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ABSTRACT 25 
 26 
Food restriction can have profound effects on various aspects of behavior, physiology, 27 
and morphology.  Such effects might be amplified in animals that are highly active, 28 
given that physical activity can represent a substantial fraction of the total daily energy 29 
budget.  More specifically, some effects of food restriction could be associated with 30 
intrinsic, genetically based differences in the propensity or ability to perform physical 31 
activity.  To address this possibility, we studied the effects of food restriction in four 32 
replicate lines of High Runner (HR) mice that have been selectively bred for high 33 
levels of voluntary wheel running.  We hypothesized that HR mice would respond 34 
differently than mice from four non-selected Control (C) lines.  Healthy adult females 35 
from generation 65 were housed individually with wheels and provided access to food 36 
and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to 37 
attain a plateau in daily running distances.  Ad libitum food intake of each mouse was 38 
measured on days 20-22 (Phase 2).  After this, each mouse experienced a 20% food 39 
restriction for 7 days (days 24-30; Phase 3), and then a 40% food restriction for 7 40 
additional days (days 31-37; Phase 4).  Mice were weighed on experimental days 1, 8, 41 
9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-42 
minute bins, during the entire experiment.  Repeated-measures ANOVA of daily 43 
wheel-running distance during Phases 2-4 indicated that HR mice always ran much 44 
more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 45 
3.58-fold higher with -20% food, and 3.06-fold higher with -40% food.  Seven days of 46 
food restriction at -20% did not significantly reduce wheel-running distance of either 47 
HR (-5.8%, P = 0.0773) or C mice (-13.3%, P = 0.2122).  With 40% restriction, HR 48 
mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. 49 
values at 20% restriction), whereas C mice did not (P = 0.4068 vs. values at 20% 50 
restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634).  51 
For HR mice, daily running distances averaged 11.4% lower at -40% food versus 52 
baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-53 
4.8%, P = 0.7004).  Repeated-measures ANOVA of body mass during Phases 2-4 54 
indicated a highly significant effect of food restriction (P = 0.0001), but no significant 55 
effect of linetype (P = 0.1764) and no interaction (P = 0.8524).  Both HR and C mice 56 
had a significant reduction in body mass only when food rations were reduced by 40% 57 
relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for 58 
HR mice (-2.6%) and -0.49 g (-2.0%) for C mice.  Overall, our results indicate a 59 
surprising insensitivity of body mass to food restriction in both high-activity (HR) and 60 
ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus 61 
calling for studies of compensatory mechanisms that allow this insensitivity. 62 
 63 
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1. Introduction 72 
 73 

Many animals must deal with some degree of food deprivation or restriction at 74 
some point in their normal life cycle (Wang et al. 2006), and this also occurs in various 75 
experimental protocols in the laboratory (Rowland 2007).  Numerous studies show 76 
that food restriction can have profound effects on various aspects of physiology, 77 
behavior, and anatomy.  In rodents, these effects may vary in relation to the specific 78 
food restriction protocol (Hill et al. 1985; Varady 2011), species (Cornish and 79 
Mrosovsky 1965; Blank and Desjardins 1985), strain (Gelegen et al. 2006), age 80 
(Speakman and Mitchell 2011), and sex (Martin et al. 2007) (see also references in 81 
Sherwin 1998).  Moreover, it might be expected that such effects would be amplified in 82 
animals that are highly active, given that (a) physical activity can represent a 83 
substantial fraction of the total daily energy budget and (b) the control of physical 84 
activity involves motivation and reward systems of the brain that overlap with those 85 
involved in the control of feeding behavior (Garland, Jr. et al. 2011b; Novak et al. 86 
2012; Lightfoot et al. 2018; Ruiz-Tejada et al. 2022).  Note that food restriction -- 87 
reducing the amount of food available on a daily basis -- is different from food 88 
deprivation, in which food is removed entirely for some period of time, such as 24 89 
hours (Dill et al. 1978; Dietze et al. 2016).  Rowland (2007) has reviewed some of the 90 
differences in behavioral and physiological responses of laboratory rodents to these 91 
different treatments, but simple generalities do not emerge, perhaps in large part 92 
because protocols have varied considerably.   93 

In laboratory house mice, the cost of voluntary wheel-running activity can 94 
represent a substantial portion of the total energy budget (Swallow et al. 2001; 95 
Rezende et al. 2009).  Also, as noted by Dewsbury (1980), use of running wheels as a 96 
measure of physical activity tends to exaggerate the effects of various experimental 97 
manipulations.  Perhaps not surprisingly, food restriction has yielded variable results 98 
with respect to wheel-running activity of mice, with reported increases, no change, or 99 
decreases in distance traveled in response to the same food restriction protocol (-100 
50%) in different strains of mice (Symons 1973).  For example, Padovani et al. (2009) 101 
observed that the distance traveled decreased ~67% with 30% food restriction, in 102 
relation to an ad libitum food group, at the end of 6 weeks of the experiment.  103 
Moreover, Blank and Desjardins (1985) showed that the effect of 30% food restriction 104 
on distance traveled varied across the daily cycle, decreasing during the dark and 105 
increasing during the light period in wild-derived male house mice.  However, this 106 
within-day effect was not observed in food-restricted deer mice (Peromyscus 107 
maniculatus), which ran less when restricted during both periods.   108 

Within a given species, some of the differences among studies could be 109 
associated with intrinsic, genetically based variation in the propensity or ability to 110 
perform voluntary wheel running.  For example, mouse strains with inherently high 111 
wheel-running levels during food restriction in "activity-based anorexia" protocols have 112 
more rapid loss of body mass (Pjetri et al. 2012).  To further explore possible 113 
genetically based differences in the response to food deprivation, we studied four 114 
replicate lines of High Runner (HR) mice that have been selectively bred for voluntary 115 
wheel running (Swallow et al. 1998).  Since reaching apparent selection limits around 116 
generation 17-25 (depending on line and sex: Careau et al. 2013), HR mice run 117 
voluntarily ~3-fold more revolutions per day than those from four non-selected Control 118 
(C) lines, and this differential has been approximately constant over more than 75 119 
generations of continued selective breeding (Garland, Jr. et al. 2011a; Cadney et al. 120 
2021; McNamara et al. 2022a; Schwartz et al. 2023).  The nature of this apparent 121 
selection limit is presently unknown, but may be related to either motivational or 122 
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physiological factors, or both (Claghorn et al. 2016).  When housed without access to 123 
wheels, HR mice are more active than C mice in their home cages (Malisch et al. 124 
2009; Copes et al. 2015), although HR mice are not more active than C mice in a 3-125 
minute open-field test, which is considered a measure of exploratory behavior or 126 
reaction to a novel environment (Bronikowski et al. 2001; Careau et al. 2012; but see 127 
Cadney et al. 2021). 128 
 As compared with the C lines, HR mice have elevated endurance capacity 129 
(Meek et al. 2009) and maximal aerobic capacity (VO2max) (Kolb et al. 2010; Cadney 130 
et al. 2021; Schwartz et al. 2023) during forced treadmill exercise, as well as various 131 
lower-level morphological and physiological traits that may affect endurance capacity 132 
(Rhodes et al. 2005; Swallow et al. 2009; Garland, Jr. et al. 2011b; Wallace and 133 
Garland, Jr. 2016).  HR mice have reduced total body mass (Swallow et al. 1999) and 134 
body fat (Swallow et al. 2001; Vaanholt et al. 2008; Meek et al. 2010; Hiramatsu and 135 
Garland, Jr. 2018), which could affect their ability to contend with food restriction.  HR 136 
mice also show alterations in their brain motivation and reward system, dopamine 137 
signaling, responses to endocannabinoid agonists and antagonists, and in the sizes of 138 
specific brain regions, including an enlarged hippocampus (Rhodes et al. 2005; Belke 139 
and Garland, Jr. 2007; Keeney et al. 2012; Kolb et al. 2013; Thompson et al. 2017; 140 
Schmill et al. 2023); again, these differences could affect their responses to food 141 
restriction (Belke and Pierce 2016; Liu and Kanoski 2018; Ruiz-Tejada et al. 2022).  142 
Finally, HR mice differ from C mice with regard to their fecal microbiota (McNamara et 143 
al. 2022b, 2022a), which could also affect responses to food restriction.  144 

The effect of food restriction on HR mice has not been investigated.  One 145 
reasonable expectation is that these unique mice would reduce the amount of wheel 146 
running to deal with periods of low food availability.  However, in an experiment 147 
designed to address the effect of an increased amount of work needed to obtain food, 148 
the distance traveled between HR and C groups when they needed to work (run on 149 
wheels) for food did not differ (Vaanholt et al. 2007).  Another reason to expect 150 
differences between HR and C mice is that the former show greater among-individual 151 
variation in daily wheel running distance, greater among-individual variation in 152 
plasticity of running, and greater unpredictability of running distances (Biro et al. 153 
2018).  Finally, male mice from the HR lines respond uniquely to feeding on a Western 154 
diet, with wheel running increasing dramatically, while C mice are unaffected (Meek et 155 
al. 2010, 2012; Acosta et al. 2017).  In contrast, inbred C57BL/6J mice of both sexes 156 
reduce wheel running on a high-fat and high-sugar diet (Vellers et al. 2017).  157 
Therefore, the aim of this study was to determine the effects of food restriction on 158 
voluntary wheel-running behavior and body mass in HR mice, with the general 159 
hypothesis that they will respond differently than mice from the non-selected C lines.  160 
Such a result would set the stage for future studies aimed at uncovering the 161 
mechanisms underlying differential responses. 162 
 163 
2. Methods 164 
 165 
2.1. Experimental animals 166 

Healthy adult female mice (N = 99) from generation 65 of an ongoing selection 167 
experiment for high voluntary wheel running were used (Swallow et al. 1998).  We 168 
chose females for this initial study because they generally run more than males (e.g., 169 
Gelegen et al. 2007; Meek et al. 2009; Garland, Jr. et al. 2011a), thus providing more 170 
signal against which to detect potential reductions in wheel running.   171 

The original progenitors of the colony were 224 outbred, genetically variable 172 
Hsd:ICR mice (Harlan Sprague Dawley, Indianapolis, Indiana, USA).  After two 173 
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generations of random mating, 8 closed lines were formed, with four selected for high 174 
voluntary wheel running (based on days 5 and 6 of a 6-day test) and four bred without 175 
regard to running (Swallow et al. 1998; Careau et al. 2013).  Before the experiments 176 
described here, beginning at weaning, animals were housed in same-sex groups of up 177 
to four individuals in a standard cage (28 × 17 × 12 cm).  Water and food [Harlan 178 
Teklad Rodent Diet (W) 8604] were available ad libitum.  Complete information on the 179 
composition of this diet can be found at the Inotiv website 180 
(https://www.inotivco.com/rodent-traditional-natural-ingredient-diets).  Room 181 
temperature was maintained at 22 to 24° C and photoperiod was 12:12, with lights on 182 
at 0700 Pacific time. 183 
 184 
2.1. Protocols 185 

As shown in Figure 1, adult female mice were housed individually with running 186 
wheels (1.12 m circumference, as used in the routine selection protocol (Swallow et 187 
al. 1998)), and provided access to food and water ad libitum for experimental days 1-188 
19, which allowed the amount of daily wheel running to stabilize (e.g., see Swallow et 189 
al. 2001).  Then, the mice were maintained in the same running-wheel cages for an 190 
additional three-day period (days 20-22) to measure baseline food intake (Koteja et al. 191 
2003).  After this, each mouse experienced a 20% food restriction (weighed and 192 
provided daily) for 7 days (days 24-30), and then a 40% food restriction for 7 193 
additional days (days 31-37).  Restriction amounts were determined individually for 194 
each mouse, using their baseline food consumption.  Water was available ad libitum 195 
throughout the experiment.   196 
 197 
2.3. Measurements 198 

Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37.  Wheels 199 
were checked for freeness and mechanical or electrical malfunctions on a daily basis.  200 
Wheel-running activity was recorded continuously, in 1-minute bins, during the entire 201 
experiment.  Animals were monitored daily, and any that appeared moribund or 202 
exhibited a loss of more than 30% body mass as compared with their mass at the start 203 
of food restriction (Gelegen et al. 2007) were intended to be removed from the 204 
experiment and returned to ad libitum food conditions, or euthanized.  In practice, this 205 
did not occur. 206 
 207 
2.4. Statistical analyses 208 

Following numerous previous studies of these lines of mice (e.g., Kolb et al. 209 
2010, 2013; Claghorn et al. 2016; Hiramatsu and Garland, Jr. 2018; Schmill et al. 210 
2023), body mass, food consumption, and wheel running with ad libitum food were 211 
analyzed by mixed-models, with replicate line nested within linetype (HR vs. C).  The 212 
degrees of freedom for testing the effect of linetype (i.e., the effect of past selective 213 
breeding) were always 1 and 6.  Covariates were used as appropriate, e.g., age, body 214 
mass.  In addition, several of the analyses used individual mice as repeated measures 215 
across days with an AR(1) covariance structure. 216 

All analyses were performed in SAS Procedure Mixed, and data are presented 217 
as least squares means and associated standard errors.  Mini-muscle status (Garland, 218 
Jr. et al. 2002; Kelly et al. 2013) was included as an additional cofactor in preliminary 219 
analyses, but as it did not appreciably affect the primary statistical results it was 220 
removed for simplicity in the final results reported here.  In the present sample of 221 
mice, all of the individuals from HR line #3 were mini-muscle individuals, but only one 222 
from HR line #6 (see Syme et al. 2005).  Statistical outliers (values for individual mice 223 
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for particular days) were deleted when standardized residuals exceeded 3 in 224 
magnitude. 225 
 For analyses of body mass, food consumption, and wheel running, we also 226 
performed separate analyses (some of them repeated-measures) of the HR and C 227 
lines, treating line as a fixed effect within either selection group (Garland, Jr. et al. 228 
2011a).  We did this because differences among the replicate lines may be of interest 229 
in their own right (e.g., see Gammie et al. 2003; Garland, Jr. et al. 2011a; Kolb et al. 230 
2013; Castro et al. 2022; Hillis and Garland, Jr. 2023; Schwartz et al. 2023) and 231 
because the vastly different starting values for wheel running (more than 3-fold greater 232 
in HR lines as compared with C lines) can obscure treatment effects in C lines due to 233 
scale effects.   234 
 235 
3. Results 236 
 237 
 Figure 2 presents the results for daily wheel running and body mass as 238 
measured across the course of the experiment, separated by individual lines (4 HR 239 
and 4 C).  The overall result is that wheel running was remarkably stable in the face of 240 
food restriction for mice from the non-selected Control lines, but declined significantly 241 
in mice from the selectively bred High Runner lines.  Body mass of both C and HR 242 
mice showed modest decreases.  Results are discussed in greater detail in the 243 
following sections, which can be interpreted in the context of Figure 2.  Our emphasis 244 
is on differences in the average responses of the four HR lines versus the four C lines.  245 
However, as has been noted previously for a variety of traits, differences among the 246 
four replicate lines within each linetype do exist (e.g., see Garland, Jr. et al. 2011a; 247 
Castro et al. 2022; Hillis and Garland, Jr. 2023; Whitehead et al. 2023).  Therefore, we 248 
also refer to analyses comparing lines within the two linetypes, and place the relevant 249 
materials in Supplemental Table 1. 250 
 251 
3.1. Body mass and food consumption 252 
 During the ad libitum food consumption trial (experimental days 20-22), HR 253 
mice (Least Square Mean + Standard Error: 24.99 + 0.978 g) did not weigh 254 
significantly less (P = 0.1453) than C mice (27.32 + 0.981 g).  Age (mean = 86.3 days, 255 
range = 80-89) as a covariate did not have a significant effect (P = 0.3698).  256 
Significant differences in body mass also existed both among the four replicate HR 257 
lines and among the four replicate C lines (Supplemental Table 1).   258 
 Adjusting for age (P = 0.8891) and body mass (P = 0.0183) as covariates 259 
(overall mean body mass = 26.15 g), HR mice (6.19 + 0.198 g/day) ate approximately 260 
23% more (P = 0.0073) than C mice (5.04 + 0.201 g/day)(N = 100 mice).  When the 261 
total amount of wheel running (revolutions) during the three-day food trial was added 262 
as an additional covariate, it was a highly significant positive predictor of food intake 263 
(P = 0.0008) and the difference in food intake between HR (5.84 + 0.226 g/day) and C 264 
mice (5.45 + 0.231 g/day) was reduced and became statistically non-significant (P = 265 
0.3229) (body mass P = 0.0493)(N = 99 because one mouse with a faulty wheel was 266 
removed).  Hence, the greater food intake by HR female mice, versus their C 267 
counterparts, when both are housed with wheel access, can be mostly explained by 268 
the greater levels of voluntary exercise by HR mice, as has been reported previously 269 
(Copes et al. 2015; but see Hiramatsu and Garland, Jr. 2018).  In these analyses, 270 
differences among the replicate C lines were not statistically significant (P = 0.6258), 271 
but those among the HR lines were (P = 0.0217) (Supplemental Table 1). 272 
 273 
3.2. Wheel running during the initial 6 and 19 days of exposure 274 
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 During the first six days of wheel access, as is used routinely to choose 275 
breeders in the selection experiment, wheel running was always higher in HR than in 276 
C mice (P < 0.0001), increased across days (P < 0.0001) for both HR and C, but also 277 
showed a strong day * linetype interaction (P < 0.0001) (Figure 3A).  Inspection of the 278 
graph indicates that running by HR mice increased more rapidly across days 3-6 than 279 
for C mice.  For example, the difference in average wheel revolutions run per day 280 
increased from 2,247 on days 1-2 to 3,646 on days 5-6 for C mice (1.6-fold) but from 281 
6,450 to 13,309 for HR mice (2.1-fold).  Analyses of the Control lines alone indicated 282 
strong line and day effects, but no day * line interaction (Supplemental Table 1).  In 283 
contrast, analyses of the HR lines indicated no line effect (P = 0.9838), but a strong 284 
day effect and a marginal day * line interaction (P = 0.0503). 285 
 Considering the components of wheel running during the first six days of wheel 286 
access, the number of 1-minute intervals with any running (Figure 3B) was always 287 
higher in HR than in C mice (P = 0.0465), increased across days (P < 0.0001) for both 288 
HR and C, with no significant interaction (P = 0.1623).  The mean running speed 289 
(Figure 3C) was always higher in HR than in C mice (P < 0.0001), increased across 290 
days (P < 0.0001) for both HR and C, but also showed a strong day * linetype 291 
interaction (P < 0.0001).  Results were similar for the maximum revolutions attained in 292 
any 1-minute interval on a given day (Plinetype < 0.0001, Pday < 0.0001, Pinteraction = 293 
0.0003) (Figure 3D). 294 
 Considering days 7-19, daily wheel-running distance continued to increase 295 
(Figure 4A), but in a less monotonic fashion, and reached plateaus at least by day 16 296 
for both HR and C mice, with highly significant effects of linetype, day, and their 297 
interaction (all P << 0.0001).  Averaged over days 15-19, daily revolutions run were 298 
4,643 for C mice and 17,473 for HR mice, a ratio of 3.8.  Analyses of the Control lines 299 
alone indicated strong line and day effects, and a marginal day * line interaction P = 300 
0.0710) (Supplemental Table 1).  Analyses of the HR lines indicated a strong day 301 
effect (P << 0.0001) and a day * line interaction (P = 0.0067), but no overall line effect 302 
(P = 0.5675). 303 
 304 
3.3. Wheel running during food restriction 305 
 The repeated-measures ANOVA of HR and C lines combined indicated that 306 
daily distance run was strongly affected by linetype (P < 0.0001) and marginally 307 
affected by food restriction (P = 0.0632), with no significant interaction between 308 
linetype and food restriction status (P = 0.1399) (total N = 99 mice and 1,661 309 
observations).  Based on these combined analyses, and as shown in Figure 5A, HR 310 
mice always ran much more than C, with values being 3.29-fold higher during the ad 311 
libitum feeding trial, 3.58-fold higher with 20% food restriction, and 3.06-fold higher 312 
with 40% restriction. 313 
 Based on the combined analyses, seven days of food restriction at 20% did not 314 
significantly reduce wheel running of either HR (-5.8%, P = 0.0773) or C mice (-315 
13.3%, P = 0.2122) (Figure 5A).  With 40% restriction, HR mice showed a further 316 
reduction (P = 0.0797 vs. values at 20% restriction, -11.4% versus baseline values), 317 
whereas C mice slightly increased running (P = 0.4068 vs. values at 20% restriction), 318 
resulting in a value that was only 4.8% below those on ad libitum food.  Comparing the 319 
four C lines indicated differences among them (P = 0.0101) and the strong effect of 320 
food restriction (P = 0.00224), with no significant restriction * line interaction (P = 321 
0.1692) (Supplemental Table 1).  Results were similar when comparing the four HR 322 
lines (P values were 0.0270 for line, 0.0380 for level of food restriction, and 0.2629 for 323 
their interaction). 324 
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 Considering the components of wheel running, the repeated-measures ANOVA 325 
of HR and C lines combined indicated that the duration of daily running was affected 326 
by both linetype (P = 0.0404) and food restriction status (P = 0.0078), with no 327 
interaction (P = 0.2535), and an overall pattern similar to that for daily distance run, 328 
except that the difference between HR and C mice is much less (Figure 5B).  For 329 
average running speed (Figure 5C), results were similar to those for distance run, 330 
with a highly significant effect of linetype (P < 0.0001), an effect of food restriction (P = 331 
0.0231), but also a significant interaction between linetype and food restriction status 332 
(P = 0.0354.  Finally, results for maximum running speed were similar to those for 333 
average speed (Plinetype < 0.0001, Prestriction = 0.0822, Pinteraction = 0.0072) (Figure 5D). 334 
 For the number of intervals run, the repeated-measures ANOVA comparing the 335 
C lines indicated strong line (P < 0.0001) and food restriction (P < 0.0001), with a 336 
marginal line * restriction interaction P = 0.0537) (Supplemental Table 1).  Similar 337 
results held for the HR lines (Pline < 0.0001, Prestriction = 0.0112, Pinteraction = 0.1049). 338 
 Average running speed of the C mice was unaffected by line (P = 0.6785), 339 
restriction (P = 0.2944) or their interaction (P = 0.9021), whereas, in contrast, HR mice 340 
showed effects of both line (P = 0.0267) and restriction status (P = 0.0026) (Pinteraction = 341 
0.3295).  Maximum running speed was affected only by line in both C mice (P = 342 
0.0004) and the HR mice (P = 0.0027) (Supplemental Table 1). 343 
 344 
3.4. Body mass during food restriction 345 
 For the repeated-measures ANOVA of HR and C lines combined, we compared 346 
body masses measured on days 20 and 23 (ad libitum food), 24-30 (-20% food), and 347 
31-37 (-40% food)(total N = 99 mice and 1,574 observations).  The effect of food 348 
restriction was highly significant (P = 0.0001), with a non-significant (P = 0.1764) 349 
tendency for HR mice to be smaller (-8%, LSMeans of 24.99 + 0.90 for C mice and 350 
23.03 + 0.90 for HR mice), and no interaction (P = 0.8524).  Figure 6 shows that both 351 
HR and C mice had a significant reduction in body mass only when food rations were 352 
reduced by 40% relative to ad libitum feeding.  However, even at 40% food reduction, 353 
the decrease in body mass was only -0.49 grams for C mice and -0.61 for HR mice, 354 
which is only 2.0% and 2.6%, respectively, of the body mass prior to food reduction.   355 
 Comparing the four C lines indicated differences among them (P = 0.0015) and 356 
the effect of food restriction (P = 0.0008), with no restriction * line interaction (P = 357 
0.5721) (Supplemental Table 1).  Results were similar for the HR lines (Pline = 0.0007, 358 
Prestriction < 0.0001, Pinteraction = 0.8082).   359 
 360 
4. Discussion 361 
 362 
 The main results of this study were as follows.  First, both HR and C female 363 
mice maintained body mass (no statistically significant reduction) on a 20% food 364 
restriction regimen that lasted for seven days (Figure 6), without a statistically 365 
significant decrease in daily wheel-running distance (Figure 5A).  Second, with a 40% 366 
food reduction for an additional week, C mice increased running distance back closer 367 
to those measured under ad libitum feeding, while experiencing a significant decrease 368 
in body mass that averaged only -2.0% relative to ad libitum-fed values.  Third, High 369 
Runner mice on 40% food restriction showed a further decline in running distance 370 
(Figure 5A) that became significantly lower than on ad libitum food, and did then 371 
show a statistically significant reduction in body mass (Figure 6), but the magnitude 372 
was only -2.6% compared with ad libitum feeding.  Examination of the components of 373 
daily wheel-running distance (duration and mean speed) indicate that both were 374 
affected by food restriction, but in ways that differed between the HR and C lines 375 
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(Figure 5B and 5C).  Specifically, 40% food restriction decreased both duration and 376 
speed of running in the HR mice, but only decreased duration in the C mice. 377 
            Many previous studies with rodents show that food restriction can have a 378 
range of effects, including on behavior and activity in the cage and/or wheel.  Various 379 
factors combined may alter the effect of restriction, including the duration and intensity 380 
(% reduction), age, sex, and species (e.g., see Symons 1973; Hill et al. 1985; 381 
Padovani et al. 2009; Varady 2011).  Several studies use different combinations of 382 
these factors, which can make it difficult to compare results.  One large study of inbred 383 
C57BL/6 mice found that even 40% calorie restriction lasting for 80 days had modest 384 
effects on wheel running (Mitchell et al. 2016).  Further complicating matters may be 385 
the presence of expected or hypothesized psychological changes, some of which 386 
follow a stress response, that may interact with some effects of food restriction.  For 387 
example, our mice were housed individually for wheel-running measurements, and 388 
social isolation has sometimes been shown to increase circulating levels of 389 
corticosterone in mice (Takatsu-Coleman et al. 2013), which is routinely taken as one 390 
indicator of a response to stressful conditions.  However, other studies have not 391 
observed social isolaton to increase corticosterone levels in mice (Misslin et al. 1982).  392 
An Unpredictable Chronic Mild Stress (UCMS) protocol can reduce voluntary running 393 
wheel in mice (DeVallance et al. 2017), and, conversely, access to wheels can affect 394 
circulating corticosterone levels in various ways (Girard and Garland, Jr. 2002; Droste 395 
et al. 2006), both acutely and chroncially, and decrease fecal corticosterone 396 
metabolite levels (Gurfein et al. 2012). 397 
            Another factor that may potentiate the physiological effects of calorie 398 
restriction is combination with exercise (Huffman 2010).  This combination has been 399 
used in the treatment of obesity.  In obese laboratory mice, for example, combined 400 
calorie restriction with wheel exercise caused greater reduction of adiposity when 401 
compared to a group that only experienced calorie restriction (Patterson and Levin 402 
2007). 403 
 In the present study, we did not observe a statistical increase in wheel-running 404 
activity at either 20% or 40% food restriction, which is unlike what happens in activity-405 
based anorexia models with mice and rats (Exner et al. 2000; Gutiérrez et al. 2002; 406 
Hebebrand et al. 2003; Siegfried et al. 2003; Overton and Williams 2004).  In addition, 407 
the drop in body mass we observed even with 40% calorie restriction (~2-3%) is much 408 
smaller than in activity-based anorexia protocols administered to mice (Gelegen et al. 409 
2007; Pjetri et al. 2012).  In those models, the animals have free access to the wheel, 410 
but with ad libitum access to food for only a short period of time, typically only once 411 
each day (e.g., Gelegen et al. 2006, 2007; Pjetri et al. 2012).  These differences in the 412 
protocols do not allow us to compare results directly.  However, the increased activity 413 
in animals subjected to an activity-based anorexia protocol has been linked to 414 
increases in circulating corticosterone concentrations (Duclos et al. 2009).  Thus, it is 415 
interesting to note that mice from the HR lines typically have baseline circulating 416 
corticosterone concentrations that are roughly twice as high as for Control mice 417 
(Malisch et al. 2007, 2008), perhaps suggesting that further increases were not 418 
possible for HR mice [although acute increases in response to restraint stress are 419 
possible: (Malisch et al. 2016)].  In addition, HR mice are closer to a biological limit in 420 
terms of wheel running, at least with the standard chow diet used in the present study 421 
(e.g., see Meek et al. 2009).  Perhaps HR mice are also less sensitive to changes 422 
related to corticosterone concentrations or other factors that may have contributed to 423 
the increased activity observed in mice from the non-selected C lines.  Finally, the low 424 
circulating leptin levels of HR mice, as compared with C lines (Girard et al. 2007; 425 
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Meek et al. 2012), could play a role (Garland, Jr. et al. 2011b, 2016; Mitchell et al. 426 
2016; Ruiz-Tejada et al. 2022). 427 
 Our results differ from a study of two lines of rats, one selectively bred for high 428 
(HCR) and the other low (LCR) intrinsic aerobic capacity during forced treadmill 429 
running (Koch and Britton 2001).  HCR rats also run more on wheels and weigh less 430 
than LCR rats (Waters et al. 2008; Swallow et al. 2010).  With 50% calorie restriction 431 
for three weeks, female high-capacity rats lost more weight than low-capacity rats, 432 
and high-capacity rats also had a greater decrease in home-cage physical activity 433 
levels (though levels remained higher than low-capacity rats) (Smyers et al. 2015).  As 434 
noted previously, differences in our results may be due to the different species, 435 
amount and length of food restriction, and selection paradigm. 436 
 In summary, our results indicate an unexpected degree of insensitivity in both 437 
body mass and voluntary wheel-running behavior to food restriction, which calls for 438 
further studies of compensatory mechanisms that allow this insensitivity in these and 439 
possibly some other strains of laboratory house mice (Symons 1973; Pjetri et al. 2012; 440 
Vaanholt et al. 2012; Jensen et al. 2013; Mitchell et al. 2016).  One might wonder if 441 
the magnitude and duration of food restriction used here were sufficient to induce 442 
effects on the phenotypes measured.  However, previous studies have shown effects 443 
within a span of 7 days.  For example, Symons (1973) examined body mass and daily 444 
wheel running in four inbred strains under a 50% food restriction protocol.  All four 445 
inbred strains dropped in body mass, with a greater decrease seen with each of the 446 
six successive trial days, and some differences among the strains were apparent.  All 447 
four strains showed effects of food restriction on daily wheel running, although the 448 
effects differed among strains.  Importantly, mice from two of the four strains died after 449 
two days at -50% food, which is one of the reasons we used the less extreme -20% 450 
and then -40% levels of food restriction.  In another example, mice from an inbred 451 
strain showed reductions in body mass and increases in wheel running after three 452 
days at -30% of ad lib food (Tezenas du Montcel et al. 2023).  Thus, we are confident 453 
that the degree of food restriction we imposed was of sufficient magnitude that effects 454 
on body mass and/or wheel running would have been expected. 455 
 As noted above, differences in responses in the present study may be 456 
influenced by known differences in corticosterone, leptin, and/or endocannabinoid 457 
levels in HR compared with C mice.  Also of considerable interest would be studies of 458 
sex differences in responses to food restriction (Dietze et al. 2016), especially given 459 
that, in both the HR and C mice used here, the sexes differ in daily wheel-running 460 
distance, body composition, endocannabinoid physiology, reproductive physiology 461 
(obviously), and many other aspects of the phenotype (e.g., see Rezende et al. 2009; 462 
Hiramatsu and Garland, Jr. 2018; Schmill et al. 2022; Khan et al. 2024).  Moreover, as 463 
the food restriction part of our study lasted only two weeks, it would be interesting to 464 
see if the increase in wheel running by C mice in response to 40% food restriction 465 
would be able to be supported for longer periods of time (e.g., see Vaanholt et al. 466 
2015; Tezenas du Montcel et al. 2023).   467 
 We also note that our results are relevant to the point that ad lib feeding of 468 
laboratory rodents often leads to overfed animals that may be "metabolically morbid" 469 
(Martin et al. 2010).  As pointed out by those authors, housing mice or rats with less 470 
than ad lib food is not too difficult, and doing so (perhaps in conjunction with access to 471 
an exercise wheel, e.g., see Booth and Lees 2006) may improve the translational 472 
relevance of results.  473 
 In closing, we suggest that our results may have translational relevance for the 474 
regulation of body weight in human beings.  Although countless studies of humans 475 
examine relationships among diet, exercise, body composition, and energetics 476 
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(Drenowatz 2015; Lightfoot et al. 2018; Careau et al. 2021), few have tested 477 
specifically for the effects of caloric restriction on voluntary exercise (Rowland 2016).  478 
Studies of humans conducted inside respiratory chambers usually find that 479 
spontaneous physical activity (SPA) does not change during calorie restriction (see 480 
summary and references in Martin et al. 2011), but SPA and voluntary exercise are 481 
very different aspects of physical activity in both humans and rodents (Garland, Jr. et 482 
al. 2011b; Copes et al. 2015; Rowland 2016; Acosta et al. 2017).  In a study of short-483 
term overfeeding (3 days), obesity-prone individuals significantly decreased the 484 
amount of time spent walking (Schmidt et al. 2012) (see also Levine et al. 2008).  In 485 
studies of free-living people, three randomized trials examining the effect of calorie 486 
restriction (-20% to -30%) in nonobese adults of both sexes (Martin et al. 2011) found 487 
reductions in activity energy expenditure over 3-12 months, but accelerometry 488 
provided little evidence for reductions in moderate, hard or very hard intensity activity 489 
(how much of this involved voluntary exercise is not stated), although other studies 490 
have reported variable results (Martin et al. 2011; Drenowatz 2015).  Our results seem 491 
consistent with those of Martin et al. in that caloric restriction did not cause a 492 
substantial reduction in voluntary exercise.  This may be good news with respect to 493 
dieting to lose weight because it suggests we may not need to worry that levels of 494 
voluntary exercise will decline as part of the behavioral and physiological (energetic) 495 
compensatory mechanisms that sometimes occur in response to dieting. 496 
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Figure 1.  Experimental timeline.   868 
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 874 
 875 
Figure 2.  Overall results for wheel running measured daily and for body mass 876 
measured on days 1, 8, 9, 15, 20, and 23-37.  Values are simple means for each of 877 
the four High Runner (lines 3,6,7,8) and four non-selected Control lines (1,2,4,5) of 878 
mice.  Note that the horizontal axis scales differ for the two panels. 879 
  880 
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 883 
 884 
Figure 3.  A) Average wheel running (revolutions/day) of female mice from four 885 
replicate High Runner (HR) lines (solid black line with closed circles) and four non-886 
selected Control lines (dashed black line with open circles) during the first six days of 887 
wheel access, as is used to pick breeders during the routine selective breeding 888 
protocol (see text).  The statistical interaction between day and linetype is highly 889 
significant (P < 0.0001).  Inspection of the graph indicates that running by HR mice 890 
increases more rapidly across days 3-6 than for C mice.  Values are Least Squares 891 
Means + Standard Errors from SAS Procedure Mixed.  Total N = 587 measurements 892 
from 99 mice.  B) Number of 1-minute intervals per day with any wheel revolutions.  C) 893 
Average running speed computed as revolutions/intervals on an individual mouse and 894 
day basis (RPM).  D) Highest running speed observed during any minute of a day.  895 
  896 
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 899 
 900 
Figure 4.  A) Average wheel running (revolutions/day) of female mice from four 901 
replicate High Runner (HR) lines (solid black line with closed circles) and four non-902 
selected Control lines (dashed black line with open circles) during the first 19 days of 903 
wheel access (including data for the first six days, as shown in Figure 3).  The 904 
statistical interaction between day and linetype is highly significant (P < 0.0001), 905 
indicating different longitudinal trajectories.  Values are Least Squares Means + 906 
Standard Errors from SAS Procedure Mixed.  Total N = 1,862 measurements from 99 907 
mice.  B) Number of 1-minute intervals per day with any wheel revolutions.  C) 908 
Average running speed computed as revolutions/intervals on an individual mouse and 909 
day basis (RPM).  D) Highest running speed observed during any minute of a day. 910 
 911 
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 922 
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 924 
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 926 
 927 
Figure 5.  A) Average wheel running (revolutions/day) of female mice from four 928 
replicate High Runner (HR) lines and four non-selected Control lines during three days 929 
of ad libitum food (days 20-22 of the overall experiment), seven days of food 930 
restriction at -20%, and seven days of food restriction at -40%.  See text for full 931 
description of statistical results.  Shown on the figure are P values for differences of 932 
least squares means from SAS Procedure Mixed from combined analyses of the HR 933 
and C lines of mice.  Bars are Least Squares Means + Standard Errors.  Total N = 934 
1,661 measurements from 99 mice.  B) Number of 1-minute intervals per day with any 935 
wheel revolutions.  C) Average running speed computed as revolutions/intervals on an 936 
individual mouse and day basis (RPM).  D) Highest running speed observed during 937 
any minute of a day. 938 
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 941 
 942 
Figure 6.  Average body mass (grams) of female mice from four replicate High 943 
Runner (HR) lines and four non-selected Control lines during three days of ad libitum 944 
food, seven days of food restriction at -20%, and seven days of food restriction at -945 
40%.  A repeated-measures ANOVA of all mice combined indicated the effect of food 946 
restriction was highly significant (P = 0.0001), with a non-significant (P = 0.1764) 947 
tendency for HR mice to be smaller (-8%, LSMeans of 24.99 + 0.90 for C mice and 948 
23.03 + 0.90 for HR mice), and no interaction (P = 0.8524).  Shown on the figure are P 949 
values for differences of least squares means from SAS Procedure Mixed.  Both HR 950 
and C lines of mice showed a significant reduction in body mass only when food 951 
rations were reduced by 40% relative to ad libitum feeding.  Values are Least Squares 952 
Means + Standard Errors.  Total N = 1,590 measurements from 99 mice.  953 
 954 


