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Two global symmetries are holo-equivalent if their algebras of local symmetric operators are iso-
morphic. Holo-equivalent classes of global symmetries are classified by gappable-boundary topological
orders (TO) in one higher dimension (called symmetry TO), which leads to a symmetry/topological-
order (Symm/TO) correspondence. We establish the following: (1) For systems with a symmetry
described by symmetry TO M, their gapped and gapless states are classified by condensable algebras
A, formed by elementary excitations in M with trivial self/mutual statistics. Such classified states
(called A-states) can describe symmetry breaking orders, symmetry protected topological orders,
symmetry enriched topological orders, gapless critical points, etc., in a unified way. (2) The local
low-energy properties of an A-state can be calculated from its unbroken symmetry TO M, 4, using
holographic modular bootstrap (holoMB) which takes M, 4 as an input. Here M, 4 is obtained from
M by condensing the excitations in A which spontaneously breaks part of the symmetry described
by M. Notably, an A-state must be gapless if its unbroken symmetry TO M, 4 is nontrivial. This
provides a unified understanding of the emergence and symmetry protection of gaplessness that
applies to symmetries that are anomalous, higher-form, and/or non-invertible. (3) The relations
between condensable algebras constrain the structure of the global phase diagram. We find that, for
141D Z5 x Z5 symmetry with mixed anomaly, there is a stable continuous transition (deconfined
quantum critical point) between the Zs-breaking-Z5-symmetric phase and the Zs-symmetric-Z5-
breaking phase. The critical point is the same as a Z4 symmetry breaking critical point. (4) 141D
bosonic systems with S3 symmetry have four gapped phases with unbroken symmetries Ss, Zs3, Za,
and Z;. We find a duality between two transitions S3 <> Z; and Z3 <+ Zs: they are either both first
order or both (stably) continuous, and in the latter case, they are described by the same conformal
field theory (CFT). (5) The gapped and gapless states for 14+1D bosonic systems with anomalous

S3 symmetries are obtained as well. For example, anomalous S’él) and SéQ) symmetries can have
symmetry protected chiral gapless states with only symmetric irrelevant and marginal operators.
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I. INTRODUCTION

For a long time, Landau’s symmetry breaking theory [?
? | was regarded as the standard theory for continuous
phase transitions. In particular, it was believed that all
continuous phase transitions are spontaneous symmetry
breaking transitions, where the symmetry groups for the
two phases across a transition have a special relation

CTYsmall C Glarge-

i.e. the symmetry group for the phase with less symmetry
is a strict subgroup of the symmetry group for the phase
with more symmetry.

A. Symmetry/Topological-Order (Symm/TO)
correspondence

However, in the last 30 years, increasingly many ex-
amples of continuous phase transitions have been discov-
ered in quantum systems whose description is beyond
Landau’s theory. Continuous quantum phase transitions
were found between two states with the same symmetry
[? 7?7?77 7] (but different topological orders [? ?
). Continuous quantum phase transitions are also pos-
sible between two states with incompatible symmetries
[? ], i.e. the symmetry groups of the two phases across
the transition do not have the group-subgroup relation.
These “deconfined quantum critical points” (DQCPs)
have been found to be related to mutual anomalies be-
tween internal and lattice symmetries.[? 7 ] Even
symmetry-breaking transitions with well-defined order
parameters are sometimes not described by Landau’s
symmetry breaking theory [? ]. In light of these ex-
amples, it appears that many continuous quantum phase
transitions are not described by Landau theory, regard-
less of whether they have symmetry breaking and order
parameters or not. There are many situations and mech-
anisms that can lead to continuous quantum phase transi-
tions that go beyond Landau symmetry breaking theory.
It is interesting to ask whether there is a unified theory
to understand these various beyond-Landau continuous
quantum phase transitions.

To systematically understand gapless critical points at
continuous transitions, it is fruitful to identify all the
emergent symmetries in the gapless states. Emergent
symmetry can be very rich and may include O-symmetry,
higher! symmetry [? ? ? ? ], anomalous symmetry [? ?
? 7 ], anomalous higher symmetry [? 22?22?7277 77
? ? 7 ], beyond-anomalous symmetry [? |, non-invertible
symmetry [? 2 7 7 7 ? 7 ], algebraic higher symmetry
[? 7 ], and/or non-invertible gravitational anomaly [? ?
? 7 7 7 7 ]. Recently, a symmetry/topological-order

1 We use “higher symmetry” to cover both higher-form symmetry
and higher-group symmetry.

(Symm/TO) correspondence was proposed [? ? | that
can provide a unified description of all those symmetries.

One way to have a unified description of all these sym-
metries is to restrict to the symmetric sub Hilbert space
Vsymmetric; Which does not have a tensor product decom-
position

Vsymmetric 7& ® Vz (1)

Here, V;’s are local Hilbert spaces on each lattice site.
The failure of tensor product decomposition indicates [?
] a non-invertible gravitational anomaly [? 7 7 7 7 ].
This leads to the point of view that

symmetry (restricted t0 Vsymmetric)

= non-invertible gravitational anomaly (2)

For a finite symmetry, its corresponding non-invertible
gravitational anomaly is the same as gappable-boundary
topological order (TO) ? in one higher dimension.
“Gappable-boundary topological order in one higher di-
mension” is a long name. We will refer to it as symme-
try TO?® [? ? ? ]. This leads to a holographic view of
symmetry: Symm/TO correspondence [? ? |

symmetry (restricted t0 Veymmetric)
= symmetry TO (3)

This holographic perspective on symmetry in 1+1D was
also discussed in Ref. 7 7 7 .

A second way to have a unified description of all emer-
gent symmetries generalizes the idea that, to describe
an ordinary symmetry, we can use the conservation law
(i.e. the fusion ring) of symmetry charges. To obtain a
unified description, we use instead the fusion rings (con-
servation laws) of both symmetry charges and symmetry
defects at an equal footing [? ]. The resulting symmetry
is called categorical symmetry®* It is also necessary to in-
clude “braiding” properties of symmetry charges/defects
[? ] which allow us to describe the symmetry actions

2 Here, the topological order in one higher dimension is anomaly-
free (i.e. has UV completion). In this paper, the term topological
order always refers to anomaly-free topological order. Topologi-
cal order with anomaly will be explicitly referred to as anomalous
topological order.

A symmetry TO, as a gappable-boundary topological order, al-
ways describes symmetries in one lower dimension.

Here, we use the term categorical symmetry® in the original
holographic sense of Ref. 7 ? . However, the term “categor-
ical symmetry” has since been used by many to describe non-
invertible symmetry. To avoid possible confusions, we use cat-
egorical symmetry® in Sans Serif Font with superscript (& to
stress that we use the term in the holographic sense. See also
Appendix A for more detailed explanations and discussions on
related concepts.



TABLE I. The first row is the classification of 241D topological orders (up to E(8) invertible topological order) for bosonic
systems with no symmetry, up to 10 types of anyons. This leads to a classification of 241D symmetry TOs, which classify all
the 1+1D global symmetries up to holo-equivalence (the second row). Such a classification include all finite-group symmetries
with potential anomalies (the third row). It also includes beyond-group symmetries, such as the Fibonacci symmetry in Fig. 1.

’ # of anyon types (rank)

[1]2]3] 4 [5]6]7] 8] 9 fw]n]

# of 2+1D topological orders (MTC) 1/4]12] 18 |10 |50 |28 | 64 | 81 | 76 | 44
# of symmetry TOs (MTC in trivial Witt class) | 1 | 0| 0 3 0|00 6 6 310
# of finite-group symmetries (with anomaly w) | 1[0 | 0 |27y | 0 | 0 | 0 | 6s¢ |3z | 0 | O
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FIG. 1. A 1+1D lattice model with emergent Fibonacci
symmetry at low energies. The 141D lattice model is con-
structed from a slab of 241D lattice. In the bulk, we have
a commuting-projector Hamiltonian that realizes a double-
Fibonacci topological order [? ] with large energy gap.
The top boundary R is a gapped boundary of the double-
Fibonacci topological order with large energy gap. The lower
boundary is described by an anomalous low energy theory
LETuno. The low energy theory LET,; of the slab has an
emergent Fibonacci symmetry below the energy gaps of the
bulk and top boundary.

to have a full description of symmetry.® Thus categor-
ical symmetry® has both fusion ring layer and “braid-
ing” layer. Just like ordinary symmetry is described
by group, categorical symmetry® is described by non-
degenerate braided fusion higher category in trivial Witt
class (which is referred to as symmetry nBF category
in short) [? ? |. Here “non-degenerate” indicates that we
have included all the symmetry charges and the symme-
try defects [? |, and “higher” refers to the fact that the
symmetry charges and defects can be point-like, string-
like, etc. “In trivial Witt class” is required if the corre-
sponding symmetry can be realized by lattice model in
the same dimension, i.e. if the corresponding symmetry
is a symmetry of anomaly-free systems.

Recently, modular tensor categories with up to 11
types of anyons were classified [? |. This leads to a
classification of 141D generalized symmetries with 10 or
fewer symmetry charges/defects, via the classification of

5 A symmetry is described by the algebra of local symmetric oper-
ators. The “braiding” properties are features of such an algebra.
See Ref. 7 for details. Such features become the braiding prop-
erties in the symmetry TO in Symm/TO correspondence, which
leads to the name “braiding” properties. Symmetry charges al-
ways has the trivial “braiding” property. Thus, in the ordinary
symmetry described by fusion ring of symmetry charge, we do not
need to introduce extra data to describe such a trivial “braiding”

property.

241D symmetry TOs up to rank 10 (see Table I). For ex-
ample, for global symmetries with 4 types of symmetry
charges/defects, the three holo-equivalence classes (which
contain only one symmetry each in this case) are: (1) Zs
symmetry where the symmetry TO is the 2+1D Z, gauge
theory; (2) anomalous Zy symmetry where the symme-
try TO is the double-semion topological order; (3) Fi-
bonacci symmetry where the symmetry TO is the double-
Fibonacci topological order (see Fig. 1). From Table I,
we also see a clear distinction between generic TO which
may not allow gapped boundary and symmetry TO which
allows gapped boundary.

The above holographic view of symmetry and anomaly
is motivated variously from anomaly-inflow [? |, from the
boundary-bulk topological holographic relation [? ? 7 ?
? ? 7 ?7 ], from an observation that symmetry protected
topological (SPT) order [? ? ? | is closely related to
anomaly in one lower dimension [? ? ? |, and from an
observation that SPT order and anomaly are closely re-
lated to braiding [? ? ]. This holographic point of view
has parallels with the AdS/CFT correspondence [? 7 |,
where a continuous G-symmetry of a CFT is associated
to a G-gauge theory in an AdS space in one higher di-
mension. There are however some important differences
between the two. In Symm/TO correspondence, a finite
G-symmetry of a CFT is associated to a G-gauge theory
in one higher dimension with arbitrary metric. More-
over, in Symm/TO correspondence, the bulk theory is
not equivalent to the boundary theory. The bulk topo-
logical order (i.e. the symmetry TO) just constrains the
boundary dynamics.

We should note that, so far, the Symm/TO corre-
spondence only applies to finite symmetry. For con-
tinuous symmetry, we either need to generalize the
Symm/TO correspondence, or need to develop a new
non-holographic point of view as in Ref. 7 To that
end, there is a third non-holographic way to reach a uni-
fied description of all emergent symmetries in a gapless
state. Here one starts from the point of view that a
symmetry is fully described by an algebra of local sym-
metric operators (LSOs). An ordinary (global) symme-
try is characterized by symmetry transformations, which

6 The metric is arbitrary since G-gauge theory is topological for
finite G



are the commutants of LSOs.” These symmetry trans-
formations act on the whole space (or on all the closed
subspaces of codimension-p for p-symmetry), and corre-
spond to the global symmetry transformations. In this
approach, we restrict to the symmetric sub Hilbert space
Vsymmetric; @s in the first approach. In this case, we find
that the global symmetry transformations act trivially as
identity operator. Seemingly, we do not see any global
symmetry after the Hilbert space restriction. On the
other hand, even after restricting to Vsymmetric, Symme-
try clearly still constrains the low energy dynamics and
is physically meaningful. To see the symmetry in this
case, Ref. 7 7  considered the so called “commutant
patch operators”, referred to as “transparent patch op-
erators” in Ref. ? Commutant patch operators are
operators formed by local symmetric operators (LSOs),
acting on 1-dimensional, 2-dimensional, etc open sub-
spaces (i.e. patches), and commute with all the LSOs
as long as the LSOs are far away from the boundaries
of the patches and have no non-trivial linking. Since
the commutants of LSOs define global symmetry, we say
the commutant patch operators of local symmetric op-
erators define the “patch symmetry” of the system.
Ref. 7 7 found that there are two kinds of com-
mutant patch operators: the first kind are global sym-
metry transformations restricted on the patches, which
are called patch symmetry operators. The boundaries
of patch symmetry operators corresponds to symmetry
defects. The second kind have empty bulk and create
neutral charge objects on their boundaries, which are
called patch charge operators. The boundaries of patch
charge operators corresponds to symmetry charges. We
see that, in contrast to global symmetry, patch symme-
try treats symmetry charges and symmetry defects at an
equal footing. The algebra of commutant patch opera-
tors encode the fusion ring and “braiding” properties of
symmetry charges/defects, which is conjectured to give
rise to a symmetry nBF category[? ]. Thus the patch
symmetry is identical to categorical symmetry® and they
are both described by symmetry nBF category.

We define two symmetries to be holo-equivalent [? | if
the algebras of their local symmetric operators are iso-
morphic. We define two patch symmetries to be the same
if the algebras of their commutant patch operators are
isomorphic. This allows us to summarize the above dis-
cussions:

(generalized) global symmetries (restricted to Vsymmetric)
= categorical symmetries® = patch symmetries

= holo-equivalence classes of global symmetries

= symmetry nBF categories

= symmetry TOs (for finite symmetry). (4)

7 The commutants of local symmetric operators are operators that
commute with all the local symmetric operators.

4

Here, global symmetry (restricted to Vsymmetric) is viewed
from the point of view of the algebra of local symmet-
ric operators, and “=” means one-to-one correspondence.
We remark that (4) is more precise than (2) and (3).

We see that (generalized) global symmetry is different
from categorical symmetry® or patch symmetry (which
are two names for the same thing). In fact, categorical
symmetry® (or patch symmetry) only looks at a global
symmetry from a local point of view, ignoring the global
features [? ]. Thus categorical symmetry® (or patch sym-
metry) corresponds to a holo-equivalence class of global
symmetries. As a result, symmetry TO and symmetry
nBF category only describe the holo-equivalence class of
(generalized) global symmetries.

The four terms, categorical symmetry® patch symme-
try, symmetry TO, and symmetry nBF category, describe
almost the same thing, but stress on different aspects:
categorical symmetry® [? | emphasizes on symmetry +
dual symmetry [? | (i.e. treating symmetry charges and
defects at equal footing); patch symmetry emphasizes on
its difference with global symmetry; symmetry TO em-
phasizes on the holographic picture; symmetry nBF cat-
egory is most accurate. We can use any of them. But
since “categorical symmetry” has been used by many to
mean non-invertible global symmetry, in the rest of this
paper, we will use symmetry TO. We like to remark that
symmetry TO can only describe finite symmetries. For
continuous symmetries, we need to use symmetry nBF
categories with infinite objects/morphisms [? ] to de-
scribe them. Therefore symmetry nBF category is a more
accurate term. We use the term symmetry TO since it
is more easily associated with symmetry and holographic
picture.

Let us also point out that the symmetry TO can be
used to describe an exact UV symmetry of a lattice
model. But it can also be used to describe an emergent
symmetry that appears only at low energies (IR). Con-
sider a system with a separation of energy scale, i.e. some
excitations have much higher energies compared to all
other excitations which may be gapped or gapless. Well
below the energy gap of the high energy excitations, the
low energy properties of the system are controlled by an
emergent symmetry described by symmetry TO M.

If the low energy excitations are gapped, then they
can be described by a fusion n-category C if the space is
n-dimensional. In this case, the emergent symmetry is
described by an symmetry TO M = Z(C), the “Drinfeld”
center of the low energy excitations C [? 7 7 7 |. It was
pointed out in Ref. 7 that the emergent higher symme-
try contained in M = Z(C) is exact, while the emergent
0-symmetry contained in M = Z(C) is approximate.

If the low energy excitations are gapless, then the maz-
imal emergent symmetry TO [? | may largely character-
ize the gapless state. We know that the possible gapless
states are very rich, and it is hard to believe gapless states
can be characterized by their emergent symmetries, if we
only consider emergent symmetries described by groups.
However, emergent symmetries can be generalized sym-
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FIG. 2. A 1+1D Zs-symmetric system (which also has a dual
Zs symmetry [? ]) is a Gauz,-system, i.e. the system has a
categorical symmetry® Z, v 22, which is described by sym-
metry TO Gauz, — the quantum double of Z; group. Physi-
cally, the above statement means that the Zs symmetric sys-
tem (when restricted to its symmetric sub-Hilbert space) can
be exactly low-energy simulated by a boundary of bulk Z,
topological order (TO), described by Z, gauge theory. The
symmetry TO Gauz, has four anyons 1,e,m,f = e ® m.
The possible condensation-induced states in Gauz,-system
are given by the condensable algebras of the symmetry TO,
A=1,1®e,1®m. (a) The 1 @ m-state, corresponding to
the 1@m-condensed boundary, is the Z,-symmetric state. (c)
The 1 & e-state is the state with spontaneous Z, symmetry
breaking. (b) The 1-state is the gapless critical point at the
continuous transition between 1 @ m-state and 1 @ e-state.

metries that are beyond group or beyond higher group.
We need to use symmetry TOs to describe those emer-
gent generalized symmetries. In this case, it may be pos-
sible that emergent maximal symmetry TO can largely
characterize gapless states.

B. Characterizing gapless liquid states using
Symm/TO correspondence

In a series of papers [? 7 ? ], Kong and Zheng have
developed a unified mathematical theory for topologi-
cal orders and gapless quantum liquids® in n-dimensional
spacetime, based on symmetric monoidal higher category,
QL"™, which is called category of quantum liquids. QL™
for different n are related by delooping ¥, QL" = orntt
(Hypothesis 5.16 in Ref. ? 7 ). A quantum liquid L (an
object in QL") contains two parts: a topological skeleton
L, and a local quantum symmetry Liqs, where the topo-
logical skeleton Lgy is an anomalous topological order. In
141D, Kong and Zheng have also developed a theory for
gapless boundaries of 2+1D topological order based on
categories enriched by local quantum symmetry — vertex
operator algebra [? 7 7 |.

In this paper, we are going to use Symm/TO corre-
spondence and the associated symmetry TO to develop
another version of the general unified theory for topo-
logical orders and gapless quantum liquids, from a more

8 Here we use the notion of liquid state for quantum systems in
the sense defined in Ref. 7 7 . We will not discuss non-liquid
states, such as fractons.

physical point of view. Our theory is based on the fol-
lowing proposals:

1. An n+1D symmetric system, when restricted to its
symmetric sub-Hilbert space, has a non-invertible
gravitational anomaly [? |, and can be ezactly low-
energy simulated by a boundary of a topological
order in one higher dimension [? ? ? ]. Such a
bulk topological order is called a symmetry TO
and is denoted by M. This result allows us to say
that the n+ 1D symmetry is described by a symme-
try TO M. We will use M-system to refer to such
a system (see Fig. 2). Since the n + 2D symme-
try TO M is mathematically described by a non-
degenerate braided fusion n-category in trivial Witt
class (called symmetry nBF category and also
denoted as M) [? ? ], we may also say that the
n 4+ 1D symmetry is described by a symmetry nBF
category M.

2. The states of a M-system can be divided into
classes labeled by the condensable algebras A in
M, in the sense that a state in a class labeled by
A (called A-state) is exactly low-energy simulated
by a boundary of the symmetry TO M induced
by the condensable algebra A [? ? ? |, termed
an A-condensed boundary (see Fig. 2). This
way, condensable algebras can describe, in a uni-
fied way, symmetry breaking orders, symmetry pro-
tected topological orders, symmetry enriched topo-
logical orders, gapless critical points, etc. See Sec-
tion II B for a physical description of condensable
algebras.

3. A A-state can be exactly low-energy simulated by a
1-condensed boundary of M, 4, where J\/[/Ag is the
topological order obtained from M by condensing
the condensable algebra A [? .19 M, 4 is referred
to as the unbroken symmetry TO — see Sections
IT A and II B for an explanation of this terminology.
As a 1-condensed boundary of M, 4, the A-state in
M-system has a unbroken symmetry TO described
by M, 4. So we will also refer to A-state in M-
system as an M, 4-state.

We remark that it is possible that M, 4 = M, 4» =
Munbroken for two different condensible algebras A
and A’. In this case, two different states A-state
and A’-state are both referred to as Munbroken-
state. As we will see in Section IIB, A-state and
A’-state have the same local low energy properties.
Thus M, 4-state is a notion that is useful for gap-
less states which ignores the global properties. For
example, a gapped state always has a trivial unbro-
ken symmetry TO M, 4, and a non-tivial unbroken

9 May be read as “M slash A”.
10 Here we assume the topological order M /A to have a large energy
gap approaching infinity.



symmetry TO M, 4 implies gaplessness (see Section
I1C).

4. We can use symmetry TO to constrain the possi-
ble continuous phase transitions. For example, if a
Ajo-state is the critical point for a continuous phase
transition between A;-state and A;-state, then A5
is a sub-algebra of both A; and Ay (see Fig. 2).

In the above, we have introduced some important terms
(in bold face) that we will use in the rest of this paper.
We also used the following notion [? ]:

Exactly low-energy simulate means that the low
energy spectrum in the symmetric sub-Hilbert space is
identical to the low energy spectrum of the boundary.
It also means that there is a one-to-one correspondence
of local symmetric operators in M-system and local op-
erators on the boundary of the symmetry TO M, such
that the corresponding operators have identical corre-
lation functions (in the limit that the energy gap of the
symmetry TO approaches infinity).

Very often, we can easily compute the unbroken sym-
metry TO M, 4, which allows us to determine if a M 4-
state is gapless or not. If M, 4 is trivial, then the corre-
sponding M, 4-state can be gapped. On the other hand,

M, 4-state must be gapless if M, 4 is a nontrivial. (see
Section IIC for a proof.)

Moreover, we can constrain its low energy properties us-
ing the M, 4. This is a more general version of the fa-
miliar notion of symmetry protected gaplessness, i.e. con-
densation patterns in the symmetry TO can determine
whether a state is gapless or not.

It is well known that perturbative anomalies for con-
tinuous symmetries [? | and perturbative gravitational
anomalies [? ? | imply gaplessness [? 2 2 7222 7 7 7
? ? ]. This can be understood as perturbative-anomaly
protected gaplessness. Even global anomalies for discrete
symmetries may imply gaplessness [? 7 ? ? ? 7 7
], which can be understood as anomalous-symmetry pro-
tected gaplessness. Symmetry fractionalization may also
imply gaplessness [? 7 7 ], which can be understood
as symmetry-fractionalization protected gaplessness. Our
Symm/TO correspondence provides a unified point of
view to understand these different kinds of protected gap-
lessness.

We want to emphasize that a nontrivial unbroken sym-
metry TO M, 4 is viewed as the reason for gaplessness in
this framework. Thus, a nontrivial M, 4 represents the
emergence of gaplessness. This suggests that the low en-
ergy properties of the gapless state are characterized by
the unbroken symmetry TO M, 4. In other words, we can
use unbroken symmetry TOs to systematically study, and
potentially classify, gapless states and the corresponding
quantum field theories in one lower dimensions. In par-
ticular, we can use holographic modular bootstrap [? ?

? ? ] to compute the low energy properties of a 141D
gapless state from its unbroken symmetry TO M, 4, as
we will describe in section II.

C. Organization of the paper

The remainder of this paper is organized as follows. In
section II, we flesh out our Symm/TO framework for la-
beling phases and their phase transitions using condens-
able algebras. We discuss how to identify the patterns
of condensation, i.e. the allowed condensable algebras,
using a set of number theoretic constraints. Along with
the knowledge of boundary partition functions compat-
ible with the bulk topological order, this provides us a
pathway to understanding the phase diagram for a sys-
tem with a given symmetry. In sections III-VI, we dis-
cuss various examples of anomalous and anomaly-free
Abelian and non-Abelian symmetries in 1+1D systems.
We identify gapped and gapless states allowed by each of
these symmetries, and provide a discussion of the gapless
theories possible at the phase transitions between these
states.

The main results of this paper are summarized in the
framed boxes. Gapped and gapless states for 141D sys-
tems with S5 symmetry (with or without anomaly) and
the corresponding condensation patterns in their sym-
metry TO are summarized in the tables III, IV, V. The
gapless states are potential critical points for continuous
transitions between the gapped states.

II. HOLOGRAPHIC THEORY FOR GAPLESS
STATES AND FOR CONTINUOUS PHASE
TRANSITIONS

In this section, we will formulate a general holographic
theory for gapless states and for continuous phase transi-
tions, based on Symm/TO correspondence [? ? ]. Later,
we will apply Symm/TO correspondence to study some
examples. In fact, Symm/TO correspondence also ap-
plies to gapped states.

A. Symmetry TO breaking (analogue of symmetry
breaking)

For ordinary global symmetry, spontaneous symme-
try breaking is a very important notion, which allows us
to describe gapped and gapless phases. In the symme-
try TO description of global symmetry, one analogously
refers to spontaneous symmetry TO breaking, or simply
symmetry TO breaking. The system’s underlying sym-
metry TO is unchanged, however it can be in various
states induced by condensation of a variety of excita-
tions (as we discuss in the rest of this paper). Such states
exhibit a lower residual symmetry upon such condensa-
tions, which is captured by the unbroken symmetry TO



of the state. Patterns of symmetry TO breaking, physi-
cally induced by condensation of excitations, allow us to
describe gapped and gapless phases, as well as the crit-
ical points at continuous phase transitions. Considered
thus, symmetry TO breaking provides more information
than conventional spontaneous symmetry breaking. In
this section, we will describe symmetry TO breaking in
details.

Symm/TO correspondence has the following meaning
[? 7 ], which is the key conjecture used in this paper:

a system (i.e. a gapped or gapless lattice Hamiltonian)
with a (generalized) global symmetry can be ezactly
low-energy simulated by a boundary (i.e. a boundary
Hamiltonian) of a non-invertible gappable-boundary
topological order M in one higher dimension. The bulk
gappable-boundary topological order is referred to as
symmetry TO M.

This is why we can use symmetry TO M to describe a
symmetry. We will call such a symmetric system as an
M-system. We remark that the above Symm/TO cor-
respondence works for anomalous and/or higher and/or
non-invertible symmetries. It even works for global sym-
metries beyond the previous known descriptions. Thus,
it can be viewed as a most general description of global
symmetry.

We have the following mathematical result (see Ref. ?
? 72?7 forasummary): All (gapped or gapless) bound-
ary states of a topological order WM are obtained from
condensing condensable algebras A of M. Since differ-
ent boundary states of M correspond to different ground
states in different M-systems, we can group all gapped or
gapless ground states in M-systems into classes labeled
by the condensable algebras A, i.e. states in a class la-
beled by A correspond to A-condensed boundaries of M.
Those states are referred to as A-states. In other words,
an A-state in an M-system has a condensation pattern
A. After introducing those notions, we can make the
following statement:

In M-systems, all their gapped and gapless A-states are
exactly low-energy simulated by the A-condensation-
induced boundary states of the symmetry TO M.

B. Unbroken symmetry TO (analogue of unbroken
symmetry)

Now let us concentrate on a topological order M and
one of its boundary state induced by condensing a con-
densable algebra A. Such a boundary state corresponds
to a A-state in a M-system. The condensable algebra A4
is formed by excitations in M that has trivial self and mu-
tual statistics between them. As a result, excitations in
the condensable algebra A can condense together, which
will change the topological order M to another topolog-
ical order.[? ] We will denote the resulting topological
order as M, 4 and referred to as unbroken symmetry TO.

&-condensed boundary of
"

M

/

Canonical
domain wall

1-condensed boundary of ./,

FIG. 3. A A-state in a M-system corresponds to a A-
condensed boundary of symmetry TO M. Such a bound-
ary can be obtained by attaching .A-condensation induced
topological order M, 4 with 1-condensed boundary. The A-
condensation changes M to M, 4, causing a symmetry TO
breaking, in that the symmetry TOof the state is smaller than
that of the system. M, 4 is the unbroken symmetry TO (an
analogue of unbroken symmetry) of the A-state.

Physically a condensable algebra A corresponds to a
set of excitations in M that can be condensed together,
i.e. with trivial self/mutual statistics. Mathematically, a
condensable algebra A is described by a composite exci-
tation 1@ a®b® - - -1 which can be viewed as a “vector
space”, plus some data describing “multiplication of vec-
tors” in the vector space (see Ref. ?  for a summary,
and see Ref. 7 for a detailed discussion of a simple
example). For simplicity, in this paper, we will use the
“yector space” 1@ a® b --- to denote the condensable
algebra A, and say 1,a,b etc. belong to the condensable
algebra A: 1,a,b € A. We will always use 1 to denote
the trivial excitations, i.e. all the excitations that can be
created by local symmetric operators. Note that 1 can
represent a null excitation — the ground state itself — an
excitation created by the identity operator.'?

Roughly speaking, the excitations in M, 4 all comes
from the excitations in M: the excitations in M will be-
come trivial excitations in M, 4, if they are in A (i.e. if
they are condensed). The excitations in M will be con-
fined in M 4 (i.e. will disappear), if they have nontrivial
mutual statistics with excitations in A (for more details,
see Appendix C).

The condensable algebra A is called Lagrangian if M, 4
is trivial. In this case, the excitations in M will be

11 A composite excitation 1 ® a @ b @ --- is an excitation where
the excitations 1, a, b, etc. in the composite happen to have
the same energy. For example, the bound state of two spin-1/2
excitations is a composite excitation formed by degenerate spin-0
and spin-1 excitations: spin-1/2 ® spin-1/2 = spin-0 ¢ spin-1.
We believe that even in higher dimensions, the various conden-
sation patterns associated to symmetry TO are still classified
by condensable algebras A in the symmetry TO. But in higher
dimensions, the notion of condensable algebras needs to be gen-
eralized beyond what is described in this paper.
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either condensed or confined. A Lagrangian condens-
able algebra is maximal in some sense, since the induced
topological order M, 4 is minimal (i.e. trivial). On the
other hand, if the condensable algebra is minimal, A =1
(i.e. nothing condenses except trivial particle 1 which al-
ways condenses), the induced topological order My = M
is maximal.

From the A-condensation-induced topological order
M, 4, we can have an understanding of a A-condensed
boundary of M, which has a special realization as a com-
posite boundary illustrated in Fig. 3. There is a canon-
ical domain wall between M and M, 4 which is always
gapped [? ]|. Therefore, the local low energy proper-
ties of A-condensed boundary of M is same as the local
low energy properties of the 1-condensed boundary of
M, 4.'3 This result is reasonable and expected, since the
A-condensed boundary of M also implies that excitations
outside A do not condense. For the composite boundary
in Fig. 3, the induced topological order M, 4 already
has all the condensations for excitations in A, and the
1-condensed boundary of M, 4 implies that there is no
additional condensation (for excitations outside .A).

C. The emergence and the symmetry protection of
gaplessness — the 1-condensed boundary of M, 4

It is easy to see that the 1-condensed boundary of M, 4
can be gapped if M, 4 is trivial. The 1-condensed bound-
ary of M, 4 must be gapless if M, 4 is nontrivial. This
result is proposed in Ref. 7 7 ? | and was referred to as
topological Wick rotation.

Let us show that a 1-condensed boundary of a 2+1D
topological orders M must be gapless. This result is ob-
tained in Ref. 7 7 7 7 via some other methods. As
pointed out in Ref. 7 ? 7 | the partition function for a
boundary of a 241D topological order is a vector, whose
components are labeled by the anyon types of the bulk
topological order: Z(7) = (Z1(7), Za(7), Zp(T),---)T.
Here we have assumed that the spacetime at the bound-
ary is a torus, and 7 describes the shape of the boundary
spacetime. Under the modular transformation, vector-
like partition function transforms covariantly [? |:

e*m“%TMZ(T) =Z(t+1),

()
D7 'SMZ(r) = Z(-1/7),

where SM, T™M are the modular data characterizing the

bulk topological order M [? ? ]| (see Appendix C) and

c_ the chiral central center of M. The physics behind

the above results were explained in Ref. 7 7 7 .

13 Two systems have the same local low energy properties if there
is a correspondence of the local symmetric operators in the two
systems, such that the corresponding operators have the same
correlation function.

If the 1-condensed boundary of the bulk topological or-
der was gapped, the vector-like partition function would
be 7 independent and would have a form

Z1(1) =1, Zgz1(1) =0, (6)
since only 1 condenses. Such a partition function can-
not be modular covariant, if the bulk topological order
is non-invertible. This is because S™M,T™ matrices is
more than 1-dimensional for non-invertible topological
order, and the 1-column of the S™ matrix has a form
(d1,da,dp,---) ", where d, is the quantum dimension of
type-a bulk anyon and D = /> d2. Since di = 1,
d, > 1, and D > 1, eqn. (5) cannot be satisfied by the
vector-like partition function (6). For nontrivial invert-
ible 2+1D topological order, although the bulk has only
the trivial type-1 excitations, the chiral central charge is
non-zero, and the 1-condensed boundary is always gap-
less. Thus

The 1-condensed boundaries of nontrivial 2+1D topo-
logical orders are always gapless.

A similar argument is expected to also work in higher
dimensions:

The 1-condensed boundaries of nontrivial
invertible topological orders are always gapless.

non-

But in higher dimensions, the 1-condensed boundaries
of nontrivial invertible topological orders can be gapped,

such as the wows invertible topological order in 4+1D [?
777777777

D. Canonical boundary

To describe the gapless 1-condensed boundaries more
precisely, we need to introduce a notion of local-low-
energy equivalence. Consider a low energy theory £. We
can obtain another low energy theory L’ by stacking a
gapped state to L. If the gapped state has a nontriv-
ial topological order, the two low energy theories £ and
L' can have different global properties, such as differ-
ent ground state degeneracies, and different averages of
non-contractible loop operators, etc. However, the two
low energy theories have the same local correlations for
all corresponding local operators (beyond the correla-
tion length of the gapped state). In this case, we say
that the two low energy theories £ and £’ are local-low-
energy equivalent. Now we can say that the A-condensed
boundary of M is local-low-energy equivalent to the 1-
condensed boundary of M 4.

The above discussion leads to the following result:

For a A-state in M-system, there exist a 1-condensed
boundary state of the A-condensation-induced topolog-
ical order M 4, such that the two states are local-low-
energy equivalent.




Let us note here that there can be many A-states with
different local low energy properties. Similarly, topo-
logical order M, 4 can have many different 1-condensed
boundary states with different local low energy proper-
ties. What we try to say is that there is an one-to-one cor-
respondence between the A-states and the 1-condensed
boundary states of M, 4, such that the corresponding
states have identical local low energy properties. This
can be rephrased as

A-states in M-system are local-low-energy equivalent
to 1-states in M, 4-system.

Some of these states are more stable if they have fewer
low energy excitations. Here, we assume that the gapless
excitations all have linear dispersion relations. When the
velocity of the gapless excitations are all the same, the
number low energy excitations can be determined by spe-
cific heat. The states with minimal number of low energy
excitations are most stable. The most stable 1-condensed
boundaries of M are called the canonical boundaries of

M.

The local low energy properties of the most stable A-
state is same as the local low energy properties of the
canonical boundary state of M, 4.

We remark that one can also use the number of sym-
metric relevant operators to define a different notion of
“most-stable”.

As we have mentioned above that the A-states are not
unique. We usually look for the most stable states among
the A-states. Note that this aspect is not so different
from the notion of “spontaneous Zs-symmetry breaking
state” which does not really refer to a unique state, since
we can always stack a gapless Zy symmetric state to it
while still preserving the fact that the Z, symmetry is
spontaneously broken. But the term “spontaneous Z,-
symmetry breaking state” usually refers to the most sta-
ble state among these various possible spontaneous Z,-
symmetry breaking states. We use the term A-state in
an analogous fashion.

E. Holographic modular bootstrap approach

If a 2+1D topological order M, 4 is nontrivial, there
is an algebraic number theoretical way, also called holo-
graphic modular bootstrap (holoMB) approach [? 7 ?
? ? ], to determine its gapless boundaries. HoloMB is a
generalization of the conventional modular bootstrap [?

J
Z(r)=Z(r+1) = Z(-1/7), (7)

in the sense that holoMB requires additional input data,
symmetry TO, that describes (generalized) symmetry.
The generalization is given by eqn. (5), and we want
to determine the vector-valued partition function from
these conditions.

Eqn. (5) describes a set of algebraic equations. In gen-
eral, one cannot determine unknown functions Z(7) from
algebraic equations. However, here a partition function
for a given anyon type is the partition function in a cer-
tain symmetry charge sector for Hamiltonian with a cer-
tain symmetry-twist boundary condition (i.e. in a certain
symmetry defect sector):

Zsymm. charge/defect (T) size L

def Treymm. Chargee—Im(r)Lv*IHsym. actect+1Re(T)LP (g)
where L is the size of 1-dimensional ring and v is the
velocity of our 1+1D system. Such a partition function
has the form

Z, (7_) _ qha_C/24(?Ba_6/24P01y22?;;26g_int (q’ 6)7

q= e27ri7- ~ e—,@E (9)
noP—neg—int
h,h

is a polynomial of ¢ and g with non-negative integral coef-
ficients. In fact, the non-negative integral coefficients are
degeneracies of energy-momentum levels. It appears that
the modular covariance conditions (5) can largely deter-
mine partition functions that satisfy the “non-negative-
integer” constraint. We note that holomorphic modular
bootstrap was developed to solve similar problems [? ? |.
Here, we will use a different approach. A 1+1D gapless
boundary conformal field theory (CFT) contains right
movers and left movers, described by conformal charac-
ters x/*(7) and X} (7). Under the modular transforma-
tion, the conformal characters transform as

TExE(r) =xFr+1),  SixE(r) = xF(-1/7),
TPxEF) =xFFE+1),  SPxEE) =xF(=1/7). (10)

The multi-component partition function for the gapless
boundary of M, 4 is given by

where hg, h,, ¢, ¢ are rational numbers, and Poly

2204 (r) = AT ()R (T), A% EN. (1)

The modular covariance of Z; /* (1) takes a form
—i27 55 ab M M
e TJ\/é/AZb 1) =Za (T + ),
, DAY, (2)

DTS5 7, () = Za
where Sy, ,, T, are the S, T-matrices characterizing
the bulk topological order M, 4. They constitute the
additional input, describing the symmetry TO required
in the holoMB approach. Eqn. (12) can be satisfied if
non-negative integers A%%J satisfy

efiQw;—zT%/AfgijfzklAb,j,l _ Aa,i,k,
Dqsg/lg/Ag;%ijgzklAb,j,z _ Aa,i,k, (13)
or more compactly
e I Ty, @ TH o TA = A,
D7 'Sy, ®8p® 55 A= A, (14)



where we have used the fact that the S,T matrices
are symmetric unitary matrices. Comparing eqn. (5)
(for gapped boundary where Z, are 7 independent non-
negative integers) and eqn. (14), we see that the mathe-
matical method to solve for gapped and gapless bound-
aries are the same. We just need to start with different
S, T matrices. In Appendix C, we will describe in more
details an algebraic number theoretical method to find
non-negative integer solutions of eqn. (5) and eqn. (14).
Appendix C also obtains many additional conditions on
Z, and A%%I (see eqn. (C17)).

From the multi-component partition Z) (1) we can
obtain the scaling dimensions of operators that carry var-
ious representations of the symmetry. Thus the symme-
try TO in Symm/TO correspondence allows us to com-
pute properties of gapless state via an algebraic number
theoretical method.

To summarize, using Symm/TO correspondence, the
properties of gapped and gapless states in systems with
(generalized) symmetry can be studied by (1) identify-
ing the corresponding symmetry TO M that describes
the symmetry, (2) computing the condensable algebras
A of M, which classify different spontaneous breaking
patterns of the symmetry TO M (the unbroken symme-
try TO is denoted as M, 4, which is analogous to the
notion of unbroken symmetry, see Section IIB), and (3)
describing the boundaries induced by condensing A using
holoMB, which correspond to different gapped or gapless
states (called A-states) for a given unbroken symmetry
TO M 4.

F. From structure of condensable algebra to
structure of phase diagram

We have grouped the gapped and gapless states of M-
systems into classes labeled by condensable algebras of
M. The states in each class labeled by A are called
A-states. If there is a continuous transition between a
Aj-state and a As-state, the critical point at the transi-
tion will be described by a Ajs-state. The condensable
algebra Ajo must be a sub algebra of both condensable
algebra A; and Aj:

A1z C Ay, Ao C As. (15)
This is because as we approach the phase transition
boundary, some anyons have increasingly weak affinity
to condense. The condensation is absent at the transi-
tion and the condensable algebra becomes smaller. For
more details, see Appendix B.

To obtain more constraints on the phase diagram from
condensable algebras, we introduce a concept of compet-
ing pair: a pair of anyons (a,b) form a competing pair
if they never appear in the same condensable algebra to-
gether, but they can appear in condensable algebras sep-
arately. In other words, the anyons in a competing pair
can condense, but cannot condense together (usually due
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to the nontrivial mutual statistics between them). Con-
densing one anyon in a competing pair will uncondense
the other. We propose that continuous phase transition
is driven by condensing one anyon and uncondensing the
other anyon in a competing pair. This implies that if A;-
state and As-state are connected by a continuous tran-
sition, then the union of A; and Ay should contain a
competing pair. If the union of A; and As should con-
tain only one competing pair, then the transition is more
likely to be stably continuous. For more details, see Ap-
pendix B and Section V E.

III. 141D Z; x Z3 SYMMETRY

Let’s illustrate the general discussion of the previous
section with the example of a 141D system with Zy x Zo
symmetry. Landau’s symmetry-breaking framework tells
us that the system can spontaneously break the symme-
try down to various subgroups of the symmetry group,
producing various gapped states.

This symmetry breaking picture can be also be viewed
through the lens of symmetry TO. In the same way that
Z, gauge theory, denoted by Gaug,, is the symmetry TO
of Zy symmetry, for systems with Zy x Z5 symmetry,'4
the symmetry TO is Gauz, 7z, , which refers to the 2+1D
topological order described by Z, x Z), gauge theory with
charge and flux excitations. There are two e anyons
(charges), e; and eq, and two m anyons (fluxes), m; and
ma, that generate all of the 16 anyons of Sauz,xz,. The
symmetry TO Gauz,«z, makes the mod 2 conservation
of the flux excitations mq and mso explicit — this may
also be described by the dual symmetry Zo x Z5.[7 ] To
emphasize the dual symmetry, one may denote this sym-
metry TO as (Zy x Z) V (Zy x Z4)). We will drop the
discussion of dual symmetry in the following for brevity.

Let’s consider the possible gapped phases of a 1+1D
system with Zy x Z) symmetry from the conventional
point of view first. We will then translate that into the
symmetry TO language.

The gapped phases in 1+1D associated to symmetry
group G are classified by the unbroken subgroup H, and
possible SPT phases of H.[? ? ? | For G = Zy X

%, the four nontrivial symmetry-breaking gapped phases
are associated to its four proper subgroups Z1, Zs, Z5, Z4,
where Z§ is the “diagonal” Z, subgroup. If we present the
group Zs x Z4 as {(0,0),(0,1),(1,0),(1,1)}, then these
subgroups are

Z; ~A{(
Zy ~ {(

2~ {(
24 = {(

14 The prime on the second Zs is used just to explicitly differentiate
between the two Zy groups for purpose of identification.



There are no nontrivial Zy SPT phases in 1+1D. How-
ever, there is a nontrivial Zy x Z, SPT phase, the so-
called cluster state. So there are a total of 6 gapped
phases. Continuous phase transitions between the sym-
metry breaking states is straightforward within Landau
theory. The transitions between the trivial Zy x Z), para-
magnet phase and the three Z; symmetric phase are Ising
transitions. The remaining symmetry in the three Zo
symmetric phases can further spontaneously break via a
second Ising transition to reach the Z; symmetric phase.
In Landau theory, a direct continuous transition between
different Z,-SSB phases is not a possibility since there
is no group-subgroup relation between such pairs. The
nontrivial SPT, cluster state, also has Ising transitions to
the Zy, Z4, Z3 symmetric phases while a direct continuous
transition to the Z; symmetric phase is not generically
possible without fine tuning. Transition from the cluster
state to the trivial paramagnet proceeds via an XY-type
critical point as was shown by Kramers Wannier trans-
formation in Ref. 7 .

Let us now phrase the above discussion in terms of
symmetry TO. The symmetry TO of the symmetry group
Zy x Z4 is Gaug, « z,, with the following Lagrangian con-
densable algebras.

1@ e DexDerer, 1D e ®moderma,
1dm) ey @eamy, 1 ®m; & me ®mime, (16)
1@ mimy @erea ® fife, 1@ eami ®erma @ fifs

where f1 = e; ® m; = eymy and fo = e3 ® my = eams.
These correspond to gapped boundaries of Sauz,xz,
and, by our Symm/TO correspondence, to the 6 gapped
phases discussed above. The gapped boundary 1 @& m; &
ms @B mimsy condenses the two m anyons, m; and ms.
This phase preserves the Zs x Z) symmetry since the
Zy and Z), charges ej,es remain uncondensed (see the
top vertex of Fig. 4). This is the trivial paramagnet
phase. The 1® e; @ ms ® eymo-condensed boundary cor-
responds to a Z}, symmetric phase since the Z, charge es
is uncondensed while the Z, charge e; is condensed. The
1®mimo®erea® fi fo preserves Zg, the diagonal Zs sym-
metry. To see this, note that ejes is charged under both
Z, and Z,, while it is symmetric under the action of Zg.
As a result, condensing ejes must break both Zy and Z}
but not Zg. The fact that mqms is condensed amounts to
the same conclusion: we recall that, for a single Zy sym-
metry, condensation of m corresponds to proliferating the
disorder operator and hence preserving the Z, symmetry.
Therefore, condensation of myms corresponds to preserv-
ing the Zg symmetry. The 1 ® e; @ ez @ ejes-condensed
boundary corresponds to a Z x Z,-SSB phase since both
e; and ey are condensed. The 1 @& eamy ® eyms @ fi fo-
condensed boundary corresponds to a 141D SPT phase,
since none of the Zy x Z) charges condense and thus
Zy x Z}, symmetry is not broken. This corresponds to the
SPT state . In fact, we note that this condensable alge-
bra actually involves a proliferation of decorated domain
walls [? ] since the disorder operator of Zs, correspond-
ing to myq, is bound to the charge of Z), corresponding
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FIG. 4. A Zy x Z) symmetric system has a symmetry de-
scribed by 2+1D Z; x Z5 topological order 9au22xz/2~ Here,
the 6 Lagrangian condensable algebras of 9auz2xz/2 are rep-
resented by the vertices of the hexagon. The gapped phases
they correspond to are described in terms of their symmetry-
breaking/SPT order. A connecting edge between any pair
represents a non-Lagrangian condensable algebra which is
strictly included in both of them, and therefore corresponds
to a phase transition between them. There is also a trivial
condensable algebra 1, which is not shown in this picture; it
corresponds to a multicritical point between any two gapped
phases.The inclusion relations between condensable algebras
have implication on the structure of phase diagram. For ex-
ample, the edge labeled by 1@ mo connecting vertices labeled
by 1&m1 &ma®mime and 1@ e1 Pma B eime suggests that
the former (gapless) 1 @ me-state describes a critical point
for the stable continuous transition between the latter two
gapped states. For this transition to be non-fine-tuned, the
gapless 1 @ me-state must have only one symmetric relevant
operator, which is indeed the case here (see main text for de-
tails).

to es, and vice-versa. In Appendix D, we show that the
1P eamy D eymg @ f1fo-condensed boundary is associ-
ated with an automorphism in the symmetry TO, which
also indicates that 1 @ eamy @ eymso & fi fo-condensed
boundary gives rise to an SPT state.

Let us now discuss the possible phase transitions be-
tween these gapped phases. Going from the 1 & m; &
meo @ mimso phase to the 1 ® ey ® mo ® eymy phase, the
system encounters a continuous phase transition which,
in the holographic picture, corresponds to uncondensing
m; and condensing e;. In conventional language, this is
a phase transition between a Z; x Z, symmetric phase
to a Zj-symmetric phase. At this phase transition, only
1 & my remain condensed. Both e, m; are uncondensed
as well as inequivalent w.r.t. to the condensed particles,
which makes the corresponding boundary theory impos-
sible to be gapped, due to their nontrivial mutual statis-
tics. This serves as an argument that indeed the system



becomes gapless at this phase transition, i.e. this phase
transition is continuous (cf. the top right edge of Fig. 4).

In an analogous manner, one can describe the phase
transition from the Zy x Z)-symmetric phase to a Zs-
symmetric phase as uncondensing ms and condensing es.
At the phase transition, only 1 ® m; are condensed (cf.
the top left edge of Fig. 4). On the other hand, the
phase transition from the Zy x Z, symmetric phase to
the Zg symmetric phase corresponds to uncondensing my
and mo and condensing ejes. At the phase transition,
1 ® mims are condensed.

At all the phase transitions discussed so far, the con-
densed anyons form a non-Lagrangian condensable alge-
bra. This is intimately connected with the gaplessness of
the critical points, as described in the previous section.
Given a symmetry TO, one can in principle obtain all
the gapped boundaries that it can support by searching
for Lagrangian condensable algebras. The phase transi-
tions between such gapped phases are described by var-
ious non-Lagrangian condensable algebras. The exam-
ple of the Zy x Z}, symmetry discussed here gives us a
simple example of such an analysis. The minimal con-
densable algebra is just 1, i.e. condensation of the trivial
anyon. Besides this, there are 9 other non-Lagrangian
condensable algebras which correspond to the various
phase transitions between gapped phases associated to
the Lagrangian condensable algebras in eqn. (16),

1@617
1 S €1€2,

1 69627 1 @mh
1 @mlm27

1 @mg, (17)

1@ ema, 1®miez, 1@ fifo.
We already discussed the phase transitions corresponding
to the non-Lagrangian condensable algebras 1 ®mq, 1 ®
ms and 1@ mmso above. The condensable algebra 1@ e
corresponds to the transition from the 1®e; GmoPeimeo-
phase to the 1 @ e; @ es B egea-phase (see the right edge
of Fig. 4). Similarly, 1@ es corresponds to the transition
from the 1®m BesPBeamy-phase to the 1de; BesPeqes-
phase (see the left edge of Fig. 4). On the other hand,
1®eqes corresponds to the transition from the 1P ejes
mimse @ f1 fo-phase to the 1 @ e; @ e @ ejea-phase (see
the bottom right edge of Fig. 4). This is a Z¢ breaking
phase transition in the conventional language.

Since the minimal condensable algebra 1 is the in-
tersection of every pair of Lagrangian condensable al-
gebras, it corresponds to a direct, fine-tuned, phase
transition between any two gapped phases. In other
words, it describes a multicritical point, e.g. see the
top portion of Fig. 5. The gapless 1-state is given by
the canonical boundary of (Gauz,xz,);1 = Gauz,xz,
which are (¢,¢) = (1,1) u(l) CFT’s. The other nine
non-Lagrangian condensable algebras give rise to gapless
states that correspond to canonical boundary of Gauz,,
since for all of these condensable algebras A, we have

(Gauz,xz,),4 = Gauz, (18)

These nine gapless states are therefore all described by

(c,¢) = (3, %) Ising CFT’s (cf. the discussion in Ref. 7 ).
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FIG. 5. The arrows denote possible continuous phase tran-
sitions. They are labeled by the associated non-Lagrangian
condensable algebras that describe the phase transition. The
three lower arrows depict possible symmetry breaking cas-
cades from the two Z2 x Z5-symmetric states, the trivial para-
magnet and the cluster state SPT. By replacing Z5-symmetric
state in the middle of the cascade by Za- and Z3-symmetric
state, we can obtain two other such symmetry breaking cas-
cades. The top arrow labeled by the minimal condensable
algebra 1 represents a family of possible continuous quantum
phase transition between the trivial symmetric phase and the
nontrivial SPT phase.[? ] Note that this condensable algebra
can also describe fine-tuned continuous phase transitions be-
tween any two of the six gapped phases of this system.

However, these gapless states are distinct, despite being
described by the same CFT, since the assignment of sym-
metry quantum numbers to the excitations in the CFT
is different for each of them.

We see that 1+1D Zy x Z/, symmetric systems can only
have two types of “stable” gapless states: (¢,¢) = (1,1)
u(1) CFTs and (c,¢) = (3,%) Ising CFTs. From the
structure of the condensable algebras, we see that (cf.
Fig. 4)

the trivial Zy x Z4-SPT state (the 1®mq ®maoBmymo-
state) and the nontrivial Zy x Z4-SPT state (the 1 @
eamy @ eyma @ fi fo-state) can only be connected by
the gapless 1-state, i.e. by (¢,¢) = (1,1) u(1) CFTs,

since the overlap of the two condensable algebras 1 &
m1 ® mo ®mimo and 1 @ eamy & eymy B fi1fa is given
by 1. This is consistent with the conclusions of Ref. 7 .
On the other hand,



the nontrivial Zy x Z5-SPT state, the 1@ eamy deyma @
f1fo-state, can be connected by gapless states of (¢, ¢) =
(%, %) Ising CFT to each of the symmetry breaking
states: 1 @ mims ®eres @ f1fo, 1 D mq D es dmyes,
and 1 ® e; @ my @ eyms. The condensable algebras for
the corresponding gapless states are 1 fy fo, 1Emieq,

and 1 & e;mo respectively.

See also Ref. 7 7 for a different holographic theory for
the phase transitions between SPT phases.

To summarize, in Fig. 4, the six Lagrangian con-
densable algebras (and corresponding gapped phases) are
shown along with the nine nontrivial non-Lagrangian
condensable algebras. The vertices correspond to the
various gapped phases, while the edges describe gapless
states of the 1+1D theory. An edge that connects to a
pair of vertices is understood to be describing the gapless
critical theory that mediates a phase transition between
the two gapped phases. The trivial condensable algebra
1 can always mediate a multicritical phase transition be-
tween any pair of gapped phases, as noted above. Hence
it is not shown in the figure.

In the next section, we contrast this discussion with
a Zy x Z, symmetry that has a mixed anomaly. The
symmetry TO of such a symmetry is distinct from that
of the anomaly-free Zs x Z}, symmetry. As was discussed
in Ref. ? | the symmetry TO of Zy x Z, symmetry with
mixed anomaly is Gauz,. As a result the entire discussion
of gapped boundaries and condensable algebras will be
completely different from the anomaly-free case.

IV. 141D Z; x Z5 SYMMETRY WITH MIXED
ANOMALY

In our third example, we consider anomalous Zy x Z
symmetry in 1+1D. Such an anomaly is characterized by
a cocycle w in H3(Zy x Z4;R/Z) = Zy x Zy x Zy. The
middle Z, describes the mixed anomaly between the Zs
and Z} groups. The first and the last Zy describe the
self anomaly of the Z; and the Z/, groups, respectively.
Thus we can use (my, my2, m2) to label different cocycles
w. We denote an anomalous Z x Z), symmetry as (Zg x
Z,)¥ = (Za x Z)mamm),

141D systems with (Zy x Z5)(°10) symmetry have a
gapped state with only the Z,-symmetry, a gapped state
with only the Z)-symmetry., and a third gapped state
that breaks both the Zy and the Z,, symmetry. However,
there is no gapped state with both the Zy and the Z}
symmetry due to the anomaly [? ]. A state that has
the full Zy x Z), symmetry unbroken must be gapless.
Such a gapless state happens to be the critical point
for the continuous transition between the two gapped
states with unbroken Z; and unbroken Z/, symmetry re-
spectively. Noting that Zy and Z, are not related by
a group-subgroup relation, we see that this is an exam-
ple of a continuous phase transition that is beyond the
conventional Landau theory of phase transitions.
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The critical point with the Zy x Z) symmetry also
has other symmetries. The full symmetry of the criti-
cal point is described by the symmetry TO Sau(zojg)zy
which refers to a Zy x Zf, twisted quantum double or
a Zy x Z4 Dijkgraaf-Witten (DW) gauge theory [? |.
The Z, symmetry corresponds to the Zp-gauge charge
conservation in the DW theory, while the Z} symmetry

corresponds to the Zj)-gauge charge conservation in the

DW theory. The 9au§)21£)22 DW theory also have Z; and

% gauge flux, whose conservation give rise to additional
symmetries at the critical point.

In order to discuss the phase diagram and phase tran-
sitions of a system with such an anomalous Z x Z5 sym-
metry, we will use the fact derived in Ref. 7 7  that
the 241D topological order 93&1(20213)22 is the same as the
2+1D topological order Gauz, (i.e. the Z, gauge theory
with charge excitations). In order words, in 2+1D, the
anomalous Zy X Z, symmetry and the Z, symmetry are
equivalent, since they are described by the same symme-

try TO. The anyons of 9311(20212)2/2 topological order can
be mapped to those of Gauz, topological order. This
mapping is given as follows:

er = €2, ea—m? mp—m, mg—e (19)

where e and m are the generators of the gauge charge
and the gauge flux excitations of Gauz,. We argued for
this mapping of anyons by studying the patch operators
and their associated braided fusion category in Ref. 7 .
We found that presence of the mixed anomaly changes
the anyon statistics from that described by Gauz, .z, to

that described by Sau(zozlg)zl
2

result, we will use the language of Gauz, to describe the
phase transitions of a system with (Zy x Z5)(©19) symme-
try.

Let us first recall what are the different gapped phases
that a system with Z; symmetry may have from the
Ginzburg-Landau mean field theory. Let us introduce
two order parameter fields, a complex bosonic field ®
and a real field ¢. Under the generating transformation
of Z4, they transform as

= Gauz,. Supported by this

UZ4(I) = eiﬂ/Qq); UZ4¢ =—¢. (20)

Consider the following Ginzburg-Landau functional
1
F= / dz |09 + u|®|* + 5(<I>4 +h.c) +210* (21)

+ [0¢* + wo? + 2¢* + %¢>(<1>2 + h.c.)

Since the only subgroups of Z4 are the trivial group and
Z5, we can have three different gapped phases in total:
one with the full Z, symmetry (® = ¢ = 0 when u,w >
0), one with unbroken Zy symmetry (® = 0, ¢ # 0 when
u >0, w < 0), and one with Z; symmetry (® #0, ¢ #0
when u < 0) (see Fig. 6).

This shape of the phase boundaries can be understood
as follows. When we turn w from positive to negative
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FIG. 6. Mean-field phase diagram for systems with Z4 sym-
metry. It has three gapped phases with unbroken Z4, Zs, and
Z; symmetries. The two phase transitions Z4 — Z> (marked
by 1@m?) and Z2 — Z; (marked by 1@e?) are critical points
described by the same Ising CFT. The direct phase transition
Z4s — Z; (marked by 1) corresponds to a critical point that
does not break the anomalous symmetry (Za x Z5)*® and
has the full symmetry TO Gauz, . It is a critical line that
includes the Z4 parafermion CFT.

in the presence of a positive u, we find a minima with
non-zero ¢ but still ® = 0. This is a phase which has
an unbroken Z; symmetry. The minimum is now at
¢+ ~ ++/—w. This non-zero mean-field value of ¢ turns
on the ¢(®? + h.c.) term then effectively introduces a
modification to the quadratic terms for ® which is of the
form /—w(®%+h.c.). Thus we see that for u < O(y/—w),
we transition into a phase with non-zero ® as well as
¢. This is the Z; symmetric phase. The correspond-
ing phase transition is indicated in green in the bottom
right quadrant of Fig. 6. If we are close enough to the
phase transition regions, w is small so it is a very good
approximation to drop the corresponding higher order
terms and only concentrate on the quadratic terms and
the ¢®? term for the mean field phase boundary analysis.

Although the two phase transitions Z, — Z; and
Zs — Z; correspond to different symmetry breaking pat-
tern, their critical points happen to be described by the
same Ising CFT with central charge (¢, ¢) = (%, %) The
third symmetry breaking pattern Z, — Z; will have a dif-
ferent critical theory. In fact the transition is described
by a critical line with central charge (¢,¢) = (1,1), that
includes the Z4 parafermion CFT [? 7 ].

Now, from the symmetry TO point of view, the gapped
phases of this system are the allowed gapped boundaries
of Gauz,. Such gapped boundaries are described by the
Lagrangian condensable algebras of the symmetry TO

Gaug,:

1@6@62@63, 1@m@m2@m3,

1@ e om? @ e?m? (22)
The Lagrangian condensable algebras match the gapped

symmetric and symmetry-breaking phases very well. The
first of these condensable algebras, 1 @ e @ e @ e> rep-
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FIG. 7. Zi-symmetric systems has a symmetry described

by 241D Z4 topological order Sauz, (i.e. a Z4 gauge theory).
The Gauz, topological order has seven condensable algebras,
and 3 of them are Lagrangian (the back ones above). They
give rise to gapped boundaries. Four of seven are not La-
grangian, and give rise to gapless boundaries. The gapless
boundaries may be critical points for the transitions between
gapped or gapless boundaries, as indicated above. The arrows
indicate the directions of more condensation.

resents the Z;-phase that spontaneously breaks the Z4
symmetry completely. The second, 1 & m & m? @& m?
represents the Z4-gapped phase that is fully Z, symmet-
ric. The last one, 1 @ e? @ m? @ e®>m? represents the Z,
gapped phase that breaks Z4 down to Zs.

Let us consider these gapped phases in the dual pic-
ture with the (Zy x Z5)(©1%) symmetry. The three gapped
phases obtained by breaking Z,, Z,, or Zy x Z, are
denoted as (Xp x Z5)(°™0)_phase, (Z, x X,)(©1%_phase,
(o x X5)(019)_phase. They have a one-to-one correspon-
dence with the three gapped phases discussed above.
How do we identify them? First of all, the condens-
able algebra 1 @ e @ e? @ €3 may be written in terms
of Zy x Z, charges and fluxes — see eqn. (19) — as
1®mso®e; Peymo which indicates a phase that has a bro-
ken Zy but unbroken Z5. Thus the Z;-phase (in the Z4
symmetry language) corresponds to the (Xy x Z5)(019)-
phase. (see Fig. 6 and 7). Similarly, the condensable
algebra 1®m@®m? ®m?> maps on to 1@ m; B ex Bmyes,
which corresponds to the (Zy xX5)(°1%)_phase. This phase
is mapped to the Z,-phase. Lastly, the condensable al-
gebra 164 e2em?®e’m® mapsontolde; ey dejes,
which corresponds to the (X3 x X5)(°1%)_phase and maps
to the Zy-phase.

Next let us discuss the gapless states that describe
the phase transitions of this system. The gapless states
are given by condensation patterns described by non-
Lagrangian condensable algebras. There are four non-
Lagrangian condensable algebras in the Gauz, topologi-
cal order,

16 m2,

1, 1@eé% 1@ e*m? (23)

They map to four non-Lagrangian condensable algebras
(010)

in the equivalent gau22xz'2

topological order

17 ].69617 1@62, 1@6162. (24)



Thus there are four condensation patterns in the symme-
try TO of this system that can give rise to gapless states.
We refer to these gapless states as 1-state, 1 @ e?-state,
1 & m?2-state, and 1 & e?>m>-state.

The 1+1D gapless 1-states are given by the canon-
ical boundaries of the 1-condensation-induced topolog-
ical order, which is nothing but the original symme-
try TO Gauz,. Similarly, 1+1D gapless 1 @ e2-state
and 1 @ m2-state are given by the canonical boundaries
of (9&1124)/1@62 = 9&1122 and (9auz4)/1@m2 = 93,1122.
Last, the 1+1D gapless 1 @ e?m?-state is given by the
canonical boundary of (Sauz,)/1ge2m2 = Mps, where
Mpyg is the double-semion topological order. To see why
(Gauz,) ;1@e2m2 = Mps, we can ask the question: which
anyons of Gauz, have trivial mutual statistics with e?m?2.
Out of the 16 anyons of Gauz,, there are 8 that satisfy
this condition:

2 2, 2 3,,,3 3 .3

1,62,m ,e“m® em,em”, em’,e’m

Now since e’*m? is condensed in (Gauz,) 1ge2m2, we
should consider the anyons that are related by fusion with

e?m? as equivalent,

2=¢2. ezmz, em?=1-e’m

(& m3 =em - €2m2, e3m = em3 . e2m2

2

m
3

Then we find that the remaining inequivalent anyons are
1,e2,em, em?. Computing the self and mutual statistics
of these anyons indicates that they correspond to Mps.

What is the canonical boundary of Gauz,? We note
that 1 is the only condensable algebra in the overlap of
two Lagrangian condensable algebras 1@ e®e? @ e (the
Z;-phase) and 1©m & m? @m? (the Z4-phase). This al-
lows us to conclude that the canonical boundary of Gauz,
should describe Z, — Z; symmetry breaking transition.
Such a transition is described a (c¢,¢) = (1,1) critical
line with only one relevant symmetric operator. Thus
the Z4 — Z; symmetry breaking transition is a stable
transition, and the canonical boundaries of Gauz, are
described by (¢,¢) = (1,1) u(1) CFT. Similarly, we can
show that canonical boundaries of Gauz, are described
by (¢,¢) = (%, 2) Ising CFT with only one relevant sym-
metric operator — the critical point of Zo — Z; symmetry
breaking transition. The canonical boundary of double-
semion topological order Mpg is given by the chiral boson
theory eqn. (55) with K-matrix given by eqn. (56). So
the gapless 1 @ e?>m?-state, just like the gapless 1-state,
is also described by (¢,¢) = (1,1) u(1) CFT.

After determining the nature of gapless states 1, 162,
1@ m?, and 1 @ e?m?2, we consider the harder question:
how do these gapless states get connected by RG flow,
and what is the structure of the full phase diagram?

The condensable algebra 1@e? differs from Lagrangian
condensable algebras by condensing one excitations. In
fact, condensing e changes 1 @e? to 1 PePe? @ e?, and
condensing m? changes 1 @ e? to 1 ® €2 & m? & e2m?.
Here (e, m?), having a nontrivial mutual statistics, form
a competing pair. We either have an e-condensation that
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FIG. 8. Possible local phase diagram for systems with Z4
symmetry, which contains three gapped phases with unbroken
symmetries, Z4, Z2, and Z;. The curves with arrows repre-
sent the RG flow, and the dots are the RG fixed points that
correspond to the critical points of phase transitions. The
plane is a space of Hamiltonians with symmetry TO Gauz,
(see Appendix B for detailed discussions). The horizontal line
in (a) is a space of Hamiltonians whose ground states have the
condensation A = 1 @ e?, which is the basin of attraction of
the RG fixed point 1. The horizontal line in (b) is a space
of Hamiltonians whose ground states have the condensation
A = 1 ® m?, the basin of attraction of the RG fixed point
2. The horizontal line in (c) is a space of of Hamiltonians
whose ground states have the condensation A = 1, the basin
of attraction of the RG fixed point 3. The critical point 3 is
actually part of a critical line of (¢,¢) = (1,1) u(1) CFT (the
canonical boundary of Gauz, topological order). The critical
point 1 and 2 are the (c,¢) = (3, 3) Ising CFT (the canonical
boundary of SGauz, topological order). We also list the cor-
responding condensable algebras, for each gapped phase and
gapless critical point.

gives rise to the condensable algebra 1 @ e @ e @ €3, or
we have an m?-condensation that gives rise to the con-
densable algebra 1 @ €2 @ m? @ e?m?2. However e and
m? cannot both condense. If we fine tune, we can ensure
neither of them condense; that gives rise to the condens-
able algebra 1@ e?. The gapless 1 @ e?-state is described
by (c,¢) = (3.3) Ismg CFT with only one relevant sym-
metric operator. The condensable algebra 1 @ e? only
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FIG. 9. A possible global phase diagram for systems with o 1
Z, symmetry or (Zz x Z5)©'®) symmetry, which has a similar qi\ Z, (X7><7§32 )(0 »
topology with the mean-field phase diagram Fig. 6. We are locaelpe’ 18 e2em2e e2m?

not sure about the phase structure near the center of the
phase diagram.

allows one competing pair (e,m?). Thus the RG flow
in the relevant direction will cause the condensation of
the competing pair. This gives rise to the phase dia-
gram Fig. 8(a) near the gapless 1 @ e2-state. Similarly,
the phase diagram near the gapless 1 @ m?2-state is given
by Fig. 8(b). The condensable algebra 1 differs from
the Lagrangian condensable algebras 1 ® e @ e? @ e and
1® e? @ m? @ e?m? by condensing one excitation. The
competing pair involved is (e,m). Since the gapless 1-
state has only one relevant operator, if that corresponds
to this competing pair, the phase diagram near the gap-
less 1-state is given by Fig. 8(c). Putting the three lo-
cal phase diagram together, we obtain a possible global
phase diagram Fig. 9.

However, the gapless 1-state also allows competing
pairs (e, m?) and (m, €?), in addition to (e, m). If instead,
it is the competing pair (e, m?) that corresponds to the
relevant direction, the phase diagram will be Fig. 10(a),
which implies a stable Zy — Z; symmetry breaking tran-
sition described by the critical line of (¢,¢) = (1,1) u(1)
CFT that includes the Ising critical point. On the other
hand, if the competing pair (m,e?) corresponds to the
relevant direction, the phase diagram will be Fig. 10(b),
which implies a stable Z, — Z5 symmetry breaking tran-
sition described by the critical line of (¢,¢) = (1,1) u(1)
CFT that involves the Ising critical point. The direct
phase transition Z4, — Z; has been observed which is not
a critical line and does not involve Ising critical point.
This implies that the competing pair (e, m) corresponds
to the relevant direction, and phase diagram Fig. 8(c)
is realized. However, since (¢,¢) = (1,1) u(1) CFT is a
critical line with a marginal direction, it is not clear if
either of the phase diagrams in Fig. 10 can be realized
in some parts of the critical line.

To obtain a concrete global phase diagram for Z, sym-

2, (yxzy) " Gaiz, 1oe (b)

FIG. 10. Other possible local phase diagrams near the gap-
less 1-state, if the relevant direction corresponds to the con-
densation of (a) competing pair (e,m?) or (b) competing
pair (m, ez). This requires the relevant direction of certain
(c,©) = (1,1) u(1) CFT’s to flow to the (c,¢) = (3, 1) Ising
CFT.

metric systems, we consider a Z, symmetric statistical
model on square lattice, which has degree of freedoms
(0i,0:), 0; = 0,1,2,3, ¢ = 0,1,2,3, on site i. The en-
ergy is given by

E=- Z J1(06;,0;0 + 00,,05,,)
7
_ Z J2 (6m0d(¢i—¢i+m,2) + 5m0d(¢i_¢i+y72))

- Z J0g;,, + Jcsin (W) (25)

The J. term breaks the 6; — mod(—6;,4), ¢; —
mod(—¢;,4) symmetry, so the full internal symmetry of
the model is Z4. The Jy term helps to realize the Z,-
phase.

We use the spacetime tensor network renormalization
approach [? ] to study the above statistical model. In
fact, we use a particular version of the tensor network
approach which is described in detail in Ref. 7 . We
obtain the phase diagram Fig. 11. The lower left of Fig.
11 is the Z4-phase. The upper left is the Zs-phase, and
the right is the Z;-phase. The numerical phase diagram
qualitatively agrees with Fig. 9.

We have described the gapless states and continuous
transitions from the Z, symmetry point of view. We
can repeat the above discussion using the (Zy x Z54)(019)
symmetry point of view, and obtain analogous results.



(a) (b)

FIG. 11. A phase diagram for the model (25) with
0.993 < Jif < 1.083 (horizontal axis), 0.533 < J.8 <
0.773 (vertical axis), and JB = J.f = 1.0. (a) A plot of
1/GSD, where GSD is obtained from the partition function:
GSD = Z*(L,L)/Z(L,2L) where Z(L1, L») is the partition
function for system of size L1 X Ls. For gapped quantum
systems, GSD happen to be the ground state degeneracy.
(b) A plot of central charge c. The central charge c¢ is also
obtained from the partition function Z(L, L), which has a

form e~ LeeleL=3TE+o(L ™) when Lo > L, where c is the cen-

tral charge. This way, the central charge c is defined even for
non-critical states. The red-channel of the colored image is
for system of size 64 x 64, green-channel for 128 x 128, and
blue-channel for 256 x 256.

It is interesting to compare the Zy x Z/ symmetry
and (Zy x Z4)(©19) symmetry. The Xy x Z5) — Z5 x X,
DQCP-type transition can be a continuous transition de-
scribed by a gapless 1-state. Such a gapless state is
given by the canonical boundary of the symmetry TO
Sauz,xz;,, which is the (c,¢) = (1,1) IsingxIsing CFT.
Such a gapless state has two Zy x Z, symmetric rele-
vant operators. So the Xp x Z, — Zy x X, symmetry
breaking transition can be a direct continuous transi-
tion, but it must be a multicritical point. In contrast,
the (Xy x Z5)(010) - (Z, x X})(019) symmetry breaking
transition is described by the canonical boundary of the

Sy, which is a (c,2) = (1,1) u(1)

CFT that has only one (Z3 x Z5)(*19) symmetric relevant
operator.

symmetry TO Gau

V. 141D ANOMALY-FREE S; SYMMETRY

A. A Ginzburg-Landau approach for phases and
phase transitions

The description of S3 symmetry-breaking phases in
Ginzburg-Landau theory is based on order parameters
that transform nontrivially under the relevant broken
symmetries. The group S3 has two inequivalent nontriv-
ial subgroups, Zs and Z3. In terms of permutations, S3
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is represented as
S3 = {13 (17 2)7 (2a 3)7 (17 3)3 (17 27 3)3 (17 37 2)} (26)
with subgroups

Zy = {1,(L,2)},{1, (1,3)}, {1, (2,3)},  (27)
Zs~{1,(1,2,3),(1,3,2)} (28)

The two elements (1,2) and (1,2,3) generate the group
S3. There are two nontrivial representations of this
group, a one-dimensional representation and a two-
dimensional one. The first one, which we call a1, may be
realized by a real-valued Ising-like field, ¢“* that trans-
forms under the generators as

(17 2) © ¢a1 = 7¢a17 (17 27 3) © ¢a1 = ¢a1' (29)

The condensation of ¢!, that gives it a non-zero vac-
uum expectation value, breaks S3 symmetry down to
S3/Zy = Z3 symmetry. The second nontrivial represen-
tation, which we call as, may be realized by a complex
two-component bosonic field 22, o = 1, 2. It transforms
under the S5 generators as

1
(1,2) 0 @ = (0 >‘I’ai
10

o ei27r/3 0 a
(2geen = 0 o og)em (0)

This representation is fully faithful in its S5 action. The
condensation of ®%2 satisfying ®7? = ®52 breaks S5 sym-
metry down to Z,. The condensation of ®?2 that does not
satisfy ®7? = @5 breaks Ss symmetry completely down
to Z; symmetry (i.e. the trivial group). To study the
different phases allowed by the symmetry breaking struc-
ture, we can work with the following Ginzburg-Landau
functional (we have dropped the superscripts aq,as for
readability):

Flp, ®o) = ug® + ¢* + v(|®1]? + |02]?)
+ a0} + 3) + B(DT — ©3)p + 1> (|D1]* + [@2]%)
+ @1 — O5* 4 (|91] + [©2]*)* + c.c. (31)

It is straightforward to check that V[¢, ®,] is symmetric
under the action of the two generators of S5 and hence
fully symmetric under Ss transformations. The mean-
field solution is obtained by minimizing this functional
with the assumption that the fields are independent of
the spatial coordinates. The mean-field phase diagrams
are plotted using

Z, order parameter: |¢|,
S3 order parameter: /|®1]2 + |P2]2. (32)

From the mean-field phase diagrams, we see that all
four symmetry breaking phases, Ss-phase, Zs-phase, Z;-
phase, and Z;-phase are realized. Let us consider the
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FIG. 12. Mean-field phase diagram of (31) in (u,v) space, for
a = =~=1. (a): the horizontal axis is u € [—1, 1] and the
vertical axis is v € [—1, 1]. The red channel corresponds to the
value of the S3 order parameter \/|®1|? + |®2]2. The green
channel corresponds to the value of the Zs order parameter
\/m . The black region corresponds to a S3 symmetric phase,
the red region to a Zy symmetric phase, the green region to
a Z3 symmetric phase, and the yellow region to a Z; phase.
(b),(c),(d): Plots of \/|®1|? + |P2|? (y1) and |¢| (y2), for u €
[-1,1], and (b) v = —0.8, (c) v = —0.1, (d) v = 0.5.

possible phase transitions between the various phases.
Landau theory tells us that we should expect continu-
ous phase transitions between pairs of groups that have a
group-subgroup relation. The proper subgroups of S3 are
three Zs subgroups, a Zs subgroup and the trivial sub-
group Z;. There are five distinct group-subgroup pairs
that one can find among these groups:

Z C Sg, Z, C2Zy, ZyCZs,

Zo CSg, Z3 C S3

There are two questions one can immediately ask:
1. Are these transitions all distinct?
2. Are these transitions all stably continuous?

From Landau’s theory of phase transitions, one expects
that a symmetry-breaking phase transition should de-
pend only on the pair of symmetry groups across this
transition. Moreover, we also expect from this point of
view that any pair of groups related by a group-subgroup
relation should have a corresponding continuous transi-
tion between gapped states that have those symmetries.
By the same token, a pair of gapped phases that are
symmetric under groups not related by a group-subgroup
relation are generically expected to have a first-order dis-
continuous transition; sometimes a continuous transition
that is multicritical (i.e. fine-tuned continuous) may also
be allowed.

000 005 010 o015 020 000 005 010 015 020
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FIG. 13. Mean-field phase diagram of (31) in (u,v) space, for
a=p=1,7 = —0.5. (a): the horizontal axis is u € [0,0.2]
and the vertical axis is v € [—0.2,0.2]. The red channel corre-
sponds to the value of the Ss order parameter /| ®1|? + |P2]2.
The green channel corresponds to the value of the Zy order
parameter \/@ . The black region corresponds to a S3 sym-
metric phase, the red region to a Z; symmetric phase, the
green region to a Z3 symmetric phase’ and the yellow region
to a Z; phase. (b),(c),(d): Plots of \/|®1]? 4+ |®2]? (y1) and
|p| (y2), for u € [0,0.2], and (b) v = —0.16, (c) v = 0.02, (d)
v =0.1.

Thus we expect the two transitions S3 <> Zz and
Zs <+ Z1 to be stably continuous and identical, since both
transitions break a Zs symmetry and is controlled by the
change of a Z; order parameter. However, although the
two Ginzburg-Landau theories describing the two tran-
sitions are controlled by the same Zs order parameter,
the Ginzburg-Landau theory for the transition S5 <> Z3
has a Zs symmetry, while the Ginzburg-Landau theory
for the transition Zy <+ Z; does not have any additional
symmetry. Since the Z3 symmetry has trivial actions on
the Zy order parameter, the two Ginzburg-Landau the-
ories are actually identical. Therefore Ginzburg-Landau
theory predicts that the two transitions S3 < Z3 and
Zs <+ Z; are indeed described by the same CFT. This re-
sult is confirmed by numerical calculations and the sym-
metry TO approach, presented in the next few subsec-
tions.

We might also expect the two transitions S3 <> Z3 and
Zs <> Z; to be stably continuous and identical, since
both transitions break a Z3 symmetry and is controlled
by the change of a Z3 order parameter. However, the
Ginzburg-Landau theory for the transition S3 <> Z5 has
a Zy symmetry, while the Ginzburg-Landau theory for
the transition Zs <> Z; does not have this symmetry.
Also the Zy symmetry acts nontrivially on the Zs order
parameter. Thus the Ginzburg-Landau theories for the
two transitions are not really the same. Also, due to



the cubic term, the two transitions must be first order at
mean-field level. Later, we will see that the fluctuations
turn the two first order transitions into stable continuous
transitions. The CFT’s for the two transitions are differ-
ent. However, the two CFT’s are both constructed from
the (6,5) minimal model.

Due to the group-subgroup relation between Ss and
Zy, we might expect the transition S3 <> Z; to be stably
continuous, which is described by a CFT with one rele-
vant direction. But using the symmetry TO approach, we
only find three gapless states with one relevant direction
and with small central charge less than (¢, ¢) = (1, 1), for
S3 symmetric systems. The first gapless state describes
the transitions S3 <> Z3 and Zy <+ Z;. The second gap-
less state describes the transition Zz <> Z; and the third
one describes the transition S5 <> Z,. So which gapless
state describes the transition S3 <+ Z;7 May be the sta-
ble continuous transition S3 <+ Z; is described by a CFT
with central charge larger than (¢,¢) = (1,1), or may
be the stable continuous transition S3 <+ Z; does not
exist. In the next section, we perform some numerical
calculations to study this issue.

Lastly, we expect the stable transition Zs < Zs to
be first order. We know that the transitions Zs < Z;
and Z; < Zs can be stably continuous. Can we fine
tune a parameter to make the two transitions to coincide
and obtain a direct continuous transition Zs <+ Zy? If
Zy and Z3 were independent (i.e. if the total symmetry
were Zg X Zs), then the answer is yes. But for total
symmetry Ss, Zs and Zz are not independent since S5 =
Z3 X Zsy, so we are not sure. In next subsection, we find
that the transition Z3 <> Zs can indeed be continuous
and multicritical. In fact, the same multicritical point
describes both the transitions S5 <> Z; and Z3 <> Zs.

B. Numerical result from tensor network
calculations

The 3-state Potts model is a well studied statistical
model with S5 symmetry. However, this model only re-
alizes two phases, the S3-symmetric phase and the Z,-
symmetric phase. Here we construct an Ss-symmetric
statistical model on a square lattice that can realize
all four phases: Ss-phase, Zs-phase, Z,-phase, and Z;-
phase.

The first model has degrees of freedom (6;,s;), 0; =
0,1,2, s; = 0,1, on site z. The energy is given by

E=- Z Ji (507‘,101‘.4»:: + 50i10'l}+y) + J2(5si,si+w + 5si,si+y)

3

1
+3le > {Sgn(ei —bira) +580(0ita — Oitary)

o+ Sg(0is oy — Oiy) +580(0iry — 05)]
(8i + Sita + Sitaty T Sity — 2) (33)

where sgn(f) = mod(6 4+ 1,3) — 1. The J; and J terms
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(a) (b)

FIG. 14. A phase diagram for the first model (33) with
1.2 < Jif < 1.4 (horizontal axis), 0.6 < J28 < 1.0 (ver-
tical axis), and J.8 = 1.5. (a) A plot of 1/GSD, where
GSD = Z*(L,L)/Z(L,2L) and Z(L1,L2) is the partition
function for system of size L1 X La. (b) A plot of central
—LooleL—2E& +o(L ™1

charge ¢. Z(L, Loo) has a form e ) when
Lo > L, where c is the central charge. The red-channel of
the colored image is for system of size 64 X 64, green-channel
for 128 x 128, and blue-channel for 256 x 256.

(a) (b)

FIG. 15.

A phase diagram for the second model (34) with
0.57 < J18 < 1.29 (horizontal axis), 0.4775 < Jo8 < 1.2275
(vertical axis), and JB8 = 1 — J2f8, J.8 = 1. (a) A plot of
1/GSD. (b) A plot of central charge c. The red-channel of
the colored image is for system of size 64 x 64, green-channel
for 128 x 128, and blue-channel for 256 x 256.

give rise to ¢ = 3 Potts model and Ising model. If we view
0; as a planer vector that can points to three directions
separated by 120° degree, then the term sgn(6; — ;1) +
SeN (it — Oiyaty) 580 (05 1oty — Oiyy) +5g0(0i 4y —0;)
has a meaning chirality: it measures whether the vec-
tors turn clock-wise or anti-clock-wise as we go round
a square. The coupling of the chirality with the Ising
order parameter s; breaks the S3 x Z; symmetry to S3
Symietry.

The second S5 symmetric statistical model has degree
of freedoms (6;, ¢;,5;), 0; =0,1,2, ¢; =0,1,2, s, =0, 1,



(a) (b)

FIG. 16. A phase diagram for the first model (33) with
1.02125 < J1 8 < 1.04125 (horizontal axis), 0.851875 < J28 <
0.891875 (vertical axis), and J.8 = 0.5. (a) A plot of 1/GSD.
(b) A plot of central charge c. The red-channel of the colored
image is for system of size 64 x 64, green-channel for 256 x 256,
and blue-channel for 1024 x 1024.

on site 2. The energy is given by

E=- Z Ji (59i,9i+m + 59i,9i+y + 5¢i,¢>i+m + 6¢iv¢'i+y>

K3

- Z J2(55ia5i+m + 65i’5i+y) + Ja@udh‘

1

+Je Z sgn(f; — ¢i)(si — 5) (34)

The J. term is also a coupling of the chirality with the
Ising order parameter s;.

Again, we use a particular version of the tensor net-
work approach in Ref. ? to study the above two statisti-
cal models. We obtain the phase diagrams Fig. 14, Fig.
15, and Fig. 16. All three phase diagrams contain all
the four phases: Ss-phase in lower left, Z3-phase in up-
per left, Zo-phase in lower right, and Z;-phase in upper
right,

In phase diagram Fig. 14, we see five stable direct
transitions Sg 4 ZQ, Sg <~ Zg, Zg s ZQ, Zg <~ Zl,
and Z; > Z;. We also computed the central charge <<,
along the transition lines. The non-zero central charges
suggest that all the five transitions are stable continuous
transitions.

In phase diagram Fig. 15, we see five stable direct
transitions Sz <> Zs, S3 < Z3, S3 & Z1, Z3 < Z1,
Zs <> Z; . From the computed central charge, we find
that the transitions S3 <> Zy, Z3 <> Z1, and S5 <> Z; are
stably continuous. The transitions Zs <+ Z; is first order
since the central charge ¢ = ¢ = 0 along the transition
line.

In phase diagram Fig. 16, we reduce J. from J. =
1.5 in Fig. 14 to J. = 0.5. We see an evidence of a
multicritical point connecting the four phases Ss, Z3, Zs,
and Z;. More systematic and detailed studies are needed.

Among these stable continuous transitions, the Zo <>
Z1 and S3 <> Z3 critical points are the well known Ising
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critical point, which is described by a conformal field
theory (CFT) constructed from (4,3) minimal model.
S3 <> Zy critical point is the well known critical point
of ¢ = 3 Potts model, which is described by a CFT con-
structed from (6,5) minimal model. But what are the
Z3 <> Zo, S3 <> Zo, and Z3 <> Z; critical points? What
is the (S5, 22,21, Z3) multicritical point? In next section,
we will use symmetry TO to understand the above global
phase diagrams of S3 symmetric systems and the critical
points. In particular, we will show a duality relation be-
tween S3 <> Z; transition and Z3 <> Z, transition. For
example, the existence of a stable continuous transition
S3 <> Z1 implies the existence of stable continuous tran-
sition Zz <> Zy. The two stable continuous transitions,
if they exist, are described by the same CFT.

C. A symmetry TO approach for gapped and
gapless phases

141D S5 symmetry is described a symmetry TO (i.e. a
241D topological order) whose topological excitations
are described by S5 quantum double Gaug, (i.e. S3 gauge
theory with both charge and flux excitations, as de-
scribed in Table II). From Appendix C, we find that a
condensable algebra A = @, ., A%a in M must satisfies

Al =1, A®eN, A*=A%
$q =0 forae A,
SabAb
ZZ% = cyclotomic integer for all a € M
beM PM

Aa S da - 5(da)a
AaAb < ZNJ%,C i 5a,55(da)7

A* = Z S3L AP if A is Lagrangian.  (35)
b
Solving the above conditions for M = Gaug,, we find the

following potential condensable algebras

18b6dc,
1@,

1®asPe,
1@(127

1@&1@21)7 1@0,1@20,2.
1@0,1, 1. (36)

Since eqn. (35) are only necessary conditions, some of the
above A’s may not be valid. For Gaug,, using the follow-
ing physical considerations, we argue that the above A’s
are all valid and describe the actual condensation pat-
terns in physical systems (see Fig. 17).

We know that 141D S symmetric systems can have
four gapped phases with unbroken symmetry group Ss,
Z3, Zo, and Z;, and they correspond to the four La-
grangian condensable algebras that we find above:

1P bP c — S3-phase,
1® ay @ 2b — Zz-phase,

1® ay @ ¢ — Zy-phase, (37)
1® ay ® 2as — Z1-phase.
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TABLE II. The point-like excitations and their fusion rules in 241D Saug, topological order (i.e. S3 gauge theory with charge

excitations). The Ss group are generated by (1,

2) and (1,2,3).

Here 1 is the trivial excitation. a1 and a2 are pure Ss

charge excitations, where a; corresponds to the 1-dimensional representation, and as the 2-dimensional representation of Ss.
b and c¢ are pure S3 flux excitations, where b corresponds to the conjugacy class {(1,2,3),(1,3,2)}, and ¢ conjugacy class
{(1,2),(2,3),(1,3)}. b1, b2, and ¢1 are charge-flux bound states. d, s are the quantum dimension and the topological spin of

an excitation.

d,s | 1,0 | 1,0 2,0 2,0 2, % 2,—1 3,0 3,3
(24 1 al a2z b b1 b2 C C1
1 1 ail az b by ba C C1
al ail 1 az b bl b2 C1 C
as as az | 1P ar Pas b1 b b® by b b c® cd
b b b b1 @ by 1®a1 @b bo @ as b1 @ as cdc chc
b1 b1 b1 b® b b2 @ a2 1$ardb b® as cda cdca
ba bo bo bd by b1 @ as bd as 1D ar Db chc cdc
C C c1 ch e chbecr cPdcr chc 1DasDbD b Db a1 Das DbD by D by
c1 c1 c cd 1 cP e c® el c® el a1 PaxBbBbi1Bby | 1PaxBbDbi Bbo
To understand the above result, we note that a condensa- S, lebec 1®a®oc Z,
tion of real field ¢** carrying the 1-dimensional represen-
tation of S5 breaks S35 symmetry down to Zs symmetry. Gau
. . . S3
Thus the condensation of the corresponding Lagrangian Gau, leb | Gau
condensable algebra 1 @ a; & 2b induces a gapped sym- 2, 1® ®a, Zy
metry breaking phase where the unbroken symmetry is
Zsz C S3. A condensation of complex two-component
" o . . .
bosonic field ®22, o = 1, 2,_ car.rymgathe 2—ad1men81onal Z,1®a,@2b 1®a, 1®a®2a, Z,
representation of S5 and satisfying ®{? = ®5* breaks S3 Gau
Z3

symmetry down to Zs symmetry. Thus the condensation
of Lagrangian condensable algebra 1 & as @ ¢ induces
a gapped symmetry breaking phase where the unbroken
symmetry is Zs C Ss. Similarly, the condensation of
@™ and P2 breaks S3 symmetry down to Z; symmetry.
So the condensation of Lagrangian condensable algebra
1® a1 P 2as induces a gapped symmetry breaking phase
where the unbroken symmetry is Z; C Ss.

Since 1®b®c, 1Pas®ec, 1 Ba; ®2b, 1 ®a; ®2asy are
Lagrangian i.e. Dyt/da = Dy, , = 1, the corresponding
condensation-induced topological orders, (Saug,) /10bGes
(Saus,) 1@as@es (GaUsy) 1@ayw2b: (8US,)/10as @24, TE
all trivial. On the other hand, 1 G az, 1 G b, 1 P aq,
1 are not Lagrangian, and their condensation-induced
topological orders are not trivial. We have

(9au53)/1€Bb = Gaug,,

(9&1153)/1 = 9&1153.

(aus, ) /1ga, = Sauz,,

(Gaus, ) /1@a, = Sauz,, (38)

The above results can be understood using the usual
Anderson-Higgs condensation in S3 gauge theory. The
1 & as-condensation correspond to the condensation of
the ®2 field, which change the topological order Gaug,
described by S5 gauge theory to a topological order Gaugz,
described by Z; gauge theory. Similarly, the 1 & a;-
condensation correspond to the condensation of the ¢!

FIG. 17. 141D Ss symmetry is described by symmetry TO
Gaus, (S3 gauge theory with charge excitations). The Saug,
topological order has eight condensable algebras, and four
of them are Lagrangian (the black ones above). They give
rise to gapped phases as the corresponding gapped bound-
ary states. We also indicate the unbroken symmetry groups
of these phases. Four of eight are not Lagrangian, and give
rise to gapless states. We also indicate the condensation-
induced topological orders whose canonical boundaries give
rise to these gapless states. The gapless states are critical
points for the transitions between gapped or gapless states,
as indicated above. The arrows indicate the embedding maps
of condensable algebra and the directions of more condensa-
tion. All critical points has only one symmetric local relevant
operator and are stable critical points.

field, which change the topological order Gaug, described
by S3 gauge theory to a topological order Gauz, described
by Z3 gauge theory. (Saus,)/; = Gaug, is obvious since
1is trivial. To understand (Gaus, ) /14, = Gauz,, we note
that Gaug, is invariant under exchanging as and b [? .
Such an automorphism exchanges 1@®as and 1@ b. Thus
(Saus,) /100 = (Saus,) /100, = Gauz,.



We can also derive eqn. (38) using the boundary the-
ory of topological order summarized in Appendix C.
For example, (Gaus,)/1¢a, = Jauz, implies that there
is a canonical domain wall between Gaug, and Gauz,,
that is described by a non-negative integer matrix (A%%).
A% gsatisfy eqn. (C20), eqn. (C21), eqn. (C23), and
eqn. (C25), as well as other properties listed in Appendix
C. We find that such (A%") does exist

at _
(ASau53 ISauz2) -

oo oo o~ o
DO R, OO0 oo oo
S cocoocoococor~r~r O
= R i N B R R

S

S

—

w

)

S~—

In the above A%

Saugy|Gauz,’
row of (A%') indicate the condensation of corresponding
anyons in Gauz, (i.e. these anyons become 1 at the do-
main wall). Thus the first row of (A%) gives rise to a
condensable algebra in Gauz,: @, Aégusslﬁauz2i =1,
which indicates that the domain wall is a 1-condensed
boundary of Gauz,. This in turn indicates that Gauz,
comes from Gaug, via a condensation.

the non-zero entries in the first

Similarly, the first column of (A%) gives rise to a con-
densable algebra in Saug,: €@, Aéiusgl Gauz, 0 = 13 as,
which tells us that the domain wall is a 1 ® as-condensed
boundary of Gaug,, and the 1@ as condensation changes
Gaug, to Gauz,. This confirms our above result from

physical considerations.

Gaug, and Gauz, has another canonical boundary de-
scribed by

(A%ia.us3 [Sauz, ) = (40)

_— oo oo~ o o~

S =T R R Y N I

S coocoocor~ o~ o

A R B N B i I
=

which describes the condensation of 1 & b. Such a con-
densation also changes Gaug, to Gauz,.

Similarly, the canonical domain wall between Gaug,
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and Gauz, is given by

ai —
(ASau53 \Sauz3> -

O O O O O O = =
o O O O = O o O
O O O O = O O O
S OO O O = O O
el el el =
O O O O O O O
S O O O O O O
O O O O O o O
S O O = O O O O
S

C1

From the first row of (A% we obtain

Saus, |Gauz, ),
the corresponding condensable algebra in SGauz,:
D, Ayauss\Sauz:;i = 1, which suggests that Gauz, comes
from Gaug, by a condensation. From the first column of
(A’é’}ws3 IGauz, ), we obtain the corresponding condensable

algebra in Gaug,: €@, A‘éiusg Sauz, @ = 1@ a,, which tells
us that the condensation is given by 1 & a;. This again
confirms our above result.

Therefore, although we have four non-Lagrangian
condensable algebras, we only have three different
condensation-induced topological orders, Gauz,, Gauz,,
Gaug,, which correspond to three unbroken symmetry
TOs and give rise to three types of gapless states. But
what are these gapless states?

First, a unbroken symmetry TO allows many different
gapless states. Here we want to know which is the most
stable gapless state with minimal number of relevant op-
erators. If the unbroken symmetry TO is trivial, the most
stable state with the trivial unbroken symmetry TO is
gapped. If the unbroken symmetry TO is nontrivial, the
state with minimal low energy excitations is still gapless.
What is this minimal gapless state? How to calculate the
canonical boundary of the topological order M, 4, which
corresponds to the minimal gapless state with unbroken
symmetry TO M, 47

To calculate the canonical boundary, we will use
holoMB [? ? ? ? ] which is a generalization of modular
bootstrap.[? ? 7 ? ? ? 7 7 | Modular bootstrap looks
for single-component modular invariant partition func-
tions. HoloMB looks for multi-component boundary par-
tition functions for a boundary spacetime that has a form
of torus. The shape of the boundary spacetime torus is
described by a complex number 7. A multi-component
boundary partition function Z, (7) transform covariantly
under the modular transformation, according to the S, T
matrices that characterize the bulk topological order (see
eqn. (5)). The physical reason for such a bulk-boundary
connection is discussed in Ref. 7 7 . Thus, in contrast to
the modular bootstrap, holoMB requires additional input
data, the S, T-matrices, to describe the symmetry TO.

If Z,(7) is independent of 7, the corresponding bound-
ary is gapped. If Z,(7) depend on 7, the corresponding
boundary is gapless. For gapless boundary, the multi-
component partition function Z,(7) is formed by con-
formal characters of certain CFT. So we look for a CFT,



whose conformal characters, after a suitable combination,
can form multi-component boundary partition function
that transform under modular transformation according
to the bulk S, T matrices. The method of computing
a suitable combination is the same as computing gapped
boundary (see Appendix C) of some properly constructed
topological order. For details see Ref. 7 .

Using such a method, we can obtain the proper-
ties of the gapless 1 @ aj-state with unbroken sym-
metry TO (Gaus,)/1ga, Gauz,. First, we find
that one of gapless boundaries of SGauz, is given
by the following multi-component partition function.
Note that the Gauz, topological order has nine
anyons 1,e,e2,m,em,e?m,m?,em?,e>m?. The multi-
component boundary partition function for Gauz, are la-
beled by these nine anyons:

Gauz,

_ m6 mb6 |2 mb6 m6 |2
Zy 7 = xo” s+ IXET XTI
Gauz 2 2
Z5% = [P + P, (42)
5
Sauz 612 62
Zo =2+ I
€ 3 5
Sauz 612 62
3 5
Sauz3 m6 —m6 m6 —mb6 m6 - mb6 m6 - m6
Zme * =Xo Xz tX3UXz Xz XL HXTOXL
Zgang m6.—m6 m6 —m6 m6 -m6 m6.—-m6

me2 = X2z X0 +X§ X3 +XT15X§ +XT15X%7

Sauzg me |2 m6 |2
Zm2 = |X2 | + |XL | )
3 5
Zsaqu m6 —mb6 m6 -mb6 m6.-mb6 m6.-m6

m2e  — X2 Xo tXz Xz& XL Xz FXL1XT

s = XOXE + X5OXEC + XFOXE + X PR,

3 3 5 15 5 15
where x"6 = x"6(7) are conformal characters with con-
formal dimension h, for (6,5) minimal model. The above
result used the expression of S-matrix of (p,¢) minimal
modgl in Ref. 7 . Such CFT has a chiral central charge
c=:.

T}51e above boundary is a 1-condensed boundary of the
topological order Gauz,. This is because a condensation
of an anyon a, will cause the correspond partition func-
tion Z,(7) to contain the |x7*®|? term (see eqn. (43)).
In the above partition, the term |x4*°|? appears only in
Z1(7), and thus the boundary is a 1-condensed bound-
ary. Also if a condense, there must be a nontrivial anyon
b that has a nontrivial mutual statistics with a. (This is
due to the remote-detectability principle of anomaly-free
topological order.) The condensation of a will confine
the anyon b and cause Z;, to vanish (see eqn. (43)). This
does not happen for the above partition function. Thus
there is no condensation of nontrivial anyons.

We have checked other CFT’s with smaller central
charges. We find that although these CFT’s can be gap-
less boundaries of Gauz,, but they cannot be 1-condensed
boundaries of Gauz,. This implies that the above bound-
ary is also a canonical boundary (i.e. a minimal 1-
condensed boundary) of the topological order Gauz,.

In the above, we obtained the 1 a;-condensed bound-
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ary of Gaug, via the 1l-condensed boundary of Gauz,.
This works since Gauz, is the 1 @ a;-condensation-
induced topological order from Saus,: (Saus,)/1g., =
Gauz,. In fact, we can directly obtain 1 & a;-condensed
boundary of Gaug,. The topological order Gaug, has
many gapless boundaries, described by various multi
component partition functions, labeled by the anyons in
Gaug,. One such multi component partition function is
given by

Gausg.
2y = I X+ IS X

Saus 6 612 6 62
Zay P =Ix0" X" IXET + X0
Gau
Zay 0 = B+ X2,
3 15
Saug 62 62
Zy % = X0+ XN,
3 15
[¢]
Z"% = XEOXEC 4 O O NN,
3 3 5 15 5 15
9 _ _ _ _
Zy, 7 = XTPOXE + XEOXE XX+ XX,
3 3 15 5 15 5
chaus3 — 0’
79 ), (43)

We see that the term |x7'%|> appear in and only in

Z9%53 (1) and Z5™"%* (). Thus 1 and a; condense, or
more precisely, the condensable algebra is 1 ® a;. We
also see that Zo™"%s — chlau53 = 0. So ¢ and ¢; remain
gapped on the boundary. These properties suggest that
1 @ ap is a condensable algebra and the above bound-
ary is produced by condensing such a condensable alge-
bra. Such a gapless boundary of Gaug, is the canonical
boundary of (Gaus, ) /1@., = Gauz, given in eqn. (42).

Similarly, the gapless 1@ as-state, with unbroken sym-
metry TO (Gaus,)/1¢q, = Jauz,, is given by the canon-
ical boundary of Gaugz,, which is described by a (¢,¢) =
(%, %) Ising CFT. The corresponding multi-component
boundary partition function is labeled by four anyons
1,e,m, f of Gaug,:

Sauz, Ising |2 Ising |2
2% = [P 4
Sauz Ising|2
Ze 7 =x1"
16
Gauz Ising |2
Zm = x1"
16
Sauz, Ising —Ising Ising _Ising
Zy =Xo X1 “TtX1 Xo (44)
Isi Isi .
where x;7"® = x; "®(7) are conformal characters with

conformal dimension h, for (4,3) minimal model (the
Ising CFT). The gapless 1 & b-state is also described by
a(¢,¢) = (%, %) Ising CFT, since its unbroken symmetry
TO is also given by Gauz,.

Again, the gapless 1@ as-state, with unbroken symme-
try TO (Gaus, ) /10, = Gauz,, can also be given directly
by the 1@ as-condensed boundary of Gaug,. Indeed, one
of the gapless boundary of Gaug, is given by the following



TABLE III. Possible gapped and gapless states for systems with
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S3 symmetry. The most stable gapped or gapless state with

unbroken symmetry TO M, 4 is given by the canonical boundary of M, 4.

condensable algebra A | unbroken symmetry TO M, 4 most stable low energy state
1® a1 @ 2a2 (Saus;) /1@aq @24, = trivial gapped Z;-state (S3 completely broken)
1®a ®2b (Saus;) /1@, @26 = trivial gapped Zs-state (S3 broken to Z3)
1®a2Dc (Saus;) /1@as@c = trivial gapped Zs-state (S3 broken to Zs)
1®bdc (Saus,) j1@pec = trivial gapped Ss-symmetric state
1P (Saus,) /194, = Gauz, the (c,¢) = (2,%) CFT (42)
1P as (Saus,) /100, = Sauz, the (c,¢) = (3, %) Ising CFT (44)
1®b (Saus,) /106 = Gauz, the (c,¢) = (3, %) Ising CFT (44)
1 (Gaus,),/1 = Saus, the (c,¢) = (2,%) CFT (46)

multi component partition function

27" = P P
Z3" = 3P

1
16

ZE:USB _ |X6n4|2 + |X%4|2 + ‘Xm4|2

1
2

ZJMs =

7y = 0

Zliausg —0

23 = P

2 = AR+ X (45)

The above is a 1 & ag-condensed boundary since only
Zlgaus?’ and ZE;USB contain [x74|? term.

To obtain the minimal gapless 1-state with the full
symmetry TO SGaug,, we find that, in addition to the
gapless boundary described by eqn. (43), Gaug, has an-
other gapless boundary described by the following multi
component partition function, labeled by the anyons in
Gaug,:

Gaus 62 62 62 62
2y = I A D A IXET A+ I
Gau _ _ _ _
Za1 S3 _ XTOnGXg’LG +X§n6X6n6 +X%LGX%L6 +X%@6Xr%n6
Gaug.
Zay 0 = X3P+ X2
3 15
Jaus, 6(2 62
Zy 7 = X+ X (46)
Ge _ _ _ _
Zy " = XGOS XEORES RS R
Ga _ _ _ _
Zy, " = O + XX A+ X ORE XX
3 3 15 5 15 5
g .
ZEM58 = |XTOP + I P+ IR+ RSP
8 8 40 40
S _ _ _ _
Zey "% = X PO + XX+ OB + RO
8 8 8 8 40 40 40 40

which is a (¢,¢) = (3, 3) CFT. In contrast to the bound-
ary (43), the above boundary is 1-condensed because
only Z; contains the term |x{'°|>. The boundary is 1-
condensed also because no components of the partition
function is zero, i.e. no other topological excitations in
Gaug, remain gapped on the boundary. These gapped
topological excitations on the boundary become confined
in the condensation-induced topological order (Saus, ), .-
If there are no confined topological excitations, then A
must be trivial A = 1.

We have checked other CFT’s with smaller cen-
tral charges, and find that those CFT’s cannot be 1-
condensed boundaries of the topological order Gaug, (see
Appendix E). Among (¢,¢) = (%, %) CFT’s, the above
boundary is the only 1-condensed boundary. This im-
plies that the above boundary is also a canonical bound-
ary (i.e. a minimal 1-condensed boundary) of the topo-
logical order Gaug,, and is the only canonical boundary.

We remark that although the gapless 1 ® ap-state in
eqn. (43) and the gapless 1-state in eqn. (46) are both
related to (6,5) minimal model with the same central
charge (¢,¢) = (4 4), they are described by different
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we find that the operator carrying the 1-dimensional rep-
resentation a; of S3 has a minimal scaling dimension of
0 for the 1 @ a;-state (since a; is condensed) and has a
minimal scaling dimension of % + % = % for the 1-state.

The above three types of gapless states eqn. (42),
eqn. (44), and eqn. (46), together with four types pf
gapped states, are the gapped and gapless phases for sys-
tems with S3 symmetry. They are summarized in Table
I11.

D. An automorphism in symmetry TO SGaus,

The excitations in the 241D topological order Gaug,
(i.e. the symmetry TO) are listed in Table II, together
with their quantum dimensions, topological spins, and



fusion rules. From the table, we see that the symmetry
TO Gaug, has a automorphism that exchange as « b
[? ]. In fact, the S, T3-matrices for the Gaug, topo-
logical order are invariant under the exchange as <> b.
From the correspondence between the condensable alge-
bras and phases of matter (37), we see that the automor-
phism exchanges Ss-phase with Z,-phase, and Zz-phase
with Z;-phase. In other words, the automorphism flips
the phase diagrams, Fig. 14, 15, 16, as well as Fig. 17,
horizontally.

As a result, the transitions S3 <> Z1 and Z3 <> Z are
related, i.e. they are either both first order, both stably
continuous, or both unstably continuous. More precisely,

if the transition S3 <+ Z; is continuous in a S3 symmet-
ric system, then there is exist another S3 symmetric
system where the transition Zz <> Z5 is also continu-
ous, and the two continuous transitions are described
by the same CFT.

E. A symmetry TO approach for phase transitions

We have used symmetry TO approach to study possi-
ble gapped and gapless states in S5 symmetric systems.
Now let us discuss a more difficult problem: how are
these gapped and gapless states connected by continu-
ous phase transitions and what are the critical points at
the transitions? The gapless states eqn. (42), eqn. (44),
eqn. (46), and others constructed from (5,4) and (7,6)
minimal models and (¢,¢) > (1,1) CFTs should describe
the (multi-)critical points for the transitions between the
four gapped phases, Ss-phase, Zs-phase, Z,-phase, Z;-
phase (see Fig. 20). But which pair of gapped states are
connected by which gapless state, as the critical point of
the continuous transition?

To address this issue, we first consider the gapless
1®a;-state, which is described by the canonical boundary
of (Gaus,) ;1¢a, = Gauz, topological order (i.e. 2+1D Z3
gauge theory). Its multi-component boundary partition
function is given by eqn. (42). From the [x3' + X?6|2
term in Z7 in eqn. (42), we see that there is only one
Z3 symmetric relevant operator, which has a scaling di-
mension (h,h) = (£,2). So the gapless 1 @ a;-state
has only one relevant direction. To see what kind of
phase transition the relevant operator induces, we note
that the condensable algebra 1 & a; only allows one
competing pair (a2,b). So the single relevant direc-
tion must correspond to the switching between the two
condensations of the competing pair (ag,b). This in-
duces a stable continuous phase transition between the
1®a; Pas® - =1Da; ® 2as-state (the Z;-state) and
1Ga1®b® - =1d a; @ 2b (the Zz-state). The local
phase diagram for such transition is given by Fig. 27(a).
Thus the Z3 — Z; symmetry breaking critical point is de-
scribed by a (¢,¢) = (2, 3) CFT constructed from (6,5)
minimal model. This example demonstrates how to use
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symmetry TO to study continuous phase transitions and
their critical points.

Next, we consider the gapless 1 @ as-state which is the
canonical boundary of (Saus,)/1gqe, = Jauz, (i.e. 2+1D
Z, gauge theory). Its multi-component boundary par-
tition function is given by eqn. (44). From the |x5™8|2
term in Z;, we see that there is only one Z, syrrimet—
ric relevant operator, with a scaling dimension (h, h) =
(3,3). So the gapless 1 & ag-state has only one rel-
evant direction. To see which phase transition is in-
duced by the relevant operator, we note that the con-
densable algebra 1 ® ao allows only one competing pair
(a1,¢). Thus, the gapless 1 @ ao-state is the critical
point for a stable continuous phase transition between
1®as®ar @ - =1@a; ® 2as-state (the Z;-state) and
1®as®cd - =1d ag @ c-state (the Zy-state), whose
local phase diagram is given in Fig. 27(a).

The gapless 1 @ b-state is similar to the gapless 1 & ao-
state, due to the automorphism of Gaug, that exchange
az and b. Both are described by (c,¢) = (4,3) Ising
CFT (44). The gapless 1 @ b-state also allows only one
competing pair (a1, ¢), and describes a stable continuous
phase transition between 1 ®b® a1 B --- =1 D ay P 2b-
state (the Zz-state) and 1@ bdcPd - = 1B b D ¢
state (the Ss-state). The S3 — Z3 symmetry breaking
transition looks different from the Z; — Z; symmetry
breaking transition. However, the above discussion sug-
gests that the two transitions are described by the same
critical theory. This result is supported by the standard
Ginzburg-Landau theory.

Last, let us consider the gapless 1-state and its neigh-
borhood. The state is given by a canonical boundary
of Gaug,, whose multi-component boundary partition
function is given by eqn. (46). The gapless 1-state has
only one S3 symmetric relevant operator with dimension
(h,h) = (%,2), as one can see from the [x7'|? term in
7. However, the condensable algebra 1 allows two com-
peting pairs: (ag,b) and (ay,c). Which competing pair
corresponds to the relevant direction?

If we assume the competing pair (aj,c) corresponds
to the relevant direction, then on one side of transi-
tion, the condensable algebra 1 is enlarged to include aq
condensation: 1 — 1@ a; @ ---. Here --- represents
the additional condensation, after a; condense. Such
additional condensations must be compatible with a;-
condensation. We have three possible additional conden-
sations: (1) we may get a gapless 1 G a; ®--- =1 ay-
state (i.e. no additional condensation). (2) we may get
a gapped 1 ®a; @ -+ = 1 @ a1 ® 2aq-state (i.e. with
additional as-condensation). (3) we may get a gapped
1®a1 @ =1 a; & 2b-state (i.e. with additional
b-condensation). On the other side of transition where
¢ condenses, we have two possible additional condensa-

tions: (1’) we may get a gapped 1@ c@---=1Dax e
state (i.e. with additional as-condensation). (27) we may
get a gapped 1 @ c@® -+ = 1 @ ay @ c-state (i.e. with

additional as-condensation). Combining the above pos-
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FIG. 18. The gapless 1-state described by eqn. (46) has one
relevant direction. If this relevant direction corresponds to the
competing pair (a1, c), the gapless 1-state may be the critical
point of the potential continuous transitions represented by
the four curved double-arrows. These potential continuous
transitions are the ones that we cannot rule out at the mo-
ment.

sibilities, we obtain the following scenarios (see Fig. 18):

(117) stable continuous transition between gapless 1®a;-
state and 1 ® as @ c-state, described by the (¢, ¢) =
(2,2) CFT (46). Further instability from danger-
ously irrelevant operators may change the gapless
1 @ a;-state to Zs-state or Z;-state. (Not likely.
This scenario assumes that the condensation of ¢
also induce the condensation of as. As we switch
the condensation of ¢ to the condensation of a;, the
condensation of a; is compatible with the conden-
sation of as and does not suppress the condensation
of as. The condensation of as will destabilize the
gapless 1 @ aj-state and change it to the gapped
1 @ a; ® agx-state. This turns the scenario (11°) to
scenario (217)).

(12’) stable continuous transition between gapless 1®aq-
state and 1 @ b @ c-state, described by the (¢,¢) =
(2,%) CFT (46). Further instability from danger-
ous irrelevant operators may change the gapless
1 @ a;-state to Zs-state or Z;-state. (Not likely.
This scenario assumes that the condensation of ¢
also induce the condensation of b. As we switch
the condensation of ¢ to the condensation of aq,
the condensation of a1 is compatible with the con-
densation of b and does not suppress the condensa-
tion of b. The condensation of b will destabilize the
gapless 1 @ ap-state and change it to the gapped
1 @ a; @ b-state. This turns the scenario (12°) to
scenario (327)).

(217) stable continuous transition between 1 @ a; ® 2as-
state and 1 @ as @ c-state, described the (¢,¢) =
(2,2) CFT (46).

(22%) stable continuous transition between 1 @® a1 @ 2as-
state and 1 @ b @ c-state, described by the (¢, ¢) =
(2,2) CFT (46).
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FIG. 19. The gapless 1-state described by eqn. (46) has one
relevant direction. If this relevant direction corresponds to the
competing pair (az, b), the gapless 1-state may be the critical
point of the potential continuous transitions represented by
the eight curved double-arrows. The dashed curves are the
potential continuous transitions that we cannot rule out at
the moment. The solid curve is the continuous transition
that is known to be realized by 3-state Potts model.

(317) stable continuous transition between 1 @ a; @ 2b-
state and 1 ® as @ c-state, described by the (¢, ¢) =
(1.4) CFT (46).

(32’) stable continuous transition between 1 ® a1 & 2b-
state and 1 @ b @ c-state, described by the (¢, ¢) =
(4.1) CFT (16).

Some scenarios, (11’) and (12’), are not likely. We re-

mark that the above scenarios may not be mutually ex-

clusive. Different scenarios may be realized at different
parts of the phase diagram. We also remark that the
scenario (21’), if realized, will represent a non-Ising crit-
ical point for the transition between the Zs-state and

Zi-state. This scenario represents a mechanism that two

phases may be connected by different continuous transi-

tions described by different CFTs.

Next, we assume the relevant direction corresponds to
the competing pair (az,b). On one side of transition, ag
condenses, which may give rise to the following possible

states: (a) the gapless 1 @ as @ --- = 1 @ ag-state; (b)
the gapped 1 @ as @ --- = 1 @ a; @ 2as-state; (c) the
gapped 1 G as ® -+ = 1 @ ay P c-state. On one side

of transition, b condenses, which may give rise to the
following possible states: (a’) the gapless 1®&b® --- =
1®b-state; (b’) the gapped 1®b®D- - - = 1@ ay @ 2b-state;
(¢’) the gapped 1®b@--- = 1@ b® c-state. Combining
the above possibilities, we obtain the following scenarios
(see Fig. 19):

(aa’) stable continuous transition between gapless 1 @®
as-state and gapless 1 @ b-state, described by the
(c,e) = (%,2) CFT (46). Further instability from
dangerous irrelevant operators change the gapless
1 @ as-state to Zs-state or Z;-state, and change the
gapless 1 @ b-state to Ss-state or Zs-state.

(ab’) stable continuous transition between gapless 1®as-
state and gapped 1®a; @ 2b-state, described by the



(c,é) = (2,2) CFT (46). Further instability from
dangerously irrelevant operators change the gapless
1@ as-state to Zy-state or Zy-state. (Not likely. See
discussion in scenario (117).)

(ac’) stable continuous transition between gapless 1@ as-
state and gapped S3-1®bPc-state, described by the
(c,e) = (%,2) CFT (46). Further instability from
dangerous irrelevant operators change the gapless
1 @ ao-state to Zy-state or Z;-state. (Not likely.
See discussion in scenario (117).)

(ba’) stable continuous transition between gapped 1 &
a1 P 2aq-state and gapless 1 @ b-state, described by
the (c,¢) = (£,%) CFT (46). Further instability
from dangerously irrelevant operators change the
gapless 1 @ b-state to Ss-state or Zs-state. (Not
likely. See discussion in scenario (11°).)

(bb’) stable continuous transition between gapped Z;-1®
a1 @ 2as-state and gapped Z3-1 @ a; @ 2b-state,
described by the (c,¢) = (1,2) CFT (46). (Not
valid. Such a transition should be described by a
different (c,¢) = (%,2) CFT (42).)

(bc’) stable continuous transition between gapped Z;-
1 & a1 ® 2as-state and gapped S3-1 & b & c-state,
described by the (c,¢) = (2,2) CFT (46).

(ca’) stable continuous transition between gapped Z,-1&
asPc-state and gapless 1Hb-state, described by the
(c,e) = (%,2) CFT (46). Further instability from
dangerously irrelevant operators change the gapless
1 @ b-state to Ss-state or Zz-state. (Not likely. See
discussion in scenario (11°).)

(cb’) stable continuous transition between gapped Zs-
1@ as @ c-state and gapped Z3-1 P a; P 2b-state,
described by the (c,¢) = (2,2) CFT (46).

(cc’) stable continuous transition between gapped Zy-16
as @ c-state and gapped S3-1HbP c-state, described
by the (c,¢) = (£,%) CFT (46).

We believe that scenario (cc’) is realized in the 3-state
Potts model, which has a S3 <> Z, transition described
a (¢,¢) = (5, 5) CFT. We believe such a CFT to be the
one given in (46), rather than the (c,¢) = 2) CFT
given in (43).

Note that the stable continuous S3 <> Z; transition
should be described by a 1-condensed boundary of Gaug,
with one and only one S3 symmetric operator. The
(c,e) = (%,2) CFT (46) is one such 1-condensed bound-
ary. But such a CFT is already used to described the
stable continuous S3 <> Zs transition. We need to find
another 1-condensed boundary of Gaug, to describe the
stable continuous S3 <+ Z; transition.

Summarizing the above result and assuming the sce-
nario (cc’), we obtain several possible global phase dia-
grams. One of them is Fig. 20(a) and another is Fig.
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FIG. 20. Two possible global phase diagrams for systems
with S3 symmetry, which contains four gapped phases with
unbroken symmetries, Ss, Zs, Z2, and Z;. The curves with
arrow represent the RG flow, and the dots are the RG fixed
points that correspond to the critical points of phase transi-
tions. The right horizontal line is the space of Hamiltonians
whose ground states have a condensation A = 1 @ az (see
Appendix B), which is the basin of attraction of the RG fixed
point 4. The left horizontal line is the space of Hamiltoni-
ans whose ground states have a condensation A =1 & b, the
basin of attraction of the RG fixed point 3. The upper ver-
tical line is the space of Hamiltonians whose ground states
have a condensation A = 1, the basin of attraction of the RG
fixed point 1. The lower vertical line is the space of Hamilto-
nians whose ground states have a condensation A = 1 ® a1,
the basin of attraction of the RG fixed point 2. The critical
point 3 and 4 are the (c,¢) = (3, 3) Ising CFT (the canonical
boundary of Gauz, topological order). The critical point 1
isa (c,¢) = (3, 2) CFT (46) from (6,5) minimal model (the
canonical boundary of Gaug, topological order). The critical
point 2 is another (c,¢) = (2,1) CFT (42) also from (6,5)
minimal model (the canonical boundary of Gauz, topological
order). The tricritical points 5, 5, and 5" are described by
gapless 1-condensed states with two Ss symmetric relevant
operators. The (c,¢) = (2,2) CFT (47) from (7,6) minimal
model is one such gapless 1-condensed state. We also list the
corresponding condensable algebras for these gapped phases
and gapless critical points.

20(b). Both possibilities are realized by numerical cal-
culations in Fig. 16 and Fig. 15. The above two global
phase diagrams suggest three tricritical points 5, 5, and
5”. From the phase diagram, we see that tricritical points
5 and 5" are connected to the S3-phase. Thus they are 1-
condensed boundaries of topological order Gaug,. From
the phase diagram, we also see that tricritical point 5"



connects to both Zs- and Zs-phases, and thus has both
Z3 and Zy symmetries. Therefore, tricritical point 5 has
the full S5 symmetry and is also a 1-condensed boundary
of topological order Gaug,.

The three tricritical points 5, 5, and 5” are not the
canonical boundaries of Gaug,, since they have two sym-
metric relevant operators and are more unstable. By ex-
amining other 1-condensed boundaries of Gaug,, we find
the following multi-component partition function:

ZfauSS — |X6n7|2 + |X7%n7|2 + |Xg17|2 + |X7%7|2
+ BT+ T
Zgla»us3 _ Xgﬂxgn? + X?75(%7 + X7§:7)27L:27 + XTL;275<7§:7

m7-m7 mT7-mT7

+XL72X% + X5 Xo

Zay"* = 3P+ D P+ T

4
3

Saus; m72 m7|2 m7|2
Zy 7 =X A I X
3 21 21
Gaug _ _ _ _
Zy % = XTTXET A XX A XX XN
1 3 3 21 7 21 T
+ XX+ XX
21 7 21 7
Gaug _ _ _ _
Zy, " = X X XX XX XX
3 7 21 7 21 7 21

mT7-mT7

+XBXT + X2
7 21 3

Z5MS5 = \m T2 T2 A T A P2
8 56 56 56

+ IR+ [
56 8
Saug 7—mT7 7—mT7 7-m7 7-m7
Zey P =xEIXE XX HxE X XX
8 8 56 56 56 56 56 56
T-mT7 T-mT7
+ X8 XT B XE (47)
56 56 8 8

which is constructed from the (7,6) minimal model. The
above CFT has two relevant operators. It is a candi-
date CFT for one of the three tricritical points 5, 5’, and
5", likely the tricritical point 5. We need find more 1-
condensed boundaries of Gaug, with two and only two S3
symmetric relavent operators to describe the other two
tricritical points.

We note that the critical points 5, 5’, and 5”, hav-
ing Zs symmetry, are also 1-condensed boundaries of
topological order Gauz,. Indeed, we find the following
multi-component partition function constructed from the
(7,6) minimal model, realizing a 1-condensed boundary
of Gaug,:

Zfauz3 _ ‘X6n7|2 + XS”X%”? + |X$7‘2 + X?7>—<7%7 + |X7%n7|2
TR+ XEXET I+ XX
7 4 7T 7 T
+ B 4G + X

2™ = 3P+ P+ TP
3 21 21

9
e = TP+ IR+ XA
Zu"® = PR+ I+ P

L
21

28

SGauz _ _ _ _
Zime 7 = XX A XTI+ XRXTT XX
3 3 21 7 a1 v 7
7T-mT7 7T-mT7
+XXE T+ XX
31 7 31 7
Gauz, mT7—-m7 mT7-m7 mT7-m7 m7-m7
Z

me2 = X0 X1 +X% X1o +Xg X1 +XgX%

mT7—-mT7 mT7—-mT

+ X22 X100 + X5 Xa
7 21 3

Sauz, m7(2 m7(2 m7(2
Zon = X XD A+ X
3 21 21
Sauz 7—mT7 7-mT7 7-m7 7-mT7
Z oot = X0 X1+ XT X+ xE X+ XX
3 7 21 7 21 7 21
7om7 7om7
+XBXN + x5 X
7 21 3
Sauz; 7—m7 7-m7 7-m7 7-m7
Zpnea® = X1'X0 " +XTXE +XBXT + XX

+XTXET XX (48)
21 7 21 7

We also note that three tricritical points 5, 5’ and 5”
can be viewed as a 1-condensed boundary of topological
order Gauz,. We do find the following multi-component
partition function constructed from the (7,6) minimal
model, realizing a 1-condensed boundary of Gauz,:
200 = TP+ T TR TP+ P

+ T TP+ DT+ X

4 10 1
3 21 21
Sauz 7—mT7 7-m7 7-m7 7-m7
Ze 7 = X0 X AT ISR AT XX
7 7 7 7 7 7

mT7-mT mT7-mT mT7|2 mT7|2 mT7|2
+ x5 XT x5 Xe T+ IXTT A I+ X
7 7 3 21 21
Gauz
Zom 22 = IXTTP 4 IR+ IR+ I+ I
8 56 56 56 56
2
+ X3 |
8
Gauz _ _ _ _
Z77 = TR+ XX xR TR
8 8 56 56 56 56 56 56
+ XX+ XX (49)
56 56 8 8

The above three multi-component partition functions are
closely related. In fact

leaus3 + Zaglaus3 + 2Z§;us3 _ Zlgauz3 + Zfauz3 + Zegzauz3
= 70z 4 g8z (50

This suggests that the three CFT’s, eqn. (47), eqn. (48),
and eqn. (49), are actually the same CFT. This allows
us to conclude that the CFT (47) can be a candidate
for one of three tricritical points 5, 5, and 5" in Fig.
20. Certainly, it is also possible that the three tricritical
points 5, 5, and 5 are described by CFT’s with (¢, ¢) >
(1,1).

VI. 141D ANOMALOUS S3; SYMMETRY

In 141D, the anomalies for S3 symmetry are classi-
fied by H3(S3;R/Z) = Z3 x Zy ~ Zg.[? | We label
those anomalies by m € {0,1,2,3,4,5}. The symmetry
TO for an anomalous S3 symmetry, Sém), is given by a
topological order Saug:) that is described in the IR limit



by the 241D Dijkgraaf-Witten gauge theory[? | with
gauge charges. In this section, we will use these symme-
try TOs to study the 141D gapped and gapless states
with anomalous S5 symmetry.

A. Anomalous Sél) symmetry

The 9&115913) topological order has anyons given by

anyons: 1 a; as b by bs ¢ ¢
dg : 11 2 2 2 2 3 3 (51)
w000 b4 F g

The potential condensable algebras of Saug; topological
order are given by

1@@1@2(}2, ]_63(127 1@@1, 1 (52)

The condensable algebra 1 ® a; @ 2as is Lagrangian, and

gives rise to a gapped state that break the Sél) symmetry
completely. This is the only gapped state allowed by the
anomalous Sél) symmetry.

The potential condensable algebra 1 @ as is not La-
grangian. If it is a valid condensable algebra, its con-
densation will induce a 2+1D topological order, that has

a canonical domain wall with Sauglg). Indeed, we find a
canonical domain wall between Sau(sla) and Mpg. Here
Mps is the double-semion topological order, which has
excitations 1,b,s4,s_ with spins s, = 0,0, %, %. The
canonical domain wall is given by

ai
az

by (53)
bo

Aai —
( Sau(sla) [Mps

_ O O O O O o O
O = O O O O o O
S

C1

= O O O O OO = O

0
1
1
0
0
0
0
0
b

¥

+
V)
|

From the first row and the first column of A% ,

Saug, | Mps
we can see that Mpg is induced from Saugj via a con-
densation of 1 @ ay. This indicates that 1 ® as is a valid
condensable algebra, and its condensation induced topo-

logical order is

(98.11?5}3))/1@(12 = MDS~ (54)

The 1 & ao-state is the canonical boundary of Mpg,
which breaks the S3 symmetry down to Zs symmetry.
Despite the symmetry breaking, such a state still must
be gapless. To see this, we note that 1&® as-state actually

breaks the anomalous Sél) symmetry down to anomalous
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Zél) symmetry (as implied by the double-semion topo-
logical order Mpg). Since the unbroken Zs symmetry is
anomalous, the 1@ as-state must be gapless since it does
not break the anomalous Z; symmetry. Such a gapless
state is described by the following Lagrangian

=B 1y 6 06— Visoasro
= 01005 — V10,0100,
ur = e'?T generate all local operators, (55)

with

2 0
(K1) (0 _2> (56)
The condensable algebra 1 @ a; can induce a 2+1D
topological order Mg, ,, where M,,, is an Abelian
topological order described by the K-matrix [? 7 ? |

Kos = (g j) . (57)

The nine anyons in Mkg,,, have the following spins

0,0,0, %, %, %, %, %, %. Indeed, we find a canonical domain
wall between Sau(slg) and Mf,, , given by

Aai . _
)
( SaU(SS‘MKM;s

O O O = O o o O

O O O = O O O O

SO OB O O O O O

O OB O O O O O
S

O O O O O O =
SO O O O o = O O
O O O O o = O O
O O O O = O O O
O O O o+ O O O

From the first row and the first column of A% | ,
Saug, [Mroy,3

- 1 .
we can see that Mg, , is induced from 9aug?’) via a con-

densation of 1 ® a;. This indicates that 1 & a4 is a valid
condensable algebra, and its condensation-induced topo-
logical order is

(ga‘ugg,))/léBM = MK04;3' (59)

The 1 ® a;-state is the canonical boundary of Mk, ,,
which breaks the anomalous Sél) symmetry down to

anomalous Zél) symmetry (as indicated by its symme-
try TO Mg, ,). The 1 @ a;-state must be gapless since
it does not break the anomalous Z3 symmetry. Such a
gapless state is described by the Lagrangian (55) with K
given by eqn. (57).

The 1-state is the canonical boundary of Sau%), which

has the full symmetry TO Saug?’). Such a state must be
gapless since it has a nontrivial unbroken symmetry TO.
The gapless state is described by the following multi-
component partition function:
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TABLE IV. Possible gapped and gapless states for systems with anomalous Sél) symmetry.

condensable algebra A | unbroken symmetry TO M, 4 stable low energy state
1® a1 P 2as (Sau(sl3))/1@al@a2 = trivial Ss-symmetry breaking gapped Z;-state
2 0
1® a2 (Saufglg))/l@a2 = Mbps K= chiral boson theory (55)
0 —2
1) 03 .
1®a: (Gaug.) /1mar = Mrkoas K= chiral boson theory (55)
3 4
1 (Saug)) 1 = Gaul) (c,e) = (9,9) CFT 50(9)2 x u(1)2 x u(1)2 x E(8)1 (60)
Z9au(s) _s0(9)2x u(l)zxu(l)ng(S)l so()zxu(V)zxu(1)2 x B(8):
1 1,0;1,0;1,0 + 2,1;2,1;2,
Saug) so(9)z><u(l)2><ﬁ(1)2><E(8)1 50(9)2 xu(1)2xu(1)2 x E(8),
ar = Xy 19 -1 + X2,1;1,0;1,0
Z;j;ufgl; _ Xg?l(f)l)720?<11jo(1)2 x@(1)2x E(8)1 + X;of%)igjj;(_l); xu(1)2 X E(8)1
Sau) 9 Doxa(1)2x E(8 9 1 )2 x E(8
ZSau(sl) _s0(9)2xu(1)2xa(1)2 X E(8)1 50(9)2 xu(1)2xa@(1)2x E(8)1
by X8,§,1,010 +X8,3,2,472,——
ZSaug; _s0(9)2xu(l)2xu(1l)2 X E(8)1 + 50(9)2 xu(1)2xa(1)2x E(8)1
ba - X?,g;1,0;1,0 X7,g;2,%;2,7i
ZSaug; so(9)2 xu(Daxa(DaxB®)1 | s0(0)2xu(1)axu(1)ax E(8):
c 3,1:1,02,—1 X4,1;2,251,0
g (1) _ =
ZClaus X;ogggzi«l{,(é)2 Xu(l)sz(S)l + Xifl(?l)z?;qfili)ZXU(l)zXE(S)I- (60)

127

FTyXCFTyx - -
Here Xacl hl{:fhz_f.x is product of conformal characters

of CFT; for the primary fields labeled by a; with scaling
dimension h;. For example

(9)2 ><u(1)2><ﬂ(1)2 XE(8)1
32,432,

9
=372 (1)

GG ENEONE), (61
where XZO( )2(7) is the conformal character of so(9)s
CFT, for the second primary field with scaling dimen-

sion h = 1; X"(l) (7) is the conformal character of u(1),
CFT (the chlral boson theory described by K-matrix
K = (2)) , for the second primary field with scaling di-

mension h = %; X;_‘(i)f (7) is the conformal character of
T4

%(1)2 CFT (the anti-chiral boson theory described by K-
matrix K = (—2)) , for the second primary field with
scaling dimension h = i; xE®)1 is the conformal charac-
ter of £(8); CFT (the complex conjugate of E(8) level-1
Kac-Moody algebra). The £(8); CFT has only one pri-
mary field (the identity), whose index is suppressed.

Eq. (60) describes a gapless state that does not

(

break the anomalous S:,El) symmetry (or more precisely,
does not maximally condense and trivialize the symme-
try TO Saugla)). The gapless state is described by a
50(9)2 x u(1)2 x (1)2 x E(8); CFT with central charge
(¢,©) = (9,9). Such a CFT is chiral, where right-movers
and left-movers have different dynamics. In particular,
the right-movers are described by a so(9) level-2 CFT
and a U(1) level-2 CFT (i.e. K-matrix K = (2). The
left-movers are described by a U(1) level-2 CFT (i.e. K-
matrix K = (—2) and a E(8) level-1 CFT. Such a com-

bined CFT corresponds to a gapless state with no Sél)

symmetric relevant perturbations; it only has Sél) sym-
metric irrelevant and marginal perturbations. We remark
that the primary field for the conformal character (61) in

(1)
75 tob tric relavent tor si
1 ppearS 0O be a Syn’lme T1C relaven Opera Or since

its scaling dimension h +h = 1 + i + i = % < 2. But
this operator has h — h = 1 + % — % = 1, and hence
describes a chiral operator. We recall that a chiral op-
erator, such as gy that couples two free right-moving

fermions, cannot open an energy gap even when they are



formally relevant. In this paper, we regard them as irrel-
evant. The gapped and gapless phases for systems with

anomalous Sél) symmetry is summarized in Table IV.

B. Anomalous S§2) symmetry

The Saug? topological order has anyons given by

anyons: 1 a3 as b by by ¢ ¢
de: 11 2 2 2 2 3 (62)
sq: 00 0 23 %04
The potential condensable algebras of Saug? topological

order are given by

1®a; B2a2, 1Pas®e, 1Pay, 1day, 1. (63)

The condensable algebra 1 ® a; @ 2as is Lagrangian, and
gives rise to a gapped state that break the S:,(,z) symme-
try completely. The condensable algebra 1 & as & ¢ is
also Lagrangian, and gives rise to a gapped state that
break the S§2) symmetry down to anomaly-free Zy sym-
metry. These are the only two gapped states allowed by

the anomalous S’§2) symmetry.

The condensable algebra 1 @ ag is not Lagrangian. We
2)

find a canonical domain wall between Saufgz and Gaugz,:

(64)

Aai —
( 9aug‘;) |Sauz,

R oo oo ok o

=R R i i e =

S o~ ococoo oo

-, 0O 0c 0000 oo
s

which tells us that Gauz, is induced from 9au(523) via a

condensation of 1@ as. The 1 @ aq-state is the canonical
boundary of Mz,, which breaks the anomalous SP(,Z) sym-
metry down to Zy V Zs symmetry. Such a state must be
gapless and is described by (¢,¢) = (%, %) Ising CFT.[?
]

The condensable algebra 1 ¢ a; is not Lagrangian.

We find a canonical domain wall between Saug? and
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M*K04;3:

100000000 1
100000000 a
011000000 a
<A‘” >_000000011b
Gaug) I M-rois ) [000001 100 b
000110000 by
000000000 ¢
000000000 ¢

(65)

which suggests that M_ g, , is induced from Saug? via a

condensation of 1 ® a;. The 1@ a;-state is the canonical
boundary of M_f,, ,, which breaks the anomalous S§2)

symmetry down to anomalous Zél) symmetry. The 1®a;-
state must be gapless since it does not break the anoma-
lous Z3 symmetry. Such a gapless state is described by
the Lagrangian (55) with K given by the negative of the
K-matrix in eqn. (57).

The gapless 1-state is a canonical boundary of Sau(s?.
What are the properties of such a gapless state? It turns
out that a canonical boundary of Saugg) is given by the
(¢c,¢) = (8,8) E(8)1 x 50(9)2 CFT. In other words, the
right movers are described by F(8); current algebra and
the left movers are described by so(9)2 current algebra.
The E(8); current algebra has only one conformal char-
acter which is modular invariant. The so(9)2 current
algebra has (c¢,¢) = (0,8) and 8 conformal characters
with the following quantum dimensions (d,) and scaling
dimensions (h,)

characters: 1 @; as b by by ¢ &
dg : 11 2 22 2 3 3 (66)
T 7 4 10 1
ha : 01 1 9 9 9 0 5

The above quantum dimensions d, and scaling dimen-
sions ( —hg mod 1) exactly match those of anyons in

Saugg) (see eqn. (62)). Thus the 8 conformal charac-
ters of s0(9)y transform according to the S, T-matrices

2 We add the E(8); to make (¢,¢) = (8,8).

of Sau(s3 .
This matches the central charge of 9au5923) that satisfies
¢ = ¢. This is why the E(8); x50(9)2 CFT is a canonical

boundary of SaUg?. In particular, the multi-component



TABLE V. Possible gapped and gapless states for systems with anomalous S:E,Q) symmetry.
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condensable algebra A | unbroken symmetry TO M, 4 stable low energy state
1® a1 @ 2az (Saug?)/l@al@QQQ = trivial Ss-symmetry breaking gapped Z;-state
1®ax®c (Saug?)/l@aﬁc = trivial gapped Z,-state
1 as (9au<523))/1@u2 = Gaug, (c,¢) = (3,3) Ising CFT
1P (Saug;)/l@al =M_Kyu5 K=- 03 chiral boson theory (55)
3 4
1 (Gaug)) /1 = Gau) (c,e) = (8,8) CFT E(8)1 x 50(9)2
partition function for the canonical boundary is given by The potential condensable algebras of Saug? topological
order are given by
Saul)  B(8),x56(9)s
1 — Lo 1Da; ®2az, 1®a;®2b,
au® _
fousg = (B <5000 13 as, 130, 1®a;, 1. (69)
Zfau(szs) _ 5(8%1 x50(9)2 The condensable algebra 1 & a; @ 2a is Lagrangian, and
2 . .
Gau® B gives rise to a gapped state that break the S’ég) symme-
Z, sy _ f(f)zlxso(g)? try completely. The condensable algebra 1 @ a; @ 2b is
© ne also Lagrangian, and gives rise to a gapped state that
Zf sy _ Xf (81”%(9)2 break the Ség) symmetry down to anomaly-free Z3 sym-
! © e metry. These are the only two gapped states allowed by
Zfaus?’ — XSE(S)I})X%(Q)Z’ the anomalous S§3) symmetry.
: © e The condensable algebra 1@ as is not Lagrangian. We
chauss - Xf)(_gilXE(g)? find a canonical domain wall between 9aug’3) and Mpg:
Gau® _
Zey 5 = LBz (67) 100 0 1
T2
01 0 0 a
We would like to point out that the F(8); x 50(9)2 110 0 ay
CFT has no S§2) symmetric relevant operators, since the 000 O b
1-component of(;c)he multi-component partition function At © —loo o0 0 b (70)
o Gaug E(8)1 x56(9)2 B(8)1 (- <50(9)2 (= Gaug, [Mps
isgivenby Z; ™ =xj =¥ 1(7’))(1’0 (7). 00 0 0 by
Apart from the identity operator (the primary field with 00 1 0 ¢
(h,h) = (0,0)), other non-chiral operators (the descen- 000 1 ¢
dant fields of the current algebra) in this sector have scal- 10
ing dimensions at least (h,h) = (1,1). The operators are 5+ 5-
at most marginal. Thus the gapless 1-state with the full _ o @)
symmetry TO Saug) is a gapless state that has no un- which tells us that Mpg is induced from Saus3 via a

stable deformations, but has marginal deformations. The
gapped and gapless phases for systems with anomalous

S’éz) symmetry is summarized in Table V.

C. Anomalous S§3) symmetry

The Saug;) topological order has anyons given by

anyons: 1 a1 as b by by ¢ ¢
dg : 11 222 2 3 3 (68)

. 1 2 1 3

Sq - 00 00 3 3 4 4

condensation of 1 ® as. The 1 @ as-state is the canonical
boundary of Mpg, which breaks the anomalous S§3) sym-

metry down to anomalous Zgl) symmetry. Such a state
must be gapless and is described by the Lagrangian (55)
with K given by eqn. (56).

The 1® b condensation is similar to the 1 @ as conden-
sation discussed above, due to a as <> b automorphism

of Saug? topological order. The 1 & b-state has the full

anomalous S’?()S) symmetry where the as excitations are
gapped (i.e. the S3 charges, carrying the 2-dimensional
representation, are gapped). Such a gapless state is de-
scribed by the Lagrangian (55) with K given by eqn. (56).

We note that 1-state also has the full anomalous Ség)
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TABLE VI. Possible gapped and gapless states for systems with anomalous S§3) symmetry.

condensable algebra A

unbroken symmetry TO M/ 4

stable low energy state

1@ a1 P 2as (Sau(s?)/l@al@gaz = trivial Ss-symmetry breaking gapped Z;-state
1® a1 $2b (gaug?)“@al@% = trivial gapped Zs-state
: 2
1® a2 (S’jam(si))/l@a2 = Mbps K= chiral boson theory (55)
0 —2
2
19b (Sau(s‘?)/l@b = Mbps K= chiral boson theory (55)
0 -2
1®a; (Saug)/l@al = Gaugz, (c,;e)=(%,2) CFT (42)
1 (Sau)) /1 = Gau) (¢,8) = (2,2) CFT m6 x u(1)z x mb x a(1)2 (72)

symmetry. But in 1-state, the as excitations are gapless.
So the 1-state and 1@®b-state actually have different sym-
metry breaking patterns, despite both states have the full

anomalous S:g?’) symmetry.

The condensable algebra 1@ a; is not Lagrangian. We

find a canonical domain wall between Sau(s‘? and Gaug,:

Aai —
< 9au<s33) |Gauz,

O O O O OO O ==
O O O O O = O O
O O O O O = O O

SO O O O = O O O

=

(71)

S O O O = O O O
O O O = O O o O
SO O O = O O O O
S O O O O o O
o OB O O O o O

which suggests that Gauz, is induced from 9aug’) via a

condensation of 1 @ a;. The 1 @ ap-state is the canoni-
cal boundary of Gauz,, which breaks the anomalous S:E)B)
symmetry down to Zs V Zz symmetry. The 1 & a;-state
must be gapless. Such a gapless state is described by
the (c,¢) = (2,2) CFT constructed from (6,5) minimal
model (see eqn. (42)).

The 1-state is the canonical boundary of Saug‘?, which

has the full symmetry TO Sau(si), which is gapless.
The gapless state is described by the following multi-
component partition function:

3)
Zga“(sg, __.mbxu(l)axm6xu(l)2 m6xu(l)e xm6xa(l)2 m6xu(l)exm6xa(1l)s m6xu(l)sxm6xa(l)s
1 = X1,0:1,0:1,0:1,0 TX102,055-3:2,- 1 1 X5,31,0:5,-3;1,0 T X5,32,111,002, 1
m6xu(1l)exm6xu(l)s m6xXu(1l)e xm6xu(l)s mBxXu(1l)exm6xu(l)s m6xu(1l)exm6xu(l)s
+ + + x5 +
X6,2:1,0:6,—251,0 Xo.zi2,400-22,-3 T Xio,Zo10-L10 T Xi0,Z52, 56,252, 1
3
93“(53) _ . mbxu(l)2xm6xu(l)s2 m6xu(l)e xm6xa(l)s m6xu(l)s xm6xu(l)s mBXu(1l)oXm6Xu(1)s
ar = X1,01,0:5,-31,0 T X1,02,2:1,0i2, 1 T X5,3;1,01,0;1,0 T X5,32,2:5, 312, 1
mBXu(1l)eXm6Xu(1)s mBXu(1l)eXm6Xxu(1)sa m6xXu(1l)a Xxm6xa(1)s m6Xu(1l)aXm6xu(1)s
+ 2 7 J’_ 2 1 2 1 + 7 2 + 7 1 7 1
X6,2:1,0,10,~1:1,0 X6,2:2,1:6,~2;2,— 1 X10,2:1,0:6,—2:1,0 X10,L;2,4:10,~L;2,-1
17 (3)
Zg"‘us3 m6xu(1l)e xm6xu(l)s + m6><u(1)2><m6><11(1)2+ m6xu(1l)exm6xu(l)s + m6xu(1l)exm6xu(l)s
a2 3,2:1,0:3,- 21,0 X322,33-22-1 T Xg Lin08,- 4510 Xg, 2,18~ &2,
3
Zgau(s; . mbxu(l)2xm6xu(l)s2 + m6xu(l)e xm6xu(l)s + m6xu(l)s xm6xu(l)s + mBXu(1l)oXm6Xu(1)s
b T X3,211,08,-251,0 X3,2:2,153,-2;2-1 T Xg,L;1,08,— £;1,0 Xg, 32,138, — 32,
3)
ZSau_(S,S _ m6><u(1)2><77z6><ﬂ(1)2+ m6><u(1)2><7716><12(1)2+ m6><u(1)2><1’716><7](1)2+ m6xu(l)sxm6xa(l)s
b T X1,01,0:3,- 21,0 X1,0:2,13,-2:2,-4 X5,3:1,03,-251,0 X5,3:2,4:3,~ 22,1
m6xu(1l)exm6xu(l)s m6xu(1l)exm6xu(l)s mBxXu(1l)exm6xu(l)s m6xu(1l)exm6xu(l)s
+ + + x5 +
X6,21,0:8,—15:1,0 Xozi2,b8-22-1 T X10,11,08,- 4510 X10,Z:2,1:8,-&:2,-1
3
Z9au(53) _ m6><u(1)2><m6><ﬂ(1)2+ m6><u(1)2><m6><ﬂ(1)2+ m6><u(1)2><m6><71(1)2+ m6Xu(1l)eXm6Xu(1)s
br T X3,251,0,1,051,0 X3,2:1,0:5,-3;1,0 X3,2:2,451,0;2,- 1 X3,2:2,155,-3;2,— 1
mBXu(1l)eXmbXxu(1)s mBXu(l)eXm6Xxu(1)sa m6xXu(1l)axm6xa(1)s mBXu(1l)sXm6xu(1)s
X L0620 T XsLaon0-Zo T Xs o die-22-1 T X ho1a0-Zo 4
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8)
Zgaufsg _ m6><u(1)2><7716><17,(1)2+ m6><u(1)2><7716><11(1)2+ mGXu(l)ngﬁGXﬁ(l)2+ mBXu(1l)sXmBxu(1)sa
© T X bn0a-182-1 TXo g da Lo Xawi02-%2,-3 T Xa B4 00
m6xXu(1l)aXm6xu(1)s2 mBXxXu(l)eXm6xu(1)s2 m6xu(1l)axm6xu(l)s m6xXu(1l)axm6xu(1)s2
+ 1 21 1 + 1 1 Jr 21 1 1 Jr 21 1 21
X7, 4:1,00,-82-1 T X7 Loty Lo T Xoznor—dia -1 T Xo 2o 10 210
(3)
Z‘Qaus3 :Xmﬁxu(l)gxﬁlﬁXﬂ(l)g+Xm6><u(1)2><m6><ﬂ(1)2+Xm6‘><u(1)2><ﬁ7,6><71(1)2+Xm6><u(1)2><m6><ﬂ(1)2
1 2,5:1,0:2,—§;2,— 1 2,%:2,554,— 1,0 4,551,014, - 252, 1 4,552,432, §:1,0
m6Xu(1l)oXm6Xu(1)s mBXu(1l)aXm6Xu(1)s m6xXu(1l)aXxm6xu(1)s m6Xu(1l)sXm6xXu(1)s
+ 1 1 1 + 1 1 21 + 21 21 1 + 21 1 1 72
X7, 07 —d2-1 T Xr o b 2o T Xo2bioe a1 T Xg 2oty Lo (72)

Eq. (72) describes a gapless state that does not break the

anomalous Sé?’) symmetry. The gapless state is described
by a m6 x u(1)z x m6 x u(1)2 CFT with central charge
(c,e) = (2,2). Such a CFT is non-chiral, where right-
movers and left-movers have the dynamics. In particu-
lar, the right-movers (and left-movers) are described by
a (6,5) minimal model CFT (denoted as m6) and a U(1)

level-2 CFT (i.e. K-matrix K = (2)). Such a CFT corre-

sponds a gapless state with one S§3) symmetric relevant
operator. Thus, the CFT may describe a stable continu-
ous phase transition. The gapped and gapless phases for

systems with anomalous Sél) symmetry is summarized in
Table VI.

VII. SUMMARY

It is well known that symmetry and anomaly can con-
strain the low energy properties of quantum systems.
However, even given a symmetry and/or an anomaly,
there still can be a lot of allowed possible low energy
properties, which are hard to organize and hard to un-
derstand. In this paper, we used Symm/TO correspon-
dence proposed in Ref. 7 7 7 7 | to view symmetry and
anomaly from a new point of view, and also to place them
in a more generalized framework. This allows us to orga-
nize the low energy properties according to the conden-
sation patterns and their unbroken symmetry TO. These
patterns of condensations can describe, in a unified way,
symmetry breaking phases, symmetry enriched topolog-
ical phases, symmetry protected topological phases, and
gapless critical points connecting these phases. These
patterns of symmetry TO breakings, and the associated
gapped/gapless phases, are classified by the condensable
algebras A in the symmetry TO M.

In order to similarly study phases and symmetry in
n-dimensional space for n > 1, the theory of condens-
able algebra needs to be further developed. In some
sense, a condensable algebra should correspond to an n-
dimensional domain wall in a topological order in (n+1)-
dimensional space, which describes a symmetry for a
quantum system in n spatial dimensions. These domain
walls are necessarily descendant excitations (i.e. formed
by the condensation of (n — 1)-dimensional, (n — 2)-
dimensional, etc. excitations). Under such a general-
ization of condensable algebra, one must also include
topological orders in n-dimensional space without any

(

symmetry. This is because condensation of trivial ex-
citations in the symmetry TO (i.e. topological order in
(n+1)-dimensional space) can give rise to topological or-
der in n-dimensional space. Condensation of nontrivial
excitations, on the other hand, can give rise to symme-
try enriched topological order in n-dimensional space. In
this way, an appropriately generalized analogue of con-
densable algebra should be able to describe symmetry-
enriched topologically ordered gapped phases of quantum
systems in n > 1 spatial dimensions.

For gapless states, the possible low energy properties
with a unbroken symmetry TO M, 4 are the same as the
possible low energy properties of the 1-condensed bound-
ary of M, 4. In the language of bulk topological order,
this refers to the 1-condensed boundary of the topolog-
ical order induced from M via the condensation of A,
which we denote by M, 4. We find that possible low
energy properties, such as scaling dimensions, are deter-
mined by the unbroken symmetry TO M, 4, and can be
computed using an algebraic number theoretical method.

Different condensable algebras A’s of M can give rise
to the same unbroken symmetry TO M, 4, which implies
that different patterns of condensation associated to a
symmetry TO can give rise to the same set of low en-
ergy properties. This allows us to show that some seem-
ingly different continuous quantum phase transitions are
described by the same critical theory. It appears that
Symm/TO correspondence is a powerful way to use sym-
metry TO (also referred to as categorical symmetry® be-
fore) to study, or even to classify, gapless quantum states
and the associated quantum field theories (up to local
low-energy equivalence). In higher than 141D, similar
techniques are lacking, partly due to a lack of systematic
understanding of gapped boundaries of 341D and higher
topological orders. This constitutes one major direction
for future research.
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FIG. 21. Symm/TO correspondence where (emergent) sym-
metry is viewed as anomaly (Fig. 1 in Ref. 7 ).

Appendix A: Some remarks on the term categorical
symmetry@

To address some comments from referee about the term
categorical symmetry® | we make some remarks here. The
term categorical symmetry® was introduced in 2019 [? ],
which is a way to describe a symmetry by viewing it as a
(non-invertible) gravitational anomaly [? ], or by includ-
ing both symmetry charges and symmetry defects at an
equal footing. We stress that at equal footing is the key
here. If we only include symmetry charges, and use the
fusion ring (i.e. conservation law) of symmetry charges to
describe the symmetry, it will lead to a group theory (or
fusion category) description of symmetry.'® If we only
use symmetry transformations (or symmetry defects) to
describe the symmetry, it will also lead to a group theory
(or fusion category [? 7 2 2 2 72 7 ? ?]) description of
symmetry. On the other hand, if we include both sym-
metry charges and symmetry defects at an equal footing,
and use the fusion rings (i.e. conservation laws) of sym-
metry charges and symmetry defects to describe the sym-
metry, we find that we also need to include the “braiding”
properties of symmetry charges and symmetry defects.
Thus, we need to use non-invertible gappable-boundary
topological order in one higher dimension (called sym-
metry TO), or more precisely, “non-degenerate braided
fusion n-category in trivial Witt class” to describe such
a structure, if the system is in n-dimensional space. This
way, the categorical symmetry® point of view leads to
Symm/TO correspondence [? ? | (see Fig. 21).

In an earlier work Ref. ? , categorical symmetry® ap-
peared in 1+1D CFT as the ambient category of enriched
fusion category of all the topological defect lines and is,
at the same time, the category of modules over a chiral or
non-chiral symmetry (i.e. a VOA or a full field algebra).
Topological field theory (TFT) in one higher dimension
was also used in Ref. 7 to discuss a duality relation in
141D Ising model.

Later, “categorical symmetry” was also used to refer
to “non-invertible symmetry” (which was called “fusion
category symmetry”, a term first introduced also in 2019
[? ]). “Simons Collaboration on Global Categorical Sym-

15 We do not need to include the “braiding” properties of symme-
try charges, since their are always trivial for anomaly-free and
anomalous symmetries.
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FIG. 22. A pair (p, o) describes a “topological symmetry”
in an anomaly-free field theory F' (Fig. 1 in Ref. 7 ).

[0

R

bulk(C)
C c

FIG. 23. In Ref. ? , Fig. 22 was drawn as the above, where
F=C, F=C,p=TR,and o0 = bulk(C). (See Fig. 24 and

Fig. 29 in Ref. 7 ).

metries” founded in 2021 used the term “categorical sym-
metry” with “non-invertible” meaning.

In 2021, motivated by Ref. 7 | Ref. 7  introduced
“symmetry TFT”, which is closely related to “symme-
try TO”. A possible difference is that, for example, in
2+1D, the Zy x Z3-DW theory and the Z4-gauge theory
are usually regarded as different field theories. Thus they
may be viewed as different TFT’s, but they correspond
to the same symmetry TO. In other words, symmetry
TFT may carry extra information about the field theory
representations, which is not needed here.

In 2022, “topological symmetry” was introduced [?
]. “Topological symmetry” corresponds to a pair (p, o),
where ¢ is the symmetry TO discussed above, and p a
gapped boundary of the symmetry TO: bulk(p) = o (see
Fig. 22). The pair (p, o) describes a (generalized) sym-
metry in a quantum field theory F' (using the notations

in Ref. ? ): F = pK, F where Fisa boundary of o,
i.e. bulk(F) = o.

In 2020, Ref. ? also used a similar pair (R, bulk(C))
(see Fig. 23) to describe an anomaly-free algebraic higher
symmetry (i.e. non-invertible higher symmetry), where
bulk(C) is a non-degenerate braided fusion higher cat-
egory in trivial Witt class (i.e. a symmetry TO corre-
sponding to ¢ in the above) and R is a local fusion higher
category that satisfy Z(’ﬁ) = bulk(C) (i.e. a gapped
boundary of the symmetry TO corresponding to p in
the above). Ref. 7 used the pair (R, bulk(C)) to classify
symmetry protected topological orders and symmetry en-
riched topological orders with the anomaly-free algebraic
higher symmetry. Here C corresponds to F in the above.
In Ref. 7 |, R in the pair is assumed to be a local fu-
sion higher category. Since, bulk(C) = bulk(R), Ref. ?
usually used 71 or its dual R, to describe the symmetry,
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FIG. 24. A morphism between n + 1D (gapped or gapless)
quantum field theories C,, and D,, with (non-invertible) grav-
itational anomalies. See (4.3) of Ref. 7 .

which is referred to as algebraic higher symmetry (that is

anomaly-free since R and R is assumed to be local fusion
higher categories).

It turns out that the pair (p,o) also appeared in a
2015 work [? ? ], but was interpreted differently as a

morphism from FtoF , which leads an equivalence F' é
pX, F (see Fig. 22). Such an equivalence corresponds to
a symmetry described by (p, o), as pointed out in Ref. ?
2

More specifically, in Ref. 7 7 | morphism between
n + 1D (gapped or gapless) quantum field theories C,
and D,, with (non-perturbative) gravitational anomalies
[? ] are studied. The partition function of a n + 1D
anomalous field theory D,, on spacetime M™*! is define
only after we view M"*! as a boundary of N"*? (like
Wess-Zumino-Witten theory [? ? ]) and is denoted as
M7L+1 _ 8Nn+2.

Z(Dy; M N2, (A1)

The morphism is a topological domain wall (f(l)l, 1(10))
between anomalous field theories (see Fig. 24, (4.3) of

Ref. 7 ), where fn 1 zs invertible. Since fn , is invert-

ible, the morphism (f 1 no)) (i.e. the presence of topo-

1og1cal domain wall) give rises to an equivalence relation

(see (4.3) in Ref. 7 , which is called a decomposition in
Ref. 7 ):
£
D, = fPRz ) C (A2)

where D,, and fr(lo) X2, (c,) Cn have the same partition
function [? ]

Z(Dn, M”+1,Nn+2) _

Z(fO Ry, () Co; M"TL N"H2),

(A3)

which is the defining property of the equivalence rela-
tion or the decomposition (A2) [? } Since the domain

wall (f (1)1, T(LO)) is topological and f , is invertible, the
above implies that the two anomalous field theorles Cn
and D,, have the same local low energy properties defined
in Footnote 13. Some explicit examples of such local low
energy equivalence were discussed in Ref. 7 7 .

The equivalence relation or the decomposition, (A2)
and (A3), reveals the symmetry described by the pair
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FIG. 25.  When D,, = F is anomaly-free, Fig. 24 becomes
the above, which is another way to represent Fig. 22.

(f(o) Zn(Cy)) [? ? ], in the anomalous field theories D,
and C,. Thus, morphism between between (anomalous)
quantum field theories defined in Ref. 7 corresponds to
symmetry.

In the special case when D,, is an anomaly-free field
theory (denoted as F'), its center (i.e. the bulk) Z,,(D,) =
bulk(D,,) is trivial and Fig. 24 becomeb Fig. 25, if we

rename Cp, as F, Z,(C,) as o, and f as p. Due to
the equivalence relation (A2) and (A3), the pair (p,0)
can be viewed as a symmetry of an anomaly-free field
theory F' as pointed out in Ref. 7 7 . In other words,
the equivalence relation or the decomposition, (A2) and
(A3), reveals the symmetry (p,o) in the anomaly-free

field theory F' and in the anomalous field theory F. Ref. ?
used the equivalence relation or decomposition, (A2) and
(A3), to identify maximal categorical symmetry® in an
anomaly-free field theory F'. Note that the anomalous
field theory F' corresponds to anomaly-free field theory F'
restricted in the symmetric sub-Hilbert space Vsymmetric
[?7].

The categorical symmetry® of the anomaly-free field
theory F' only corresponds to the o in the pair. We see
a clear distinction between categorical symmetry® and
symmetry: a categorical symmetry® is a holo-equivalence
class of symmetries, as indicated by (4). (Two symme-
tries, (p, o) and (p’,0’), are holo-equivalent if o = ¢’ [?

]-)

We have been using categorical symmetry® to just
mean “including both symmetry charges and symmetry
defects at an equal footing, and including their ‘braiding’
properties”. This leads to Symm/TO correspondence.
However, “categorical symmetry” has since been used to
mean different things. This causes some confusions.

Another source of confusion comes from the fact that
categorical symmetry® has several equivalent descrip-
tions, that emphasis different aspects of Symm/TO cor-
respondence: A categorical symmetry® can be, equiva-
lently, described by

1. a non-invertible gravitational anomaly[? | (see
Fig. 21). Here we view symmetry by restricting
to symmetric sub-Hilbert space. The symmetric
sub-Hilbert space does not have a tensor product
decomposition Vsymm 7 ®l Vi, where V;’s are vec-
tor spaces on lattice sites 4. This implies a non-
invertible gravitational anomaly, and thus a sym-
metry can be described by a non-invertible gravi-
tational anomaly.



2. a symmetry + dual symmetry + braiding [? ?
].  Conservation (i.e. the fusion ring) of sym-
metry charges corresponds to symmetry. Con-
servation (i.e. the fusion ring) of symmetry de-
fects corresponds to dual-symmetry. Here we
treat symmetry charges and symmetry defects at
an equal footing. The fusion ring of symmetry
charges/defects corresponds to “symmetry” in cate-
gorical symmetry® . The braiding properties of sym-
metry charges/defects corresponds to “categorical”
in categorical symmetry®. In fact, the term categor-
ical symmetry® is a parallel generalization of the
term “anomalous symmetry”. The fusion ring of
the symmetry charges correspond to “symmetry”
in “anomalous symmetry” and the braiding prop-
erties of symmetry defects corresponds to “anoma-
lous” in “anomalous symmetry” [? 7 ].

3. a gappable-boundary topological order in one
higher dimension (symmetry TO)[? ? ]. This is
because gravitational anomaly = topological order
in one higher dimension [? ].

4. a part of topological skeleton introduced in Ref. ?

5. a non-degenerate braided fusion higher category
in trivial Witt class [? ? ]. This is because
topological order is described by non-degenerate
braided fusion higher category. We use a short
name “symmetry nBF category” to refer to “non-
degenerate braided fusion higher category in triv-
ial Witt class”. Thus symmetry nBF category,
replacing group and higher group, is used to de-
scribe (generalized) symmetry. This leads to a uni-
fied frame work to classify spontaneous symmetry
breaking order, topological order, symmetry pro-
tect topological order, symmetry enriched topolog-
ical order, etc in any dimension [? |.

6. an equivalence class of algebras of commutant
patch operators (also called transparent patch op-
erators) [? 7 ]. This is a non-holographic point
of view that does not go to one higher dimen-
sion, and leads to the notion of patch symmetry(see
(4)). Here a symmetry is defined via the algebra
of local symmetric operators. Using an algebra
formed by commutant patch operators (that are
constructed from local symmetric operators and de-
fine the patch symmetry), we can compute a non-
degenerate braided fusion category in trivial Witt
class that describes a categorical symmetry®.

Let us use some simple examples to illustrate the no-
tion of categorical symmetry®. In 141D Ising model with
Zs symmetry. The Zs-symmetry charge is denoted by
e and Zy-symmetry defect is denoted by m. The Z,-
symmetry is described by the fusion ring e ® e = 1 (the
conservation law). The Zy-symmetry is also described
by transformation law U? = id. On the other hand, the
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categorical symmetry® of the Ising model is described by
the fusion ring of Z,-symmetry charges e®e = 1 and the
fusion ring of Zs-symmetry defects m ® m = 1, as well
as a non-trivial “braiding” property between e and m.
In other words, categorical symmetry® treats the symme-
try charges and symmetry transformations (or symmetry
defects) at equal footing. Such a treatment leads to sym-
metry nBF category description of symmetry (instead of
group description of symmetry).

In an 1+1D model with Z; symmetry. The Z4-
symmetry charges are denoted by e*, k = 1,2, 3, and Z,-
symmetry defects are denoted by m*, k = 1,2,3. The Z4-
symmetry is described by the fusion ring eRe®@e®e =1
(the conservation law). The Z-symmetry is also de-
scribed by transformation law U# = id, or m @ m @ m ®
m = 1. In contrast, the categorical symmetry® of the
Z, model is described by the fusion ring of Z,-symmetry
charges e ® e ® e ® e = 1 and the fusion ring of Z-
symmetry defects m® m @ m @ m = 1, as well as a
non-trivial “braiding” property between e and m.

However, if we call e? = e; the charge and m = m; the
defect of first Zy-symmetry, and m? = e, the charge and
e = mg the defect of second Zj-symmetry, then the same
categorical symmetry® will describe Zy x Zj-symmetry
with a mixed anomaly.[? | This example demonstrates
a difference between the usual symmetry point of view
and categorical symmetry® point of view. The categorical
symmetry® point of view allows us to see certain relations
more easily.

Since many people use “categorical symmetry” to
mean non-invertible symmetry, in this paper, we will use
an equivalent notion symmetry TO to refer to categorical
symmetry® | hopping to avoid confusions. In fact, sym-
metry TO (i.e. categorical symmetry®) is the “Drinfeld”
center of global symmetry or fusion category symmetry.

Appendix B: Structure of phase diagram

Condensable algebras A have many relations, such as
algebra-subalgebra relation, overlap relations, etc. These
relations can constrain the phase diagram of condensa-
tion patterns A4 in M symmetric systems. To describe
such a phase diagram, let X5¢ be the space of all M-
systems (which is called moduli space), that have liquid
ground states [? ? |. A is parametrized by the coupling
constants in the Hamiltonians with the symmetry.

The moduli space X can be divided in to many
regions, each described by a different condensation A,
which will be called A-phase. The state in the A-phase
will be called A-state. Here A-phase can be gapped.
A-phase can also be gapless, in which case, the gapless
A-state has no symmetric relevant operators.

The boundary between two regions of condensations
A; and A, describes the phase transition between A; and
As. If the phase transition is first order, at the boundary,
the system has degenerate ground states: one described
by Ai-condensation and the other by .As-condensation.
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FIG. 26. Some possible structures of the phases near a tri-
critical point A; (the dot). The solid curves are continuous
transitions (described by Ac1, Ac2, etc.). The dashed curves
are first-order transitions.

If the phase transition is continuous, at the boundary,
the system has a condensation described by A.. Starting
in the Aj-phase, as we approach the A.-boundary, cer-
tain condensation becomes weaker and weaker. At the
boundary, we reach a smaller condensation A, C Aj;.
Similarly, we have A. C As. Thus

A stable continuous transition between .A;-phase and
As-phase is described by a critical point with A, con-
densation that satisfies

A. C A1, A. C As. (B1)
The gapless A.-state has only one symmetric relevant

operator.

Here A; and Ay can be the same, in which case, the gap-
less A.-state describes a continuous transition between
the same phase.

To summarize, A-state’s with no symmetric relevant
operator form the stable phases. Gapless A.-state’s with
one and only one symmetric relevant operator describe
stable continuous transitions between stable phases. Sim-
ilarly, gapless A;-state’s with two and only two symmet-
ric relevant operators are tricritical points, a kind of mul-
ticritical points. Some structures of the phases near a
tricritical point are described in Fig. 26.

Let us consider a stable continuous transition, whose
critical point is described by a gapless A.-state that
has one symmetric relevant operator. The possible
renormalization-group (RG) flows are presented schemat-
ically in Fig. 27. But what are the resulting states after a
long RG flow? To address this question, let us introduce
a notion of allowed competing pair for the condensable
algebra A., which is a pair of excitations a4 and a_ with
nontrivial mutual statistics, but they both have trivial
mutual statistics with respect to A..'6 If ay condenses,

16 More precisely, an allowed competing pair (a4,a—) for a con-
densable algebra A. has the following defining properties: (1)
a4 can be added to A. to generate a larger condensable algebra
and so does a—. (2) a4 and a_ cannot be added together to
generate a larger condensable algebra.
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FIG. 27. The curves with arrow represent the RG flow. The
dots represent the fixed points of the RG flow. The plane is
a subspace of the total moduli space X5 (the space formed
by M-systems). Let X5t be the subspace formed by A-states.
The horizontal line is a subspace of Xz°. In (a), the sub-
spaces Xﬁ* and XJ@’ are upper and lower half planes. In
(b), the sub-spaces Xﬁ*’ and Xﬁ_ are two marked curves.
(c) and (d) are combinations of (a) and (b).

a_ will be confined and uncondense. If a_ condenses, a
will be confined and uncondense. Thus we can imagine
that there is some parameter ¢ in the Hamiltonian that
controls whether a condenses or a_ condenses. For ex-
ample, we could have a situation that ¢ > 0 causes a
to condense and € < 0 causes a— to condense. ay and
a_ cannot both condense due to their nontrivial mutual
statistics, but a4 and a_ can be both uncondensed. Let
us assume this can happen only if we fine tune ¢, so as to
set e = 0 (otherwise, we would have had a stable gapless
phase).

If the gapless A.-state only allows one competing pair,
then the two different condensations of the one com-
peting pair should correspond to the relevant direction.
However if the gapless A.-state allows several competing
pairs, then the only relevant direction should correspond
to one of these competing pairs. With these considera-
tions, we propose that the switching between two different
condensations of a competing pair is the basic mechanism
for continuous phase transition. The resulting two con-
densable algebras Ay and A_ from the two condensations
must contain the condensing particle and must contain
A. as a sub algebra.

To be more concrete, let us assume the competing pair
(a4,a_) corresponds to the relevant direction. After the
condensation of a4, or a_, the condensable algebra A,



will change to Ay, = A.®ar d+--- or A=A Pa_&
+ -, where - - - represent any additional excitations that
condense together with the a4 or a_ condensations.

Now, we need to consider several cases separately.
If Ay and A_ are Lagrangian, then the switching be-
tween two different condensations of the competing pair
(as,a_) will cause a stable continuous phase transition
between A, -state and A_-state. We will have a local
phase diagram as in Fig. 27(a), where we have assumed
that the parameter ¢ mentioned above has an overlap
with the relevant direction of the RG flow.

If A, and A_ are both non-Lagrangian, then the
switching between two different condensations of the
competing pair (ay,a_) will cause a continuous phase
transition between the gapless A, -state and the gapless
A_-state. Let us further assume that both A -state and
the A_-state have one relevant operator (if neither has a
relevant operator, the local phase diagram will be given
by Fig. 27(a) as in the previous case). In this case,
the continuous transition will be multicritical. The local
phase diagram will be controlled by the relevant opera-
tor and the dangerously irrelevant operator, a mechanism
discussed in Ref. ? . The unstable A, -state can become
A;-state or As-state. The unstable A_-state can become
As-state or Ay-state. Thus we find the phase diagram
shown schematically in Fig. 27(b).

From the phase diagram Fig. 27(b), we see that there
are stable continuous transitions A; <+ Az and Ay <> Ajy.
Whether we get a A; < Az transition or a As < Ay
transition is controlled by dangerously irrelevant oper-
ators. From the phase diagram, we also see a direct
continuous transition A; ++ A4, and a direct continuous
transition As <+ As. These two transitions are not stable
and are controlled by a multicritical point. The critical
points for all the four transitions A; < A3, Ay + Ay
A & Ay, and Ay < As, are described by the same crit-
ical theory with condensation pattern A, and with only
one relevant operator. How can a critical theory with
only one relevant operator sometimes describe stable con-
tinuous transition, and other times describe multicritical
continuous transition? This is because sometimes tun-
ing dangerously irrelevant operators can also cause phase
transitions. Thus a critical theory with only one relevant
operator can sometimes describe a multicritical point.

If A, is Lagrangian but A_ is non-Lagrangian, the
local phase diagram will be a combination of the above
two cases, and is given by Fig. 27(c). Similarly, If A,
is non-Lagrangian but A_ is Lagrangian, we get a phase
diagram Fig. 27(d).

From the above discussion, we see that the properties
of a continuous phase transition are not only determined
by the number of relevant operators of the critical point,
as we usually expect, they are also determined by the con-
densation pattern A, of the critical point. In particular,
the number of condensations needed to change A. into
Lagrangian condensable algebra will strongly influence
the critical properties. Compared to Landau symme-
try breaking theory, the holographic theory replaces the
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group-subgroup relation by the relations of condensable
algebras. The new theory applies to beyond-Landau con-
tinuous phase transitions, as well as non-invertible sym-
metries (i.e. algebraic higher symmetries), as we discuss
in the main text.

Appendix C: An algebraic number theoretical
method to calculate condensable algebras and
gapped/gapless boundaries/domain-walls

We have see that the symmetry TO M, its condens-
able algebras A, and the induced topological orders M, 4
are very important in understanding the patterns of pos-
sible condensations and the allowed gaplessness by the
symmetry TO M. For 141D symmetry, there are some
simple relations among A, M, and M, 4, where M, and
M, 4 are viewed 241D as topological orders.

Let us use a, b, ¢ to label the anyons in M. As a 2+1D
topological order M is characterized by modular ma-
trices Sy = (S“b) and TM = (T“b)7 whose indices are

labeled by the anyons. SM, T M are unitary matrices that
generate a representation of SL(2,Z,,), where n is the
smallest integer that satisfy Tvﬁ = id. We call n as the
order of Ty and denote it as n = ord(fM) Ty is a
diagonal matrix and Syt is a symmetric matrix.

From Sy and Ty, we define normalized Scat, Teat
matrices and unitary S, T-matrices

S5t = S/ SAt 52" = T/ Tot
S = S52° ) Doy, Ty = TR (C1)

Let d, be the quantum dimension of anyon a, which is
given by d, = (S52)*1. Let s, be the topological spin of
anyon a, which is given by e!?7%« = (T5at)a@ The total
dimension of M is defined as D3 = >y da. Also let
d 4 be the quantum dimension of the condensable algebra
A, i.e if

A= P A% (C2)

aeM

then dq = ), A%d,. We also have a particle to anti-
particle conjugation ¢ — a. Similarly, we use i, j,k to
label the anyons in M, 4. Following the above, we can
= (S;\?[/A) TM/A = (TJZ\/j[/A) JC\f[LiA7 TJ?/?;A’

SM/A, TM/A, as well as d;, s;, and DM/A Then we have

define SM/A

the following properties
e The distinct s;’s form a sub set of {s, | a € M}.

o (S5atyab  (Tgatyaa D2 " d,. and d4 are cyclotomic
integers, whose conductors divide ord(T52%). Dy is
a real cyclotomic integer whose conductors divide
ord(Th) (assuming Sif is real).

i D2
o (S )9, (T )7, D,
whose conductors divide ord(T52* ).
/A

and d; are cyclotomic

integers,



Dy, , 1s a real cyclotomic integer whose conduc-

tors divide ord(T ,4) (assuming §31v[1/A is real).

° DM:DM/Ad.A~

e A% in A are non-negative integers, A* = A% and
Al =1.

e For a € A (i.e. for A* # 0), the corresponding
8¢ = 0 mod 1. i.e. the anyons in A are all bosonic.

e if a,b € A, then at least one of the fusion products
in a ®b must be contained A, i.e. ¢ € A such that
a ® b =C @ e

Now, let us assume A to be Lagrangian, then the A-
condensed boundary of M is gapped. Let us use x to
label the (simple) excitations on the gapped boundary.
If we bring a bulk excitation a to such a boundary, it will
become a (composite) boundary excitation X

X =a&M's, M®eN. (C3)

Then A® is given by A% = In other words, A% # 0
means that a condenses on the boundary (i.e. the bulk a
can become the null excitation 1 on the boundary). M2

satisfies
S = St

Y,z

(C4)

where Ny “b describes the fusion ring of the bulk ex-
citations in M and KZY describes the fusion ring
of the boundary excitations. By rewriting Zy

D oy=1 T 2y, we find

NG > AN (©5)

Let A" = > w1 My and do 3, to the above, we ob-
tain (noticing Al = 0)

STONgE A > AcA (C6)
c#1
Taking = 1, eqn. (C4) reduces to
D ONjp A= ATAP 4+ MEM? (C7)

z#1

Since M2 > 0, we obtain an additional condition on A“

ZN‘“’ A° > AAb, (C8)

We can try to obtain a stronger condition, by showing
Zx;ﬂ M2M? is equal or larger than a positive integer.
Summing over z, eqn. (C4) implies

Z (AT A%) >

> A°AY + A°A" + APA°. (C9)
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Combining the above two equations, we find

> MM > A°A" + APA° — Y N AC (Cl0)
T#£1 c#1
Taking b = a in eqn. (C7), we find
ZN““ A° > (A% + A", (C11)

From the conservation of quantum dimensions, we have

dg _ZM“d = A"+ Mld,, (C12)
a#£1
which implies
§(dy) < A® < d, — A”. (C13)
where §(d,) is defined as
- {Vraen 1

Let us define A”

max

to be the largest integer that is less

than both d, — A* and ) N3t A° — (A%)?. Note that
both terms must be larger than §(d,) and Ay, is equal
or larger than §(d,):

A > 5(dy). (C15)

Substituting A* < Ay, into eqn. (C10), we obtain

> MEM! > max(0, A°A" 4 APA" — > Nit
r#£1 c#1
> maX(O A“é(db + Ab6 Z Nab cAmax
c#1

HlaX

(C16)

For Lagrangian A, the condensation of A give rises
to a gapped boundary. Ref. ? gave a physical picture
of the multi-component T-independent partition function
Z, of the corresponding gapped boundary. From such
a physical picture, we find that A® = Z, and satisfies
eqn. (5). Summarizing the above discussions, we see that,

A= SyA,
A® < d, —5(d,),

A =TyA,

A"A" <N Nj A = 5(da),
AcAb < Z N3p A° (C17)

where A = (A, A9,..-)T.
improved to

AnAP gZN ?

—max(0, A*5(dy) + A°0(da) = > Nt Anas)
c#1

The last condition can be

(C18)



Now, let us assume A not to be Lagrangian. In this
case M, 4 is nontrivial. Let us consider the domain wall
between M and M 4. Such a domain wall can be viewed
as a boundary of M X M/ A topological order form by
stacking M and the spatial reflection of M, 4. Since the
domain wall, and hence the boundary, is gapped, there
must be a Lagranglan condensable algebra AMIZIM/A in

MEM /A, Wwhose condensation gives rise to the boundary.

Let
Ay, = B A%awi, (C19)
aEM, €M, 4
then the matrix A = (A%") satisfies
SmA = ASn, ., TmA = ATy, ,, AY < dod; — 6(dad;),
A% AN < Z N}j[/A WA — 5,56, 56(dad;), (C20)

where eqn. (C13) and eqn. (C11) are used. The above
conditions only require the domain wall between M and
M, 4 to be gapped. However, since M and M, 4 are re-
lated by a condensation of A, there is a special domain
wall (called the canonical domain wall) such that all the
excitation in M, 4 can pass through the domain wall to go
into M without leaving any nontrivial excitations on the
wall. For the canonical domain wall, the corresponding
A% must satisfy the following condition:

For any i, there exists an a such that A% # 0. (C21)

The canonical domain wall can be viewed as Ay— v e
condensed boundary of M with

= @A“la.

We note that anyon a in M condenses on the canonical
domain wall between M and M 4, if and only if A** 2 0.
This implies that

AM%M/A (C22)

AM%M/A =A A= Aol (C23)

The domain wall can also be viewed as Ay Ja—M-

condensed boundary of M, 4 with
Ant, o = EP AYi. (C24)

Since M, 4 comes from a condensation of M, the canon-

ical domain wall must be an 1-condensed boundary of

M/_A, i.e.

AY =5y .

An,sm =1, (C25)

We can obtain more conditions on A®%. From

eqn. (C20), we find

DM/A cat\ab gbi
B D (S5 =

> AY(SSE ), (C26)

beM JEM A
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which implies

ZbeM(Sﬁt)abAbi
ZbeM dp A

= cyclotomic integer

forallae M, i€M,4 (C27)

In particular, A = @, A%a must satisfies

Scat abAb
Lven(S5t') — = cyclotomic integer for all a € M
2pent BA
(C28)
From eqn. (C20), we also obtain
A® <d, —6(d,),
A®Ab < ZN‘“’ A =8, 56(da). (C29)

These conditions can help us to find possible condens-
able algebras A = @, A%a, which we call different con-
densation patterns of the system. These conditions can
also help us to find possible condensation-induced topo-
logical orders M, 4, which determine the low energy prop-
erties of the gapless A-state. When combined with con-
formal character of CFT’s (see eqn. (14)), these condi-
tions allow us to obtain gapless (and gapped) boundaries
of topological order M and M, 4. This represents an al-
gebraic number theoretical way to calculate properties of
critical points.

Appendix D: SPT order as automorphism of
holo-cat symmetry

In a 141D Z; x Z),-symmetric system, its holo-cat sym-
metry is described symmetry TO Sauz, xz; (i.e. a 241D
Zy x Z4-gauge theory). Let us elaborate on one of the
boundary of 9311122><z'2, the 1 @ eamy B eymo & fifo-
condensed boundary, to make contact with Ref. 7 7
, where a classification of SPT order for finite symme-
tries, higher symmetries, and algebraic higher symme-
tries '7 was given in terms of certain automorphisms of
the corresponding symmetry TO. The argument is based
on the fact that the boundary of a bulk topological order
can be changed by stacking with a domain wall of the
bulk TO. It is assumed that all the changes of a gapped
boundary phase to other gapped boundary phases can be
obtained this way. The gapped boundaries that corre-
spond to trivial and nontrivial SPT orders form a group,
i.e. they all have inverses. This motivates the associa-
tion of SPT orders with certain invertible domain walls
in the bulk topological order which correspond to auto-
morphisms of the TO.[? ? | The Zy x Z,-SPT state, the
1P eamq Beyms @ fi fo-state, furnishes a simple example
of this result.

17 also known as non-invertible symmetries



Let us spell this out in more detail. According to Ref. 7
7 , all anomaly-free generalized symmetries are described
and classified by local fusion higher category R formed
by the symmetry charges. For 141D Z; X Z), symme-
try, R is a fusion l-category consisting of the _anyons
(1,€1,€2,e1e2) as objects. The dual symmetry Zy x Z,
is described by the dual fusion 1-category, R, similarly
formed by (1,mq,mg,mims). The symmetry TO of R
and R are the same and is given by their Drinfeld center

Sauz,xz, = Z(R) = Z(R). (D1)

Since center is bulk [? 7 7 ], the above expression means
that the 241D TO Sauz,.z, has two gapped bound-

aries with excitations described by R and R. The R-
boundary is induced by condensing Ar = 1 & m &
ms @ mims. The R-boundary is induced by condensing
Aﬁ =1®es ® ey @ erea. The Ar-condensed bound-
ary is the Zy x Z-symmetric state with trivial SPT or-
der. The gapped state with nontrivial SPT order is given
by condensation of a(Az) on the boundary, where « is
an automorphism of the bulk topological order Sauz, xz;
that satisfies a(Az) = Az. In other words, the au-
tomorphism acts trivially on the so-called electric La-
grangian condensable algebra. This requirement for the
automorphism « is required so that it does not alter the
description of the symmetry on the boundary system.
For our example Gauz,xz;, one of the automorphisms is
(e1 ¢ ez, my <> mg2), which exchanges Zy and Z, and
changes 1P e; Des@eres to 1DesPe; Dejes. However,
such an automorphism changes the symmetry since, for
instance, Zy symmetry may correspond to spin rotation
while Z/, to charge conjugation. So we need to exclude
such automorphisms.'® By observation, we find another
nontrivial automorphism of Sauz, yz;:

aler) =e1, a(es) =ea, almy) = eamy, a(ms) = e;ma,
which maps Az to Az and maps Ag to

a(l®mi & mo ®mims)
a(l) ® a(my) @ a(ms) ® a(mq)a(ms)
1@ eamy @ erma @ f1fo.

(D2)

Thus the gapped 1 @ eamy & eymo @ fi fo-state is a non-
trivial Zy x Z4-SPT state.

Appendix E: Gapless boundaries of Jaus, with

central charge (c,¢) < (%, %)

In this section, we list all the multi-component bound-

ary partition functions with central charge (c,¢) < (3,2)

18 Note that, here, we view 1@ e; DeaPeres and 1P ex Pe; Beres
as unequal condensable algebras: 1@ e; Dex B ejea #1Dex d
e1 Peres.
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for the 2+1D topological order Gaus,. These gapless
boundaries are described by CFT’s constructed from
minimal models. Here ! are conformal characters With
conformal dimension h, for (4, 3) minimal model. X} are
conformal characters for (5,4) minimal model, etc.

We can determine the condensable algebra A that
produces the boundary by examine the appearances of
Ixo" #|2 term. From partition function Z;, we can also
determine the number of relevant operators.

1 @ as-condensed boundary with 1 relevant operator:

|Xm4‘2 + |Xm4|2
Zoy = |Xm4‘2
Zay = X617+ X+ I
Zy =0
Zy, =0
Zy, =0
Ze = XM

6

Zey = XgXTH + XN (E1)

Zy = IXg P+ IR+ TP
Zay = XS+ I+ I
Zay = 2" * + 272 + 2IXT

Z,=0
Zy, =0
Zy, =0
Z.=0
Ze, =0 (E2)

1 ® b-condensed boundary with 1 relevant operator:

= g™ + I

Zay = XTI

Za, =0

Zy = Ixg™ P + X+ P

Zy, =0

Zy, =0

7. — |Xm4‘2

Ze) = xm4xm4 + xm4 o (E3)

Zy = IXgH P+ I+ X
= Ixg !+ R+
Zaz —0
= 2"+ 2+ 2P



Zy, =0

Ly, =

Z.=0

Ze, =0 (E4)

Zy = X+ I+

Za, =0

Zay = DG PP+ PP

Zy =0

Zy, =0

Zy, =0

Ze = P+ TP+ I

ch =0 (EE))

Zy = g+ I+ I

Zay =0

Zay =0

Zy = X" 1" + I+ T

Zy, =0

Zy, =0

Ze = IXg" 1" + X+ IXT

Zey =0 (E6)

1 @ as-condensed boundary with 2 relevant operators:

Zy = [ + P+ P + g

Zay = |X735|2 + |Xnis‘2
16 80

Zay = IXG 1P+ NP+ TP 4 IR+ 2P

+ X3
Zy=0
Zp, =0
Ly, =
Ze = XTI+ X5
Ze, = X0 X5 + XX A XX+ XEXGT (BT

Zy = Ixg 1+ X+ I IR+ X

+ B
80
Zay = X0 + X+ IEPP A+ IXEP P+ I
+ B
80

Zay = 215" " + 20X 4 21501 + 20X 0 + 22
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+2P5
Zy =0
Zy, =0
Zy, =0
7, =
Zey =0 (E8)

1 ® b-condensed boundary with 2 relevant operators:
Zy = Ixg" 1+ X+ I+ I
Zay = IXF] + X5
16 80
Zay =0
Zy = |X6n5|2 + |X71105|2 + |Xn%15|2 + |X7%n5|2 + |Xn1l165|2

+ X
80
Zy, =0
Zy, =0
Ze= IXTP + X5
16 80
Zey = X5XE° + XX A XN A XX (E9)

le ‘X6n5|2+|X7Tr1;5‘2+‘X%n5|2+|xén5‘2+‘xr£65|2

+ X0
80
Zay = X071 + I IXEPP + X I
+ X0
80
Zay =0
Zy = 2x5" P + 21+ 2150 + 20+ 20
+2X3°P
80
Zy, =0
Zy, =0
Z.=0
ch =0 (ElO)

Z1= ‘X67z5|2+|X7%5‘2+|X%n5|2+|X§z5‘2+|xnll165|2

+ X552
80
Za, =0
Zay = IXOPP 4 X 4+ IXEO P+ B+ X0
10 5 2 16
+ X552
80
Z, =0
Zy, =0
Zy, =0

Ze = P2 + VPR + DGR + PP + g
+ X552
80



(B11)

Zy =g+ P+ PP+ I+ I

+ X3P
80
Zay =0
Zay =0
Zy = X P+ IXE1 A+ X+ PP+ IR
+ B
80
Zy, =0
Zyy =0
Ze =g + B+ XG4 I+ IR
+ X3
80
Z,, =0 (E12)

1 @ as-condensed boundary with 3 relevant operators:
Zy = X3P + IXEOP A+ P+ IO+ I
+IX7OP
Zay = IXTOP + IXEO)? 4+ X0 + B0
8 8 40 40
Zay = X517+ IXTOP + IXEOP + IXE + 5P
S e e e P e S P el e P
5 40 15 40 5
Zpy =0
Zy, =0
Zy, =0
Ze = x0X5" + XEOP + 8 OX0 + xEOxE
+ X+ xRS
Ze, = XTOXE + XX+ XE XD (B13)
8 8 8 8 40 40 40 40
1 & b-condensed boundary with 3 relevant operators:

Zy = IXgOP + IO+ I IO I

+ X7
Zuy = XY + IS+ [0 + gl
Zay =0

Zy = X1 + TP+ X+ B + P
R R P e P R P T R e
5 40 15 40 5
Zy, =0
Zy, =0
Ze = X0XE" + DT+ x5 OX0 + XN
+ IR+ XTOXEC
15 5 5
TOXT + XIOXT + XX + BN (B14)
8 8 8 40 40 40 40

8

Zc1:X
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Z1 = X0 + x0 x5 + 2131 4+ x50x0 + x5

+XF)? + XTOXES 4+ 2120 + XTONTC + X7

5 5 5 15 5 5 5

Zay = XG0P+ x0°XE + 2P0 4+ x5 OX0 + IX5°)?
+1XF)? + XTOXES 4+ 2l 20 + XTOXTC + X7

5 5 5 15 5 5 5

Za, =0

Zy = 2x5"° P + 206 X5 + AE 1 + 2xEOX0C + 2P
+ 23O+ 2FOXTC + AN + 2R + 2
Zy, =0

Zy, =0
Ze=0
Zey =0 (E15)

1 @ a;-condensed boundary with 1 relevant operator:

Zy = P+ x0T xR+ I+ P
+ X%IGX?G + XT%TLGXT%TLG + ‘X%l6|2
Zay = IXG1 + XTOXE + XEOXEC + IO + IO
+ X%IGXEG + XT%VLGXT%TLG + ‘X%l6|2
Za, = 25 P + 220
Zy =230 + 22
Zb1 — 2X6n6)—<7§n6 + 2Xgn6>—<1'%n6 + 2X7%716>—<7%6 4 2X%L6>_<1Zi56
Zp, = 2(5°X0" + 2FOXE" + 2N + 20X
Z.=0

Zey =0 (E16)

Zy = Ixg°1 + X0 X5 + 2 E 1+ XEOXG + I

+ IXF? + X PO 4+ 21T + XTONTC + X7
5 5 5 15 5 5 5
Za, =0

Zay = X1+ X0 OXE + 21X + x5 0xeC + x5

2 7+ X3 Xo
+ IO A XTORTC 2 XTOXEC 4+ I

Zy =0

Zy, =0
Zy, =0
Ze = IXo" " + x0 X5 + 2IXE0 T + x50 + Il
+ IO 4 XEOXE 4+ 2B + XX + XTI
5 5 5 15 5 5 5
Ze, =0 (E17)

Zy = XG5O+ XGOXE 2D xE X+ P
+ IXFO? H XEOXEC + 2P+ XX+ X7
5 5 5 15 5 5 5



Za, =0
Zay =0
Zy = X" + X0 °X5" + 2 E 1+ OR + P
+IXEO A EOXTC + 2P+ N OXEC + I

2 1 z
5 15 5
Zy, =0
Zyy =0
Ze = X" + x0 X5 + 2IXEOT + x5 X0 + I

+ X0 4+ xBOXTE + 2|52 + X TOXES + X7
5 5 5 15 5 5 5

Zey =0 (E18)
1-condensed boundary with 1 relevant operator:
Zy = X1+ I+ O+ IO
Zay = X0 X5+ X5 OXG +XFOXTC XN
Zay = IXEOP + IXTOP
3 15
Zy = X3P + X2
Zy, = X0 X5 + X5OXT0 + XTI + x7Ox T
3 3 5 15 5 15
Zp, = XTOXG + XX+ XIOXES XX
Ze = IXTOP + XTI + IXTO1° + IXB° P
8 8 40 40
Zey = XTXT + XX+ XIXE + XBXL (B19)
8 8 8 8 40 40 40 40

Zy =P+ P+ IECP + I+ T
+ X3

Zay =0

Zay = o1 + XTI+ IXEO1P + IXE1 + P

+ O+ IO+ B+ PO

L 1 21 T
0 15 40 5

S e i P S P Y L P
5 40 15 40 5
Zy =0
Zyy =0
Zy, =0
Ze = X6 + XTI+ IXEO1 4 X + s
S R P e P e P T R

1 1 21 z
40 15 40 5
Ze, =0

(E20)
1 @& as-condensed boundary with 3 relevant operators:
Zy = |52 + ‘X%’L6|2 X6+ ‘X%’L6|2 4 |X7Zi56‘2

+ |X7%n6|2
Za, = XTORTE + |X%16‘2 + xS 4 X%ﬁs)—éﬁs T |X71i26‘2
+ X%wx%w

m6|2

Zaz —_ |X0 m6 —m6 + 2|Xm6|2 m6 —m6 + |Xm6|2

+Xo X3 2 + X3 Xo 3
+ X2 + xBOXTE + 2)xH 7 + XTOXES + X7
5 5 5 15 5 5 5
Zy =0
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Zy, =0
Zy, =0
Z

= IXT + IXT12 + X201 + B
8 8 40 40

o

m6 —m6

Ze, = XTX +XTOX]

m6 —m6

+ XTOXES + X Bexe (E21)
40 40 40 40

Zy = G+ PP+ IXEOP A+ IR+ I
S e G e S P S P e R P
5 40 15 40 5
Zay =0
Zay =0
Zy = X6 + IXTOP A+ IXEO1P A+ I+ I
+IXFOP A+ IO+ P B+ IO
5 40 15 40 5
Zy, =0
Zyy =0
Ze = IXg"° 1 + IXTOP 4 IXEO1 A+ X+ [P
R R P P R P T
Zey =0 (E22)

1 ® b-condensed boundary with 3 relevant operators:

Z1 = XG4 AP+ I+ IXPOP + IR+ X3P

2 2 L z
3 5 15 5

Zay = X5 X5 + X+ x5 OXE + XX + X

+ TR
5 5
Zay =0
Zy = Ixg"° 1 + X0 X5 + 21+ XEOR + T

+ IEOP A+ XEOXTC 2 X OREC + IO
Zy, =0
Zyy =0
7. = |X7§1n6‘2 n |XT{LT36|2 n |X2%6‘2 i |X%6|2

m6 - m6

Zc1 = XT6>_(7£6 + X1i3 X1
8 8 8 8

m6 - m6

+ XWONTE 4+ X BeXO (E23)
40 40 40 40

Zy = I + IO+ IECT + I+ X
LR P o Y R P R P

Zay = o1+ O+ I+ I+ T
R i P R P e i P R P e

Zay = 20"+ 2IXTOP + 2081 + 2 + 2
+ 20+ 20 4 2B + 2T+ 2x T

Zy =10

Z(,l =0

Zyy =0

Z.=0

T
5

T
5



Z, =0 (E24)

Zy = g1+ TP+ I I+ I
+ P+ IR+ I+ B+ g
5 40 15 40 5
Za, = o1+ TP A IO A I+ D
+ P+ P I+ IR+ P
5 40 15 40 5
Zay =0
Zy = 2x5"° 1 + 2T 4 20 + 2+ 2P
+ 2P0+ 2+ 2P+ 2B+ 21O

2 1 1 z
5 40 15 5
Zy, =0

Zy, =0
Z.=0
Ze =0 (E25)

1 ® as-condensed boundary with 4 relevant operators:
Zu =P+ TP+ DT+ T T
+ TP+ TP A I A TP
Zay = IXETP A+ AP+ BT+ I+ BT
+ X&'
Zay = IXg"T1* + XTI 4 XG4 X + B
FIXETP 4 IXETP 4 P+ I I
8 56 56 56
e R Y e P e Pt R P
56 8 3 21 21

Zy, =0
Zy, =0
Ze = xgXET A XTTXE + xR+ XERET
FXBEXTT XX XTI
Zey = X3TXB + XTNE + NN AN
8 8 56 56 56 56 56 56
+XRXTT + B XET (E26)
56 56 8 8

1 @ b-condensed boundary with 4 relevant operators:

Zy = g1 TP+ TP IR+ IR
+ DT DT 4 DT+ T

Zay = XTI+ AT+ BT+ IR+ I
+ X5

Zay =0

Zy = X272 + |X7$7|2 i |ng7|2 4 |X7;27|2 I |X%7|2

G IXET DR IETE I
+ BT I XTI A DR P

4 1
3 21

33 85
56 56
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Zy, =0
Zp, =0
Ze=x0"xX5" +XTXE HXTINE + XY

mT7—-mT7 m7

XX ARG XTI I I

10 1
21 21
m7-m7 mT7-mT7 mT7-m7

Zey = XTXE + XTXE A XX 4 XX
8 8 56 56 56 56 56 56

+ XX+ XX (E27)
56 56 8 8

Zu = Ixg" P XGTXET A I XX+ T
XX+ XX+ XD+ B X
7 7 7 7 7 7 7
4 |X%7|2 + Xgn7>—<6n7 + |ng7|2 + 2|X%n7‘2
+ 2D PP 4 23T
21 21
Zay = XTI+ X0 XET + XTI A XTTXE + X
+XTTXE 4+ XX+ XD+ B X
7 7 7 7 7 7 7
4 |X%7|2 4 X15n7>—<6n7 + |ng7|2 4 2|X%17‘2
+ 21 + 23T
21 21
Zay =0
Zy = 25" + 2x0 T XET + 2T 4 2 TXE + 2P
+ 2X TN 2T R+ 2T P+ 2xa X
7 7 7 7 7 7 7

+ 2+ 23X+ 20T+ AP
+ AP + AR
21 21

Zy, =0

Zy, =0

Z. =

Z., =0 (E28)

1 ® a;-condensed boundary with 2 relevant operators:

Zl — |X6n7|2 +X817>—675n7 + |X7$7|2 +X7%n7)_(%7 + |Xm7|2

5
2

m7-mT7

< < 2
m7-m7 m7 m7+‘sz7| +X¥ X%

+ X5 X1z + X1z X3 12
7 7 7 7 7
+IXE P+ XX+ T
Za1 — |X6n7|2 +X6n7>—<gn7 + |Xn;7|2 4 Xﬂ%ﬂxgé? + |X7%n7|2
+XTTXE A XEXE T+ G X
7 7 7 7 7 7 7
+IXNE P+ x8TX0 A+ I
Zay = 237 + 2T + 20X
Zy =257+ 201+ 2L
Zy, = 205XGT + 2R+ 2O XD+ 2 X
+ 201X+ 20X
21 7 21 7
Zy, = 2 TXET + 2T+ 2T+ 20X
3 7 21 7 21 7 21
+ 2B+ 20 TN
7 21 3
Ze=0
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Ze, =0 (E29) + XX X XE T+ I+ xR X
1-condensed boundary with 2 relevant operators: + |Xgé7|2 +x3X0T + TP+ 2|X%n7‘2 + 2|Xgig7|2
mT|2

Zy = IXET2 + XTI+ BT+ I+ I 2|

g P
Zay = X6XET+ XTTXE + XX 4 XX .

7 7 7 7 77 sz =0
mT7-mT mT-m7T

+ X% X% + X5 Xo Zc _ |X7%n7|2 + |X1;i67|2 + ‘X%7|2 + |X1§lg7|2 + ‘X%7|2 + |X%7‘2

VA — mT|2 mT|2 mT|2 _ B B B
ar = XET+ XD+ XL Zoy = Xv%:ﬁxgg +X%7X”§ig7 +X%7X%7 +X%7XT£67
7, — [y77|2 m7|2 m7|2 B s 56 5 56 5
b \Xg I“+ |X% 1+ \X% | +XT§—T§7X§; +X%7X%n7 (E32)
Z, = XTTXET A+ XTTXET A X XTT A+ XTXE
3 3 21 7 21 7
+ XZi:)—(gﬂ + X72317>—<’r1;7
T4 = m72+ m72+ m72+ m72+ mT|2
sz _ X6n75<7%n7 +X?75(21:(bl)7 _i_Xg?XZil’? +X71;27>7(2i17 1 |X0 | ‘X% | |X§ ‘ ‘X% | |X272 ‘
~ -~ T m72+ m72+ m72+ ng72+ m7|2
+X%7X§7 JngwX%m Ix5""| |X§ | |X% | |XE | |X% |
+ m72_|_ m72_|_ m72_|_ m72+ mT|2
Zc _ ‘Xgn7|2 4 |Xvi7‘2 + ‘Xrg7|2 4 |Xvsg7‘2 + ‘Xg7|2 |X% | |X%3 | |X% | |X% | |X2f11 |
8 56 56 56 56 Z — O
+ IX%? “
B Lg, =0

Zc m7—-m7 m7—-m7 m7—m7 m7—m7

VTR XX T X TR XS Zy = g+ TP TP I s
HIET A TP A X BT A
8 56 56 56

+ I+ BT+ XTI

+XB X+ X X (E30)
56 56 8 8

3t
Zy = XGNP+ TP IR BT Zp, =0
+ BT+ TP 4 T 4 T+ T D=0
n |XE127‘2 n |X%7|2 n |X7%n7‘2 n |X2111)7|2 n |X2117|2 Ze = Ixg" "+ XD+ IXETT + IR + IXE
Zo =0 + TP+ TP A TP TP
Zay = IXET+ DT+ IGT + BT + T2 BT BT T A T
TR+ DT TP R g2 2 =0 (£33)
< |X7§§27\2 + |X%7|2 T |X%”7\2 4 |XT§7|2 4 |X72117|2 1 @ b-condensed boundary with 4 relevant operators:
2y =0 Zy =g+ AT IET + BT+ I
. TR 4 DT+ T T
Ze= TP+ TP TP TR b T TR e
TR+ TR+ TP+ TP+ FXEXT T A T T b
R R R N O
Ze, =0 (E31) Zy = Ix0" "+ X6 X5 +|X% \ X1 Xz2 +|Xg |

tensed bound el XL XX+ G B X+ I
1 & as-condensed boundary with 4 relevant operators:
FXETRET A IET A 20T 2D+ 2T

4 1
_ m7|2 mT|2 m7|2 m7|2 m7|2 3 21
Zr = Do 1A I A I+ IR+ ) Zy =0
+ X1 I+ XD I Zyy =0
Zay = x0T X5+ XITXE X ETE A+ XBXET BT Ze= TP+ I BT+ I I+ I
7 7 7 7 7 7 7 7 8 56 56 56 56 8
+XETXGT + IXET A IR+ I Zey = X3TXB XTI XX+ XBXE B X

Zay = g1+ XGTXET + TP+ TRE A+ TP + BT (E34)



Z1 = G X8+ TP+ TR + TP
BT+ XTI+ XX
7 7 E 7 T
FIER X+ DT + 2T + 2P
+ 21T
21
Za, =0
Zay = X8 A XETXET + TP A XTTXE + TP
+ X PR + X RET A+ I+ X R
7 7 7T 7 T
I TR DT 2T 20
+ 23T
21
Zy, =0
Zy, =
Zy, =0
Ze = X1 + X8R+ XTI T T+ g
BT+ X XET A+ XD+ XX
7 7 7T 7 T
+ B+ TG+ DT + 23T + 2
+ 21T
21
Z,, =0 (E35)
Z= @+ x0T xE T+ TP XX+ I
+XETXE XX+ XD+ X R
7 7 7T 7 T
FIER T+ DT+ 2T + 2P
+ 21T
21
Zay =0
Za, =0
2y = DT+ XTI+ TR+ T
XX + XEXET + TP+ X R
7 7 7T 7 T
X BT T 2T+ 2
+ 21T
21
Zy, =0
Zyy =0
Ze = BT+ XETXET XTI+ XX+ T
+XETXE XX+ I 4 X R
7 7 7T 7 T
I TR DT 2T 20
+ 24T
21
Z. =0 (E36)
Zy =T IXATP 4 DT+ TP+ I
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+ X+ TP A TP+ IR+
8 56 56 56
+ BT BT+ T D I

Zay = X0+ TP+ IXETP A+ IXNE T+ IR

5
7

10
21

XTI I T I
T I DT T I
56 8 3 21 21
o = 2D+ 2T 20T 2+ 2

+ 2087+ 2T+ 2R+ 2+ 2T
+ 208 + 2051+ 2T+ 2+ 2T

3 31
Zy 0
Zy, =0
Zy, =
Z.=0
Z., =0 (E37)

Zy = g TP 4 XD+ T IR+ BT
XTI A XTI TP R
+ BT+ BT+ XTI

Zay = XTI A XTI+ I IR+ P

1 5
7 7

33
56

+IXET A T+ IR BT+ I
I I DT I I
56 8 3 21
Zay =0
Zy = 2xg" 1P + 2T+ 2T 2+ 20
+ 272+ 23T 2T+ 2T+ 2
+ 2B+ 2B+ 2T 2P 2P
56 8 3 21 21
Zy, =0

10
21

Zy, =0
Z.=0
Z., =0 (E38)

Appendix F: 141D non-invertible symmetry Ss —
dual symmetry of S3

In Ref. 7 ? | a 1+1D model with a non-invertible
symmetry, denoted as gg, is constructed. The model
has degrees of freedom on the links ij, which are labeled
by the S3 group elements g;; € S3. The S symmetry
transformation are generated by

W = Tr( H R(gi,m)) (F1)



for all irreducible representations R of S3, i.e. R =
1,a1,as. Using

WrWg = Tr( H R(giit1) ® R/(gi,iJrl)) (F2)

we find that the symmetry transformations satisfy the
following algebra

WiWy =Wy, WilW,, =W,,, WilW,, =W,,,
Wo, Wy =We,, WoWe, =Wi, WoWe, =W,
Wao, W1 = We,, We,Wa, = W,

Wy Way = Wi + W, + Wo,. (F3)

For example, R = a9 is a 2-dimensional irreducible rep-
resentation of S3. as ® as is a 4-dimensional reducible
representation of S3, which is a direction sum of an 1-
dimensional trivial representation 1, an 1-dimensional
nontrivial representation ai, and a 2-dimensional irre-
ducible representation as: as ® as = 1 ® a; ® as. This
leads to the last expression in the above.

The algebra for the symmetry transformations is not
a group algebra like WrWpr = Wgkr. The composition
of two ag-symmetry transformations W,,W,, = Wy +
Wa, + Wy, makes the Sy symmetry non-invertible. Such
kind of symmetry was referred to as algebraic symmetry,
or fusion category symmetry, ftc.

Ref. 7 7 showed that S3 and S3 symmetries are
equivalent symmetries, i.e. they have the same holo-cat
symmetry. Ref. 7 shows that the symmetries with the
same holo-cat symmetry have isomorphic algebras of lo-
cal symmetric operators, which is the meaning of equiva-
lence. A holo-cat symmetry is nothing but an isomorphic
class of algebras of local symmetric operators.
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__ From the holographic point of view, both 1+1D S5 and
S3 symmetry are described by the same 2+1D topological
order Gaug,. In other words, systems with S;-symmetry
are exactly locally reproduced by boundaries of Gaug,
topological orders, in the sense that the local symmet-
ric operators for a system have identical correlations
with the local symmetric operators for the correspond-
ing boundary. Similarly, systems with Ss-symmetry are
also exactly locally reproduced by boundaries of Gaug,
topological orders.

The charges of S3-symmetry correspond to a; and as
anyons in Gaug,, while the S3 symmetry transforma-
tions correspond to string operators that produce b and
¢ anyons in Gaug, (at the string ends). Similarly, the
charges of 53—symmgtry correspond to b and ¢ anyons
in Gaug,, while the S3 symmetry transformations corre-
spond to string operators that produce a; and as anyons
in Gaug,.

Certainly, we can also divide the anyons in Gaug, dif-
ferently. Call some of them charges of a symmetry and
others as the transformation of the symmetry. This way,
we get a different symmetry or an anomalous symmetry,
or even a symmetry beyond anomaly.

This example demonstrates that the notions of sym-
metry and anomaly are not essential notions that reflect
the physical properties of a quantum system. They are
notions that depend on our point of views to look at
the system. Different angles to look at the same system
will leads to different points of view. In contrast, holo-
cat symmetry reflects the essence of (anomalous) sym-
metries. It more directly reflects the physical properties
of a quantum system.
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