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1 | INTRODUCTION

Introduced by Garsia and Haiman [4], the g, t-Catalan numbers C,,(q, t) € N[g, t] are a sequence
of polynomials that refine the sequence of Catalan numbers. These polynomials have connections
to many areas of math including combinatorics, representation theory, symmetric function theory,
and algebraic geometry [5].

In combinatorics, the g, t-Catalan numbers are defined as weighted sums over the set of Dyck
paths. A Dyck path of height n is lattice path from (0,0) to (n, n) consisting of north and east steps,
both of unit length, that never goes strictly below the diagonal y = x. The set of all Dyck paths
of height n is denoted as D,,, and this set is enumerated by the Catalan number C,, = n%l (2:)
In terms of the area, dinv, and bounce statistics on Dyck paths (see Section 2), the g, t-Catalan

numbers are given by either of the following equivalent formulas:
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Cn(q,t)= Z qdinv(D)tarea(D) (1)
DED,

— Z qarea(D)tbounce(D). (2)
DED,

More generally, the higher g, t-Catalan numbers Cﬁlm)(q, t) € N[g, t], also introduced by Garsia
and Haiman [4], refine the higher Catalan numbers ™ = #H ((mzl)") and specialize to the
ordinary g, t-Catalan numbers in the case m = 1. In this paper, we mainly work with the com-
binatorial higher g, t-Catalan numbers introduced by Loehr [11]. These polynomials are defined
by formulas analogous to (1) and (2), by recording generalized area, dinv, and bounce statistics
on m-Dyck paths of height n. An m-Dyck path of height n is a lattice path from (0,0) to (mn, n)
made up of north and east steps, both of unit length, which never goes strictly below the diagonal
y= %x. In Section 2, we review the precise definitions of these polynomials and the statistics on
m-Dyck paths used to define them.

The higher g, t-Catalan numbers satisfy the joint symmetry property, Cﬁlm)(q, H) = Cflm)(t, q),
which is not apparent from the combinatorial definition. There are many alternate definitions
of these polynomials (see the introduction of [10]), many of which are visibly symmetric. It is
difficult, however, to show that the plainly symmetric algebraic definitions agree with the combi-
natorial ones. This was done for all n in the case m = 1 by Garsia and Haglund [3]. More recently,
Mellit’s proof [12] of the “compositional (km, kn)-shuffle conjecture” [1] implies, in particular,
that the combinatorial and algebraic definitions of the higher g, -Catalan numbers agree for all
m and n. To our current knowledge, it remains an open problem to prove this joint symmetry
combinatorially, even in the case m = 1.

In this paper, we introduce continuous analogs of the g, t-Catalan numbers defined by formulas
analogous to (1) and (2). We define a continuous Dyck path of height n to be a path from (0,0) to
(n, n) consisting of north steps of unit length and east steps of arbitrary positive length that never
goes below the diagonal y = x (see Figure 3). Denote the set of continuous Dyck paths of height n
by Dﬁf"nt). In Section 3, we introduce real-valued area, dinv, and bounce statistics on continuous
Dyck paths based on the corresponding statistics for m-Dyck paths.

Since the set of continuous Dyck paths is infinite, one cannot naively sum over as in
formulas (1) and (2). Instead, we formulate a measure-theoretic analog. The set of all continuous
Dyck paths can be naturally considered as a full-dimensional polytope D,(fom) C R""1, on which

D;cont)

all of our statistics form piece-wise linear, continuous maps Dgfom) — R.The g, t-Catalan measure
U, is then defined as the pushforward of Lebesgue measure from the polytope foom) to R? by
either of the following maps:

D(cont) dinv X area R 2
n .

area X bounce

In Sections 3.3 and 3.4, we show that these two definitions agree by constructing a measure-
preserving transformation T : D™ — D™ gych that (dinv x area)oT = area X bounce. The
measure-preserving property is the analog of bijectivity for the analogous maps on m-Dyck paths,
and, in fact, T is not injective. We show directly that the g, t-Catalan measures are compactly
supported, piece-wise polynomial measures on R?. In Example 3.5, we explicitly compute the
g, t-Catalan measure in the case n = 4.
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FIGURE 1 Discrete density functions of higher g, t-Catalan numbers.

Our main result realizes the g, t-Catalan measure as a limit of higher g, t-Catalan numbers.
Before making this precise, let us first illustrate the limit in the case n = 4. Figure 1 depicts the
polynomials C‘(‘m)(q, t) for several values of m, where darker shading of the cell (i, j) indicates a
larger coefficient on the g't/ term in the indicated polynomial. As m — oo, these discrete density
functions can be normalized to converge to the continuous density function of the g, t-Catalan
measure u, (see Example 3.5).

More precisely, encode Cflm)(q, t) as a discrete measure on Z> whose weight at (i, j) is equal
to the coefficient on the gt/ term of C,Sm)(q, t). Using the dinv, area formula for C;m)(q, t), and
writing DEL’") for the set of m-Dyck paths of height n, this correspondence takes the form

C;SM)(qa t) — Z qdinV(D)tarea(D) “ Z 5(dinv(D),area(D))’
pep™ pep™

where §, ;) denotes a Dirac measure at the point (a, b). We then normalize the measures by scal-
ing their supports uniformly by a factor of 1/m, and dividing the total weights by m"~!. The
following theorem, proved in Section 4.4, realizes the g, t-Catalan measures as a limit of these
normalized discrete measures.

Theorem 1.1. Foralln > 1, the q, t-Catalan measure u,, is equal to the weak limit of measures on
R?,

ty = lim | — > 5(@,%)-

m—oo mn—l
pep™ * "

The proof of the theorem is based on a simple bijection between m-Dyck paths and those contin-
uous Dyck paths whose horizontal step lengths all lie in %Z : scale the m-Dyck path horizontally

by a factor of % so that it goes from (0,0) to (n,n) (see Figure 2). The area, dinv, and bounce
statistics on continuous Dyck paths were designed to agree with the corresponding (normalized)
statistics on m-Dyck paths in the limit m — oo, from which we deduce the result.

Since the higher g, t-Catalan numbers are known to be symmetric, this relationship implies a
corresponding symmetry result for the g, t-Catalan measures.
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FIGURE 2 An m-Dyck path and its corresponding continuous Dyck path.

Corollary 1.2. Foralln > 1, u, is symmetric about the line y = x.

Similar to the (higher) g, t-Catalan numbers, the symmetry is not clear from the combinatorial
definition. It would be interesting to find a direct proof of the symmetry of these measures, as it
might give insight into the symmetry of the (higher) g, t-Catalan numbers as well.

Finally, in Section 5, we relate the g, t-Catalan measures to the geometry of Hilbert schemes.
One of the alternate definitions of higher g, t-Catalan numbers, the geometric higher q, t-Catalan
numbers GCflm)(q, t), was introduced and studied by Haiman [7]. Haiman showed that GCflm)(q, t)
agrees with the algebraically defined higher g, t-Catalan numbers [7]. Much later, Mellit con-
nected the algebraic polynomials to the combinatorial ones as a consequence of the proof of
the “compositional (km, kn)-shuffle conjecture” [12]. Together, these results imply that for all
n,m > 1 we have

GC™(q, 1) = c™(q,1).

There is a general construction in algebraic geometry to encode the asymptotics of such families
of polynomials as m — oo, called the Duistermaat-Heckman measure [2]. Replacing GCElm)(q, t)
by C;m)(q, t) in the definition of the Duistermaat-Heckman measure, one precisely recovers the
limit expression for the g, t-Catalan measure expressed in Theorem 1.1. This allows for the fol-
lowing geometric restatement of Theorem 1.1 in terms of the punctual Hilbert scheme Hj that
parameterizes length n subschemes of C? supported at the origin.

Theorem 1.3. For all n > 1, the q,t-Catalan measure u,, is equal to the Duistermaat-Heckman
measure of the punctual Hilbert scheme Hy.

This reinterpretation is explained in more detail in Section 5, and the proof as outlined above
is summarized in the following diagram.

C(g,0) < = > GCIM(g, 1)

(Haiman + Mellit)

lim $(Theorem 1.1) Wlllfgo (Definition)

m—oo

(g, t-Catalan measure) ¢ - —-—-——— > (DH measure).
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2 | HIGHER q,t-CATALAN NUMBERS

In this section, we review the combinatorics of m-Dyck paths and higher g, t-Catalan numbers,
following [11].

An m-Dyck path of height n is a path from (0,0) to (mn, n) consisting of north steps and east
steps, both of unit length, that never goes strictly below the line y = %x. The set of all m-Dyck

paths of height n is denoted by D,(f”). The areavector of an m-Dyck path D is the vector area,, (D) =
(ay(D), ..., a,_1(D)), where a;(D) denotes the number of complete boxes between D and the line
y= %x in the ith row, indexed from i = 0. The area of D is the total number of such boxes in

all rows, area,, (D) = Z?:_Ol a;(D). For example, the path on the left of Figure 2 has area vector
(0,1,0,2,3) and area 6.

The dinv statistic of an m-Dyck path D is defined in terms of the area vector of D by the formula
dinv,,(D) = ij sc,,(a;(D) — aj(D)), where sc,,, : Z — Z is the function

m+1l—p ifl<p<m,
sc,(p)=1m+p if —-m<p<go,
0 otherwise.

For example, if D is again the path on the left of Figure 2, one calculates
dinv,(D) = s¢c,(0 — 1) + 5¢,(0 — 0) + 5¢,(0 — 2) + s¢,(0 — 3) + sc,(1 — 0)
+5c5(1 —2) +sc5(1 — 3) +5¢,(0 — 2) +5¢,(0 — 3) +5¢,(2 — 3)
=1+2+0+0+2+1+0+0+0+1
=17.

The bounce statistic of an m-Dyck path D is defined in terms of a secondary lattice path associ-
ated to D called a bounce path. The bounce path of D is a lattice path from (0,0) to (mn, n) made up
of an alternating sequence of north steps v, vy, ... and east steps hy, h,, ... . Starting from (0,0), the
bounce path first travels north until it hits an east step of D, and the distance traveled is labeled
Uo- The bounce path then takes an east step of distance h, : = v,. Now suppose inductively that
Vg, ---» Uj_; and h, ..., h;_; have been defined. After these steps, the bounce path travels north until
it hits an east step of D, and the vertical distance traveled is labeled v;. The bounce path then takes
an east step of distance h; :=v; + v;_; + -+ + Uj_,4, Where any v; with j < 0 is treated as zero.
This process terminates when the bounce path reaches (mn, n). The bounce statistic is defined in
terms of the vertical steps vy, vy, ... of the bounce path by the formula bounce,, (D) = ;i - v;.

For example, the steps in the bounce path of the Dyck path in Figure 2 are given by the following
table from which the bounce statistic can be computedas1-1+3-2+4-1=11.

i 101234

U

i

There are two equivalent definitions of the combinatorial higher g, t-Catalan numbers in terms
of these statistics on m-Dyck paths,
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C;m)(q, £) = Z qdinvm(D)taream(D) 3)
pep(™

— Z qaream(D)tbouncem(D). 4)
pep(™

Loehr [11] constructs a bijection ¢, : D;m) - D;m) such that dinv,,(D) = area,, (¢,,(D)) and
area,,(D) = bounce,,(¢,,(D)) forall D € Dﬁ{”). The existence of such a map implies that the two
definitions (3) and (4) agree. Indeed,

z qdinvm(D)taream(D) — Z qaream(¢m(D))tbouncem(¢m(D))
pep(™ pep(™
— Z qaream (D’)tbouncem(D’)‘

D’ eDE{")

Let us review the definition of this bijection. Let D be an m-Dyck path. The bounce path of
¢,,(D) € DE{’” will be given by the sequence vy, hy, U, hy, ..., Uy, by, Where v; is equal the number
of occurrences of i in the area vector of D, and h; = v; + -+ + v;_,,, ;1. Let py, py, Dy, ... » Dg4q DE the
sequence of points on the bounce path where p, = (0,0), p,,; = (mn, n), and p; is the end point
of the partial bounce path v, h, ..., v;_; for 1 <i < s. The path ¢,,(D) will pass through all of the
p;’s, and the rule for drawing the portion of the path ¢,,(D) from p; to p;,, is as follows. Read
through the area vector of D, (ay(D), ..., a,,_;(D)), from left to right. Every time the symbol i is
seen, ¢,,(D) takes a unit step north. Every time a symbol in {i — 1, ...,i — m} is seen, ¢,,(D) takes
a unit step east.

Loehr shows that ¢,,,(D) is well defined (and the bounce path ¢,,,(D) is as claimed), and that the
map sends dinv to area to bounce and is a bijection. The existence of such a map does not imme-
diately imply the conjectural joint symmetry property C;m)(q, t) = C;m)(t, q). It does, however,
imply the weaker statement that these three statistics have the same univariate distributions,

2 qdinvm(D) — Z qaream(D) — Z qbouncem(D).
pep™ pep™ pep™

These identities can be obtained by specializing (3) and (4) to g = 1 or ¢t = 1 separately.
The joint symmetry property for higher g, t-Catalan measures follows from Mellit’s results in
[12] proving the compositional (km, kn)-shuffle conjecture. This is discussed in more detail in

Section 5. For now, we state the joint symmetry as a theorem to refer to later.

Theorem 2.1 (Mellit [12]). The (combinatorial) higher q,t-Catalan numbers satisfy the joint
symmetry property,

(g, 1) = ¢t q),

foralln,m > 1.
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FIGURE 3 A continuous Dyck path of height 4.

3 | CONTINUOUS DYCK PATHS AND THE q,t-CATALAN MEASURES
3.1 | Continuous Dyck path statistics

A continuous Dyck path of height n is a path from (0,0) to (n, n) consisting of north steps of unit
length and east steps of arbitrary positive length that never goes below the diagonal y = x. To
avoid having multiple representations of the same path, we assume that continuous Dyck paths
never contain two or more consecutive east steps. Consecutive north steps, however, are allowed.
We denote the set of continuous Dyck paths of height n by DEf"“t).

Let D be a continuous Dyck path of height n, and for i = 0, ...,n — 1 define x;(D) to be the x-
coordinate of the ith north step of the path D € D™ indexed from i = 0. It follows from the
definition that continuous Dyck paths must start with at least one north step, and therefore,
Xxo(D) is always zero. It will be convenient to include this leading zero as one of the coordi-
nates regardless. The area vector of D is the vector area(D) = (ay(D), ..., a,_;(D)) € R", where
a;(D) =i—x;(D)foralli =0,...,n — 1 (see Figure 3). The area of D is defined by

n—1

area(D) = z a;(D).

i=0

For example, the path D depicted in Figure 3 has north steps at the x-coordinates (x,, X1, X,, X3) =
(0,0.4,0.8,2.5). The area vector of D is therefore (0,0.6,1.2,0.5), and so, area(D) = 2.3.

The dinv statistic of a continuous Dyck path D is also defined in terms of its area vector by the
formula

dinv(D)= ) sc(a;(D) — a;(D)),

o<i<j<n—1

where sc(x) = max{l — | x|, 0}.
The dinv statistic of the path D depicted in Figure 3 can be calculated as

dinv(D) = sc(0.6) + sc(1.2) + sc(0.5) + sc(1.2 — 0.6) + sc(0.5 — 0.6) + sc(0.5 — 1.2)
=044+0+054+04+094+0.3

= 2.5.
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The final statistic on continuous Dyck paths is defined in terms of a parametrization of the
path that we call the bounce parametrization. This parametrization is analogous to the bounce
path of an m-Dyck path (see Section 4 for the precise relationship). Given a continuous Dyck
path D, the bounce parametrization of D travels along the path D from (0,0) to (n,n) on some
time interval 0 < t < t,,,(D). The parametrization is uniquely determined by the following two
rules.

1. Whenever the parametrization reaches the bottom of a north step of D, say of length v, the
parametrization instantaneously takes v (unit length) north steps to the top of the step.

2. The parametrization travels continuously along the east steps of D as t increases, and the hori-
zontal speed of the parametrization at any given time ¢ is equal to total number of (unit length)
north steps taken by the parametrization in the time interval [t — 1, ¢].

We define b;(D) for i =0, ...,n — 1 to be the time at which the bounce parametrization takes
its ith (unit length) north step, indexed from i = 0. The bounce parametrization is entirely deter-
mined by the vector (by(D), ..., b,_;(D)). Indeed, by the fundamental theorem of calculus, the
horizontal position of the bounce parametrization is computed by the function

[}’l—l

rp(t) = /O Z Uib,(D).by(D)+119S-
i=0

We may therefore have equivalently defined the coordinates b;(D) to be the unique nondecreasing
sequence by(D) < --- < b,_; (D) such that the function above satisfies r(b;(D)) = x;(D) for all
i=0,..,n—1. We call bounce(D) = (by(D), ..., b,_(D)) the bounce vector of D, and define the
bounce of D by the formula

n—1
bounce(D) = Z b,(D).
i=0

Returning again to the path D depicted in Figure 3, the bounce parametrization of D can be
described as follows.

* At time t = 0, the bounce parametrization of D takes a north step from (0,0) to (0,1), and the
first coordinate of the bounce vector is recorded as b, = 0. The path then begins moving east at
speed 1.

* Attime t = 0.4, the parametrization reaches (0.4,1) where D has a north step, so the next coor-
dinate of the bounce vector is b; = 0.4. The parametrization takes a north step up to (0.4,2) and
continues moving east, now at speed 2.

* Attime t = 0.6, the parametrization reaches the point (0.8,2) where D has its next north step,
so the next coordinate of the bounce vector is b, = 0.6. The parametrization then takes a north
step up to (0.8,3) and continues moving east, now at speed 3.

* Attime t = 1, the parametrization is at the point (2,3) and one unit time has passed since the
first north step of the bounce parametrization, so the speed slows down to 2.

* At time ¢ = 1.25, the parametrization reaches (2.5,3) where D has its final north step, so the
final coordinate of the bounce vector is b; = 1.25. The parametrization takes its final north step
to (2.5,4) and continues moving east, now at speed 3 again.

* Attimest = 1.4, 1.6, and 2.25 the parametrization slows to speed 2, then speed 1, and then stops.
These occur at the points (2.95,4), (3.35,4), and (4,4) respectively.
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The bounce vector of D is therefore (0,0.4,0.6,1.25), and so, the bounce of D is 2.25.

3.2 | Area and bounce polytopes

The set of all area vectors of continuous Dyck paths of height n forms an (n — 1)-dimensional
polytope,

A, ={(ay,...a,_1) ER"|ay; =0, and 0 < a;,; < q; + 1foralli > 0}
Similarly, the set of all bounce vectors forms another (n — 1)-dimensional polytope,
B, ={(by,....b,_1) ER"| by =0, and b; < b;;; < b; + 1 foralli > 0}.

We call A, and B,, the area polytope and bounce polytope, respectively. When convenient, we will
consider A, and B,, as full-dimensional polytopes in R"~! by forgetting the first coordinate (which
is identically zero in both cases).

Proposition 3.1. The area vector (ay(D), ..., a,_,(D)) and bounce vector (by(D), ..., b,_;(D)) of a

(cont)

. arerelated by the formulas

continuous Dyck path D € D

Jj-1

aj(D) = ZO SC(bj(D) - bi(D))

forall j=0,..,n—1.
We suppress the path D in the notation throughout the proof, writing a; for a;(D), and so on.

Proof. The bounce vector of D, (by, ..., b,_;), satisfies r(bj) =x;=j—a forall j=0,..,n—1,
where r(t) is the function

t n—1

r(t) = / > Vb, pye11ds-
0 =0

Plugging in t = b;, we have

n—1 bj
J—a;= Z/ Vb, b+11dE-
i=0 /0

. b; Lo ..
Since by < -+ < b,,_;, all of the terms /o ! Ujp,b;+11ds for i > j are zero. The remaining terms are
either equal to 1 (if b; +1 < b;) or b; — b; (if b; € [b;, b; + 1]). These cases can be expressed
succinctly using the function 1 — sc(x) = min{|x|, 1}, giving the relation

j-1 J—1
j—a;=Y(1=sc(b; = b)) =j— Y sc(b; —by).
i=0 i=0

Solving for a; yields the desired formula. O
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Area and bounce vectors provide two ways to parameterize the set of continuous Dyck paths by
polytopes A,, < foom) < B,,, and Proposition 3.1 can be viewed as a description of the change of
coordinates map B,, — A,,. Proposition 3.1 shows, in particular, that the bijection B, — A, defined
by sending the bounce vector of a path D to its area vector is piece-wise linear.

As outlined in the introduction, we aim to equip D" with a measure by identifying it with
an (n — 1)-polytope. The area and bounce polytopes provide two candidates for this job, and the
resulting measures on Dﬁf""t) are different as long as n > 3. Equivalently, the bijection B, - A,
described in Proposition 3.1 is not measure preserving. This is necessarily the case because the
defining inequalities show that B,, is strictly contained in A,,. For our purposes, the more natural

0 .
measure on D™ is the one from A,,.

Definition 3.2. Let 1, denote the restriction of the Lebesgue measure from R"~! to the full-

dimensional polytope A4, C {0} x R"~! = R"~!, By abuse of notation, we also consider 1, as a

(cont)

measure on D,

via the bijection identifying a continuous Dyck path D with its area vector.

3.3 | gq,t-Catalan measures

The g, t-Catalan measure ,, is defined to be the pushforward of A, from D™ to R? by either
map

(cont) dinv X area
Dncon R2. (5)

area X bounce

In Section 3.4, we define amap T : D™ — D™ and show that it is measure preserving in
the sense that T, (4,) = 4,, (Proposition 3.7), and that (area X bounce)oT = (dinv X area) as func-
tions D™ — R2 (Lemma 3.6). For now, we simply assert that there exists such a map and use

it in the following calculation to show that the two formulas for the q, t-Catalan measure agree:
(dinv X area),, (1,,)) = ((area X bounce)oT), (4,,)
= (area X bounce),, (T, (1,))

= (area X bounce), (1,,).

Proposition 3.3. Foralln > 1, the q, t-Catalan measure u,, is compactly supported and has total
nn—z

(n=1)"

weight 1, (R?) =

Proof. Identifying D & A,, u, is the pushforward of Lebesgue measure on A, by the map
dinv x area : A, - R2. The g, t-Catalan measure u,, is supported on the image of this map, which
is compact.

Since pushforwards preserve the total weight of a measure, u,(R?) is equal to the Lebesgue
measure, that is, volume, of A, considered as a polytope in R"~!. One way to compute this volume
is using the Ehrhart polynomial, P, (m), whose value at each positive integer m is equal to the
number of integer points in the dilation mA,. Equivalently, P, (m) counts the number of 1/m-
integer points in A,,. But 1/m-integer points in A, are precisely the area vectors of m-Dyck paths
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of height n scaled by 1/m, as is illustrated in Figure 2. It follows that

Py (m)=C = 1 <(m . Dn) _(mntn)(mn+2) | pn2

= m" 1 + 0o(m"2).
mn+1 n n! (n=1) ( )

The general theory of Ehrhart polynomials implies that the leading coefficient of this polynomial,
27 s equal to the volume of A4,,. O

(n=1)"
Proposition 3.4. For n > 3, u, is absolutely continuous with respect to Lebesgue measure and its
density function is piece-wise polynomial of degree n — 3.

Proof. Let P be a polytope equipped with a linear map 7 : P — R¥ such that 7(P) C R¥ is full-
dimensional. Then, the pushforward of Lebesgue measure from P to R is absolutely continuous
with respect to Lebesgue measure on R and its density function is piece-wise polynomial of
degree dim(P) — k. When n > 3, the piece-wise linear map (dinv X area)A4,, — R? can be broken
up into a sum of such terms by considering the regions on which the projection is linear separately.
Each term is the projection from an (n — 1)-dimensional polytope to R?, so the density functions
are piece-wise polynomial of degree n — 3. The g, t-Catalan measure is the sum of these, which
completes the proof. O

For n > 3, let f, : R> > R denote the piece-wise polynomial density function for the g, -
Catalan measure y,. At any given point p € R?, f,(p) can be computed exactly by computing
the volume of the fiber of the projection A4, — R? over p. Furthermore, the images of the edges
of A,, subdivide R? into regions on which f,, is given by a single polynomial of degree n — 3. One
can therefore compute the entire density function f, for any given n by interpolating on each of
the regions described above.

Example 3.5. The following figure illustrates the piece-wise linear density function f, for the
g,t-Catalan measure y,. In each of the three regions below, f, is equal to the indicated linear
function. Outside of these regions, f, is zero.

A

f4(X,J’)=3x+y—6

4
f4(X,y)=6—x—y
3
f4(X,J’)=x+3y—6
2
1
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In the above example, one can see that the g, t-Catalan measure is symmetric about the line
¥ = x. In other words, the density function satisfies f,(x,y) = f4(», x). This symmetry holds for
all n, and is not apparent from the combinatorial definitions. In Corollary 4.7, we deduce this
symmetry from the joint symmetry of the higher g, t-Catalans expressed in Theorem 2.1.

An interesting problem would be to directly show that the g, t-Catalan measures are symmetric
without using the corresponding result for the higher g, t-Catalan numbers. One could hope to
find a measure-preserving involution on Dﬁf""t) that switches area and dinv, or area and bounce,
for example. So far, we have not been able to find such a map.

3.4 | A measure-preserving transformation on continuous Dyck paths

Let us now define the map T : D™ — D™ yged in the previous section to show the
equivalence between the two definitions of the g, t-Catalan measures.

For a continuous Dyck path D, define T(D) to be the unique path whose bounce vector
(by(T(D)), ..., b,,_1(T'(D))) is equal to the area vector of D (a,(D), ..., a,_,(D)) up to a permuta-
tion of the coordinates. In other words, sort the area vector of D in to weakly increasing order,
and declare that T(D) is the path whose bounce vector is equal to the sorted area vector of D.

Lemma 3.6. ForallD € Dﬁ;mt), we have dinv(D) = area(T(D)), and area(D) = bounce(T(D)).

For example, let us return to the path D depicted in Figure 3 that has area vector (0,0.6,1.2,0.5).
The area of D is 2.3, and we computed in Section 3.1 the statistic dinv(D) = 2.5. By definition,
T(D) is the path whose bounce vector is (0,0.5,0.6,1.2), and Proposition 3.1 allows us to compute
the area vector of T(D) to be (0,0.5,1.3,0.7). We therefore have area(T(D)) = 2.5 = dinv(D) and
bounce(T (D)) = 2.3 = area(D), as claimed.

Proof. The area vector of D and the bounce vector of T(D) are the same up to a permutation, so

n-1 n-1

area(D) = Y a;(D) = ) by(T(D)) = bounce(T(D)).
i=0 i=0

For the other claim, we use Proposition 3.1 that expresses the coordinates of the area vector in
terms of the bounce vector. Expanding the terms a j (T(D)) using those formulas, we obtain

n—1

area(T(D) = ) a;(TD) = D, sc(b;(T(D)) ~ b(T(D))).
j=0

o<i<jgn—1
Since sc(x) = max{l — |x|,0} is even, the function (v,...,v,_;) ij sc(vj —v;) does not

depend on the order of the coordinates of the input. The bounce vector of T(D) and the area
vector of D are the same up to a permutation, so the previous sum is equal to

Y sc(a;(D) - ¢;(D)) = dinv(D)

o<i<j<n—1

as claimed. 0
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The map T is surjective but not injective, and in general |T~}(D)| depends on D. Despite this
apparent complication, we have the following result.

Proposition 3.7. Themap T : foom) - Dl(fom) is measure preserving, in the sense that A,,(U) =
A,(T~1U) for all measurable sets U C D,(fom).

Proof. Consider A, and B,, as full-dimensional polytopes in R"~! by dropping the leading zeroes.
We also identify D™ A, so that we may consider T as a function A, — A,,. This map can
then be decomposed as

An sort 1 Bn f 1 An ,

where the first map sorts vectors (ay, ..., a,_;) € A, into weakly increasing order, and f sends
the bounce vector of a path D to the area vector of the same path D. Proposition 3.1 provides an
expression of the vector (ay, ..., a,_) = f(by, ..., b,_;) in terms of the function sc(x) = max{l —
|x|, 0}, namely,

j-1
aj = Z SC(bj - bi)’
i=0

forall j =1,...,n — 1. In particular, this description shows that f is piece-wise linear.

Let b= (by,...,b,_;) € B,,. We wish to compute the Jacobian determinant of f at b, so we
assume that f is given by a single linear function in a neighborhood of b. Examining the explicit
description of f given above, this means that all of the coordinates of b are distinct and nonzero,
and there is no pair of indices i < j such thatb; = b; + 1.

Claim. The magnitude of the Jacobian determinant of f at b is equal to | sort=}(b)|, and this
common value is precisely

n—1

db) = [ #ii=0,...j—11b;—b; < 1.
j=1

First, let us see how this claim implies the proposition. Since f is a bijection and sort has Jaco-
bian determinant +1, this claim implies that the preimage T~'(f(b)) also consists of d(b) points,
and the Jacobian determinant of T is +d(b) at all of them. It follows that T preserves the measure
of sufficiently small sets containing f(b). But this applies to a dense set of points in A,, which
implies that T is globally measure preserving.

Proof of Claim: To compute the Jacobian determinant of f at b, we expand the formula for the
coordinates of f(b) using the definition of sc(x) to obtain

forallj=1,..,n—1.Thea j coordinate in the expression only depends on by, ..., b j» SO the Jaco-
bian of f atbislower triangular. Furthermore, forall j = 1, ...,n — 1, the jth entry on the diagonal
of the Jacobianis —#{i = 0,...,j—1|b = b; < 1}, the coefficient on the b j term in the expression
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for a;. The Jacobian determinant of f atb is the product of these diagonal entries, and therefore,
has magnitude d(d) as claimed.
Finally, we count | sort~!(b)| by induction on n. In the base case n = 2, b is a single number b,
andsort : [0,1] — [0, 1] is the identity map. We therefore have d(b) = 1 = | sort~!(b)| as claimed.
Now take b = (by, ..., b,,_;) € B,, as above and assume that the claim holds for all smaller n. By
induction hypothesis, there are exactly

n—2
d(by, .., b, ) = [[#i=0,...j—1]b; = b < 1}
j=1

permutations of the coordinates (b, ..., b,,_,) that lie in A,_,. For any such permutation, let us
insert b,_; into the permuted vector immediately following some coordinate b;. The resulting
vector lies in A,, if and only if b,,_; — b; < 1. So, for each permutation of (b,,...,b,_,) in A4,_;,
there are exactly #{i = 0,...,n — 2| b,_; — b; < 1} places to insert b,,_; that result in a vector lying
in A,,. Every permutation of b that lies in A,, can be obtained uniquely in this way, so by induction
on n, we conclude that | sort~!(b)| = d(b), completing the proof. O

4 | m-DYCK PATH COMBINATORICS AS m — oo

In this section, we relate the combinatorics of continuous Dyck paths to m-Dyck paths. We will
show that each of the continuous combinatorial objects defined in the previous section is a limit
as m — oo of its (normalized) m-Dyck path counterpart. This property motivated the definitions
of the area, dinv, and bounce statistics on continous Dyck paths.

‘We say that a continuous Dyck path D is %-integral if each of the horizontal steps in D is an

integer multiple of % Equivalently, D € D™ is %—integral if its area vector lies in A, N iZ".

The %—integral Dyck paths of height n are in bijection with m-Dyck paths of height n, with the
correspondence given by scaling horizontally by a factor of m (see Figure 2 in the introduction).

41 | Areaanddinvasm —

Fora %-integral Dyck path D, we define area,,,(D) (resp. dinv,,,(D), bounce,, (D)) to be % times the
area (resp. dinv, bounce) of the corresponding m-Dyck path. We refer to these as the normalized
m-area (resp. dinv, bounce) statistics of D.

Example 4.1. Let D be the continuous Dyck path of height 3 with area vector (0,1,1). The
continuous statistics of D are

area(D) = 2, dinv(D) = 1, bounce(D) = %

This path D is %-integral for any m > 1, corresponding to the m-Dyck path with area vector
(0, m, m). The normalized m-statistics of D are

area, (D) =2, dinv,,(D) =1+ =, bounce,,(D) :  meven,
area =2, dinv =1+ =, bounce =
" " m " 2 m odd.
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The coincidence of the continuous area statistic and area,, on %-integral Dyck paths holds in
general.

Lemma 4.2. Forall %-integml Dyck paths D, we have area(D) = area,,, (D).

Example 4.1 shows that the situation for dinv and bounce is necessarily more complicated. In
both of these cases, we will see that the normalized m-statistics converge uniformly over all D to
their continuous counterparts as m — oco.

Lemma 4.3.

lim max { | dinv(D) — dinv,,,(D)| | D € DEf‘mt) %-integral} =0.

m-—oo
Proof. Let D be a %-integral Dyck path with area vector (ay(D), ..., a,_;(D)), so that the corre-
sponding m-Dyck path has area vector (may(D), ..., ma,,_,(D)). We may compute dinv,,, (D) by
the formula

mm(D) _ Z sc,,(ma;(D) — maj(D))’

ot m
i<j

while

dinv(D) = ) sc(a;(D) — a;(D)).

i<j

Unwinding the definitions of sc,,, and sc, one checks that each pair of corresponding terms in the
above sums differs by at most % Therefore,

| dinv(D) — dinv,,(D)| < — (”)
m\2

for all %—integral D € D™, which implies the claim. O

4.2 | m-Bounce paths as m -

Let us define a normalized m-bounce path associated to any continuous Dyck path D € DE{’”. We
modify the construction of the bounce parametrization in Section 3.1 to only allow north steps at
times t € %Z. Let us describe the modified parametrization in more detail:

At time ¢ = 0, the normalized m-bounce path begins at the point (0,0) and makes v, discrete
(unit length) north steps so that it ends on a horizontal step of D. Then, for all times 0 < ¢ < %
the bounce path moves east continuously at speed v,,, covering a total horizontal distance of UEO
Inductively, assume that the parametrization of the bounce path has been defined for all ¢ < i

with north steps vy, ..., v;_; at the respective times ¢t =0, ..., % At time t = # the bounce path
makes v; (unit length) north steps so that it ends on a horizontal step of D. Then, for all times

i‘ <t< % the bounce path moves east continuously at speed v; + -+ + v;_,,,;, which is the
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total length of the north steps traveled during the time interval i —1 <t <i, covering a total
horizontal distance of %(vi + .-+ + U;_,,41)- The bounce path ends when it reaches the point (n, n).

If the continuous Dyck path D is %-integral, then the normalized m-bounce path of D defined
above coincides with the usual m-bounce path, after the usual horizontal rescaling by m. Indeed,
the vertical steps vy, vy, ... in the parametrization above are the same as the vertical steps in the
corresponding m-bounce path. Meanwhile, the horizontal distance covered in the time interval
% <t< i%l, between the vertical steps v; and v;, ;, is exactly %

Define the normalized m-bounce vector of a continuous Dyck path D to be

1 i

bounce,, (D) = (0,...,0, =, ..., —, ., e —,..) € Z".
m m m

1
——— M
Vo

Uy Ui

In other words, the coordinates bounce,,(D) = (EO(D), ,Bn_l(D)) are defined so that Ei(D) is
the time at which the normalized m-bounce path takes its ith unit length vertical step.

One can show that as m — oo, these normalized m-bounce vectors converge uniformly to the
continuous bounce vectors defined in Section 3.1.

Lemma 4.4.

lim max { |bounce(D) — bounce,,(D)| 'D IS Dﬁf"m)} =0.
m— 00

It is for this reason that we think of the bounce parametrization and bounce vector as the con-
tinuous analog of the bounce vector for m-Dyck paths. When D is %-integral, the sum of the

coordinates of bounce,,(D) coincides with the normalized bounce statistic bounce,,(D). As a
corollary, we obtain a similar result for the bounce statistics.

Lemma 4.5.

lim max { | bounce(D) — bounce,,(D)| | D € Dﬁf"m) %-integral} =0.

m— 00

43 | The bijections ¢,, : D™ - D" asm — o

n

We briefly mention the limit interpretation of the map T : D™ — D™ In Section 2, we
reviewed the definition of the bijection ¢,, : D,(:") - D;m), which is used to show the equiva-
lence between the combinatorial definitions of the higher g, t-Catalan numbers. We claim that
the map T : D™ - D™ defined in Section 3.4 is the uniform limit as m — oo of the ¢,,’s.

Consider T asamap A,, — A,, and ¢,, as a bijection on the %-integral points of A,,. We claim
that

' 1
Alm max { IT(a) - ¢, (a)]|a€A,n EZ"} = 0.

The key observation is that for a %-integral path D, ¢,,(D) is a path whose normalized m-
bounce vector is equal to the sorted area vector of D. On the other hand, T(D) is the path whose
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continuous bounce vector is equal to the sorted area vector of D. As m — oo, the normalized
m-bounce paths of ¢,,(D) converge to T(D). Furthermore, the maximum difference between a
continuous Dyck paths and their normalized m-bounce path goes to zero as m — oo. These facts
allow one to show the limit claim above.

4.4 | Higher q,t-Catalan numbers as m — o
The following theorem is the main result of this paper, realizing the g, t-Catalan measure u,, as a
limit of higher g, t-Catalan numbers. We use the dinv/area definitions of the higher g, t-Catalan

numbers and g, t-Catalan measures.

Theorem 4.6. Foralln > 1, the q,t-Catalan measure u,, is equal to the weak limit

lim
m—oo | ph—1

Z 5( dinvy, (D) , area,, (D) > . (6)

pep™ "

Proof. Fixn>1,andleth : R? - R be a bounded continuous function. We will show that the
integrals of h against the sequence of discrete measures in the theorem statement converge to
[ hdpu,. All of the relevant measures are supported in the convex set [0, (”;1) 1> € R?, so we may
assume without loss of generality that & is compactly supported. In particular, we take h to be
uniformly continuous.

We identify D™ < A, and consider A, C {0} X R"~! as a full-dimensional polytope in R"~1.
Under this identification, we define 7 to be the map (dinv, area) : A, — R2, Similarly, let 7, be
the map (dinv,,,area,,) : A, N %Z”—l — R2. By the correspondence D™ < A, N %Z”‘l and
the definition of the normalized statistics ﬁm,ﬁm, the discrete measures in the theorem
statement can be rewritten as

1 1
mn—l Z 5( dinv,,, (D) ) area:nn(D) > = W Z 571’,,,(&)'

(m) m 1 7n-1
DeD,, a€A,N 2"

Integrating h against these measures, we obtain

1 h(z,,(a))
/hd —= 2 Snw|= X oo

acA,nLzn-1 aeA,nLzn-1
m m

By Lemmas 4.2 and 4.3, the functions 7, converge uniformly to 7 as m — oo, in the sense that

m-—oo

lim max {|7rm(a) —(a)

aeA, N lZ”‘l} =0.
m
Our assumption of uniform continuity of & allows us to conclude that

n%l_r)réo max {|h(ﬂm(a)) — h(z(a))|

aeAnan”‘l}zo.
m
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Since the number of pointsa € A, N %Z”_l is a polynomial of degree n — 1 in m, the sums

h(z,,(a)) — h(z(a)) h(z,,(a)) h(z(a))
) -y ooy

mn—1 mn—1 mn—1
aeAnn%Z’H aeAnn%Z"*l aeAm%Z"*l

also converge to zero as m — oo. The final sum above is a Riemann sum approximation of
the integral [(hom)dA,, where 1, is the Lebesgue measure restricted to the full-dimensional
polytope A, C R"~!. Since horx is continuous, these Riemann sums converge to the integral
[(hom)dA, = [ hd(m,A,) = [ hdu, asm — oo. The integrals of h against the discrete measures
in the statement therefore converge to this integral as well, which completes the proof. O

Since the higher g, t-Catalan numbers are known to be symmetric, the discrete measures in the
limit appearing in Theorem 4.6 are symmetric. This implies the following symmetry property for

M-

Corollary 4.7. Foralln > 1 the q, t-Catalan measure u,, is symmetric about the line 'y = x.

5 | CONNECTION TO HILBERT SCHEMES
5.1 | Hilbert schemes and higher q, t-Catalan numbers

We first reproduce the geometric setup for the g, t-Catalan numbers described by Haiman [7].
Let H" denote the Hilbert scheme of n points in C2. This Hilbert scheme is a smooth irre-
ducible variety of dimension 2n that parametrizes length n subschemes of C2. Let H{ C H" denote
the (reduced) subscheme parametrizing subschemes supported at the origin in C2. The punctual
Hilbert scheme, Hy, is an irreducible and reduced variety of dimension n — 1. Equivalently, H"
parametrizes ideals I C C[x, y] such that C[x, y]/I is an n-dimensional complex vector space, and
H{} parametrizes such ideals I satisfying the additional constraint that \/_ =(x,y) C C[x,y].
There is a two-dimensional torus, T = (C*)?, that acts naturally on H". The action moves the
support of the subschemes around by scaling coordinates by the corresponding coordinates of
(C*)?, but some care must be taken when the subschemes are nonreduced. The punctual Hilbert
scheme is set theoretically fixed by this torus action, so the T action can be restricted to Hy.
Haiman showed that H" admits the explicit description H" ~ Proj(p,,,, A", where A C
C[x1,¥15 -5 X,, ¥, ] is the set of alternating polynomials under the symmetric group action per-
muting the variables in blocks (x;,y;) < (x;,y;). This identification equips H" with an ample
line bundle. We denote the restriction of this line bundle to Hjj by O(1), and its tensor powers by
O(m) for all m > 1.
The torus action on H(’]‘ extends to a compatible action on the line bundles @(m). This induces
a linear action of T on the spaces of global sections HO(H[’)‘, O(m)). Linear torus actions split
into direct sums of characters, so we may consider H’(H”, ©(m)) as a bigraded vector space. Let
HO(H", O(m)),,, denote the component corresponding to the character (u,v) € Z?. The geomet-

ric higher q, t-Catalan number GCflm)(q, t) encodes the dimensions of the bigraded pieces of these
vector spaces by the formula

GCI(g.t) = Y q"t" dim HO(HE, O(m)), -

u,0
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Theorem 5.1 [4, 7, 8,12]. Foralln,m > 1, we have
cM(g.1) = GC(g, 0).

The proof of this result passes through several other definitions of the higher g, ¢-Catalan num-
bers, which we briefly explain. We borrow notation and terminology from [10], which contains a
more detailed summary of the known equivalences (at that time) between various definitions of
higher g, t-Catalan numbers.

Haiman [7, 8] showed that GCS")(q, t) agrees with the original definition of the higher g, t-
Catalan numbers [4] as a sum of rational functions indexed by partitions. The original definition
in [4] was also known to agree with the polynomial (V"e,, e, ), where V is a certain operator
related to Macdonald polynomials.

In the case m = 1, Garsia and Haglund [3] showed that (Ve,, e,,) agrees with the combinatori-
ally defined polynomials C,,(g, t). The result for m > 1 is a special case of a much more general
result proved by Mellit [12], known as the compositional (km, kn)-shuffle conjecture [1]. This
result is a generalization of the (higher) shuffle conjecture formulated in [6] that amounts to a
combinatorial formula for the entire polynomial V"e,,. A consequence is that the combinatorially
defined higher g, t-Catalan numbers, C,(f”)(q, t), agree with (Ve e,).

5.2 | Duistermaat-Heckman measure

Let X be a d-dimensional variety with a line bundle L. Suppose that X is equipped with a k-
dimensional torus action, and that the action extends compatibly to £. Then there is a linear action
of T on the spaces of global sections of £&™, which is equivalent to a Z*-grading on these spaces.
For v € ZF, we denote the degree v component by H’(X, £L®™),. The Duistermaat-Heckman
measure of the triple (X, £, T) is defined to be the weak limit of measures on R¥,

DH(X, £,T) = lim <L Y 8y dimHO(X,£®m)v>.
md m

m—oo
vezk

Brion and Procesi [2] prove that this limit exists for all such triples (X, £,T). They also show
that the resulting measure is piece-wise polynomial on R¥.

In the present case, the relevant triple consists of the punctual Hilbert scheme with line bundle
O(1) and two-dimensional torus T acting as described in the previous section. With this setup, the
Duistermaat-Heckman measure of the punctual Hilbert scheme is defined as the weak limit

DH(H”,@(l),T):r}lg%o( 1 25(

mn—l

) dim H°(H!, O(m)),, ) (7)

u v
m’m

The equality C™(q,t) = GC™(q, ) asserted in Theorem 5.1 implies that the limit above
coincides with the limit appearing in Theorem 4.6. This allows for the following geometric
reinterpretation of Theorem 4.6.

Theorem 5.2. For all n > 1, the q, t-Catalan measure u, is equal to the Duistermaat-Heckman
measure DH(H"?, ©O(1), T).
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There are geometric formulas for computing Duistermaat-Heckman measures. Example 1.2.6
in [9] describes the geometric setup for another approach to these measures for Hfj in the case
n = 4,aswell as an alternate interpretation of the figure in Example 3.5. To our knowledge though,
Theorem 5.2 is the first combinatorial formula for the Duistermaat-Heckman measure of Hg.
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