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Abstract. In this article we compute formulas for the connected K-theory class of the

pointed Brill–Noether loci in Prym varieties, which extend the result by De Concini and

Pragacz. Applying the formulas, we compute the holomorphic Euler Characteristics of the

loci.

1. Introduction

Historically, Leonhard Euler introduced the Euler characteristic for convex polyhe-

dra in 1752, based on a paper about the notion of a graph in 1736. His consideration

for a graph from the geometry of position led to define the Euler characteristic for an

arbitrary finite cell-complex. The Euler characteristic was furthermore generalized

by Poincaré in the early 20th century, and turned out to be a topological invariant

of a space. The Euler–Poincaré formula for the Euler characteristic of a topological

space uses the so-called Betti numbers of the space. Since then, there have been

a lot of variations of the formula and the most interesting one to consider in this

paper is the holomorphic Euler characteristic of a sheaf F on a proper scheme X

which replaces the Betti numbers by the dimensions of the cohomology groups

with coefficients in the sheaf. To be specific,

χ(F) =
∑

i

(−1)i hi (X;F).

Prym varieties named after Friedrich Prym are abelian varieties constructed

from étale covers of algebraic curves. They had been investigated analytically by

Schottky–Jung [23], Wirtinger [26], Farkas–Rauch [13], and algebraically by Mum-

ford [20]. See [11, Sect. 1] for more precise details about the analytic and algebraic

approaches. The study of Prym varieties has been active for decades. Inside Prym

varieties, the Brill–Noether loci were constructed by Welters [25].

The Euler characteristic of the Brill–Noether loci in Jacobians of non-singular

general curves was computed in [10,21] and generally with special vanishing at

two marked points in [3,6]. However, the Euler characteristics of the Brill–Noether

loci for Prym varieties are less well known. Our goal of this article is to provide a
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formula for the Euler characteristic of the Brill–Noether loci in Prym varieties with

prescribed vanishing orders at one point.

The more precise statement of our main result is as follows. Let K be an alge-

braically closed field of characteristic not equal to 2. Let π : C̃ → C be an étale

double cover of a smooth algebraic curve C of genus g = g(C) over K. We fix a

point P in C̃ . Given a sequence of integers

a = (0 ≤ a0 < a1 < · · · < ar ≤ 2g − 2),

we define the pointed Brill–Noether locus of line bundles V r
a (P) in the Prym variety

P+ for odd r (or P− for even r ) as

V r
a (P) :=

{
L ∈ P

± | h0(C̃, L(−ai P))) ≥ r + 1 − i for all i,

h0(C̃, L) ≡ r + 1 (mod 2)
}

.

The pointed Brill–Noether loci V r
a (P) have the structure of the degeneracy loci of

type D (See Sect. 3), implying its Cohen-Macaulayness under the conditions that

V r
a (P) is either empty or of codimension

∑
i ai in P±. To state the main theorem,

we need some notations. For a sequence a as above, we define a partition

λi = ar+1−i for i = 1, . . . , r + 1.

We denote by �◦ the number of non-zero parts of λi in λ and |μ| :=
∑

μi the sum

of components μi of nonnegative integers. Let si = �◦−i −λi +1 for i = 1, . . . , �◦

and define h(λ, v, k) = |λ| + |v| + k for λ and any nonnegative sequence v and

positive integer k for convenience in notation. The unspecified notations in the

statement below will be defined in Sect. 5.

Theorem 1.1. (Euler Characteristic) Let π : C̃ → C be an étale double cover of a

smooth algebraic curve C over K. Let P be a point in C̃. If V r
a (P) has codimension

|λ| in P±, then the Euler characteristic χ
(
OV r

a (P)

)
is equal to

∑

u,v

(
�◦∏

i=1

(−1)ui

(
ui + si

vi

))

·

⎛
¿ ∑

σ∈S�◦

∑

k≥0

∑

f∈Aσ
k

sgn(σ )

�◦/2∏

j=1

g
σ(2 j−1),σ (2 j)
fσ(2 j−1),σ (2 j)

h(λ, v, k)!

2�◦/2−h(λ,v,k)(�◦/2)!

À
⎠ ,

for σ ∈ S�◦+1 permuting {1, . . . , �◦} if �◦ is even, and

∑

u,v

(
�◦∏

i=1

(−1)ui

(
ui + si

vi

))

·

⎛
¿ ∑

σ∈S�◦+1

∑

k≥0

∑

f∈Aσ
k

sgn(σ )

(�◦+1)/2∏

j=1

g
σ(2 j−1),σ (2 j)
fσ(2 j−1),σ (2 j)

h(λ, v, k)!

2(�◦+1)/2−h(λ,v,k)((�◦ + 1)/2)!

À
⎠ .
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for σ ∈ S�◦+1 permuting {0, 1, . . . , �◦} if �◦ is odd. Here, the sums are taken over

nonnegative integer sequences u and v of length �◦. In particular, if λi = �◦ +1− i

such that si = 0, then we get the Euler characteristic χ(OV r ) of the classical

Brill–Noether loci V r in P±.

In the statement, si can have a negative value, and we use the binomial coeffi-

cients for negative integers −s defined by

(
−s

t

)
=

−s(−s − 1) · · · (−s − t + 1)

t !
.

It is known that Chern class formulas for certain degeneracy loci of linear series

can help us simplify computations in Brill–Noether theory. For instance Kempf

and Laksov provided significantly simplified proofs for the existence theorem on

the special divisors by studying the Porteous’ formula [17]. Moreover, the Euler

characteristic of the two pointed Brill–Noether locus in Picard varieties can be

obtained by applying the Chern class formula in K-theory for Schubert varieties

associated to 321-avoiding permutations in the flag bundle of Lie type A [3]. By

definition the flag bundle Fl(E) of type A on a nonsingular variety X over an

algebraically closed field K is a bundle of flags (or filtrations) of subspaces of E

from its vector bundle E → X , so that it can be considered as SL(n)/B where B is

a Borel subgroup of SL(n) for some rank n. In fact, we can consider Prym varieties

with special vanishings at one point as degeneracy loci having the structure of

Schubert varieties of Lie type D in even orthogonal Grassmannians OG(n, K
2n) =

SO(2n)/P for the maximal parabolic subgroups P of SO(2n). In this perspective

we take the K-theoretic Chern class formulas for even orthogonal Grassmannian

degeneracy loci of Lie type D to deduce Theorem 1.1. The proof of Theorem 1.1 is

attributed to the formula for the K-theory classes of the pointed Brill–Noether loci

in the Prym varieties.

The following is our second main Theorem 1.2 computing the connective K-

theory classes for the pointed Brill–Noether loci V r
a (P) in Prym varieties. The

exact definition of the Pfaffian in the statement below will be introduced as (4.1)

in Sect. 4.

Theorem 1.2. (Theorem 4.1, Connected K-theory class) Assume that V r
a (P) is

either of pure codimension |λ| or empty. Then the class of V r
a (P) is

[V r
a (P)] = P f

♦
λ (d(1), . . . , d(�◦);β) (1.1)

in the connected K-homology C K∗(P
±) of P±.

The connected algebraic K-theory for schemes introduced by Cai [5] connects

the Chow groups and Quillen’s K-theory groups and later it is investigated by Dai

and Levine [9] in motivic homotopy theory. We adapt a simpler version of the

connective K-theory of a scheme: for nonsingular X , the connected K-homology

of X denoted by C K∗(X) is a graded algebra over Z[β] so that it can be specialized

to the Chow homology A∗(X) at β = 0 and to Grothendieck group K◦(X) of

coherent sheaves at β = −1. The reader might find [1,15,16] for the study of
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certain degeneracy loci in the context of the connected K-theory. In this regard our

strategy to have Theorem 1.2 is to apply the K-theoretic Chern class formulas for

Grassmannian degeneracy loci of Lie type D in the notion of [1, Section 4].

As corollaries (Corollary 4.2 and Corollary 4.5) of Theorem 1.2, the class of

the Brill–Noether loci for Prym varieties in the Grothendiek group of P± is given

by

[OV r
a (P)] = P f

♦
λ (d(1), . . . , d(r + 1);−1) ∈ K◦(P

±)

by specializing at β = −1, and their singular cohomology H∗(P±, C) with com-

plex coefficients or numerical group N∗(P±, k) with coefficients in an arbitrary

field k of characteristic different than 2 at β = 0 can be expressed by

[V r
a (P)] =

1

2�◦

�◦∏

i=1

1

λi !

∏

i< j

λi − λ j

λi + λ j

· (2ξ)|λ|.

Indeed Theorem 1.2 extends the formulas for the cohomology classes of the

Brill–Noether loci of Prym varieties by Concini and Pragacz [7]. When it comes to

β = 0, we recover the class of the pointed Brill–Noether loci for Prym varieties,

Corollary 4.5 that coincides with the recent work of Tarasca [24, Theorem 1].

Lastly our formulas are presented for the one-pointed case. As such, it would

be interesting to investigate further the formulas for the Euler characteristics for

the two-pointed Brill–Noether loci in Prym varieties. The author currently works

on the subject in this direction.

The structure of this paper is the following. We review the classical Brill–

Noether loci of Prym varieties in Sect. 2 and K-theoretic class of even orthogonal

degeneracy loci in Sect. 3. Our connected K-theory class formulas for the pointed

Brill–Noether loci of Prym varieties are presented in Sect. 4. In the end we present

the Euler characteristic class of the Brill–Noether loci in Prym varieties with special

vanishing at one point in Sect. 5.

2. Review on Brill–Noether loci of Prym variety

Let C be a smooth algebraic curve of genus g = g(C) over an algebraically closed

field K whose characteristic is not equal to 2. Let π : C̃ → C be an étale double

cover of C . We denote by J (C) and J (C̃) the Jacobians of C and C̃ respectively.

We define a norm map Nmπ = π∗ : Div(C̃) → Div(C) [4, Appendix B] by

sending a divisor
∑

qi on C̃ to the divisor
∑

π(qi ) on C . This map induces a map

of Jacobians

Nmπ : J (C̃) → J (C).

Let τ : C̃ → C̃ be the involution exchanging sheets of C̃ over C . We define the

Prym variety P [14,19] by

P = Ker(idJ (C̃) + τ)0 = Im(idJ (C̃) − τ)
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where idJ (C̃) : J (C̃) → J (C̃) is the identity map on J (C̃) and the superscript 0

implies the connected component containing the origin.

Since J (C) can be identified with Pic2g−2(C), and similarly for C̃ , the norm

map can be regarded as a map Nm : Pic2g−2(C̃) → Pic2g−2(C) of Picard groups.

Let KC ∈ Pic2g−2(C) be the canonical divisor class. The inverse image of KC

under the norm map is given by

Nm−1(KC ) = P
+ ∪ P

−

where P+ = {L : h0(C̃, L) ≡ 0 (mod 2)} and P− = {L : h0(C̃, L) ≡

1 (mod 2)}.

The Brill–Noether loci in the Prym varieties P± are set-theoretically defined

by the closed subset

V r = {L ∈ Nm−1(KC ) : h0(C̃, L) ≥ r + 1,

h0(C̃, L) ≡ r + 1 (mod 2)} ⊂ Pic2g−2(C̃) (2.1)

Example 2.1. Let C be a general curve of g = 2 and r = 1. Then the genus of C̃ is

3 such that V 1 ∼= W 1
2 (C̃) is P

1-bundle of J (C).

We describe the scheme and set-theoretical structure of V r used in [7]. It is

noteworthy that Welter [25] gave a different scheme structure on V r , but the two

scheme structures agree on an open dense subset. Interested readers may refer to

comments in Introduction and Proposition 4 of [7] for further details.

For the double cover π : C̃ → C , let 1×π : Pic2g−2(C̃)× C̃ → Pic2g−2(C̃)×

C . We denote by p : Pic2g−2(C̃)×C → Pic2g−2(C̃) and q : Pic2g−2(C̃)×C → C

the first and second projection. Let ν be the projection from Pic2g−2(C̃) × C̃ to

Pic2g−2(C̃). Then we have the following commutative diagram:

C̃ C

Pic2g−2(C̃) × C̃ Pic2g−2(C̃) × C

Pic2g−2(C̃) Pic2g−2(C)

π
μ

ν

1×π

p

q

Nm

For distinct fixed points Pi on C , we consider a positive divisor D =
∑

i Pi

of C for a sufficiently large n = deg(D), that is, n + 2g − 2 ≥ 2 · g(C̃) + 1 or

n ≥ 2·(2g−1)+1−(2g−2) = 2g+1 to have h0(KC −D) = 0 by Riemann-Roch

and Clifford’s theorem.

Let E = (1 × π)∗L. We write E(±D) for E ⊗ q∗(OC (±D)) where D is a

divisor. Let V = p∗(E(D)/E(−D)), U = p∗(E(D)), and W = p∗(E/E(−D)).

Then W,U ⊂ V are subbundles of rank n, since W is locally free of rank n and U

is just shifted by the divisor −D from p∗(E(D)/E) where the rank of p∗(E(D)/E)
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is n − (2g − 2 − (2g − 1) + 1) = n. This enables VP± to have a nondegenerate

quadratic form with values in OP± so that WP± ,UP± become maximal isotropic

subbundles with respect to the form.

Specifically, let us fix L ∈ P±. For E = π∗L , let V = H0(C, E(D)/E(−D))

of 2n-dimensional vector space. On V we define a symmetric form Q : V ×V → C

by

Q(σ, τ ) =
∑

i

ResPi
(στ)

where στ ∈ H0(C, L2(2D)/L2) = H0(C, ωC (2D)/ωC ) such that Q is nonde-

generate. In fact we can define V as V = U ′⊕W where U ′ = H0(C, E(D)/E) and

W = H0(C, E/E(−D)). The nondegenerate symmetric form Q on V is defined

by

Q(σ1 ⊕ σ2, τ1 ⊕ τ2) =
∑

Res(σ1τ2 + σ2τ1).

We can consider the symmetric form Q as a quadratic form q which sends v

to Q(v, v) for v ∈ V . With the quadratic form on V we see that U ′ and W are n-

dimensional isotropic subspaces by the residue theorem. In other words, U ′ consists

of regular functions, which makes U ′ an isotropic subspace, and for W , if σ and τ

are in W , then the sum of the residue of στ is zero, and so W is also an isotropic

subspace. Additionally we have another isotropic subspace U = H0(C, E(D))

for the quadratic form by the restriction map of the space H0(C, E(D)) in V .

We notice that the intersection of U and W is global regular sections of E and

so dim(U ∩ W ) = h0(C, E). Due to the choice of L, the construction globalizes

and thus defines set-theoretically the Brill–Noether loci (2.1) on a Prym variety.

Readers may refer to [19] for more details.

3. The connected K-theory class of even orthogonal degeneracy loci

This section reviews on general formulas for even orthogonal degeneracy loci in the

connective K-homology used later to find the classes of the pointed Brill–Noether

loci in Prym varieties in Sect. 4. To be precise, we use the connective K-homology

with the natural isomorphisms between the Chow homology and the Grothendiek

group of coherent sheaves

C K∗(X)/(β = 0) ∼= A∗(X) and C K∗(X)/(β = −1) ∼= K◦(X)

of nonsingular X by specializing the parameter as β = 0 and β = −1 respec-

tively. Even if we choose X to be singular, the isomorphism still works with their

cohomologies via the operational cohomology theory. Moreover, for the closed

subvariety Y ⊆ X , the class [Y ] ∈ A∗(X) and [OY ] ∈ K◦(X) can be obtained

from the fundamental class [Y ] ∈ C K∗(X).

Let V → X be a rank 2n vector bundle over a smooth irreducible algebraic

variety X over K, equipped with a nondegenerate quadric form q. Let OG(n,V )

be an orthogonal Grassmannian bundle with π : OG(n,V ) → X . We consider a
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rank n tautological subbundle S of π∗V on OG(n,V ). With common abuse of

notation, we may use V as π∗V . Let F be a rank n maximal isotropic subbundle

of V . Especially S is also a maximal isotropic subbundle of V . Let us fix a flag

of isotropic subbundles

Fpr ↪→ Fpr−1 ↪→ · · · ↪→ Fp0 ⊆ F
φ
−→ S

with respect to the form on a variety X where Fpi
has rank n−pi for all i . Especially

0 ≤ p0 < · · · < pr . We define the degeneracy locus V r
p associated to a sequence

p = (0 ≤ p0 < · · · < pr ) to be

V r
p = {x ∈ X | dim(Fpi

∩ S )x ≥ r + 1 − i,

dim(F ∩ S )x ≡ r + 1 (mod 2) for x ∈ X}

for 0 ≤ i ≤ r . We remark that this degeneracy locus should be taken to be the

closure of the locus where equality holds. It is known that V r
p is a Cohen-Macaulay

scheme if V r
p is either empty or of codimension

∑
i pi due to the main theorem in

[8] and the same reasoning as in the proof of [7, Proposition 2 (1)].

Now, we slightly modify the Pfaffian formula in [2, Theorem 4] to our setting.

We define Euler classes e(Fpi
,S ) for isotropic subbundles Fpi

and S . In other

words, for maximal isotropic bundles S and Fpi
, Euler classes are defined by

em(Fpi
,S ) =

{
(−1)dim(F∩S )³ (F ,S )cK

pi
(F/Fpi

) if m = pi

0 otherwise

where cK (F/Fpi
) indicates the K-theoretic Chern class and ³ (S ,F ) ∈ C K 0(X)

is the canonical square root of cK (V − S − F ;β) [1, Appendix B]. We denote

by Ti the raising operator increasing the index of c(i) := cK (V − S − Fpr+1−i
)

by one. Let Ri j = Ti/T j and e(i) := e(Fpr+1−i
,S ). Let λ = (λr+1 > · · · > λ0)

be a strict partition defined by

λi = pr+1−i for i = 0, . . . , r + 1

and denote by �◦ := �(λ) the number of non-zero parts λi of λ. Suppose that �◦ is

even. We define the Pfaffian formula

Pfλ(d(1), . . . , d(�◦);β) := Pf(M;β), (3.1)

where d(i) = c(i) + (−1)i e(i) for 1 ≤ i ≤ �◦, and the entry mi, j of the �◦ × �◦

skew-symmetric matrix M is

mi, j =
1 − ´i´ j Ri j

1 + ´i´ j (Ri j − βTi )
·
(1 − β T̃i )

�◦−i−λi +1

2 − β T̃i

·
(1 − β T̃ j )

�◦− j−λ j +1

2 − β T̃ j

· (cλi
(i) − (−1)�◦eλi

(i))(cλ j
( j) + (−1)�◦eλ j

( j)),

with the skew-symmetric relations m j i = −mi j and mi i = 0. Here T̃i = ´i Ti and

´i assigns (−1)i to 0 in d(i). In particular, if �◦ is odd, we augment the matrix

M by the setting m0 j = (1 − β T̃ j )
�◦− j−λ j +1(2 − β T̃ j )

−1 · (cλ j
( j) + eλ j

( j)) for

j = 1, . . . , �◦.

Combined [2, Theorem 4] with [2, , Corrigendum Pg. 3] and then specialized

to our setting, we have the formula for the class
[
V r

p

]
as follows.



760 M. Jeon

Theorem 3.1. Let X be a variety. Then the connected K-theory class of V r
p in

C K∗(X)
[

1
2

]
is given by

[
V r

p

]
= Pfλ(d(1), . . . , d(�◦);β) · [X ].

4. Classes of the pointed Brill–Noether loci on Prym variety

4.1. Brill–Noether classes with a vanishing sequence

In this section we consider the class of the Brill–Noether loci in the Prym variety

P± with prescribed vanishing orders at one point.

Let C be a smooth curve of genus g and π : C̃ → C be an étale double cover

of C . For a line bundle L in V r , the vanishing sequence at P ∈ C̃ is given by the

sequence

a(P) = (0 ≤ aL
0 (P) < · · · < aL

r (P) ≤ 2g − 2)

of vanishing orders in the 2n-dimensional vector spaceVP± = p∗(E(D)/E(−D))P±

at P such that it is the maximal sequence satisfying the condition

h0(C̃, L(−aL
i (P) · P))) ≥ r + 1 − i for all i.

The reader may refer to the work of Eisenbud-Harris used in [25] for the vanishing

sequence. Let us fix a point P in C̃ and the sequence

a = (0 ≤ a0 < a1 < · · · < ar ≤ 2g − 2).

We define the pointed Brill–Noether loci of line bundles V r
a (P) in the Prym variety

P+ for odd r (or P− for even r ) by

V r
a (P) :=

{
L ∈ Nm−1(KC ) | h0(C̃, L(−ai P))) ≥ r + 1 − i for all i

h0(C̃, L) ≡ r + 1 (mod 2)
}

⊂ Pic2g−2(C̃).

The structure of this variety can be considered by an even orthogonal Grassmannian

degeneracy locus V r
a (P) in Pic2g−2(C̃) as in Sect. 3. In particular this construction

generalizes the result for the Brill–Noether loci without vanishing orders in the

Prym variety introduced in Sect. 2.

We recall that L is the Poincaré line bundle on Pic2g−2(C̃)× C̃ , E = (1×π)∗L

and D =
∑n

i=1 Pi is a divisor for distinct fixed points Pi on C . Assume that

π(P) �= Pi for all i . Let D̃ = π∗(D). We note that p∗(E ⊗ q∗(OC (D))) =

ν∗(L ⊗ μ∗OC̃ (D̃)) = ν∗(L(D̃)).

Now, we set

Wi : = ν∗(L ⊗ q∗(OC̃ (D̃ − ai P))) = ν∗(L(D̃ − ai P))

for 0 ≤ i ≤ r . Then the sheaf Wi is the vector bundle of rank

rk(Wi ) = n − ai
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so that we have a filtration Wr ⊂ Wr−1 ⊂ · · · ⊂ W0 ⊆ W := p∗(E(D)) =

ν∗(L(D̃)). Then there is a natural sequence

(Wr )P± ↪→ (Wr−1)P± ↪→ · · · ↪→ (W0)P± ⊆ WP±

of vector bundles on P±. Here the nondegenerate symmetric form Q defined in

Sect. 2 is naturally inherited to their subbunddles. In addition, for L ∈ P±, if we

set U = H0(C̃, L/L(−D̃)) and Wi = H0(C̃, L(D̃ −ai (P) · P)), U ∩ Wi is global

regular sections of L such that

dim(U ∩ Wi ) = h0(C̃, L(−ai P)).

Hence V r
a (P) can be regarded as the degeneracy loci in 3, so that it is a Cohen-

Macaulay scheme provided that V r
a (P) is either empty or of codimension

∑
i ai .

Let λ be the partition associated to the vanishing orders a:

λi := ar+1−i for i = 1, . . . , r + 1.

We recall that �◦ := �(λ) is the number of non-zero parts of λi of λ.

Since UP± has the trivial Chern class, the K-theoretic Chern classes

c(i) = cK (VP± − UP± − (Wr+1−i )P±) become cK (VP± − (Wr+1−i )P±) =

cK ((Wr+1−i )
∨
P±), and the Euler classes e j (i) = e j ((Wr+1−i )P± ,UP±) are equal

to

e j (i) = (−1)dim(U∩W)³ (WP± ,UP±)cK
j (WP±/(Wr+1−i )P±)

if j = λi and 0 otherwise. Here ³ (WP± ,UP±) is the canonical square root of the

K-theoretic Chern class cK ((Wi )
∨
P±;β). Therefore, with these specializations for

d(i) = c(i) + (−1)i e(i) for 1 ≤ i ≤ �◦, and the Pfaffian formula (3.1) yelds

P f
♦
λ (d(1), . . . , d(�◦);β) = P f (M♦;β) (4.1)

of the �◦ × �◦ skew-symmetric matrix M♦ whose entries m
♦
i, j are given by

m
♦
i, j =

1 − ´i ´ j Ri j

1 + ´i´ j (Ri j − βTi )
·
(1 − β T̃i )

�◦−i−λi +1

2 − β T̃i

·
(1 − β T̃ j )

�◦− j−λ j +1

2 − β T̃ j

· (cK
λi

((Wr+1−i )
∨
P ±) − (−1)�◦+dim(U∩W)³ (WP ± , UP ±)cK

λi
(WP ±/(Wr+1−i )P ±)

· (cK
λ j

((Wr+1− j )
∨
P ±) + (−1)�◦+dim(U∩W)³ (WP ± , UP ±)cK

λ j
(WP ±/(Wr+1− j )P ±).

In case that �◦ is odd, we use the augmented matrix M♦ by putting

m
♦
0 j = (1 − β T̃ j )

�◦− j−λ j +1(2 − β T̃ j )
−1

·(cK
λ j

((Wr+1− j )
∨
P ±) + (−1)dim(U∩W)³ (WP ± , UP ±)cK

λ j
(WP ±/(Wr+1− j )P ±)

(4.2)

for j = 1, . . . , �◦. Here P f
♦
λ (d(1), . . . , d(�◦);β) and M♦ are the specialized ones

with our specific bundles W• and U from P fλ(d(1), . . . , d(�◦);β) and M used in

(3.1). Then by Theorem 3.1, we have the connected K-theory class of V r
a (P) as

follows.
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Theorem 4.1. Assume that either V r
a (P) is empty or has pure codimension |λ| :=∑

i λi . Then we have the class of V r
a (P) given by

[V r
a (P)] = P f

♦
λ (d(1), . . . , d(�◦);β) ∈ C K∗(P

±).

Specializing at β = −1, we have the K-theory class of the pointed Brill–Noether

locus V r
a (P) in the Grothendieck group of coherent sheaves K◦(P

±) for P± as

below.

Corollary 4.2. (β = −1) Assume that either V r
a (P) is empty or has pure codimen-

sion |λ|. Then the K-theory class of V r
a (P) is

[OV r
a (P)] = P f

♦
λ (d(1), . . . , d(r + 1);−1) ∈ K◦(P

±).

Similarly, with a specialization at β = 0, we obtain the class of V r
a (P) in Chow

homology A∗(P
±) of P± as follows.

Corollary 4.3. (β = 0) Assume that either V r
a (P) is empty or has pure codimension

|λ|. Then the class of V r
a (P) is

[V r
a (P)] = P f

♦
λ (d(1), . . . , d(r + 1); 0) ∈ A∗(P

±).

Furthermore, we can find the numerical equivalence class of V r
a (P) in the

numerical group N∗(P±, k) with coefficients in k or its cohomology class of

V r
a (P) in the singular cohomology H∗(P±, C) with complex coefficients, as a

corollary (Corollary 4.5) of Theorem 4.1. Here k is an arbitrary field of characteristic

not equals to 2.

In fact, d j (i) can be specialized in those cohomology rings with β = 0 as the

following lemma. The rest of this section must be read at β = 0. Let � be the theta

divisor on Pic2g−2(C̃). We use the convention that the cohomology or numerical

equivalence class θ of � does not rely on the choice of the divisors D̃ − ai P

assumed in [4, 318–319].

Lemma 4.4. Given sufficiently positive divisor D̃ − ai P, we have

d j (i) =
(θ ′) j

j !

where θ ′ is the cohomology class restricted to P± of the class of the theta divisor

� on Pic2g−2(C̃).

Proof. According to modulo numerical equivalence (as in [18, Equation (4)]) and

using the Poincaré dual formula, the Chern class of W∨
i is given by

c j ((Wi )
∨
P±) =

(θ ′) j

j !
. (4.3)

Since c(W) = e−θ ′
and ci (UP±) = 0 for all i > 0 by [7, Lemma 5], we get

d j (i) = c j ((Wi )
∨
P±) + (−1)i · (−1)dim(U∩W) · c j (WP±/(Wi )P±)
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for j = λi . In case of j �= λi , c j (i) = c j ((Wi )
∨
P±). Let us take j = λi . Then the

j-th Chern class of WP±/(Wi )P± vanishes as

c j (WP±/(Wi )P±) =

j∑

k=0

ck(WP±) · c j−k((Wi )
∨
P±)

=

j∑

k=0

(−1)k · (θ ′)k

k!
·

(θ ′) j−k

( j − k)!
=

j∑

k=0

(−1)k

k!
·

1

( j − k)!
(θ ′) j

=
(θ ′) j

j !

j∑

k=0

(−1)k · j !

k! · ( j − k)!
=

(θ ′) j

j !

j∑

k=0

(−1)k ·

(
j

k

)

=
(θ ′) j

j !
· ((−1) + 1) j = 0.

Hence we arrive at

d j (i) =
(θ ′) j

j !

as the j th degree of eθ ′
. Since d j (i) is a multiple of (θ ′) j , the class

[
V r

a (P)
]

can

be expressed by ³ · (θ ′)|λ| for a rational number ³ and |λ| =
∑r+1

i=1 λi .

By the above lemma, the class of V r
a (P) becomes:

Corollary 4.5. (β = 0) Suppose that V r
a (P) is empty or has the dimension equal

to ρ = g − 1 − |λ|. Then the class of the pointed Brill–Noether loci for P± is

[V r
a (P)] =

1

2�◦

�◦∏

i=1

1

λi !

∏

i< j

λi − λ j

λi + λ j

· (2ξ)|λ| (4.4)

in either N∗(P±, k) or H∗(P±, C)

Proof. We know from Corollary 4.3 that

[V r
a (P)] = P f

♦
λ (d(1), . . . , d(�◦); 0) ∈ A∗(P

±).

We assume �◦ even. With Lemma 4.4, the right hand side becomes the Pfaffian of

the �◦ × �◦ skew-symmetric matrix (m
†
i j ) for �◦ ≥ j > i ≥ 1 where

m
†
i j =

1

22

(2ξ)λi +λ j

(λi + λ j )!

((
λi + λ j

λi

)
+ 2

∑

u>0

(−1)u ·

(
λi + λ j

λi + u

))
, (4.5)

with the skew-symmetric relations m
†
j i = −m

†
i j and m

†
i i = 0. If �◦ is odd, the

matrix is augmented by m
†
0 j = dλ j

for j = 1, . . . , �◦.
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Since

λi∑

k=0

(−1)k

(
λi + λ j

k

)
+

λ j∑

u>0

(−1)u+λi

(
λi + λ j

λi + u

)
=

λi +λ j∑

j=0

(−1) j

(
λi + λ j

j

)
= 0,

we have

(−1)λi

λ j∑

u>0

(−1)u

(
λi + λ j

λi + u

)
= −

λi∑

k=0

(−1)k

(
λi + λ j

k

)
= (−1)λi +1

(
λi + λ j − 1

λi

)
.

By canceling (−1)λi , we get to

λ j∑

u>0

(−1)u

(
λi + λ j

λi + u

)
= −

(
λi + λ j − 1

λi

)
. (4.6)

Plugging equation (4.6) to (5.1) gives

m
†
i j =

1

22

(2ξ)λi +λ j

λi !λ j !

(
λi − λ j

λi + λ j

)
.

Using [12, Appendix D],

Pf

(
1

22

(2ξ)λi +λ j

λi !λ j !
·
λi − λ j

λi + λ j

)
=

1

2�◦

�◦∏

i=1

1

λi !

∏

i< j

λi − λ j

λi + λ j

(2ξ)|λ|.

While working this paper, the author learned from private conversation with

David Anderson that Corollary 4.5 was be found independently in [24, Theorem

1]. To be rigorous, we take this occasion to provide a more detailed proof, as the

proof of [24, Theorem 1] was sketched.

Remark 4.6. When a = (0, . . . , r), we can recover the formula for the Brill–

Noether loci in Prym varieties [7, Theorem 9] with imposed vanishing orders a

at a point P ∈ C̃ . In this case, if r is even, we take a strict partition λ = (r, . . . , 1)

which is often denoted by ρr in many literature including in the proof of [7, Lemma

8] and [22, Introduction, pg 14]. Then by Theorem 4.5 we have

[V r
a (P)] =

1

2r

r∏

i=1

1

i !

∏

j<i

i − j

i + j
· (2ξ)r(r+1)/2, (4.7)

and if r is odd, we set λ = (r, . . . , 1, 0) by putting λr+1 = a0 to be zero. Then

Theorem 4.5 gives

[V r
a (P)] =

1

2r

r∏

i=0

1

i !

∏

j<i

i − j

i + j
· (2ξ)r(r+1)/2. (4.8)

We note that (4.7) agrees with (4.8), since 1/0! = 1 and
∏

0<i

i − 0

i + 0
= 1.
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5. Euler characteristics

In this section we provide formulas for the Euler characteristic of the pointed Brill–

Noether loci V r
a (P) in the Prym variety P± associated to a fixed sequence

a = (0 ≤ a0 < · · · < ar ≤ 2g − 2).

We employ Hirzebruch-Riemann-Roch to find the Euler characteristic of the Brill–

Noether loci for Prym varieties. Since the Todd class of Pic2g−2(C̃) is trivial, we

have

χ
(
OV r

a (P)

)
=

∫

Pic2g−2(C̃)

ch
([

OV r
a (P)

])
.

To compute the Euler characteristic, we use the following lemma showing that

cohomology Chern classes coincide with K-theory Chern classes via the Chern

character isomorphism.

Lemma 5.1. ([3]) For a rank n vector bundle E, if ch(E)i = 0 for i > 1, then

ch(cK
i (E)) = ci (E), where cK is the K-theory Chern classes.

It is from Lemma 5.1 and (4.3) that

ch
(

cK
j ((Wi

)∨

P±
)) =

(θ ′) j

j !

and thus

ch
(

d K
j (i)

)
=

(θ ′) j

j !
.

The rest of this section is devoted to the proof of our main Theorem 1.1.

Lemma 5.1 and Corollary 4.2 have a major role in obtaining the formula for the

Euler characteristic. Before we actually prove the theorem, further notations must

be introduced. Given any nonnegative integer sequence v = {vi }
�◦
i=1, we define{

g
i, j
m

}
m≥0

by

g
i, j
0 =

1

(λi + vi )!(λ j + v j )!
+

∑

�>0

(−1)�
2

(λi + � + vi )!(λ j − � + v j )!

and

g
i, j
m = (−1)m

(
1

(λi + m + vi )!(λ j + v j )!
+

∑

�>0

(−1)�
((

� + m − 1

m

)
+

(
� + m

m

))

1

(λi + � + m + vi )!(λ j − � + v j )!

)
for m > 0
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for �◦ ≥ j > i ≥ 1, and gi i
m = 0, g

j i
m = −g

i j
m . We denote by S2n the symmetric

group of degree 2n. For σ ∈ S2n , we define f̂ (σ ) :=
∑n

j=1 fσ(2 j−1),σ (2 j) for a

nonnegative double sequence f := { fi, j }1≤i, j≤2n , and let Aσ
i =

{
f | f̂ (σ ) = i

}
. In

particular, f0, j = 0 = f j,0 and g
0, j
0 =

1

(λ j + v j )!
= −g

j,0
0 for all j = 1, . . . , �◦

if necessary.

Proof of Theorem 1.1. Let P be a point on C̃ . We first compute ch
([

OV r
a (P)

])
. We

know from Corollary 4.2 that

[OV r
a (P)] = P f

♦
λ (d(1), . . . , d(�◦);−1) ∈ K◦(P

±).

Here we assume that �◦ is even throughout this proof unless specified. If �◦ is

odd, we use the augmented matrix for the Pfaffian formula with (4.2) evaluated at

β = −1 as defined.

Then by the virtue of Lemma 5.1, taking [OV r
a (P)] under the Chern character

isomorphism replaces the K-theory Chern classes involved in the Pfaffian formula

by cohomology Chern classes.

According to Lemma 4.4 and with the specialization at β = −1, ch
([

OV r
a (P)

])

is equal to the Pfaffian Pf(M�) where M� = (m�
i j ) is the skew-symmetric matrix

whose entries are

m�
i j =

1 − Ri j

1 + Ri j + Ti

·
(1 + Ti )

�◦−i−λi +1

2 + Ti

·
(1 + T j )

�◦− j−λ j +1

2 + T j

· dλi
(i)dλ j

( j)

(5.1)

for �◦ ≥ j > i ≥ 1 with relations m�
j i = −m�

i j and m�
i i = 0. As in [1, Pg. 460],

we can unfold m�
i j by writing

m�
i j =

(1 + Ti )
�◦−i−λi +1

2 + Ti

·
(1 + T j )

�◦− j−λ j +1

2 + T j

· m#
i j , (5.2)

where

m#
i j =dλi

(i)dλ j
( j) +

∑

m>0

(−1)mdλi +m(i)dλ j
( j)

+
∑

�>0

∑

m≥0

(−1)�
((

� + m − 1

m

)
+

(
� + m

m

))
(−1)mdλi +�+m(i)dλ j −�( j).

Now we expand the operators
(1 + Ti )

�◦−i−λi +1

2 + Ti

in powers of Ti . Recall that

si = �◦ − i − λi + 1 for i = 1, . . . , �◦. In fact, one can write

(1 + Ti )
si

1 + (1 + Ti )
= (1 + Ti )

si ·

∞∑

ui ≥0

(−(1 + Ti ))
ui =

∞∑

ui ≥0

(−1)ui (1 + Ti )
ui +si

=

∞∑

ui ≥0

(−1)ui
∑

vi ≥0

(
ui + si

vi

)
T

vi

i
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We note that si can be negative, and the last equality follows from the binomial

series. Then Pf(M�) can be written as

Pf(M�) =
∑

ui ,vi ≥0

(
�◦∏

i=1

(−1)ui

(
ui + si

vi

))
Pf(M�)

by linearity where M� = (m
�
i j ) is a �◦ × �◦ skew-symmetric matrix with entries

m
�
i j = T

vi

i T
v j

j m#
i j . (5.3)

Since the raising operator Ti increasing the index of dλi
(i), Ti dλi

(i) = dλi +1(i),

we obtain

m
�
i j = (θ ′)λi +λ j +vi +v j ·

(
1

(λi + vi )!(λ j + v j )!
+

∑

m>0

(−1)m (θ ′)m

(λi + m + vi )!(λ j + v j )!

+
∑

�>0

∑

m≥0

(−1)�
((

� + m − 1

m

)
+

(
� + m

m

))
(−1)m

(θ ′)m

(λi + � + m + vi )!(λ j − � + v j )!

)
,

with Lemma 4.4.

Therefore the Euler characteristic is given by

χ
(
OV r

a (P)

)
=

∑

ui ,vi ≥0

(
�◦∏

i=1

(−1)ui

(
ui + si

vi

))∫

Pic2g−2(C̃)

Pf(M�).

Let us expand Pf(M�) in powers of θ ′. Indeed, the entries of M� can be expressed

as

m
�
i, j = (θ ′)λi +λ j +vi +v j ·

∑

fi, j ≥0

g
i, j
fi, j

(θ ′) fi, j . (5.4)

Using the definition of Pfaffian as in [12, Appendix D], we completely expand

P f (M�) in the powers of θ ′ with entries (5.4) of M�. In fact, for σ ∈ S�◦ , we

consider f̂ (σ ) for the powers f := { fi, j }1≤i< j≤�◦ of θ ′ in m
�
i, j such that fi j = f j i .

Since �◦ is even, the Pfaffian Pf(M�) is given by

Pf(M�) =
(θ ′)|λ|+|v|

2�◦/2(�◦/2)!

∑

σ∈S�◦

∑

i≥0

∑

f∈Aσ
i

sgn(σ )

�◦/2∏

j=1

g
σ(2 j−1),σ (2 j)
fσ(2 j−1),σ (2 j)

(θ ′)i .

In particular, if �◦ is odd, the skew-symmetric matrix M� = (m�
i j ) is augmented

by

m�
0, j =

(1 + T j )
�◦− j−λ j +1

(2 + T j )
dλ j

( j)
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for j = 1, . . . , �◦. So, M� is augmented by

m
�
0 j = (θ ′)λ j +v j ·

1

(λ j + v j )!
.

Then the Pfaffian Pf(M�) of the augmented matrix M� becomes

Pf(M�) =
(θ ′)|λ|+|v|

2(�◦+1)/2((�◦ + 1)/2)!

∑

σ∈S�◦+1

∑

i≥0

∑

f∈Aσ
i

sgn(σ )

(�◦+1)/2∏

j=1

g
σ(2 j−1),σ (2 j)
fσ(2 j−1),σ (2 j)

(θ ′)i .

for σ ∈ S�◦+1 permuting {0, 1, . . . , �◦}.

Replacing θ ′ by 2ξ and using the Poincaré formula
∫

ξκ = κ! conclude the

theorem.
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