ON ROOT FRAMES IN R¢

MOSTAFA MASLOUHI AND KASSO A. OKOUDJOU*

ABSTRACT. A root frame in R? is a finite frame whose vectors form a root
system. In this note we establish some elementary properties of this class of
frames and prove that root frames constitute a subclass of scalable frames. In
addition, we show that root frames are examples of a larger class of frames
called eigenframes.

1. INTRODUCTION AND PRELIMINARIES

The goal of this note is to introduce and investigate the properties of a class
of finite frames associated to root systems in R?. We begin with the following
definition

Definition 1.1. A finite subset R C R%\ {0} s a root system provided that
oa(B) € R, Vo,B € R,

where g, 1s the reflection through the hyperplane orthogonal to a—{z € R? :
(z,a) = 0}— and defined by

0ala) =2 —2(x,a) af lalf, =€ R

In addition, R is said to be an indecomposable root system if it contains an
element that 1s not orthogonal to any element of R.

Since R is a finite subset of R?, there exists § € R such that (a, 8) # 0 for all
a € R. Therefore, the set

Ri=Rip= {a € R,{(a,p) > 0},

is called a positive subsystem of R. Note that #R = 2#R. g for all §. We refer
to [9, 10, 12, 13], for more details on root systems and to [15, 16] for some of their
applications in the theory of orthogonal polynomials.

The class of finite frames we will investigate can now be defined as follows.

Definition 1.2. Let R = {a;}3Y, be a root system on R?. The collection

$r = {a}cxeR+ is called a root frame in R® if R, spans R%.

Remark 1.3. (a) Whale root systems have been the subject of many inves-
tigations, to the best of our knowledge, their spanning properties has
recewwed less attention. Nonetheless, we point out that a root frame in
R¢ as defined above is the same as a rank d root system defined in [10],
and as an effective root system [12, Proposition 4.1.2].
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(b) The terminology indecomposable root system used in Definition 1.1 (in
[10, Section 6.2]) seems not uniwersal and seems synonym to the notion
of a regular root system.

(c) Gwen a root system R, we let W := Wg = (0,) be the (finite) group
generated by the reflections o, where a € R. W 1s called the Weyl (or
Cozeter) group associated to R, and is a subgroup of the orthogonal
group O(d), [13, Section 1.2].

(d) If & is a root frame for R, then, Wr® = &. That is Wg is a group of
isometries leaving ® tnvariant. We note that the symmetry group of
(tight) frames was tnvestigated in [18].

(e) A parameter function associated to the root system R is any function
kE : R — C which ts W-invariant. Given such a positive parameter
function k and a root system R = {aj}?ﬁl, we could consider a root

frame of the form ®rr = {\/k(®)a}acr, . As we will show in the

sequel, this can be be viewed as scaling the length of each of the frame

vector a and can be understood in the contezt of scalable frames [7, 14].

In the rest of the note, we establish some properties of root frames including
their classification. In addition, we prove that all root frames are scalable. Finally,
we show that root frames constitute a sub-class of a family of frames we called
eigenframes which can be viewed themselves as examples of fusion frames.

2. ROOT FRAMES AND THEIR FRAME OPERATORS IN R¢

In this section we prove some basic properties of root frames focusing on their
frame operators whose spectral properties seem quite unique compared to other
frames.

2.1. Elementary properties of root frames. Let $5 be a root frame associated
to the root system R. The frame operator associated to & will be denoted by Sg
and is given by

(1) Sg = Z aa® = Z (,a)a.

When the root system R is fixed, we will denote the corresponding frame operator
by S when there is no confusion.

We next establish a number of properties of root frames. The first such result
shows that the associated frame operator is independent of the choice of the positive
root. Consequently, we will also assume that for a root frame $5 = {a} the
positive roots system R, is fixed.

OLER+’

Proposition 2.1. Let R be a root system and Ry p,, R, two associated
positive root systems. Denote the corresponding frame operators by Sg, and
Sﬁz- Then 551 = 552.

Proof. We start by observing that
Sp, = Z aal = Z aa® + Z aa’.
a€R g a€R 5 NR gy a€Ry, 81 \ Ry 8o

Now for any o € R we must have o € R, g, or —a € Ry g, for ¢+ = 1,2. It
follows that for « € Ry g, \ Ry p, then —a € Ry g, \ Ry ,. It follows that the



ON ROOT FRAMES IN R4 3

map o — —a is a bijection from R, g, \ R+ g, onto Ry g, \ Ry g,. Consequently,

E aaT = E aaT

aER+,/31\R+,/32 7Q€R+,ﬁ2\n+,ﬁ1

from which the result follows. O

Our first main result deals with the spectral decomposition of the frame operator
associated with a root frame. In particular, we show that each of its vectors is an
eigenvector of the corresponding frame operator. To the best of our knowledge,
except for tight frames, root frames seem to be the only class of frames with this
property. We note that in general, the frames whose vectors are eigenvectors of the
frame operator, are precisely the critical points of the frame potential [4, 17].

Theorem 2.2. Suppose that g = {a}acr, 15 a root frame for R? with frame
operator S. Then each frame vector a € R, 1s an eigenvector for S with
etgenvalue A\, given by

Sa = Ao
. {Soy) 1 2
Aa = Taf” = [al? Lper, (6 A
Consequently, the spectrum of S is {\a, @ € Ry} and R, contains a basis
of R® consisting of eigenvectors of S.

Proof. We first observe that the frame operator can be written as

1
§=5) 86"

BER

In addition, S commutes with the action of Wx. That is for each z € R? and each
a € R we have

0a(S2) =1 (2,8)0a(B) = 3 > (0a2,04B)0a(B) = 5 Y (0az,B') f' = S(0az).
BER BER B'ER
It follows that for « € R

aa®(8) = S(aa”) <= a(Sa)T = (Sa,a) = (Sa)a’.

(Sa,a)

Because S is symmetric we get Sa = I

a= A,0.

The following is a simple consequence of Theorem 2.2.

Corollary 2.3. Suppose that ®r = {a}acr, 15 a root frame for R? with corre-
sponding frame operator S. Let {\;}]_, be the list of the distinct eigenvalues
{Aatacr, of S. For each1=1,...,7 let

R; 1:{QER+3 )\a:)\i}
E; := spanR;
with di =dim Ei.
The following statements hold.

(a) {R:}_; s a collection of pairwise orthogonal and Wgr—invariant sub-
root systems.
(b) Foralli=1,...,r, B; =ker(S —X;) and A\; x d; = #R; ;.
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(c) If A < B denote the optimal frame bounds of ®g, then

A< —#f:* < B.

(d) For each 1 = 1,...,7, ®g, := {a}acr,, 5 a tight frame for E; with
Sgr, . = Aildg,. Furthermore, if the root-system R 1s regular then the
root frame ®r = {Q}acr, 15 tight.

Proof. Part (a) is straightforward and we omit its proof.

b) The fact that )\i X di = #Rz + follows from taking the trace of the matrices
, g
in:

Xildg, = Sig, = Z a®a.
a€R; 4

(c) Given that A, B are the optimal frame bounds, We see from the definition
that

Ad < trace(S) = »_ |la||® = #R, < Bd.
aER+

(d) The fact that g, is a tight frame for its span Ej; is trivial. It follows that
the root frame $5 is tight if and only if R is a regular root system.

O

Another immediate consequence of the spectral properties of .S is the construc-
tion of Parseval frames starting with any root system R. We recall that a frame
{px}_; C R? is scalable if there exist {cx}Y_, C [0, 00) such that {cypr}l_, is a
tight frame for R? [7, 8, 14]. In the setting of root frames, the next result shows
that we can always rescale each vector in a root frame to obtain a Parseval frame.

Proposition 2.4. The canonical dual of the root frame ®r is the root frame
generated by the same root system R and given by

« 1
$r ::{ a} .
Ao aERy

Furthermore, ®5 is a Parseval frame and
1 1
= — =1
D
aER+
Consequently, the root frame ®g is a scalable frame.

Proof. Let S be the frame operator for the root frame ®5. For z € R? we have

Sz = Z (z,a) a.

aER,

z = Z (z,0) S7la = Z i(m,a)a.

aER, aER,

Thus
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Remark 2.5. (a) If a frame {px}_, C R? is scalable, then we can find
scalars {cx}_, C [0,00) such that {crpr}Y_, is a Parseval frame. Con-
sequently, {px}_, can be viewed as a continuous frame for (R%,J, u)
where J = {1,2,...,N} C N, and p is the (discrete) measure defined on
J by u(k) = c,lc/2 [2, 3]. For an applications of the solution to the frame
discretization problem by Freeman and Speegle, see [11, Corollary 1.6].

(b) Because every root frame ®g is scalable, we conclude that the ellip-
soid of munimum volume (also known as the Léwner ellipsoid) that
circumscribed the convez hull of {£a}acr ts the unit ball [7].

(c) An interesting question we have not been to settle is the character-
1zation of scalable frames that are also root-frames. This reduces to
proving that the group generated by the reflections corresponding to the
frame vectors 1s finite. See Theorem 2.6 for more.

2.2. Classification of root frames. In this section we classify all the frames of
unit-norm vectors ® = {¢; ;y:]- C R? that are root frames.

Theorem 2.6. Let & = {(pj};v:l be a frame for R% such that ||p;|| = 1 for each
7. Suppose that Cs is the group generated by the reflections {U%}N Let

j=1"
Rs = {g(pj,gEC<p,j: 1,...,N}.

The set Rs is a root frame if and only if the group Cs s finite. In this case,
the initial frame ® is contained in the root frame Rs.

Proof. Suppose that Cs is a finite group. Clearly, Rs is a frame, since it can be
written as the finite union of images of ® under the reflections g € Cs. We only need
to show that Rs is a root-system in R?. Indeed, let a; = g1¢1, a3 = G202 € Rs
where with g1, 9> € Cs and @1, € . We have

o, (02) = 0g,,(9202) = 920,10, (92) = Rz € Rs
where h = g,0

otaen € Ce

The converse2 is trivially proved since assuming that Rs is a root frame implies
that it is both a frame (hence a finite set) and a root system.
O

Remark 2.7. Recall that the spark of a frame & = {px}1_, C R? is the car-
dinality of the smallest linearly dependent subset of ® [1]. If ® is a root
frame, then given k # { there must exists j # k,{ such that o,,(¢;) =
+o; = o — 2(pe, o) Yx. Thus {@;,0r, s} must be linearly dependent and
hence the spark of the frame must be at most 3. Consequently, if a frame
& = {px}_, C R? is such that every subset of three vectors is linearly inde-
pendent, then the frame is not (contained in) a root frame. This is the case
for any frame with spark greater or equal to 4.

2.3. Examples of root frames in RZ. In this section we give some examples of
root frames.

Example 2.8. (1) Let {ei,...,eq} be an orthonormal basis of R%. Then,
R, :{ei—ej,ei+e]-,1 <i<j<diudie,i=1,...,d}

1s a positive Toot system of rank d called a type By root system.
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By considering its frame operator, one can show that Ry s a tight
root-frame (of d? vectors) for R9.

(2) Let D, be the dihedral group of order m, n > 2. It is the group of
symmetries of a regular convex polygon of n vertices in the Euclidean
plan R2. If we identify z = z; + i1z € C with 2 = (z1,z2) € R? and set

“t/n then the rotations in D, are the transformation TPz
zw? and the reflections are given by o : z — zw?, 7 =0,...,n — 1.
It can be proved that Ry = {iwj, 7=0,...,n— 1} 1s a positive root-
system that is also a tight root-frame for R?. Observe that this tight
root frame for R? is related to the tight frames obtained by taking two
rows from the 2n x 2n DF'T matriz.

(3) The symmetric group Sy operates on R? by its action on the compo-
nents on the canonical basis. That is, for z = (z1,...,z4) € R? we
have

w=e€

o = (:120-(1), .. -,-'L'a(d)) Vo € Sy.

Thus, the transposition (1j) plays the same role as the reflection o
defined by par o;;(e; —e;) = —(e; —e;), where {e1,..,eq} is the standard
basis of RZ.

A positive sub root-system associated to Sy 1s given by

R+:{e,‘—ej,1§i<j§d}.

One can show that 0 is an eigenvalue of the frame operator S of R, .
Consequently, R, s an ezample of a positive root system that is not
a root frame.

3. EIGENFRAMES

We end this note with an extension of the notion of root frames. From Corol-
lary 2.3, it follows that any root frame ¢y can be written as ®5 = U]_; ®g, where
Rg, is a tight frame for its span, and where {Rg,}!_; are mutually orthogonal.
Consequently, a root frame is an example of fusion frame [5, 6]. In fact, we can
introduce a class of frames for R? (or C?) of which the root frames are examples,
and which is a subclass of fusion frames.

Definition 3.1. A frame & = {px}_, C C? is called an eigenframe (EF),
provided that for each k, the vector i ts an etgenvector of its frame operator

N *
S =88 =) 1 0rP}.

Assume that ® = {px} | is an EF for C?. Let {\;};_, denote the set of
distinct eigenvalues of S with

S(pk:Ak(pk, Vk:].,...,N.
Define
(2) By = {z € R%, Sz =Xz},

and let Py denotes the orthogonal projection onto Ey. It is easy to see that for all
n we have

1
(3) Po=3- > kPR
" orCEx,
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where B, = ® N E,.
It is straightforward to establish the following result which should be compared
to Corollary 2.3.

Proposition 3.2. Let & = {(pk}fcvzl be an EF for C*. The following statements
hold.

(a) For eachn=1,2,...,r

Andp = Z ||(Pk||21

YrEEN,

where d, = dim E,,.
(b) For allu € B, , N® we have

An > ca(u) [lul®,

where cs(u) s the number of times u appears in ®. In addition, equal-
ity holds in this inequality if and only if (u, ) = 0 for all u # ¢y € .

The following result is an extension of Theorem 2.2 characterizing EFs through
their frame operator. We omit its simple proof.

Theorem 3.3. Let & = {px} | be a frame in C?. Then the following state-
ments are equivalent
(a) @ is an EF,
(b) S commutes with oy, for allk=1,...,N,
(c) S commutes with prps = (-, x) ¢ for allk=1,...,N.
(d) There ezist mutually orthogonal subspaces Wi,..., W, of C% such that
Ce = T_ Wi with W; = Span(®;) where ®; is a tight frame in W, and
$ = ngl P,;.

Remark 3.4. (a) It is easy to extend Proposition 2.4 and to prove that
any eigenframe ® is scalable. Indeed, 1f ® = {(pk}]kvzl 1s an EF, we
have Sp; = M. It follows that

Yo
Idea = —roT
a ;Akwwk,

which shows that {ﬁ‘/’k}szl is Parseval frame.
(b) If = {px}_, is an EF, then its Gram matriz is block diagonal.
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