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Abstract. A root frame in Rd is a �nite frame whose vectors form a root
system. In this note we establish some elementary properties of this class of
frames and prove that root frames constitute a subclass of scalable frames. In
addition, we show that root frames are examples of a larger class of frames
called eigenframes.

1. Introduction and preliminaries

The goal of this note is to introduce and investigate the properties of a class
of �nite frames associated to root systems in Rd. We begin with the following
de�nition

Definition 1.1. A �nite subset R � Rd n f0g is a root system provided that

��(�) 2 R; 8�; � 2 R;

where �� is the re
ection through the hyperplane orthogonal to �{fx 2 Rd :
hx; �i = 0g{ and de�ned by

��(x) := x� 2 hx; �i�= k�k
2
; x 2 Rd:

In addition, R is said to be an indecomposable root system if it contains an
element that is not orthogonal to any element of R.

Since R is a �nite subset of Rd, there exists � 2 Rd such that h�; �i 6= 0 for all
� 2 R. Therefore, the set

R+ := R+;� = f� 2 R; h�; �i > 0g ;

is called a positive subsystem of R. Note that #R = 2#R+;� for all �. We refer
to [9, 10, 12, 13], for more details on root systems and to [15, 16] for some of their
applications in the theory of orthogonal polynomials.

The class of �nite frames we will investigate can now be de�ned as follows.

Definition 1.2. Let R = f�jg
2N
j=1 be a root system on Rd. The collection

�R = f�g�2R+ is called a root frame in Rd if R+ spans Rd.

Remark 1.3. (a) While root systems have been the subject of many inves-
tigations, to the best of our knowledge, their spanning properties has
received less attention. Nonetheless, we point out that a root frame in
Rd as de�ned above is the same as a rank d root system de�ned in [10],
and as an e�ective root system [12, Proposition 4.1.2].
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(b) The terminology indecomposable root system used in De�nition 1.1 (in
[10, Section 6.2]) seems not universal and seems synonym to the notion
of a regular root system.

(c) Given a root system R, we let W := WR = h��i be the (�nite) group
generated by the re
ections �� where � 2 R. W is called the Weyl (or
Coxeter) group associated to R, and is a subgroup of the orthogonal
group O(d), [13, Section 1.2].

(d) If � is a root frame for Rd, then, WR� = �. That is WR is a group of
isometries leaving � invariant. We note that the symmetry group of
(tight) frames was investigated in [18].

(e) A parameter function associated to the root system R is any function
k : R ! C which is W -invariant. Given such a positive parameter
function k and a root system R = f�jg

2N
j=1, we could consider a root

frame of the form �R;k = f
p
k(�)�g�2R+ . As we will show in the

sequel, this can be be viewed as scaling the length of each of the frame
vector � and can be understood in the context of scalable frames [7, 14].

In the rest of the note, we establish some properties of root frames including
their classi�cation. In addition, we prove that all root frames are scalable. Finally,
we show that root frames constitute a sub-class of a family of frames we called
eigenframes which can be viewed themselves as examples of fusion frames.

2. Root frames and their frame operators in Rd

In this section we prove some basic properties of root frames focusing on their
frame operators whose spectral properties seem quite unique compared to other
frames.

2.1. Elementary properties of root frames. Let �R be a root frame associated
to the root system R. The frame operator associated to �R will be denoted by SR
and is given by

(1) SR :=
X
�2R+

��T =
X
�2R+

h�; �i�:

When the root system R is �xed, we will denote the corresponding frame operator
by S when there is no confusion.

We next establish a number of properties of root frames. The �rst such result
shows that the associated frame operator is independent of the choice of the positive
root. Consequently, we will also assume that for a root frame �R = f�g�2R+ , the
positive roots system R+ is �xed.

Proposition 2.1. Let R be a root system and R+;�1 , R+;�2 two associated
positive root systems. Denote the corresponding frame operators by S�1 and
S�2 . Then S�1 = S�2 .

Proof. We start by observing that

S�1 =
X

�2R+;�1
��T =

X
�2R+;�1\R+;�2

��T +
X

�2R+;�1nR+;�2
��T :

Now for any � 2 R we must have � 2 R+;�i or �� 2 R+;�i for i = 1; 2. It
follows that for � 2 R+;�1 n R+;�2 then �� 2 R+;�2 n R+;�1 . It follows that the
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map �! �� is a bijection from R+;�1 nR+;�2 onto R+;�2 nR+;�1 : Consequently,X
�2R+;�1nR+;�2

��T =
X

��2R+;�2nR+;�1
��T

from which the result follows. �

Our �rst main result deals with the spectral decomposition of the frame operator
associated with a root frame. In particular, we show that each of its vectors is an
eigenvector of the corresponding frame operator. To the best of our knowledge,
except for tight frames, root frames seem to be the only class of frames with this
property. We note that in general, the frames whose vectors are eigenvectors of the
frame operator, are precisely the critical points of the frame potential [4, 17].

Theorem 2.2. Suppose that �R = f�g�2R+ is a root frame for Rd with frame
operator S. Then each frame vector � 2 R+ is an eigenvector for S with
eigenvalue �� given by(

S� = ���

�� := hS�;�i
k�k2 = 1

k�k2
P

�2R+ h�; �i
2
:

Consequently, the spectrum of S is f��; � 2 R+g and R+ contains a basis
of Rd consisting of eigenvectors of S.

Proof. We �rst observe that the frame operator can be written as

S =
1

2

X
�2R

��T :

In addition, S commutes with the action of WR. That is for each x 2 Rd and each
� 2 R we have

��(Sx) =
1
2

X
�2R

hx; �i��(�) =
1
2

X
�2R

h��x; ���i��(�) =
1
2

X
�02R

h��x; �
0i�0 = S(��x):

It follows that for � 2 R+

��T (S) = S(��T ) () �(S�)T = hS�;�i = (S�)�T :

Because S is symmetric we get S� = hS�;�i
k�k2 � = ���:

�

The following is a simple consequence of Theorem 2.2.

Corollary 2.3. Suppose that �R = f�g�2R+ is a root frame for Rd with corre-
sponding frame operator S. Let f�ig

r
i=1 be the list of the distinct eigenvalues

f��g�2R+ of S. For each i = 1; : : : ; r let(
Ri := f� 2 R+ : �� = �ig

Ei := spanRi

with di = dimEi.
The following statements hold.

(a) fRig
r
i=1 is a collection of pairwise orthogonal and WR�invariant sub-

root systems.
(b) For all i = 1; : : : ; r, Ei = ker(S � �i) and �i � di = #Ri;+:
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(c) If A � B denote the optimal frame bounds of �R, then

A �
#R+

d
� B:

(d) For each i = 1; : : : ; r, �Ri
:= f�g�2Ri;+

is a tight frame for Ei with
SRi;+

= �iIdEi
. Furthermore, if the root-system R is regular then the

root frame �R = f�g�2R+ is tight.

Proof. Part (a) is straightforward and we omit its proof.

(b) The fact that �i�di = #Ri;+ follows from taking the trace of the matrices
in:

�iIdEi
= SjEi

=
X

�2Ri;+

�
 �:

(c) Given that A;B are the optimal frame bounds, We see from the de�nition
that

Ad � trace(S) =
X
�2R+

k�k
2
= #R+ � Bd:

(d) The fact that �Ri
is a tight frame for its span Ei is trivial. It follows that

the root frame �R is tight if and only if R is a regular root system.

�

Another immediate consequence of the spectral properties of S is the construc-
tion of Parseval frames starting with any root system R. We recall that a frame
f'kg

N
k=1 � Rd is scalable if there exist fckg

N
k=1 � [0;1) such that fck'kg

N
k=1 is a

tight frame for Rd [7, 8, 14]. In the setting of root frames, the next result shows
that we can always rescale each vector in a root frame to obtain a Parseval frame.

Proposition 2.4. The canonical dual of the root frame �R is the root frame
generated by the same root system R and given by

~�R :=

�r
1

��
�

�
�2R+

:

Furthermore, ~�R is a Parseval frame and

1

d

X
�2R+

1

��
= 1:

Consequently, the root frame �R is a scalable frame.

Proof. Let S be the frame operator for the root frame �R. For x 2 Rd we have

Sx =
X
�2R+

hx; �i�:

Thus

x =
X
�2R+

hx; �iS�1� =
X
�2R+

1
��
hx; �i�:

�
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Remark 2.5. (a) If a frame f'kg
N
k=1 � Rd is scalable, then we can �nd

scalars fckg
N
k=1 � [0;1) such that fck'kg

N
k=1 is a Parseval frame. Con-

sequently, f'kg
N
k=1 can be viewed as a continuous frame for (Rd; J; �)

where J = f1; 2; : : : ; Ng � N, and � is the (discrete) measure de�ned on

J by �(k) = c
1=2
k [2, 3]. For an applications of the solution to the frame

discretization problem by Freeman and Speegle, see [11, Corollary 1.6].
(b) Because every root frame �R is scalable, we conclude that the ellip-

soid of minimum volume (also known as the L�owner ellipsoid) that
circumscribed the convex hull of f��g�2R is the unit ball [7].

(c) An interesting question we have not been to settle is the character-
ization of scalable frames that are also root-frames. This reduces to
proving that the group generated by the re
ections corresponding to the
frame vectors is �nite. See Theorem 2.6 for more.

2.2. Classification of root frames. In this section we classify all the frames of
unit-norm vectors � = f'jg

N
j=1 � Rd that are root frames.

Theorem 2.6. Let � = f'jg
N
j=1 be a frame for Rd such that k'jk = 1 for each

j. Suppose that C� is the group generated by the re
ections f�'jg
N
j=1: Let

R� := fg'j ; g 2 C�; j = 1; : : : ; Ng :

The set R� is a root frame if and only if the group C� is �nite. In this case,
the initial frame � is contained in the root frame R�.

Proof. Suppose that C� is a �nite group. Clearly, R� is a frame, since it can be
written as the �nite union of images of � under the re
ections g 2 C�. We only need
to show that R� is a root-system in Rd. Indeed, let �1 = g1'1; �2 = g2'2 2 R�

where with g1; g2 2 C� and '1; '1 2 �. We have

��1(�2) = �g1'1(g2'2) = g2�g�1
2

g1'1
('2) = h'2 2 R�

where h = g2�g�1
2

g1'1
2 C�.

The converse is trivially proved since assuming that R� is a root frame implies
that it is both a frame (hence a �nite set) and a root system.

�

Remark 2.7. Recall that the spark of a frame � = f'kg
N
k=1 � Rd is the car-

dinality of the smallest linearly dependent subset of � [1]. If � is a root
frame, then given k 6= ` there must exists j 6= k; ` such that �'k('`) =
�'j = '` � 2 h'`; 'ki'k. Thus f'j ; 'k; '`g must be linearly dependent and
hence the spark of the frame must be at most 3. Consequently, if a frame
� = f'kg

N
k=1 � Rd is such that every subset of three vectors is linearly inde-

pendent, then the frame is not (contained in) a root frame. This is the case
for any frame with spark greater or equal to 4.

2.3. Examples of root frames in Rd. In this section we give some examples of
root frames.

Example 2.8. (1) Let fe1; : : : ; edg be an orthonormal basis of Rd. Then,

R+ = fei � ej ; ei + ej ; 1 � i < j � dg [ fei; i = 1; : : : ; dg

is a positive root system of rank d called a type Bd root system.
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By considering its frame operator, one can show that R+ is a tight
root-frame (of d2 vectors) for Rd.

(2) Let Dn be the dihedral group of order n, n � 2. It is the group of
symmetries of a regular convex polygon of n vertices in the Euclidean
plan R2. If we identify z = x1 + ix2 2 C with z = (x1; x2) 2 R2 and set

w = ei�=n, then the rotations in Dn are the transformation rj : z 7!
zw2j and the re
ections are given by �j : z 7! zw2j, j = 0; : : : ; n � 1.
It can be proved that R+ =

�
i!j ; j = 0; : : : ; n� 1

	
is a positive root-

system that is also a tight root-frame for R2. Observe that this tight
root frame for R2 is related to the tight frames obtained by taking two
rows from the 2n� 2n DFT matrix.

(3) The symmetric group Sd operates on Rd by its action on the compo-
nents on the canonical basis. That is, for x = (x1; : : : ; xd) 2 Rd we
have

� x = (x�(1); : : : ; x�(d)) 8� 2 Sd:

Thus, the transposition (ij) plays the same role as the re
ection �ij
de�ned by par �ij(ei� ej) = �(ei� ej), where fe1; ::; edg is the standard
basis of Rd.

A positive sub root-system associated to Sd is given by

R+ = fei � ej ; 1 � i < j � dg :

One can show that 0 is an eigenvalue of the frame operator S of R+.
Consequently, R+ is an example of a positive root system that is not
a root frame.

3. Eigenframes

We end this note with an extension of the notion of root frames. From Corol-
lary 2.3, it follows that any root frame �R can be written as �R = [ri=1�Ri

where
R�i

is a tight frame for its span, and where fR�i
gri=1 are mutually orthogonal.

Consequently, a root frame is an example of fusion frame [5, 6]. In fact, we can
introduce a class of frames for Rd (or Cd) of which the root frames are examples,
and which is a subclass of fusion frames.

Definition 3.1. A frame � = f'kg
N
k=1 � Cd is called an eigenframe (EF),

provided that for each k, the vector 'k is an eigenvector of its frame operator

S := S� =
PN

k=1 'k'
�
k.

Assume that � = f'kg
N
k=1 is an EF for Cd. Let f�kg

r
k=1 denote the set of

distinct eigenvalues of S with

S'k = �k'k; 8k = 1; : : : ; N:

De�ne

(2) Ek :=
�
x 2 Rd; Sx = �kx

	
;

and let Pk denotes the orthogonal projection onto Ek. It is easy to see that for all
n we have

(3) Pn =
1

�n

X
'k2E�n

'k'
�
k;
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where E�n = � \ En.
It is straightforward to establish the following result which should be compared

to Corollary 2.3.

Proposition 3.2. Let � = f'kg
N
k=1 be an EF for Cd. The following statements

hold.

(a) For each n = 1; 2; : : : ; r

�ndn =
X

'k2E�n

k'kk
2
;

where dn = dimEn.
(b) For all u 2 E�n \ � we have

�n � c�(u) kuk
2
;

where c�(u) is the number of times u appears in �. In addition, equal-
ity holds in this inequality if and only if hu; 'ki = 0 for all u 6= 'k 2 �.

The following result is an extension of Theorem 2.2 characterizing EFs through
their frame operator. We omit its simple proof.

Theorem 3.3. Let � = f'kg
N
k=1 be a frame in Cd. Then the following state-

ments are equivalent

(a) � is an EF,
(b) S commutes with �'k for all k = 1; : : : ; N ,
(c) S commutes with 'k'

�
k = h�; 'ki'k for all k = 1; : : : ; N .

(d) There exist mutually orthogonal subspaces W1,: : : , Wr of Cd such that
Cd = �r

i=1Wi with Wi = Span(�i) where �i is a tight frame in Wi and
� = [ri=1�i.

Remark 3.4. (a) It is easy to extend Proposition 2.4 and to prove that
any eigenframe � is scalable. Indeed, if � = f'kg

N
k=1 is an EF, we

have S'k = �k'k. It follows that

IdCd =

NX
k=1

1

�k
'k'

T
k ;

which shows that f 1p
�k
'kg

N
k=1 is Parseval frame.

(b) If � = f'kg
N
k=1 is an EF, then its Gram matrix is block diagonal.
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