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Abstract

We introduce the ÿ, ý-Catalan measures, a sequence

of piece-wise polynomial measures on ℝ2. These mea-

sures are defined in terms of suitable area, dinv, and

bounce statistics on continuous families of paths in

the plane, and have many combinatorial similarities to

the ÿ, ý-Catalan numbers. Our main result realizes the

ÿ, ý-Catalan measures as a limit of higher ÿ, ý-Catalan

numbers ÿ(ÿ)ÿ (ÿ, ý) as ÿ → ∞. We also give a geomet-

ric interpretation of the ÿ, ý-Catalan measures. They

are the Duistermaat–Heckman measures of the punc-

tual Hilbert schemes parametrizing subschemes of ℂ2

supported at the origin.
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1 INTRODUCTION

Introduced by Garsia and Haiman [4], the ÿ, ý-Catalan numbers ÿÿ(ÿ, ý) ∈ ℕ[ÿ, ý] are a sequence

of polynomials that refine the sequence of Catalan numbers. These polynomials have connections

tomany areas ofmath including combinatorics, representation theory, symmetric function theory,

and algebraic geometry [5].

In combinatorics, the ÿ, ý-Catalan numbers are defined as weighted sums over the set of Dyck

paths. A Dyck path of height ÿ is lattice path from (0,0) to (ÿ, ÿ) consisting of north and east steps,

both of unit length, that never goes strictly below the diagonal ÿ = ý. The set of all Dyck paths

of height ÿ is denoted as ÿ, and this set is enumerated by the Catalan number ÿÿ =
1

ÿ+1

(2ÿ
ÿ

)
.

In terms of the area, dinv, and bounce statistics on Dyck paths (see Section 2), the ÿ, ý-Catalan

numbers are given by either of the following equivalent formulas:
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ÿÿ(ÿ, ý) =
∑
ÿ∈ÿ

ÿdinv(ÿ)ýarea(ÿ) (1)

=
∑
ÿ∈ÿ

ÿarea(ÿ)ýbounce(ÿ). (2)

More generally, the higher ÿ, ý-Catalan numbers ÿ(ÿ)ÿ (ÿ, ý) ∈ ℕ[ÿ, ý], also introduced by Garsia

and Haiman [4], refine the higher Catalan numbers ÿ(ÿ)ÿ = 1

ÿÿ+1

((ÿ+1)ÿ
ÿ

)
and specialize to the

ordinary ÿ, ý-Catalan numbers in the case ÿ = 1. In this paper, we mainly work with the com-

binatorial higher ÿ, ý-Catalan numbers introduced by Loehr [11]. These polynomials are defined

by formulas analogous to (1) and (2), by recording generalized area, dinv, and bounce statistics

on ÿ-Dyck paths of height ÿ. An ÿ-Dyck path of height ÿ is a lattice path from (0,0) to (ÿÿ, ÿ)

made up of north and east steps, both of unit length, which never goes strictly below the diagonal

ÿ = 1

ÿ
ý. In Section 2, we review the precise definitions of these polynomials and the statistics on

ÿ-Dyck paths used to define them.

The higher ÿ, ý-Catalan numbers satisfy the joint symmetry property, ÿ(ÿ)ÿ (ÿ, ý) = ÿ(ÿ)ÿ (ý, ÿ),

which is not apparent from the combinatorial definition. There are many alternate definitions

of these polynomials (see the introduction of [10]), many of which are visibly symmetric. It is

difficult, however, to show that the plainly symmetric algebraic definitions agree with the combi-

natorial ones. This was done for all ÿ in the caseÿ = 1 by Garsia and Haglund [3]. More recently,

Mellit’s proof [12] of the <compositional (ýÿ, ýÿ)-shuffle conjecture= [1] implies, in particular,

that the combinatorial and algebraic definitions of the higher ÿ, ý-Catalan numbers agree for all

ÿ and ÿ. To our current knowledge, it remains an open problem to prove this joint symmetry

combinatorially, even in the caseÿ = 1.

In this paper, we introduce continuous analogs of the ÿ, ý-Catalan numbers defined by formulas

analogous to (1) and (2). We define a continuous Dyck path of height ÿ to be a path from (0,0) to

(ÿ, ÿ) consisting of north steps of unit length and east steps of arbitrary positive length that never

goes below the diagonal ÿ = ý (see Figure 3). Denote the set of continuous Dyck paths of height ÿ

by (cont)
ÿ . In Section 3, we introduce real-valued area, dinv, and bounce statistics on continuous

Dyck paths based on the corresponding statistics forÿ-Dyck paths.

Since the set of continuous Dyck paths is infinite, one cannot naively sum over (cont)
ÿ as in

formulas (1) and (2). Instead, we formulate a measure-theoretic analog. The set of all continuous

Dyck paths can be naturally considered as a full-dimensional polytope (cont)
ÿ ⊆ ℝÿ−1, on which

all of our statistics formpiece-wise linear, continuousmaps(cont)
ÿ → ℝ. The ÿ, ý-Catalanmeasure

ÿÿ is then defined as the pushforward of Lebesgue measure from the polytope (cont)
ÿ to ℝ2 by

either of the following maps:

In Sections 3.3 and 3.4, we show that these two definitions agree by constructing a measure-

preserving transformation ÿ ∶ (cont)
ÿ → (cont)

ÿ such that (dinv × area)◦ÿ = area× bounce. The

measure-preserving property is the analog of bijectivity for the analogous maps onÿ-Dyck paths,

and, in fact, ÿ is not injective. We show directly that the ÿ, ý-Catalan measures are compactly

supported, piece-wise polynomial measures on ℝ2. In Example 3.5, we explicitly compute the

ÿ, ý-Catalan measure in the case ÿ = 4.
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F IGURE 1 Discrete density functions of higher ÿ, ý-Catalan numbers.

Our main result realizes the ÿ, ý-Catalan measure as a limit of higher ÿ, ý-Catalan numbers.

Before making this precise, let us first illustrate the limit in the case ÿ = 4. Figure 1 depicts the

polynomials ÿ(ÿ)
4
(ÿ, ý) for several values of ÿ, where darker shading of the cell (ÿ, ÿ) indicates a

larger coefficient on the ÿÿýÿ term in the indicated polynomial. Asÿ → ∞, these discrete density

functions can be normalized to converge to the continuous density function of the ÿ, ý-Catalan

measure ÿ4 (see Example 3.5).

More precisely, encode ÿ(ÿ)ÿ (ÿ, ý) as a discrete measure on ℤ2 whose weight at (ÿ, ÿ) is equal

to the coefficient on the ÿÿýÿ term of ÿ(ÿ)ÿ (ÿ, ý). Using the dinv, area formula for ÿ(ÿ)ÿ (ÿ, ý), and

writing(ÿ)
ÿ for the set ofÿ-Dyck paths of height ÿ, this correspondence takes the form

ÿ(ÿ)ÿ (ÿ, ý) =
∑

ÿ∈(ÿ)ÿ

ÿdinv(ÿ)ýarea(ÿ) ↔
∑

ÿ∈(ÿ)ÿ

ÿ(dinv(ÿ),area(ÿ)),

where ÿ(ÿ,ÿ) denotes a Dirac measure at the point (ÿ, ÿ). We then normalize the measures by scal-

ing their supports uniformly by a factor of 1∕ÿ, and dividing the total weights by ÿÿ−1. The

following theorem, proved in Section 4.4, realizes the ÿ, ý-Catalan measures as a limit of these

normalized discrete measures.

Theorem 1.1. For all ÿ ⩾ 1, the ÿ, ý-Catalan measure ÿÿ is equal to the weak limit of measures on

ℝ2,

ÿÿ = lim
ÿ→∞

»
¼¼½

1

ÿÿ−1

∑
ÿ∈(ÿ)ÿ

ÿ( dinv(ÿ)
ÿ

, area(ÿ)
ÿ

)
¿
ÀÀÁ
.

The proof of the theorem is based on a simple bijection betweenÿ-Dyck paths and those contin-

uous Dyck paths whose horizontal step lengths all lie in 1

ÿ
ℤ: scale theÿ-Dyck path horizontally

by a factor of 1

ÿ
so that it goes from (0,0) to (ÿ, ÿ) (see Figure 2). The area, dinv, and bounce

statistics on continuous Dyck paths were designed to agree with the corresponding (normalized)

statistics onÿ-Dyck paths in the limitÿ → ∞, from which we deduce the result.

Since the higher ÿ, ý-Catalan numbers are known to be symmetric, this relationship implies a

corresponding symmetry result for the ÿ, ý-Catalan measures.
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F IGURE 2 Anÿ-Dyck path and its corresponding continuous Dyck path.

Corollary 1.2. For all ÿ ⩾ 1, ÿÿ is symmetric about the line ÿ = ý.

Similar to the (higher) ÿ, ý-Catalan numbers, the symmetry is not clear from the combinatorial

definition. It would be interesting to find a direct proof of the symmetry of these measures, as it

might give insight into the symmetry of the (higher) ÿ, ý-Catalan numbers as well.

Finally, in Section 5, we relate the ÿ, ý-Catalan measures to the geometry of Hilbert schemes.

One of the alternate definitions of higher ÿ, ý-Catalan numbers, the geometric higher ÿ, ý-Catalan

numbersÿÿ(ÿ)ÿ (ÿ, ý), was introduced and studied byHaiman [7]. Haiman showed thatÿÿ(ÿ)ÿ (ÿ, ý)

agrees with the algebraically defined higher ÿ, ý-Catalan numbers [7]. Much later, Mellit con-

nected the algebraic polynomials to the combinatorial ones as a consequence of the proof of

the <compositional (ýÿ, ýÿ)-shuffle conjecture= [12]. Together, these results imply that for all

ÿ,ÿ ⩾ 1 we have

ÿÿ(ÿ)ÿ (ÿ, ý) = ÿ(ÿ)ÿ (ÿ, ý).

There is a general construction in algebraic geometry to encode the asymptotics of such families

of polynomials asÿ → ∞, called the Duistermaat–Heckman measure [2]. Replacing ÿÿ(ÿ)ÿ (ÿ, ý)

by ÿ(ÿ)ÿ (ÿ, ý) in the definition of the Duistermaat–Heckman measure, one precisely recovers the

limit expression for the ÿ, ý-Catalan measure expressed in Theorem 1.1. This allows for the fol-

lowing geometric restatement of Theorem 1.1 in terms of the punctual Hilbert scheme ÿÿ
0
that

parameterizes length ÿ subschemes of ℂ2 supported at the origin.

Theorem 1.3. For all ÿ ⩾ 1, the ÿ, ý-Catalan measure ÿÿ is equal to the Duistermaat–Heckman

measure of the punctual Hilbert schemeÿÿ
0
.

This reinterpretation is explained in more detail in Section 5, and the proof as outlined above

is summarized in the following diagram.
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2 HIGHER ÿ, ý-CATALAN NUMBERS

In this section, we review the combinatorics of ÿ-Dyck paths and higher ÿ, ý-Catalan numbers,

following [11].

An ÿ-Dyck path of height ÿ is a path from (0,0) to (ÿÿ, ÿ) consisting of north steps and east

steps, both of unit length, that never goes strictly below the line ÿ = 1

ÿ
ý. The set of all ÿ-Dyck

paths of heightÿ is denoted by(ÿ)
ÿ . The area vector of anÿ-Dyck pathÿ is the vector ÿÿÿÿÿ(ÿ) =

(ÿ0(ÿ), … , ÿÿ−1(ÿ)), where ÿÿ(ÿ) denotes the number of complete boxes between ÿ and the line

ÿ = 1

ÿ
ý in the ÿth row, indexed from ÿ = 0. The area of ÿ is the total number of such boxes in

all rows, areaÿ(ÿ) =
∑ÿ−1
ÿ=0 ÿÿ(ÿ). For example, the path on the left of Figure 2 has area vector

(0,1,0,2,3) and area 6.

The dinv statistic of anÿ-Dyck pathÿ is defined in terms of the area vector ofÿ by the formula

dinvÿ(ÿ) =
∑
ÿ<ÿ scÿ(ÿÿ(ÿ) − ÿÿ(ÿ)), where scÿ ∶ ℤ→ ℤ is the function

scÿ(ý) =

⎧
⎪«⎪¬

ÿ + 1 − ý if 1 ⩽ ý ⩽ ÿ,

ÿ + ý if −ÿ ⩽ ý ⩽ 0,

0 otherwise.

For example, if ÿ is again the path on the left of Figure 2, one calculates

dinv2(ÿ) = sc2(0 − 1) + sc2(0 − 0) + sc2(0 − 2) + sc2(0 − 3) + sc2(1 − 0)

+ sc2(1 − 2) + sc2(1 − 3) + sc2(0 − 2) + sc2(0 − 3) + sc2(2 − 3)

= 1 + 2 + 0 + 0 + 2 + 1 + 0 + 0 + 0 + 1

= 7.

The bounce statistic of anÿ-Dyck path ÿ is defined in terms of a secondary lattice path associ-

ated toÿ called a bounce path. The bounce path ofÿ is a lattice path from (0,0) to (ÿÿ, ÿ)made up

of an alternating sequence of north steps ÿ0, ÿ1, … and east steps ℎ0, ℎ1, … . Starting from (0,0), the

bounce path first travels north until it hits an east step of ÿ, and the distance traveled is labeled

ÿ0. The bounce path then takes an east step of distance ℎ0 ∶= ÿ0. Now suppose inductively that

ÿ0, … , ÿÿ−1 and ℎ0, … , ℎÿ−1 have been defined. After these steps, the bounce path travels north until

it hits an east step ofÿ, and the vertical distance traveled is labeled ÿÿ . The bounce path then takes

an east step of distance ℎÿ ∶= ÿÿ + ÿÿ−1 +⋯ + ÿÿ−ÿ+1, where any ÿÿ with ÿ < 0 is treated as zero.

This process terminates when the bounce path reaches (ÿÿ, ÿ). The bounce statistic is defined in

terms of the vertical steps ÿ0, ÿ1, … of the bounce path by the formula bounceÿ(ÿ) =
∑
ÿ⩾0 ÿ ⋅ ÿÿ .

For example, the steps in the bounce path of theDyck path in Figure 2 are given by the following

table from which the bounce statistic can be computed as 1 ⋅ 1 + 3 ⋅ 2 + 4 ⋅ 1 = 11.

ÿ 0 1 2 3 4 5

ÿÿ 1 1 0 2 1 0

ℎÿ 1 2 1 2 3 1

There are two equivalent definitions of the combinatorial higher ÿ, ý-Catalan numbers in terms

of these statistics onÿ-Dyck paths,
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ÿ(ÿ)ÿ (ÿ, ý) =
∑

ÿ∈(ÿ)ÿ

ÿdinvÿ(ÿ)ýareaÿ(ÿ) (3)

=
∑

ÿ∈(ÿ)ÿ

ÿareaÿ(ÿ)ýbounceÿ(ÿ). (4)

Loehr [11] constructs a bijection ÿÿ ∶ (ÿ)
ÿ → (ÿ)

ÿ such that dinvÿ(ÿ) = areaÿ(ÿÿ(ÿ)) and

areaÿ(ÿ) = bounceÿ(ÿÿ(ÿ)) for all ÿ ∈ (ÿ)
ÿ . The existence of such a map implies that the two

definitions (3) and (4) agree. Indeed,

∑
ÿ∈(ÿ)ÿ

ÿdinvÿ(ÿ)ýareaÿ(ÿ) =
∑

ÿ∈(ÿ)ÿ

ÿareaÿ(ÿÿ(ÿ))ýbounceÿ(ÿÿ(ÿ))

=
∑

ÿ′∈(ÿ)ÿ

ÿareaÿ(ÿ
′)ýbounceÿ(ÿ

′).

Let us review the definition of this bijection. Let ÿ be an ÿ-Dyck path. The bounce path of

ÿÿ(ÿ) ∈ (ÿ)
ÿ will be given by the sequence ÿ0, ℎ0, ÿ1, ℎ1, … , ÿý, ℎý, where ÿÿ is equal the number

of occurrences of ÿ in the area vector ofÿ, and ℎÿ = ÿÿ +⋯ + ÿÿ−ÿ+1. Let ý0, ý1, ý2, … , ýý+1 be the

sequence of points on the bounce path where ý0 = (0, 0), ýý+1 = (ÿÿ, ÿ), and ýÿ is the end point

of the partial bounce path ÿ0, ℎ0, … , ÿÿ−1 for 1 ⩽ ÿ ⩽ ý. The path ÿÿ(ÿ)will pass through all of the

ýÿ ’s, and the rule for drawing the portion of the path ÿÿ(ÿ) from ýÿ to ýÿ+1 is as follows. Read

through the area vector of ÿ, (ÿ0(ÿ), … , ÿÿ−1(ÿ)), from left to right. Every time the symbol ÿ is

seen, ÿÿ(ÿ) takes a unit step north. Every time a symbol in {ÿ − 1, … , ÿ − ÿ} is seen, ÿÿ(ÿ) takes

a unit step east.

Loehr shows that ÿÿ(ÿ) is well defined (and the bounce path ÿÿ(ÿ) is as claimed), and that the

map sends dinv to area to bounce and is a bijection. The existence of such a map does not imme-

diately imply the conjectural joint symmetry property ÿ(ÿ)ÿ (ÿ, ý) = ÿ(ÿ)ÿ (ý, ÿ). It does, however,

imply the weaker statement that these three statistics have the same univariate distributions,

∑
ÿ∈(ÿ)ÿ

ÿdinvÿ(ÿ) =
∑

ÿ∈(ÿ)ÿ

ÿareaÿ(ÿ) =
∑

ÿ∈(ÿ)ÿ

ÿbounceÿ(ÿ).

These identities can be obtained by specializing (3) and (4) to ÿ = 1 or ý = 1 separately.

The joint symmetry property for higher ÿ, ý-Catalan measures follows from Mellit’s results in

[12] proving the compositional (ýÿ, ýÿ)-shuffle conjecture. This is discussed in more detail in

Section 5. For now, we state the joint symmetry as a theorem to refer to later.

Theorem 2.1 (Mellit [12]). The (combinatorial) higher ÿ, ý-Catalan numbers satisfy the joint

symmetry property,

ÿ(ÿ)ÿ (ÿ, ý) = ÿ(ÿ)ÿ (ý, ÿ),

for all ÿ,ÿ ⩾ 1.
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F IGURE 3 A continuous Dyck path of height 4.

3 CONTINUOUS DYCK PATHS AND THE ÿ, ý-CATALANMEASURES

3.1 Continuous Dyck path statistics

A continuous Dyck path of height ÿ is a path from (0,0) to (ÿ, ÿ) consisting of north steps of unit

length and east steps of arbitrary positive length that never goes below the diagonal ÿ = ý. To

avoid having multiple representations of the same path, we assume that continuous Dyck paths

never contain two or more consecutive east steps. Consecutive north steps, however, are allowed.

We denote the set of continuous Dyck paths of height ÿ by(cont)
ÿ .

Let ÿ be a continuous Dyck path of height ÿ, and for ÿ = 0, … , ÿ − 1 define ýÿ(ÿ) to be the ý-

coordinate of the ÿth north step of the path ÿ ∈ (cont)
ÿ indexed from ÿ = 0. It follows from the

definition that continuous Dyck paths must start with at least one north step, and therefore,

ý0(ÿ) is always zero. It will be convenient to include this leading zero as one of the coordi-

nates regardless. The area vector of ÿ is the vector ÿÿÿÿ(ÿ) = (ÿ0(ÿ), … , ÿÿ−1(ÿ)) ∈ ℝ
ÿ, where

ÿÿ(ÿ) = ÿ − ýÿ(ÿ) for all ÿ = 0, … , ÿ − 1 (see Figure 3). The area of ÿ is defined by

area(ÿ) =

ÿ−1∑
ÿ=0

ÿÿ(ÿ).

For example, the pathÿ depicted in Figure 3 has north steps at the ý-coordinates (ý0, ý1, ý2, ý3) =

(0, 0.4, 0.8, 2.5). The area vector of ÿ is therefore (0,0.6,1.2,0.5), and so, area(ÿ) = 2.3.

The dinv statistic of a continuous Dyck path ÿ is also defined in terms of its area vector by the

formula

dinv(ÿ) =
∑

0⩽ÿ<ÿ⩽ÿ−1

sc(ÿÿ(ÿ) − ÿÿ(ÿ)),

where sc(ý) = max{1 − |ý|, 0}.
The dinv statistic of the path ÿ depicted in Figure 3 can be calculated as

dinv(ÿ) = sc(0.6) + sc(1.2) + sc(0.5) + sc(1.2 − 0.6) + sc(0.5 − 0.6) + sc(0.5 − 1.2)

= 0.4 + 0 + 0.5 + 0.4 + 0.9 + 0.3

= 2.5.
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The final statistic on continuous Dyck paths is defined in terms of a parametrization of the

path that we call the bounce parametrization. This parametrization is analogous to the bounce

path of an ÿ-Dyck path (see Section 4 for the precise relationship). Given a continuous Dyck

path ÿ, the bounce parametrization of ÿ travels along the path ÿ from (0,0) to (ÿ, ÿ) on some

time interval 0 ⩽ ý ⩽ ýmax(ÿ). The parametrization is uniquely determined by the following two

rules.

1. Whenever the parametrization reaches the bottom of a north step of ÿ, say of length ÿ, the

parametrization instantaneously takes ÿ (unit length) north steps to the top of the step.

2. The parametrization travels continuously along the east steps of ÿ as ý increases, and the hori-

zontal speed of the parametrization at any given time ý is equal to total number of (unit length)

north steps taken by the parametrization in the time interval [ý − 1, ý].

We define ÿÿ(ÿ) for ÿ = 0, … , ÿ − 1 to be the time at which the bounce parametrization takes

its ÿth (unit length) north step, indexed from ÿ = 0. The bounce parametrization is entirely deter-

mined by the vector (ÿ0(ÿ), … , ÿÿ−1(ÿ)). Indeed, by the fundamental theorem of calculus, the

horizontal position of the bounce parametrization is computed by the function

ÿÿ(ý) = ∫
ý

0

ÿ−1∑
ÿ=0

ÿ[ÿÿ(ÿ),ÿÿ(ÿ)+1]dý.

Wemay therefore have equivalently defined the coordinates ÿÿ(ÿ) to be the unique nondecreasing

sequence ÿ0(ÿ) ⩽ ⋯ ⩽ ÿÿ−1(ÿ) such that the function above satisfies ÿÿ(ÿÿ(ÿ)) = ýÿ(ÿ) for all

ÿ = 0, … , ÿ − 1. We call ÿýÿÿýÿ(ÿ) = (ÿ0(ÿ), … , ÿÿ−1(ÿ)) the bounce vector of ÿ, and define the

bounce of ÿ by the formula

bounce(ÿ) =

ÿ−1∑
ÿ=0

ÿÿ(ÿ).

Returning again to the path ÿ depicted in Figure 3, the bounce parametrization of ÿ can be

described as follows.

∙ At time ý = 0, the bounce parametrization of ÿ takes a north step from (0,0) to (0,1), and the

first coordinate of the bounce vector is recorded as ÿ0 = 0. The path then begins moving east at

speed 1.
∙ At time ý = 0.4, the parametrization reaches (0.4,1) where ÿ has a north step, so the next coor-

dinate of the bounce vector is ÿ1 = 0.4. The parametrization takes a north step up to (0.4,2) and

continues moving east, now at speed 2.
∙ At time ý = 0.6, the parametrization reaches the point (0.8,2) where ÿ has its next north step,

so the next coordinate of the bounce vector is ÿ2 = 0.6. The parametrization then takes a north

step up to (0.8,3) and continues moving east, now at speed 3.
∙ At time ý = 1, the parametrization is at the point (2,3) and one unit time has passed since the

first north step of the bounce parametrization, so the speed slows down to 2.
∙ At time ý = 1.25, the parametrization reaches (2.5,3) where ÿ has its final north step, so the

final coordinate of the bounce vector is ÿ3 = 1.25. The parametrization takes its final north step

to (2.5,4) and continues moving east, now at speed 3 again.
∙ At times ý = 1.4, 1.6, and 2.25 the parametrization slows to speed 2, then speed 1, and then stops.

These occur at the points (2.95,4), (3.35,4), and (4,4) respectively.
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The bounce vector of ÿ is therefore (0,0.4,0.6,1.25), and so, the bounce of ÿ is 2.25.

3.2 Area and bounce polytopes

The set of all area vectors of continuous Dyck paths of height ÿ forms an (ÿ − 1)-dimensional

polytope,

ýÿ = {(ÿ0, … , ÿÿ−1) ∈ ℝ
ÿ |ÿ0 = 0, and 0 ⩽ ÿÿ+1 ⩽ ÿÿ + 1 for all ÿ ⩾ 0}.

Similarly, the set of all bounce vectors forms another (ÿ − 1)-dimensional polytope,

ýÿ = {(ÿ0, … , ÿÿ−1) ∈ ℝ
ÿ || ÿ0 = 0, and ÿÿ ⩽ ÿÿ+1 ⩽ ÿÿ + 1 for all ÿ ⩾ 0}.

We call ýÿ and ýÿ the area polytope and bounce polytope, respectively. When convenient, we will

considerýÿ andýÿ as full-dimensional polytopes inℝ
ÿ−1 by forgetting the first coordinate (which

is identically zero in both cases).

Proposition 3.1. The area vector (ÿ0(ÿ), … , ÿÿ−1(ÿ)) and bounce vector (ÿ0(ÿ), … , ÿÿ−1(ÿ)) of a

continuous Dyck path ÿ ∈ (cont)
ÿ are related by the formulas

ÿÿ(ÿ) =

ÿ−1∑
ÿ=0

sc(ÿÿ(ÿ) − ÿÿ(ÿ))

for all ÿ = 0,… , ÿ − 1.

We suppress the path ÿ in the notation throughout the proof, writing ÿÿ for ÿÿ(ÿ), and so on.

Proof. The bounce vector of ÿ, (ÿ0, … , ÿÿ−1), satisfies ÿ(ÿÿ) = ýÿ = ÿ − ÿÿ for all ÿ = 0,… , ÿ − 1,

where ÿ(ý) is the function

ÿ(ý) = ∫
ý

0

ÿ−1∑
ÿ=0

ÿ[ÿÿ ,ÿÿ+1]ýý.

Plugging in ý = ÿÿ , we have

ÿ − ÿÿ =

ÿ−1∑
ÿ=0

∫
ÿÿ

0
ÿ[ÿÿ ,ÿÿ+1]ýý.

Since ÿ0 ⩽⋯ ⩽ ÿÿ−1, all of the terms ∫ ÿÿ0 ÿ[ÿÿ ,ÿÿ+1]ýý for ÿ ⩾ ÿ are zero. The remaining terms are

either equal to 1 (if ÿÿ + 1 < ÿÿ) or ÿÿ − ÿÿ (if ÿÿ ∈ [ÿÿ , ÿÿ + 1]). These cases can be expressed

succinctly using the function 1 − sc(ý) = min{|ý|, 1}, giving the relation

ÿ − ÿÿ =

ÿ−1∑
ÿ=0

(1 − sc(ÿÿ − ÿÿ)) = ÿ −

ÿ−1∑
ÿ=0

sc(ÿÿ − ÿÿ).

Solving for ÿÿ yields the desired formula. □
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Area and bounce vectors provide two ways to parameterize the set of continuous Dyck paths by

polytopesýÿ ↔ (cont)
ÿ ↔ ýÿ, and Proposition 3.1 can be viewed as a description of the change of

coordinatesmapýÿ → ýÿ. Proposition 3.1 shows, in particular, that the bijectionýÿ → ýÿ defined

by sending the bounce vector of a path ÿ to its area vector is piece-wise linear.

As outlined in the introduction, we aim to equip (cont)
ÿ with a measure by identifying it with

an (ÿ − 1)-polytope. The area and bounce polytopes provide two candidates for this job, and the

resulting measures on (cont)
ÿ are different as long as ÿ ⩾ 3. Equivalently, the bijection ýÿ → ýÿ

described in Proposition 3.1 is not measure preserving. This is necessarily the case because the

defining inequalities show that ýÿ is strictly contained in ýÿ. For our purposes, the more natural

measure on(cont)
ÿ is the one from ýÿ.

Definition 3.2. Let ÿÿ denote the restriction of the Lebesgue measure from ℝÿ−1 to the full-

dimensional polytope ýÿ ⊆ {0} × ℝ
ÿ−1 = ℝÿ−1. By abuse of notation, we also consider ÿÿ as a

measure on(cont)
ÿ via the bijection identifying a continuous Dyck path ÿ with its area vector.

3.3 ÿ, ý-Catalan measures

The ÿ, ý-Catalan measure ÿÿ is defined to be the pushforward of ÿÿ from (cont)
ÿ to ℝ2 by either

map

(5)

In Section 3.4, we define a map ÿ ∶ (cont)
ÿ → (cont)

ÿ and show that it is measure preserving in

the sense that ÿ∗(ÿÿ) = ÿÿ (Proposition 3.7), and that (area× bounce)◦ÿ = (dinv × area) as func-

tions (cont)
ÿ → ℝ2 (Lemma 3.6). For now, we simply assert that there exists such a map and use

it in the following calculation to show that the two formulas for the ÿ, ý-Catalan measure agree:

(dinv × area)∗ (ÿÿ) = ((area× bounce)◦ÿ)∗ (ÿÿ)

= (area× bounce)∗ (ÿ∗ (ÿÿ))

= (area× bounce)∗ (ÿÿ).

Proposition 3.3. For all ÿ ⩾ 1, the ÿ, ý-Catalan measure ÿÿ is compactly supported and has total

weight ÿÿ(ℝ
2) = ÿÿ−2

(ÿ−1)!
.

Proof. Identifying (cont)
ÿ ↔ ýÿ, ÿÿ is the pushforward of Lebesgue measure on ýÿ by the map

dinv × area ∶ ýÿ → ℝ2. The ÿ, ý-Catalanmeasureÿÿ is supported on the image of thismap, which

is compact.

Since pushforwards preserve the total weight of a measure, ÿÿ(ℝ
2) is equal to the Lebesgue

measure, that is, volume, ofýÿ considered as a polytope inℝ
ÿ−1. Oneway to compute this volume

is using the Ehrhart polynomial, ÿýÿ (ÿ), whose value at each positive integer ÿ is equal to the

number of integer points in the dilation ÿýÿ. Equivalently, ÿýÿ (ÿ) counts the number of 1∕ÿ-

integer points in ýÿ. But 1∕ÿ-integer points in ýÿ are precisely the area vectors ofÿ-Dyck paths
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of height ÿ scaled by 1∕ÿ, as is illustrated in Figure 2. It follows that

ÿýÿ (ÿ) = ÿ
(ÿ)
ÿ =

1

ÿÿ + 1

(
(ÿ + 1)ÿ

ÿ

)
=
(ÿÿ + ÿ)⋯ (ÿÿ + 2)

ÿ!
=

ÿÿ−2

(ÿ − 1)!
ÿÿ−1 + ÿ(ÿÿ−2).

The general theory of Ehrhart polynomials implies that the leading coefficient of this polynomial,
ÿÿ−2

(ÿ−1)!
, is equal to the volume of ýÿ. □

Proposition 3.4. For ÿ ⩾ 3, ÿÿ is absolutely continuous with respect to Lebesgue measure and its

density function is piece-wise polynomial of degree ÿ − 3.

Proof. Let ÿ be a polytope equipped with a linear map ÿ ∶ ÿ → ℝý such that ÿ(ÿ) ⊆ ℝý is full-

dimensional. Then, the pushforward of Lebesgue measure from ÿ to ℝý is absolutely continuous

with respect to Lebesgue measure on ℝý and its density function is piece-wise polynomial of

degree dim(ÿ) − ý. When ÿ ⩾ 3, the piece-wise linear map (dinv × area)ýÿ → ℝ2 can be broken

up into a sumof such terms by considering the regions onwhich the projection is linear separately.

Each term is the projection from an (ÿ − 1)-dimensional polytope to ℝ2, so the density functions

are piece-wise polynomial of degree ÿ − 3. The ÿ, ý-Catalan measure is the sum of these, which

completes the proof. □

For ÿ ⩾ 3, let ÿÿ ∶ ℝ
2 → ℝ denote the piece-wise polynomial density function for the ÿ, ý-

Catalan measure ÿÿ. At any given point ý ∈ ℝ
2, ÿÿ(ý) can be computed exactly by computing

the volume of the fiber of the projection ýÿ → ℝ2 over ý. Furthermore, the images of the edges

of ýÿ subdivide ℝ
2 into regions on which ÿÿ is given by a single polynomial of degree ÿ − 3. One

can therefore compute the entire density function ÿÿ for any given ÿ by interpolating on each of

the regions described above.

Example 3.5. The following figure illustrates the piece-wise linear density function ÿ4 for the

ÿ, ý-Catalan measure ÿ4. In each of the three regions below, ÿ4 is equal to the indicated linear

function. Outside of these regions, ÿ4 is zero.
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In the above example, one can see that the ÿ, ý-Catalan measure is symmetric about the line

ÿ = ý. In other words, the density function satisfies ÿ4(ý, ÿ) = ÿ4(ÿ, ý). This symmetry holds for

all ÿ, and is not apparent from the combinatorial definitions. In Corollary 4.7, we deduce this

symmetry from the joint symmetry of the higher ÿ, ý-Catalans expressed in Theorem 2.1.

An interesting problemwould be to directly show that the ÿ, ý-Catalanmeasures are symmetric

without using the corresponding result for the higher ÿ, ý-Catalan numbers. One could hope to

find a measure-preserving involution on (cont)
ÿ that switches area and dinv, or area and bounce,

for example. So far, we have not been able to find such a map.

3.4 A measure-preserving transformation on continuous Dyck paths

Let us now define the map ÿ ∶ (cont)
ÿ → (cont)

ÿ used in the previous section to show the

equivalence between the two definitions of the ÿ, ý-Catalan measures.

For a continuous Dyck path ÿ, define ÿ(ÿ) to be the unique path whose bounce vector

(ÿ0(ÿ(ÿ)), … , ÿÿ−1(ÿ(ÿ))) is equal to the area vector of ÿ (ÿ0(ÿ), … , ÿÿ−1(ÿ)) up to a permuta-

tion of the coordinates. In other words, sort the area vector of ÿ in to weakly increasing order,

and declare that ÿ(ÿ) is the path whose bounce vector is equal to the sorted area vector of ÿ.

Lemma 3.6. For all ÿ ∈ (cont)
ÿ , we have dinv(ÿ) = area(ÿ(ÿ)), and area(ÿ) = bounce(ÿ(ÿ)).

For example, let us return to the path ÿ depicted in Figure 3 that has area vector (0,0.6,1.2,0.5).

The area of ÿ is 2.3, and we computed in Section 3.1 the statistic dinv(ÿ) = 2.5. By definition,

ÿ(ÿ) is the path whose bounce vector is (0,0.5,0.6,1.2), and Proposition 3.1 allows us to compute

the area vector of ÿ(ÿ) to be (0,0.5,1.3,0.7). We therefore have area(ÿ(ÿ)) = 2.5 = dinv(ÿ) and

bounce(ÿ(ÿ)) = 2.3 = area(ÿ), as claimed.

Proof. The area vector of ÿ and the bounce vector of ÿ(ÿ) are the same up to a permutation, so

area(ÿ) =

ÿ−1∑
ÿ=0

ÿÿ(ÿ) =

ÿ−1∑
ÿ=0

ÿÿ(ÿ(ÿ)) = bounce(ÿ(ÿ)).

For the other claim, we use Proposition 3.1 that expresses the coordinates of the area vector in

terms of the bounce vector. Expanding the terms ÿÿ(ÿ(ÿ)) using those formulas, we obtain

area(ÿ(ÿ)) =

ÿ−1∑
ÿ=0

ÿÿ(ÿ(ÿ)) =
∑

0⩽ÿ<ÿ⩽ÿ−1

sc(ÿÿ(ÿ(ÿ)) − ÿÿ(ÿ(ÿ))).

Since sc(ý) = max{1 − |ý|, 0} is even, the function (ÿ0, … , ÿÿ−1) ↦
∑
ÿ<ÿ sc(ÿÿ − ÿÿ) does not

depend on the order of the coordinates of the input. The bounce vector of ÿ(ÿ) and the area

vector of ÿ are the same up to a permutation, so the previous sum is equal to

∑
0⩽ÿ<ÿ⩽ÿ−1

sc(ÿÿ(ÿ) − ÿÿ(ÿ)) = dinv(ÿ)

as claimed. □
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The map ÿ is surjective but not injective, and in general |ÿ−1(ÿ)| depends on ÿ. Despite this
apparent complication, we have the following result.

Proposition 3.7. The map ÿ ∶ (cont)
ÿ → (cont)

ÿ is measure preserving, in the sense that ÿÿ(ý) =

ÿÿ(ÿ
−1ý) for all measurable setsý ⊆ (cont)

ÿ .

Proof. Considerýÿ and ýÿ as full-dimensional polytopes in ℝ
ÿ−1 by dropping the leading zeroes.

We also identify (cont)
ÿ ↔ ýÿ so that we may consider ÿ as a function ýÿ → ýÿ. This map can

then be decomposed as

where the first map sorts vectors (ÿ1, … , ÿÿ−1) ∈ ýÿ into weakly increasing order, and ÿ sends

the bounce vector of a path ÿ to the area vector of the same path ÿ. Proposition 3.1 provides an

expression of the vector (ÿ1, … , ÿÿ−1) = ÿ(ÿ1, … , ÿÿ−1) in terms of the function sc(ý) = max{1 −

|ý|, 0}, namely,

ÿÿ =

ÿ−1∑
ÿ=0

sc(ÿÿ − ÿÿ),

for all ÿ = 1,… , ÿ − 1. In particular, this description shows that ÿ is piece-wise linear.

Let ÿ = (ÿ1, … , ÿÿ−1) ∈ ýÿ. We wish to compute the Jacobian determinant of ÿ at ÿ, so we

assume that ÿ is given by a single linear function in a neighborhood of ÿ. Examining the explicit

description of ÿ given above, this means that all of the coordinates of ÿ are distinct and nonzero,

and there is no pair of indices ÿ < ÿ such that ÿÿ = ÿÿ + 1.

Claim. The magnitude of the Jacobian determinant of ÿ at ÿ is equal to | sort−1(ÿ)|, and this
common value is precisely

ý(ÿ) =

ÿ−1∏
ÿ=1

#{ÿ = 0,… , ÿ − 1 | ÿÿ − ÿÿ < 1}.

First, let us see how this claim implies the proposition. Since ÿ is a bijection and sort has Jaco-

bian determinant ±1, this claim implies that the preimage ÿ−1(ÿ(ÿ)) also consists of ý(ÿ) points,

and the Jacobian determinant of ÿ is ±ý(ÿ) at all of them. It follows that ÿ preserves the measure

of sufficiently small sets containing ÿ(ÿ). But this applies to a dense set of points in ýÿ, which

implies that ÿ is globally measure preserving.

Proof of Claim: To compute the Jacobian determinant of ÿ at ÿ, we expand the formula for the

coordinates of ÿ(ÿ) using the definition of sc(ý) to obtain

ÿÿ =
∑

ÿ=0,…,ÿ−1
ÿÿ−ÿÿ<1

(1 − ÿÿ + ÿÿ),

for all ÿ = 1,… , ÿ − 1. The ÿÿ coordinate in the expression only depends on ÿ1, … , ÿÿ , so the Jaco-

bian ofÿ at ÿ is lower triangular. Furthermore, for all ÿ = 1,… , ÿ − 1, the ÿth entry on the diagonal

of the Jacobian is−#{ÿ = 0,… , ÿ − 1 | ÿÿ − ÿÿ < 1}, the coefficient on the ÿÿ term in the expression
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for ÿÿ . The Jacobian determinant of ÿ at ÿ is the product of these diagonal entries, and therefore,

has magnitude ý(ý) as claimed.

Finally, we count | sort−1(ÿ)| by induction on ÿ. In the base case ÿ = 2, ÿ is a single number ÿ1
and sort ∶ [0, 1] → [0, 1] is the identitymap.We therefore have ý(ÿ) = 1 = | sort−1(ÿ)| as claimed.
Now take ÿ = (ÿ1, … , ÿÿ−1) ∈ ýÿ as above and assume that the claim holds for all smaller ÿ. By

induction hypothesis, there are exactly

ý(ÿ1, … , ÿÿ−2) =

ÿ−2∏
ÿ=1

#{ÿ = 0,… , ÿ − 1 | ÿÿ − ÿÿ < 1}

permutations of the coordinates (ÿ0, … , ÿÿ−2) that lie in ýÿ−1. For any such permutation, let us

insert ÿÿ−1 into the permuted vector immediately following some coordinate ÿÿ . The resulting

vector lies in ýÿ if and only if ÿÿ−1 − ÿÿ < 1. So, for each permutation of (ÿ1, … , ÿÿ−2) in ýÿ−1,

there are exactly#{ÿ = 0,… , ÿ − 2 | ÿÿ−1 − ÿÿ < 1} places to insert ÿÿ−1 that result in a vector lying
inýÿ. Every permutation of ÿ that lies inýÿ can be obtained uniquely in this way, so by induction

on ÿ, we conclude that | sort−1(ÿ)| = ý(ÿ), completing the proof. □

4 ÿ-DYCK PATH COMBINATORICS ASÿ →∞

In this section, we relate the combinatorics of continuous Dyck paths to ÿ-Dyck paths. We will

show that each of the continuous combinatorial objects defined in the previous section is a limit

asÿ → ∞ of its (normalized)ÿ-Dyck path counterpart. This property motivated the definitions

of the area, dinv, and bounce statistics on continous Dyck paths.

We say that a continuous Dyck path ÿ is 1

ÿ
-integral if each of the horizontal steps in ÿ is an

integer multiple of 1

ÿ
. Equivalently, ÿ ∈ (cont)

ÿ is 1

ÿ
-integral if its area vector lies in ýÿ ∩

1

ÿ
ℤÿ.

The 1

ÿ
-integral Dyck paths of height ÿ are in bijection with ÿ-Dyck paths of height ÿ, with the

correspondence given by scaling horizontally by a factor ofÿ (see Figure 2 in the introduction).

4.1 Area and dinv asÿ →∞

For a 1

ÿ
-integral Dyck pathÿ, we define areaÿ(ÿ) (resp. dinvÿ(ÿ), bounceÿ(ÿ)) to be

1

ÿ
times the

area (resp. dinv, bounce) of the corresponding ÿ-Dyck path. We refer to these as the normalized

ÿ-area (resp. dinv, bounce) statistics of ÿ.

Example 4.1. Let ÿ be the continuous Dyck path of height 3 with area vector (0,1,1). The

continuous statistics of ÿ are

area(ÿ) = 2, dinv(ÿ) = 1, bounce(ÿ) =
1

2
.

This path ÿ is 1

ÿ
-integral for any ÿ ⩾ 1, corresponding to the ÿ-Dyck path with area vector

(0,ÿ,ÿ). The normalizedÿ-statistics of ÿ are

areaÿ(ÿ) = 2, dinvÿ(ÿ) = 1 +
2

ÿ
, bounceÿ(ÿ) =

{
1

2
ÿ even,

ÿ+1

2ÿ
ÿ odd.
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The coincidence of the continuous area statistic and areaÿ on 1

ÿ
-integral Dyck paths holds in

general.

Lemma 4.2. For all 1
ÿ
-integral Dyck paths ÿ, we have area(ÿ) = areaÿ(ÿ).

Example 4.1 shows that the situation for dinv and bounce is necessarily more complicated. In

both of these cases, we will see that the normalizedÿ-statistics converge uniformly over all ÿ to

their continuous counterparts asÿ → ∞.

Lemma 4.3.

lim
ÿ→∞

max

{
|| dinv(ÿ) − dinvÿ(ÿ)||

||||ÿ ∈ (cont)
ÿ

1

ÿ
-integral

}
= 0.

Proof. Let ÿ be a 1

ÿ
-integral Dyck path with area vector (ÿ0(ÿ), … , ÿÿ−1(ÿ)), so that the corre-

sponding ÿ-Dyck path has area vector (ÿÿ0(ÿ), … ,ÿÿÿ−1(ÿ)). We may compute dinvÿ(ÿ) by

the formula

dinvÿ(ÿ) =
∑
ÿ<ÿ

scÿ(ÿÿÿ(ÿ) − ÿÿÿ(ÿ))

ÿ
,

while

dinv(ÿ) =
∑
ÿ<ÿ

sc(ÿÿ(ÿ) − ÿÿ(ÿ)).

Unwinding the definitions of scÿ and sc, one checks that each pair of corresponding terms in the

above sums differs by at most 1
ÿ
. Therefore,

|| dinv(ÿ) − dinvÿ(ÿ)|| ⩽ 1

ÿ

(
ÿ

2

)

for all 1
ÿ
-integral ÿ ∈ (cont)

ÿ , which implies the claim. □

4.2 ÿ-Bounce paths asÿ →∞

Let us define a normalizedÿ-bounce path associated to any continuous Dyck path ÿ ∈ (ÿ)
ÿ . We

modify the construction of the bounce parametrization in Section 3.1 to only allow north steps at

times ý ∈ 1

ÿ
ℤ. Let us describe the modified parametrization in more detail:

At time ý = 0, the normalized ÿ-bounce path begins at the point (0,0) and makes ÿ0 discrete

(unit length) north steps so that it ends on a horizontal step of ÿ. Then, for all times 0 < ý < 1

ÿ
,

the bounce path moves east continuously at speed ÿ0, covering a total horizontal distance of
ÿ0
ÿ
.

Inductively, assume that the parametrization of the bounce path has been defined for all ý < ÿ

ÿ

with north steps ÿ0, … , ÿÿ−1 at the respective times ý = 0, … ,
ÿ−1

ÿ
. At time ý = ÿ

ÿ
, the bounce path

makes ÿÿ (unit length) north steps so that it ends on a horizontal step of ÿ. Then, for all times
ÿ

ÿ
< ý < ÿ+1

ÿ
, the bounce path moves east continuously at speed ÿÿ +⋯ + ÿÿ−ÿ+1, which is the
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total length of the north steps traveled during the time interval ÿ

ÿ
− 1 < ý ⩽ ÿ, covering a total

horizontal distance of 1
ÿ
(ÿÿ +⋯ + ÿÿ−ÿ+1). The bounce path endswhen it reaches the point (ÿ, ÿ).

If the continuous Dyck path ÿ is 1

ÿ
-integral, then the normalizedÿ-bounce path of ÿ defined

above coincides with the usualÿ-bounce path, after the usual horizontal rescaling byÿ. Indeed,

the vertical steps ÿ0, ÿ1, … in the parametrization above are the same as the vertical steps in the

corresponding ÿ-bounce path. Meanwhile, the horizontal distance covered in the time interval
ÿ

ÿ
< ý < ÿ+1

ÿ
, between the vertical steps ÿÿ and ÿÿ+1, is exactly

ℎÿ
ÿ
.

Define the normalizedÿ-bounce vector of a continuous Dyck path ÿ to be

ÿýÿÿýÿÿ(ÿ) = (0, … , 0⏟⏟⏟
ÿ0

,
1

ÿ
,… ,

1

ÿ
⏟⎴⏟⎴⏟

ÿ1

, … ,
ÿ

ÿ
,… ,

ÿ

ÿ
⏟⎴⏟⎴⏟

ÿÿ

, … ) ∈ ℤÿ.

In other words, the coordinates ÿýÿÿýÿÿ(ÿ) = (ÿ0(ÿ), … , ÿÿ−1(ÿ)) are defined so that ÿÿ(ÿ) is

the time at which the normalizedÿ-bounce path takes its ÿth unit length vertical step.

One can show that as ÿ → ∞, these normalized ÿ-bounce vectors converge uniformly to the

continuous bounce vectors defined in Section 3.1.

Lemma 4.4.

lim
ÿ→∞

max

{
||ÿýÿÿýÿ(ÿ) − ÿýÿÿýÿÿ(ÿ)||

||||ÿ ∈ (cont)
ÿ

}
= 0.

It is for this reason that we think of the bounce parametrization and bounce vector as the con-

tinuous analog of the bounce vector for ÿ-Dyck paths. When ÿ is 1

ÿ
-integral, the sum of the

coordinates of ÿýÿÿýÿÿ(ÿ) coincides with the normalized bounce statistic bounceÿ(ÿ). As a

corollary, we obtain a similar result for the bounce statistics.

Lemma 4.5.

lim
ÿ→∞

max

{
|| bounce(ÿ) − bounceÿ(ÿ)||

||||ÿ ∈ (cont)
ÿ

1

ÿ
-integral

}
= 0.

4.3 The bijections ÿÿ ∶ 
(ÿ)
ÿ → 

(ÿ)
ÿ asÿ →∞

We briefly mention the limit interpretation of the map ÿ ∶ (cont)
ÿ → (cont)

ÿ . In Section 2, we

reviewed the definition of the bijection ÿÿ ∶ (ÿ)
ÿ → (ÿ)

ÿ , which is used to show the equiva-

lence between the combinatorial definitions of the higher ÿ, ý-Catalan numbers. We claim that

the map ÿ ∶ (cont)
ÿ → (cont)

ÿ defined in Section 3.4 is the uniform limit asÿ → ∞ of the ÿÿ’s.

Consider ÿ as a map ýÿ → ýÿ and ÿÿ as a bijection on the 1

ÿ
-integral points of ýÿ. We claim

that

lim
ÿ→∞

max

{
||ÿ(ÿ) − ÿÿ(ÿ)||

|||| ÿ ∈ ýÿ ∩
1

ÿ
ℤÿ

}
= 0.

The key observation is that for a 1

ÿ
-integral path ÿ, ÿÿ(ÿ) is a path whose normalized ÿ-

bounce vector is equal to the sorted area vector of ÿ. On the other hand, ÿ(ÿ) is the path whose
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continuous bounce vector is equal to the sorted area vector of ÿ. As ÿ → ∞, the normalized

ÿ-bounce paths of ÿÿ(ÿ) converge to ÿ(ÿ). Furthermore, the maximum difference between a

continuous Dyck paths and their normalizedÿ-bounce path goes to zero asÿ → ∞. These facts

allow one to show the limit claim above.

4.4 Higher ÿ, ý-Catalan numbers asÿ →∞

The following theorem is the main result of this paper, realizing the ÿ, ý-Catalan measure ÿÿ as a

limit of higher ÿ, ý-Catalan numbers. We use the dinv/area definitions of the higher ÿ, ý-Catalan

numbers and ÿ, ý-Catalan measures.

Theorem 4.6. For all ÿ ⩾ 1, the ÿ, ý-Catalan measure ÿÿ is equal to the weak limit

lim
ÿ→∞

»
¼¼½

1

ÿÿ−1

∑
ÿ∈(ÿ)ÿ

ÿ( dinvÿ(ÿ)
ÿ

,
areaÿ(ÿ)

ÿ

)
¿
ÀÀÁ
. (6)

Proof. Fix ÿ ⩾ 1, and let ℎ ∶ ℝ2 → ℝ be a bounded continuous function. We will show that the

integrals of ℎ against the sequence of discrete measures in the theorem statement converge to

∫ ℎ dÿÿ. All of the relevant measures are supported in the convex set [0, (ÿ−12
)
]2 ⊆ ℝ2, so we may

assume without loss of generality that ℎ is compactly supported. In particular, we take ℎ to be

uniformly continuous.

We identify(cont)
ÿ ↔ ýÿ, and considerýÿ ⊆ {0} × ℝ

ÿ−1 as a full-dimensional polytope inℝÿ−1.

Under this identification, we define ÿ to be the map (dinv, area) ∶ ýÿ → ℝ2. Similarly, let ÿÿ be

the map (dinvÿ, areaÿ) ∶ ýÿ ∩
1

ÿ
ℤÿ−1 → ℝ2. By the correspondence (ÿ)

ÿ ↔ ýÿ ∩
1

ÿ
ℤÿ−1 and

the definition of the normalized statistics dinvÿ, areaÿ, the discrete measures in the theorem

statement can be rewritten as

1

ÿÿ−1

∑
ÿ∈(ÿ)ÿ

ÿ( dinvÿ(ÿ)
ÿ

,
areaÿ(ÿ)

ÿ

) = 1

ÿÿ−1

∑
ÿ∈ýÿ∩

1
ÿ
ℤÿ−1

ÿÿÿ(ÿ).

Integrating ℎ against these measures, we obtain

∫ ℎ d

»¼¼¼½

1

ÿÿ−1

∑
ÿ∈ýÿ∩

1
ÿ
ℤÿ−1

ÿÿÿ(ÿ)

¿ÀÀÀÁ
=

∑
ÿ∈ýÿ∩

1
ÿ
ℤÿ−1

ℎ(ÿÿ(ÿ))

ÿÿ−1
.

By Lemmas 4.2 and 4.3, the functions ÿÿ converge uniformly to ÿ asÿ → ∞, in the sense that

lim
ÿ→∞

max

{
||ÿÿ(ÿ) − ÿ(ÿ)||

|||| ÿ ∈ ýÿ ∩
1

ÿ
ℤÿ−1

}
= 0.

Our assumption of uniform continuity of ℎ allows us to conclude that

lim
ÿ→∞

max

{
||ℎ(ÿÿ(ÿ)) − ℎ(ÿ(ÿ))||

|||| ÿ ∈ ýÿ ∩
1

ÿ
ℤÿ−1

}
= 0.



1224 CAVEY

Since the number of points ÿ ∈ ýÿ ∩
1

ÿ
ℤÿ−1 is a polynomial of degree ÿ − 1 inÿ, the sums

∑
ÿ∈ýÿ∩

1
ÿ
ℤÿ−1

ℎ(ÿÿ(ÿ)) − ℎ(ÿ(ÿ))

ÿÿ−1
=

∑
ÿ∈ýÿ∩

1
ÿ
ℤÿ−1

ℎ(ÿÿ(ÿ))

ÿÿ−1
−

∑
ÿ∈ýÿ∩

1
ÿ
ℤÿ−1

ℎ(ÿ(ÿ))

ÿÿ−1

also converge to zero as ÿ → ∞. The final sum above is a Riemann sum approximation of

the integral ∫ (ℎ◦ÿ) dÿÿ, where ÿÿ is the Lebesgue measure restricted to the full-dimensional
polytope ýÿ ⊆ ℝ

ÿ−1. Since ℎ◦ÿ is continuous, these Riemann sums converge to the integral

∫ (ℎ◦ÿ) dÿÿ = ∫ ℎ d(ÿ∗ÿÿ) = ∫ ℎ dÿÿ asÿ → ∞. The integrals of ℎ against the discrete measures

in the statement therefore converge to this integral as well, which completes the proof. □

Since the higher ÿ, ý-Catalan numbers are known to be symmetric, the discrete measures in the

limit appearing in Theorem 4.6 are symmetric. This implies the following symmetry property for

ÿÿ.

Corollary 4.7. For all ÿ ⩾ 1 the ÿ, ý-Catalan measure ÿÿ is symmetric about the line ÿ = ý.

5 CONNECTION TO HILBERT SCHEMES

5.1 Hilbert schemes and higher ÿ, ý-Catalan numbers

We first reproduce the geometric setup for the ÿ, ý-Catalan numbers described by Haiman [7].

Let ÿÿ denote the Hilbert scheme of ÿ points in ℂ2. This Hilbert scheme is a smooth irre-

ducible variety of dimension 2ÿ that parametrizes lengthÿ subschemes ofℂ2. Letÿÿ
0
⊆ ÿÿ denote

the (reduced) subscheme parametrizing subschemes supported at the origin in ℂ2. The punctual

Hilbert scheme, ÿÿ
0
, is an irreducible and reduced variety of dimension ÿ − 1. Equivalently, ÿÿ

parametrizes ideals ý ⊆ ℂ[ý, ÿ] such thatℂ[ý, ÿ]∕ý is an ÿ-dimensional complex vector space, and

ÿÿ
0
parametrizes such ideals ý satisfying the additional constraint that

√
ý = (ý, ÿ) ⊆ ℂ[ý, ÿ].

There is a two-dimensional torus, ÿ = (ℂ∗)2, that acts naturally on ÿÿ. The action moves the

support of the subschemes around by scaling coordinates by the corresponding coordinates of

(ℂ∗)2, but some care must be taken when the subschemes are nonreduced. The punctual Hilbert

scheme is set theoretically fixed by this torus action, so the ÿ action can be restricted toÿÿ
0
.

Haiman showed that ÿÿ admits the explicit description ÿÿ ≃ Proj
⨁

ÿ⩾0ý
ÿ, where ý ⊆

ℂ[ý1, ÿ1, … , ýÿ, ÿÿ] is the set of alternating polynomials under the symmetric group action per-

muting the variables in blocks (ýÿ , ÿÿ) ↔ (ýÿ , ÿÿ). This identification equips ÿÿ with an ample

line bundle. We denote the restriction of this line bundle toÿÿ
0
by (1), and its tensor powers by

(ÿ) for allÿ ⩾ 1.

The torus action onÿÿ
0
extends to a compatible action on the line bundles (ÿ). This induces

a linear action of ÿ on the spaces of global sections ÿ0(ÿÿ
0
,(ÿ)). Linear torus actions split

into direct sums of characters, so we may consider ÿ0(ÿÿ
0
,(ÿ)) as a bigraded vector space. Let

ÿ0(ÿÿ
0
,(ÿ))ÿ,ÿ denote the component corresponding to the character (ÿ, ÿ) ∈ ℤ2. The geomet-

ric higher ÿ, ý-Catalan number ÿÿ(ÿ)ÿ (ÿ, ý) encodes the dimensions of the bigraded pieces of these

vector spaces by the formula

ÿÿ(ÿ)ÿ (ÿ, ý) =
∑
ÿ,ÿ

ÿÿýÿ dimÿ0(ÿÿ
0 ,(ÿ))ÿ,ÿ.
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Theorem 5.1 [4, 7, 8, 12]. For all ÿ,ÿ ⩾ 1, we have

ÿ(ÿ)ÿ (ÿ, ý) = ÿÿ(ÿ)ÿ (ÿ, ý).

The proof of this result passes through several other definitions of the higher ÿ, ý-Catalan num-

bers, which we briefly explain. We borrow notation and terminology from [10], which contains a

more detailed summary of the known equivalences (at that time) between various definitions of

higher ÿ, ý-Catalan numbers.

Haiman [7, 8] showed that ÿÿ(ÿ)ÿ (ÿ, ý) agrees with the original definition of the higher ÿ, ý-

Catalan numbers [4] as a sum of rational functions indexed by partitions. The original definition

in [4] was also known to agree with the polynomial ï∇ÿÿÿ, ÿÿð, where ∇ is a certain operator

related to Macdonald polynomials.

In the caseÿ = 1, Garsia and Haglund [3] showed that ï∇ÿÿ, ÿÿð agrees with the combinatori-
ally defined polynomials ÿÿ(ÿ, ý). The result for ÿ > 1 is a special case of a much more general

result proved by Mellit [12], known as the compositional (ýÿ, ýÿ)-shuffle conjecture [1]. This

result is a generalization of the (higher) shuffle conjecture formulated in [6] that amounts to a

combinatorial formula for the entire polynomial∇ÿÿÿ. A consequence is that the combinatorially

defined higher ÿ, ý-Catalan numbers, ÿ(ÿ)ÿ (ÿ, ý), agree with ï∇ÿÿÿ, ÿÿð.

5.2 Duistermaat–Heckmanmeasure

Let ÿ be a ý-dimensional variety with a line bundle . Suppose that ÿ is equipped with a ý-

dimensional torus action, and that the action extends compatibly to. Then there is a linear action
of ÿ on the spaces of global sections of ⊗ÿ, which is equivalent to a ℤý-grading on these spaces.
For ÿ ∈ ℤý, we denote the degree ÿ component by ÿ0(ÿ,⊗ÿ)ÿ . The Duistermaat–Heckman
measure of the triple (ÿ,, ÿ) is defined to be the weak limit of measures on ℝý,

DH(ÿ,, ÿ) = lim
ÿ→∞

(
1

ÿý

∑
ÿ∈ℤý

ÿ ÿ
ÿ
dimÿ0(ÿ,⊗ÿ)ÿ

)
.

Brion and Procesi [2] prove that this limit exists for all such triples (ÿ,, ÿ). They also show
that the resulting measure is piece-wise polynomial on ℝý.

In the present case, the relevant triple consists of the punctual Hilbert scheme with line bundle

(1) and two-dimensional torus ÿ acting as described in the previous section.With this setup, the

Duistermaat–Heckman measure of the punctual Hilbert scheme is defined as the weak limit

DH(ÿÿ
0 ,(1), ÿ) = lim

ÿ→∞

(
1

ÿÿ−1

∑
ÿ,ÿ

ÿ( ÿ
ÿ
, ÿ
ÿ

) dimÿ0(ÿÿ
0 ,(ÿ))ÿ,ÿ

)
. (7)

The equality ÿ(ÿ)ÿ (ÿ, ý) = ÿÿ(ÿ)ÿ (ÿ, ý) asserted in Theorem 5.1 implies that the limit above

coincides with the limit appearing in Theorem 4.6. This allows for the following geometric

reinterpretation of Theorem 4.6.

Theorem 5.2. For all ÿ ⩾ 1, the ÿ, ý-Catalan measure ÿÿ is equal to the Duistermaat–Heckman

measure DH(ÿÿ
0
,(1), ÿ).
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There are geometric formulas for computing Duistermaat–Heckman measures. Example 1.2.6

in [9] describes the geometric setup for another approach to these measures for ÿÿ
0
in the case

ÿ = 4, aswell as an alternate interpretation of the figure in Example 3.5. To our knowledge though,

Theorem 5.2 is the first combinatorial formula for the Duistermaat–Heckman measure ofÿÿ
0
.
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