therefore gives a convex geometric interpretation
for this known formula for vol(D,,). This formula can also be proved directly from the
identity

B (X", 0(D,,)) = <hO(X, O(D)) +n - 1>.

n

For r < 0, the Newton-Okounkov bodies A(D,, + rE) are constant equal to A(D,,).
This leaves the case r > 0, where we have only obtained an upper bound on the Newton-
Okounkov body. Effective divisors in this remaining region are difficult to describe, so it
is unsurprising that these Newton-Okounkov bodies are more difficult to compute. This
is discussed further in the remaining sections.

4.4. Examples and conjectures

We continue to use A(D,, +rE) to denote the convex body appearing in Theorem 4.8.
The containment

A (D, +rE)C A(D, +rE)
of Theorem 4.8 is strict for most toric surfaces X. However, we propose:

Conjecture 4.10. If the surface X is P2, P* x P!, or a Hirzebruch surface, then A(D,, +
rE) = A(D,, + 1E) for all divisors D,, + rE € Pic(X™).

For P2 and P! x P!, the choice of coordinates does not matter. For Hirzebruch surfaces
however, one must choose coordinates so that the Newton polygons are oriented as in
the pictures at the top of the table on the final page. This asymmetry apparently comes
from our choice of valuation.

Example 4.11. We check that Conjecture 4.10 holds for (P?)!*. Denote the image of the
class of a line in Pic((P?)[) by H. In this case, the Newton polygon of dH is the right
triangle

Pyg = {(a,b) S R2

a >0, and
0<b<d—a]’

so the Newton-Okounkov body A(dH +rE) is contained in the convex set A(dH +rE),
defined by

0<a; <az <az <ay, and
(al,...,a4, bjZ0+(j—i)(T—aj)+ai+"‘+aj—17
bl,...,b4)€R8 bj <(d—aj)—(k—j)(r+aj)+ajs+ -+ ak,
forall1<i<j<k<A4
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That {A(dH +rE) x (d,r) | (d,r) € R?} C R?" x R? is a convex cone is evident from
the inequalities above. One can check that A(—E) is the singleton {0}, and A(3H+2E) is
the singleton {(0,0,1,3,0,2,2,0)}. By the discussion at the end of the previous section,
one knows that A(H) is a full dimensional polytope. The convexity of the cone over
these sets therefore implies that A(dH + rE) is nonempty precisely when dH + rE is in
the convex cone spanned by —F and 3H + 2FE, i.e. when dH + rE is effective [1]. The
effective cone has a chamber decomposition such that in each chamber the convex bodies
A(D) vary linearly. For example, divisors in the cone spanned by (3H + E) and H can
be written as (3H + E) + yH for z,y > 0, and one has

A(x(3H + E) + yH) = A(3H + E) + yA(H)

for all -,y > 0. The complete decomposition of Eff((P?)[4) in this way is depicted below.

A

4H
3H

2H

—2FE —-FE 0 E 2F

N

By Theorem 4.8, we have A(D) = A(D) for all divisors D in the cone spanned by —E
and H. Since A(—E) = {0}, linearity in this chamber says that A(tH — sE) = tA(H)
for all t,s > 0.

It remains to check that A(dH 4 rE) = A(dH + rE) in the case r > 0. Consider the
ample divisor 4H + E. By Theorem 2.1 on volumes of Newton-Okounkov bodies, and
the fact that the volume of an ample divisor is equal to its top self intersection number,
we have

1
VOIRS (A (4H —+ E)) = g VOl(]PaQ)[AL] (4H -+ E)

1

o / (4H + E)° =

(Ph

1692165
8

This self intersection number was computed with the equivariant localization formula.
With a computer one can also calculate the Euclidean volume of the upper bound,
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112811 1692165
2688 81

volgs (A (4H + E)) =

By Theorem 4.8 we have the inclusion A (4H + E) C A (4H + E), but these two convex
bodies have the same volumes so they must be equal.

Surprisingly, this one calculation implies that A(D) = A(D) for all remaining divisors
as well. Indeed, we first consider divisors of the form (4 —t)H + E for some real number
t > 0. One way to handle these divisors is to apply Theorem 4.24 from [16] on slices of
Newton-Okounkov bodies. With our usual coordinates (a1, ..., a4,b1,...,bs) on RS the
theorem implies that for any divisor D € Pic(X[™) and t > 0 we have

A(D—tH)=A(D), 5, - (1,0,...,0.)

In other words, the Newton-Okounkov body A (D —tH) is equal to the part of the
Newton-Okounkov body A (D) with first coordinate at least ¢, shifted down by ¢ in the
first coordinate. There is a subtlety in that our valuation v is not defined using flags as
in [16], so the theorem does not strictly apply as stated. However, the first coordinate of
v is equal to the order of vanishing of the corresponding section along a divisor of class
H, so the result still holds. One can also check this property directly in this case, at
the level of polynomials and trailing terms. It follows from the defining inequalities that
A(D — tH) = A(D) 4>t — (t,0,...,0) as well for all D € Pic((P?)1). This, with the
homogeneity of Newton-Okounkov bodies, implies that A(D) = A(D) for all divisors D
in the cone spanned by 4H + E and 3H + 2F.

This leaves the divisors in the cone spanned by 4H 4+ E and H. We have A(D) = A(D)
for D on the boundary rays of this cone, and A(D) varies linearly on the cone. But
Newton-Okounkov bodies are super-additive, in the sense that

A(zD +yD'") 2 zA(D) + yA(D')

for any divisors D, D’ and x,y > 0. We conclude that A(D) = A(D) for divisors in this
final region as well. O

The decomposition of Eff((P?)[) into chambers on which the Newton-Okounkov
bodies vary linearly corresponds to a Minkowski basis for A((IP’Q)[4]) in the terminology
of [20]. In this case the Minkowski basis decomposition coincides with the stable base
locus decomposition of (P2)[4 [1], but these decompositions appear to differ for n > 4.

One can show that the convex bodies A(D) vary linearly on the nef cone of (IP2)l"
for any n, so the argument given above can be applied to any of the Hilbert schemes
(P2)I": Pick any ample divisor D € Pic((P?)") (the nef divisor D = (n — 1)H + F
would also work), and compute both the Euclidean volume volgz» A(D), and the top
self-intersection number | (P2)in] D?". If these numbers agree up to the factor of (2n)!,
then Conjecture 4.10 holds for all divisors on (P?)["] for the given n.

The top self-intersection numbers can be computed quickly, even for relatively large
n, using the equivariant localization formula. It is much more difficult to compute the
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volumes of the convex bodies A(D). In the case n = 4 above, the convex body A(4H +E)
whose volume we computed is a polytope in R® with 186 vertices. For n = 5, the convex
set Z(4H + E) is a polytope in R1? with 581 vertices. The complexity of these polytopes
makes it impractical for verify Conjecture 4.10 for large n in this way.

We have similarly checked Conjecture 4.10 for nef divisors on the Hilbert schemes
of small numbers of points on P! x P!, and the first several Hirzebruch surfaces. One
can show that when the surface X is P! x P! or a Hirzebruch surface, the polytopes
A(D) again vary linearly for D in the nef cone of X", The increased Picard rank of
these surfaces, however, means that the theorem on slices of Newton-Okounkov bodies
(Theorem 4.24 of [16]) fails to cover the remaining effective divisors. Our justification
for asserting Conjecture 4.10 for non-nef divisors as well comes from the data computed
in the final section about the cones of effective divisors.

4.5. The cone of effective divisors on X[

Characterizing the effective divisors on X[ appears to be a subtle problem (see [2],
Section 3). Huizenga has computed the effective cones on (P?)[™ for all n, which depend
on the slopes of stable vector bundles on P2 [13]. For other surfaces, the effective cones
are known only for small values of n.

In Proposition 4.2 we identified the global sections of O(D,, + rE) € Pic(X[™) with
the set A(D,, + rE), consisting of the (anti-)symmetric polynomials contained in the
ideal J" that satisfy a term condition determined by D. However, it is unclear from
the definition of A(D,, + rFE) even when these spaces are zero, i.e. when D,, + rFE is
effective. If one knew the Newton-Okounkov bodies exactly, then one would also know
the set of effective divisors, since A(D,, + rE) is nonempty precisely when D,, + rE
is pseudo-effective. We have an upper bound for the Newton-Okounkov bodies, so we
obtain a corresponding upper bound for the effective cones.

Corollary 4.12. For any effective divisor Dy, +rE on X, the convex set Z(Dn +rE) C
R2" §s nonempty.

Proof. Since D,, — £ B is effective, the Newton-Okounkov body A(D,, — 5 B) is nonempty
and is contained in A(D,, + rE) by Theorem 4.8. O

This corollary can be used to show that divisors are not effective, and therefore implies
an upper bound for the effective cone of X, This upper bound is best understood via
the global Newton-Okounkov body, as we now explain.

One can define the Newton polygon of any class D € N!'(X)g. Similarly, we extend
the sets A(D,, +7E) to all real classes D,, +7E € N*(X[")g using the same inequalities
given in Theorem 4.8. Let A(X[M) € N'(X[)g x R?" be the set whose fiber over
any real class ¢ € NY(X[)g is A(€). Tt follows from the defining equations given in
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Theorem 4.8 and the convexity of global Newton-Okounkov body of X that A(X ["}) is
a closed, convex, polyhedral cone.

This set A(X ™) is an upper bound for the global Newton-Okounkov body A(X[),
whose fiber over a divisor is its exact Newton-Okounkov body. The global Newton-
Okounkov body projects precisely onto the effective cone A(X[™) — N1(X[)g. The
previous corollary can therefore be rephrased as follows.

Corollary 4.13. The image of the projection A(X") — N1 (XI"g contains the cone of
effective divisors. 0O

The advantage of this phrasing is that computing the linear images of these polyhedra
can be reduced to linear optimization problems.

Conjecture 4.10 would imply that the upper bound of Corollary 4.13 equals the exact
effective cone for Hilbert schemes of points on P2, P! x P!, and Hirzebruch surfaces. We
have verified that this holds for n < 171 points on P? numerically. For example, for the
Hilbert scheme of 32 points on P2, we set up the linear optimization problem to give a
lower bound on y, where . H + F lies on the boundary of the effective cone of (IP?)132l. We
numerically approximated the solution to be 6.57894736842105. The exact solution to
the optimization problem is easily seen to be rational, and the numerical approximation
is within 1071° (all of the digits shown) of the exact value of u, which is 125/19.

The table on the final page contains upper bounds for certain slices of effective cones
computed numerically for the Hilbert schemes of points on P2, P! x P!, and the Hirze-
bruch surfaces J#, and 4. These numbers were obtained using the same shortcut of
numerical approximation, followed by finding an unusually close, simple rational number.

For the surfaces other than P2, these values do not determine the entire effective cone
due to the larger Picard rank, but it is possible to use Corollary 4.13 to compute the
entire effective cone bounds in these cases as well. Ryan [19] has computed the effective
cones on P! x P! for n < 16, which coincide with the upper bound of Corollary 4.13
in each case. For n > 17 points on P! x P!, there is an upper bound on the effective
cone of (P' x P1)[ obtained in [2] (Example 3.9) coming from certain moving curve
classes. We have checked numerically for all n < 100 that the effective cone bound from
Corollary 4.13 satisfies the inequalities obtained in [2].

In many cases, the upper bound of Corollary 4.13 implies new inequalities bounding
the effective cones. For example, we have found that for n = 17 points on P! x P!, any
effective divisor x Hy+yHo+2 E satisfies 8x+5y > 40z (and symmetrically 5z+8y > 40z).
Here we use H; and Hj to denote the images of the classes of lines {p} x P! and P! x {p}
in Pic((P! x Pl)["]). More generally we have observed, but not proved, that for any
k > 0 and n = 17 + 6k there appear to be conditions 52 + 8y > (40 + 16k)z and
8x + by > (40 + 16k)z restricting effective divisors ©H; + yHs + zE. We have observed
many other similar families of inequalities on the effective cones of P! x P!, J4, and 7.
It would be interesting to find families of moving curve classes corresponding to these
inequalities.
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P! x P! ¥

n o n "
2 1/2 2 1/2
31 3 2/3
4 1 4 1

5 4/3 5 1

6 3/2 6 5/4
7 7/4 775
8 2 8  8/5
9 2 9  5/3
10 9/4 10 11/6
11 12/5 12
12 5/2 12 2
13 8/3 13 24/11
14 17/6 14 16/7
15 3 15 19/8
16 3 16 5/2
17 16/5 17 21/8
18 33/10 18 8/3
19 24/7 19  25/9
20 7/2 20 26/9
21 40/11 21 3
22 15/4 2 3
23 31/8 23 22/7
24 4 24 45/14
25 4 25  33/10
26 25/6 26 101/30
27 17/4 27 52/15
28 13/3 28 39/11
29 40/9 29 40/11
30 9/2 30 11/3
31 60/13 31 15/4
32 47/10 32 23/6
33 24/5 33 47/12
34 49/10 34 4
3 5 35 4
36 5 36 70/17
37 36/7 37 71/17
38 73/14 38 161/38
39 37/7 39 56/13
40 59/11 40 157/36

D000 otk w3

DO N DD = = = b s e e e
N = O OO0 Ui W =
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28
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30
31
32
33
34
35
36
37
38
39
40

I

1/3
2/3
3/4

6/5
4/3
16/11
11/7
12/7
7/4
15/8

15/7
20/9
23/10
12/5
37/15
28/11
29/11
30/11
11/4
17/6
35/12

28/9
19/6
42/13
23/7
64/19
24/7
73/21
53/15
18/5
11/3
56,15
15/4
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Each polygon Pp corresponds to a divisor D on a specified toric surface X. For
each n > 2, any effective divisor of the form ¢D,, + F on X "] has t > . These p’s
are conjectured to be optimal, i.e. uD,, + E conjecturally lies on the boundary of the

effective cone of X[,
Data availability
No data was used for the research described in the article.
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