

1
2
3 **Effects of food restriction on voluntary wheel-running behavior and body mass**
4 **in selectively bred High Runner lines of mice**

5
6
7 Zoe Thompson^{a,b}, Ivana A. T. Fonseca^c, Wendy Acosta^d, Laidy Idarraga^d, and
8 Theodore Garland, Jr.^{d,*}

9
10 ^a Neuroscience Graduate Program, University of California, Riverside, CA 92521,
11 USA

12
13 ^b Present Address: Department of Biology, Utah Valley University, Orem, UT, USA

14
15 ^c Department of Physical Education, University of State of Rio Grande do Norte,
16 Mossoró, Brazil

17
18 ^d Department of Evolution, Ecology, and Organismal Biology, University of California,
19 Riverside, CA 92521, USA

20
21 * author for correspondence:
22 Office Phone: (951) 827-3524
23 tgarland@ucr.edu

25 **ABSTRACT**

26 Food restriction can have profound effects on various aspects of behavior, physiology,
27 and morphology. Such effects might be amplified in animals that are highly active,
28 given that physical activity can represent a substantial fraction of the total daily energy
29 budget. More specifically, some effects of food restriction could be associated with
30 intrinsic, genetically based differences in the propensity or ability to perform physical
31 activity. To address this possibility, we studied the effects of food restriction in four
32 replicate lines of High Runner (HR) mice that have been selectively bred for high
33 levels of voluntary wheel running. We hypothesized that HR mice would respond
34 differently than mice from four non-selected Control (C) lines. Healthy adult females
35 from generation 65 were housed individually with wheels and provided access to food
36 and water *ad libitum* for experimental days 1-19 (Phase 1), which allowed mice to
37 attain a plateau in daily running distances. *Ad libitum* food intake of each mouse was
38 measured on days 20-22 (Phase 2). After this, each mouse experienced a 20% food
39 restriction for 7 days (days 24-30; Phase 3), and then a 40% food restriction for 7
40 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8,
41 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-
42 minute bins, during the entire experiment. Repeated-measures ANOVA of daily
43 wheel-running distance during Phases 2-4 indicated that HR mice always ran much
44 more than C, with values being 3.29-fold higher during the *ad libitum* feeding trial,
45 3.58-fold higher with -20% food, and 3.06-fold higher with -40% food. Seven days of
46 food restriction at -20% did not significantly reduce wheel-running distance of either
47 HR (-5.8%, $P = 0.0773$) or C mice (-13.3%, $P = 0.2122$). With 40% restriction, HR
48 mice showed a further decrease in daily wheel-running distance ($P = 0.0797$ vs.
49 values at 20% restriction), whereas C mice did not ($P = 0.4068$ vs. values at 20%
50 restriction) and recovered to levels similar to those on *ad libitum* food ($P = 0.3634$).
51 For HR mice, daily running distances averaged 11.4% lower at -40% food versus
52 baseline values ($P = 0.0086$), whereas for C mice no statistical difference existed (-
53 4.8%, $P = 0.7004$). Repeated-measures ANOVA of body mass during Phases 2-4
54 indicated a highly significant effect of food restriction ($P = 0.0001$), but no significant
55 effect of linetype ($P = 0.1764$) and no interaction ($P = 0.8524$). Both HR and C mice
56 had a significant reduction in body mass only when food rations were reduced by 40%
57 relative to *ad libitum* feeding, and even then the reductions averaged only -0.60 g for
58 HR mice (-2.6%) and -0.49 g (-2.0%) for C mice. Overall, our results indicate a
59 surprising insensitivity of body mass to food restriction in both high-activity (HR) and
60 ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus
61 calling for studies of compensatory mechanisms that allow this insensitivity.
62

63 **Keywords:**

64 Caloric restriction

65 Exercise

66 Genotype-by-environment interaction

67 Selection experiment

68 Spontaneous physical activity

69 Wheel running

70

71

72 **1. Introduction**

73

74 Many animals must deal with some degree of food deprivation or restriction at
75 some point in their normal life cycle (Wang et al. 2006), and this also occurs in various
76 experimental protocols in the laboratory (Rowland 2007). Numerous studies show
77 that food restriction can have profound effects on various aspects of physiology,
78 behavior, and anatomy. In rodents, these effects may vary in relation to the specific
79 food restriction protocol (Hill et al. 1985; Varady 2011), species (Cornish and
80 Mrosovsky 1965; Blank and Desjardins 1985), strain (Gelegen et al. 2006), age
81 (Speakman and Mitchell 2011), and sex (Martin et al. 2007) (see also references in
82 Sherwin 1998). Moreover, it might be expected that such effects would be amplified in
83 animals that are highly active, given that (a) physical activity can represent a
84 substantial fraction of the total daily energy budget and (b) the control of physical
85 activity involves motivation and reward systems of the brain that overlap with those
86 involved in the control of feeding behavior (Garland, Jr. et al. 2011b; Novak et al.
87 2012; Lightfoot et al. 2018; Ruiz-Tejada et al. 2022). Note that food restriction --
88 reducing the amount of food available on a daily basis -- is different from food
89 deprivation, in which food is removed entirely for some period of time, such as 24
90 hours (Dill et al. 1978; Dietze et al. 2016). Rowland (2007) has reviewed some of the
91 differences in behavioral and physiological responses of laboratory rodents to these
92 different treatments, but simple generalities do not emerge, perhaps in large part
93 because protocols have varied considerably.

94 In laboratory house mice, the cost of voluntary wheel-running activity can
95 represent a substantial portion of the total energy budget (Swallow et al. 2001;
96 Rezende et al. 2009). Also, as noted by Dewsbury (1980), use of running wheels as a
97 measure of physical activity tends to exaggerate the effects of various experimental
98 manipulations. Perhaps not surprisingly, food restriction has yielded variable results
99 with respect to wheel-running activity of mice, with reported increases, no change, or
100 decreases in distance traveled in response to the same food restriction protocol (-
101 50%) in different strains of mice (Symons 1973). For example, Padovani et al. (2009)
102 observed that the distance traveled decreased ~67% with 30% food restriction, in
103 relation to an *ad libitum* food group, at the end of 6 weeks of the experiment.
104 Moreover, Blank and Desjardins (1985) showed that the effect of 30% food restriction
105 on distance traveled varied across the daily cycle, decreasing during the dark and
106 increasing during the light period in wild-derived male house mice. However, this
107 within-day effect was not observed in food-restricted deer mice (*Peromyscus*
108 *maniculatus*), which ran less when restricted during both periods.

109 Within a given species, some of the differences among studies could be
110 associated with intrinsic, genetically based variation in the propensity or ability to
111 perform voluntary wheel running. For example, mouse strains with inherently high
112 wheel-running levels during food restriction in "activity-based anorexia" protocols have
113 more rapid loss of body mass (Pjetri et al. 2012). To further explore possible
114 genetically based differences in the response to food deprivation, we studied four
115 replicate lines of High Runner (HR) mice that have been selectively bred for voluntary
116 wheel running (Swallow et al. 1998). Since reaching apparent selection limits around
117 generation 17-25 (depending on line and sex: Careau et al. 2013), HR mice run
118 voluntarily ~3-fold more revolutions per day than those from four non-selected Control
119 (C) lines, and this differential has been approximately constant over more than 75
120 generations of continued selective breeding (Garland, Jr. et al. 2011a; Cadney et al.
121 2021; McNamara et al. 2022a; Schwartz et al. 2023). The nature of this apparent
122 selection limit is presently unknown, but may be related to either motivational or

123 physiological factors, or both (Claghorn et al. 2016). When housed without access to
124 wheels, HR mice are more active than C mice in their home cages (Malisch et al.
125 2009; Copes et al. 2015), although HR mice are not more active than C mice in a 3-
126 minute open-field test, which is considered a measure of exploratory behavior or
127 reaction to a novel environment (Bronikowski et al. 2001; Careau et al. 2012; but see
128 Cadney et al. 2021).

129 As compared with the C lines, HR mice have elevated endurance capacity
130 (Meek et al. 2009) and maximal aerobic capacity (VO₂max) (Kolb et al. 2010; Cadney
131 et al. 2021; Schwartz et al. 2023) during forced treadmill exercise, as well as various
132 lower-level morphological and physiological traits that may affect endurance capacity
133 (Rhodes et al. 2005; Swallow et al. 2009; Garland, Jr. et al. 2011b; Wallace and
134 Garland, Jr. 2016). HR mice have reduced total body mass (Swallow et al. 1999) and
135 body fat (Swallow et al. 2001; Vaanholt et al. 2008; Meek et al. 2010; Hiramatsu and
136 Garland, Jr. 2018), which could affect their ability to contend with food restriction. HR
137 mice also show alterations in their brain motivation and reward system, dopamine
138 signaling, responses to endocannabinoid agonists and antagonists, and in the sizes of
139 specific brain regions, including an enlarged hippocampus (Rhodes et al. 2005; Belke
140 and Garland, Jr. 2007; Keeney et al. 2012; Kolb et al. 2013; Thompson et al. 2017;
141 Schmill et al. 2023); again, these differences could affect their responses to food
142 restriction (Belke and Pierce 2016; Liu and Kanoski 2018; Ruiz-Tejada et al. 2022).
143 Finally, HR mice differ from C mice with regard to their fecal microbiota (McNamara et
144 al. 2022b, 2022a), which could also affect responses to food restriction.

145 The effect of food restriction on HR mice has not been investigated. One
146 reasonable expectation is that these unique mice would reduce the amount of wheel
147 running to deal with periods of low food availability. However, in an experiment
148 designed to address the effect of an increased amount of work needed to obtain food,
149 the distance traveled between HR and C groups when they needed to work (run on
150 wheels) for food did not differ (Vaanholt et al. 2007). Another reason to expect
151 differences between HR and C mice is that the former show greater among-individual
152 variation in daily wheel running distance, greater among-individual variation in
153 plasticity of running, and greater unpredictability of running distances (Biro et al.
154 2018). Finally, male mice from the HR lines respond uniquely to feeding on a Western
155 diet, with wheel running increasing dramatically, while C mice are unaffected (Meek et
156 al. 2010, 2012; Acosta et al. 2017). In contrast, inbred C57BL/6J mice of both sexes
157 reduce wheel running on a high-fat and high-sugar diet (Vellers et al. 2017).
158 Therefore, the aim of this study was to determine the effects of food restriction on
159 voluntary wheel-running behavior and body mass in HR mice, with the general
160 hypothesis that they will respond differently than mice from the non-selected C lines.
161 Such a result would set the stage for future studies aimed at uncovering the
162 mechanisms underlying differential responses.

163 2. Methods

164 2.1. *Experimental animals*

165 Healthy adult female mice (N = 99) from generation 65 of an ongoing selection
166 experiment for high voluntary wheel running were used (Swallow et al. 1998). We
167 chose females for this initial study because they generally run more than males (e.g.,
168 Gelegen et al. 2007; Meek et al. 2009; Garland, Jr. et al. 2011a), thus providing more
169 signal against which to detect potential reductions in wheel running.

170 The original progenitors of the colony were 224 outbred, genetically variable
171 Hsd:ICR mice (Harlan Sprague Dawley, Indianapolis, Indiana, USA). After two

174 generations of random mating, 8 closed lines were formed, with four selected for high
175 voluntary wheel running (based on days 5 and 6 of a 6-day test) and four bred without
176 regard to running (Swallow et al. 1998; Careau et al. 2013). Before the experiments
177 described here, beginning at weaning, animals were housed in same-sex groups of up
178 to four individuals in a standard cage (28 × 17 × 12 cm). Water and food [Harlan
179 Teklad Rodent Diet (W) 8604] were available *ad libitum*. Complete information on the
180 composition of this diet can be found at the Inotiv website
181 (<https://www.inotivco.com/rodent-traditional-natural-ingredient-diets>). Room
182 temperature was maintained at 22 to 24° C and photoperiod was 12:12, with lights on
183 at 0700 Pacific time.

184
185 **2.1. Protocols**

186 As shown in **Figure 1**, adult female mice were housed individually with running
187 wheels (1.12 m circumference, as used in the routine selection protocol (Swallow et
188 al. 1998)), and provided access to food and water *ad libitum* for experimental days 1-
189 19, which allowed the amount of daily wheel running to stabilize (e.g., see Swallow et
190 al. 2001). Then, the mice were maintained in the same running-wheel cages for an
191 additional three-day period (days 20-22) to measure baseline food intake (Koteja et al.
192 2003). After this, each mouse experienced a 20% food restriction (weighed and
193 provided daily) for 7 days (days 24-30), and then a 40% food restriction for 7
194 additional days (days 31-37). Restriction amounts were determined individually for
195 each mouse, using their baseline food consumption. Water was available *ad libitum*
196 throughout the experiment.

197
198 **2.3. Measurements**

199 Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37. Wheels
200 were checked for freeness and mechanical or electrical malfunctions on a daily basis.
201 Wheel-running activity was recorded continuously, in 1-minute bins, during the entire
202 experiment. Animals were monitored daily, and any that appeared moribund or
203 exhibited a loss of more than 30% body mass as compared with their mass at the start
204 of food restriction (Gelegen et al. 2007) were intended to be removed from the
205 experiment and returned to *ad libitum* food conditions, or euthanized. In practice, this
206 did not occur.

207
208 **2.4. Statistical analyses**

209 Following numerous previous studies of these lines of mice (e.g., Kolb et al.
210 2010, 2013; Claghorn et al. 2016; Hiramatsu and Garland, Jr. 2018; Schmill et al.
211 2023), body mass, food consumption, and wheel running with *ad libitum* food were
212 analyzed by mixed-models, with replicate line nested within linetype (HR vs. C). The
213 degrees of freedom for testing the effect of linetype (i.e., the effect of past selective
214 breeding) were always 1 and 6. Covariates were used as appropriate, e.g., age, body
215 mass. In addition, several of the analyses used individual mice as repeated measures
216 across days with an AR(1) covariance structure.

217 All analyses were performed in SAS Procedure Mixed, and data are presented
218 as least squares means and associated standard errors. Mini-muscle status (Garland,
219 Jr. et al. 2002; Kelly et al. 2013) was included as an additional cofactor in preliminary
220 analyses, but as it did not appreciably affect the primary statistical results it was
221 removed for simplicity in the final results reported here. In the present sample of
222 mice, all of the individuals from HR line #3 were mini-muscle individuals, but only one
223 from HR line #6 (see Syme et al. 2005). Statistical outliers (values for individual mice

224 for particular days) were deleted when standardized residuals exceeded 3 in
225 magnitude.

226 For analyses of body mass, food consumption, and wheel running, we also
227 performed separate analyses (some of them repeated-measures) of the HR and C
228 lines, treating line as a fixed effect within either selection group (Garland, Jr. et al.
229 2011a). We did this because differences among the replicate lines may be of interest
230 in their own right (e.g., see Gammie et al. 2003; Garland, Jr. et al. 2011a; Kolb et al.
231 2013; Castro et al. 2022; Hillis and Garland, Jr. 2023; Schwartz et al. 2023) and
232 because the vastly different starting values for wheel running (more than 3-fold greater
233 in HR lines as compared with C lines) can obscure treatment effects in C lines due to
234 scale effects.

235 3. Results

236 **Figure 2** presents the results for daily wheel running and body mass as
237 measured across the course of the experiment, separated by individual lines (4 HR
238 and 4 C). The overall result is that wheel running was remarkably stable in the face of
239 food restriction for mice from the non-selected Control lines, but declined significantly
240 in mice from the selectively bred High Runner lines. Body mass of both C and HR
241 mice showed modest decreases. Results are discussed in greater detail in the
242 following sections, which can be interpreted in the context of Figure 2. Our emphasis
243 is on differences in the average responses of the four HR lines versus the four C lines.
244 However, as has been noted previously for a variety of traits, differences among the
245 four replicate lines within each linetype do exist (e.g., see Garland, Jr. et al. 2011a;
246 Castro et al. 2022; Hillis and Garland, Jr. 2023; Whitehead et al. 2023). Therefore, we
247 also refer to analyses comparing lines within the two linetypes, and place the relevant
248 materials in Supplemental Table 1.

249 3.1. Body mass and food consumption

250 During the *ad libitum* food consumption trial (experimental days 20-22), HR
251 mice (Least Square Mean \pm Standard Error: 24.99 ± 0.978 g) did not weigh
252 significantly less ($P = 0.1453$) than C mice (27.32 ± 0.981 g). Age (mean = 86.3 days,
253 range = 80-89) as a covariate did not have a significant effect ($P = 0.3698$).
254 Significant differences in body mass also existed both among the four replicate HR
255 lines and among the four replicate C lines (Supplemental Table 1).

256 Adjusting for age ($P = 0.8891$) and body mass ($P = 0.0183$) as covariates
257 (overall mean body mass = 26.15 g), HR mice (6.19 ± 0.198 g/day) ate approximately
258 23% more ($P = 0.0073$) than C mice (5.04 ± 0.201 g/day)($N = 100$ mice). When the
259 total amount of wheel running (revolutions) during the three-day food trial was added
260 as an additional covariate, it was a highly significant positive predictor of food intake
261 ($P = 0.0008$) and the difference in food intake between HR (5.84 ± 0.226 g/day) and C
262 mice (5.45 ± 0.231 g/day) was reduced and became statistically non-significant ($P =$
263 0.3229) (body mass $P = 0.0493$)($N = 99$ because one mouse with a faulty wheel was
264 removed). Hence, the greater food intake by HR female mice, versus their C
265 counterparts, when both are housed with wheel access, can be mostly explained by
266 the greater levels of voluntary exercise by HR mice, as has been reported previously
267 (Copes et al. 2015; but see Hiramatsu and Garland, Jr. 2018). In these analyses,
268 differences among the replicate C lines were not statistically significant ($P = 0.6258$),
269 but those among the HR lines were ($P = 0.0217$) (Supplemental Table 1).

270 3.2. Wheel running during the initial 6 and 19 days of exposure

275 During the first six days of wheel access, as is used routinely to choose
276 breeders in the selection experiment, wheel running was always higher in HR than in
277 C mice ($P < 0.0001$), increased across days ($P < 0.0001$) for both HR and C, but also
278 showed a strong day * linetype interaction ($P < 0.0001$) (**Figure 3A**). Inspection of the
279 graph indicates that running by HR mice increased more rapidly across days 3-6 than
280 for C mice. For example, the difference in average wheel revolutions run per day
281 increased from 2,247 on days 1-2 to 3,646 on days 5-6 for C mice (1.6-fold) but from
282 6,450 to 13,309 for HR mice (2.1-fold). Analyses of the Control lines alone indicated
283 strong line and day effects, but no day * line interaction (Supplemental Table 1). In
284 contrast, analyses of the HR lines indicated no line effect ($P = 0.9838$), but a strong
285 day effect and a marginal day * line interaction ($P = 0.0503$).

286 Considering the components of wheel running during the first six days of wheel
287 access, the number of 1-minute intervals with any running (**Figure 3B**) was always
288 higher in HR than in C mice ($P = 0.0465$), increased across days ($P < 0.0001$) for both
289 HR and C, with no significant interaction ($P = 0.1623$). The mean running speed
290 (**Figure 3C**) was always higher in HR than in C mice ($P < 0.0001$), increased across
291 days ($P < 0.0001$) for both HR and C, but also showed a strong day * linetype
292 interaction ($P < 0.0001$). Results were similar for the maximum revolutions attained in
293 any 1-minute interval on a given day ($P_{\text{linetype}} < 0.0001$, $P_{\text{day}} < 0.0001$, $P_{\text{interaction}} =$
294 0.0003) (**Figure 3D**).

295 Considering days 7-19, daily wheel-running distance continued to increase
296 (**Figure 4A**), but in a less monotonic fashion, and reached plateaus at least by day 16
297 for both HR and C mice, with highly significant effects of linetype, day, and their
298 interaction (all $P < 0.0001$). Averaged over days 15-19, daily revolutions run were
299 4,643 for C mice and 17,473 for HR mice, a ratio of 3.8. Analyses of the Control lines
300 alone indicated strong line and day effects, and a marginal day * line interaction $P =$
301 0.0710 (Supplemental Table 1). Analyses of the HR lines indicated a strong day
302 effect ($P < 0.0001$) and a day * line interaction ($P = 0.0067$), but no overall line effect
303 ($P = 0.5675$).

304 3.3. *Wheel running during food restriction*

305 The repeated-measures ANOVA of HR and C lines combined indicated that
306 daily distance run was strongly affected by linetype ($P < 0.0001$) and marginally
307 affected by food restriction ($P = 0.0632$), with no significant interaction between
308 linetype and food restriction status ($P = 0.1399$) (total $N = 99$ mice and 1,661
309 observations). Based on these combined analyses, and as shown in **Figure 5A**, HR
310 mice always ran much more than C, with values being 3.29-fold higher during the *ad*
311 *libitum* feeding trial, 3.58-fold higher with 20% food restriction, and 3.06-fold higher
312 with 40% restriction.

313 Based on the combined analyses, seven days of food restriction at 20% did not
314 significantly reduce wheel running of either HR (-5.8%, $P = 0.0773$) or C mice (-
315 13.3%, $P = 0.2122$) (**Figure 5A**). With 40% restriction, HR mice showed a further
316 reduction ($P = 0.0797$ vs. values at 20% restriction, -11.4% versus baseline values),
317 whereas C mice slightly increased running ($P = 0.4068$ vs. values at 20% restriction),
318 resulting in a value that was only 4.8% below those on *ad libitum* food. Comparing the
319 four C lines indicated differences among them ($P = 0.0101$) and the strong effect of
320 food restriction ($P = 0.00224$), with no significant restriction * line interaction ($P =$
321 0.1692) (Supplemental Table 1). Results were similar when comparing the four HR
322 lines (P values were 0.0270 for line, 0.0380 for level of food restriction, and 0.2629 for
323 their interaction).

325 Considering the components of wheel running, the repeated-measures ANOVA
326 of HR and C lines combined indicated that the duration of daily running was affected
327 by both linetype ($P = 0.0404$) and food restriction status ($P = 0.0078$), with no
328 interaction ($P = 0.2535$), and an overall pattern similar to that for daily distance run,
329 except that the difference between HR and C mice is much less (**Figure 5B**). For
330 average running speed (**Figure 5C**), results were similar to those for distance run,
331 with a highly significant effect of linetype ($P < 0.0001$), an effect of food restriction ($P =$
332 0.0231), but also a significant interaction between linetype and food restriction status
333 ($P = 0.0354$). Finally, results for maximum running speed were similar to those for
334 average speed ($P_{\text{linetype}} < 0.0001$, $P_{\text{restriction}} = 0.0822$, $P_{\text{interaction}} = 0.0072$) (**Figure 5D**).

335 For the number of intervals run, the repeated-measures ANOVA comparing the
336 C lines indicated strong line ($P < 0.0001$) and food restriction ($P < 0.0001$), with a
337 marginal line * restriction interaction ($P = 0.0537$) (Supplemental Table 1). Similar
338 results held for the HR lines ($P_{\text{line}} < 0.0001$, $P_{\text{restriction}} = 0.0112$, $P_{\text{interaction}} = 0.1049$).

339 Average running speed of the C mice was unaffected by line ($P = 0.6785$),
340 restriction ($P = 0.2944$) or their interaction ($P = 0.9021$), whereas, in contrast, HR mice
341 showed effects of both line ($P = 0.0267$) and restriction status ($P = 0.0026$) ($P_{\text{interaction}} =$
342 0.3295). Maximum running speed was affected only by line in both C mice ($P =$
343 0.0004) and the HR mice ($P = 0.0027$) (Supplemental Table 1).

344 3.4. Body mass during food restriction

345 For the repeated-measures ANOVA of HR and C lines combined, we compared
346 body masses measured on days 20 and 23 (*ad libitum* food), 24-30 (-20% food), and
347 31-37 (-40% food)(total N = 99 mice and 1,574 observations). The effect of food
348 restriction was highly significant ($P = 0.0001$), with a non-significant ($P = 0.1764$)
349 tendency for HR mice to be smaller (-8%, LSMeans of 24.99 ± 0.90 for C mice and
350 23.03 ± 0.90 for HR mice), and no interaction ($P = 0.8524$). **Figure 6** shows that both
351 HR and C mice had a significant reduction in body mass only when food rations were
352 reduced by 40% relative to *ad libitum* feeding. However, even at 40% food reduction,
353 the decrease in body mass was only -0.49 grams for C mice and -0.61 for HR mice,
354 which is only 2.0% and 2.6%, respectively, of the body mass prior to food reduction.

355 Comparing the four C lines indicated differences among them ($P = 0.0015$) and
356 the effect of food restriction ($P = 0.0008$), with no restriction * line interaction ($P =$
357 0.5721) (Supplemental Table 1). Results were similar for the HR lines ($P_{\text{line}} = 0.0007$,
358 $P_{\text{restriction}} < 0.0001$, $P_{\text{interaction}} = 0.8082$).

360 4. Discussion

361 The main results of this study were as follows. First, both HR and C female
362 mice maintained body mass (no statistically significant reduction) on a 20% food
363 restriction regimen that lasted for seven days (**Figure 6**), without a statistically
364 significant decrease in daily wheel-running distance (**Figure 5A**). Second, with a 40%
365 food reduction for an additional week, C mice increased running distance back closer
366 to those measured under *ad libitum* feeding, while experiencing a significant decrease
367 in body mass that averaged only -2.0% relative to *ad libitum*-fed values. Third, High
368 Runner mice on 40% food restriction showed a further decline in running distance
369 (**Figure 5A**) that became significantly lower than on *ad libitum* food, and did then
370 show a statistically significant reduction in body mass (**Figure 6**), but the magnitude
371 was only -2.6% compared with *ad libitum* feeding. Examination of the components of
372 daily wheel-running distance (duration and mean speed) indicate that both were
373 affected by food restriction, but in ways that differed between the HR and C lines
374
375

376 (Figure 5B and 5C). Specifically, 40% food restriction decreased both duration and
377 speed of running in the HR mice, but only decreased duration in the C mice.

378 Many previous studies with rodents show that food restriction can have a
379 range of effects, including on behavior and activity in the cage and/or wheel. Various
380 factors combined may alter the effect of restriction, including the duration and intensity
381 (% reduction), age, sex, and species (e.g., see Symons 1973; Hill et al. 1985;
382 Padovani et al. 2009; Varady 2011). Several studies use different combinations of
383 these factors, which can make it difficult to compare results. One large study of inbred
384 C57BL/6 mice found that even 40% calorie restriction lasting for 80 days had modest
385 effects on wheel running (Mitchell et al. 2016). Further complicating matters may be
386 the presence of expected or hypothesized psychological changes, some of which
387 follow a stress response, that may interact with some effects of food restriction. For
388 example, our mice were housed individually for wheel-running measurements, and
389 social isolation has sometimes been shown to increase circulating levels of
390 corticosterone in mice (Takatsu-Coleman et al. 2013), which is routinely taken as one
391 indicator of a response to stressful conditions. However, other studies have not
392 observed social isolaton to increase corticosterone levels in mice (Misslin et al. 1982).
393 An Unpredictable Chronic Mild Stress (UCMS) protocol can reduce voluntary running
394 wheel in mice (DeVallance et al. 2017), and, conversely, access to wheels can affect
395 circulating corticosterone levels in various ways (Girard and Garland, Jr. 2002; Droste
396 et al. 2006), both acutely and chroncially, and decrease fecal corticosterone
397 metabolite levels (Gurfein et al. 2012).

398 Another factor that may potentiate the physiological effects of calorie
399 restriction is combination with exercise (Huffman 2010). This combination has been
400 used in the treatment of obesity. In obese laboratory mice, for example, combined
401 calorie restriction with wheel exercise caused greater reduction of adiposity when
402 compared to a group that only experienced calorie restriction (Patterson and Levin
403 2007).

404 In the present study, we did not observe a statistical increase in wheel-running
405 activity at either 20% or 40% food restriction, which is unlike what happens in activity-
406 based anorexia models with mice and rats (Exner et al. 2000; Gutiérrez et al. 2002;
407 Hebebrand et al. 2003; Siegfried et al. 2003; Overton and Williams 2004). In addition,
408 the drop in body mass we observed even with 40% calorie restriction (~2-3%) is much
409 smaller than in activity-based anorexia protocols administered to mice (Gelegen et al.
410 2007; Pjetri et al. 2012). In those models, the animals have free access to the wheel,
411 but with *ad libitum* access to food for only a short period of time, typically only once
412 each day (e.g., Gelegen et al. 2006, 2007; Pjetri et al. 2012). These differences in the
413 protocols do not allow us to compare results directly. However, the increased activity
414 in animals subjected to an activity-based anorexia protocol has been linked to
415 increases in circulating corticosterone concentrations (Duclos et al. 2009). Thus, it is
416 interesting to note that mice from the HR lines typically have baseline circulating
417 corticosterone concentrations that are roughly twice as high as for Control mice
418 (Malisch et al. 2007, 2008), perhaps suggesting that further increases were not
419 possible for HR mice [although acute increases in response to restraint stress are
420 possible: (Malisch et al. 2016)]. In addition, HR mice are closer to a biological limit in
421 terms of wheel running, at least with the standard chow diet used in the present study
422 (e.g., see Meek et al. 2009). Perhaps HR mice are also less sensitive to changes
423 related to corticosterone concentrations or other factors that may have contributed to
424 the increased activity observed in mice from the non-selected C lines. Finally, the low
425 circulating leptin levels of HR mice, as compared with C lines (Girard et al. 2007;

426 Meek et al. 2012), could play a role (Garland, Jr. et al. 2011b, 2016; Mitchell et al.
427 2016; Ruiz-Tejada et al. 2022).

428 Our results differ from a study of two lines of rats, one selectively bred for high
429 (HCR) and the other low (LCR) intrinsic aerobic capacity during forced treadmill
430 running (Koch and Britton 2001). HCR rats also run more on wheels and weigh less
431 than LCR rats (Waters et al. 2008; Swallow et al. 2010). With 50% calorie restriction
432 for three weeks, female high-capacity rats lost more weight than low-capacity rats,
433 and high-capacity rats also had a greater decrease in home-cage physical activity
434 levels (though levels remained higher than low-capacity rats) (Smyers et al. 2015). As
435 noted previously, differences in our results may be due to the different species,
436 amount and length of food restriction, and selection paradigm.

437 In summary, our results indicate an unexpected degree of insensitivity in both
438 body mass and voluntary wheel-running behavior to food restriction, which calls for
439 further studies of compensatory mechanisms that allow this insensitivity in these and
440 possibly some other strains of laboratory house mice (Symons 1973; Pjetri et al. 2012;
441 Vaanholt et al. 2012; Jensen et al. 2013; Mitchell et al. 2016). One might wonder if
442 the magnitude and duration of food restriction used here were sufficient to induce
443 effects on the phenotypes measured. However, previous studies have shown effects
444 within a span of 7 days. For example, Symons (1973) examined body mass and daily
445 wheel running in four inbred strains under a 50% food restriction protocol. All four
446 inbred strains dropped in body mass, with a greater decrease seen with each of the
447 six successive trial days, and some differences among the strains were apparent. All
448 four strains showed effects of food restriction on daily wheel running, although the
449 effects differed among strains. Importantly, mice from two of the four strains died after
450 two days at -50% food, which is one of the reasons we used the less extreme -20%
451 and then -40% levels of food restriction. In another example, mice from an inbred
452 strain showed reductions in body mass and increases in wheel running after three
453 days at -30% of ad lib food (Tezenas du Montcel et al. 2023). Thus, we are confident
454 that the degree of food restriction we imposed was of sufficient magnitude that effects
455 on body mass and/or wheel running would have been expected.

456 As noted above, differences in responses in the present study may be
457 influenced by known differences in corticosterone, leptin, and/or endocannabinoid
458 levels in HR compared with C mice. Also of considerable interest would be studies of
459 sex differences in responses to food restriction (Dietze et al. 2016), especially given
460 that, in both the HR and C mice used here, the sexes differ in daily wheel-running
461 distance, body composition, endocannabinoid physiology, reproductive physiology
462 (obviously), and many other aspects of the phenotype (e.g., see Rezende et al. 2009;
463 Hiramatsu and Garland, Jr. 2018; Schmill et al. 2022; Khan et al. 2024). Moreover, as
464 the food restriction part of our study lasted only two weeks, it would be interesting to
465 see if the increase in wheel running by C mice in response to 40% food restriction
466 would be able to be supported for longer periods of time (e.g., see Vaanholt et al.
467 2015; Tezenas du Montcel et al. 2023).

468 We also note that our results are relevant to the point that ad lib feeding of
469 laboratory rodents often leads to overfed animals that may be "metabolically morbid"
470 (Martin et al. 2010). As pointed out by those authors, housing mice or rats with less
471 than ad lib food is not too difficult, and doing so (perhaps in conjunction with access to
472 an exercise wheel, e.g., see Booth and Lees 2006) may improve the translational
473 relevance of results.

474 In closing, we suggest that our results may have translational relevance for the
475 regulation of body weight in human beings. Although countless studies of humans
476 examine relationships among diet, exercise, body composition, and energetics

477 (Drenowatz 2015; Lightfoot et al. 2018; Careau et al. 2021), few have tested
478 specifically for the effects of caloric restriction on voluntary exercise (Rowland 2016).
479 Studies of humans conducted inside respiratory chambers usually find that
480 spontaneous physical activity (SPA) does not change during calorie restriction (see
481 summary and references in Martin et al. 2011), but SPA and voluntary exercise are
482 very different aspects of physical activity in both humans and rodents (Garland, Jr. et
483 al. 2011b; Copes et al. 2015; Rowland 2016; Acosta et al. 2017). In a study of short-
484 term overfeeding (3 days), obesity-prone individuals significantly decreased the
485 amount of time spent walking (Schmidt et al. 2012) (see also Levine et al. 2008). In
486 studies of free-living people, three randomized trials examining the effect of calorie
487 restriction (-20% to -30%) in nonobese adults of both sexes (Martin et al. 2011) found
488 reductions in activity energy expenditure over 3-12 months, but accelerometry
489 provided little evidence for reductions in moderate, hard or very hard intensity activity
490 (how much of this involved voluntary exercise is not stated), although other studies
491 have reported variable results (Martin et al. 2011; Drenowatz 2015). Our results seem
492 consistent with those of Martin et al. in that caloric restriction did not cause a
493 substantial reduction in voluntary exercise. This may be good news with respect to
494 dieting to lose weight because it suggests we may not need to worry that levels of
495 voluntary exercise will decline as part of the behavioral and physiological (energetic)
496 compensatory mechanisms that sometimes occur in response to dieting.
497
498

499 **Data availability statement**

500
501 Data are available upon reasonable request from the authors.
502
503

504 **Conflict of interest statement**

505
506 The authors declare no conflict of interest.
507
508

509 **Acknowledgments**

510
511 We thank Jarren C. Kay for assistance. We thank Sara C. Campbell, Ayland
512 Letsinger, Herman Pontzer, and John Speakman for pointing us towards references.
513 Three anonymous reviewers provided very helpful comments on the manuscript. This
514 work was supported by NSF grants IOS-1121273 and IOS-2038528 to TG, and by a
515 fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
516 CAPES/BRAZIL Ivana to I.A.T.F.
517
518

519 **Supplementary materials**

520
521 Supplementary material associated with this article can be found, in the online
522 version, at doi: xx
523

524 REFERENCES in Zotero

525

526 Acosta W., T.H. Meek, H. Schutz, E.M. Dlugosz, and T. Garland, Jr. 2017. Preference
527 for Western diet coadapts in High Runner mice and affects voluntary exercise
528 and spontaneous physical activity in a genotype-dependent manner.
529 Behavioural Processes 135:56–65.

530 Belke T.W. and T. Garland, Jr. 2007. A brief opportunity to run does not function as a
531 reinforcer for mice selected for high daily wheel-running rates. Journal of the
532 Experimental Analysis of Behavior 88:199–213.

533 Belke T.W. and W.D. Pierce. 2016. Wheel-running reinforcement in free-feeding and
534 food-deprived rats. Behavioural Processes 124:1–9.

535 Biro P.A., T. Garland, Jr., C. Beckmann, B. Ujvari, F. Thomas, and J.R. Post. 2018.
536 Metabolic scope as a proximate constraint on individual behavioral variation:
537 effects on “personality”, plasticity, and predictability. American Naturalist
538 192:142–154.

539 Blank J.L. and C. Desjardins. 1985. Differential effects of food restriction on pituitary-
540 testicular function in mice. American Journal of Physiology-Regulatory,
541 Integrative and Comparative Physiology 248:R181–R189.

542 Booth F.W. and S.J. Lees. 2006. Physically active subjects should be the control
543 group. Medicine & Science in Sports & Exercise 38:405–406.

544 Bronikowski A.M., P.A. Carter, J.G. Swallow, I.A. Girard, J.S. Rhodes, and T. Garland,
545 Jr. 2001. Open-field behavior of house mice selectively bred for high voluntary
546 wheel-running. Behavior Genetics 31:309–316.

547 Cadney M.D., L. Hiramatsu, Z. Thompson, M. Zhao, J.C. Kay, J.M. Singleton, R.L.
548 Albuquerque, et al. 2021. Effects of early-life exposure to Western diet and
549 voluntary exercise on adult activity levels, exercise physiology, and associated
550 traits in selectively bred High Runner mice. Physiology & Behavior 234:113389.

551 Careau V., O.R.P. Bininda-Emonds, G. Ordonez, and T. Garland, Jr. 2012. Are
552 voluntary wheel running and open-field behavior correlated in mice? Different
553 answers from comparative and artificial selection approaches. Behavior
554 Genetics 42:830–844.

555 Careau V., L.G. Halsey, H. Pontzer, P.N. Ainslie, L.F. Andersen, L.J. Anderson, L.
556 Arab, et al. 2021. Energy compensation and adiposity in humans. Current
557 Biology.

558 Careau V., M.E. Wolak, P.A. Carter, and T. Garland. 2013. Limits to behavioral
559 evolution: the quantitative genetics of a complex trait under directional
560 selection. Evolution 67:3102–3119.

561 Castro A.A., T. Garland, Jr., S. Ahmed, and N.C. Holt. 2022. Trade-offs in muscle
562 physiology in selectively bred High Runner mice. Journal of Experimental
563 Biology 225:jeb244083.

564 Claghorn G.C., I.A.T. Fonseca, Z. Thompson, C. Barber, and T. Garland, Jr. 2016.
565 Serotonin-mediated central fatigue underlies increased endurance capacity in
566 mice from lines selectively bred for high voluntary wheel running. *Physiology &*
567 *Behavior* 161:145–154.

568 Copes L.E., H. Schutz, E.M. Dlugosz, W. Acosta, M.A. Chappell, and T. Garland, Jr.
569 2015. Effects of voluntary exercise on spontaneous physical activity and food
570 consumption in mice: results from an artificial selection experiment. *Physiology*
571 *& Behavior* 149:86–94.

572 Cornish E.R. and N. Mrosovsky. 1965. Activity during food deprivation and satiation of
573 six species of rodent. *Animal Behaviour* 13:242–248.

574 DeVallance E., D. Riggs, B. Jackson, T. Parkulo, S. Zaslau, P.D. Chantler, I.M. Olfert,
575 et al. 2017. Effect of chronic stress on running wheel activity in mice. *PLoS*
576 ONE 12:e0184829.

577 Dewsbury D.A. 1980. Wheel-running behavior in 12 species of muroid rodents.
578 *Behavioural Processes* 5:271–280.

579 Dietze S., K. Lees, H. Fink, J. Brosda, and J.-P. Voigt. 2016. Food deprivation, body
580 weight loss and anxiety-related behavior in rats. *Animals* 6:14.

581 Dill D.B., L.F. Soholt, and J.D. Morris. 1978. Wheel running of kangaroo rats,
582 *Dipodomys merriami*, as related to food deprivation and body composition. *J*
583 *Appl Physiol Respir Environ Exerc Physiol* 44:17–20.

584 Drenowatz C. 2015. Reciprocal compensation to changes in dietary intake and energy
585 expenditure within the concept of energy balance. *Advances in Nutrition: An*
586 *International Review Journal* 6:592–599.

587 Droste S.K., M.C. Schweizer, S. Ulbricht, and J.M.H.M. Reul. 2006. Long-term
588 voluntary exercise and the mouse hypothalamic-pituitary-adrenocortical axis:
589 impact of concurrent treatment with the antidepressant drug tianeptine. *Journal*
590 *of Neuroendocrinology* 18:915–925.

591 Duclos M., C. Gatti, B. Bessière, and P. Mormède. 2009. Tonic and phasic effects of
592 corticosterone on food restriction-induced hyperactivity in rats.
593 *Psychoneuroendocrinology* 34:436–445.

594 Exner C., J. Hebebrand, H. Remschmidt, C. Wewetzer, A. Ziegler, S. Herpertz, U.
595 Schweiger, et al. 2000. Leptin suppresses semi-starvation induced
596 hyperactivity in rats: implications for anorexia nervosa. *Molecular Psychiatry*
597 5:476–481.

598 Gammie S.C., N.S. Hasen, J.S. Rhodes, I. Girard, and T. Garland, Jr. 2003. Predatory
599 aggression, but not maternal or intermale aggression, is associated with high
600 voluntary wheel-running behavior in mice. *Hormones and Behavior* 44:209–
601 221.

602 Garland, Jr. T., S.A. Kelly, J.L. Malisch, E.M. Kolb, R.M. Hannon, B.K. Keeney, S.L.
603 Van Cleave, et al. 2011a. How to run far: multiple solutions and sex-specific

604 responses to selective breeding for high voluntary activity levels. *Proceedings*
605 of the Royal Society B: Biological Sciences 278:574–581.

606 Garland, Jr. T., M.T. Morgan, J.G. Swallow, J.S. Rhodes, I. Girard, J.G. Belter, and
607 P.A. Carter. 2002. Evolution of a small-muscle polymorphism in lines of house
608 mice selected for high activity levels. *Evolution* 56:1267–1275.

609 Garland, Jr. T., H. Schutz, M.A. Chappell, B.K. Keeney, T.H. Meek, L.E. Copes, W.
610 Acosta, et al. 2011b. The biological control of voluntary exercise, spontaneous
611 physical activity and daily energy expenditure in relation to obesity: human and
612 rodent perspectives. *Journal of Experimental Biology* 214:206–229.

613 Garland, Jr. T., M. Zhao, and W. Saltzman. 2016. Hormones and the evolution of
614 complex traits: insights from artificial selection on behavior. *Integrative and*
615 *Comparative Biology* 56:207–224.

616 Gelegen C., D. Collier, I. Campbell, H. Oppelaar, J. Vandenheuvel, R. Adan, and M.
617 Kas. 2007. Difference in susceptibility to activity-based anorexia in two inbred
618 strains of mice. *European Neuropsychopharmacology* 17:199–205.

619 Gelegen C., D.A. Collier, I.C. Campbell, H. Oppelaar, and M.J. Kas. 2006. Behavioral,
620 physiological, and molecular differences in response to dietary restriction in
621 three inbred mouse strains. *American Journal of Physiology-Endocrinology and*
622 *Metabolism* 291:E574–E581.

623 Girard I. and T. Garland, Jr. 2002. Plasma corticosterone response to acute and
624 chronic voluntary exercise in female house mice. *Journal of Applied Physiology*
625 92:1553–1561.

626 Girard I., E.L. Rezende, and T. Garland Jr. 2007. Leptin levels and body composition
627 of mice selectively bred for high voluntary locomotor activity. *Physiological and*
628 *Biochemical Zoology* 80:568–579.

629 Gurfein B.T., A.W. Stamm, P. Bacchetti, M.F. Dallman, N.A. Nadkarni, J.M. Milush, C.
630 Touma, et al. 2012. The calm mouse: an animal model of stress reduction. *Mol*
631 *Med* 18:606–617.

632 Gutiérrez E., R. Vázquez, and R.A. Boakes. 2002. Activity-based anorexia: ambient
633 temperature has been a neglected factor. *Psychonomic Bulletin & Review*
634 9:239–249.

635 Hebebrand J., C. Exner, K. Hebebrand, C. Holtkamp, R.C. Casper, H. Remschmidt, B.
636 Herpertz-Dahlmann, et al. 2003. Hyperactivity in patients with anorexia nervosa
637 and in semistarved rats: evidence for a pivotal role of hypoleptinemia.
638 *Physiology & behavior* 79:25–37.

639 Hill J.O., A. Latiff, and M. DiGirolamo. 1985. Effects of variable caloric restriction on
640 utilization of ingested energy in rats. *American Journal of Physiology-*
641 *Regulatory, Integrative and Comparative Physiology* 248:R549–R559.

642 Hillis D.A. and T. Garland, Jr. 2023. Multiple solutions at the genomic level in
643 response to selective breeding for high locomotor activity. *Genetics*
644 223:iyac165.

645 Hiramatsu L. and T. Garland, Jr. 2018. Mice selectively bred for high voluntary wheel-
646 running behavior conserve more fat despite increased exercise. *Physiology &*
647 *Behavior* 194:1–8.

648 Huffman D.M. 2010. Exercise as a calorie restriction mimetic: implications for
649 improving healthy aging and longevity. Pp. 157–174 in C.V. Mobbs and P.R.
650 Hof eds. *Interdisciplinary Topics in Gerontology*.

651 Jensen T.L., M.K. Kiersgaard, D.B. Sørensen, and L.F. Mikkelsen. 2013. Fasting of
652 mice: a review. *Lab Anim* 47:225–240.

653 Keeney B.K., T.H. Meek, K.M. Middleton, L.F. Holness, and T. Garland. 2012. Sex
654 differences in cannabinoid receptor-1 (CB1) pharmacology in mice selectively
655 bred for high voluntary wheel-running behavior. *Pharmacology Biochemistry*
656 and *Behavior* 101:528–537.

657 Kelly S.A., T.A. Bell, S.R. Selitsky, R.J. Buus, K. Hua, G.M. Weinstock, T. Garland,
658 Jr., et al. 2013. A novel intronic single nucleotide polymorphism in the *Myosin*
659 *heavy polypeptide 4* gene is responsible for the Mini-Muscle phenotype
660 characterized by major reduction in hind-limb muscle mass in mice. *Genetics*
661 195:1385–1395.

662 Khan R.H., J.S. Rhodes, I.A. Girard, N.E. Schwartz, and T. Garland, Jr. 2024. Does
663 behavior evolve first? Correlated responses to selection for voluntary wheel-
664 running behavior in house mice. *Ecological and Evolutionary Physiology* 97:In
665 press.

666 Koch L.G. and S.L. Britton. 2001. Artificial selection for intrinsic aerobic endurance
667 running capacity in rats. *Physiological Genomics* 5:45–52.

668 Kolb E.M., S.A. Kelly, K.M. Middleton, L.S. Sermsakdi, M.A. Chappell, and T. Garland,
669 Jr. 2010. Erythropoietin elevates $V_{O2,\text{max}}$ but not voluntary wheel running in
670 mice. *Journal of Experimental Biology* 213:510–519.

671 Kolb E.M., E.L. Rezende, L. Holness, A. Radtke, S.K. Lee, A. Obenaus, and T.
672 Garland, Jr. 2013. Mice selectively bred for high voluntary wheel running have
673 larger midbrains: support for the mosaic model of brain evolution. *Journal of*
674 *Experimental Biology* 216:515–523.

675 Koteja P., P.A. Carter, J.G. Swallow, and T. Garland. 2003. Food wasting by house
676 mice: variation among individuals, families, and genetic lines. *Physiology &*
677 *behavior* 80:375–383.

678 Levine J.A., S.K. McCrady, L.M. Lanningham-Foster, P.H. Kane, R.C. Foster, and
679 C.U. Manohar. 2008. The role of free-living daily walking in human weight gain
680 and obesity. *Diabetes* 57:548–554.

681 Lightfoot J.T., E.J.C. De Geus, F.W. Booth, M.S. Bray, M. den Hoed, J.A. Kaprio, S.A.
682 Kelly, et al. 2018. Biological/genetic regulation of physical activity level:
683 consensus from GenBioPAC. *Medicine and Science in Sports and Exercise*
684 50:863–873.

685 Liu C.M. and S.E. Kanoski. 2018. Homeostatic and non-homeostatic controls of
686 feeding behavior: Distinct vs. common neural systems. *Physiol Behav*
687 193:223–231.

688 Malisch J.L., C.W. Breuner, F.R. Gomes, M.A. Chappell, and T. Garland. 2008.
689 Circadian pattern of total and free corticosterone concentrations, corticosteroid-
690 binding globulin, and physical activity in mice selectively bred for high voluntary
691 wheel-running behavior. *General and comparative endocrinology* 156:210–217.

692 Malisch J.L., C.W. Breuner, E.M. Kolb, H. Wada, R.M. Hannon, M.A. Chappell, K.M.
693 Middleton, et al. 2009. Behavioral despair and home-cage activity in mice with
694 chronically elevated baseline corticosterone concentrations. *Behavior genetics*
695 39:192–201.

696 Malisch J.L., K. deWolski, T.H. Meek, W. Acosta, K.M. Middleton, O.L. Crino, and T.
697 Garland, Jr. 2016. Acute restraint stress alters wheel-running behavior
698 immediately following stress and up to 20 hours later in house mice.
699 *Physiological and Biochemical Zoology* 89:546–552.

700 Malisch J.L., W. Saltzman, F.R. Gomes, E.L. Rezende, D.R. Jeske, and T. Garland Jr.
701 2007. Baseline and stress-induced plasma corticosterone concentrations of
702 mice selectively bred for high voluntary wheel running. *Physiological and*
703 *Biochemical Zoology* 80:146–156.

704 Martin B., S. Ji, S. Maudsley, and M.P. Mattson. 2010. “Control” laboratory rodents
705 are metabolically morbid: Why it matters. *Proceedings of the National Academy*
706 *of Sciences* 107:6127–6133.

707 Martin B., M. Pearson, L. Kebejian, E. Golden, A. Keselman, M. Bender, O. Carlson,
708 et al. 2007. Sex-dependent metabolic, neuroendocrine, and cognitive
709 responses to dietary energy restriction and excess. *Endocrinology* 148:4318–
710 4333.

711 Martin C.K., S.K. Das, L. Lindblad, S.B. Racette, M.A. McCrory, E.P. Weiss, J.P.
712 Delany, et al. 2011. Effect of calorie restriction on the free-living physical
713 activity levels of nonobese humans: results of three randomized trials. *J Appl*
714 *Physiol* (1985) 110:956–963.

715 McNamara M.P., M.D. Cadney, A.A. Castro, D.A. Hillis, K.M. Kallini, J.C. Macbeth,
716 M.P. Schmill, et al. 2022a. Oral antibiotics reduce voluntary exercise behavior
717 in athletic mice. *Behavioural Processes* 199:104650.

718 McNamara M.P., E.M. Venable, M.D. Cadney, A.A. Castro, M.P. Schmill, L. Kazzazi,
719 R.N. Carmody, et al. 2022b. Weanling gut microbiota composition of a mouse
720 model selectively bred for high voluntary wheel-running behavior. *Journal of*
721 *Experimental Biology* 226:jeb245081.

722 Meek T.H., E.M. Dlugosz, K.T. Vu, and T. Garland, Jr. 2012. Effects of leptin
723 treatment and Western diet on wheel running in selectively bred high runner
724 mice. *Physiology & Behavior* 106:252–258.

725 Meek T.H., J.C. Eisenmann, and T. Garland, Jr. 2010. Western diet increases wheel
726 running in mice selectively bred for high voluntary wheel running. International
727 Journal of Obesity 34:960–969.

728 Meek T.H., B.P. Lonquich, R.M. Hannon, and T. Garland. 2009. Endurance capacity
729 of mice selectively bred for high voluntary wheel running. Journal of
730 Experimental Biology 212:2908–2917.

731 Misslin R., F. Herzog, B. Koch, and P. Ropartz. 1982. Effects of isolation, handling
732 and novelty on the pituitary–adrenal response in the mouse.
733 Psychoneuroendocrinology 7:217–221.

734 Mitchell S.E., C. Delville, P. Konstantopoulos, D. Derous, C.L. Green, Y. Wang, J.-D.J.
735 Han, et al. 2016. The effects of graded levels of calorie restriction: V. Impact of
736 short term calorie and protein restriction on physical activity in the C57BL/6
737 mouse. Oncotarget 7:19147–19170.

738 Novak C.M., P.R. Burghardt, and J.A. Levine. 2012. The use of a running wheel to
739 measure activity in rodents: Relationship to energy balance, general activity,
740 and reward. Neuroscience & Biobehavioral Reviews 36:1001–1014.

741 Overton J.M. and T.D. Williams. 2004. Behavioral and physiologic responses to
742 caloric restriction in mice. Physiology & behavior 81:749–754.

743 Padovani M., J.A. Lavigne, G.V. Chandramouli, S.N. Perkins, J.C. Barrett, S.D.
744 Hursting, L.M. Bennett, et al. 2009. Distinct effects of calorie restriction and
745 exercise on mammary gland gene expression in C57BL/6 mice. Cancer
746 Prevention Research 2:1076–1087.

747 Patterson C.M. and B.E. Levin. 2007. Role of exercise in the central regulation of
748 energy homeostasis and in the prevention of obesity. Neuroendocrinology
749 87:65–70.

750 Pjetri E., R. de Haas, S. de Jong, C. Gelegen, H. Oppelaar, L.A.W. Verhagen, M.J.C.
751 Eijkemans, et al. 2012. Identifying predictors of activity based anorexia
752 susceptibility in diverse genetic rodent populations. PLoS ONE 7:e50453.

753 Rezende E.L., F.R. Gomes, M.A. Chappell, and T. Garland, Jr. 2009. Running
754 behavior and its energy cost in mice selectively bred for high voluntary
755 locomotor activity. Physiological and Biochemical Zoology 82:662–679.

756 Rhodes J.S., S.C. Gammie, and T. Garland. 2005. Neurobiology of mice selected for
757 high voluntary wheel-running activity. Integrative and Comparative Biology
758 45:438–455.

759 Rowland N.E. 2007. Food or fluid restriction in common laboratory animals: balancing
760 welfare considerations with scientific inquiry. Comp Med 57:149–160.

761 Rowland T. 2016. Biologic regulation of physical activity. Human Kinetics Publishers,
762 Champaign, IL.

763 Ruiz-Tejada A., J. Neisewander, and C.S. Katsanos. 2022. Regulation of voluntary
764 physical activity behavior: review of evidence implicating dopaminergic
765 pathways in the brain. *Brain Sciences* 12:333.

766 Schmidt S.L., K.A. Harmon, T.A. Sharp, E.H. Kealey, and D.H. Bessesen. 2012. The
767 effects of overfeeding on spontaneous physical activity in obesity prone and
768 obesity resistant humans. *Obesity (Silver Spring)* 20:2186–2193.

769 Schmill M.P., Z. Thompson, D.A. Argueta, N.V. DiPatrizio, and T. Garland, Jr. 2022.
770 Effects of selective breeding, voluntary exercise, and sex on endocannabinoid
771 levels in the mouse small-intestinal epithelium. *Physiology & Behavior*
772 245:113675.

773 Schmill M.P., Z. Thompson, D. Lee, L. Haddadin, S. Mitra, R. Ezzat, S. Shelton, et al.
774 2023. Hippocampal, whole midbrain, red nucleus, and ventral tegmental area
775 volumes are increased by selective breeding for high voluntary wheel-running
776 behavior. *Genes, Brain and Behavior* 98:245–263.

777 Schwartz N.E., M.P. McNamara, J.M. Orozco, J.O. Rashid, A.P. Thai, and T. Garland,
778 Jr. 2023. Selective breeding for high voluntary exercise in mice increases
779 maximal ($\dot{V}_{O_2, \text{max}}$) but not basal metabolic rate. *Journal of Experimental
780 Biology* 226:jeb245256.

781 Sherwin C.M. 1998. Voluntary wheel running: a review and novel interpretation.
782 *Animal Behaviour* 56:11–27.

783 Siegfried Z., E.M. Berry, S. Hao, and Y. Avraham. 2003. Animal models in the
784 investigation of anorexia. *Physiology & Behavior* 79:39–45.

785 Smyers M.E., K.Z. Bachir, S.L. Britton, L.G. Koch, and C.M. Novak. 2015. Physically
786 active rats lose more weight during calorie restriction. *Physiology & Behavior*
787 139:303–313.

788 Speakman J.R. and S.E. Mitchell. 2011. Caloric restriction. *Molecular Aspects of
789 Medicine* 32:159–221.

790 Swallow J., P. Koteja, P. Carter, and T. Garland. 2001. Food consumption and body
791 composition in mice selected for high wheel-running activity. *Journal of
792 Comparative Physiology B* 171:651–659.

793 Swallow J.G., P.A. Carter, and T. Garland Jr. 1998. Artificial selection for increased
794 wheel-running behavior in house mice. *Behavior genetics* 28:227–237.

795 Swallow J.G., J.P. Hayes, P. Koteja, and T. Garland, Jr. 2009. Selection experiments
796 and experimental evolution of performance and physiology. Pp. 301–351 in T.
797 Garland, Jr. and M.R. Rose eds. *Experimental evolution: concepts, methods,
798 and applications of selection experiments*.

799 Swallow J.G., P. Koteja, P.A. Carter, and T. Garland, Jr. 1999. Artificial selection for
800 increased wheel-running activity in house mice results in decreased body mass
801 at maturity. *Journal of Experimental Biology* 202:2513–2520.

802 Swallow J.G., A.K. Wroblewska, R.P. Waters, K.J. Renner, S.L. Britton, and L.G.
803 Koch. 2010. Phenotypic and evolutionary plasticity of body composition in rats
804 selectively bred for high endurance capacity. *Journal of Applied Physiology*
805 109:778–785.

806 Syme D.A., K. Evashuk, B. Grintuch, E.L. Rezende, and T. Garland, Jr. 2005.
807 Contractile abilities of normal and “mini” triceps surae muscles from mice (*Mus*
808 *domesticus*) selectively bred for high voluntary wheel running. *Journal of*
809 *Applied Physiology* 99:1308–1316.

810 Symons J.P. 1973. Wheel-running activity during ad lib and food-deprivation
811 conditions in four inbred mouse strains. *Bulletin of the Psychonomic Society*
812 1:78–80.

813 Takatsu-Coleman A.L., C.L. Patti, K.A. Zanin, A. Zager, R.C. Carvalho, A.R. Borçoi,
814 L.M.B. Ceccon, et al. 2013. Short-term social isolation induces depressive-like
815 behaviour and reinstates the retrieval of an aversive task: Mood-congruent
816 memory in male mice? *J Psychiatry Neurosci* 38:259–268.

817 Tezenas du Montcel C., J. Cao, J. Mattioni, H. Hamelin, N. Lebrun, N. Ramoz, P.
818 Gorwood, et al. 2023. Chronic food restriction in mice and increased systemic
819 ghrelin induce preference for running wheel activity. *Psychoneuroendocrinology*
820 155:106311.

821 Thompson Z., D. Argueta, T. Garland, Jr., and N. DiPatrizio. 2017. Circulating levels
822 of endocannabinoids respond acutely to voluntary exercise, are altered in mice
823 selectively bred for high voluntary wheel running, and differ between the sexes.
824 *Physiology & Behavior* 170:141–150.

825 Vaanholt L.M., T. Garland, S. Daan, and G.H. Visser. 2007. Wheel-running activity
826 and energy metabolism in relation to ambient temperature in mice selected for
827 high wheel-running activity. *Journal of Comparative Physiology B* 177:109–118.

828 Vaanholt L.M., I. Jonas, M. Doornbos, K.A. Schubert, C. Nyakas, T. Garland, G.H.
829 Visser, et al. 2008. Metabolic and behavioral responses to high-fat feeding in
830 mice selectively bred for high wheel-running activity. *International Journal of*
831 *Obesity* 32:1566–1575.

832 Vaanholt L.M., V. Magee, and J.R. Speakman. 2012. Factors predicting individual
833 variability in diet-induced weight loss in mf1 mice. *Obesity* 20:285–294.

834 Vaanholt L.M., S.E. Mitchell, R.E. Sinclair, and J.R. Speakman. 2015. Mice that are
835 resistant to diet-induced weight loss have greater food anticipatory activity and
836 altered melanocortin-3 receptor (MC3R) and dopamine receptor 2 (D2) gene
837 expression. *Hormones and Behavior* 73:83–93.

838 Varady K.A. 2011. Intermittent versus daily calorie restriction: which diet regimen is
839 more effective for weight loss? *Obesity Reviews* 12:e593–e601.

840 Vellers H.L., A. Letsinger, N. Walker, J. Granados, and J.T. Lightfoot. 2017. High fat
841 high sugar diet reduces voluntary wheel running in mice independent of sex
842 hormone involvement. *Frontiers in Physiology, section Exercise Physiology*
843 Email of 26 June 2017.

844 Wallace I.J. and T. Garland, Jr. 2016. Mobility as an emergent property of biological
845 organization: insights from experimental evolution. *Evolutionary Anthropology*
846 25:98–104.

847 Wang T., C.C.Y. Hung, and D.J. Randall. 2006. The comparative physiology of food
848 deprivation: from feast to famine. *Annual Review of Physiology* 68:223–251.

849 Waters R.P., K.J. Renner, R.B. Pringle, C.H. Summers, S.L. Britton, L.G. Koch, and
850 J.G. Swallow. 2008. Selection for aerobic capacity affects corticosterone,
851 monoamines and wheel-running activity. *Physiology & Behavior* 93:1044–1054.

852 Whitehead N.N., S.A. Kelly, J.S. Demes, N.E. Schwartz, and T. Garland, Jr. 2023.
853 Locomotor play behavior evolves by random genetic drift but not as a
854 correlated response to selective breeding for high voluntary wheel-running
855 behavior. *Behav Processes* 213:104973.

856

857

858 [Figures and Legends](#)

859

860

861

862

863

864

865

866

867

868

Wheel Access with *ad lib* Food

Baseline
Food
Consum-
ption

-20% Food
Restriction

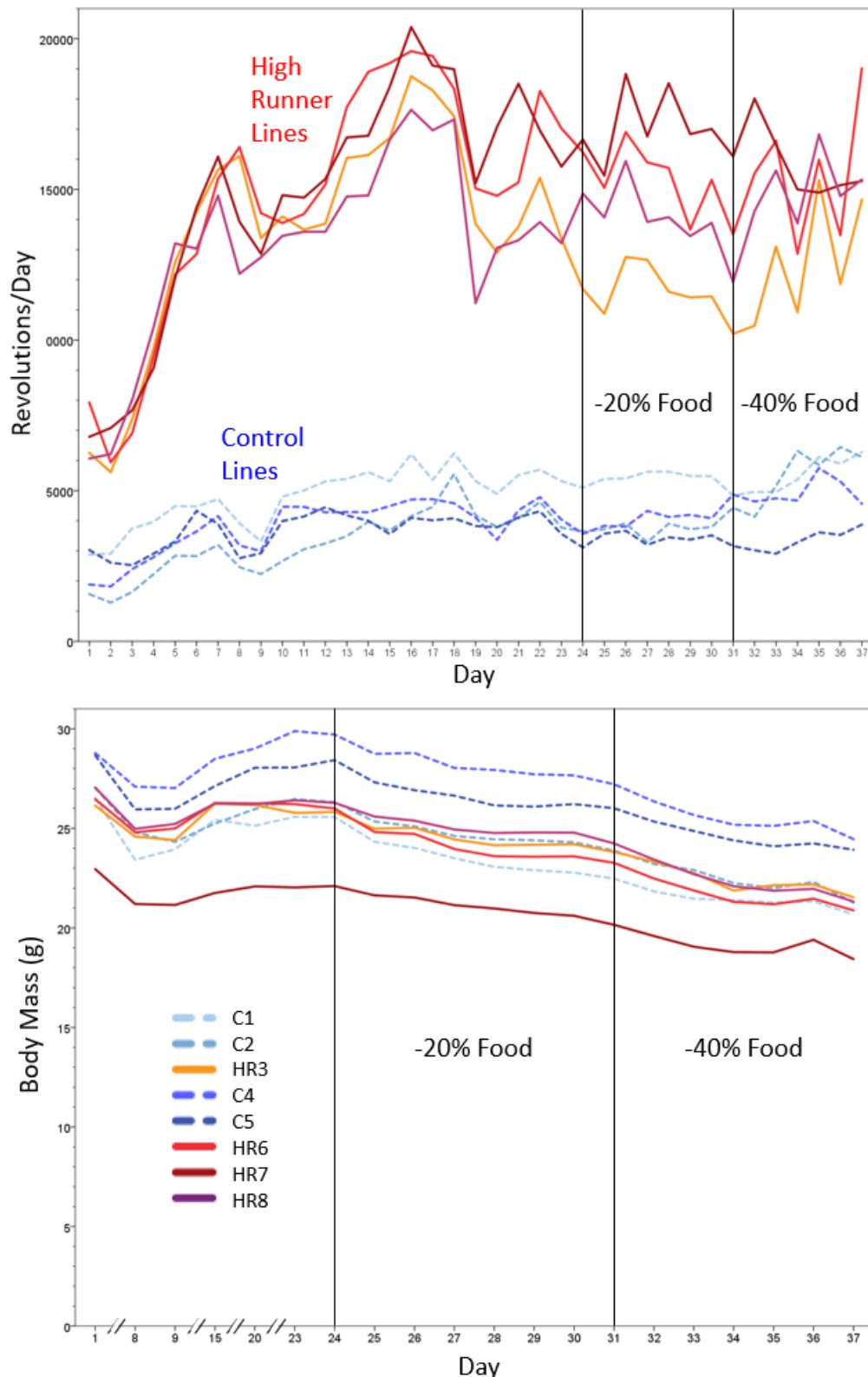
-40% Food
Restriction

Experimental Day 1-19

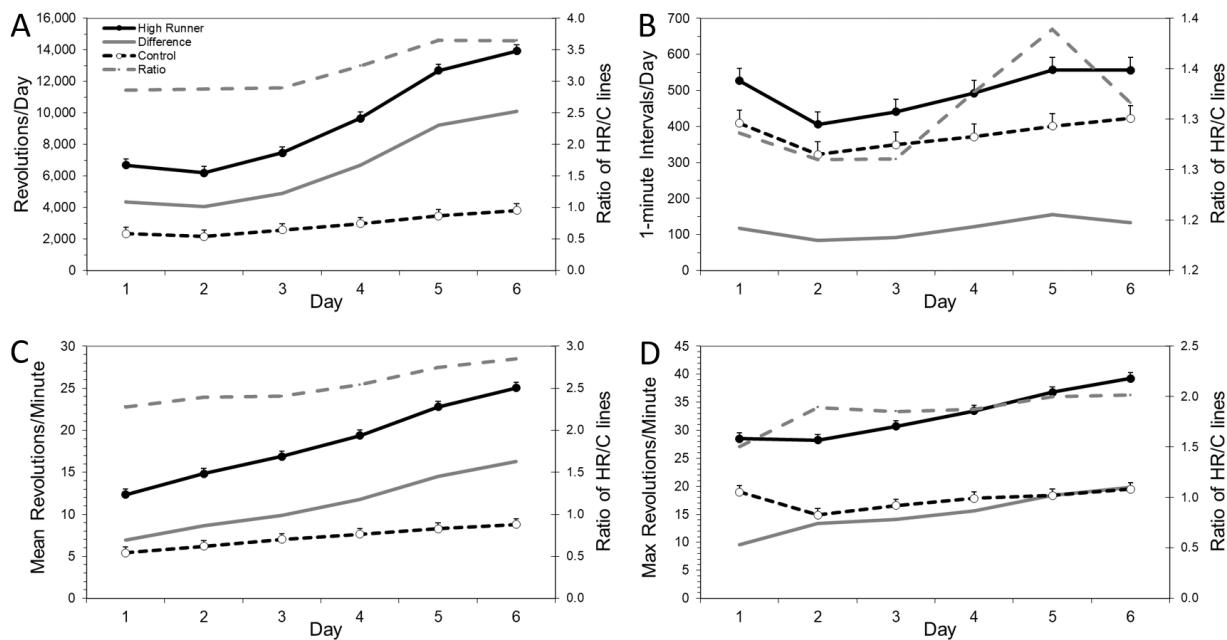
Day 20-22

Day 24-30

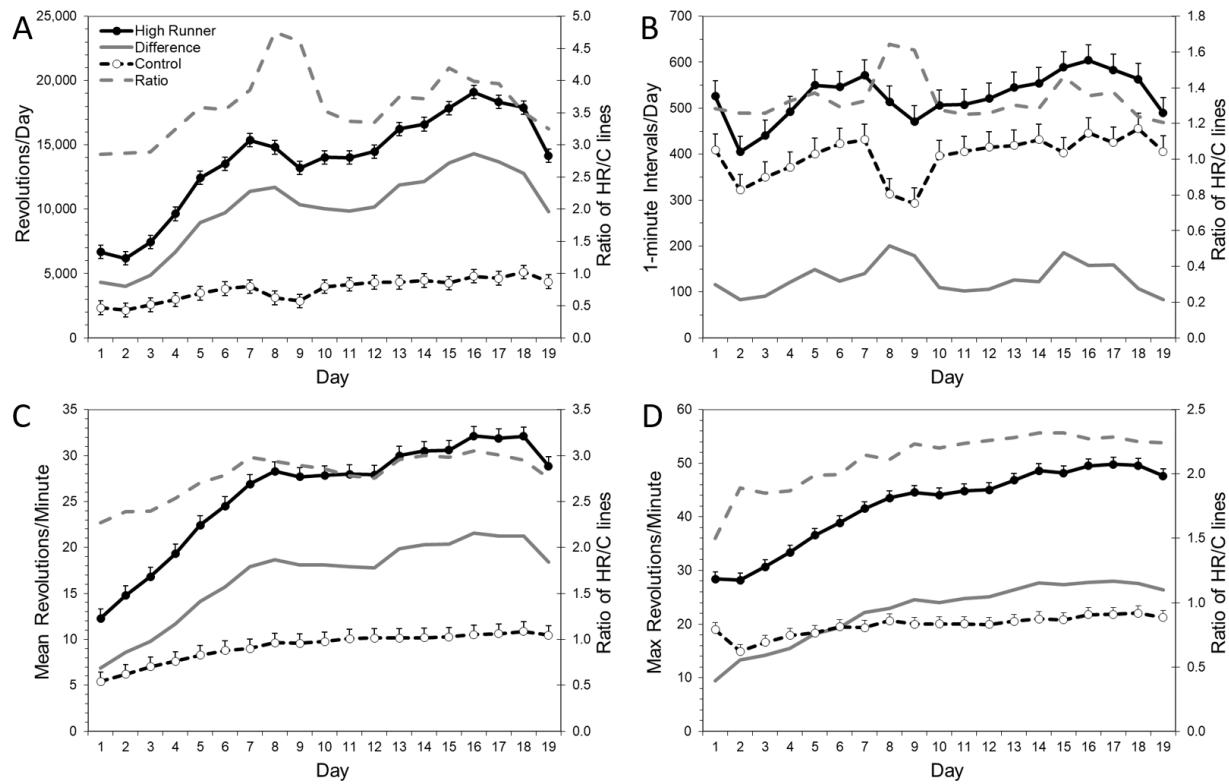
Day 31-37

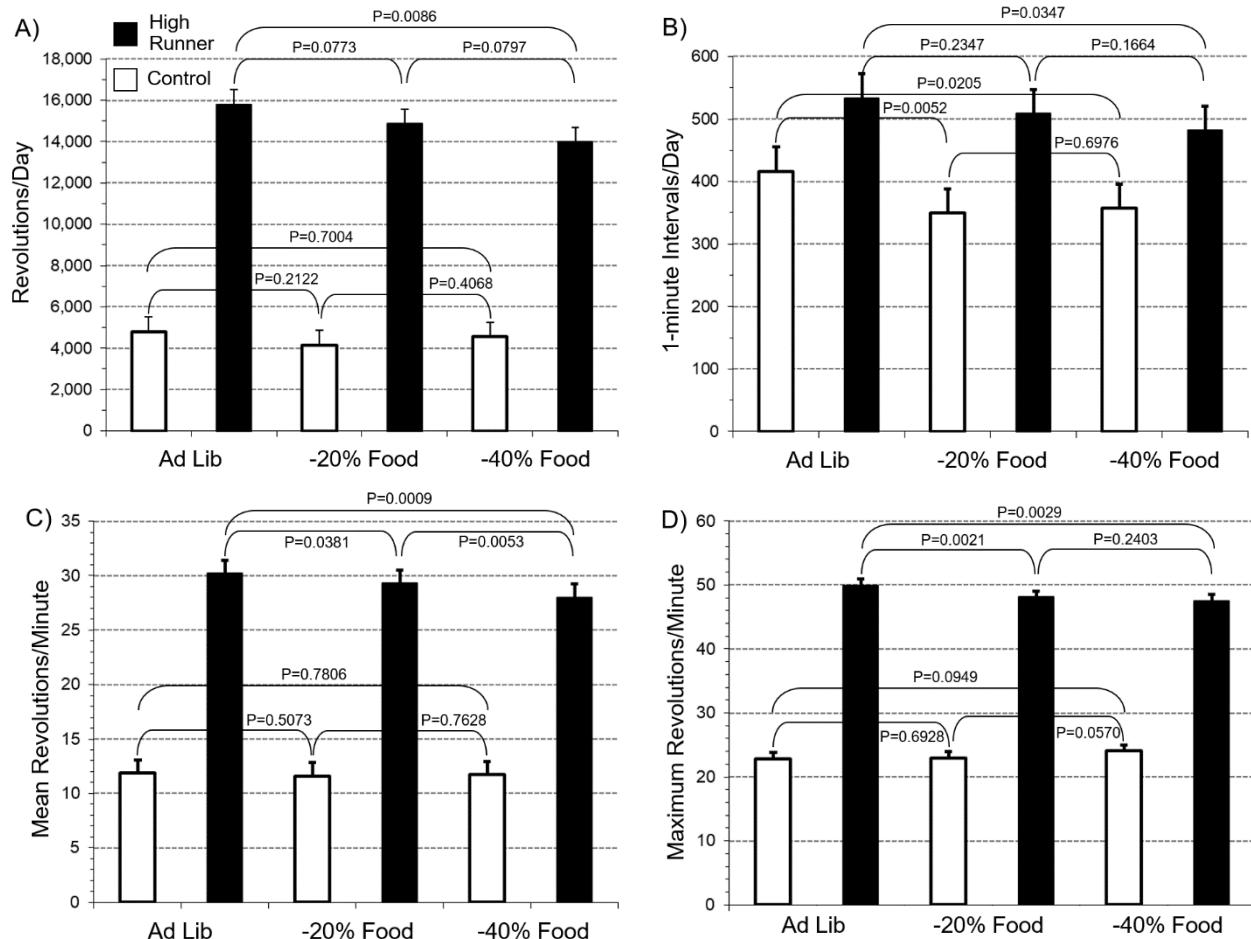

Figure 1. Experimental timeline.

869

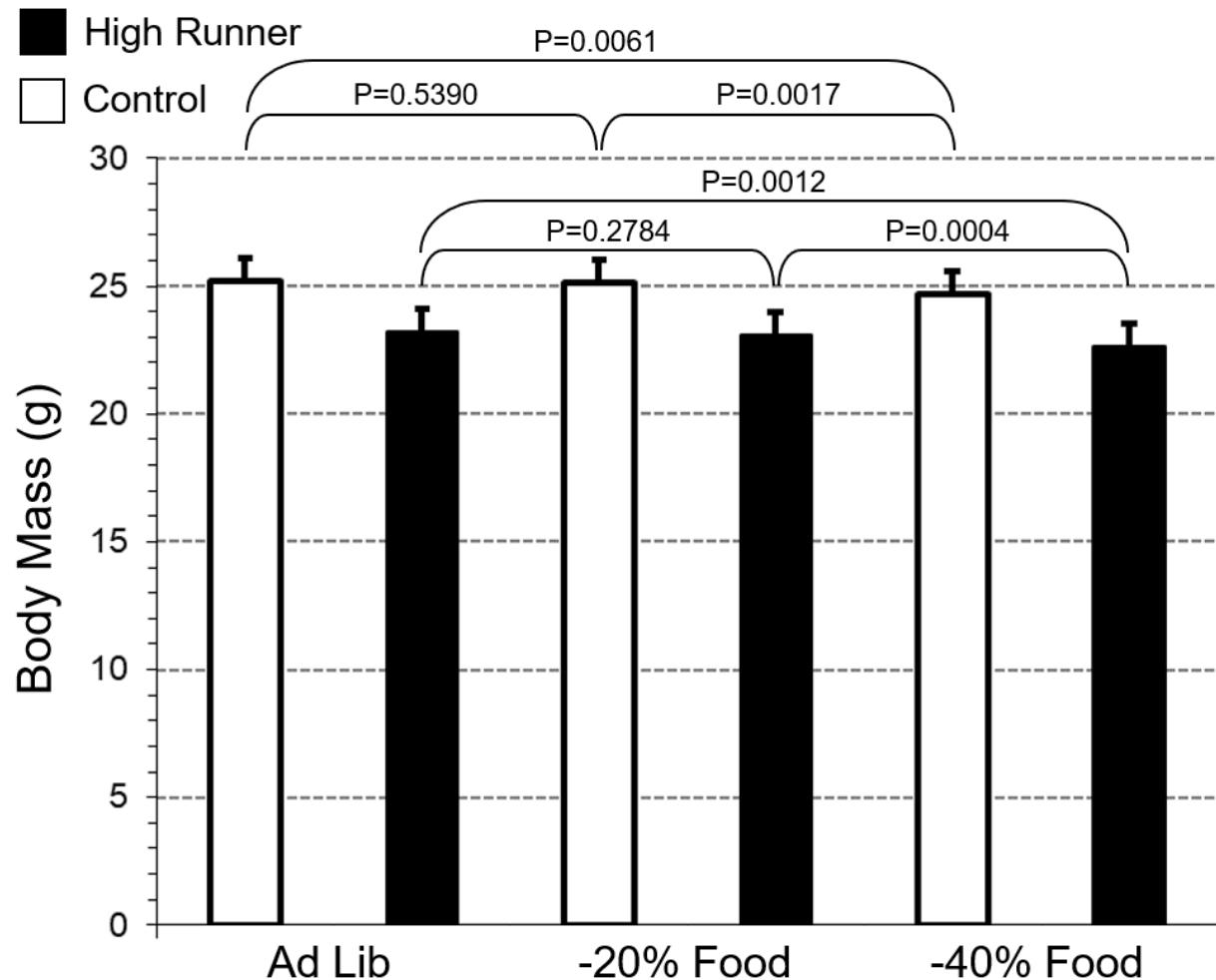

870

871


872


876 **Figure 2.** Overall results for wheel running measured daily and for body mass
 877 measured on days 1, 8, 9, 15, 20, and 23-37. Values are simple means for each of
 878 the four High Runner (lines 3,6,7,8) and four non-selected Control lines (1,2,4,5) of
 879 mice. Note that the horizontal axis scales differ for the two panels.
 880

885 **Figure 3.** A) Average wheel running (revolutions/day) of female mice from four
 886 replicate High Runner (HR) lines (solid black line with closed circles) and four non-
 887 selected Control lines (dashed black line with open circles) during the first six days of
 888 wheel access, as is used to pick breeders during the routine selective breeding
 889 protocol (see text). The statistical interaction between day and linetype is highly
 890 significant ($P < 0.0001$). Inspection of the graph indicates that running by HR mice
 891 increases more rapidly across days 3-6 than for C mice. Values are Least Squares
 892 Means \pm Standard Errors from SAS Procedure Mixed. Total N = 587 measurements
 893 from 99 mice. B) Number of 1-minute intervals per day with any wheel revolutions. C)
 894 Average running speed computed as revolutions/intervals on an individual mouse and
 895 day basis (RPM). D) Highest running speed observed during any minute of a day.
 896



901 **Figure 4.** A) Average wheel running (revolutions/day) of female mice from four
 902 replicate High Runner (HR) lines (solid black line with closed circles) and four non-
 903 selected Control lines (dashed black line with open circles) during the first 19 days of
 904 wheel access (including data for the first six days, as shown in Figure 3). The
 905 statistical interaction between day and linetype is highly significant ($P < 0.0001$),
 906 indicating different longitudinal trajectories. Values are Least Squares Means \pm
 907 Standard Errors from SAS Procedure Mixed. Total N = 1,862 measurements from 99
 908 mice. B) Number of 1-minute intervals per day with any wheel revolutions. C)
 909 Average running speed computed as revolutions/intervals on an individual mouse and
 910 day basis (RPM). D) Highest running speed observed during any minute of a day.
 911
 912
 913

Figure 5. A) Average wheel running (revolutions/day) of female mice from four replicate High Runner (HR) lines and four non-selected Control lines during three days of *ad libitum* food (days 20-22 of the overall experiment), seven days of food restriction at -20%, and seven days of food restriction at -40%. See text for full description of statistical results. Shown on the figure are P values for differences of least squares means from SAS Procedure Mixed from combined analyses of the HR and C lines of mice. Bars are Least Squares Means \pm Standard Errors. Total N = 1,661 measurements from 99 mice. B) Number of 1-minute intervals per day with any wheel revolutions. C) Average running speed computed as revolutions/intervals on an individual mouse and day basis (RPM). D) Highest running speed observed during any minute of a day.

940

941

942

943 **Figure 6.** Average body mass (grams) of female mice from four replicate High
 944 Runner (HR) lines and four non-selected Control lines during three days of *ad libitum*
 945 food, seven days of food restriction at -20%, and seven days of food restriction at -
 946 40%. A repeated-measures ANOVA of all mice combined indicated the effect of food
 947 restriction was highly significant ($P = 0.0001$), with a non-significant ($P = 0.1764$)
 948 tendency for HR mice to be smaller (-8%, LSMeans of 24.99 ± 0.90 for C mice and
 949 23.03 ± 0.90 for HR mice), and no interaction ($P = 0.8524$). Shown on the figure are P
 950 values for differences of least squares means from SAS Procedure Mixed. Both HR
 951 and C lines of mice showed a significant reduction in body mass only when food
 952 rations were reduced by 40% relative to *ad libitum* feeding. Values are Least Squares
 953 Means \pm Standard Errors. Total N = 1,590 measurements from 99 mice.
 954