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We express Schubert expansions of the Chern-Mather classes for
Schubert varieties in the even orthogonal Grassmannians via inte-
grals involving Pfaffians and pushforward of the small resolutions in
the sense of Intersection Cohomology (IH) constructed by Sankaran
and Vanchinathan, instead of the Nash blowup. The equivariant lo-
calization is employed to show the way of computing the integrals.
As byproducts, we present the computations. For analogy and the
completion of the method in ordinary Grassmannians, we also sug-
gest Kazhdan-Lusztig classes associated to Schubert varieties in the
Lagrangian and odd orthogonal Grassmannians.
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The Chern-Mather class, defined by MacPherson [28], is one of the character-
istic classes of singular varieties, along with the Chern-Schwartz-MacPherson
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class, the Chern-Fulton class [13, Example 4.2.6] and the Fulton-Johnson
class [14]. These characteristic classes are significant in classical algebraic ge-
ometry, since they generalize the Chern class ¢(7T'X) of a nonsingular variety
X. For an irreducible, quasi-projective complex (possibly singular) variety
X embedded in a nonsingular variety Y, the Mather class ¢ps(X) of X is an
element in the Chow group (or homology) A.(Y') and defined through the
Nash blowup of X.

We consider Schubert varieties S(a), which in most cases are singular
varieties. In the case of the ordinary Grassmannians, so-called of Lie type
A, Jones [24] expressed the Chern-Mather classes of Schubert varieties by
integrations over Zelevinsky’s IH-small resolutions [40] (small resolutions
in the sense of Intersection Cohomology), without the Nash blowup and
computed the Mather classes by the use of equivariant localization. The
method relies on the irreducibility of the characteristic cycle CC(ICsy))
associated to S(«) in simply laced Lie types.

Sankaran and Vanchinathan [37] constructed IH-small resolutions of
Bott-Samelson type for Grassmannian Schubert varieties in types D and
C. Our goal of this paper is to express the coefficients of the Schubert
expansion for the Chern-Mather classes of Schubert varieties in even or-
thogonal Grassmannians OG (n,C?") of Lie type D, as in the category of
simply laced types, in terms of integrals involving Pfaffians along Sankaran
and Vanchinathan’s TH-small resolutions. When it comes to types B and
C, the expressions we found from IH-small resolutions for Schubert vari-
eties are for the Kazhdan-Lusztig classes investigated by Aluffi, Mihalcea,
Schuermann and Su [1, 2] as well as Mihalcea and Singh [29]. Essentially,
they turn out that Jones’ outcomes for the Chern-Mather classes coincide
with the Kazhdan-Lusztig classes [29, Page 15]. Since the Kazhdan-Lusztig
class is defined regardless of the irreducibility of characteristic cycles, we
further examine the Kazhdan-Lusztig classes of Schubert varieties in La-
grangian Grassmannians LG(n,C?") of type C, and in the odd orthogonal
Grassmannians OG(n, C*"*1) of type B, aiming to complete the direction
of Zelevinsky’s TH-small resolutions by Jones for classical Lie types.

Our main result describes the Chern-Mather classes of Sankaran and
Vanchinathan’s TH-small resolutions for Schubert varieties in the even or-
thogonal Grassmannians (type D), Lagrangian Grassmannians (type C), and
the odd orthogonal Grassmannians (type B). Since the Chern-Mather class
of a non-singular variety is the same as the total Chern class of its tan-
gent bundle, we present the total Chern classes of them explicitly, using the
universal subbundles as follows.
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Theorem 1.1 (Total Chern class of the IH-small resolutions). Let
Zy — S(a) be a IH-small resolution of a Schubert variety S(a) in types D,
C and B. Then the total Chern class of Zy 1is

(i) (Type D)

d
(TZy) = (H c(Uy/Wi)" @ (WiH/U,) - e (/\2(Ud+1/W5+1)v))
i=1

(ii) (Type C)

d
o(TZa) = (H C((Qi/wf)v ® (wﬁ/gz)) - C (Symz(UdH/MH)V))

i=1

(iii) (Type B)
d
o(TZa) = ([e(ws/wh)” © (wh/uy)
=1
: C((Qd-s-l/EdL-s-l)v ® (Qd{&—l/gd—&—l))
¢ (WUt [Wi1)") )-

The above theorem is analogous to the total Chern classes of the reso-
lutions Z, over Schubert varieties in ordinary Grassmannians Gr(k,C") of
k-dimensional subspaces of a n-dimensional vector space over C by Jones
[24, Theorem 1.2.2] as

(Type &) eni(Za) = (I, W/ Wh) © (W/UY)) -

Because of the isomorphisms of the odd orthogonal Grassmannians
OG(n,C**1) for type B and even orthogonal Grassmannians OG’(n +
1,C%*2) (or OG"(n + 1,C?"*2)) for type D, the IH-small resolutions of
Schubert varieties can be identified with the ones in type D. The isomor-
phisms allow us to be able to interpret any statements in type D as in type
B. We refer reader to later sections (§4.1,85.1,85.2) for undefined notations
in Theorem 1.1.

The Kazhdan-Lusztig classes of Schubert varieties in isotropic or orthog-
onal Grassmannians can be signified as the pushforward of the total Chern
classes ¢(T'Z,) of the tangent bundles of any IH-small resolutions Z,, paral-
lel to the Chern-Mather classes as the pushforward of ¢(T'Z,) [2, 24]. Since
there is no explicit computation for the pushforward of the Chern classes of
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the tangent bundles of the IH-small resolutions of singularity except type
A, we offer how to calculate them for the other classical types.

The localization theorem for equivariant Chow groups [6] is employed
to compute the pushforward to the corresponding ambient Grassmannians
of Schubert varieties. We adapt the work by Pragacz [32, 33] who showed
Pfaffian formulas for the (co)homology classes of Schubert varieties in Grass-
mannians of isotropic subspaces of a vector space equipped with a nonde-
generate quadratic or symmetric form, commonly known as Schur P or ()
functions in algebraic combinatorics, to find the coefficients v, g € Z of the
Schubert classes [S(8)] in m.car(Za). Here m: Zy — S(a) is the IH-small
resolution.

We obtain the following statements from the Bott Residue formula (The-
orem 4.9). Let T be a maximal torus in classical Lie types. By the restriction
of the T-action to a one-parameter subgroup C* C T with generic weights,
our formulas reduce to explicit computations of C*-equivariant Chern classes
c® (E) and the Pfaffians ﬁ;\c* (E) or @(f\: (E) for some C*-equivariant vector
bundles E over a nonsingular variety and partitions A = (Aq,...,As). We
define |[\| ;== A\ + -+ + As. Let F' be any connected components of Z, and
7ry : ATF — Ry is the push-forward map induced by the map 7 from F
to a point where Ryp is the T-equivariant Chow ring of a point.

Theorem 1.2 (Coefficients of Schubert classes).

(i) (Type D and B) Let Z, — S(«) be a IH-small resolution for a Schubert
variety S(a) in the even orthogonal Grassmannian OG’(n,C?") (resp.
OG" (n,C?")) or the odd orthogonal Grassmannian OG(n — 1,C*~1),
Then the constant v, g is the integration

Z C(E* (TZa|F) - P;,C(;q)\g(QV‘F) N [Fle.
Yo, = TF - 2
- Fezg” C(d: (TZa)

where d = dim(Zy), k = d — |p(n — 1)\B|, and U is the universal tau-
tological subbundle on OG'(n,C?") (resp. OG"(n,C?")) or OG(n —
1,Cn ),

(ii) (Type C) Let Zy — S(av) be a IH-small resolution for a Schubert variety
S(a) in the Lagrangian Grassmannian LG(n,C?"). The constant Yo 8
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s given by

s = Z o (TZ |F) p(n)\g(U |F)Q[F](c*

d (TZQ)

where d = dim(Zy,), k = d — |p(n — 1)\B|, and U is the universal tau-
tological subbundle on LG(n,C?").

In Theorem 1.2, the Pfaffians ]5/‘\C (U) or Q(c (U) are the square roots of
the determinants of a skew-symmetric matrix in ¢© (U). The exact defini-
tions of these Pfaffians will be discussed in §4, pg. 485- 489, and some useful
properties of Pfaffians can be found in [15, Appendix D]. The Chern classes
£ (TZ,) and Pfaffians P;C(;_D\Q(QV) and Qp(n \B( V) can be computed
by formulas in the (equivariant version of) intersection theory, for instance
[13, §3, A.9] and [24, Lem. 5.1.4]. The examples of these computations are
included in Sections 4.2 and 5.1. These formulas for the coefficients v, g are
analogous to the one for type A in [24] given by a

(c;S* (TZal) 55U ]1) m@)

(Typed)  Yap= > 7re -
o FEZS* cd (TZQ)
where s§(U") is the Schur determinant of the s by s matrix whose (i, j)
entry is c§:+j7i(Qv), d=dim(Z,), k =d—|BY|, and U is the universal tau-
tological subbundle on Gr(k,C").

In this manner, we eventually provide general explicit combinatorial
recipes calculating the Chern-Mather classes cps(S(«)) of Schubert varieties
in the orthogonal Grassmannians, which partially recovers consequences in
[29], and Kazhdan-Lusztig classes K L(S(a)) of Schubert varieties in La-
grangian Grassmannians, in respect of the (homology) class of Schubert
varieties S(3) C S(a) for some sequences o and 3.

The key ingredient of our proof is the existence of IH-small resolutions
for Schubert varieties. N. Perrin [31] classified all minuscule Schubert va-
rieties that admit TH-small resolutions. It would be interesting to compute
the Chern-Mather classes or Kazhdan-Lusztig classes of minuscule Schubert
varieties via the small resolutions of Perrin. Beyond minuscule (or comi-
nuscule) Schubert varieties in G/P, Larson [27, Section 4] made IH-small
resolutions for Schubert varieties associated to certain Weyl group elements
from TH-small resolutions for the other Schubert varieties in G/B. It would
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also be of interest to apply our methods to Larson’s resolutions, expanding
the computations of Mather classes to special Schubert varieties in G/B.

Beside our approach by IH-small resolutions and the advent of Pfaffians
for types D, B and C, Mihalcea and Singh studied Mather classes from
resolutions for the conormal spaces of cominuscule Schubert varieties in the
equivariant setting [29]. We also refer to [35, 41] for degeneracy loci of several
types.

As for the Nash-blowup, Richmond, Slofstra and Woo computed the
Nash-blowup of cominuscule Schubert varieties and gave explicit correspon-
dences between the Nash-blowup and the Zelevinsky’s IH-small resolutions
[36]. One may determine the Mather classes from their Nash-blowup of Schu-
bert varieties in all cominuscule homogeneous spaces by the original defini-
tion.

2. Chern-Mather classes and Kazhdan-Lusztig classes

In this section we review some basic facts on Chern-Mather classes of cer-
tain complex algebraic varieties and Kazhdan-Lusztig classes of Schubert
varieties in G/P taking resolutions into account. Main references for this
section are [28] and [24, §2-§3], but we occasionally use [5, 19, 29].

2.1. Mather classes by resolution of singularities

Let M be a smooth algebraic variety over C and X an irreducible closed
subvariety of dimension n in M. Let Gr(n,TM) — M be the Grassmannian
bundle over M. The Gauss map G : X --» Gr(n,TM) is a rational morphism
that assigns a smooth point x to the tangent space T, X of X at the point .
The Nash blowup X of X is the closure of the image of G, and the tautological
Nash tangent bundle T is the restriction of the tautological sub-bundle of
Gr(n,TM) to the Nash blowup X.

Provided the Nash blowup v : X — X the Chern-Mather class cpr(X)
of X is defined to be

err(X) = v, (C(T) N [5{’]) e A (X).

If X is smooth, the tautological Nash tangent bundle 7 becomes its tangent
bundle T'X so that the Chern-Mather class cp/(X) is equal to the total
homology Chern class of X, i.e.,

err(X) = e(TX) N[X].
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One can use the functoriality of the Chern-Schwartz-MacPherson class
along with resolution of singularities to compute the Mather class in the
place of the Nash-blowup that does not have the functorial property. We
recall the definitions and notions of the local Euler obstruction and the
Chern-Schwartz-MacPherson class before we express the Mather class as
Chern-Schwartz-MacPherson classes.

Let X be a proper subvariety of a (quasi-projective) complex variety ).
We denote by Bl :)' — ) the blowup of ) along X with the exceptional
divisor &€ of BI. The Segre class s(X,)) of X and Y is given by

s(X,¥) = (Bllg). Y (-1)77" [€7] € Au(X),

Jjz1

where [€7] := ¢1(Oy (€))7~ N [£]. Given a fixed point p in X, the local Euler
Obstruction of X at p is the number

(2.) Bux) = [ eThg) 150700, %)

by Gonzalez-Sprinberg and Verdier [16] where s(v~!(p), X) is the Segre class
of v~1(p) in X. In fact the original definition of the local Euler Obstruction
is defined topologically by MacPherson. We note that Euy (p) = 1 if a point
p is smooth in X.

Let F,(X) be the group of constructible functions on X and Iy the
characteristic function of W for a closed subset W C X. The elements of
F,(X) are expressed as a finite sum ) .a;1w, for a; € Z and closed sub-
sets W; C X. We observe that the local Euler obstruction Euyx : X — Z is
constructible with respect to a Whitney stratification of X. Namely the func-
tion Eu(ly)(p) assigning Eupy (p) if p € W and 0 otherwise can be extended
linearly as a basis of Fi(X).

Taking for granted that f: X — Y is a proper morphism, the push-
forward fi : Fi(X) — Fi(Y) induced by f is defined to be f.(1w)(p) =
x(f~1(p) N W) where x is the topological Euler characteristic. The main
result by G. Kennedy [26] is the existence of the unique natural transforma-
tion ¢, : Fy — A, in the sense that firstly,

(2.2) co(1x) = o(TX) N [X]
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if X is smooth and secondly, the following functoriality holds: for any proper
morphism f:Y — X, the diagram

F.(Y) —= A(Y)

|~ |~

F.(X) —55 A(X)

commutes. Let W be closed in X. The Chern-Schwartz-MacPherson (CSM)
class cgp (W) of W is defined by the image of the characteristic function
1y under the transformation ¢, as

csm(W) = c(Twy).

We can also define the CSM class for locally closed subsets S of any fixed
variety M. That is, if S = X\Y for closed subsets X and Y in M, the CSM
class of S' can be attained by

CSM(S) = CSM(X) — CSM(Y).

In regard to a proper morphism ¢ : M — N satisfying that i, is injective, we
may write cgpr(S) for ixespr(S) € Ax(N). In fact, the injectivity of i, may
not be necessary if {W;} are the Whitney stratification of N and M = W;
is the closure of W;. In this case, since 1g is also constructible in N, c¢sas(S)
can be viewed as an element in A, (N).

The local Euler obstruction Euy € F,(X) on X can be viewed as a
finite sum }; e; 155~ of characteristic functions for any stratification {W;}
of X where by definition e; is the local Euler obstruction Eug-(p) of W;
at any point p € W;. Since the Mather class cj;(X) can be seen as to the
transformation, i.e., cpr(X) = cx(Eux), we have the Mather class

(2.3) e (X) = c*(z eilyy) = Z eici(lyy) = Y _ eicanr (W)

of X in connection with CSM classes.
We consider a Whitney stratification {W, }ier of a variety M = U;eWV;
for an total ordering index set I such that

1) W; C W; if and only if i < j for 4,5 € I, and
2) X =W;, for some ig € I.
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Let m : Z — X be a resolution of singularities of X. We assume the existence
of resolutions of singularities m; : Z; — W; on each stratum W; for i € I
and the restriction of the resolutions m; on any stratum W; C W; as a fiber
bundle. Let d; ; denote the topological Euler characteristic x(m; ' (p)) of the
fiber of the resolution 7 over any point p in some strata Wj; for 4, j € 1. Then
we land at

—
o
Nl

(24)  (m)wem(Zi) = (mi)esm(Z;)
b (c)
= (mi)eca(lz) = cu(m)a(lz,) =Y dijca(Iw,).

j<i

—
=

Here the first equality (a) comes from the fact that the Chern-Mather class
coincides with CSM class if the variety is nonsingular, the second equality (b)
is by definition and the third one (c¢) by the naturality of the MacPherson
transformation cy.

2.2. Mather classes via IH-small resolutions

Let X be an irreducible subvariety of a smooth complex algebraic variety M.
By [17, §1.1], X admits a stratification, so that we can define the intersection
cohomology (IC) sheaf of X denoted by ZC% [18, Intro.]. The ZC-sheaf of X
is constructible with respect to any Whitney stratifications of M [24, §3.1],
and it is a (middle perversity) perverse sheaf on M.

A resolution 7 : Z — X is IH-small (in the intersection cohomolgy sense)
if

codim {p € X | dim 7 1(p) >4} > 2i

for all ¢ > 0. This resolution is referred to by Totaro [39] as the IH-small res-
olution whereas Goresky and MacPherson [18] originally calls it the small
resolution. A conceivable reason to adapt name for 7 as the IH-small reso-
lution likely stemmed from the property that the intersection homology of
X is isomorphic to the ordinary cohomology of Z.

We use H*(X; C) to denote the ordinary cohomology of X with complex
coefficients. Let D?(X) be the constructible derived category on a (quasi-
projective) complex variety X and Rf, : D®(X) — D?(Y) be the right de-
rived functor of the direct image functor for f : X — Y of (quasi-projective)
complex varieties. Let Cy be the constant sheaf in degree zero having stalk
C at all points of Y. If M is a smooth complex algebraic variety of the di-
mension m, then we have ZC%; = Cp/[2m] where F[n]’ indicates the complex
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FiFm of sheaves F*. One may refer to [18] for these notations. The topolog-
ical relation between the locus Z and the base variety X can be found in
the following proposition by Goresky-MacPherson.

Proposition 2.1 ([18, §6.2]). Let X be a d-dimensional irreducible com-
plex algebraic variety. If m : Z — X is a IH-small resolution of singularities,
then Rm.Cz[2d] = IC%. In particular for a pointp € X,

Xp(ZCX) = D _(—1)idim H (7' (p); C) = x(7~'(p))

%

where x,(ZC%) denotes the stalk Euler characteristic of IC-sheaf at the
point p.

Let X = U;crW; be a subvariety of M for the total ordering index set
I. The sheaf ZCx can be viewed as a perverse sheaf on M (via pushfor-
ward), hence its characteristic cycle CC(ZC%) lives in the cotangent bundle
T* M. Furthermore, the characteristic cycle of ZC-sheaf can be written as a
(conical) Lagrangian cycle

CC(ICY) =Y w(ZC%) - [Ty, M]

iel

an element in the free abelian group generated by the conormal cycles
T;VM] of W; (cf. [7]). Here the integer ;(ZC%) is the microlocal multi-
plicity of ZC% along W;. The cycle may be discussed in the perspective of
the category of holonomic Dx-modules [9, §5.3] or topological link spaces
[9, Section 4.1]. For the IC-sheaf ZC%, the local Euler obstruction along the
J-th stratum W; in the closure of W; can be related to the microlocal mul-
tiplicity of ZC% and the stalk Euler characteristic x;(ZC%) = xp,(ZC%) for
p; € W; as follows. (cf. [10, Theorem 3], [25, Theorem 6.3.1].)

Theorem 2.2 (Microlocal index formula for ZC-sheaf). Foranyj € I

G(ICK) = Y (1) Eugy, (W) - %(ZCY)
i€l

where n; is the dimension of W;.

We mainly focus on the case where the variety X = W, C M for some
19 € I admits a [H-small resolution 7 : Z — X, especially on the subject of
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Chern-Mather classes of X. We say that the characteristic cycle of ZC% is
irreducible if

CO(ICY) = [T* M} .

With an irreducible characteristic cycle of ZC%, the proposition below tells
us a direct connection between the local Euler obstruction and the topolog-
ical Euler characteristic d; j (2.4) of the fiber of the resolution.

Proposition 2.3 ([24, Proposition 3.2.3]). Letnw:Z — X be a IH-small
resolution of singularities and the characteristic cycle of IC% is irreducible.
Then we have

diy,j = Bux (p;)
forp; € W;.

Under the assumption that the characteristic cycle of ZC% is irreducible,
the Chern-Mather class of X can be achieved by a IH-small resolution of X
as follows.

Theorem 2.4 ([24, Theorem 3.3.1]). The Chern-Mather class of X is
the pushforward of the total Chern class of the variety Z as

e (X) =mee(TZ).

Proof. Since Z = Z;, and X = X;,, we have

209

(c)
ZEUW p] C* Zdzo,jc* 7, = W*CSM(Z)

J<io

(d)
= m.c(TZ)

where the equality (a) follows from (2.3), the second equality (b) by Proposi-
tion 2.3 and the third equality (c) by the equation (2.4). Lastly the smooth-
ness of Z guarantees the equality (d) by means of (2.2). O

2.3. Kazhdan-Lusztig classes of Schubert varieties

Let G be a complex semisimple Lie group, P a standard parabolic subgroup,
B a Borel subgroup, and B~ the opposite Borel subgroup, with a maximal
torus T'= BN B~! such that T C B C P. Let W := N(T)/T be the Weyl
group of G where N(T) is the normalizer of T'. To be specific, our attention
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focuses on a classical group G, which is SL(n) for type A, Sp(2n) for type
C, SO(2n + 1) for type B and SO(2n) for type D with their Weyl group
WA WS WE and WP.

For a classical group G, we denote by G/P the generalized flag manifold
and Wp C W the Weyl group of P. Let W be the set of minimal representa-
tives of the coset W/Wp, so that it has a role of an index set for the T-fixed
points (G/P)T. It is notorious that there is a one to one correspondence
between an element w, € WP and a partition o = (1 < oy < --- < @) for
some s: for instance in type A, the Weyl group W2 is identified with the
symmetric group S, so that an element w, € WF C S, defines a partition
a by setting asy1-p = n — w(k) + k and vice versa. So we may use « for the
element w, € W by abuse of notation.

Let S(a)° := BwyP/P be a Schubert cell in G/ P for w, € W¥. For the
length function ¢ : W — N, the Schubert variety S(a) whose dimension is
l(wgy) is the B-orbit closure Bw, P/ P of a T-fixed point p, := woP/P. The
Schubert variety associated to the longest element w, € W can be treated
as a homogeneous space G/ P that possesses a Whitney stratification by its
sub-Schubert varieties S(3) for wg < w, in Bruhat order.

The Kazhdan-Lusztig (KL) class of a Schubert variety S(a) in G/P is
defined by

(2.5) KL(S(@) =Y Pas()esm(S(8)°)
B

where P, g(q) is the Kazhdan-Lusztig polynomial. The KL class of a Schu-
bert variety turns out to be the pushforward of the total Chern class of the
TH-small resolution.

Theorem 2.5 ([1, Section 6, pag. 10]). Let S(a) be a Schubert variety
and w: Z — S(a) a IH-small resolution of singularities over S(a). Then

KL(S(a)) = mec(TZ).
Proof. We know from [21, Theorem 12.2.5] that

Pa,g(1) = Y_(=1)'dim }/(ZC(S(2)))p,
J
where H7(ZC(S(a)))p, indicates the stalk of the j-th cohomology sheaf

HI(ZC(S(a))) of the ZC-sheaf of the Schubert variety S(a) at a T-fixed point
ps- Notably, HI (ZC(S(a)))p, vanishes for odd number j. Proposition 2.1 and
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[40, Proposition 1] yield that the stalk 7 (S(@))ps
cohomology H’ (Tr_l(pg); C) to get

is isomorphic to the j-th

Xps (ZC5(a)) = Fa,p(1)-

Let do g = X(ﬂ'_l(pé)). Owing to (2.4) and Proposition 2.1 we have

me(TZ) = dapes(Ise) = Y Pap(Desar(S(8)°)
B<a BLa
= KL(S(a)).
O

We observe that the characteristic cycle CC(ZC%) of the ZC-sheaf is
irreducible if and only if the Kazhdan-Lusztig polynomial evaluated at ¢ = 1
gives the local Euler obstruction

Py (1) = Buga)(ps)

for 8 € WF, which entails KL(S(a)) = cam(S(a)).

3. IH-small resolutions of Schubert varieties in the
orthogonal Grassmannian OG(n,C?")

Throughout this section, we largely refer to [24] for some notations and
structures and [37] for Sankaran and Vanchinathan’s TH-small resolution for
Schubert varieties inside the even orthogonal Grassmannians of maximal
isotropic subspaces.

3.1. Schubert varieties in Grassmannians of type D

Let G = SO(2n) be the special orthogonal group in dimension 2n over C.
Let V be a vector space of rank 2n over C, equipped with a nondegener-
ate quadratic form. An isotropic subspace L of V is a subspace of V such
that L vanishes on the form, in other words, L C L+ with respect to the
symmetric form associated to the quadratic form. The projective homoge-
neous space G/ P can be characterized as the even orthogonal Grassmannian
OG(n, V) that parametrizes the maximal (rank n) isotropic subspaces of V.
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We consider a complete flag of isotropic subspaces
0CVNC - CVoC(Vp) CoCc()-CV

of V where (V;)* = Va,_; and the rank of V; is 4. Let a = (1 < a1 < as <
.-+ < ag < n) be a sequence of positive integers such that n — s is even.

For a fixed flag V,,, C--- CV,. CV in the partial flag FI”(a;V) of
isotropic subspaces, the Schubert variety S(a/) is given by the closure of the
locus called Schubert cell

S(@)° ={L|dim(LNV,,) =iforalll <i<s}
C OG'(n,V) (resp. OG" (n,V))

associated to a. The dimension of the Schubert variety is >, a; +n(n —

1
s) — =n(n 4+ 1). In principle, the rank conditions may contain the case of
Vo, = Vi, to satisfy

dim(L N V,) =n (mod 2) (resp. dim(L NV,) =n + 1 (mod 2)).
We say that the maximal isotropic subspace L for the first case is in the
same family as V,, and the later in the opposite family. Moreover, there is

another Schubert variety S(3) associated to a sequence 3 = (1 < 31 < 32 <
-+ < B <n) so that S(8) C S(a) isif s <rand ag > B1,...,as > Ss.

3.2. IH-small resolutions of Bott-Samelson type
Given a Schubert variety associated to a, we can extract two sequences a =
(a1,...,aq) and q = (1 < -+ < qq) such that a; is the length of consecutive
numbers in «, g; is the last number of the block from «. The equations for
the Schubert variety S(a) define the closure of

S(a)® ={L|dim(LNV,)=a;+---+ajforl <i<d}
associated to the 2 x d matrix of the form either

53:—{% Qd] or [cn g n} ’
al e adg al .. ad ];g

based on its family. The following example illustrates the matrix.
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Example 3.1. Let n =7 and o = (2,3,5). The matrix for the Schubert
variety S(a) in OG'(n,V) is

3 5

2 1

S
I

of d =2.
We additionally have a sequence b = (by,...,bs_1) from § by setting
bi-1 =i — qi-1 — a

for 1 <i<d and by =n — qq with gy = 0. In order for a IH-small resolu-
tion for S(a) to exist, there are two conditions imposed on «, a,b and q
that for a sequence «, either oy <n — s or ay =n,as_1 < n — s holds for
s> 2, and that gy <n —ag and gz + (a; +---+aq) <n+ (b + -+ +bg_1)
are fulfilled for 7 > 1. Under the suppositions, we can build the IH-small
resolution of singularities for S(«) inductively as follows. For notational con-
venience, we choose a Schubert variety in OG’(n, V') but one can read this
with OG"(n, V).

The first step is to pick the smallest ¢ so that b; < a; and a;4+1 < bjy1.
(One may let ap = oo and by = 00.) We then take any subspace U; of V
of dimension g; + a;1 such that V,, CU; CV,, . For a fixed partial flag
0CV,C---CV, ,CU CV,,, C-CV,,, the Schubert variety S(a')
is defined by the closure of

S(e')° ={L|dim(LNV,)=a1+-+a;jforj#i,i+]1,
dim(LﬂUl) =a —|—"'(li+1}.

Let us consider the locus

Zy ={(U1,U) | Uy € Gr(aiz1,Vg,,/Va,), Ve, CULU € S(ah)}
C OG(q; + aiy1,V) x OG'(n,V)

with the second projection
p:Gr(ai1, Vg, /Vy,) x OG'(n, V) — OG'(n,V).

qit1
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The restriction of the projection mg = p|z, : Z1 — S(a) on Z; is a surjective
birational morphism. Given the matrix

Go= |1 %t Giv1 it2

ap o G+ 041 Qg2 ol

associated to the variety S(al), we iterate this process to get the desingular-
ization 7 : Zg — S(a) as the composition of the morphisms m; : Z;11 — Z;.
Here Z; is a subvariety of a product of G/Q); for a certain maximal parabolic
subgroups @), i.e.,

Zg={(U4,Ugr,- -+, UL, U) | U € Gr(ajpa, W}H/W)),
W} CU;, U eS(ah)}

in G/Q1 x -+ x G/Qq x OG'(n, V) for each j € {1,...,d}.

We notice that the variety Z; relies on the incidence condition WjL -
U; C W]-R at each procedure and the last incident condition for U = Uy be-
comes I/VdLJrl C Ugy1 C V. The following example gives the manner of finding
the IH-small resolution.

Example 3.2. Let G = SO(28) and V be a vector space of dimension 28
over C. Let 0C V3 C--- C Viy of V denote a fixed (isotropic) partial flag
whose subscript indicating its dimension, dim(Vj) = k. We select i = 0, 1,2
in this order to have a IH-small resolution for S(«) associated to the matrix

H= B Eli ﬂ . To begin with, we obtain the following variety
a

Zy ={(U,U)| 0C Uy C V5, U eS(a")}

in OG(2,V) x OG’(14,V) where S(a!) is the closure of the locus defined
by dim(L NVg) = 3 and dim(L N Vg) = 4 associated to a new matrix £; =

2 . .
[2 (15 ﬂ . The next stage brings us to the variety
O{l

Zy ={(U1,U,U) |0 C U, C V3, Uy C Uy C Vi, UeS(a?)}

in OG(2,V) x OG(3,V) x OG'(14,V) with the variety S(a?) associated to

9 = B ﬂ . Finally we acquire the resolution Z = Z5 as

o2

Z = {(Ul,UQ,U3,U) | 0cU, cVs, Uy CU; C Vg,
Uz CUs C Vs, U€S(’)}
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for S(a) inside OG(2,V) x OG(3,V) x OG(4,V) x OG’(14,V). Here S(a?)

j . As U € S(o?) implies the closure of the locus of
b

dim(U N Us) = 4, we may replace the condition by Us C U C V. Thereupon,

the TH-small resolution for the Schubert variety S(a)) becomes the locus

is associated to 3 =

Zd:{(Ul)U27U37U)’0CU1C‘/37 UICUQC‘/ﬁ7
Uy CcUsC Vg, UgCUCVY,

with the projection Z — S(a) sending (U1, Us, U3, U) to U.

From now on we write Z, in lieu of Z;. To sum up, the following theorem
is the overall aftermaths pertaining to the IH-small resolution for Schubert
varieties.

Theorem 3.3 (Sankaran and Vanchinathan). Let S(a) C OG'(n,V)
(resp. OG"(n,V')) be a Schubert variety associated to a strictly increasing
positive sequence « of length s where n — s is even. Let §) be either

[(h Qd} o [Ch SRR n]
a]_ DY a/dg a]_ “ e ad 1g
Let either ag <m — s oras =n,as_1 <n—s fors>2. Letqg < n — aq and
(ad+--'+ai)—(bd,1+--'+bi)<n—qdf0ri21. Then

1) Z4 is a nonsingular projective variety.

2) The projection 7 : Zg — OG'(n, V') is proper whose image is S(a) and
isomorphic over S(a)°, so that it is a resolution of singularities.

3) m: Zy — S(a) is the IH-small resolution.

The sequences a and b from « can be represented by a piecewise func-
tion y = |z| in the zy-plane whose ascending and descending segments
are bg,...,bg_1 and ay,...,aq respectively. It has known that if we have
S(B) C S(a), then the piecewise graph y = (x) for 8 lies below the one
y= a(z) for a. The graph of these functions is depicted as Figure 1 with
b=(3,1,2) and a = (3,2,1) for o and b = (0,2,2) and a = (3,4,1) for 3.

A capacity is a sequence ¢ = (cy,...,cq) of integers encoding 1/ V2 of
the distance measured vertically from the local minimums to the graph of
y = B(x). It is advantageous to set ¢p = 0. In Figure 1, the capacity is ¢ =
(0,2,4,4).
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Figure 1: (9, R)-sequence

Let 7: Zy — S(a) be the IH-small resolution. In the event that U is
a point inside of the Schubert cell S(3)°, the Euler characteristic dg ¢ =
x(m~1(U)) of the fiber over a point U € S(B)° is obtained by the following
formula. B

Theorem 3.4 (Sankaran and  Vanchinathan). Let $:=

qg1 - d4d qg -+ 4a N .

h b= e, b
[CH adL[ or [al e ay 1]a with a sequence (boy .-, ba—1)
and capacity ¢ = (co,...,cq). Suppose that i is the smallest integer such

that b; < a; and a;+1 < b1 with H1 as above. Then we have

ail_ci+ci bi—i—ci—cil
B o iariu) | (s D0

>0 Cit1 1
where c(t) = (co, ..., Ci—1,t,Cit2,...,Cq)-

We remark that the IH-small resolution 7 enables the function dg
on the Schubert variety S(a) to agree on the local Euler obstruction. The
following proposition is useful for the computation of the Chern-Mather
classes of Schubert varieties in the even orthogonal Grassmannians.

Proposition 3.5. Letw : Z, — S(a) be a IH-small resolution of a Schubert
variety S(a) in OG'(n, V') (resp. OG"(n,V)). The following statements are
equivalent.

1) A point U € S(B)° C S(a) is smooth in S(a)

2) m=Y(U) is a point
3) dge=1
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4) The capacity c is the sequence (0,...,0)

Proof. We prove the direction of (4) to (3), as the rest can be found in [24,
Proposition 4.2.6]. Suppose ¢ = (0,...,0). It follows from the construction
that ¢ must be 0. In this way dg ¢ = dg, ¢(0) Via

a; +c¢j—cj-1 _ bj,1 —cj+tcj1 1

Cj — 0 Cji—1 — 0 '
By induction, dg, ) =1 is deduced by (co,...,¢j-1,0,¢j11,...,¢q) =
(0,...,0). Henceforth, the result follows. O

4. Chern-Mather classes for Schubert varieties in the
orthogonal Grassmannian OG(n,C?")

In this section we formulate an integration and its computation for the
Schubert expansion in Chern-Mather class of Schubert varieties for type D
in analogy to the version of type A by Jones [24]. Our type D Chern-Mather
class formula involves wedge products and Pfaffians (or Schur P-functions)
that are a major different part from type A.

4.1. Total Chern class of the IH-small resolutions
Recall V = C?" and the TH-small resolution

ZQ: {(UlaUQa .- ~7UdaUd+1) | WiL C Uz C I/I/Z'R,Wj_i_l C Ud_;,_l C V}
d+1
c X :=]]OG(k;,V) for1<i<d
j=1

for a Schubert variety S(a) in the even orthogonal Grassmannian OG’(n, V)
(or OG"(n,V)), where kgy1 =n with the projection map pr;: X —
OG (k;, V). Let V,; be the isotropic subbundle of rank i on X whose fiber
is V; from V, and U, the universal isotropic subbundle of V on OG(k;, V).
By abuse of notation the subbundle can be seen as the pullback under the
projection pr; to X and Z,.

We define EZL and EZ-R to be the isotropic subbundles of V on X, with a
fiber over a point U, as WiL and Wl-R respectively. Since Z, has the incidence
relations WZ»L cU; C WZ-R for 1 <i<d and WdL+1 C Ugq1 C V, there must
be corresponding incidence conditions for the isotropic bundles on Z, as
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WEcU, cWEF for 1<i<dand Wk, C U,y CV, in which WF and
WE are either an isotropic subbundle V; or a universal subbundle U,.

Let XU) .= [, OG(k;,V) and denote by p;: X — X the projec-
tion map assigning (U, ...,Uqgy1) to (Ui,...,U;) for 1 < j < d+ 1. We set
Z0) = p;j(Zy), having the natural projections 7@ — ZW for j > 1. Above
all, each ZU) can be viewed as a (ordinary or orthogonal) Grassmannian
bundle on ZU=1 as follows.

Proposition 4.1. Let l; = k; — dim(W}). For 2 < j < d, the natural pro-
jections ZU) — ZU=1) is o Grassmannian bundle with a fiber identified with
Gr(l, I/VJR/WJL). In case of j = d + 1, the fiber of the map Z(4+1) — Z(d) ¢qp
be considered as OG (kqy1, (WE 1)L/Wtf+1). Furthermore ZW) is isomorphic
to the Grassmannian Gr(ly, W{t/WE).

Proof. Tt is known from the construction that
ZU) = {(Uy,...,U;) | WE cU; c Whfor1 <i<j}c X9,

By the constraint k; 4+ aj11 < n for 2 < j < d of the IH-small resolution, all
WiR are subspaces of the maximal isotropic subspace V,, which is trivial as
isomorphic to C™. As a result, the fiber

{U; |W} cU; c Wf'} C OG(k;, V)

of ZU) — 7=V over a point (Uy,...,U;—1) € ZU~Y is the ordinary Grass-
mannian Gr(l;, W]R/W]-L).

When it comes to the projection map Z@1) — Z(@ we have the fiber
as

(4.1) {Uar | Wity CUgpa C V3

Since Ugyq is isotropic, we earn the inclusion Ugyq C (V[/C{js_l)L auto-
matically. Consequently (4.1) must be the orthogonal Grassmannian
OG(lay1, (Wcﬁ-l)L/Wc{l—kl)'

Knowing that WlL and WlR are also subspaces of V,,, the last part of the
proposition is verified. U

Let £ — Y be a rank n vector bundle of a smooth variety Y. Let 7 :
Gr(k,E) — Y denote the ordinary Grassmannian bundle of k-dimensional
subspaces of the fibers of E over Y. The cokernel of the imbedding of 7~ 'TY
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in TGr(k, E) is the relative tangent bundle T, (1, g)/y over Y, producing
0 — 7 'TY — TGr(k, E) — Tgy(k,p))y — 0.

Let S be the subbundle of the pullback 7~ *(E) and let @ be the quo-
tient bundle on Gr(k, E). Then by [13, B.5.8] the relative tangent bundle
Tar(k,E)/y is canonically isomorphic to

(4.2) Hom(S,Q) =S¥ ® Q.

This isomorphism was used by Jones [24] for type A. When Y is a point,
the Grassmannian bundle becomes the classical Grassmannian [12, Section
6]. Principally, we can make a connection with a classical geometry about
tangent spaces of Grassmannian Gr(k, F) of k-planes in a vector space E
of dimension n over C: for a subspace A in Gr(k, E), the tangent space
of Gr(k,E) at A is naturally isomorphic to Hom(A, E/A) = AV @ E/A [20,
Example 16.1].

Likewise of the ordinary Grassmannian case, we consider a vector bundle
& — Y of rank 2n over a smooth variety Y where & is equipped with the
quadratic form ¢ on it. Let OG(k, &) be the orthogonal Grassmannian bun-
dle of dimension k subspaces in the fibers of & over Y. Let p : OG(k, &) — Y
be a projection map from OG(k,&) on Y and . the rank k isotropic sub-
bundle of p~!(&). Then we obtain the following general fact regarding the
relative tangent bundle Tog, £) /v -

Lemma 4.2. The relative tangent bundle Tog )y fits into a split exact
sequence

0— 2 0L S = Togueyy — N L —0,

so that we have
Tocte)yy = (LY @ L)L) &N LY.

Proof. We provide a proof of what seems to be this folklore lemma, inspired

by [30, Lemma 3.1] which is originated from Harris [20, Example 16.1].
Let Gr(k,&) — Y be the (ordinary) Grassmannian bundle of dimen-

sion k subspaces in the fibers of & over Y. Then we have Togr.g)/ v —
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Tarke) )y = SV @ &/S. We define a map
¢0: L' 0E|S - L 0S

of vector bundles by ¢ = ¢ ® v for the identity map ¢ :.#" — . and the
map

Vi E)S = E)S =SV

Since Togke)/y 1s the inverse image ¢~'(A? .2Y) of the wedge square
A? #Y from the symmetric form associated to the quadratic form ¢ for
&, we have a surjective restriction map

. 2 \Y
¢|TOG(k,§)/Y . TOG(k,ﬁ)/Y - N L

of ¢ to Tog(k,e)y for NV V@Y. As the kernel ker(¢) =.7Y @
ZL/Z of ¢ is included in Tpg(x,¢)/y by its definition, putting all together
proves the lemma. O

In the same manner of [12, Section 6] we have a classical version for the
tangent spaces of orthogonal Grassmannian at a point.

Corollary 4.3. For k <n, let OG(k,&) be a orthogonal Grassmannian of
isotropic k-planes in a vector space & of dimension 2n. Let A € OG(k, &)
be a k-plane. Then we have a natural identification

TAOG(k,&) = (A @ AT/A) @ A2AY.

The above corollary is an analogy as to the tangent space of isotropic
Grassmannians shown in the proof of [30, Lemma 3.1]. The following the-
orem exhibits the Chern class of the tangent bundle of the locus Z, with
respect to universal bundles on X.

Theorem 4.4. Let Z, — S(a) be the IH-small resolution for a Schubert
variety S(a) € OG'(n, V) (or resp. OG" (n,V)) associated to o € WT. Then
the Chern class of TZ, is given by

d

A(TZy) = [ [ (Ui/ W)Y @ (WF/U))e (N (Ugir/Wh)Y)
=1

Proof. We know from Proposition 4.1 that ZU) is an ordinary Grassmannian
bundle over ZU—1 for 1 < j < d. Thence, the similar argument in the proof
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of [24, Theorem 4.3.3] works. Particularly we attain

d
(TZ2Y) = [[e(U/Wh)Y © (WE/T)).
=1

Recall that lgy1 = kqp1 — dim(W}, ;) and Z (@+1) is an isotropic Grass-
mannian bundle over Z(@ . These implicate

Z(d+1) ~ OG(lgs1, (Efl}l) /Wd-‘rl)

with the projection map OG (lg41, (WdH)J-/WdH) — Z@ restricted by the
map ¢ : X@D — X Since U, 11 JWE '\ 1 is the universal subbundle of
OG(lgy1, (EdLH)J-/MH), by Proposition 4.2 we have a canonical isomor-
phism

TOG(ld-H (Wd+1) /W?H)/Z(d)
= (U1 /Wi1)" © (U /W) /Ugir /W)
O N (Ugsr /W)Y

As (Ugyy /WE DY /U gy /WEL | is trivial, we arrive at

(TG w, ) jwr, ) jzw) = (N (Ugsr /Wii1)Y)
as desired. O

As to Schubert varieties, Pragacz [32, 33| validated that the cohomology
class for the varieties in orthogonal or symplectic Grassmannians can be
decided by Schur P or Q-functions which are certain universal polynomials
in Pfaffians. Let us look into these two families of polynomials.

The first family is about the Q-functions. Let A = (A\; > ... > Ay) be a
strict partition whose length ¢()) is N. For k # [, we set

l

(4.3) Qu(E) = cx(E) Z Y ek (E) - a—j(E),

satisfying @kk(g) =0 and~@kl( ) = —Qux(E) in the Chow group A, (Y) of
Y. Specifically Qi (E) := Qro(E) = cx(E) for k > 0. Assume that N is even.
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If not, we may put Ay = 0. Then we define

QN(E) := PE(Q, (E))1<icjcn

where Pf indicates the Pfaffian of the skew-symmetric matrix. The Pfaffians
Q) form a basis of the ring

(4.4) L =Z[Q1,Qo,..]/( Qk+22 1) QrsjQrj, k> 1)

over Z. The second family is about the P-functions. In this family, we may
assume that the Chern class of the vector bundle E is divisible by 2. We
define

PA(E) i= 505G (B).

In particular, P;(E) = ¢;(E)/2. We observe from the equation (4.3) that
Py(E) = Py(E) - Pi(E) +2 Z 1)/ Py (E) - Bj(E) + (—1) Pry(E).

Here is the lemma addressing the relation of the class of Schubert variety,
a Schubert class in the even orthogonal Grassmannians to the Pfaffians.

Lemma 4.5 ([34, Theorem 2.1]). LetV be a 2n-dimensional vector space
over C and it is equipped with a nondegenerate quadratic form. Then the
Schubert class for some partition « in the Chow group A.(OG'(n,V)) (resp.
A.(OG"(n,V))) is

[S(a)] = Pa(UY),
where U is the tautological subbundle on OG'(n,V) (resp. OG"(n,V)).

In addition we have the dual Schubert class [S(g)} given by
Pp(n a(E) for the strict partition p, 1 = (n —1,n —2,...,1) such that

/OG/(n,V) S(e)]- [g(g)} =1

Here p(n — 1)\« is the complement partition of o in p(n — 1). Another rel-
evant reference for these discussions can be [34, Section 2].

The following theorem suggests the way of finding the coefficients in the
Schubert class of the pushforward m.cgn(Za)-
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Theorem 4.6. Let U be the pullback of the universal tautological subbundle
on OG'(n,V) (resp. OG"(n,V)). The coefficient va,5 of the Schubert class
[S(B)] in mwcsri(Za) is computed by

Yap = /Z (T Za) - BynaysUY) (1 [Za)]

Proof. Let S(8) be the dual Schubert variety to S(f). Since the two Schubert

classes are dual to each other under the pairing of Poincaré duality, we have
fOG/(n V) [S(B)] - [S(ﬁ)} = 1. Then the constant 7, g can be expressed by

Yeb = /OG’(n,V) mecsm(Za) - {g(@} '

As the locus Z, is nonsingular such that cgpy(Za) = ¢(TZy) N [Za], the
integral becomes

/OG’(n,V) s (c(TZy) N [ZQ]) . {g(ﬁ)} '

Combined with the class [’SV(@} = ﬁp(n,l)\g(gv) € A,(OG'(n,V)) (resp.
A (OG"(n,V))) from Lemma 4.5 and the projection formula [13, Proposi-
tion 2.5(c)], we conclude

vas= [ w (w0 z]) = [(56))

= /Z co(TZy,) - ﬁp(n_u\g(gv) N [Zd],

suppressing the pullback notation for vector bundles. (cf. [13, proof of
Lemma 12.1]). O

We will discuss some properties of v, g later in Remark 5.7. It is well-
known that the characteristic cycles of ZC-sheaves associated to cominuscule
Schubert varieties are irreducible if and only if their Dynkin diagram is
simply laced [4]. Since the Dynkin diagram of type D is simply laced, the
characteristic cycles associated to such Schubert varieties are irreducible:
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Theorem 4.7 ([4, Theorem 7.1A]). Let S(a) C OG'(n,V) (resp.
OG"(n,V)) be a Schubert variety and Icg(a) be the corresponding inter-
section cohomology sheaf. Then ;

[ S()°

The irreducibility of CC(ZCg,)) and Theorem 2.4 enable us to have the
Chern-Mather class of S(«) via the pushforward of ¢(7'Z,) for the IH-small
resolution Z, — S(a) of the Schubert variety S(a).

Remark 4.8. The Chern-Mather classes of Schubert varieties in (types A
and D) Grassmannians are always positive [29, Corollary 10.5, Proposition
10.3]. In other word, 7,4 > 0.

4.2. Explicit computations

We recall some basic formulas in [13] before our explicit example-
computation on the Chern-Mather class of a Schubert variety.

Let X be an algebraic variety over C. Suppose that E and F are vector
bundles of rank e and f respectively over X. Let A = (A1,...,A\y) and p =
(1, ..., un) be nonnegative decreasing integer sequences of length N with
pi < Ajforl <i < N, ie., p C A We denote by |a; j|1<i j<n the determinant
of the matrix (a; j)1<; j<n and (2) the binomials. The integer Df\\L is defined

by the determinant
ANi+N—1d
DY, ="
g ‘ (Mj +N - j)

Using these notations, the total Chern class of the tensor product of £V and
F' can be written as the sum

1<ij<N

(4.5) o(EY@F) =Y D,su(E)s5(F)

over pu C A for the partition 0 < A\, < --- < Ay < f bounded by the rank f.
Here s, (A) is the Schur determinant [13, Section 14.5] for a partition v at
the Segre classes of A and X is the conjugate partition to the partition

N =(f = Dseeos f = A1)
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If the Chern roots of E are aq,...,q,, then the exterior power of £ is
given by the product

(4.6) o(WE) = [ U+ (s +--+au)t).

1 <<ty

Let us state the algebraic version of Bott Residue formula [11, The-
orem 3]. Let T'= (C*)" be a maximal torus of G. Suppose X is a smooth
complex projective variety and has a T-action on it. Given T-equivariant vec-
tor bundles E,, E,,...,E, over X, we denote by P(E) a polynomial in the
Chern classes of the vector bundles £, ..., E, . We also denote by cf (E;) the
equivariant Chern classes of E; for i = 1,...,n and PT(E) the polynomial
in the equivariant Chern classes of the E; for « = 1,...,n which specializes
to the polynomial P(E). Let mx, : AL X — Rp be the push-forward induced
by the projection mx — pt. One can replace X by any component F of X7 .

Theorem 4.9 (Bott Residue Formula). The integral of P(E) over X
is the sum

_ PT(E|r) N [Flr
JRCLIESEDS m< ) )

FCXT

over the connected components F of XT where NpX is the normal bundle
over X at F such that dp is the rank of Np X as well as the codimension of
Fin X.

We note that the connected components F of X7 are smooth and ad-
mit normal bundles NypX. We additionally need the lemma below to apply
Theorem 4.9.

Lemma 4.10 ([24, Lemma 5.1.4]). Let X be a variety with a trivial T'-
action. Suppose E, — X is a T-equivariant vector bundle of rank r over X
and the T-action in E, is given by the character x. Then the T -equivariant
Chern class of the vector bundle E, is

(B =" ( _‘7 )cj<Ex>xi-ﬂ‘.

o
i<i J
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Furthermore, if X is a point, it becomes
TE)=("|xer
G ( X) - i X € fir,

since the only term contributed in the summation is j =0. Here Rp =2
Zlt1,...,tn] is the T-equivariant Chow ring of a point.

Now we are ready to provide an example demonstrating the computation
for the Chern-Mather class of a Schubert variety when n = 5. Note that the
set ZL of T-fixed points is finite in general [24, Lemma 5.1.3].

Example 4.11. Let V be a vector space of dimension 10 over C, equipped
with a quadratic form on it, and have the ordered basis

e < <es<es< < ey

We deal with a Schubert variety S(a) € OG”(5,V) of dimension 8 with
(3,5) and compute the constant v, 5 for a = (3,5), 8 = (3,4). For V; =

g:
{e1,...,e;) for 1 <i <5, we fix a complete isotropic flag
Ve=(0CcWViC---CVsCVic---cVicV).

3 5
1 1

IH-small resolution of singularity for S(«) leads to the locus Z, = Z; as

With the associated matrix $ = [ ] of d = 1, the construction for the
(07

Zg = {(Ul,UQ) | 0cCcU; CVs, dim(U1 N UQ) > 1} - OG(l,V) X OG”(5,V).

We proceed with Theorem 4.4 to reach the Chern class of the tangent
bundle over Z, as

(TZy) = c(UY @ (V3/Uy)) - (N (Us/U,)Y).

As for the class of Schubert variety S() represented by the function

]3(2’1)(U2V) in A,(OG"(n,V)), we derive the dual Schubert class for g(é)
by the Pfaffian

[8(8)] = PusWy),

associated to the partition p(4)\(2,1) = (4,3) [34, Page 13|. Combining all
together, the coefficient 7, 5 associated to o and 8 is computed by the
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integration

Va8 = / (c1(Uy ® (V3/Uy)) + e1r(A*(Up/Uy)Y)) - ca3(U3) N [Za] -

o

In order to use the the Bott Residue Formula, let us describe
the T-fixed points Zg of Z,. Given i3 €{1,2,3} and ig,...,i5 €
{1,...,5,5,...,1}\{i1,41} such that e;, <---<e; and the number of

barred integers in {i1,...,i5} are even, we have 24 torus-fixed points
De = ({€4,), (€iy,---,€iy)). For instance, if i; = 1 is taken, there are 8 fixed
points:

p1:=((e1) C (e1,e2,e3,¢e4,¢5)), p2:= ({e1) C (e1,e2,e3,¢5,¢€1)),

p3 :=((e1) C (e1,e2,¢e4,¢€5,¢€3)), pa:= ({e1) C (e1,e2,e5,€3,¢€3)),

Y2 ::(<61> - <61’63’64765 >)7 be ‘= (<61> C <61’€3’65764 >)’

p7 :=((e1) C (e1,e4,€5,€3,€3)), ps:= ({e1) C (e1,e5,€3,€3,¢€3)).

We use a one-parameter subgroup C* C T such that ZT Z‘C
with generic weights. Suppose the weights of the C*-action on V are
[wi,...,ws,—ws,...,—wi] =[1,...,5,=5,...,—1]. Without loss of gener-
ality, we fix a T-fixed point pe = ({&;,), (€, -,€i;)). According to (4.5)
and (4.6), the C*-equivariant Chern classes of the bundles restricted to a
point are presented by

i (UY ® (V3/Uy)) = (—3w;, )t,
i (N(Us/U,)Y)) = (=Bwi, — -+ — 3wy, )L,

Pigy(UY) = o5 (e (UY) - 5 (UY) — 2¢5(UY) 5 (U3)
+c5 (US)er (Uy) - ¢5 (UY)),

)
)

given the total C*-equivariant Chern class of U3 as
CC* (QE/) = (1 - /w’blt) : (1 - wlzt) : (]‘ - wlBt) : (1 - wi4t) : (1 - wlst)

In addition, because of ch(N PX)=ck (X) (T'X), the denominator of the
formula would be

Cg:* (TZQ) = 3’LU221 ! (wiz + wlz) ' (wiQ + ’UJ7;4)
(Wi + wiy) - (Wi, +wi,) - (Wi, +wiy) - (Wi, + w5
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To that end, the single term for this point pe of the Bott Residue formula
applied yields the rational number

(—3w;, — -+ — 3w;,) - (1/t7 : ]5((2?3)(Q§/)>

3’[1}?1 : (w’bé + wiz) : (wiz + wi4) ! (wiz + wis) ' (wis + ’lU,'4) : (wia + wis) : (wi4 + wis) .

Summing up the rational numbers over all the 24 T-fixed points with
the weights of C*-action on V finally results in the constant

VQ»B = 6'

Remark 4.12. Since @kk vanishes for all £, any symmetric polynomials in
w?, ..., w2 must set to be 0 in any computations for the number Ya,3- See

[34, Proposition 4.2] for details.

Likewise we can accomplish the Chern-Mather class of a Schubert variety
S(a) € OG'(5,V) associated to o as a sum indexed by § C a. Let us list
partitions labelled for convenience as the followings:

(3’ 5) = «o, ( 54) = BO? (174) = /837 (2’3747 5) = "0, (1727375) =73,
74) :ﬁly (173):/347 (1737475> =71, (1727374):74
(1’5) = (2, ( ’3) = P, (172) = B, (172747 5) =72

Schubert varieties in OG”(5,C!?) that admit their IH-small resolutions
are the one associated to the 5 partitions

(3,5) = ), (2,5) = (q, (1, 5) = (9, (1,3) = ,34, (1,2) == ﬁ5.

In Table 1, the left most column indicates the indices for the Schubert
varieties having the Sankaran and Vanchinathan’s IH-small resolution and
the top row is for all indices S which is less than equal to the corresponding
index a in the first column. Using these partitions, the coefficients Ya,3 Of
the Chern-Mather classes [car(S())] |g are listed below so that the Mather
class of S(a) is calculated by the sum of each row that corresponds to the
classes of sub-Schubert varieties contained in S(a).

From this table 1, we can read an expansion

lear(S(az))] = [S(az)] + 6 [S(8,)] + 16 [8(8,)] +24[s(8,)]
+24[S(y,)] +44 [s(1,)] +24[S(r,)] + 8 [s(2)]
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Table 1: Chern-Mather classes of Schubert varieties in OG” (5, C'?)

ag Bo a1 B oaz B2 B3 Ba v Bs M 2 3 a4
ap 1 6 6 34 17 60 88 174 72 144 204 204 &4 24

o - - 1 6 5 16 28 68 24 70 92 112 52 16
a - - - - 1 - 6 16 - 24 24 44 24 8
Ba - - - 1 . 4 4 14 14 8§
Bs - - e . . 1 . 4 6 4

and see that the only Schubert classes appeared in the expansion are the
ones corresponding to sub Schubert varieties of S(ay). In other words, there
are no partitions greater than as in the sense of the order presented in
Section 3.1. For instance, since S(ay) 2 S(aq) with ay < oy, the coefficient
of [S(ag)] must be zero.

One may represent a Schubert variety S(a) by a Young diagram that
corresponds to a partition A (or Young diagrams) as its codimension or a
cohomology class [S(B)] = PA(U"), which appears in some other literatures,
for instance [22, 29].

We notice that there is no such a direct pushforward of the IH-small
resolution of singularity Z, C X to the type D flag variety as in the ordinary
(type A) cases [24, Section 5.4], attributed to the limitation of the IH-small
resolution by Sankaran and Vanchinathan.

5. Kazhdan-Lusztig classes of Schubert varieties

The characteristic cycles of ZC-sheaves over Schubert varieties in the La-
grangian Grassmannians may not be irreducible in contrast to Schubert va-
rieties in the even orthogonal Grassmannians. This prevents us from directly
handling the Chern-Mather classes of Schubert varieties in Grassmannians
of type C. Instead, we establish Kazhdan-Lusztig classes of Schubert vari-
eties in the Lagrangian Grassmannians on account of Theorem 2.5 in this
section. We also discuss Kazhdan-Lusztig classes and the Mather classes of
Schubert varieties in the odd orthogonal Grassmannians later this section.
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5.1. Type C

Let V be a vector space of dimension 2n over C, equipped with a nonde-
generate symplectic form. We take a strictly increasing sequence oo = (1 <
a1 < ag < -+ < ag <n) of nonnegative integers. Inside a isotropic partial
flag FI(a; V) of type C, let

Vo, Co-CVa CV

be an isotropic partial flag such that dim(V,,) = «;. The Schubert variety
S(a) is defined to be

S(a) ={L |dim(LNV,,) >iforalll <i<s}

of dimS(a)=37 0, +(n+1)(n—s)— %n(n +1) in the Lagrangian
Grassmannian LG(n,V) = Sp(2n)/P parametrizing the maximal isotropic
subspaces of V. Analogously this locus is the closure of the Schubert cell
S(«)° in which the equality holds, and a Schubert variety S(53) associ-
ated to f=(1<f1 < f2<--- < B <n) is included in S(a) if s <7 and
ar > B1,..., a5 > Bs.

The construction of a IH-small resolution is exactly akin to the one
for type D, but OG'(n,V) (resp. OG"(n,V)) is replaced by LG(n,V).
That is, Z, C X© := <H§l:1 LG(/{:Z-,V)> x LG(n,V) is the IH-small reso-
lution of singularity for S(a) where WjL cUjC WjR for 1 <j<d and
WfH C Ug41 C V. We summarize the facts concerning the IH-small resolu-
tion Z, — S(a) for Schubert varieties in LG(n, V') by Sankaran and Vanchi-
nathan with assumptions for the IH-small resolution to exist.

Theorem 5.1 (Sankaran and Vanchinathan). Let S(a) C LG(n,V)
be a Schubert variety associated to a = (1 < a1 <ag < -+ <as<n) and

= [gl Zd] Letas<n—s,qg<n+1—agand (ag+ -+ a;) —
1o adf,
(bg1+---+b)<n+1—gqq fori>1. Then

1) For such a, the locus Z, is a nonsingular projective variety.

2) w:Zy — LG(n,V) is a proper mapping onto S(a) and is isomorphic
over S(a)®. Thus it is a resolution of singularities.

3) w: Zy — S(a) is the IH-small resolution.
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The notations, which are not specified are adapted from Section 4 and
will be used for the rest of this article.

The proof of [24, Proposition 4.2.6] used that a point U is smooth if and
only if it is rationally smooth for Schubert varieties in type ADE [8]. Ra-
tionally smoothness approximates the smoothness via cohomological criteria
and is related to the stalk Euler characteristic of the intersection cohomology
sheaf. The equivalences in Proposition 3.5 are valid even for Schubert vari-
eties in Lagrangian Grassmannians (type C), since smoothness implies the
rational smoothness as for Schubert varieties. Rationally smoothness of the
point U implies the statement (2) of Proposition 3.5 as shown in the proof
of [24, Proposition 4.2.6]. In general, smoothness and rational smoothness
for Schubert varieties in type C are not equivalent. Especially a rationally
smooth Schubert variety is smooth only when it corresponds to an element
that is 12-avoiding in the Weyl group WE of type C (or an element embed-
ded to a 4231-avoiding in the Weyl group Wik of type A) [3, Addendum
13.3].

Let Y be a smooth variety equipped with an isotropic vector bundle
& — Y with respect to the symplectic form. Then we take the isotropic
Grassmannian bundle IG(k,V) of dimension k subspaces of the fibers of
& over Y with a projection map p: IG(k,&) — Y. We note that if k =n,
the isotropic Grassmannian /G(k, &) is called the Lagrangian Grassmannian
bundle LG(n, &). The following lemma is a widely renowned fact about the
decomposition of the tangent bundle over a smooth variety, which is applied
to find a description for the Chern class of a tangent bundle of the resolution
of singularity.

Lemma 5.2. The relative tangent bundle Tiqk gy fits into a split ezact
sequence

0— 2 ® IS — Tiape)y — Sym® LY — 0,

so that
Ticie)y = (LY @ L)) ® Sym® 7.

Proof. The lemma follows by the proof contained in [30, Lemma 3.1] mo-
tivated by [20]. We take an even dimensional isotropic vector bundle on Y
instead of the complex vector space, equipped with a nondegenerate sym-
plectic form. (c.f. see Lemma 4.2 for details.) O

According to [12, Section 6] as before, we explicitly state the following
corollary implicitly contained in the proof of [30, Lemma 3.1].
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Corollary 5.3 ([30]). For k <n, let IG(k,&) be an isotropic Grassman-
nian of k-planes in a vector space & of dimension 2n. Let A € IG(k, &) be
a point. Then the tangent space TAIG(k,&) of the isotropic Grassmannian
at A is

TAIG(k, &) = (AY @ AT /A) & Sym>AY.

We recall X¢ := (Hle LG(k;, V)) x LG(n,V). As in type D, let
X0 .= ngl IG(k;, V) and pj: X¢ — X be the projection sending
(U, ..., Ugy1) to (U,...,U;) for 1 <j<d+1. Let ZU) = p;(Z,), with
the projection ZU) — ZU for j > I. We can similarly deduce that Z\) is a
(ordinary or isotropic) Grassmannian bundle on ZU=1),

Theorem 5.4. Let Z, be the IH-small resolution Z, of singularity for a
Schubert variety S(a) C LG(n,V) associated to a € WF. The Chern class
of the tangent bundle T'Z, is

d

A(TZy) = | [ Ui/ W)Y @ (WF/U,))e (Sym® (U gy /Whi1)Y)
=1

in terms of universal bundles over X©.

Proof. To be precise ZU) is a Grassmannian bundle over ZU=1 for 1 <
j <dand ZU@*tD is an isotropic Grassmannian bundle with respect to the
symplectic form over Z(4. We thus have

d
(T2Y) =[] (/W)Y © (WF/U,))

=1

and the projection
2D = 1G (g, Whiy )" /W) — 2@

via the restriction of ¢ : X1 — X(4  Since Lemma 5.2 gives rise to a
canonical isomorphism

TIG(ld+1:(EQ.H)L/EEH)/Z(({)

= ((Qd—&-l/wc%—f—l)v ® ((Qd—i-l/wdj:—&—l)L/Qd—i—l/EcIll—i-l)
S Sym2(gd+1/wfl+1)v
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for the universal subbundle Qd+1/EdL+1 of IG(lgy1, (EC%_H)L/EdRH), the
Chern class of the relative tangent bundle would have to be
ATrG s wr, ) ywe,yzo) = (Sym*(Uger /Wii)Y)

L
d+1

by the same argument in the proof of Theorem 4.4. O

The Schubert class [34, Theorem 2.1] for some partition « in the Chow
group A,(LG(n,V)) is

[S(e)] = Qu(UY),

where U is the tautological subbundle on LG(n, V). These classes of Schu-
bert varieties form a basis of the ring I' in (4.4). We are now in the position
to calculate integrals for coefficients in the Schubert class of the pushforward
T«CSM(Za) due to Theorem 4.9.

Theorem 5.5. Let U be the pullback of the universal tautological subbundle
on LG(n, V). The coefficient o5 of the Schubert class [S(B)] in mwcsn(Za)
18 computed by a

tag = [ eTZa) Q) 1 [2a].

o

Proof. The overall argument of the proof basically resembles to the one in
Theorem 4.6. We denote by S() the dual Schubert variety to S(5) so that

ng(n’V) [S(é)} . [g(ﬁ)} = 1 is satisfied. By the duality, the constant v, g is
given by the integration

Tl = /LG(n,V) mecsm(Za) [g(ﬁ)}
(a) ~
SR CCZALICORECIR

where cgn(Zy) = c(TZy) N [Zg] is applied for the equality (a). The use of
the fact

[58)] = @puns(U) € AL(LG(n, V)
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and the projection formula establishes
tag= [ w(e(rz)n [Z]) = [59))
LG(n,V)
- /Z (T Za) - Qpps(UY) N [Za] |

suppressing the pullback notation for vector bundles. O

In general the Kl-classes can be written as a linear combination of
Chern-Mather classes explicitly if we know the Euler obstruction correspond-
ing to each pair of a and f. The formula for the (torus equivariant) Mather
class of cominuscule Schubert varieties of type C (with the other types) is
given by [29].

The positivity of the constant v, g can be addressed as follows.

Proposition 5.6. Let V be a 2n-dimensional vector space. Let S(a) be a
Schubert variety in Lagrangian Grassmannian LG(n, V). In the Schubert
expansion of the KL class

KL(S(@) =) s [SB)],
8

the coefficient v, 5 1s positive.

Proof. The proof of the statement is straightforward by the reasoning in [29,
Proposition 10.3]. That is, the Kazhdan-Lusztig polynomials associated to
a, B with o > 8 are nonnegative and its constant term equals 1. Hence we
have the proposition by the equation (2.5) and the fact that CSM classes
of Schubert cells in a homogeneous space G/P are nonnegative [1, 22] for a
(complex) simple Lie group G (in particular for GL(n), Sp(n), SO(2n + 1)
and SO(2n)) and any parabolic subgroup P C G. O

Remark 5.7. This proposition is independently proved by Aluffi, Mihalcea,
Schuermann and Su [1] according to a private communication with one of
the authors, Mihalcea. This statement will be included in their paper. In
particular, the proof of Prop. 5.6 has shown that 7, g is positive regardless
of types. In other words, the positivity property of 7;5 works for Schubert
varieties in G/ P of any classical types. -

Here are another interesting observations related to the coefficients 7, g.
In case of Mather classes, the Mather polynomial of S(a) is a polynomial
in 22 corresponding to [S(B)] where £3 is the dimension of S(8), and it is
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known by conjectures in [29, Intro.] that the Mather polynomial is unimodal
whose terminology is defined in [38]. In Example 4.11 for (type D) even
orthogonal Grassmannian cases, the Mather polynomial M, () of S(ay) is
given by

My, (z) = 2® + 1227 + 512° + 1482° + 2442 + 3482° + 2042? + 84 + 24
which strengthens their unimodality conjectures in [29, §10.4].

We shift gears to compute an example for the coefficient v, g of the
Schubert expansion.

Example 5.8. Let a = (2), 8 = (1). Let V be a 6-dimensional vector space
over C with the ordered basis

e1 < ey <ez<es<e;<e;.
We fix a complete isotropic flag
Ve=(0cVicVocWscVitcVitcv)
where V; = (eq,...,¢;) for 1 <i<3 and consider the variety S(a)=
{L|dim(LNVy) >1} C LG(3,V) of dimension 4 with the IH-small reso-

lution of singularity Z, — S(«) by Sankaran and Vanchinathan. In light of
the fixed partial flag V, : 0 C Vo C V, we have the locus Z, as

Zo ={(Uh,Uz) |0 C Uy C Vo, dim(UsNU;) >1} C IG(1,V) x LG(3,V).
By virtue of Theorem 5.5 we get
ATZy) = c(UY ® Vo /Uy) - c(Sym* (Uy /U4)Y).

Moreover we know that [S(3)] = @(3)(U2\/ ) so that the dual Schubert class
of S(p) is given by

58)] = Qe @),

as p(3)\(3) = (2,1). Then the constant 7, g is obtained by the integration

Vg = /Z (c1(U ® C*/Uy) + e1(Sym*(Up/Uy)Y)) - e21(U3) N [Za] -

o
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We evaluate the integral, using the Bott Residue Formula with 8 torus

T-fixed points
De = (<e’i1>7 <e’i1’ Cigs el%>)

of ZT, by the choses of i; € {1,2} and is,i3 € {1,2,3,3,2,1}\{41,i1}
such that e;, < e;,. As before, we restrict the torus T-action to a one-
parameter subgroup C* C T such that Zg = Zg with generic weights. Sup-
pose that the weights of C*-action on V are [wy, wa, w3, —ws3, —wa, —wi] =
[1,2,3,—3,—2,—1]. Let us fix a T-fixed point ps = ({€;,), {(€i,, €i,, €i,)). Then
the relevant C*-equivariant Chern classes of the bundles at a point are

¢ (UY @ Vo /Uy) = (2wi)t, ¢f (Sym*(Uy/Uy)Y)) = (=3wi, — 3wy, )t,
Cg,l(gg) = (—wiwi2 - w'?lwlz - wilw'zzg — Wi, Wi, Wiy
— wilwii — wi Wy, — wizwfs)t?’,

¢§ (TZy) = (8wi, wi,wi, (wi, + wi,))th.

Therefore the rational number as a term for the T-fixed point pe of the Bott
Residue Formula applied is

. 200 ) (—a2 a0 — 02— s W2 — s W W — s W2 — 2 — s 2
(*211)21 73w12 3wls) ( wilwlz wilwls whwiz Wi, Wi, Wi whwis wi2wls wl'zwig)

Bwi, wi, Wi, (Wi, + Wi, )

We add all over these 8 T-fixed points with the weights to have the value

Ya,8 = O-

The Kazhdan-Lusztig class of the Schubert variety S(a) admitting the
IH-small resolution for n = 3 with respect to the (homology) class of Schu-
bert varieties S(8) C S(a) is displayed in Table 2 whose left most column
represents a associated to S(a) and the corresponding row indicates (3
such that the coefficients 7, 5 of the Schubert class [S(8)] in the Kazhdan-
Lusztig class KL(S(a)) are listed. The Schubert expansion of the Kazhdan-
Lusztig class for S(«) is recovered by summing up the rows correspond-
ing to the Schubert varieties S(3) C S(a). Here (2) = oo, (2,3) = Bo, (1) =
a1, (1,2,3) =0, (1,3) = B1,(1,2) = Bo.

As before, the - in Table 2 indicates 0 as the corresponding partitions
are greater than «;.

We notice that in n = 4 the local Euler obstruction Eug(q)(ps) of a Schu-
bert variety S(a) at T-fixed points pg € S(a) is exactly the same as the value
of the Kazhdan-Lusztig polynomials P, (1) evaluated at ¢ = 1 by [29, Ta-

ble. 3] and (3.1). In other words the Kazhdan-Lusztig class of the Schubert
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Table 2:

ag Bo o1 B B2 0
o 1 3 5 14 20 &

o - . 1 3 8 4

variety S(a) for a = (1,2,4) (equivalently, the Young diagram ‘HH ) is
equal to the Chern-Mather class of S(a) presented in [29, Example 6.4], as

ap Po o1 B1 o B2 B3 Ba v P51 Y2 B V4
ag 1 4 7 27 25 60 92 241 45 269 183 246 132 24

Qp, (3)4) = /807 (174) - 537 (273)4) =0, (17273) =3,
(5'1) (2) = ay, (274) = b1, (173) = Ba, (17374) =7, (1727374) = V4,
a9, (2)3) = ﬁQu (172) - 557 (172)4) =72

5.2. Type B

We take a 2n 4 1-dimensional vector space V over C together with a non-
degenerate quadratic form on it, and fix an isotropic partial flag

Voo C---CV,, CV

in FI5(a; V) where the rank of the subspaces is ; of type C. We define the
Schubert variety by

S(a) ={L |dim(LNV,,) >iforl<i<s}

in the odd orthogonal Grassmannian OG(n,V) = SO(2n + 1)/P of dimen-
sion n isotropic subspaces of V.
Along with the isomorphism

n: OG(n, C*"1) — OG'(n+1,C*"*%) (resp. OG"(n +1,C*"*2))

in [23, Section 3.5], there is a Schubert variety S'(a) such that the inverse
image of S'(a) under 7 is the Schubert variety = (S'(a)) = S(a), and the TH-
small resolution Z, for §'(a) in the even orthogonal Grassmannian OG'(n +
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1, C?"*+2) for some o of type D can be pulled back to the IH-small resolution
Z, for the Schubert variety S(a) in OG(n, C*" 1) by the diagram

(5.2) Jﬂ J{prl

S(a) < §/(a).

Let XB := Hd+1 OG(k;, V) for some kj,1 < j < d and kqy1 = n so that
X5 contains the locus Z defined by WL cU; C WR dim(U;) = k; for all
j. Theorem 5.9 shows the Chern class of the tangent bundle TZ, as regards
universal bundles on X 5.

Theorem 5.9. For a IH-small resolution Z, for a Schubert variety S(a)
associated to o € WP in OG(n,V), the Chern class of the tangent bundle
TZy on Zy 18

d

o(TZy) =[] elU;/WHY o (WF/U,))
=1
(U1 /WE )Y © Uiy /Ugsr))e (NP (U /W)Y

with respect to the universal bundles on XB.

Proof. The proof is almost identical with Theorem 4.4, which boils down to
check the difference at the canonical isomorphism for the relative tangent
bundle

TOG(ld+1:(Wd+1)J'/Wd+1)/Z(d)
= ((Qd+1/Ed+1) ® ((Qd—i-l/wdj:—&—l)L/Qd—i—l/Efll—i-l)
&N (Ugpr/Whia)".

We know from tk(Ugyq)=n that (Ugp/Wi)"/(Ugs/Wiyy) =
U jﬂ /U441 is the line bundle that is equivalently isomorphic to A*"*1V.
It follows that the first equivariant Chern class ¢ (Ug,/Ugq) of
the line vanishes as 0 [15, Page. 75] Thus, using the sequence
vector bundles ZU) — ZU=1) where 2Z0) = {(Ul,...,Uj) |WE CU, C
WiR for 1 <i < j}, the Chern class of the d-th relative tangent bundle
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TOG(ld+17(w5+1)L/wg+1)/Z<d) is expressed by

A(ToG (s (Wt ) /Wi, ) /2@)

= C((Qdﬂ/de-s-l)v ® (Q(Jf-s-l/gdﬂ))C(/\z(ngrl/wg-s—l)v)

and the rest by ¢(TZ@) = H?Zl c(U;/WEY @ (WE/U,)). Putting all to-
gether, we complete the proof. O

Since the constant v, g is obtained as in type D, we state Theorem 5.10
without the proof.

Theorem 5.10. Let U be the pullback of the universal tautological subbun-
dle on OG(n,V). Then the coefficient Yo, of the Schubert class [S(B)] in
mecsm(Zy) is given by the integration

’7@@ = /Z C(TZQ) : ﬁp(n)\ﬁ(gv) N [ZQ] :

o

We can carry out the computation for v, g as before either with Theo-
rem 5.9 and Theorem 5.10 or just by evaluating the weight for the basis ep
to be 0.

The Chern-Mather classes of Schubert varieties in the even orthogonal
Grassmannian is closely related to the Kazhdan-Lusztig class in the odd
orthogonal Grassmannian: let S(a) be a Schubert variety in OG(n, C?*+1)
and §'(a) a Schubert variety in OG’(n + 1,C?"*2). The Kazhdan-Lusztig
class KL(S(«)) of S(a) is equal to the Chern-Mather class cpr(S'(a)) of the
Schubert variety S'(«),

KL(S(a)) = cu(S'(a))

by the commutative diagram (5.2) with Theorem 2.4 and Theorem 2.5. In-
deed, the Kazhdan-Lusztig class of S(«) does agree with the Mather class
of S(a) in OG(n,C**1), because of the isomorphism of Schubert varieties
between the types B and D Grassmannians.

Acknowledgements

The author wishes to thank David Anderson for invaluable suggestions and
a lot of thorough reading of preliminary versions of this paper. We also wish
to express our gratitude to Leonardo Mihalcea for his insightful comments to
enhance the accuracy of the original manuscript and sharing their work with



504

Minyoung Jeon

the author. MJ was partially supported by NSF CAREER DMS-1945212
from her advisor David Anderson. Lastly, we are very grateful to Xiping
Zhang and anonymous referee for the careful reading of this manuscript,
helpful suggestions and valuable comments.

1]

8]
[9]

[10]

References

P. Aluffi, L. C. Mihalcea, J. Schiirmann, and C. Su, Shadows of char-
acteristic cycles, Verma modules, and positivity of Chern-Schwartz-
MacPherson classes of Schubert cells, arXiv:1709.08697, to appear
in Duke Math. J. (2017).

, Positivity of Segre-MacPherson classes, in Facets of algebraic
geometry. Vol. I, Vol. 472 of London Math. Soc. Lecture Note Ser., 1-28,
Cambridge Univ. Press, Cambridge (2022).

S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Vol.
182 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA
(2000).

B. D. Boe and J. H. G. Fu, Characteristic cycles in Hermitian symmet-
ric spaces, Canad. J. Math. 49 (1997), no. 3, 417-467.

J.-P. Brasselet and M.-H. Schwartz, Sur les classes de Chern d’un
ensemble analytique complexe., in The Euler-Poincaré characteristic
(French), Astérisque, 82-83, 93-147, (1981).

M. Brion, Equivariant Chow groups for torus actions, Transform.
Groups 2 (1997), no. 3, 225-267.

J.-L. Brylinski, A. S. Dubson, and M. Kashiwara, Formule de [’indice
pour modules holonomes et obstruction d’Fuler locale, C. R. Acad. Sci.
Paris Sér. I Math. 293 (1981), no. 12, 573-576.

J. B. Carrell and J. Kuttler, Smooth points of T-stable varieties in G/B
and the Peterson map, Invent. Math. 151 (2003), no. 2, 353-379.

A. Dimca, Sheaves in topology, Universitext, Springer-Verlag, Berlin
(2004).

A. S. Dubson, Formule pour l’indice des complexes constructibles et des
Modules holonomes, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984),
no. 6, 113-116.



Mather classes of Schubert varieties via small resolutions 505

[11] D. Edidin and W. Graham, Localization in equivariant intersection the-
ory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3,
619-636.

[12] W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determi-
nantal formulas, Duke Math. J. 65 (1992), no. 3, 381-420.

[13] , Intersection theory, Vol. 2 of Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathemat-
ics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics], Springer-Verlag, Berlin, second edi-

tion (1998).

[14] W. Fulton and K. Johnson, Canonical classes on singular varieties,
Manuscripta Math. 32 (1980), no. 3-4, 381-389.

[15] W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci,
Vol. 1689 of Lecture Notes in Mathematics, Springer-Verlag, Berlin
(1998). Appendix J by the authors in collaboration with I. Ciocan-
Fontanine.

[16] G. Gonzélez-Sprinberg, L’ obstruction locale d’Euler et le théoréme de
MacPherson, in The Euler-Poincaré characteristic (French), Astérisque,
83-83, 7-32, (1981).

[17] M. Goresky and R. MacPherson, Intersection homology theory, Topol-
ogy 19 (1980), no. 2, 135-162.

[18] , Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77—

129.

[19] P. Griffiths and J. Harris, Algebraic geometry and local differential ge-
ometry, Ann. Sci. Ecole Norm. Sup. (4) 12 (1979), no. 3, 355-452.

[20] J. Harris, Algebraic geometry, Vol. 133 of Graduate Texts in Mathemat-
ics, Springer-Verlag, New York (1992). A first course.

[21] R. Hotta, K. Takeuchi, and T. Tanisaki, D-modules, perverse sheaves,
and representation theory, Vol. 236 of Progress in Mathematics,
Birkh&user Boston, Inc., Boston, MA, japanese edition (2008).

[22] J. Huh, Positivity of Chern classes of Schubert cells and varieties, J.
Algebraic Geom. 25 (2016), no. 1, 177-199.

[23] T. Ikeda, L. C. Mihalcea, and H. Naruse, Factorial P- and Q-Schur
functions represent equivariant quantum Schubert classes, Osaka J.

Math. 53 (2016), no. 3, 591-619.



506
[24]

[25]

[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]

Minyoung Jeon

B. F. Jones, Singular Chern classes of Schubert varieties via small res-
olution, Int. Math. Res. Not. IMRN (2010), no. 8, 1371-1416.

M. Kashiwara, Systems of microdifferential equations, Vol. 34 of
Progress in Mathematics, Birkhduser Boston, Inc., Boston, MA (1983).
Based on lecture notes by Teresa Monteiro Fernandes translated from
the French, With an introduction by Jean-Luc Brylinski.

G. Kennedy, MacPherson’s Chern classes of singular algebraic varieties,
Comm. Algebra 18 (1990), no. 9, 2821-2839.

S. Larson, Decompositions of Schubert varieties and small resolutions,
arXiv:1911.02691, (2019).

R. D. MacPherson, Chern classes for singular algebraic varieties, Ann.
of Math. (2) 100 (1974) 423-432.

L. C. Mihalcea and R. Sing, Mather classes and conormal spaces of
Schubert varieties in cominuscule spaces, arXiv:2006.04842, (2020).

K.-D. Park, Deformation rigidity of odd Lagrangian Grassmannians, J.
Korean Math. Soc. 53 (2016), no. 3, 489-501.

N. Perrin, Small resolutions of minuscule Schubert varieties, Compos.
Math. 143 (2007), no. 5, 1255-1312.

P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. Ecole
Norm. Sup. (4) 21 (1988), no. 3, 413-454.

, Algebro-geometric applications of Schur S- and Q-polynomials,
in Topics in invariant theory (Paris, 1989/1990), Vol. 1478 of Lecture
Notes in Math., 130-191, Springer, Berlin (1991).

P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal
degeneracy loci; Q-polynomial approach, Compositio Math. 107 (1997),
no. 1, 11-87.

S. Promtapan and R. Riméanyi, Characteristic classes of symmetric and
skew-symmetric degeneracy loci, in Facets of algebraic geometry. Vol. I,
Vol. 473 of London Math. Soc. Lecture Note Ser., 254-283, Cambridge
Univ. Press, Cambridge (2022).

E. Richmond, W. Slofstra, and A. Woo, The Nash blow-up of a comi-
nuscule Schubert variety, J. Algebra 559 (2020) 580-600.

P. Sankaran and P. Vanchinathan, Small resolutions of Schubert vari-
eties and Kazhdan-Lusztig polynomials, Publ. Res. Inst. Math. Sci. 31
(1995), no. 3, 465-480.



Mather classes of Schubert varieties via small resolutions 507

[38] R. P. Stanley, Log-concave and unimodal sequences in algebra, combi-
natorics, and geometry, in Graph theory and its applications: East and
West (Jinan, 1986), Vol. 576 of Ann. New York Acad. Sci., 500-535,
New York Acad. Sci., New York (1989).

[39] B. Totaro, Chern numbers for singular varieties and elliptic homology,
Ann. of Math. (2) 151 (2000), no. 2, 757-791.

[40] A. V. Zelevinskii, Small resolutions of singularities of Schubert varieties,
Funktsional. Anal. i Prilozhen. 17 (1983), no. 2, 75-77.

[41] X. Zhang, Chern classes and characteristic cycles of determinantal va-
rieties, J. Algebra 497 (2018) 55-91.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY
CorumBus OH 43210, USA

Current address:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA
ATHENS GA 30602, USA

E-mail address: minyoung. jeonQuga. edu

RECEIVED DECEMBER 11, 2021
AccePTED JuLy 21, 2023






	Introduction
	Chern-Mather classes and Kazhdan-Lusztig classes
	IH-small resolutions of Schubert varieties in the orthogonal Grassmannian OG(n,C2n)
	Chern-Mather classes for Schubert varieties in the orthogonal Grassmannian OG(n,C2n)
	Kazhdan-Lusztig classes of Schubert varieties
	Acknowledgements
	References

