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We consider compact U”(1) gauge theory in 3+1D with a general 2m-quantized topological term
Z;le % Sosa FIAFY, where K is an integer symmetric matrix with even diagonal elements
and FT = dA’. At energies below the gauge charges’ gaps but above the monopoles’ gaps, this
field theory has an emergent ZE:I) X ZLIJ X --- 1-symmetry, where k; are the diagonal elements
of the Smith normal form of K and Zél) is regarded as a U(1) l-symmetry. In the U"(1) con-
fined phase, the boundary can have a phase whose IR properties are described by Chern-Simons
field theory. Such a phase has a Zgl) X Z,(;z) X --- l-symmetry that can be anomalous. To show
these results, we develop a bosonic lattice model whose IR properties are described by this con-
tinuum field theory, thus acting as its UV completion. The lattice model in the aforementioned
limit has an exact Zngl) X ZSZ) X -+ l-symmetry. We find that the short-range entangled gapped
phase of the lattice model, corresponding to the confined phase of the U"(1) gauge theory, is a
symmetry protected topological (SPT) phase for the Z;cll) X chlz) X -+« l-symmetry, whose SPT in-
variant is e " =1 K17 Jaas Br=BrtBrydBs i iicy Kirfys dBry a8, Here, the background R/Z-
valued 2-cochains By satisfy dB; =3, BrK;; =0 mod 1 and describe the symmetry twist of
the Zgl) X ZECIQ) X - -+ 1-symmetry. We apply this general result to a few examples with simple K
matrices. We find the non-trivial SPT order in the confined phases of these models and discuss its

classifications using the fourth cohomology group of the corresponding 2-group.

CONTENTS I. INTRODUCTION

- Introduction 1 Symmetry protected topological (SPT) phases of quan-
tum matter are short-range entangled gapped phases
Notations and conventions 3 whose ground states cannot be adiabatically connected
to a trivial product state due to the presence of a sym-
z{" 1-SPT order in 3+1D theories 3 metry [1-4]. The boundary of a SPT phase is nontriv-
A. Twisted Zs 2-gauge theory 3 ial because the symmetry is realized anomalously on the
B. Lattice model with Z; 1-SPT order 3 boundary. Since the SPT bulk has a trivial intrinsic topo-
C. Emergent Z{" 1-SPT order in the confined phase logical order, the boundary theory by itself (i.e. without
of Z> gauge theory 4 bulk) is perfectly consistent as a lattice theory, and the
D. Using confined phases of 3+1D Z,, gauge theory 't Hooft anomaly ensures it cannot be in a trivial phase.
to realize Z( 1-SPT orders for even n 5 However, upon turning on background gauge fields of the
symmetry, the boundary theory is no longer a physical
Emergent Zz(cll) % 2212) % ... 1-SPT order in a 3+1D theory and can only exist as the boundary of an invertible
U"(1) bosonic model 6  phase (i.e., an SPT). From the prospective of anomaly in-
A. 3+1D U"(1) pure gauge field theory and flow, the SPT order in the bulk provides a unique char-

2m-quantized topological term 6 acterization of the 't Hooft anomaly on the boundary.
B. Lattice Regularization of U"(1) gauge theory with Since their discovery, there have been numerous inter-
2m-quantized topological term 7 esting generalizations of SPT phases. This includes SPT
C. l-symmetries in 3+1D U"(1) bosonic model 9 phases with intrinsic topological order in the bulk [5-8],
D. Gauging the chll> X Zf:; X ... l-symmetry 10 SPT phases with a gapless bulk [9-11], and higher-order
E. The 1-SPT invariant 12 SPTs where edge states exist only on a subregion of the
F. Some Examples of SPT Invariants 14 boundary [12, 13]. In this paper, we consider the gener-
alization where the SPT order is protected by a higher-

. Conclusion 15 symmetry [14-21].

Global symmetries, called O-symmetries, are symme-
Acknowledgements 16 tries whose transformation acts on a codimension-1 sub-
manifold of spacetime (e.g., all of space), and the charged
. The Gauge Invariance of the 1-SPT Invariant 16 operators act on a single point in spacetime, creating a 0-
dimensional object in space. Higher-symmetry is a gener-
References 16 alization that includes p-symmetry, where now the sym-



metry transformation acts on a codimension-(p + 1) sub-
manifold of spacetime and the charged operators act on p-
dimensional closed submanifolds [22-26]. A p-symmetry
is mathematically described by a (p + 1)-group! [30-32].
Just like global symmetries, higher-symmetries can be
spontaneously broken [33], can be anomalous [34], and
can be gauged [35].

Generic lattice Hamiltonians do not commute with
closed string, membrane, etc operators and thus do not
have exact higher-symmetries. Instead, the lattice mod-
els with exact higher-symmetries are quite special. For
instance, the Hamiltonians of many exactly soluble mod-
els [36—41] with topological orders [42-44] have exact
higher-symmetries. While higher-symmetries are typi-
cally not exact UV symmetries, they can nevertheless
be emergent symmetries occurring in the IR. Intuitively,
this is because at high energies the charged p-dimensional
closed objects can become open, and (p — 1)-dimensional
excitations living on their boundary explicitly breaks the
p-symmetry. At energies smaller than the gap of the exci-
tations that explicitly break a higher-symmetry, the cor-
responding higher-symmetry can emerge. While emer-
gent 0-symmetries are typically approximate, emergent
higher-form symmetries can exactly constraint the IR
despite not being UV symmetries [19, 45-53]. In this
sense, emergent higher-form symmetries are exact emer-
gent symmetries [53].

This gives rise to an interesting scenario where
some low-energy excitations condense, while the higher-
symmetry breaking excitations remain to have a large
energy gap. If the condensed phase happens be a
short-range entangled state [54] with the exact emergent
higher-symmetry, it can be an SPT phase protected by
the exact emergent higher symmetry [19]. We denote
such a higher SPT phase as an n-SPT phase if it is pro-
tected by an n-symmetry.

In particular, suppose a higher-form symmetry
emerges at F < Eniq.1r, iS not spontaneously broken,
and is realized anomalously on the boundary. A cor-
responding nontrivial SPT order could also emerge at
FE < Ei4.1r and cause the system to be in an SPT phase.
The nontrivial bulk SPT order allows an IR observer to
turn on background gauge fields due to an anomaly in-
flow mechanism. The bulk theory for said IR observer
would be an invertible topological field theory, called the
SPT invariant, which characterizes the SPT order and its
universal physical properties (i.e., through a generalized
magneto-electric effect [55]). Furthermore, since emer-
gent higher-form symmetries are exact emergent symme-
tries [53], no local IR measurements could reveal that the
high-form symmetry is not exact in the UV.

However, according to a UV observer, the bulk the-
ory would not follow the typical SPT lore since it is the

1 Here we will consider only pure p-symmetries, and not the more
general p-group symmetries where there are multiple symmetries
of different degrees that mix [27-29].

IR degrees of freedom forming an SPT, not the UV de-
grees of freedom. It is conceivable that a UV observer
could directly probe the topological response of the SPT
by measuring UV degrees of freedom in a very particu-
lar way to couple to the IR degrees of freedom. Never-
theless, there are still direct signs of the emergent SPT
order at the boundary, even in the UV. In the context
of the SPT's we consider here, the boundary has nontriv-
ial abelian topological order and thus this UV observer
could measure the anyon excitations and their nontriv-
ial braiding. The gap of the anyons would be on the
scale Fnid.1r, and their presence would explicitly break
the higher-form symmetries in the UV. However, their
braiding would nevertheless reflect the 't Hooft anomaly
structure and thus the emergent SPT order.

In this paper, we extend the work presented in Ref. 19
and further investigate this mechanism for creating SPT
phases protected by emergent higher-symmetries. In
particular, we consider abelian gauge theory in 341D
which at energies smaller than the gauge charge’s
and monopole’s gap has two exact emergent U(1) 1-
symmetries (which we denote as U(1)(")) commonly de-
noted as the electric and magnetic symmetries. In the
strong coupling limit, the gauge theory is in a short-range
entangled gapped confined phase where the monopoles
condense and the magnetic U(1)(") symmetry is explic-
itly broken. However, at energies below the gauge charge
gap, the electric symmetry is still present in the confined
phase. This gives rise to the aforementioned scenario and
the possibility that the confined phase has nontrivial 1-
SPT order protected by the emergent electric symmetry.

In fact, here we will show that with 27-quantized topo-
logical terms, the confined phase of abelian gauge theory
has nontrivial emergent 1-SPT orders. Usually, a topo-
logical term can affect the dynamics of the strong cou-
pling limit in a very non-trivial way, and can make it
impossible to calculate the physical properties (such as
energy gap) in this limit. However, a 2w-quantized topo-
logical terms are much easier to handle [2, 56-58], and
we can still determine the strong coupling limit to be a
short-range entangled gapped confined phase.

The remaining of this paper is organized as follows. In
section II we introduce the notations used in this paper.
In section III, we present a simple example of a nontriv-
ial 1-SPT order in the confined phase of 3+1D Z5 gauge
theory. In doing so, we review the cochain lattice field
theory formalism and techniques which we use through-
out the rest of the paper. Then, in section IV we con-
sider the same scenario but in 3+1D abelian gauge the-
ory with k-types of U(1) gauge fields and 27-quantized
topological terms. Using the bosonic lattice model we
develop, we find that the total emergent electric symme-
try U(1)™M x U(1)™ x - below the gauge charges’ gaps
and the monopoles’ gaps is reduced to Z,(cll) X Z,(Clz) X o
at energies above the monopoles’ gaps (but still blow
the gauge charges’ gaps). Subsequently, we find that the
confined phase of U"(1) gauge theory with 27-quantized

topological terms has nontrivial chll) X ZSQ) X --+ 1-SPT



order. We construct the associated 1-SPT invariant and
consider some examples.

II. NOTATIONS AND CONVENTIONS

In this paper, we will use the notion of cochain, cocycle,
and coboundary, as well as their higher cup product —
k

and Steenrod square Sg*. A pedagogical introduction

aimed at physicists of chains and cochains along with

the cup product —=— and higher cup products — can
0 k

be found in the Appendix of Ref. 20. We will abbreviate
the cup product a — b as ab by dropping —. We will
also use = to mean equal up to a multiple of n, and use
= to mean equal up to df (i.e. up to a coboundary). An
important identity which we will repeatedly use is that
for cochains f,, by,

d(fm \k’ hn) =dfm \k/ hy + (_)mfm \k/ dhp+ (1)

(_)ernfkfm ]:1 hn + (_)mn+m+nhn ):1 fm-

Furthermore, in this paper we will deal with many Z,,-
valued quantities. We will denote them as, for example,
a®r. However, we will always lift the Z,-value to Z-
value, so the value of a®» has a range from —|2] to [ %],
where |2] denotes the integer that is closest to = (if two
integers have the saltme distance to x, we will choose the

smaller one, e.g. [5] = 0). In this case, the expression

like a%ra%™ makes sense.

1. z" 1-SPT ORDER IN 3+1D THEORIES

In this section, we review one of the simplest ways to
realize Z(Ql) 1-SPT order in 3+1D [19, 32]. Our purpose
of doing so is to introduce the formalism we use and
warm-up in a simple context before beginning section IV,
where things get more involved. We start by considering
a twisted Zy 2-gauge theory. By considering its confined
phase, we then construct a model with Zél) 1-SPT order
by “ungauging” the twisted Zy 2-gauge theory. The Zél)
1-SPT order is exact in this model, but survives elsewhere
in the confined phase diagram as an exact emergent Zél)
1-SPT, existing at energies much smaller than the Zs
gauge charge gap.

A. Twisted Z; 2-gauge theory

To construct a 341D bosonic model that realizes Zgl)
1-SPT order, we first construct a local bosonic model
with topological order described by a Zy 2-gauge the-
ory. We triangulate spacetime M* and, working in the
Euclidean signature, consider the lattice path integral of
cochain fields [59]. The bosonic degrees of freedom for the

Z5 2-gauge theory are described by a Zs-valued 2-cochain
field b%2. As a 2-cochain, b%2 is a map from 2-chains to
Z5, as opposed to 1-gauge theory which is described by
a 1-cochain field.

Consider the local bosonic model:

Z(Mi,g) = 3 e % B (V205 (o)

bZ2

where Zijkl sums over all spacetime 3-simplices for a
fixed triangulation, and ),z, sums over all the 2-cochain
field corresponding to the path integral. In the exactly
solvable limit ¢ — 0, the path integral becomes

Z= Y 1 (3)

dbZ220

where db%> =0 means db%2 =0 mod 2. Now, Z cap-
tures the topological order described by the deconfined
phase of pure Zs 2-gauge theory. However, we note that
in 3+ 1D, Zy 2-gauge theory is dual to Zy 1-gauge the-
ory?. Thus, the topological order is also described by Zs
1-gauge theory, which is Z5 topological order. In fact,
Eq. (3) is the 3+ 1D toric code.

We now consider the equivalent limit in a twisted Zy
2-gauge theory. This is described by a different bosonic
model, which is Eq. (3) but with the 1 replaced with the

action amplitude ei™/v1(*®)” Indeed, the path integral
is

ZMY) = 3 el (4)

dbZ220

where we use the shorthand (b*2)? = b*> — b*> and [, ,
is a sum over all 4-simplicies of M*. Note that this action
amplitude is correctly invariant under the gauge trans-
formation %2 — b%2 + 2n?, where n? is an arbitrary Z-
valued 2-cochain. The twisted Z, 2-gauge theory realizes
a twisted Zs topological order where the Z, charges are

fermions [59].

B. Lattice model with Z5 1-SPT order

We now use the twisted Z, 2-gauge theory in Eq. (4) to
obtain a local bosonic model that realizes a 1-SPT order
protected by the Z; 2-group. The classifying space of the
Zy 2-group is a topological space denoted by B(Zs,2),
which satisfies mo(B(Z2,2)) = Z3 and 7,(B(Z2,2)) =0

2 In Zs 2-gauge theory in 341D, loop excitations carry Zs gauge
charge while particle excitations carry the Zs gauge flux. On the
other hand, in Zy 1-gauge theory in 341D, particles carry the Z3
gauge charge and loops carrying the Zs gauge flux. The duality
between Z 2-gauge theory and Z» 1-gauge theory in 3 4 1D
simply switches which excitations are called gauge charges and
which are called gauge fluxes.



for n # 2. The associated symmetry is a Zo 1-symmetry,
which we denote as Zgl).
The Z, 2-gauge theory can be “ungauged” by first pa-

rameterizing the dynamical 2-cochain field %2 as
v*2 = B% + da?2, (5)

where a?? is a Zs-valued 1-cochain field describing the
pure 2-gauge fluctuations. However, we now reinterpret
the meaning of B%> and a?? by treating a?> as the dy-
namical field and B%* as a Zs-valued 2-cocycle back-
ground field. This produces a new local bosonic model
whose resulting path integral is obtained from the twisted
Z5 2-gauge theory Eq. (4):

Z(M4,BZQ) _ Z ei'rrfM4(BZ2+da22)2. (6)

a?2

This path integral is invariant under the gauge transfor-
mation

a®? — % + aZZ,

B%? — B% — do®2.

B?%> describes the symmetry-twist of the Zél) 1-
symmetry. Turning off the background symmetry-twist
field, and hence ungauging the Zgl) 1-symmetry, the
model becomes

Z(M*,0) = 3 @17 e (442)7, (7)

which has an exact Zél) 1-symmetry is generated by Zs-

valued 1-cocycles a??:

a®? = a®? +a%2,  da®2 20. (8)

By construction, there is no obstruction to gauging the

Zgl) 1-symmetry and therefore the Zél) 1-symmetry is

anomaly-free. This can further be seen from the fact
that the path integral Z(M?) is invariant under the Zgl)
transformation even when M* has boundary.

Using that [, ,(da®)? = [, . a®>da®*, when space-
time M* is closed (i.e., OM* = 0) then [, ,(da®*)? = 0.
Therefore, the action amplitude eim [pma(da®™)® — 1 and
so for a closed spacetime

Z(MA0) = i fas(4a®)® — gNe, 9)
Zo

where N, is the number of the edges in the spacetime
complex M*. According to a conjecture presented in
Ref. 60, this implies that the ground state of the model
Eq. (7) has no topological order (i.e. is short range en-
tangled).

Since the ground state has Zgl)

1-symmetry and no

topological order, it may have a Zél) 1-SPT order,
which are classified by the fourth cohomology group

4

H*(B(Z2,2),R/Z) = Z4 [18-20, 32]. To see which 1-SPT
order is realized, we note that the SPT order is charac-
terized by the volume-independent partition function

Z(M*, B%2)

Z(M*,0)
which is called the SPT-invariant [61-64]. We compute
the 1-SPT invariant from Eq. (6), by integrating out a2

for closed spacetime M* and for dB%> = 0 mod 2. Using
Eq. (9) and the fact that B#2 is a cocycle, we find that

Z*P(M*, B*2) = (10)

7P (M*, BZ2) = 1™ Jaua (B%)
= H L SEBE) (1)

m=2
Here, the generalized Steenrod square qu is defined as

Sq*(a) = a —ata — da, (12)

where ¢; is any [-cochain. From the above 1-SPT invari-
ant, we see that the model defined by Eq. (7) realizes

a Zgl) 1-SPT order that corresponds to 2 € Z4 in the
confined phase.

C. Emergent Z;D 1-SPT order in the confined
phase of Z, gauge theory

The fact that the theory Eq. (7) has an exact Zgl)
symmetry makes it rather special. Indeed, for a typi-
cal condensed matter model, the lattice theory would be
more like

Z[M4’g’ h] = Z i Jaqa (da2) =k 35,5 (a%2)i; o (13)
a?2

e—i ik (da®2) 56 —2| 4 (da®2)5]
)

where >, sums over all the triangles and ), sums
over all the edges of M*. This path integral does not

have the Zgl) symmetry (8), it is explicitly broken by
the h term. Only when h =0 does Eq. (13) have the

Zgl) symmetry. Thus, at first glance, when h # 0 this

generic model does not realize a Zgl) SPT state since it
does not even have the symmetry. However, while the

Zél) symmetry is no longer a UV symmetry, for small

|h| the low-energy sectors of the Hilbert space enjoys an

(1)

exact emergent Z21 symmetry. Indeed, since only the

motion of the Zs charge excitations can break the Zgl)

l-symmetry (i.e., the h term), a Z;l) symmetry emerges
at energies much smaller than the Z, charge excitation
gap.

When |h| < 1 and |g| < 1, the model Eq. (13) real-
izes the Z5 topological order described by the deconfined
phase of Z, gauge theory. As we increase g, it will un-
dergo a phase transition into a confined phase with short-
range entanglement. Let us assume this transition is con-
tinuous (if it is not, we can modify the model to make



Trivial Phase
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FIG. 1. The schematic phase diagram of the model described
by Eq. (13). There is a topologically ordered phase described
by the deconfined phase of Z; gauge theory (shown in green),
and a gapped short-range entangled phase (corresponding to
the regions shaded in orange and purple). At energies be-
low the Z, gauge charge gap, the confined phase (colored in
purple) has an exact emergent Zél) symmetry, while the sym-
metry is absent at all energy scales in the trivial phase (col-
ored in orange). At h = 0, this Zgl) symmetry in the confined
phase is exact. Due to the 2m-quantized topological term, the
confined phase has a nontrivial SPT order protected by this
exact emergent Z;l) symmetry. The SPT invariant describing
this 1-SPT order is given by Eq. (11)

the confinement transition nearly continuous). Then, ap-
proaching the transition, the Z,-flux fluctuations are low
energy excitations while the Z, charge excitations remain

to have a large energy gap. This is exactly the scenario

for the exact emergent Zg) symmetry. So in the confined

phase (i.e. when the Zy charge excitations energy gap
remains large), the model realizes an 1-SPT order pro-

tected by the exact emergent Zél) 1-symmetry, described
by 2¢€Z,.

The low-energy effective theory describing the phase
with emergent 1-SPT order is Eq. (7). Introducing the
Poincaré dual® of da??, denoted as f, the lattice ac-
tion [, ,,(da®*)? is equal to the intersection number of

I fM4(daZ2)2 = #(f - f). We note that f corresponds
to the world sheets of Zy flux loops so #(f - f) is the
intersection number of Z, flux world sheets in spacetime.

The topological term eim [xm1(da®®) g therefore

ei™ faaa (da®2)? — (_y#(FD), (14)

In general, the path integral of a Z, gauge theory

may or may not contain the topological term (—1)#(}'}).
When the topological term is included, then the confined
phase of the Z, gauge theory will be a 1-SPT state pro-

(1)

tected by the exact emergent Z;’ 1-symmetry. However,

3 The Poincaré dual of the (D — p)-cycle C with respect to the D-
dimensional complex M, denoted as C, satisfies [, a = [}, a C,
where a is any (D — p)-cochain.

when the path integral does not include the topological
term, then the confined phase of the Z; gauge theory
will be a trivial SPT state of the exact emergent Zél)
1-symmetry. Therefore, in a 3+1D Z; gauge theory, by
adjusting the presence or the absence of the topological
term (—1)#/F) (i.e. the intersection term for the Zy-flux
world sheet), we can control the presence or the absence
of the 1-SPT order protected by the exact emergent Zgl)
1l-symmetry in the confined phase.

D. Using confined phases of 3+1D Z,, gauge theory
to realize Z") 1-SPT orders for even n

For simplicity, we’ve presented the above in the Z,
case, but it can easily be generalized by replacing Z, with
Z,, where n is a positive even integer. Indeed, introduc-
ing the Z,-valued 1-cochain field a%", the generalized
generic lattice model is

7 = Z eI T [pqa SA7(da®m)=h 32, (a®" )i o (15)
aZn

e_%g Zijk(d“Z")z‘jk—nL%(daZ")UM
b

where the topological term is now propor-
tional to [, SG*(da?"). In Ref. 20, it was
shown that Sg?(da? + nb) £ Sq*(da?") and that
eim# [paSe°(da”™™) — 1 when M* is closed. Thus, the
inclusion of the topological term e!™ % Jya S6°(da®) oeg
not affect the local dynamics of the model.

As a result, when |h| < 1 and |g| < 1, the model (15)
realizes the Z,, topological order described by the decon-
fined phase of a Z,, gauge theory. As we increase g, the
model will undergo a confinement phase transition. As-
suming the transition is continuous, near the transition
the Z,,-flux energy gap is much smaller than the gap for
the Z,, charge excitations. So near the transition, the
model has an exact emergent Zng ) 1-symmetry, at ener-
gies much less than Z,, charge energy gap. After the con-
finement transition, the confined phase has 1-SPT order
protected by the exact emergent 253) 1-symmetry and
described by m € H*(B(Z,,2);R/Z) = Z3,, for even n*.
Here B(Z,,2) is the classifying space of the Z,, 2-group
describing Z("” 1-symmetry. It satisfies mo(B(Z,,2)) =
Z, and m;(B(Z2,2)) = 0, i # 2. The physical conse-
quence of Z%l) 1-SPT order, such as boundary states, as
well as a Hamiltonian description of this phase, was dis-
cussed in Ref. 20.

4 The lattice model (15) is well defined even for m ¢ Z. However,
when m ¢ Z it is not clear if the model has a gapped confined
phase when |g| > 1.



IV. EMERGENT Z{" x Z{!) x ... 1-SPT ORDER IN
A 341D U* f) BOSONIC MODEL

In last section, we saw how 2(211) 1-SPT state can be
realized in the confined phase of 3+1D Z, gauge the-
ory. Now we investigate more complicated 1-SPT or-
ders which are protected by finite 1-symmetries. In this
section, we will construct a 3+1D bosonic model, that
corresponds to lattice U"(1) “gauge theory” with a 2m-
quantized topological term. We will show that, due to the
topological term, the model has a reduced Z(l) Z(l)
1-symmetry. We will also show that the conﬁned phase
of the U%(1) gauge theory can have a 1-SPT orders pro-

tected by the Z (1) X Z( ) x e 1-symmetry.

A. 341D U"(1) pure gauge field theory and
2m-quantized topological term

Before we consider the bosonic lattice model, we first
consider the corresponding continuum theory. We do so
in a timely, but non-rigorous, fashion to see how the re-
sults from the lattice theory which we present in the next
sections are hinted towards in the continuum theory. It
will set the stage for the lattice theory where the formal
manipulations are much more involved than those in the
field theory.

We consider the theory described by the Euclidean ac-
tion

I4f1/\*fI+Stop7 (16)

1
_ﬁz

where af with I = 1,..., s are R/Z-valued 1-form fields®,
the 2-form curvature f! = da’, and k;; € Z. The first
term is Maxwell’s kinetic term and the second term is the
2m-quantized topological term (topological in the sense
that it is independent of the metric)

Stop = —271 Y ku/ fiag?, (17)

I<J

Furthermore, the quantity k;; [ fIaf/ is quantized as
an integer when M* is closed. Thus, for closed M* the
action amplitude of the topological term is unity, but for
M* with a boundary it can have a nontrivial effect.

Since the action depends only on f!, it is left un-
changed by

al —ad" +T1, drf =o. (18)

5 Typically the U(1) connection is a map A :R*+— R/271Z. We
define a = A/2m to absorb factors of 2w and match the conven-
tion used in the bosonic lattice model. In terms of the coupling
constant g, the typical U(1) coupling constant is e = 2mg.

This corresponds to a real symmetry transformation
(not a gauge transformation) when §I'/ £ Z. Since
there are s fields a! (i.e., I=1,---,k), Eq. (18) is
associated with # different U(1)(") 1-form symmetries:
U1 xU1)® x --.. The associated Noether cur-
rent can be found by introducing a background symme-
try twisted field B! in Lorentzian signature and having
da’ — da’ — B!. Noting that the conserved current .J!
minimally couples to B! as [ B! rxJI, we find that for
the transformation of the Ith field:

1
JI:g—2f1+27TZKU*fJ, (19)
J

where K7 is given by

KIIZQIC[I, K]J:KJ]:]’C[J, I < J. (20)

The fact that the current is conserved means that
dfJ' =0, where df = % d * in the adjoint of d.

In the above analysis of the symmetry, we consider the
field theory without U(1) charges and U(1) monopoles.
This U(1)™ x U(1)M) x --- is really an exact emergent
1-form symmetry at energies below the U(1) charge gaps
and the monopole gaps. Indeed, at energies above the
U(1) gauge charge gaps, terms like [a’axj! will con-
tribute to the action and this symmetry will be explicitly
broken.

Let’s now introduce the 1-form j!, = x df, the Dirac
monopole current density associated with the Ith field
a’and the Poincaré dual of j! gives the world-line of
the monopole. The continuity equation dfJ! =0 then
implies that

1 .
?def =21K1550. (21)

The effect of the nonzero righthand side is a generalized
version of the Witten effect where U(1) monopoles of the
Jth field carries K units of the Ith U(1) gauge charge.

The presence of magnetic monopoles complicates
things. At energies below the U(1) charge gaps but
above the monopole gaps, due to the topological term,
the monopoles fluctuations imply U(1) charge fluctua-
tions. This may break the U(1)") x U(1)() x --- 1-form
symmetry to a smaller symmetry.

In the continuum, monopole configurations can be
easily considered by parametrizing the curvature as
I = da’ + G'. The 1-form fields &’ describe the smooth
local fluctuations of a! and satisfy the Bianchi identity
d(da’) = 0, while the 2-form fields G’ capture the singu-
lar monopole configurations and satisfy j!, = «dG?. At
energies above the monopole gap, the field theory that
describes the lattice model instead has the topological
term

Stop QWIZk[J/ ddIAde-i-GI/\GJ

I<J
—2m§ KU/ al 5.
I,J M#



This is equivalent to Eq. (17) up to a boundary term.
For all practical purposes, we may treat the density in
Eq. (22) as the definition of f/af” for energies above
the monopole gap. This distinction is important as the
UMD x U(1)® x --- symmetry of Eq. (17) is broken
down to a finite subgroup in Eq. (22), agreeing with the
symmetries of the lattice model we study.

Indeed, above the monopole energy gap, Eq. (22) is
invariant under the transformation

al - al +11, ZKUj{ ‘ez, drf=o, (23)
T ch

for any closed l-submanifold C'. The additional re-
striction ., K1y §, I'' € Z ensures that the action

amplitude e*™! 210 K1s Jua @A %30 s invariant since
¢ x4l € Z. We note that this term in Eq. (22) also re-
covers the Gauss-Witten law Eq. (21). Thus, at a fixed
point in spacetime, the values of allowed I'! form a ratio-
nal lattice K—!. So, above the monopole gap the theory
has the 1-symmetries Z,(Cll) X Z,(C? x - -+, where k; are the
diagonal elements of the Smith normal form for K. Below
the monopole gap when j! vanishes, this constraint on
I' does not apply so there is instead the aforementioned
U1)M x U1)M x - symmetries.

Let’s now turn on 2-form background fields B! that
are the flat connections describing the twist of the
Zgl) X ZSQ) x - -+ symmetry and satisfy the quantization
conditions

ZKU]{ B ez, (24)
I o2

for any closed 2-submanifold C2. We'll work locally at
the level of differential forms, ignoring topological sub-
titles and monopoles. The background fields minimally
couple to the dynamical fields a’ by replacing the curva-
ture da’ in the Euclidean action by da! — B!. Making
this replacement and taking the g — oo limit, the action
becomes

82727TiZ/€]J\/

M4(daI — B a(da” —B7). (25)
<J

We can use Eq. (25) to find the continuum SPT in-
variant which describes the 1-SPT order in the confined
phase. Indeed, let’s consider spacetime M* to be closed.
Then, since we ignore monopoles and because dB; = 0,
integrating by parts we can rewrite the Euclidean action
as

52—27'['12]{7[]/ BI/\BJ,
M4

I<J

= —im K[.]/ BI/\BJ.

(26)

Thus, the path integral Z in this limit is

Z[M4vBI] = /D[aq eiﬂ-ZI‘JKIJ fM4 BIA BJ’
(21)
= VOIH(R/Z) ei”ZI,J K1y [ya BIA l’j’“’7

where we’ve used that the action amplitude does not de-
pend on the dynamical fields a’ and introduced

Vol®(R/Z) = /D[af].

The SPT invariant is given by the volume-independent
part of the path integral

Z(M*, BT)

Ztor(pt By = 22— 2= /)
(M*,B") 200, 0)

(28)
Therefore, using Eq. (27) we find that in the continuum
theory the 1-SPT invariant is

ZtOp(levBI):eiﬂ'ZI‘JKIJfA{z;BIA BJ. (29)
Thus, without much work we can characterize the 1-SPT
order. However, in doing so we ignored nontrivial fibre
bundles and magnetic monopoles. In the remainder of
this section, we’ll regulate this continuum theory by con-
sidering a bosonic lattice model whose IR properties are
described by the field theory. Using this lattice model,
we’ll be able to recalculate the SPT invariant more rig-
orously (see Eq. (75)), and find lattice-dependent terms
in addition to one which captures Eq. (29).

B. Lattice Regularization of U”(1) gauge theory
with 27-quantized topological term

We now regulate the field theory discussed in the previ-
ous section by triangulating spacetime. The 1-form fields
a’ will be represented by R/Z-valued 1-cochains a?/ ‘.
There are three key properties that the U*(1) gauge the-

ory on a lattice must include:

1. Letting m% be an arbitrary Z-valued 1-

cochain, the action amplitude is invariant under

R/Z R/Z
al/ — aI/
a boundary;

+m#%, even when spacetime M* has

2. When M* is closed, the action amplitude of the
2m-quantized topological term becomes unity;

3. In the smooth field
limit) when dai/z ~ Ldai/z], which implies no

monopoles), the action amplitude reduces to its
krgfinf?

limit (the low energy

. .. i2
continuum limit 27 w4 Zr<s

Regularizing the Maxwell term on the lattice is straight
forward, but the 2m-quantized topological term is highly
non-trivial. Noting the relationship between the topo-
logical term and Chern-Simons theory in the continuum,



this motivates us to define the 2w-quantized topologi-
cal term on the lattice as the derivative of the lattice
Chern-Simons action. Indeed, we start with 241D U*(1)
Chern-Simons theory on spacetime lattice B obtained in
Ref. 65

z / P T raf A (o 22 15)
Cs = -

127er1]faR/Z(daR/z LdaR/Z]) Lda?/z]as/z (30)
xe I<J B3
_ R/Z, 2
*IZﬂZkIJffl \deda?/Z] 7Zf\da g[3<la 1l
xe <J e I3 ,
R/Z .
where al/ are the aforementioned R/Z-valued 1-

cochain, the path—integral notation is shorthand for
1

fD R/Z = ij,I f_zé d(a?/z)ij, and k;; € Z. This lat-

tice model is rather complicated as it captures the effects

of magnetic monopoles. We note that Ref. 65 found that

Eq. (30) is invariant under the gauge transformation

R/ R/Z

ay Z—>a1 + m¥ (31)

for any Z-valued 1-cochain m# even when B2 has bound-
ary.

The path integral of the 3+1D bosonic model (for
spacetime M* with or without boundary) is then ob-
tained from Eq. (30) by taking a derivative and setting
g3 — oo. Using the properties of the (higher) cup prod-
uct, the first line of Eq. (30) vanishes since it is already
the d of something, the second line of Eq. (30) becomes

0127 [qs g d(af/Z(da¥/ %~ da¥/?])~ [ da}/*1a7/7)

0i27k1s [rg (daf/Z—[daf/]) (a7~ da/?T) . (32)

R/Z R/Z R/Zq R/Z
el27rk1JfM4a/ d| daj /27— d\_da/ ]aJ/

)

and the third line of Eq. (30) becomes

o2 Lo d(ai/zrdtdaf/zw)

R/Z

—i2mkry fM4 daJ vd\_da
=€

(33)

el27rk11 Jpqa aR/Zd[da?/z]+dea?/z"|a‘R]/Z

Putting this all together and including the lattice
(laR/ 7\_da?/zﬂ2

Maxwell term e 21 fM4 g , we obtain a
3+1D bosonic model on spacetime lattice with a 2m-

quantized topological term
/D R/Z 127rI;Ik1]j daR/ZvdeaR/z]
M4

127r2k1/f a®% 1 da¥ ) (daVF— | da¥ 2] 34
x e IsJ (34)
_ R/Z 2
120 Kry [ a?/zd[daR/z‘\ > \da Lda 11

xe T aa e Trm4 ,

where K;; is given by

K = 2kgg, Kiy=Kyr=kpy, I<J (35)

Because the lattice Chern-Simons path integral was
invariant under the gauge transformation Eq. (31) even
when M* has boundary, by definition the path integral
Eq. (34) is also invariant. Thus, requirement (1) from
above is satisfied. Furthermore, since we defined the
action as the derivative of something, requirement (2)
is also automatically satisfied. Lastly, lets check that
Eq. (34) satisfies requirement (3). In the g ~ 0 limit, the
Maxwell term enforces fluctuations da; R/z Lda?/ “
to be small. Therefore, using that

de ~ d(daj/* — |da}/?]) = d|da}/*],  (36)

R/Z

since d| da;’“] = 0 and e is small, this implies that

d[da¥?] =0, (37)

and hence there are no monopoles. When aF;/ “ describes
a monopole, it cannot be smooth and thus deaR/ 1 #0.

In fact, |[da J/ | is the Poincaré dual of the Dirac
monopoles’ worldsheets (i.e. the trajectory of the Dirac

strings of the monopole in spacetime). Thus deaR/ 21
is the Poincaré dual of the boundary of the Dirac world-
sheet, which is the worldline of the U(1) monopoles.

Therefore, the g ~ 0 limit corresponds to the smooth
field limit. In this limit, the action amplitude for the
topological term in Eq. (34) becomes

127er”f(daR/Z Lda/#7)?
e s/ . (38)

Relating the 1-form field o’ to the 1-cochain (a"/*

J
R/Z
[ =@ (39)
and the 2-form curvature field f7 = da’ by

ik T (daf’® — [da}*])ijn, (40)
ij

the action amplitude (38) becomes

127r2k1]f daR/Z Ld QT/ZD2 i2ne S krg [ fInf?
e IS7 ma ~e <7 w4 . (41)

Therefore, in the smooth field limit (the low energy limit)
the 27-quantized term on the lattice is captured by the
continuum field theory and requirement (3) is satisfied.
In the absence of monopoles, Eq. (41) correctly be-
comes unity on a closed spacetime. For large g,
however, due to the presence of monopoles the lat-
i2m 3 ki f (daf/#—|da}/#1)(day/ = da§/*])

tice term e is no



longer unity when M?* is closed and thus is neither 27-
quantized nor topological. Therefore, for large g the low-
energy limit of the lattice model may not be described
by the continuum topological term (17) since the lattice
topological term must be described using all terms in
Eq. (34). Tt’s more likely that the low-energy physics
of the lattice model for large g, where the highly non-
trivial terms in the first and third line of Eq. (34) are
included, is better captured by the continuum topologi-
cal term Eq. (22).

C. 1l-symmetries in 341D U"(1) bosonic model

Now that we’ve introduced the U”(1) bosonic model,
we now focus our attention on studying its symmetries
and phase diagram. Firstly, let’s review the case when
M* has no boundary and the topological term vanishes
and Eq. (34) becomes Maxwell’s theory

aaR/Z | 4aR/Z7)2

Z(M*) = / Dlaf/?) e it T (42)

When g ~ 0, the lattice curvature da?/ “ fluctuate weakly
and so the above model is in a deconfined phase of a com-
pact U*(1) gauge theory and has a gapless photon exci-
tation. On the other hand, when g — 0 the model is in

a gapped confined phase. Using that f d( R/Z) i =1,

the partition function is

/ D[a™V?] (43)

for any closed spacetime M?*. According a conjecture in
Ref. 60, this implies that the gapped confined phase has
a trivial topological order.

In what follows, we now consider M* with a boundary
so the 2m-topological term contributes to the path inte-
gral. We’ll show that the gapped confined phase now has
a 1-SPT order characterized by kr; (see Fig. 2). This is
similar in spirit to section III where in order to get Zgl)
SPT order we had to include the twist term Eq. (4).

Regardless the value of g and even on M* with bound-
ary, the path integral Eq. (34) is invariant under the
transformation

a?/z — a?/z + ﬁ?/z, Z ﬁ?/ZK]J e’z
I

dﬁQ/Z i
(44)

Q/ Z are Q/Z-valued 1-cocycles to ensure that the quan-

tltles dal/z |d WZ} and deaI ] are invariant un-
der the transformation (44). If this were the only re-
qu1rement Eq. (44) would correspond to the x differ-
ent U(1)(M) 1-symmetries. However, the additional con-
straint that ) _; 6?/ Kij are Z-valued cochains is re-
quired when there are magnetic monopoles to ensure the

term elZ'n’fM4 Zl,al/ KIIdeaJ

under the transformation Eq. (4
a phase factor

1 is invariant. Indeed,
4), this term changes by

ei2m [ 4y 2K yd[daV ]
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which is 1 provided ﬁ?/z satisfy >, B?/ZKU e’z
As an integer matrix, K has the following Smith nor-
mal form

where k; are integers and U, V' are invertible integer ma-
trices. Now the 1-symmetry can be written as

af/% = af/F+ gYF =P+ Z BY W) a1,
Z,BIQ/ZU]Jk'J = ~3/ij e’Z, dﬁQ/Z é . (46)
I
We see that the l-symmetry is a Z(l) X Z(l) cee 1

bymmetry generated by the quantized BQ/ Z. When

kr =0, 61 is not quantized and generates U (1)) 1-
symmetry. The above result remains valid if we regard
Z(()l) as the U(1)™) 1-symmetry. We note that, since
the Z,(Cll) X Z,(:Q) X +++ l-symmetry is valid on the space-
time lattice with or without boundary, the 1-symmetry
is anomaly-free.

In addition to giving rise to a finite 1-symmetry, the
term 127 fua Trs 07 *K1rdldal*] 2150 causes the U(1)
monopoles to be bounded with the U(1) charges. In par-
ticular, the unit monopole of the J U(1) field carries
the I'™ U(1) charge K. This is precisely the lattice
version of the generalized Witten effect discussed in the
continuum theory (see Eq. (21)).

For large g, these monopole-charge bound states con-
dense which gives rise to a gapped oblique confined phase
with Z;Cll) X 2,212) X --- l-symmetry. We note that the
2+1D lattice U*(1) Chern-Simons theory (30) also has
the Z,(;l) X Z;Ct) X - -+ l-symmetry, which can actually be
anomalous [65]. Since the 2+1D lattice U%(1) Chern-
Simons theory is the boundary of the U®(1) model in
the gapped confined phase, from the point of view of
anomaly inflow [30, 66] the gapped confined phase may
have a non-trivial Z,(ﬁll) X Z,(;Z) x -+ 1-SPT order. Indeed,
in the next section we’ll show that this confined phase
is characterized by the K-matrix and has a 1-SPT order
protected by the Z,(Cll) X Z,(ClZ) X - -+ l-symmetry. Indeed,
the 1-SPT invariant found in the next section is given by
Eq. (82).

Before concluding this subsection, we remark that the
fact that the Z§€11) X Z&) X - - l-symmetry is exact in the
bosonic model is a special feature of the theory. A more
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FIG. 2. The schematic phase diagram of the model described
by Eq. (34) with the additional term contributing to the ac-

tion amplitude e i a?/i When h =0, there is no fluc-
tuations of U(1) gauge charge, and the model has an exact
ZLI) X ZS) X
1 2
act emergent chll) X Z,(:z) X - - l-symmetry existing below the
energy gaps of U(1) gauge charges, which exists in the green
and purple shaded regions. Due to the 27w-quantized topolog-
ical term, in the confined phase (shown in purple) there is an
SPT order protected by the exact emergent Z;:l) X chlz) X
1-symmetry whose SPT invariant is given by Eq. (70).

- 1-symmetry. For h # 0, this becomes an ex-

generic lattice theory would also include the action am-
plitude " 2.1 9% in the path integral, which explicitly
breaks the Z,(Cll) X Z,(é) X --- l-symmetry. However, like
in the Z, gauge theory case discussed in section IIIC,
for energies below the U(1) gauge charge gaps, there is a
region of h # 0 where the ZE@? X Z,(Clz) X .-+ l-symmetry
is an exact emergent symmetry. In this region, the cor-
responding 1-SPT order would also affect the low-energy
physics and be protected by the exact emergent symme-
try (see Fig. 2).

D. Gauging the Z,(Cll) X Z,(clz) X ... 1-symmetry

The fact that the boundary Chern-Simons theory has

an anomalous Z(l) Z(l) - l-symmetry [65] means
that the bulk theory has 1- SPT order in the large-g
confined phase protected by Z](ﬂll) Z,(;z) In this
section, we will characterize the 1-SPT theory in the
bulk 341D theory by finding the SPT invariant obtained
by gauging the 1-symmetry. This subsection contains
mostly detailed calculations in order to derive the 1-SPT
invariant given by Eq. (82).

Before gauging the symmetry, it’s convenient to first
slowly turn on addition terms in the action which will not
affect the 1-SPT order. In particularly, to the Euclidean
lattice action we add

SO UZCOS (27TZ UKU> (47)

i5,J

10
Note that in the U — oo limit, this term makes a?/ “
satisfy the quantization condition

> P Ky =0, (48)
I

Crucially, this preserves the Z;ll) X Zgz) X -+ l-symmetry
whose transformation is Eq. (44). Furthermore, when
g — oo the path integral for any closed spacetime changes
smoothly as U changes from 0 to co. This is because in
this limit the only term in the action is Eq. (47) which is
independently defined on each 1-simplex of the spacetime
triangulation (i.e., non-interacting). Thus, the U = 0
state and the U — oo state belong to the same phase
and so the (g,U) = (00, 00) phase has the 1-SPT order
as the (g,U) = (00, 0) phase. By considering the U — oo
state, the quantization condition turns the U(1) cochain
fields a?/  into discrete cochain fields a?/ 6 satisfying
Eq. (48), which allows us to use results and techniques
for discrete fields from section III to study the 1-SPT
order in the U(1) model.

We now consider the U — oo state, which in the
strongly-interacting limit ¢ — co the path integral
Eq. (34) becomes

—i2r Y kuf daQ/Zvdea?/z'\
E e I<T pq4 %
E CLQ/ZK]JéO (49)
§/%-1da3’®7)

i2r 3 k:IL;f(daQ/Zfl_da?/zl)(daJ
I<J

e )
where we have use that for quantized a?/ z satisfying
Eq. (48),
eiQ”fM4 X1 a?/ZK”deas/z-‘ =1. (50)

As mentioned, just like the original path integral

Eq. (34), this path integral Eq. (49) also has the anomaly-
free 1-symmetry
o' ad?+ 8%, S p¥PK ez, dApYF Lo
I
(51)
Lastly, using that LdaR/Z] — deaR/Z] € Z and
d(daR/Z) = 0, we insert unity of the form
i2n 3 ka |daR/ )< dea?/ﬁ
1 — e I<J M4 X
52
127 3 kry f (da¥/ %= da¥#])— d(da?¥?) (52)
I<T g4 1

e

Q/z

R/Z .
6a1/ is renamed as a;’”,

> a?/ZK]J = 0, have values in Q/Z.

since the quantized a?/z’s7



into Eq. (49) such that the path integral becomes
> 27 3 kry J (da/% [ da§/#]) d(daf/Z L daf?])
7 = e I<J M4 «
> a?/ZKIJéO

127er1Jf(daQ/z | da
e ISV A

2/%1)(da3/# = dad?7)
(53)
To determine the SPT order realized by the theory
Eq. (49), we gauge the 1-symmetries by first replacing
da?/z with da?/z — B?/Z
note as

which for convenience we’ll de-

bY/% = da/* — BY?, (54)

where B?/ Zisa background symmetry twist field satis-
fying
aBY? 0, Y BY?K; Lo (55)
J;

We use “=” instead of “=” here since shifting B?/ z by
a Z-valued 2-cochain corresponds to performing a gauge
transformation. After this, the path-integral Eq. (53) of
course becomes

Z 20 5 hrg [ (07— 163/ A= 16977)
Z e I1<J M4 %
> a; 2K 20 (56)

lzwzkuf(bQ/Z G )

<
e 1<J

Note that for M* with or without boundary, Eq. (56) is
importantly invariant under the gauge transformations

a7 o7

by/% — by/%

—|—m%7
L (57)
nI7

where m% =0 and n% =0. If we had not inserted
Eq. (52) into Eq. (49), the gauged theory would have
not been gauge invariant.

The path integral Eq. (56) is a bit cumbersome in its
current form and it’s hard to see how M* being opened or
closed changes the action amplitude. Thus, let’s massage
the action amplitude of Eq. (56) a bit to get it in a more
enlightening form. First, we consider the first line of

Eq. (56). Using that db?/z = 0 and rewriting

121 Y kry [ (037 =63/ %7)— b}/ F - [67/%1)
e IS oma ’ 1

58
Ay * - 1657 (58)
fry e s

lzwzk”f Ly

we then can use Eq. (1) and once again db?/Z =0 to

11

write this as

i27m Z k[]f bQ/Z
e 1<J M4

G U )

2w 3 ko[ d(bQ/Z /2 [59/%7)) - Y/ Z b3/

— e I<T a4 X
21 3 kps [ 10971697097 [/ 71
e 1<) a4

(59)

Next, we consider the second line of Eq. (56). We can

use the fact that since LbQ/Z] ng/ﬁ € Z, then

i2m 3 o ] ( 07— 16" N Y7~ 167D
e ST a4

(60)

i2n 3 kIJf bQ/ZbQ/Z bQ/Z LbQ/Z'I LbQ/Z'I bQ/Z
I1<J pq4

=e
Using these simplifications, the gauged model (56) can
be rewritten as
i2r 3" k”f b/ Zb}/ % — b b ®
Z= > e 155 (61)

ZI a?/ZKI ]io

27 3o k:”f a(vy* < A/ - [v/77))
e 1<J

)

where we have used that ), ; b/PK L0,

i2n 3 kIJf _bQ/Z LbQ/Z-l bQ/ZLbQ/Z-‘

e 's7 owme =1. (62)
Therefore, starting from the U”(1) bosonic model and
gauging the Zgl) X Z&) x -+, Eq. (61) gives the path in-
tegral of the gauged model from which we can find the
1-SPT invariant.

When the spacetime M?* has no boundary, the total
derivative term in Eq. (61) vanishes and the path integral
becomes

i2m 3 kg [ 632077 — by F b}/ ®
E e =/ w4 . (63)

ZI 1 KIJ:O

2(B%?) —

We note that Eq. (63) is invariant under the following
gauge transformation:

b/% 5 b¥ 4 dwd? Y WK =00 (64)
I

It is straight forward to check that this is indeed the
case. When OM* = (), the gauge transformation Eq. (64)

. Q/2,Q/2

changes the term e!2™ 2=y k1o Jaab3 "0y by a factor

127 3 kry [ dwQ/Zp¥ % 4+6Y% dw?/F 4+ dw¥* dwd/®

e IST  pq4

65

lzﬁzk”j‘w‘?/zdb‘”z AbYZw/* (65)

— I<J

=e
Q/Z 4,Q/2

However, using that e'27 2210 K17 Jua @57 d07™™ — 1 from

Eq. (64), and also Eq. (1), we can rewrite Eq. (65) as

—i27 Y kIJf de/Zvde/Z
e I<J  pm4 . (66)



Furthermore, the gauge transformation (64) changes the

120505 ki [y b?/ZT ¥ ®

term e by a factor

i2r Y kg [ dwP/F—dby/®
e ST oamd . (67)

Eq. (66) and (67) perfectly cancel each other and, there-
fore, the action amplitude in Eq. (63) is gauge invariant.

Because the action amplitude is invariant under

Eq. (64), it will not depend on the coboundaries da?/ z
and, therefore, we will be able to evaluate the path in-
tegral Eq. (61) when OM* = (. Plugging in b?/z and
integrating by parts using that M* is closed, the path
integral Eq. (63) becomes

21 3 kry [ —aY/#dBY%+dBY %9/
Z = E e 17 omé X
ZI“?/ZKI‘]éO

i2r S kg [ BYZBY?4+dBY*— 4o/ —dBY*—BY/*
e ST ma 1 1

Now, we can use Eq. (1) to rewrite the terms a(}/z dB?/Z
and dB?/ Za?/ “ such that Z becomes

g 27 5 ki f4B3/ZB?/Zde3/ZTBIQ/Z
= E e = M X
> af/ P K120

—i2n K1y [ a9/%dBY#
e T g4

Because the path integral only sums over a?/ z satisfy-
ing the quantization condition ) _; a?/ ‘K 77 = 0 and that
dB?/Z =0, the term in the second line of Z becomes
unity. Then, using Eq. (1) to rewrite dB?/Z - B;?/Z,

the path integral becomes

i2r 3 ks [ B/ #BY#4+BY/*—aBY*
Z = E e Is7 omd X
> a(jg/ZKIJéO

—i2n Ky [ dBY*—dBY*
e I paq4 2

Firstly, note that the action amplitude on the second line
is unity since dBY? — dBY# € Z. Additionally, the
2

action amplitude no longer contains the cochains a?/ z
which the path integral is summing over. Thus, perform-
ing the sum we obtain

i2r ks [ B/ BY#4+BY*—dBY/*
7 =|det(K)|Ne e 157 mt . (68)

where N, is the number of edges in the triangulated
spacetime M?.
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E. The 1-SPT invariant

The SPT order is characterized by the volume-
independent partition function

Z(M*, BY'?)

Ztop 4 BQ/Z —
BT == 20 0)

(69)
From this, we find that 1-SPT invariant for the 1-SPT
state is

(o Q/Z pQ/Z RQR/Z_ 1pQ/Z
Ztop(M4 B?/Z) e 2 Ié:-lkl‘_]/\;[f;BJ By~ +B; 1 dBj
(70)
where as a reminder
aBY* L0, Y BYIK =0, (71)
I

Such a non-trivial 1-SPT invariant Eq. (70) suggests that
the 1-SPT order can be non-trivial. We note that, as
confirmed in appendix section A, this 1-SPT invariant is
correctly gauge invariant.

However, before going on consider some examples of
non-trivial 1-SPT invariants (see section IVF), we want
to show that any two matrices K and K related by
K =U"KU with U € GL(k,Z) actually describes the
same 1-SPT invariant. We will first try to express the
1-SPT invariant Eq. (70) in terms of only the K-matrix
instead of k7. In doing so, we’ll also find a nice form for
the 1-SPT invariant which we can use when considering
examples in the next section.

Consider the term B?/ZB?/Z in the SPT invariant
Eq. (70). We can first rewrite it as

1
ZkIJ/B?/ZBIQ/Z _ §ka/ B?/ZBIQ/Z _ BIQ/ZB?/Z
IST  jqa IST s

1 Q/Z pQ/Z
+§ZKIJ/BI BJ/.
LI

Then using Eq. (1) and the fact that M* is closed, this
can become

1 Q/Z _ pQ/Z | pQ/Z Q/z
§Zk1J/dBJ — Bf/* +Bj'* — aB;

IST W

1
+3 E KIJ/ B?/ZB3/Z,
M4
I.J

1 Q/z Q/Z  pQ/Z Q/z
:§Zk1J/dBJ/ - BY/* - BY* — aBy/

IST W

1
by oK [ BB BT 4By
1,7 M
Q/Z 5,Q/Z
BY*BY

Plugging this expression for into the action in



Eq. (70

> ki

IST
1 Q/Z 5Q/Z | pQ/Z Q/z
=3 Ku /w BY#BY/* + BY/* — dBf

), we find

BYZBY? 1 BY? — apY/?

1 Q/z Q/z Q/z Q/z
+§Zk1J/dBJ/ — BY/*+ BY/* — aBY*.
IST s

We can go further by again using Eq. (1) to rewrite sec-
ond line of the right hand side and get

> ki

IST s
1 Q/Z pQ/Z | pQ/Z Q/z
- 2ZKU/M4 By'*B}* + B{'* — dB}'* (79

1 Q/z Q/z
- §Zku/ dBY/* — aBy/*.

IST s

BYZBY? 1 BY? — apY?

Therefore, the 1-SPT invariant that characterizes the 1-
SPT order has the form

. 4 ojz XKL BY*BY/?+BY?—dB§/?
ZP(M, Br'T)=e 17t (73)
in S ks [ dBQ/Z dBY/*

X e IS7 ma

We can recast the relationship between k;; and Ky,
given by Eq. (35), by treating k;; as the elements of the
upper triangular integer matrix k that satisfies

K=k+k'". (74)

Then, using that dBY/* — dBY# £ —aBY?* — aBY/*
from Eq. (1), we can replace ZISJ kry by ZI<J Krjin
Eq. (73) to obtain

iy Kry [ BY?BY +BY/*—
ZtOp(M47B?/Z) e IE] IJf + 1

it Krsf dBQ/Z aBY/#
X e <7 m4

Q/z
—dBS

(75)

Eq. (75) thus provides a form of the 1-SPT invariant in
terms of only the K-matrix. However, due to the sum on
the second term only being over I < J, it is not covariant.

We see that, from Eq. (73), the 1-SPT invariant is
characterized by a pair of integer matrices (K, k). At
first glance, due to the k& dependence, or equivalently
Eq. (75) not being covariant, it appears that the SPT

invariant is changed by the transformation B?/ ‘5 E?/ <
and K — K where

BY? = w",,BY? K=UTKU, (76)

and Uyy € GL(k,Z). Therefore, it would appear that K
and K do not describe the same 1-SPT invariant.
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However, it turns out that K and K actually do de-
scribe the same 1-SPT invariant. To show this, we first
show that the 1-SPT invariant is left unchanged when k
is replaced by another integer matrix &’ (not necessarily
upper triangular) such that K =k’ 4+ k'T. The differ-
ence A = k — k' is an antisymmetric integer matrix. The
respective lattice Lagrangian densities of the 1-SPT in-
variant Eq. (73) for k and £k’ (after dividing by 27) differ
by

A
> dBY* — aBy/*.
I,J

Using that A is antisymmetric, that integer multiples
of 2 can be added to the Lagrangian density without
changing the path integral, and Eq. (1), this can be
rewritten as

A
Z 1J dBQ/z dB?/Z

I,J
;Z%d

1<J

(- dBYZ — aBY),

which vanishes on a closed manifold. Therefore, the two
Lagrangian densities differ by only a coboundary term
and give the same topological invariants for a closed M*.

The above result allows us to show that the SPT invari-
ant is unchanged under the transformation Eq. (76). In-
deed, we now only need to check the k;; term in Eq. (73).
Let k be an integer matrix defined by

krg= > (U )wkrsUspy, (77)
r<Jy

such that K = ];—i-I;:T. Using that, from Eq. (76),

B?/Z = UIJE?/Z and plugging it into the second line of
Eq. (73), it becomes
i Y k[ dBY#<dBY?  inX kryf dBY* - dBY/*
o T P TR g

Let’s now introduce the upper triangular integer matrix
k such that K =k + k. Using the above result for a
closed M* , the SPT invariant is unchanged by replac-
ing k with k. Therefore, the SPT invariant Eq. (73) is
unchanged under the transformation Eq. (76).

The fact that K and K describes the same SPT in-
variant also allows us to find a convenient expression for
the SPT invariant. Indeed, recall that the integer matrix
K has the Smith normal form given by Eq. (45). From
the above discussion, we see that, without loosing gener-
ality, we may transform K — U KU without changing
the SPT invariant and thus may assume K to have the
following form

k1 k1
k2 k2

K=VvT ks = ks V. (79)



The invertible integer matrix V satisfies

Vi k
L2 (80)
Vir ki

Using this expression for K, the 1-SPT invariant in its
original form given by Eq. (70) can be rewritten as

(V)rsky =kjVy =kiViy or

in S kiVip [ BY#BY?4+BY%_aB¥/*
T M4 B %

° z
Z°P (MY, BY?) = e

i2r 3 kiVig [ BY/*BY/?4+BY*—aBY/*
e 1<J M 1

Furthermore, the quantization condition on the back-
ground cochain field then becomes Z[ BIQ/ZkIVIJ = 0.

This can be automatically satisfied if we let B?/ “ take
the form

BY* = k7B, (81)

Zi, . .
where B;"" is a Zj,-valued 2-cocycle and thus satis-

fies dBf'” 2. Using this, the 1-SPT invariant for the

Z;gll) x Z&) X -+ l-symmetry becomes

Z;. z V4 V4
. it S Virky ' [ By BT +B,* T —dB; "
Ztop(M4 B kI) — e T Aqd 1
I I -
. — Zk; 2k Zk Zk
lzwlzlv,,,kJ1f4BJ JB M B, —dB,
< M

X e (82)

F. Some Examples of SPT Invariants

In the previous section, we found that U*(1) gauge
theory with a 27 topological term in the confined phase
has a non-trivial 1-SPT invariant, Eq. (70). We then
massaged the SPT invariant into other forms, such as
Eq. (75) and Eq. (82). This suggests that generically
there is a phase in the confined phase with non-trivial
1-SPT order which is protected by the Zgl) X ZE;) X oo
symmetry discussed in section IV C. Now we will consider
same simple examples of different K-matrices and the
corresponding 1-SPT order. The first example will have
% = 1 while the second and third will be kK = 2.

Example 1

Let’s first consider the case where there is only one
type of cochain field a®/Z so k =1 and the K-matrix
would become

K = (2n), (83)

with n € Z. In this case, the 3+1D bosonic model on
spacetime lattice Eq. (34) becomes

Z:/D[aR/Z] e Inm

i2rn [, 4(da®/%—| daR/?1)(daR/%~ | da®/%7)

., [daR/Z_| aaR/Z72
g

(84)

e

idmn [ 4 aR/Zd| daR/? - daR/Z\IJdl_daR/z—\
e .

14

From our previous discussion, this theory has a ZSL) sym-

metry. Let’s see this explicitly. The path integral is
invariant under the transformation a?/% — aR/Z + ﬁ B%
where 3% is an arbitrary Z-valued 1-cochain satisfying
dBZ £ 0. The physical part of A% is defined modulo 2n
because shifting 3% by 2n-valued 1-cochain corresponds
to shifting a®/% by an integer-valued 1-cochain, which is
a gauge transformation. Therefore, this theory indeed
has a Zél) symmetry. When g < 1, the above bosonic

model atnlow—energies describes the deconfined phase of
U(1) gauge field theory. At energies much smaller than

the energy gap of the U(1) monopole, d|daR/?] = 0 and

the ZSB symmetry is promoted to an emergent U(1)™)
Syminetry.

When g > 1, the above bosonic model is in a gapped
phase with ZSB 1-symmetry, which corresponds to the
confined phase of the U(1) gauge theory. From our gen-
eral discussion, this gapped phase is an SPT phase pro-
tected by the Zég 1-symmetry. Indeed, using Eq. (82),
this SPT phase is characterized by the 1-SPT invariant

2z [ B%2n BZ2n 4 B%2n _ dB%2n

ZtOp(M4, BZQn) —e Mt 1 ,

3% [ sg*(B*2n) (85)

M4

= e

The 3+1D 1-SPT order for the Zéil) 1-symmetry is clas-
sified by H*(B(Zan,2);R/Z) = Z4,.[20] From the SPT
invariant, we find that the 1-SPT order realized by the
confined phase is given by 1 € Z,,,, and thus is the gener-

ator of the SPT orders classified by H*(B(Z,,2);R/Z).
Ezxzample 2

Let’s now consider an example where there are two

/Z R/Z

types of 1-cochain fields alf and a,

the K-matrix is given by

K= G %) : (86)

We'd like to find the SPT invariant for this K matrix
using Eq. (82). This requires us to first find the inte-
gers k1, ko and the integer matrix V' from Eq. (79). The
diagonal elements of the Smith normal form of K are
(k1,k2) = (3,1). Thus, by finding k; we can immedi-
ately conclude that the 1-symmetry is Zél) X Zgl) = Zgl).
However, there does not exist an integer matrix V' which
will work for this K.

To find the SPT invariant, we can instead consider the

matrix
~ 6 3
K= <3 2) . (87)

Since K = UK UT, where

so k=2, and

)

U:(}aeeuza, (88)



our results from section IV E show that the SPT order
of K is equivalent to that of the K matrix Eq. (86).
Therefore, we now attempt to find the SPT invariant

using the same approach but now with K. First note
that the diagonal elements of the Smith normal form of

K are still (ky, ko) = (3,1). The K matrix can be written

E)-GOCY.

and we find the integer matrix V' to be
21
V= (3 2) |
From the k7 and V found for K , we have that
_1 29
(Vigk;") = (% 2). (90)

Using Eq. (82), the corresponding 1-SPT invariant for
the Zél) X Zgl) = Zgl) 1-symmetry is given by

i2 [ BB +B{®—dB7?

Zk‘[): e M4 %

Z'P(M*, By
. z Z. zZ z
i2m [ B21313+Bl3\fd321 (91)
e M* X
i2r [ BZ1BS'4+BS— dBot
e M '

We can now use the fact that the SPT invariant is invari-
ant under the gauge transformation 32Zl — B2Zl +m?,
where mZ is a Z-valued 2-cochain, to set BS' = 0. Do-
ing so, the SPT invariant simplifies to

g, V[ BEBEEE LaBE
I 4

Z'P (M B ) =e M . (92)
Therefore, the 1-SPT invariant of the K matrix
Eq. (86) is given by Eq. (92). 1-SPT order

protected by the 1-symmetry Zgl) is classified by
H*(B(Z3,2);R/Z) = Z3.[20] Therefore, from Eq. (92)
the SPT order realized in the confined phase for the K-
matrix Eq. (86) is given by 1 € Z3 and is thus the gener-
ator for SPT orders classified by H*(B(Z3,2);R/Z).

Example 3

For our final example, let’s again consider the scenario

where there are k = 2 cochain fields a?/ Z . but now where
the K-matrix is

K—<2 8) nez (93)

The diagonal elements of the Smith normal form of this
K-matrix are (k1,ks) = (n,n). Therefore, the model
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with this K matrix has a 25,1) X Zg,,l) symmetry. Fur-
thermore, this K matrix can be written as

OD-GHEY) o

Thus, unlike example 2, using the K matrix we start
with, there exists the integer matrix

V= ((1) (1)) . (95)

From this matrix V and from kj, we find that

wirksh = (9 7). (96)

n

Using Eq. (82), the corresponding 1-SPT invariant for
the Zg) X ZS) 1-symmetry is given by

ZP (M, BEr) = o Dt BT BTAB S4BT g
Thus, we find that the 1-SPT order in the confined
phase of U(1) x U(1) 341D gauge theory with K ma-
trix Eq. (93) is a mixed SPT order between the two
Z%l) 1-symmetries. In other words, the boundary Chern-
Simons theory has a mixed anomaly between two Z%l) 1-
symmetries. This Chern-Simons theory describes 2+1D
Z,, topological order. Indeed, the loop operators charged
under the two Z,(Il) 1-symmetries are the loop objects
whose open ends correspond to e and m type anyons,
respectively. Furthermore, the fact that the e and m
anyons have nontrivial mutual statistics is a manifes-
tation of the mixed anomaly between the two ZSLl ) 1-
symmetries.

V. CONCLUSION

In this paper, we have considered 3-+1D compact U*(1)
gauge theory with 2m-quantized topological terms. In
section IV B, we developed a bosonic lattice model act-
ing as the UV regularization for the continuum theory.
Working with this lattice model, we found that at en-
ergies much smaller than the gauge charges’ gaps but
larger than the monopoles’ gaps, there is an exact emer-
gent Z,(fll) X Z,(é) X -+ l-symmetry. We found that the
confined phase of the U*(1) gauge theory (i.e. the sym-
metric gapped phase of the bosonic model) has non triv-
ial symmetry protected topological (SPT) order which

is protected by the exact emergent Z,(Cll) X Z,(€12) X e 1-
symmetry. We then went on to gauge this symmetry in
section IV D and found the corresponding SPT invariant
in section IV E. We gave some examples of different K
matrices where the confined phases of the U*(1) gauge

theories realizes a Zgln) 1-SPT phase, a Zgl) 1-SPT phase,

and a z$}) X z$}) mixed 1-SPT phase.



Note: after the completion of this paper, we noticed
the independent work Ref. 55 which studied the emer-
gent l-symmetry for the x =1 case in a phase where
monopoles were only partially condensed.
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Appendix A: The Gauge Invariance of the 1-SPT
Invariant

In section IV E of the main text, we found that the 1-
SPT invariant for the Z,(cll) X ZS; X
by Eq. (70):

- l-symmetry given

i2m kg [ BS/2BY#4BY 2~

dBY/*
ISJ 4 ’

o z
7P (M*, BY%) = e

Here, B?/ Z, with I =1,...k, are background symmetry
twist 2-cochain fields satisfying

aBY* =0, Y BY?Ki; =0

In this appendix section, we confirm a claim made in the
main text that the above 1-SPT invariant for closed M*
is invariant under the gauge transformations

BY/?

—>BIQ/Z—|—7LI, BIQ/Z

— BY? + dad/?, (A1)
where n; are Z-valued 2-cochains and a?/ Z are Q/z-
valued 1-cochains satisfying the quantization conditions
z

Z[ CL(ID/ K[J é 0.

First, we’ll check the Z-gauge
BIQ/Z — B?/Z +ny, which causes the 1-SPT invariant
to change by a factor

transformation

lgﬂzkljf nJBQ/Z+BQ/Zn[ IQTFEIC]JI nlvdBQ/Z-‘,—BQ/ZVdnJ

1< 1<
e J M4 e J
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Assuming that OM? = @ and using (1), this can be
rewritten as unity:

i27 Z kjjf n]BQ/Z+BQ/Z’I’7,] i27 Z k[]j nI\—/dBQ/Z+BQ/ZvdnJ
<7 pq4 <J
€ (§
12r°Kp [ BY%n; 127 S kiy [ nyBY % =B %n,
—e 17 e I A

i2r SO ka nlvdBQ/erBQ/zvdn]
I<J

X e
i2n Y kg f — —dBy Q/z g —BQ/ vdnJ
—e IST as
127er1Jj nIvdBQ/ZJrBQ/ZvdnJ
X e 1<J

12ﬂ2k11fn1vdBQ/Z dBY*—n,

<
—e <7

i2r SO ka nlvdBQ/ZJrnJvdBQ/ZernJvdBQ/Z

— e I<J

127" K1 [ np—dBY/#
=e 7 oam =1.

Therefore, the SPT invariant is unchanged by the gauge

transformation B?/Z — B?/Z +ny.
Lastly, let’s check the gauge transformation
B?/Z — B?/Z + da?/z, which causes the 1-SPT in-

variant to change by a factor

i2r 3 k”f da¥?BY?*+BY* da
I<J

Q/z Q/z Q/z
a;'“+dajy \i/dBJ

€

Once again, assuming OM?* = ) and using (1), we can
show that this change is equal to unity:

i27 3 kg [ da§/ZBY#4+BY/% da}/ P+ daf/ P~

aBY#
e IS7 ama 7

. Q/Z pQ/Z Q/Z pQ/zZ Q/z Q/z
IQwI;JkIJf4d<LJ/ BY/*+da/*BY/*~ da}/*— dBY/
=e sJ M
i27 Y kyy [ daf/%—dB§/?
X e IST ams
12 Kps [ da¥/?BY/*
=ec 7 M =1 (A2)

Therefore, the SPT invariant is also unchanged by the

gauge transformation BIQ/Z — B?/Z + da?/z.
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