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We compute the (unbounded) Newton-Okounkov body of the 
Hilbert scheme of points on C2. We obtain an upper bound for 
the Newton-Okounkov body of the Hilbert scheme of points 
on any smooth toric surface. We conjecture that this upper 
bound coincides with the exact Newton-Okounkov body for 
the Hilbert schemes of points on P 2

, P 1
×P 1, and Hirzebruch 

surfaces. These results imply upper bounds for the effective 
cones of these Hilbert schemes, which are also conjecturally 
sharp in the above cases.
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1. Introduction

For a smooth, algebraic surface X over C, the Hilbert scheme of n points on X

parametrizes length n, zero-dimensional subschemes of X. A well-known theorem due to 

Fogarty states that this Hilbert scheme, denoted X [n], is a smooth, irreducible variety 

of dimension 2n [6]. In this paper we study effective divisors on the Hilbert schemes of 

points on toric surfaces using methods from the theory of Newton-Okounkov bodies.

Newton-Okounkov bodies are convex bodies associated to divisors on algebraic vari-

eties, generalizing the connection between Newton polytopes and toric varieties. These 
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convex bodies were introduced in passing by Okounkov [17][18], and their theory was fur-

ther developed by Kaveh-Khovanskii [14] and Lazarsfeld-Mustaţă [16]. We briefly recall 

the construction. Let Y be a d-dimensional irreducible variety and D a Cartier divisor on 

Y . The Newton-Okounkov body of D depends on a choice of valuation ν : C(Y )× → Z
d

with one-dimensional leaves defined on the field of rational functions C(Y ). After fixing 

ν, the valuations obtained from sections of O(D) and its multiples can be assembled into 

a graded semigroup,

Γ(D) =
⊕

m≥0

Γm(D) =
⊕

m≥0

{(m, ν(f)) | f ∈ H0(Y, O(mD))×} ⊆ Z × Z
d,

and the Newton-Okounkov body Δ(D) is defined to be the closed convex hull,

Δ(D) = conv

(

⋃

m>0

1

m
Γm(D)

)

⊆ {1} × R
d � R

d.

When Y is projective and D is a big divisor, the convex set Δ(D) ⊆ R
d is bounded 

([16] Lemma 1.1), and has the property that its Euclidean volume is equal to the volume 

of D as a divisor after normalizing by a factor of d! ([14] Corollary 3.11, [16] Theorem 

2.3). It is sometimes more convenient to talk about the Newton-Okounkov body Δ(L )

of a line bundle L on Y , which is defined by replacing O(mD) with L ⊗m in the above 

construction.

We first study the Hilbert scheme of n points on C2. In [11], Haiman identifies (C2)[n]

with an explicit blowup of the symmetric power (C2)(n). This identification equips (C2)[n]

with an ample line bundle, which we denote by O(1). Our first result is a computation of 

the Newton-Okounkov body of this line bundle with respect to a trailing term valuation 

ν defined in Definition 3.1.

Theorem 1.1. The Newton-Okounkov body of the line bundle O(1) on (C2)[n] with respect 

to ν is the closed convex hull of the set of n-tuples of distinct pairs (a1, b1), . . . , (an, bn) ∈

Z
2
≥0, labeled in increasing lexicographic order. This unbounded, convex polyhedron is 

defined by the inequalities

Δ (O(1)) =

⎧

⎨

⎩

(a1, . . . , an,

b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ · · · ≤ an, and

bj ≥ (j − i)(1 − aj) + ai + · · · + aj−1,

for all 1 ≤ i ≤ j ≤ n

⎫

⎬

⎭

.

This theorem is proved in Section 3. Haiman’s construction identifies the global 

sections of O(m) with certain polynomials, and the Newton-Okounkov body above is 

computed using a trailing term valuation on these polynomials (Definition 3.1). As 

(C2)[n] is not projective, the spaces of global sections of O(m) are infinite-dimensional, 

and accordingly the polyhedron Δ(O(1)) is unbounded. However, Δ(O(1)) still encodes 
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asymptotic information about the sections of O(m) equivariantly, via the Duistermaat-

Heckman measure (see Section 3.6). These polyhedra have interesting combinatorial 

structure: for instance their top-dimensional bounded faces are enumerated by Catalan 

numbers.

Next we study the Hilbert schemes of points on smooth, projective, toric surfaces. 

We recall Fogarty’s description of the Picard group Pic(X [n]) from [7]. Let X be a 

smooth projective surface with irregularity q(X) = 0 (which is the case whenever X

is toric). There is a linear embedding Pic(X) ⊆ Pic(X [n]), which we denote D �→ Dn. 

Geometrically, if D is the class of a smooth, irreducible curve C ⊆ X, then Dn is 

represented by the locus of length n subschemes of X whose supports meet the curve 

C. The exceptional locus of the Hilbert-Chow morphism is an irreducible divisor on 

X [n] consisting of the nonreduced subschemes of X, whose class we denote by B. For 

notational convenience we often use the divisor class E = −1
2B, which corresponds more 

directly to the line bundle O(1) on (C2)[n], instead of the geometrically defined divisor 

B. With this identification, there is an isomorphism Pic(X [n]) � Pic(X) × ZE.

When X is a smooth, projective, toric surface, Pic(X) is generated by torus invariant 

divisors. In Section 2.2 we recall the definition of the Newton polytope PD of such a 

divisor D and identify PD with a subset of R2, writing

PD =

{

(a, b) ∈ R
2

∣

∣

∣

∣

0 ≤ a ≤ c, and

�(a) ≤ b ≤ u(a)

}

for some constant c, and piecewise linear functions � and u.

Theorem 1.2. Let D be a torus invariant divisor on a smooth, projective, toric surface X, 

with PD as above. For any r ∈ Z, the Newton-Okounkov body Δ(Dn + rE) is contained 

in the convex set

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a1, . . . , an,

b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ c, and

bj ≥ �(aj) + (j − i)(r − aj) + ai + · · · + aj−1,

bj ≤ u(aj) − (k − j)(r + aj) + aj+1 + · · · + ak,

for all 1 ≤ i ≤ j ≤ k ≤ n

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

This is proved in Section 4. For PD = R
2
≥0, the convex set defined above recovers the 

Newton-Okounkov body of O(r) on (C2)[n]. We refer to the convex body appearing in 

Theorem 1.2 as Δ(Dn + rE), so the theorem asserts the inclusion

Δ (Dn + rE) ⊆ Δ (Dn + rE) .

For most toric surfaces X, this is a strict containment, but based on explicit computations 

for small n we propose the following.
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Conjecture 1.3. If the surface X is P 2, P 1 × P
1, or a Hirzebruch surface, then the con-

tainment in Theorem 1.2 is sharp for all torus invariant divisors D ∈ Pic(X) and all 

r ∈ Z. In other words, we conjecture the equality

Δ (Dn + rE) = Δ (Dn + rE)

for all divisors Dn + rE ∈ Pic(X [n]) in these cases.

In Section 4.4 we verify this conjecture in the case of n = 4 points on P 2 to illustrate 

the methods leading to Conjecture 1.3, as well as the geometric information that these 

convex sets encode about the Hilbert schemes.

Of particular interest are the cones of effective divisors on X [n], which have been 

studied extensively [1], [2], [13], [19]. Huizenga [13] has computed the effective cones of 

(P 2)[n] for all n, but for other surfaces the effective cones are known only for small n. 

Theorem 1.2 implies an upper bound for the cone of effective divisors on X [n]. Indeed, 

effective divisors ξ ∈ Pic(X [n]) have nonempty Newton-Okounkov bodies Δ(ξ), so if the 

upper bound Δ(ξ) ⊇ Δ(ξ) is empty, then ξ is not effective. To compute the implied 

upper bound on the effective cones, it is convenient to use the global Newton-Okounkov 

body and its convexity properties, as explained in Section 4.5.

Conjecture 1.3 would imply that this method computes the exact effective cones for 

the Hilbert schemes of points on P 2, P 1 × P
1, and Hirzebruch surfaces. We have verified 

that this upper bound agrees with the effective cones of (P 2)[n] computed by Huizenga 

for all n ≤ 171 numerically (see Section 4.5). Ryan [19] has computed the effective cones 

for the Hilbert schemes of n ≤ 16 points P 1 × P
1, and the upper bound is sharp in these 

cases as well. We have also computed similar bounds for Hirzebruch surfaces.

Upper bounds on the effective cone are often obtained by intersecting with moving 

curve classes. This differs from the approach described above, which comes instead from a 

valuation on the effective divisors. The valuation records order-of-vanishing information 

about individual effective divisors, whereas intersection products with curves depend 

only on the linear (indeed numerical) equivalence class of the divisor. Characterizing 

the set of valuations of all effective divisors in a given linear equivalence class is a large 

refinement of the problem of characterizing which classes contain an effective divisor. 

Given Conjecture 1.3, however, this finer invariant appears to yield simpler results, at 

least asymptotically. Indeed, the conjectural global Newton-Okounkov body is described 

by a list of explicit inequalities, uniform in the number of points n. Explicit descriptions 

of the effective cones however, which are projections of the global Newton-Okounkov 

bodies, appear to depend on the arithmetic properties of n [2]. A table containing some 

data on effective cones computed using this method can be found at the end of Sec-

tion 4.5.

Acknowledgments: I thank the authors of [1] and [10], whose exposition enabled me 

to learn about Hilbert schemes of surfaces. I am grateful to Izzet Coskun for helpful 

discussion during the early stages of this project. Most of all I thank David Anderson for 
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teaching me about Newton-Okounkov bodies, providing detailed comments on the many 

iterations of this document, and suggesting the problem of computing Newton-Okounkov 

bodies of Hilbert schemes in the first place.

Conventions: We use the term variety to mean algebraic variety over C, and divisor

always means Cartier divisor. We equip Zd with the lexicographic order.

2. Background

2.1. Newton-Okounkov bodies

We refer to [14] and [16] for proofs of the results stated in this section. Let Y be a 

d-dimensional, irreducible variety over C. A valuation on Y is a group homomorphism 

ν : C(Y )× → Z
d such that

• ν(f +g) ≥ min{ν(f), ν(g)} for all f, g ∈ C(Y )× (with the lexicographic order on Zd, 

as always), and

• ν(λ) = 0 for all nonzero constant functions λ ∈ C
× ⊆ C(Y )×.

One says that ν has one-dimensional leaves if for any a ∈ Z
d the leaf at a,

Fa = {f ∈ C(Y )×|ν(f) ≥ a}/{f ∈ C(Y )×|ν(f) > a},

is a vector space of dimension at most one. This property implies that for any finite-

dimensional linear subspace V ⊆ C(Y ), the set {ν(f)|f ∈ V \ {0}} ⊆ Z
d has exactly 

dim(V ) elements.

Fix a divisor D on Y , and a valuation ν with one dimensional leaves. We consider 

H0(X, O(D)) ⊆ C(Y ) identified with the set of rational functions f such that D +

div(f) ≥ 0. The graded semigroup of D with respect to ν is defined as

Γν(D) := {(ν(f), k) | 0 
= f ∈ H0(X, O(kD)), k ≥ 0} ⊆ Z
d × Z.

The grading here refers to the recording of which multiple O(kD) that each valuation 

comes from. One checks that Γν(D) indeed forms a semigroup under the usual coordinate-

wise addition of vectors.

We consider Γν(D) ⊆ Z
d ×Z ⊆ R

d+1 in the obvious way. The cone of Γν(D), denoted 

Σν(D), is the smallest closed, convex, cone containing the entire semigroup Γν(D) ⊆

R
d+1. The Newton-Okounkov body Δν(D) of D is the intersection of the cone Σν(D) with 

the affine subspace Rd × {1} ⊆ R
d+1. We consider Δν(D) ⊆ R

d, and write Δ(D), Γ(D), 

and Σ(D) for these objects when the choice of valuation is clear, or is unimportant.

In our computations, we identify the global sections of divisors O(D) with certain 

sets of polynomials (see Section 2.4). Importantly, these identifications are compatible 

with multiplication of global sections. In other words, if sections s ∈ H0(Y, O(D)) and 
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t ∈ H0(Y, O(E)) are identified with polynomials f and g respectively, then the section 

s ⊗ t ∈ H0(Y, O(D) ⊗ O(E)) � H0(Y, O(D + E)) is identified with f · g. We use a 

leading/trailing term valuation on the associated polynomials, and this multiplication 

property ensures that the resulting sets of valuations still form a semigroup.

The volume of a divisor D on a projective variety Y is the asymptotic growth rate of 

sections of its multiples,

volY (D) := lim
k→∞

h0(Y, O(kD))

kd/d!
.

A divisor D is said to be big if vol(D) > 0. The following fundamental result relates 

the Euclidean volume of the Newton-Okounkov body Δ(D) ⊆ R
d to the volume of the 

divisor D under these hypotheses.

Theorem 2.1. [[14] Corollary 3.11, [16] Theorem 2.3] Let D be a big divisor on a projec-

tive variety Y . Then for any valuation ν on Y with one-dimensional leaves, we have

volRd(Δν(D)) =
1

d!
volY (D).

2.2. Toric surfaces

For the relevant background on toric surfaces we follow Section 6.1 of [16], but restrict 

to the two-dimensional case. We use the notation and definitions established in [8] and 

[4].

A toric surface is constructed from a fan Σ in NR � R
2 where N � Z

2 is 

a two-dimensional lattice. Each cone σ in the fan corresponds to an affine variety 

Uσ = Spec(C[σ∨ ∩ M ]), where σ∨ is the dual cone to σ, and M is the dual lattice 

to N . These affine varieties are then glued together to form the toric surface X = XΣ. 

In particular, the cone σ = {0} gives an open set T = Spec(C[M ]) � (C∗)2 inside of 

X, the two-dimensional algebraic torus. The action of T on itself by coordinate-wise 

multiplication extends to an action of T on the whole surface X. Lattice points m ∈ M

index rational functions χm on X.

We assume that X is smooth and projective, and both of these properties can be 

detected from the fan Σ ([4] Theorem 3.1.19). The surface X is smooth if and only if 

each two-dimensional cone σ ∈ Σ is spanned by integral vectors v, v′ ∈ N such that v

and v′ generate the lattice N . Since X is two-dimensional it is projective if and only if 

it is complete ([4] Proposition 6.3.25), and X is complete if and only if the cones in Σ

cover the whole vector space NR.

Fix an ordering v1, . . . , vs for the generators of the rays in Σ so that the two-

dimensional cones are spanned by consecutive rays [v1, v2], . . . , [vs−1, vs], and [vs, v1]. 

By the orbit-cone correspondence ([4] Theorem 3.2.6), the torus fixed points of X are 

indexed by two dimensional cones σ ∈ Σ, and the T -invariant curves of X are indexed 
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by the rays of Σ. Let Di denote the T -invariant curve corresponding to the ray spanned 

by vi. Let D =
∑s

i=1 diDi be a T -invariant divisor on X. The Newton polygon of D

is

PD = {m ∈ MR | di + 〈m, vi〉 ≥ 0 for all i = 1, . . . , s}

A key fact ([4] Proposition 4.3.3) is that the lattice points in PD index a basis of T -

equivariant functions for the global sections of the line bundle O(D),

H0(X, O(D)) =
⊕

m∈PD∩M

C · χm.

Indeed, div(χm) =
∑

i〈m, vi〉Di, so the defining condition of PD says that the divi-

sor D + div(χm) has nonnegative order of vanishing along each of the T -equivariant 

divisors D1, . . . , Ds. It follows from the definition that changing D within its linear 

equivalence class translates the Newton polytope accordingly, PD+div(χm) = PD −

m.

To relate these Newton polytopes to Newton-Okounkov bodies, we choose coordinates 

on X. Let σ be the two dimensional cone in Σ with boundary rays spanned by v1 and 

v2. Define m1 and m2 to be primitive generators of the dual cone σ∨, with 〈mi, vj〉 = δij

for i, j = 1, 2. Since we assumed X to be smooth, m1 and m2 form a Z-basis of M . We 

denote the coordinates on Uσ � C
2 by x and y, so that the torus character χpm1+qm2 |Uσ

corresponds to xpyq. This implies that D1|Uσ
is defined by x = 0, D2|Uσ

is defined by 

y = 0, and D3, . . . , Ds are all disjoint from Uσ.

By Theorem 4.2.1 of [4] there is a short exact sequence

0 M Z
s Pic(X) 0,

where Zs is the set of T -invariant divisors generated by D1, . . . , Ds, the first map sends 

a lattice point m to the principle divisor div(χm) =
∑s

i=1〈m, vi〉Di, and the second map 

sends a divisor to its class. By Proposition 4.2.5 of [4] the Picard group of X is torsion 

free. This shows that Pic(X) is isomorphic to Zs−2, freely generated by the divisor classes 

D3, . . . , Ds.

For the rest of the paper we identify M � Z
2 with generators m1 and m2 correspond-

ing to our choice of open set Uσ. We use coordinates (a, b) to denote am1 + bm2 in either 

M � Z
2 or MR � R

2. We also identify PD with its image in R2, writing

H0(X, O(D)) �
⊕

(p,q)∈PD∩Z2

C · xpyq.

Each divisor class in Pic(X) has a unique representative of the form D =
∑s

i=3 diDi. For 

such divisors, the inequalities on PD corresponding to d1 = d2 = 0 impose the conditions 

a, b ≥ 0 on points (a, b) ∈ PD ⊆ R
2. This polygon can therefore be defined as
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PD =

{

(a, b) ∈ R
2

∣

∣

∣

∣

0 ≤ a ≤ c, and

�(a) ≤ b ≤ u(a)

}

for some constant c, and piecewise linear functions � and u. This convex set is equal to 

the Newton-Okounkov body of D, with valuation given by the order of vanishings along 

D1 and D2, as explained in [16] Section 6.1. We abuse terminology by referring to this 

Newton-Okounkov body as the Newton polytope of the entire class of D in Pic(X).

2.3. Hilbert schemes of points on surfaces

Let X be a smooth, irreducible surface over C, and n ≥ 2 an integer. We assume 

that the irregularity of the surface vanishes q(X) = h1(OX) = 0, which is the case when 

X is a toric surface. The Hilbert scheme of n points on X, denoted X [n], parametrizes 

zero-dimensional subschemes of X of length n. The simplest such subschemes are the 

reduced subschemes supported on n distinct points of X, which is why X [n] is referred 

to as the Hilbert scheme of points on X.

Let X(n) = Xn/Sn denote the symmetric power of X. The Hilbert scheme X [n] comes 

equipped with the Hilbert-Chow morphism X [n] → X(n), which maps a length n sub-

scheme Z ⊆ X to its support counted with multiplicity. A fundamental result of Fogarty 

states that the Hilbert scheme X [n] is a smooth, irreducible, variety of dimension 2n ([6]

Theorem 2.4). It follows from its construction [9] that X [n] is projective whenever the 

surface X is projective. The Hilbert-Chow morphism X [n] → X(n) is a birational resolu-

tion of singularities, and an isomorphism over the dense open set of reduced subschemes 

U ⊆ X [n] ([6] Corollary 2.6).

When X is a toric surface, X [n] is not typically a toric variety, but it does inherit a 

two-dimensional torus action from that on X. This is the diagonal torus action, where 

t ∈ T sends the reduced subscheme supported on {p1, . . . , pn} to the reduced subscheme 

supported on {t · p1, . . . , t · pn}. In general, t ∈ T determines an isomorphism X → X

and the action of t on a subscheme Z ∈ X [n] is defined as the pushforward of Z under 

this map.

In [7], Fogarty constructs a linear embedding of divisors Pic(X) ↪→ Pic(X [n]) as 

follows: A divisor D ∈ Pic(X) determines a symmetric divisor π∗
1D + · · · + π∗

nD on Xn, 

where π1, . . . , πn are the coordinate projections Xn → X. By symmetry this divisor 

descends to a divisor D(n) on the symmetric power X(n). The divisor Dn ∈ Pic(X [n])

is defined to be the pullback of D(n) via the Hilbert-Chow morphism. The exceptional 

divisor of the Hilbert-Chow morphism, the locus of nonreduced schemes, is an irreducible 

divisor which we denote by B. As noted in the introduction, we often express divisors 

in terms of the class E = −1
2B rather than B. Under the hypotheses q(X) = 0, Fogarty 

shows ([7] Theorem 6.2) that there is an isomorphism

Pic(X [n]) � Pic(X) × Z · E.
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2.4. An algebraic model of (C2)[n]

In this section we mainly follow Haiman’s study of the Hilbert scheme (C2)[n] from 

[11]. Consider the polynomial ring C[x, y] = C[x1, . . . , xn, y1, . . . , yn], with the di-

agonal action of the symmetric group Sn. This means that Sn permutes the pairs 

(x1, y1), . . . , (xn, yn) in blocks, i.e.

wxi = xw(i), wyi = yw(i) for all w ∈ Sn.

With respect to this diagonal action, let A0 ⊆ C[x, y] be the space of symmetric 

polynomials, and A1 ⊆ C[x, y] the space of alternating polynomials. For r > 1, define 

Ar to be the linear span of all r-fold products of alternating polynomials. These spaces 

can be assembled into a graded ring, which we denote by S = A0 ⊕ A1 ⊕ A2 ⊕ · · · .

Theorem 2.2 (Haiman [11]). The Hilbert scheme of points (C2)[n], equipped with the 

Hilbert-Chow morphism, is isomorphic to Proj(S) as a scheme over the symmetric power 

(C2)(n) = Spec A0.

The above isomorphism equips (C2)[n] with an ample line bundle O(C2)[n](1), or simply 

O(1). The line bundle O(1) is linearly equivalent to O(E) � O(−1
2B), where B is the 

divisor of nonreduced subschemes of C2. The space of global sections H0((C2)[n], O(r)) is 

isomorphic to the degree r piece of the integral closure of S ([12], Section 2 Ex. 5.14). In 

fact S is already integrally closed, a result which we later deduce from Haiman’s results, 

along with our study of valuations (Corollary 3.10). This may be known to experts, but 

we have been unable to locate a reference.

Let J ⊆ C[x, y] denote the ideal generated by A1. Using his proof of the Polygraph 

Theorem, Haiman (Proposition 4.3 of [10]) proves that J is equal to the radical ideal

J =
⋂

i�=j

(xi − xj , yi − yj),

and more generally

Jr =
⋂

i�=j

(xi − xj , yi − yj)r

for all r ≥ 1. Define S = A
0
⊕A

1
⊕A

2
⊕· · · where A

2r
= A0∩J2r and A

2r+1
= A1∩J2r+1

for all r ≥ 0.

Lemma 2.3. For all r ≥ 0, we have

Ar ⊆ H0((C2)[n], O(r)) ⊆ A
r

In the cases r = 0, 1 there is equality A0 = A
0
, and A1 = A

1
.
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Proof. The equalities A0 = A
0

and A1 = A
1

follow from the definitions, and the inclusion 

Ar ⊆ A
r

is also straightforward. Since H0((C2)[n], O(r)) is the degree r part of the 

integral closure of S, it suffices to show that S is integrally closed.

Haiman’s description of the ideals Jr above shows that C[x, y][tJ ] ⊆ C[x, y, t] is 

integrally closed. The following argument is also due to Haiman ([11], p. 218): Consider 

the action of Sn on C[x, y, t] extending the diagonal Sn action on C[x, y] by setting 

σ(t) = sgn(σ)t. The ring of invariants C[x, y, t]Sn is A0 ⊕ tA1 ⊕ t2A0 ⊕ t3A1 ⊕ · · · , which 

implies that this ring is also integrally closed.

These two facts imply that S is integrally closed as well, as it is the intersection of 

two integrally closed subrings of C[x, y, t], completing the proof. �

The line bundles O(r) are T -linear, where T � (C∗)2 acts on (C2)[n] diagonally as in 

the previous section. The T -action on O(r) induces a Z2-grading on the global sections 

of O(r). Under the inclusion H0((C2)[n], O(r)) ⊆ C[x, y], this Z2-grading is inherited 

from the grading on C[x, y] in which the monomial xp1

1 · · · xpn
n yq1

1 · · · yqn
n has degree 

(p1+· · ·+pn, q1+· · ·+qn). In other words, the spaces of global sections H0((C2)[n], O(r))

are graded subspaces of C[x, y] with respect to this Z2-grading.

3. The Hilbert scheme of points on C2

The main goal of this section is to compute the Newton-Okounkov body of the line 

bundles O(r) on (C2)[n], defined in the previous section. This computation is based on 

Lemma 2.3, which identifies the global sections of O(r) with certain sets of polynomials. 

In the notation introduced in the previous section, Lemma 2.3 states that

Ar ⊆ H0((C2)[n], O(r)) ⊆ A
r

⊆ C[x, y]

for all r ≥ 0. We show that Ar = A
r

for all r ≥ 0 (Corollary 3.10), characterizing the 

spaces of sections exactly. The main step in the proof is to show that the sets of trailing 

terms obtained from polynomials in Ar are the same as those obtained from A
r
, with 

respect to a certain term order. We use the corresponding trailing term valuation, so this 

computation also provides the valuations out of which the Newton-Okounkov bodies are 

constructed. Finally, we use this description of the sets of valuations to compute the 

Newton-Okounkov bodies (Theorem 3.13).

More specifically, we use the following valuation.

Definition 3.1. Let ν : C[x, y] \ {0} → Z
2n be the trailing term valuation in the lexico-

graphic term order, with x1 > x2 > · · · > xn > y1 > y2 > · · · > yn.

The valuation ν has one-dimensional leaves, as do all leading/trailing term valuations 

on polynomials. Indeed, if f and g are two polynomials with the same trailing term, 

then there is some nonzero linear combination f − λg which cancels the trailing term 
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and therefore either has a larger valuation or is 0. This shows that the leaf at the common 

valuation must be one-dimensional.

We use coordinates (a1, . . . , an, b1, . . . , bn) on Z2n, so that the ai coordinates corre-

spond to the exponents of the xi’s, and the bi coordinates correspond to the exponents 

of the yi’s. For example, the terms of the polynomial f = x2
1x2

2y2 + x1x4
2y5

1y3
2 ∈

C[x1, x2, y1, y2] have exponent vectors (a1, a2, b1, b2) = (2, 2, 0, 1), and (1, 4, 5, 3). So 

ν(f) = (1, 4, 5, 3), the smaller vector lexicographically.

For later reference, we define sets Γr, which turn out to be the sets of valuations of 

polynomials in Ar (and therefore in H0((C2)[n], O(r)) as well).

Definition 3.2. For integers r ≥ 0, set

Γr :=

⎧

⎪

⎨

⎪

⎩

(p1, . . . , pn,

q1, . . . , qn) ∈ Z
2n
≥0

∣

∣

∣

∣

∣

∣

∣

p1 ≤ p2 ≤ · · · ≤ pn,

if pj = pj+1 then qj+1 ≥ qj + r, and

qj ≥
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi) for all j

⎫

⎪

⎬

⎪

⎭

.

Equivalently,

Γr =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(p1, . . . , pn,

q1, . . . , qn) ∈ Z
2n
≥0

∣

∣

∣

∣

∣

∣

∣

∣

p1 ≤ p2 ≤ · · · ≤ pn,

if pj = pj+1 then qj+1 ≥ qj + r, and

qj ≥ (j − i)(r − pj) + pi + · · · + pj−1,

for all 1 ≤ i ≤ j ≤ n

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

These descriptions are indeed equivalent, because p1 ≤ · · · ≤ pn implies that

∑

�=1,...,j−1
pj−p�<r

(r − pj + p�) = max
i=1,...,j

{

j−1
∑

�=i

(r − pj + p�)

}

= max
i=1,...,j

{(j − i)(r − pj) + pi + · · · + pj−1}

for all j, as the first sum is over precisely the terms (r − pj + p�) which are positive.

In Sections 3.1 and 3.3 we give simpler descriptions of the sets Γr, but it is convenient 

to take the explicit description above as the definition.

3.1. Bases for A0 and A1

The spaces A0 and A1 have well-known bases that realize Γ0 and Γ1 as their respective 

sets of valuations.

For any n-tuple (p, q) = ((p1, q1), . . . , (pn, qn)) ∈ (Z2
≥0)n, possibly with repetitions, 

there is a monomial symmetric polynomial

m(p,q)(x, y) = xp1

1 · · · xpn
n yq1

1 · · · yqn
n + (symmetric terms) ∈ A0.
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The polynomials m(p,q)(x, y) form a linear basis for the space of all symmetric polyno-

mials A0 as (p, q) ranges over all such n-tuples up to reordering. We label (p, q) so that 

(p1, q1) ≤ (p2, q2) ≤ · · · ≤ (pn, qn) in lexicographic order, which implies that

ν(m(p,q)(x, y)) = (p1, . . . , pn, q1, . . . , qn).

Since each basis element has a different valuation, these are all of the valuations that 

can be obtained from A0. In other words, we have

{ν(f) | f ∈ A0 \ {0}} =

{

(p1, . . . , pn, q1, . . . , qn) ∈ Z
2n
≥0

∣

∣

∣

∣

(p1, q1) ≤ · · · ≤ (pn, qn)

in lex

}

.

Similarly, for any n-tuple (p, q) = ((p1, q1), . . . , (pn, qn)) ∈ (Z2
≥0)n of distinct pairs 

there is an alternating polynomial

d(p,q)(x, y) = det(x
pj

i y
qj

i )1≤i,j≤n ∈ A1.

The determinants d(p,q)(x, y) form a linear basis for the space of all alternating polyno-

mials A1 as (p, q) ranges over all such n-tuples up to reordering. Just as before, we label 

(p, q) so that (p1, q1) < (p2, q2) < · · · < (pn, qn) in lexicographic order, which implies 

that

ν(d(p,q)(x, y)) = (p1, . . . , pn, q1, . . . , qn).

By the same argument, we therefore have

{ν(f) | f ∈ A1 \ {0}} =

{

(p1, . . . , pn, q1, . . . , qn) ∈ Z
2n
≥0

∣

∣

∣

∣

(p1, q1) < · · · < (pn, qn)

in lex

}

.

Lemma 3.3.

Γ0 =

{

(p1, . . . , pn, q1, . . . , qn) ∈ Z
2n
≥0

∣

∣

∣

∣

(p1, q1) ≤ · · · ≤ (pn, qn)

in lex

}

,

and

Γ1 =

{

(p1, . . . , pn, q1, . . . , qn) ∈ Z
2n
≥0

∣

∣

∣

∣

(p1, q1) < · · · < (pn, qn)

in lex

}

.

Proof. In both cases, we study the inequalities

qj ≥
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi)

for j = 1, . . . , n appearing in the definition of Γr. When r = 0 the inequalities p1 ≤ p2 ≤

· · · ≤ pn imply that pj − pi < r is never satisfied. These inequalities therefore reduce to 
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qj ≥ 0 for all j. One checks that the remaining conditions defining Γ0 precisely describe 

the set in the statement of the lemma.

Similarly, when r = 1 the condition pj − pi < r is equivalent to pi = pj , so the 

inequalities above reduce to

qj ≥ #{i = 1, . . . , j − 1 | pi = pj}.

This condition is redundant though, because the other conditions imply that 0 ≤ qi <

qi+1 < · · · < qj whenever pi = pi+1 = · · · = pj . As before, the remaining conditions 

defining Γ1 precisely describe the set in the statement of the lemma. �

Finally, we note that each polynomial d(p,q)(x, y) and m(p,q)(x, y) is homogeneous 

with respect to the Z2-grading on C[x, y] defined in Section 2.4.

3.2. Valuations from A
r

for r > 1

We aim to show that for any r > 1, Γr contains the valuations ν(f) of all nonzero 

polynomials f ∈ A
r
. We prove a slightly more general result, Proposition 3.5, relating 

the Newton polytope of a polynomial f ∈ Ar to its valuation. This general version has 

essentially the same proof, and is used in Section 4 when we turn to the general toric 

surface case. For brevity, we say that a polynomial f is (anti-)symmetric if it is either 

symmetric or alternating with respect to a specified symmetric group action.

Lemma 3.4. Let f be a polynomial in x, x′, y, y′, and possibly other variables. Suppose 

that f is (anti-)symmetric with respect to the S2 action exchanging x and y with x′ and 

y′. Additionally, suppose that f is contained in the ideal

Ir = (x − x′, y − y′)r = ((x − x′)r, (x − x′)r−1(y − y′), . . . , (y − y′)r)

for some fixed r ≥ 0. Let p denote the largest integer such that xp|f . For any fixed 

p′ = p, p + 1, . . . , p + r − 1, the polynomial [xp(x′)p′

]f is divisible by (y − y′)r−p′+p.

Here we use the coefficient extraction operator: [xp(x′)p′

]f is defined to be the poly-

nomial obtained by summing all the terms of f whose exponents on x and x′ are exactly 

p and p′ respectively, then dividing by the common factor xp(x′)p′

.

Proof. By assumption, f is divisible by xp, so by (anti-)symmetry it is also divisible by 

(x′)p. Dividing f by (xx′)p, we may assume without loss of generality that p = 0.

The assumption f ∈ Ir implies that, replacing x′ by x in the expression for f , we 

can write f |x′=x = (y − y′)rg0 for some polynomial g0 which does not depend on x′. It 

follows that f − (y −y′)rg0 is divisible by (x −x′), and we define f1 to be the polynomial 

such that f = (y − y′)rg0 + (x − x′)f1. This f1 is contained in the ideal Ir−1, so we can 

repeat this argument to get an expression
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f =
r
∑

k=0

(x − x′)k(y − y′)r−kgk

in which none of the polynomials g0, . . . , gr−1 depend on x′. It follows that

[x0]f = f |x=0 =

r
∑

k=0

(x′)k(y − y′)r−kgk

where gk is obtained from gk by setting x = 0, and possibly changing the sign. But since 

none of the polynomials g0, . . . , gr−1 depend on x′, the terms of [x0]f are grouped in this 

sum according to their exponent on x′. One sees from this expression that [x0(x′)k]f =

(y − y′)r−kgk for all k = 0, . . . , r − 1, as desired. �

The Newton polytope of a polynomial in d variables is the convex hull in R
d of 

the exponent vectors of the nonzero terms of the polynomial. The Newton polytope of 

a product of polynomials is the Minkowski sum of the Newton polytopes of its factors. 

Lemma 3.4 allows us to establish a lower bound for the Newton polytope of a polynomial 

in A
r

with a given valuation.

Proposition 3.5. For any r > 1, let f ∈ A
r

be a polynomial with valuation (p1, . . . , pn, q1,

. . . , qn). For each j = 1, . . . , n, there exist points in the Newton polytope of f whose 

(aj , bj) coordinates are

⎛

⎜

⎜

⎝

pj , qj −
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi)

⎞

⎟

⎟

⎠

, and

⎛

⎜

⎜

⎝

pj , qj +
∑

k=j+1,...,n
pk−pj<r

(r − pk + pj)

⎞

⎟

⎟

⎠

.

Furthermore, for any j = 1, . . . , n − 1 such that pj = pj+1, we have qj+1 ≥ qj + r.

As usual, we use coordinates (a1, . . . , an, b1, . . . , bn) on Z2n so that the aj-coordinate 

corresponds to the exponent on xj , and the bj-coordinate corresponds to the exponent 

on yj .

Corollary 3.6. For any r > 1 and nonzero f ∈ A
r
, we have ν(f) ∈ Γr.

Proof of Corollary 3.6. Let f ∈ A
r

be a nonzero polynomial. By Definition 3.1, ν(f) =

(p1, . . . , pn, q1, . . . , qn) is in Γr if and only if

1. p1 ≤ p2 ≤ · · · ≤ pn,

2. pj = pj+1 implies that qj+1 ≥ qj + r, and

3. qj ≥
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi) for all j = 1, . . . , n.
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Also by definition, we have A
r

⊆ A0 for even r, and A
r

⊆ A1 for odd r. By Lemma 3.3

we have (p1, q1) ≤ · · · ≤ (pn, qn) in lex, and in particular p1 ≤ p2 ≤ · · · ≤ pn. The second 

condition is explicitly stated to hold in Proposition 3.5. Finally, since f is a polynomial, 

the coordinates of any point in its Newton polytope are nonnegative. Proposition 3.5

therefore implies that

qj ≥
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi)

for all j = 1, . . . , n, as desired. �

Proof of Proposition 3.5. Let g = g(y1, . . . , yn) be the polynomial [xp1

1 · · · xpn
n ]f . For any 

two indices 1 ≤ i < k ≤ n such that pk − pi < r, let

gik = gik(xi, xk, y1, . . . , yn) = [xp1

1 · · · x̂i · · · x̂k · · · xpn
n ]f.

By hypothesis, the lex trailing term of f is xp1

1 · · · xpn
n yq1

1 · · · yqn
n , so the lex trailing term 

of g is yq1

1 · · · yqn
n and the lex trailing term of gik is xpi

i xpk

k yq1

1 · · · yqn
n . Since f ∈ A

r
by 

assumption, gik is (anti-)symmetric in the pairs of variables (xi, yi) and (xk, yk) and is 

contained in the ideal (xi − xk, yi − yk)r. We apply Lemma 3.4 to gik, using (xi, yi) and 

(xk, yk) for (x, y) and (x′, y′) respectively. In the notation of Lemma 3.4 we have p = pi, 

and choose p′ = pk. The lemma then says that (yi − yk)r−pk+pi divides g = [xpi

i xpk

k ]gik.

Since g is divisible by these factors for all such i and k, we have

g(y1, . . . , yn) = h(y1, . . . , yn)
∏

1≤i<k≤n
pk−pi<r

(yi − yk)r−pk+pi

for some polynomial h(y1, . . . , yn). The lex trailing term of g is yq1

1 · · · yqn
n , and since 

the trailing term of each factor (yi − yk)r−pk+pi is yr−pk+pi

k , the trailing term of h is 

y
q′

1
1 · · · y

q′
n

n , where q′
j satisfies

qj = q′
j +

∑

i=1,...,j−1
pj−pi<r

(r − pj + pi)

for each j = 1, . . . , n.

For any i < k such that pk−pi < r, let Δik be the Newton polytope of (yi−yk)r−pk+pi , 

which is the convex hull of the two vectors in the directions of the coordinates bi and bk

with lengths (r − pk + pi). By the expression of g as a product, and the definition of g, 

the Newton polytope of f contains the Minkowski sum

Δ := {(p1, . . . , pn, q′
1, . . . , q′

n)} +
∑

1≤i<k≤n
pk−pi<r

Δik.
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For each j = 1, . . . , n, the aj coordinate is constant equal to pj over the whole set 

Δ, so we study the maximum and minimum values of the bj coordinates. The minimum 

value of the bj coordinate on Δ is

q′
j = qj −

∑

i=1,...,j−1
pj−pi<r

(r − pj + pi),

obtained by taking points from all the Δik’s whose bj coordinate is zero. Taking points 

in Δik whose bj coordinate is as large as possible shows that the maximum value of bj

coordinate on Δ is

q′
j +

∑

i=1,...,j−1
pj−pi<r

(r − pj + pi) +
∑

k=j+1,...,n
pk−pj<r

(r − pk + pj) = qj +
∑

k=j+1,...,n
pk−pj<r

(r − pk + pj).

This proves the first claim of the proposition.

As for the second claim, fix some j = 1, . . . , n −1 such that pj = pj+1. By hypothesis, f

is (anti-)symmetric under swapping (xj , yj) with (xj+1, yj+1). These assumptions imply 

that

g(y1, . . . , yn) = h(y1, . . . , yn)
∏

1≤i<k≤n
pk−pi<r

(yi − yk)r−pk+pi

is (anti-)symmetric in the variables yj , yj+1, as g consists of terms of f whose exponents 

on xj and xj+1 are equal. Swapping yj and yj+1 in the factored expression for g fixes 

the pairs of factors

(yi − yj)r−pj+pi(yi − yj+1)r−pj+1+pi

for i < j and

(yj − yk)r−pk+pj (yj+1 − yk)r−pk+pj+1

for k > j + 1. The factors not including yj or yj+1 are unaffected by the exchange, and 

the remaining factor (yj − yj+1)r is multiplied by (−1)r. This implies that h is (anti-

)symmetric in yj and yj+1, so we have q′
j ≤ q′

j+1. All the pairs of factors above contribute 

equally to the exponents on yj and yj+1 in the trailing term of g. The remaining factor 

(yj − yj+1)r has lex trailing term yr
j+1, which implies that qj+1 ≥ qj + r as desired. �

3.3. An alternate description of Γr

In Section 3.1 we showed that Γ0 and Γ1 admit simple descriptions in terms of non-

decreasing (resp. strictly increasing) n-tuples of points. In this section, we characterize 

the remaining sets Γr for r > 1 in terms of Γ1.
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Proposition 3.7. For r > 1, Γr is equal to the r-fold Minkowski sum Γ1 + · · · + Γ1.

Proof. For the containment Γ1 + · · · + Γ1 ⊆ Γr, we use the second description of 

Γr given in Definition 3.2. Let (p(1), q(1)), . . . , (p(r), q(r)) ∈ Γ1 with (p(�), q(�)) =

(p
(�)
1 , . . . , p

(�)
n , q

(�)
1 , . . . , q

(�)
n ), and define

(p, q) = (p1, . . . , pn, q1, . . . , qn) = (p(1), q
(1)) + · · · + (p(r), q

(r)).

The inequalities p1 ≤ · · · ≤ pn and qj ≥ (j − i)(r − pj) + pi + · · · + pj−1 are immediate 

since these conditions are homogeneous in r. If pj = pj+1, then we also have p
(�)
j = p

(�)
j+1

for all �, and therefore

qj+1 = q
(1)
j+1 + · · · + q

(r)
j+1 ≥ (q

(1)
j + 1) + · · · + (q

(r)
j + 1) = qj + r,

as desired. This completes the first containment.

For the containment Γr ⊆ Γ1 + · · · + Γ1, let (p, q) = (p1, . . . , pn, q1, . . . , qn) ∈ Γr. We 

aim to construct an r-tuple (p(1), q(1)), . . . , (p(r), q(r)) ∈ Γ1 whose sum is (p, q), but 

first we make some reductions.

Reduction 1: Suppose there is an index j = 1, . . . , n − 1 such that pj+1 > pj + r. By 

the first description of Γr in Definition 3.2, we have

(p′, q
′) = (p1, . . . , pj , pj+1 − 1, . . . , pn − 1, q1, . . . , qn) ∈ Γr,

If we have (p(1), q(1)), . . . , (p(r), q(r)) ∈ Γ1 whose sum is (p′, q
′) then we may take any 

of these, say (p(1), q(1)), and replace it by

(p
(1)
1 , . . . , p

(1)
j , p

(1)
j+1 + 1, . . . , p(1)

n + 1, q
(1)
1 , . . . , q(1)

n ) ∈ Γ1.

The new r-tuple sums to (p, q), which shows that if (p′, q
′) is in the r-fold Minkowski 

sum, then (p, q) is as well. It therefore suffices to consider only those (p, q) ∈ Γr such 

that pj+1 ≤ pj + r for all j = 1, . . . , n − 1. By a similar argument we may reduce to the 

case p1 = 0.

Reduction 2: Suppose there is an index j such that

qj >
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi).

Let k be the largest index such that pj = pj+1 = · · · = pk. In this case, we subtract one 

from the bj , . . . , bk coordinates of (p, q), defining

(p′, q
′) = (p1, . . . , pn, q1, . . . , qj − 1, . . . , qk − 1, . . . , qn).

One checks that (p′, q
′) ∈ Γr. Suppose we have (p(1), q(1)), . . . , (p(r), q(r)) ∈ Γ1 whose 

sum is (p′, q
′). Then since pj = · · · = pk, any index � = 1, . . . , r also has p

(�)
j = · · · = p

(�)
k . 
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By the maximality of k, we either have k = n or there is an index � such that p
(�)
k < p

(�)
k+1. 

For such an � (if k = n then any choice of � works), replace (p(�), q(�)) by

(p
(�)
1 , . . . , p(�)

n , q
(�)
1 , . . . , q

(�)
j + 1, . . . , q

(�)
k + 1, . . . , q(�)

n ).

Again, one checks that this new vector still lies in Γ1, and that the resulting r-tuple now 

sums to (p, q). This shows that it suffices to consider (p, q) such that

qj =
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi)

for all j = 1, . . . , n.

The remaining cases are covered by the following lemma. �

Lemma 3.8. Let (p, q) = (p1, . . . , pn, q1, . . . , qn) ∈ Γr be such that

• p1 = 0,

• pj+1 ≤ pj + r for all j = 1, . . . , n − 1, and

• qj =
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi) for all j = 1, . . . , n.

There exist (p(1), q(1)), . . . , (p(r), q(r)) ∈ Γ1 whose sum is (p, q), and such that q
(k)
n =

#{i = 1, . . . , n − 1 | pn − pi < r − k + 1} for all k = 1, . . . , r.

The condition specifying the q
(k)
n coordinates is not important to the result, but 

recording this extra information helps with the induction step.

Proof. The proof is by induction on n. The case n = 1 is trivial, as the conditions imply 

that p1 = q1 = 0. In this case we take (p
(k)
1 , q

(k)
1 ) = (0, 0) for all k = 1, . . . , n.

Now let (p, q) = (p1, . . . , pn, q1, . . . , qn) ∈ Γr be as in the statement of the lemma. 

Apply the inductive hypothesis to (p1, . . . , pn−1, q1, . . . , qn−1) ∈ Γr ⊆ Z
2n−2 to obtain 

(p
(k)
1 , . . . , p

(k)
n−1, q

(k)
1 , . . . , q

(k)
n−1) ∈ Γ1 ⊆ Z

2n−2 for k = 1, . . . , r. Define � = pn − pn−1, and 

note that � ∈ {0, 1, . . . , r} by assumption. We extend these tuples by defining

(p(k)
n , q(k)

n ) :=

{

(p
(k)
n−1 + 1, 0) for k = 1, . . . , �, and

(p
(k)
n−1, q

(k)
n−1 + 1) for k = � + 1, . . . , r.

It follows from the definition that (p
(k)
n , q

(k)
n ) > (p

(k)
n−1, q

(k)
n−1) in lex for all k, so by 

Lemma 3.3 we have (p
(k)
1 , . . . , p

(k)
n , q

(k)
1 , . . . , q

(k)
n ) ∈ Γ1 ⊆ Z

2n. It also follows from the 

construction that p
(1)
n + · · · + p

(r)
n = p

(1)
n−1 + · · · + p

(r)
n−1 + � = pn−1 + � = pn.

The equality q
(1)
n + · · · + q

(r)
n = qn is a consequence of the explicit formula for the q

(k)
n

terms. To meet this stronger condition, however, we must reorder the vectors as
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(p(�+1), q
(�+1)), . . . , (p(r), q

(r)), (p(1), q
(1)), . . . , (p(�), q

(�)).

For k = � + 1, . . . , r corresponding to the indices k − � = 1, . . . , r − � in the reordering 

above, we have

q(k)
n = 1 + q

(k)
n−1 = 1 + #{i = 1, . . . , n − 2 | pn−1 − pi < r − k + 1}

= #{i = 1, . . . , n − 1 | pn − pi < r − (k − �) + 1}.

For k = 1, . . . , � corresponding to the indices r − � + k = r − � + 1, . . . , r in the reordering 

above, we have

q(k)
n = 0 = #{i = 1, . . . , n − 1 | pn − pi < r − (r − � + k) + 1}.

These are precisely the required formulas for the q
(k)
n coordinates for the reordered vec-

tors, which completes the proof. �

3.4. The coordinate ring and graded semigroup of (C2)[n]

With the results from the previous sections, we can compute the sets of valuations 

obtained from Ar, A
r
, and H0((C2)[n], O(r)).

Proposition 3.9. For all r ≥ 0, we have

Γr = {ν(f) | f ∈ Ar \ {0}} = {ν(f) | f ∈ A
r

\ {0}}.

Proof. The cases r = 0, 1 are proved in Section 3.1, so assume r > 1. We establish the 

following chain of inclusions

Γr ⊆ {ν(f) | f ∈ Ar \ {0}} ⊆ {ν(f) | f ∈ A
r

\ {0}} ⊆ Γr.

The middle inclusion follows from Ar ⊆ A
r
, and the final inclusion is precisely the 

statement of Corollary 3.6. For the first inclusion, take �v ∈ Γr. By Proposition 3.7, �v is 

in the r-fold Minkowski sum Γ1 + · · · + Γ1. But as shown in Section 3.1, every vector 

in Γ1 is the valuation of some determinant d(p1,q1)(x, y). This implies that �v is attained 

as the valuation of some r-fold product of these determinants, and all such products are 

contained in Ar by definition. This establishes the chain of inclusions, completing the 

proof. �

This result, along with Lemma 2.3, already implies that Γr is precisely the set of val-

uations obtained from H0((C2)[n]O(r)). However, it also affords a proof of the following 

result, which clarifies the situation greatly.
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Corollary 3.10. For all r ≥ 0, we have Ar = A
r
. In particular, the ring S = A0 ⊕ A1 ⊕

A2 ⊕ · · · in integrally closed, and therefore

H0((C2)[n], O(r)) � Ar

for all r ≥ 0.

This result may be known to experts, but we have been unable to find a reference. 

The equality Ar = A
r

essentially comes from the fact that the sets of valuations from 

Ar and A
r

are the same. It is certainly possible, however, to have a strict inclusion 

of vector spaces V ⊂ W and a valuation on W such that every valuation from W is 

obtained on V . For example take the subspace {(x + 1)f(x) | f ∈ C[x]} ⊂ C[x] with 

the trailing term valuation. The key additional fact used in the proof of Corollary 3.10

is the Z2-grading (defined at the end of Section 2.4) into finite-dimensional pieces in a 

way that is compatible with the valuation.

Proof. The assertion Ar = A
r

follows from the definitions for r = 0, 1, so we assume 

r > 1. The containment Ar ⊆ A
r

is clear, so for the reverse containment we fix f ∈ A
r

a nonzero polynomial. Define M to be the set of valuations (p, q) ∈ Γr such that f has 

a nonzero term in the (p1 + · · · + pn, q1 + · · · + qn) graded piece. M is finite because f

has terms from only finitely many graded pieces, and each graded piece has only finitely 

many possible valuations. It is also clear that ν(f) ∈ M .

By Proposition 3.9 there is a polynomial g ∈ Ar with ν(g) = ν(f), and as in the proof 

of the proposition we may take g to be an r-fold product of determinants d(p,q)(x, y). The 

critical observation is that g is taken to be homogeneous with respect to the Z2-grading. 

There is a unique linear combination f −λg that cancels the common trailing terms, and 

we set f ′ = f − λg. If f ′ = 0 then we certainly have f ∈ Ar, so assume f ′ 
= 0. In this 

case we have ν(f ′) > ν(f) in the lex order, but ν(f ′) is still in M since g was taken to 

be homogeneous. Repeat this process of reducing f modulo Ar, in each step obtaining a 

polynomial with larger valuation in M . Since M is finite this process terminates, giving 

an expression for f as a linear combination of elements of Ar as desired. �

Remark 3.11. The bases constructed in Section 3.1 for A0 and A1 provide all of the 

valuations of polynomials in A0 and A1, and we have now shown (by Propositions 3.7

and 3.9) that the graded semigroup of O(1) is Γ0 ⊕ Γ1 ⊕ Γ2 ⊕ · · · , which is generated in 

degree one. For valuations coming from other term orders, the same bases still provide 

all the valuations from A0 and A1, as the basis elements don’t share any common terms. 

However, for different choices of term order the graded semigroup of valuations can fail 

to be generated in degree one.

One can also compute the sections and valuations of O(r) for negative r.
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Lemma 3.12. For even r < 0 we have H0((C2)[n], O(r)) � A0, and for odd r < 0 we 

have H0((C2)[n], O(r)) � A1

The main part of the proof is a geometric argument identical to that of Proposition 

3.2 in [2].

Proof. Fix n − 1 general points p1, . . . , pn−1 in C2, and let R be the curve in (C2)[n]

consisting of subschemes whose multiplicity at each of the points p1, . . . , pn−2 is one, 

and whose multiplicity at pn−1 is two. Let D ⊆ (C2)[n] be an effective divisor linearly 

equivalent to kB for some half integer k > 0. The intersection product R · B = −2 so 

the curve R cannot meet D transversely, and thus R ⊆ D set theoretically. But curves 

of class R cover a dense subset of the divisor B ⊆ (C2)[n], so there is a set theoretic 

inclusion B ⊆ D. This implies that D − B is effective.

Since we have an isomorphism O(1) � O(−1
2B), there are maps

H0((C2)[n], O(r + 2) → H0((C2)[n], O(r))

for all integers r, given by multiplication by a section defining the divisor B. The argu-

ment above implies that these maps are isomorphisms for all r < 0. The desired result 

is obtained by composing these isomorphisms, starting from the global sections of O or 

O(1). �

3.5. The Newton-Okounkov body of (C2)[n]

For consistency of notation we define Ar = A0 for even r < 0, and Ar = A1 for odd 

r < 0, and define Γr similarly for r < 0. With these conventions, the results from the 

previous section can be summarized as saying that

H0((C2)[n], O(r)) � Ar,

and

Γr = {ν(f) | f ∈ Ar \ {0}}

for all r ∈ Z. Following the usual construction, we therefore define the Newton-Okounkov 

body of O(C2)[n](r) to be

Δ(O(r)) = closed convex hull

⎛

⎝

⋃

m≥1

1

m
· Γrm

⎞

⎠

for all r ∈ Z.
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Theorem 3.13. For r ≥ 0 the Newton-Okounkov body Δ(O(r)) is the closed convex hull of 

Γr ⊆ R
2n. The Newton-Okounkov body Δ(O) ⊆ R

2n is a simplicial cone, and for r < 0

we have Δ(O) = Δ(O(r)). These Newton-Okounkov bodies are defined by the inequalities

Δ (O(r)) =

⎧

⎨

⎩

(a1, . . . , an,

b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ · · · ≤ an, and

bj ≥ (j − i)(r − aj) + ai + · · · + aj−1,

for all 1 ≤ i ≤ j ≤ n

⎫

⎬

⎭

,

for all r ∈ Z.

Proof. First suppose r > 0. Proposition 3.7 implies that for any m > 1, the set 1
m Γrm =

1
m (Γr + · · · + Γr) is already contained in the convex hull of Γr, and so the Newton-

Okounkov body of O(r) is given by

Δ(O(r)) = closed convex hull

⎛

⎝

⋃

m≥1

1

m
· Γrm

⎞

⎠

= closed convex hull (Γr)

as claimed.

It follows from Lemma 3.3 that Γ0 = Γ0 + Γ0. The same argument therefore implies 

that Δ(O) is the closed convex hull of Γ0.

We temporarily use Δ(O(r)) to denote the convex polyhedron in the statement of the 

theorem, before showing that it is equal to Δ(O(r)).

Suppose r ≥ 0. Comparing the inequalities defining Δ(O(r)) to Definition 3.2, one 

sees that Γr ⊆ Δ(O(r)) ∩ Z
2n. Furthermore the only integer points of Δ(O(r)) omitted 

from Γr lie on the boundary of Δ(O(r)), so we have

Δ(O(r))◦ ∩ Z
2n ⊆ Γr ⊆ Δ(O(r)) ∩ Z

2n.

Similarly for any m > 1 we have

Δ(O(rm))◦ ∩ Z
2n ⊆ Γrm ⊆ Δ(O(rm)) ∩ Z

2n.

Since the inequalities defining Δ(O(r)) are homogeneous in r, we may divide by m to 

obtain

Δ(O(r))◦ ∩
1

m
Z

2n ⊆
1

m
Γrm ⊆ Δ(O(r)) ∩

1

m
Z

2n.

This holds for all m > 1, so Δ(O(r)) is a closed convex subset of Δ(O(r)) that con-

tains all of its interior rational points. We conclude that Δ(O(r)) = Δ(O(r)) for all 

r ≥ 0.
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The same argument given after Definition 3.2 for Γr shows that for all r ∈ Z, Δ(O(r))

has the alternate description,

Δ(O(r)) =

⎧

⎨

⎩

(a1, . . . , an,

b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ · · · ≤ an, and

bj ≥
∑

i=1,...,j−1
aj−ai<r

(r − aj + ai)

for all j

⎫

⎬

⎭

.

When r ≤ 0, the condition aj − ai < r never holds, as ai ≤ aj by the first inequali-

ties. Therefore for r ≤ 0, the second inequalities simply say that b1, . . . , bn ≥ 0, and so 

Δ(O(r)) = Δ(O) = Δ(O) is a simplicial cone.

It remains to check that Δ(O(r)) = Δ(O) for r < 0. For even r < 0 the 

semigroup of O(r) is Γ0 ⊕ Γ0 ⊕ Γ0 ⊕ · · · , identical to that of O. For odd r < 0, 

the semigroup of O(r) is Γ0 ⊕ Γ1 ⊕ Γ0 ⊕ Γ1 ⊕ · · · . One checks that in both cases 

the Newton-Okounkov body Δ(O(r)) is the same as Δ(O), which completes the 

proof. �

The qualitative statements in Theorem 3.13 are illustrated in the following figure, 

which is intended to represent a portion of the global Newton-Okounkov body of (C2)[n]. 

In particular, there is homogeneity Δ(O(r)) = rΔ(O(1)) for integers r > 1, and Δ(O(r))

degenerates to a simplicial cone for r ≤ 0.

The polyhedra Δ(O(1)) have interesting combinatorics. For example, we showed in 

the proof of Theorem 3.13 that Δ(O(1)) has the alternate expression

Δ(O(1)) =

⎧

⎪

⎨

⎪

⎩

(a1, . . . , an,

b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ · · · ≤ an, and

bj ≥
∑

i=1,...,j−1
aj−ai<1

(1 − aj + ai)

for all j

⎫

⎪

⎬

⎪

⎭

.

From this expression, one can show that a point (a1, . . . , bn) ∈ Δ(O(1)) lies on a bounded 

face of Δ(O(1)) precisely when

• a1 = 0,

• aj+1 ≤ aj + 1 for all j = 1, . . . , n − 1, and
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• bj =
∑

i=1,...,j−1
aj−ai<1

(r − aj + ai) for all j = 1, . . . , n.

The points on the bounded faces of Δ(O(1)) are therefore determined by the values 

a2, . . . , an, where each aj ranges from aj−1 to aj−1 +1. In other words, the points on the 

bounded faces of Δ(O(C2)[n](1)) are parametrized by an (n − 1)-cube, with coordinates 

given by a2 −a1, . . . , an −an−1. The combinatorics of these bounded faces corresponds to 

a polyhedral subdivision of the (n −1)-cube into regions depending on which of the pairs 

1 ≤ i < j ≤ n have aj − ai < 1. The number of top-dimensional cells in this polyhedral 

subdivision of the (n − 1)-cube, and therefore the number of top-dimensional bounded 

faces of Δ(C2)[n](O(1)), is the Catalan number Cn−1.

3.6. The moment polytope and Duistermaat-Heckman measure for (C2)[n]

In this section we show how the unbounded polyhedron Δ(O(1)) ⊆ R
2n encodes 

asymptotic information about the sections of O(r) equivariantly.

The spaces Ar � H0((C2)[n], O(r)) decompose into graded pieces

Ar =
⊕

(p,q)∈Z2
≥0

Ar
(p,q),

with respect to the Z2-grading defined at the end of Section 2.4. The main observation 

of this section is that the valuation ν is compatible with this grading. In other words, 

each valuation v ∈ Γr obtained from a polynomial f ∈ Ar is also obtained from a 

homogeneous polynomial f ∈ Ar
(p,q) for some (p, q) ∈ Z

2
≥0, and the degree (p, q) is 

uniquely determined by the vector v ∈ Γr. This fact was already used in the proof of 

Corollary 3.10, and follows from the proof of Proposition 3.9.

Corollary 3.14. For all (p, q) ∈ Z
2
≥0, the set of valuations ν(f) obtained by nonzero 

homogeneous polynomials f ∈ Ar
(p,q) is equal to Γ

(p,q)
r , where

Γ(p,q)
r =

{

(p1, . . . , pn, q1, . . . , qn) ∈ Γr

∣

∣

∣

∣

p1 + · · · + pn = p

q1 + · · · + qn = q

}

The dimension of the (p, q)-graded piece of H0((C2)[n], O(r)) is therefore given by 

#Γ
(p,q)
r . �

Following [3], the dimensions of the graded pieces of H0((C2)[n], O(r)) can be encoded 

as Dirac measures,

∑

(p,q)∈Z2
≥0

#Γ(p,q)
r · δ(p,q).
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The Duistermaat-Heckman measure of ((C2)[n], O(1), T ), which we denote by DH(n), 

is the weak limit of the rescaled Dirac measures,

DH(n) := lim
r→∞

∑

(p,q)∈Z2
≥0

#Γ
(p,q)
r

r2n
δ(p/r,q/r),

considered as a measure on R2. The measure DH(n) is equal to a piecewise-polynomial 

function times the usual Lebesgue measure on R2. The Newton-Okounkov body Δ(O(1))

encodes this measure as follows. Let π : R
2n → R

2 denote the linear projection 

(a1, . . . , an, b1, . . . , bn) �→ (a1 + · · · + an, b1 + · · · + bn).

Corollary 3.15. The Duistermaat-Heckman measure DH(n) is equal to the pushforward 

π∗(dμ|Δ(O(1))), where dμ|Δ(O(1)) is the Lebesgue measure on R2n restricted to Δ(O(1)).

Okounkov’s original construction was in a similar context [18], and results of this form 

hold much more generally (cf. Theorem 1.7 of [15]). Since we have explicit descriptions 

of the sets Γ
(p,q)
r and the Newton-Okounkov body, the proof is straightforward, so we 

include it for completeness.

Proof. As in the proof of Theorem 3.13, we have

Δ(O(r))◦ ∩ Z
2n ⊆ Γr ⊆ Δ(O(r)) ∩ Z

2n,

and by homogeneity

Δ(O(1))◦ ∩
1

r
Z

2n ⊆
1

r
Γr ⊆ Δ(O(1)) ∩

1

r
Z

2n.

This implies the weak convergence,

∑

v∈Γr

1

r2n
δv/r =

∑

v∈ 1
r

Γr

1

r2n
δv

r→∞
−−−→ dμ|Δ(O(1)).

Pushing forward by π we obtain the desired result. �

This result is depicted in the following diagram. The point masses in the measure 

obtained from O(r) approximately count the number of 1/r-integer points in the fibers 

of Δ(O(1)). In the limit r → ∞, the density function is given by the volumes of the 

fibers.
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4. The Hilbert schemes of points on projective toric surfaces

Let X be a smooth, projective, toric surface. As recalled in Section 2.3, any divisor on 

the Hilbert scheme X [n] is linearly equivalent to Dn+rE for some divisor D ∈ Pic(X) and 

r ∈ Z. We identify the sections of O(Dn +rE) with a subset of the sections of O(C2)[n](r)

that satisfy a term restriction coming from the Newton polytope of D (Proposition 4.2). 

This identification allows us to study the Newton-Okounkov body of X [n] using our 

results on (C2)[n].

The main difference is that for projective surfaces we only obtain upper bounds for 

the graded semigroups (Proposition 4.7) and Newton-Okounkov bodies (Theorem 4.8). 

The extra difficulty over the C2 case is that the semigroups in the projective case are 

not generated in degree one.

For most toric surfaces X, these upper bounds are not sharp. We conjecture, how-

ever, that for the Hilbert schemes of points on P 2, P 1 ×P
1, and Hirzebruch surfaces, the 

convex bodies appearing in Theorem 4.8 are the exact Newton-Okounkov bodies (Con-

jecture 4.10). This conjecture is supported by calculations on these surfaces for small n. 

In fact, the inequalities appearing in Theorem 4.8 (and Theorem 3.13) were originally 

found based on explicit computations on (P 2)[n] for n = 2, 3, 4. To illustrate these tech-

niques, we verify Conjecture 4.10 for the Hilbert scheme of 4 points on P 2, computing 

the global Newton-Okounkov body Δ((P 2)[4]).

In Section 4.5 we apply these results to study the effective cone of X [n].

4.1. Global sections of line bundles on X [n]

Let X be a smooth, projective, toric surface and D a T -invariant divisor on X. In 

Section 2.2 we recalled the definition of the Newton polytope of D, and made the iden-

tification PD ⊆ R
2. The polygon PD controls the sections of O(D) via the formula

H0(X, O(D)) �
⊕

(p,q)∈PD∩Z2

C · xpyq.
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The identification PD ⊆ R
2 depends on a choice of coordinates C2 � Uσ ⊆ X. Fixing 

such an isomorphism C2 � Uσ ↪→ X yields open embeddings (C2)[n] � U
[n]
σ ↪→ X [n] for 

all n, by which we can identify sections of line bundles on X [n] with their restrictions to 

(C2)[n]. In Section 3.4 we proved that

H0((C2)[n], O(r)) � Ar

for all r ∈ Z (with Ar defined as in Section 3.5 for r < 0). The sections of O(Dn + rE) ∈

Pic(X [n]) can be expressed as follows:

Definition 4.1. For a divisor D ∈ Pic(X) on a smooth, projective, toric surface X with 

Newton polygon PD ⊆ R
2 and r ∈ Z, define

A(Dn + rE) = Ar ∩
⊕

(pi,qi)∈PD∩Z2

C · xp1

1 yq1

1 · · · xpn
n yqn

n .

Proposition 4.2. Let D ∈ Pic(X) be a divisor on a smooth, projective, toric surface X

with Newton polygon PD ⊆ R
2. Then for any r ∈ Z, we have

H0
(

X [n], O (Dn + rE)
)

� A(Dn + rE).

As with the corresponding result for C
2 (Corollary 3.10), this description may be 

known to experts, but we have been unable to locate a reference.

Proof. For r = 0, 1, these isomorphisms are the well-known identifications

H0
(

X [n], O(Dn)
)

� Symn H0(X, O(D)),

and

H0
(

X [n], O (Dn + E)
)

�
n
∧

H0(X, O(D)).

See, for example, the proof of Lemma 5.1 in [5].

Since E = −1
2B, there is a section s ∈ H0(X [n], O(−2E)) defining the divisor B. 

Multiplication by s defines maps

H0
(

X [n], O (Dn + (r + 2)E)
)

→ H0
(

X [n], O (Dn + rE)
)

for all integers r. The same argument as in the proof of Lemma 3.12 (and [2] Proposition 

3.2) shows that these maps are isomorphisms for all r < 0. Composing these isomor-

phisms from either O(Dn) or O(Dn + E) proves the claim in the case r < 0, by the 

definition of Ar for r < 0.
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For r > 1, we can again compose these embeddings to identify the global sections of 

O(Dn + rE) with the subspace of sections of O(Dn) or O(Dn + E) that vanish along B

to the appropriate order. To compute this order of vanishing, we may first restrict the 

section to (C2)[n], where the section is identified with a polynomial in A0 or A1, then 

compute the order of vanishing along B|(C2)[n] . Corollary 3.10 can be interpreted as say-

ing that the filtrations of A0 and A1 according to order of vanishing of the corresponding 

sections along B are given by

A0 ⊇ A2 ⊇ A4 ⊇ · · · ,

and

A1 ⊇ A3 ⊇ A5 ⊇ · · · .

This, along with the known cases r = 0, 1, establishes the identification for r > 1. �

This result, combined with Corollary 3.10, implies a pleasant identification of 

the sections of O(Dn + rE) for r ≥ 0 with the set of polynomials in C[x, y] =

C[x1, . . . , xn, y1, . . . , yn] that:

1. Are symmetric (when r is even) or alternating (when r is odd),

2. Are contained in the ideal Jr =
⋂

i<j(xi − xj , yi − yj)r, and

3. Have Newton polytope contained in PD, when considered as a polynomial in any one 

of the pairs of variables (xi, yi).

One can translate constructions of divisors on X [n] into the language of these (anti-

)symmetric polynomials. The following examples are enlightening, although we do not 

need them in this paper.

Example 4.3. Let C ⊆ X be an irreducible curve representing the divisor class D. Re-

stricting to the affine open C2 � Uσ ⊆ X, C is defined as the vanishing locus f(x, y) = 0

for some polynomial f whose Newton polygon is contained in PD. The divisor Dn is 

represented by the locus of length n subschemes of X whose support meets the curve C. 

This representative corresponds to the polynomial

n
∏

i=1

f(xi, yi) ∈ A(Dn)

Example 4.4. Fix a divisor D on X, and let f1, . . . , fn be linearly independent sections 

of O(D). The span of f1, . . . , fn corresponds to a linear system of curves in X, and the 

divisor Dn + E is represented the locus of length n subschemes Z ⊆ X such that there 

exists a curve CZ in this linear system that contains Z as a closed subscheme. This 

representative corresponds to the polynomial
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det(fi(xj , yj))ij ∈ A(Dn + E).

Example 4.5. Let F be a vector bundle on X of rank r with s1, . . . , srn general sections 

of F . The restricted sections si|C2 can be represented as r-tuples of polynomials,

si|C2 = (fi,1 · · · fi,r)T .

Consider the polynomial d(x, y) defined by

det

⎛

⎝

f1,1(x1, y1) · · · f1,r(x1, y1) · · · f1,1(xn, yn) · · · f1,r(xn, yn)
...

frn,1(x1, y1) · · · frn,r(x1, y1) · · · frn,1(xn, yn) · · · frn,r(xn, yn)

⎞

⎠ .

If the polynomial d is not identically zero, then F is said to satisfy interpolation for n

points, and d corresponds to a divisor of class c1(F )n + rE. In this case one can check 

directly that d ∈ A(c1(F )n + rE). Indeed, exchanging any pair of variables (xi, yi) with 

(xj , yj) in the matrix above swaps r columns, so d is multiplied by a factor of (−1)r. We 

also have

d ∈
⋂

i<j

(xi − xj , yi − yj)r,

since setting xi = xj and yi = yj makes r pairs of columns repeat in the matrix above. 

Finally, in each pair of variables (xi, yi), d is expressed as a linear combination of deter-

minants

d′ = det

⎛

⎜

⎝

f ′
1,1(xi, yi) · · · f ′

1,r(xi, yi)
...

f ′
r,1(xi, yi) · · · f ′

r,r(xi, yi)

⎞

⎟

⎠

where the vectors (f ′
i,1 · · · f ′

i,r)T for i = 1, . . . , r represent r general sections of F . Each 

d′ represents a general section of 
∧r

F , and therefore has Newton polytope contained in 

Pc1(
∧

r F ) = Pc1(F ). This establishes the Newton polytope restriction for d as well, which 

shows that d ∈ A(c1(F )n + rE) as desired.

4.2. The graded semigroup of X [n]

Let D be a T -invariant divisor on a smooth, projective, toric variety X with Newton 

polygon

PD =

{

(a, b) ∈ R
2

∣

∣

∣

∣

0 ≤ a ≤ c, and

�(a) ≤ b ≤ u(a)

}

for some constant c, and piecewise linear functions � and u. By analogy with the sets of 

valuations Γr from Ar, we define a candidate set of valuations from A(Dn + rE).
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Definition 4.6. With D and PD as above, and r ≥ 0, let Γ(Dn + rE) be

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(p1, . . . , pn,

q1, . . . , qn) ∈ Z
2n
≥0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ c,

if pj = pj+1 then qj+1 ≥ qj + r,

qj ≥ �(pj) + (j − i)(r − pj) + pi + · · · + pj−1,

qj ≤ u(pj) − (k − j)(r + pj) + pj+1 + · · · + pk,

for all 1 ≤ i ≤ j ≤ k ≤ n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

For even r < 0 define Γ(Dn + rE) = Γ(Dn), and for odd r < 0 define Γ(Dn + rE) =

Γ(Dn + E).

Proposition 4.7. For all r ∈ Z we have

Γ(Dn + rE) ⊇ {ν(f) | f ∈ A(Dn + rE) \ {0}},

and for r ≤ 1 we have

Γ(Dn + rE) = {ν(f) | f ∈ A(Dn + rE) \ {0}}.

Proof. Suppose r ≥ 0, and fix a nonzero polynomial f ∈ A(Dn + rE) with ν(f) =

(p1, . . . , pn, q1, . . . , qn). Since f ∈ Ar we have 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn. By the definition 

of A(Dn + rE), the Newton polytope of f is contained in (PD)n, so Proposition 3.5

implies that PD contains the points

⎛

⎜

⎜

⎝

pj , qj −
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi)

⎞

⎟

⎟

⎠

and

⎛

⎜

⎜

⎝

pj , qj +
∑

k=j+1,...,n
pk−pj<r

(r − pk + pj)

⎞

⎟

⎟

⎠

for all j = 1, . . . , n. By the definition of PD, this is equivalent to pj ≤ c and

�(pj) ≤ qj −
∑

i=1,...,j−1
pj−pi<r

(r − pj + pi) ≤ qj ≤ qj +
∑

k=j+1,...,n
pk−pj<r

(r − pk + pj) ≤ u(pj)

for all j = 1, . . . , n. The same argument given for Γr after Definition 3.2 shows that the 

inequalities above are equivalent to the final inequalities in the definition of Γr(D). That 

pj = pj+1 implies qj+1 ≥ qj + r follows from Proposition 3.5, which completes the proof 

that ν(f) ∈ Γr.

By the same argument as in the proof of Lemma 3.3, Γ(Dn) and Γ(Dn + E) can be 

described as

Γ(Dn) =

{

(p1, . . . , pn,

q1, . . . , qn) ∈ Z
2n

∣

∣

∣

∣

(p1, q1) ≤ · · · ≤ (pn, qn)

in lex, and (pj , qj) ∈ PD for all j

}

,

and
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Γ(Dn + E) =

{

(p1, . . . , pn,

q1, . . . , qn) ∈ Z
2n

∣

∣

∣

∣

(p1, q1) < · · · < (pn, qn)

in lex, and (pj , qj) ∈ PD for all j

}

.

These are precisely the sets of valuations obtained by the bases m(p,q)(x, y) and 

d(p,q)(x, y) of Section 3.1 with (pj , qj) ∈ PD for all j. This implies the equality 

Γ(Dn+rE) = {ν(f) | f ∈ A(Dn+rE) \{0} for r = 0, 1. By the definitions of Γ(Dn+rE)

and A(Dn + rE) for r < 0, we obtain the same equality for all r < 0 as well. �

4.3. The Newton-Okounkov body of X [n]

By Proposition 4.2, the Newton-Okounkov body of Dn + rE ∈ Pic(X [n]) can be 

defined as

Δ(Dn + rE) = closed convex hull

(

⋃

m>0

1

m
·
{

ν(f)
∣

∣ f ∈ A(mDn + mrE) \ {0}
}

)

.

Theorem 4.8. For all Dn + rE ∈ Pic(X [n]), the Newton-Okounkov body Δ (Dn + rE) is 

contained in the set Δ(Dn + rE), which is defined by the inequalities

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a1, . . . , an,

b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ c, and

bj ≥ �(aj) + (j − i)(r − aj) + ai + · · · + aj−1,

bj ≤ u(aj) − (k − j)(r + aj) + aj+1 + · · · + ak,

for all 1 ≤ i ≤ j ≤ k ≤ n

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

For r ≤ 0, we have Δ(Dn + rE) = Δ(Dn + rE) = Δ(Dn), and the simpler description,

Δ(Dn) =

{

(a1, . . . , an, b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

a1 ≤ a2 ≤ · · · ≤ an, and

(aj , bj) ∈ PD for all j = 1, . . . , n

}

.

Proof. It follows from the definitions that for all D and r, we have Γ(Dn + rE) ⊆

Δ(Dn + rE). By the homogeneity of the Newton polygons PmD = mPD, the inequalities 

defining Δ(Dn + rE) are homogeneous in the input, so for any m > 0 we have

1

m
Γ(mDn + mrE) ⊆

1

m
Δ (mDn + mrE) = Δ (Dn + rE)

By Proposition 4.7, Γ(mDn+mrE) contains all the valuation vectors from polynomials 

in A(mDn + mrE), so we have

Δ(Dn + rE) ⊆ closed convex hull

(

⋃

m>0

1

m
Γ(mDn + mrE)

)

⊆ Δ(Dn + rE).

To establish the equality Δ(Dn) = Δ(Dn) in the case r = 0, we note that for any m >

0, 1
m Γ(mDn) contains all of the interior 1

m -integer points of Δ(Dn). By Proposition 4.2, 
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Γ(mDn) is precisely the set of valuations of polynomials in A(mDn). This implies that 

the Newton-Okounkov body Δ(Dn) contains all the interior rational points of Δ(Dn), 

which establishes the remaining inclusion Δ(Dn) ⊇ Δ(Dn).

Finally, we check the case r < 0. By the homogeneity of Newton-Okounkov bodies, 

we may assume r < 0 is even. In this case, we have by definition A(mDn + mrE) =

A(mDn) for all m > 1, so Δ(Dn + rE) = Δ(Dn) = Δ(Dn). It remains to check that 

Δ(Dn + rE) = Δ(Dn). This can be seen from the alternate expression for Δ(Dn + rE), 

which holds for all r,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(a1, . . . , an, b1, . . . , bn) ∈ R
2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ c, and

bj ≥ �(aj) +
∑

i=1,...,j−1
aj−ai<r

(r − aj + ai),

bj ≤ u(aj) −
∑

k=j+1,...,n
ak−aj<r

(r − ak + aj),

for all j = 1, . . . , n.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

This alternate description can be established by the same argument given for Γr after 

Definition 3.2. With this description one can see that whenever r ≤ 0, the conditions 

aj − ai < r and ak − aj < r never hold, since i < j < k implies ai ≤ aj ≤ ak. Thus 

for all r ≤ 0 these final conditions reduce to the inequalities �(aj) ≤ bj ≤ u(aj) for all 

j = 1, . . . , n. This establishes the alternate description of Δ(Dn) in the statement of 

the theorem, and shows that Δ(Dn) = Δ(Dn + rE) whenever r < 0, completing the 

proof. �

Remark 4.9. By a similar argument given in the case r = 0 above, one can show that 

Δ(Dn + rE) is equal to

closed convex hull

(

⋃

m>0

1

m
· Γ(mDn + mrE)

)

for all divisors Dn + rE ∈ Pic(X [n]).

In the case r = 0, the divisors Dn ∈ Pic(X [n]) are obtained by pulling back from X(n)

via the Hilbert-Chow morphism. The convex sets Δ(Dn) can therefore be interpreted as 

Newton-Okounkov bodies on X(n). By the previous theorem, Δ(Dn) is identified with the 

set of n-tuples (a1, b1), . . . , (an, bn) ∈ PD such that a1 ≤ · · · ≤ an. From this description 

one sees that the Euclidean volume of Δ(Dn) ⊆ R
2n is given by

volR2n(Dn) =
1

n!
(volR2(PD))n.

By Theorem 2.1 on volumes of Newton-Okounkov bodies, this gives

volX[n](Dn)

(2n)!
=

1

n!

(

volX(D)

2!

)n

.
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The Newton-Okounkov body Δ(Dn) therefore gives a convex geometric interpretation 

for this known formula for vol(Dn). This formula can also be proved directly from the 

identity

h0(X [n], O(Dn)) =

(

h0(X, O(D)) + n − 1

n

)

.

For r ≤ 0, the Newton-Okounkov bodies Δ(Dn + rE) are constant equal to Δ(Dn). 

This leaves the case r > 0, where we have only obtained an upper bound on the Newton-

Okounkov body. Effective divisors in this remaining region are difficult to describe, so it 

is unsurprising that these Newton-Okounkov bodies are more difficult to compute. This 

is discussed further in the remaining sections.

4.4. Examples and conjectures

We continue to use Δ(Dn +rE) to denote the convex body appearing in Theorem 4.8. 

The containment

Δ (Dn + rE) ⊆ Δ (Dn + rE)

of Theorem 4.8 is strict for most toric surfaces X. However, we propose:

Conjecture 4.10. If the surface X is P 2, P 1 × P
1, or a Hirzebruch surface, then Δ(Dn +

rE) = Δ(Dn + rE) for all divisors Dn + rE ∈ Pic(X [n]).

For P 2 and P 1×P
1, the choice of coordinates does not matter. For Hirzebruch surfaces 

however, one must choose coordinates so that the Newton polygons are oriented as in 

the pictures at the top of the table on the final page. This asymmetry apparently comes 

from our choice of valuation.

Example 4.11. We check that Conjecture 4.10 holds for (P 2)[4]. Denote the image of the 

class of a line in Pic((P 2)[4]) by H. In this case, the Newton polygon of dH is the right 

triangle

PdH =

{

(a, b) ∈ R
2

∣

∣

∣

∣

a ≥ 0, and

0 ≤ b ≤ d − a

}

,

so the Newton-Okounkov body Δ(dH + rE) is contained in the convex set Δ(dH + rE), 

defined by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a1, . . . , a4,

b1, . . . , b4) ∈ R
8

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4, and

bj ≥ 0 + (j − i)(r − aj) + ai + · · · + aj−1,

bj ≤ (d − aj) − (k − j)(r + aj) + aj+1 + · · · + ak,

for all 1 ≤ i ≤ j ≤ k ≤ 4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.
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That {Δ(dH + rE) × (d, r) | (d, r) ∈ R
2} ⊆ R

2n × R
2 is a convex cone is evident from 

the inequalities above. One can check that Δ(−E) is the singleton {�0}, and Δ(3H+2E) is 

the singleton {(0, 0, 1, 3, 0, 2, 2, 0)}. By the discussion at the end of the previous section, 

one knows that Δ(H) is a full dimensional polytope. The convexity of the cone over 

these sets therefore implies that Δ(dH + rE) is nonempty precisely when dH + rE is in 

the convex cone spanned by −E and 3H + 2E, i.e. when dH + rE is effective [1]. The 

effective cone has a chamber decomposition such that in each chamber the convex bodies 

Δ(D) vary linearly. For example, divisors in the cone spanned by (3H + E) and H can 

be written as x(3H + E) + yH for x, y ≥ 0, and one has

Δ(x(3H + E) + yH) = xΔ(3H + E) + yΔ(H)

for all x, y ≥ 0. The complete decomposition of Eff((P 2)[4]) in this way is depicted below.

By Theorem 4.8, we have Δ(D) = Δ(D) for all divisors D in the cone spanned by −E

and H. Since Δ(−E) = {�0}, linearity in this chamber says that Δ(tH − sE) = tΔ(H)

for all t, s ≥ 0.

It remains to check that Δ(dH + rE) = Δ(dH + rE) in the case r > 0. Consider the 

ample divisor 4H + E. By Theorem 2.1 on volumes of Newton-Okounkov bodies, and 

the fact that the volume of an ample divisor is equal to its top self intersection number, 

we have

volR8 (Δ (4H + E)) =
1

8!
vol(P 2)[4] (4H + E)

=
1

8!

∫

(P 2)[4]

(4H + E)
8

=
1692165

8!
.

This self intersection number was computed with the equivariant localization formula. 

With a computer one can also calculate the Euclidean volume of the upper bound,
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volR8

(

Δ (4H + E)
)

=
112811

2688
=

1692165

8!
.

By Theorem 4.8 we have the inclusion Δ (4H + E) ⊆ Δ (4H + E), but these two convex 

bodies have the same volumes so they must be equal.

Surprisingly, this one calculation implies that Δ(D) = Δ(D) for all remaining divisors 

as well. Indeed, we first consider divisors of the form (4 − t)H + E for some real number 

t ≥ 0. One way to handle these divisors is to apply Theorem 4.24 from [16] on slices of 

Newton-Okounkov bodies. With our usual coordinates (a1, . . . , a4, b1, . . . , b4) on R8, the 

theorem implies that for any divisor D ∈ Pic(X [n]) and t ≥ 0 we have

Δ (D − tH) = Δ (D)a1≥t − (t, 0, . . . , 0.)

In other words, the Newton-Okounkov body Δ (D − tH) is equal to the part of the 

Newton-Okounkov body Δ (D) with first coordinate at least t, shifted down by t in the 

first coordinate. There is a subtlety in that our valuation ν is not defined using flags as 

in [16], so the theorem does not strictly apply as stated. However, the first coordinate of 

ν is equal to the order of vanishing of the corresponding section along a divisor of class 

H, so the result still holds. One can also check this property directly in this case, at 

the level of polynomials and trailing terms. It follows from the defining inequalities that 

Δ(D − tH) = Δ(D)a1≥t − (t, 0, . . . , 0) as well for all D ∈ Pic((P 2)[4]). This, with the 

homogeneity of Newton-Okounkov bodies, implies that Δ(D) = Δ(D) for all divisors D

in the cone spanned by 4H + E and 3H + 2E.

This leaves the divisors in the cone spanned by 4H +E and H. We have Δ(D) = Δ(D)

for D on the boundary rays of this cone, and Δ(D) varies linearly on the cone. But 

Newton-Okounkov bodies are super-additive, in the sense that

Δ(xD + yD′) ⊇ xΔ(D) + yΔ(D′)

for any divisors D, D′ and x, y ≥ 0. We conclude that Δ(D) = Δ(D) for divisors in this 

final region as well. �

The decomposition of Eff((P 2)[4]) into chambers on which the Newton-Okounkov 

bodies vary linearly corresponds to a Minkowski basis for Δ((P 2)[4]) in the terminology 

of [20]. In this case the Minkowski basis decomposition coincides with the stable base 

locus decomposition of (P 2)[4] [1], but these decompositions appear to differ for n > 4.

One can show that the convex bodies Δ(D) vary linearly on the nef cone of (P 2)[n]

for any n, so the argument given above can be applied to any of the Hilbert schemes 

(P 2)[n]: Pick any ample divisor D ∈ Pic((P 2)[n]) (the nef divisor D = (n − 1)H + E

would also work), and compute both the Euclidean volume volR2n Δ(D), and the top 

self-intersection number 
∫

(P 2)[n] D2n. If these numbers agree up to the factor of (2n)!, 

then Conjecture 4.10 holds for all divisors on (P 2)[n] for the given n.

The top self-intersection numbers can be computed quickly, even for relatively large 

n, using the equivariant localization formula. It is much more difficult to compute the 
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volumes of the convex bodies Δ(D). In the case n = 4 above, the convex body Δ(4H +E)

whose volume we computed is a polytope in R8 with 186 vertices. For n = 5, the convex 

set Δ(4H +E) is a polytope in R10 with 581 vertices. The complexity of these polytopes 

makes it impractical for verify Conjecture 4.10 for large n in this way.

We have similarly checked Conjecture 4.10 for nef divisors on the Hilbert schemes 

of small numbers of points on P 1 × P
1, and the first several Hirzebruch surfaces. One 

can show that when the surface X is P 1 × P
1 or a Hirzebruch surface, the polytopes 

Δ(D) again vary linearly for D in the nef cone of X [n]. The increased Picard rank of 

these surfaces, however, means that the theorem on slices of Newton-Okounkov bodies 

(Theorem 4.24 of [16]) fails to cover the remaining effective divisors. Our justification 

for asserting Conjecture 4.10 for non-nef divisors as well comes from the data computed 

in the final section about the cones of effective divisors.

4.5. The cone of effective divisors on X [n]

Characterizing the effective divisors on X [n] appears to be a subtle problem (see [2], 

Section 3). Huizenga has computed the effective cones on (P 2)[n] for all n, which depend 

on the slopes of stable vector bundles on P 2 [13]. For other surfaces, the effective cones 

are known only for small values of n.

In Proposition 4.2 we identified the global sections of O(Dn + rE) ∈ Pic(X [n]) with 

the set A(Dn + rE), consisting of the (anti-)symmetric polynomials contained in the 

ideal Jr that satisfy a term condition determined by D. However, it is unclear from 

the definition of A(Dn + rE) even when these spaces are zero, i.e. when Dn + rE is 

effective. If one knew the Newton-Okounkov bodies exactly, then one would also know 

the set of effective divisors, since Δ(Dn + rE) is nonempty precisely when Dn + rE

is pseudo-effective. We have an upper bound for the Newton-Okounkov bodies, so we 

obtain a corresponding upper bound for the effective cones.

Corollary 4.12. For any effective divisor Dn + rE on X [n], the convex set Δ(Dn + rE) ⊆

R
2n is nonempty.

Proof. Since Dn − r
2B is effective, the Newton-Okounkov body Δ(Dn − r

2B) is nonempty 

and is contained in Δ(Dn + rE) by Theorem 4.8. �

This corollary can be used to show that divisors are not effective, and therefore implies 

an upper bound for the effective cone of X [n]. This upper bound is best understood via 

the global Newton-Okounkov body, as we now explain.

One can define the Newton polygon of any class D ∈ N1(X)R. Similarly, we extend 

the sets Δ(Dn +rE) to all real classes Dn +rE ∈ N1(X [n])R using the same inequalities 

given in Theorem 4.8. Let Δ(X [n]) ⊆ N1(X [n])R × R
2n be the set whose fiber over 

any real class ξ ∈ N1(X [n])R is Δ(ξ). It follows from the defining equations given in 
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Theorem 4.8 and the convexity of global Newton-Okounkov body of X that Δ(X [n]) is 

a closed, convex, polyhedral cone.

This set Δ(X [n]) is an upper bound for the global Newton-Okounkov body Δ(X [n]), 

whose fiber over a divisor is its exact Newton-Okounkov body. The global Newton-

Okounkov body projects precisely onto the effective cone Δ(X [n]) → N1(X [n])R. The 

previous corollary can therefore be rephrased as follows.

Corollary 4.13. The image of the projection Δ(X [n]) → N1(X [n])R contains the cone of 

effective divisors. �

The advantage of this phrasing is that computing the linear images of these polyhedra 

can be reduced to linear optimization problems.

Conjecture 4.10 would imply that the upper bound of Corollary 4.13 equals the exact 

effective cone for Hilbert schemes of points on P 2, P 1 ×P
1, and Hirzebruch surfaces. We 

have verified that this holds for n ≤ 171 points on P 2 numerically. For example, for the 

Hilbert scheme of 32 points on P 2, we set up the linear optimization problem to give a 

lower bound on μ, where μH +E lies on the boundary of the effective cone of (P 2)[32]. We 

numerically approximated the solution to be 6.57894736842105. The exact solution to 

the optimization problem is easily seen to be rational, and the numerical approximation 

is within 10−15 (all of the digits shown) of the exact value of μ, which is 125/19.

The table on the final page contains upper bounds for certain slices of effective cones 

computed numerically for the Hilbert schemes of points on P 2, P 1 × P
1, and the Hirze-

bruch surfaces H1, and H2. These numbers were obtained using the same shortcut of 

numerical approximation, followed by finding an unusually close, simple rational number.

For the surfaces other than P 2, these values do not determine the entire effective cone 

due to the larger Picard rank, but it is possible to use Corollary 4.13 to compute the 

entire effective cone bounds in these cases as well. Ryan [19] has computed the effective 

cones on P 1 × P
1 for n ≤ 16, which coincide with the upper bound of Corollary 4.13

in each case. For n ≥ 17 points on P 1 × P
1, there is an upper bound on the effective 

cone of (P 1 × P
1)[n] obtained in [2] (Example 3.9) coming from certain moving curve 

classes. We have checked numerically for all n ≤ 100 that the effective cone bound from 

Corollary 4.13 satisfies the inequalities obtained in [2].

In many cases, the upper bound of Corollary 4.13 implies new inequalities bounding 

the effective cones. For example, we have found that for n = 17 points on P 1 × P
1, any 

effective divisor xH1+yH2+zE satisfies 8x +5y ≥ 40z (and symmetrically 5x +8y ≥ 40z). 

Here we use H1 and H2 to denote the images of the classes of lines {p} ×P
1 and P 1 ×{p}

in Pic((P 1 × P
1)[n]). More generally we have observed, but not proved, that for any 

k ≥ 0 and n = 17 + 6k there appear to be conditions 5x + 8y ≥ (40 + 16k)z and 

8x + 5y ≥ (40 + 16k)z restricting effective divisors xH1 + yH2 + zE. We have observed 

many other similar families of inequalities on the effective cones of P 1 ×P
1, H1, and H2. 

It would be interesting to find families of moving curve classes corresponding to these 

inequalities.
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P
2

n μ

2 1
3 1
4 3/2
5 2
6 2
7 12/5
8 8/3
9 3
10 3
11 10/3
12 7/2
13 15/4
14 4
15 4
16 30/7
17 40/9
18 23/5
19 24/5
20 5
21 5
22 21/4
23 43/8
24 11/2
25 17/3
26 35/6
27 6
28 6
29 56/9
30 19/3
31 84/13
32 125/19
33 47/7
34 48/7
35 7
36 7
37 36/5
38 73/10
39 37/5
40 15/2

P
1 × P

1

n μ

2 1/2
3 1
4 1
5 4/3
6 3/2
7 7/4
8 2
9 2
10 9/4
11 12/5
12 5/2
13 8/3
14 17/6
15 3
16 3
17 16/5
18 33/10
19 24/7
20 7/2
21 40/11
22 15/4
23 31/8
24 4
25 4
26 25/6
27 17/4
28 13/3
29 40/9
30 9/2
31 60/13
32 47/10
33 24/5
34 49/10
35 5
36 5
37 36/7
38 73/14
39 37/7
40 59/11

H1

n μ

2 1/2
3 2/3
4 1
5 1
6 5/4
7 7/5
8 8/5
9 5/3
10 11/6
11 2
12 2
13 24/11
14 16/7
15 19/8
16 5/2
17 21/8
18 8/3
19 25/9
20 26/9
21 3
22 3
23 22/7
24 45/14
25 33/10
26 101/30
27 52/15
28 39/11
29 40/11
30 11/3
31 15/4
32 23/6
33 47/12
34 4
35 4
36 70/17
37 71/17
38 161/38
39 56/13
40 157/36

H2

n μ

2 1/3
3 2/3
4 3/4
5 1
6 1
7 6/5
8 4/3
9 16/11
10 11/7
11 12/7
12 7/4
13 15/8
14 2
15 2
16 15/7
17 20/9
18 23/10
19 12/5
20 37/15
21 28/11
22 29/11
23 30/11
24 11/4
25 17/6
26 35/12
27 3
28 3
29 28/9
30 19/6
31 42/13
32 23/7
33 64/19
34 24/7
35 73/21
36 53/15
37 18/5
38 11/3
39 56/15
40 15/4
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Each polygon PD corresponds to a divisor D on a specified toric surface X. For 

each n ≥ 2, any effective divisor of the form tDn + E on X [n] has t ≥ μ. These μ’s 

are conjectured to be optimal, i.e. μDn + E conjecturally lies on the boundary of the 

effective cone of X [n].

Data availability

No data was used for the research described in the article.
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