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Abstract

Multi-messenger astrophysics has produced a wealth of data with much more to come in the future. This enormous
data set will reveal new insights into the physics of core-collapse supernovae, neutron star mergers, and many other
objects where it is actually possible, if not probable, that new physics is in operation. To tease out different
possibilities, we will need to analyze signals from photons, neutrinos, gravitational waves, and chemical elements.
This task is made all the more difficult when it is necessary to evolve the neutrino component of the radiation field
and associated quantum-mechanical property of flavor in order to model the astrophysical system of interest—a
numerical challenge that has not been addressed to this day. In this work, we take a step in this direction by
adopting the technique of angular-integrated moments with a truncated tower of dynamical equations and a closure,
convolving the flavor-transformation with spatial transport to evolve the neutrino radiation quantum field. We
show that moments capture the dynamical features of fast flavor instabilities in a variety of systems, although our
technique is by no means a universal blueprint for solving fast flavor transformation. To evaluate the effectiveness
of our moment results, we compare to a more precise particle-in-cell method. Based on our results, we propose
areas for improvement and application to complementary techniques in the future.

Unified Astronomy Thesaurus concepts: Neutrino decoupling (1101); Supernova neutrinos (1666); Neutron
stars (1108)

1. Introduction

Both neutron star mergers and core-collapse supernovae are true
multi-messenger events, as they produce neutrinos, photons,
gravitational waves, and chemical elements. In the coming decade,
there will be a wealth of data from all of these messengers, see,
e.g., Lien & Fields (2009), LSST Science Collaboration et al.
(2009), Cowperthwaite et al. (2017), Bellm et al. (2018), Tartaglia
et al. (2018), Holmbeck et al. (2020), Kalogera et al. (2021), and
Baxter et al. (2022). In order to produce the most realistic
theoretical predictions to compare with future data, much
theoretical development is still needed. One significant area that
requires attention is the neutrino physics of hot and dense systems
(for a recent review, see Volpe 2023).

Stellar explosions that reach extreme temperatures and
densities, such as core-collapse supernovae and neutron star
mergers, produce enough neutrinos that they account for a
substantial portion of the energy budget (for recent estimates,
see Burrows et al. 2019; Bollig et al. 2021; Cusinato et al.
2022; Hayashi et al. 2022; Foucart et al. 2023; Fujibayashi
et al. 2023). The majority of these neutrinos are in the energy
range of tens of megaelectronvolts. In neutrino-rich regions, the
ratio of neutrons to protons is influenced by electron neutrino
and electron antineutrino capture reactions. This neutron-to-

proton ratio is a key factor influencing element synthesis (e.g.,
McLaughlin et al. 1996; Freiburghaus et al. 1999; Surman et al.
2006; Lippuner & Roberts 2015; Curtis et al. 2019, 2023;
Miller et al. 2020; Reichert et al. 2021).
Exploratory work has demonstrated the importance of accu-

rately understanding the impact of changes in neutrino flavor as a
function of both time and position in the exploding object. For
example, the distribution of neutrinos among flavors influences the
outcome of the supernova explosions in one-dimensional high-
mass CCSNe simulations (Stapleford et al. 2020; Ehring et al.
2023a, 2023b) and the results of element synthesis obtained in
neutrino-cooled accretion disks (e.g., Malkus et al. 2012; Just et al.
2022), supernovae (e.g., Duan et al. 2011; Mukhopadhyay 2022;
Fujimoto & Nagakura 2023), and hypermassive neutron star
outflows (e.g., George 2020; Li & Siegel 2021; Fernández et al.
2022). Since the type of elements that are produced in ejecta
depend sensitively on the ratio of neutrons to protons, these studies
conclude that there is an impact on the elements that are produced
in Core-Collapse SuperNovae (CCSNe) and Neutron Star
Mergers (NSMs).
The Quantum Kinetic Equations (QKEs), where the terms

representing the interactions of the neutrinos are expanded in a
series, are often taken as a starting point for calculating the
outcome of neutrino transport and propagation. The first term in
this series corresponds to evolution through a potential while the
second term corresponds to momentum-changing collisions
(e.g., Volpe et al. 2013; Vlasenko et al. 2014; Blaschke &
Cirigliano 2016; Froustey et al. 2020). Different groups use the
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phrase QKE in a variety of manners, referring to the specific
terms included/excluded in the series expansion. In this work,
we will use the phrase QKE to denote any equation that modifies
the neutrino-density matrices in time. The starting point for
classical neutrino transport can be obtained from the neutrino
QKEs under the approximation that neutrino-density matrices
are always on-diagonal. In this case, only the second term in the
QKE series expansion, the collision term, is relevant.

Modern codes aiming to perform global 3D simulations of
CCSNe (Just et al. 2015; Kuroda et al. 2016; Skinner et al. 2019;
Bruenn et al. 2020) and/or NSMs and post-merger remnants
(Ruffert & Janka 1999; Rosswog & Liebendörfer 2003; Neilsen
et al. 2014; Wanajo et al. 2014; Foucart et al. 2016a; Foucart
et al. 2021; Perego et al. 2016; Ardevol-Pulpillo et al. 2019;
Gizzi et al. 2019; Radice et al. 2022) that incorporate neutrinos
generally use such classical transport algorithms. Given the
difficulty of accurately solving the transport problem in global
simulations with sufficient resolution and detailed microphysics,
these codes inevitably need to make a range of additional
approximations. On the methods side, these might include the
use of approximate transport schemes (leakage, truncated
moments) or low-resolution Monte Carlo methods, and/or the
use of energy-integrated transport or ray-by-ray transport. On the
microphysics side, this often includes the use of approximate
interaction rates, reduced number of neutrino flavors, or simply
ignoring interactions that are too costly to calculate in practice,
e.g., pair processes and inelastic scattering. While global
neutrino transport algorithms are rapidly improving, they are
still having significant difficulties in capturing all important
aspects of the classical transport equation (e.g., Nagakura et al.
2014, 2018; Iwakami et al. 2020 for CCSNe; and Miller et al.
2019a, 2019b for NSMs).

Meanwhile, the starting point for flavor transformation in the
absence of collisions is often studied by evolving the flavor field
using only the first term in the QKE series expansion. The
evaluation of this term is done by use of operator splitting of the
Hamiltonian (so-called mean-field). This set-up has been studied
extensively: for example, the part of this Hamiltonian associated
with neutrino coherent forward scattering on other neutrinos, in
combination with other Hamiltonian terms, gives rise to the
phenomenon of bipolar oscillations (for a review see Duan et al.
2006) and matter neutrino resonance transitions (Malkus et al.
2012, 2014; Wu et al. 2016; Frensel et al. 2017; Tian et al. 2017b;
Vlasenko & McLaughlin 2018). Additionally, Fast Flavor
Conversion (FFC) stems from the combination of specific angular
distributions of neutrinos, the mean-field Hamiltonian, and
inclusion of neutrino advection, e.g., Sawyer 2005; Dasgupta
et al. 2017; Izaguirre et al. 2017. The relevant angular distributions
are expected to occur in both supernovae, e.g., Abbar et al. (2019),
Nagakura et al. (2021), Nagakura (2023), and neutron star mergers
(Wu & Tamborra 2017) at positions close to the central object. A
number of works exist that evaluate classically computed angular
distributions to determine whether these distributions have a Fast
Flavor Instability (FFI), using a variety of techniques (Dasgupta
et al. 2018; Johns & Nagakura 2021; Nagakura & Johns 2021;
Richers 2022; Abbar 2023). The hallmark of a test for whether an
instability will exist is to look for a “crossing” between a curve that
represents the number density of neutrinos as a function of angle,
and the curve that represents the number density of antineutrinos as
a function of angle, e.g., Dasgupta et al. (2009), Abbar & Duan
(2018), Dasgupta (2022).

Ideally one wishes to use both of the first two terms in the
quantum kinetic equation series and some efforts have been
undertaken with the inclusion of both. When including both the
first and second term in the QKE series, the collision term most
typically produces decoherence of the neutrinos, e.g., Richers
et al. (2019), and if that term is sufficiently large, the neutrinos
tend to drift into flavor states. However, under the right
conditions, the combination of the two terms can also enhance
flavor transformation through collisional instabilities (Johns &
Xiong 2022; Johns 2023; Xiong et al. 2023a; 2023c).
At present, there are questions about whether the QKEs can

ever completely capture the behavior of neutrinos in these
astrophysical systems, specifically because of the operator-
splitting technique that is used to write down the Hamiltonian.
There are ongoing efforts to analyze the evolution of neutrinos
due to the forward scattering part of the many-body Hamiltonian
under the assumption of continuous temporal interactions of all
neutrinos with all other neutrinos (Balantekin & Pehlivan 2007;
Pehlivan et al. 2011; Rrapaj 2020; Patwardhan et al. 2021; Cervia
et al. 2022; Lacroix et al. 2022; Roggero et al. 2022; Balantekin
et al. 2023; Martin et al. 2023a, 2023b; Siwach et al. 2023).
Notwithstanding these questions, efforts have been made to

compute the QKEs by capturing the evolution of many neutrino
“packets” in many different directions (e.g., Sawyer 2005;
Bhattacharyya & Dasgupta 2020; Martin et al. 2020; Richers
et al. 2021a; Zaizen & Morinaga 2021; George et al. 2023;
Nagakura 2022). These methods provide useful benchmarks but
are at present too computationally expensive to use extensively.
An alternative is to use a reformulation of the QKEs in terms

of the angular moments (Zhang & Burrows 2013; Richers et al.
2019). This reformulation creates a series of equations
describing the time evolution of each moment and one then
evolves only a small number of these equations. One then has
to choose what to do with the moments that appear in the
evolution equations but that are not explicitly evolved. One
approach is simply to ignore the evolution of the moments
above some order, however, what is found in practice is that
one needs to retain a large number of the moment evolution
equations making this approach computationally inefficient
(Dasgupta et al. 2018; Johns et al. 2020a, 2020b). An
alternative solution to the truncation problem is to use a
“closure” that links the unevolved moments to the lower order,
evolved moments via some relationship. An example of
calculations using this closure method can be found in Myers
et al. (2022) and, using this approach, moment methods have
been able to reproduce fast flavor transformations in neutron
star merger-like conditions (Grohs et al. 2023).
In this manuscript, we consider in detail the efficacy of a

two-moment implementation of the QKEs neglecting the
collision term and using a closure. We illustrate our method
using an example quantum closure that is a relatively
straightforward extension of the classical maximum entropy
closure. In Section 2, we detail the QKE formalism and apply it
to moments. We elucidate the angular distributions corresp-
onding to the closure and how they imply lepton number
crossings in Section 3. Section 4 gives an exposition of our
implementation of neutrino flavor transformation in the frame-
work of FLASH (Fryxell et al. 2000; Dubey et al. 2009) along
with the initial and boundary conditions. In Section 5, we
compare the results of our moment treatment to a more exact
method for several well-studied test problems before turning to
the presentation of results for three kinds of neutron star
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merger-like conditions. We conclude and discuss the need for
further exploration of moment QKE methods in Section 6.
With regard to units: we use two conventions. When writing
the neutrino flavor-transformation equations, we use natural
units where ÿ= c= 1. When giving results of numerical
calculations, we use cgs units.

2. The Moment Evolution Equations

2.1. General Formalism

We begin from the general QKEs describing the neutrino and
anti-neutrino evolution adopting the nomenclature of Sigl &
Raffelt (1993), Vlasenko et al. (2014), Froustey et al. (2020), and,
in particular, Blaschke & Cirigliano (2016). The evolved variable
in the QKEs is a generalized density matrix for neutrinos, ñ= ñ(t,
x, p), and corresponding generalized density matrix  for
antineutrinos, which are functions of time t, spatial location x,
and momentum p. In the treatment of Blaschke & Cirigliano
(2016), the generalized density matrices are one-body reduced
density matrices (Volpe et al. 2013; Froustey et al. 2020), and
hereafter we will call ñ and  simply “density matrices” for the
sake of brevity. If we are describing neutrinos and antineutrinos
with two chiral states, ñ and  are 2 nf× 2 nf Hermitian matrices
for nf flavors. However, in this work, we only consider left-chiral
neutrinos and right-chiral antineutrinos, and ignore any kind of
spin coherence (Cirigliano et al. 2015; Tian et al. 2017a). As a
result, the size of the density matrices is reduced to nf× nf for
each of the neutrinos and antineutrinos. In the case of three
flavors of neutrinos, namely e, μ, τ, we can write the neutrino-
density matrix as

⎛

⎝
⎜

⎞

⎠
⎟ ( )=

m t

m mm mt

t tm tt


  
  
   ,

1
ee e e

e

e

with a similar expression for antineutrinos. In Equation (1), the
diagonal terms indicate the occupation numbers for a given
flavor. The off-diagonal terms of Equation (1) encode the
quantum coherence between two flavors. The expressions for
the number density, energy density, and the number flux vector
are obtained by taking appropriate phase-space integrals of ñ:

( )
( )

( ) ( )òp
=  x x pt d p t,

1

2
, , , 2

3
3

( )
( )

( ) ( )òp
=  x x pt d p p t,

1

2
, , , 3

3
3

( )
( )

( ) ( )òp
=  x x pt d p

p

p
t,

1

2
, , , 4i

i

3
3

where the superscript i indicates a component of a three-vector.
Note that we approximate neutrinos as ultrarelativistic by setting
the neutrino energy equal to the three-momentum magnitude p
and that  ,  , and the components of  are all nf× nf matrices.
The expressions for antineutrinos are analogous.

The QKEs for ñ and  are

· · [ ] ( ) ¶
¶

+
¶
¶

+
¶
¶

= - +
  

x
x

p
pt

ı H C, , 5

· · [ ] ( ) ¶
¶

+
¶
¶

+
¶
¶

= - +
  

x
x

p
pt

ı H C, , 6

where the single dot over a variable indicates differentiation with
respect to time. In Equations (5) and (6), C and C are collision
terms that can change neutrino flavor, number, or momenta. We
shall ignore them throughout this work given the large separation
of scales between the fast flavor instability growth rate and the
collision rates simulated here. In addition, we will consider
systems where the particle three-momenta do not change with
time, implying we may exclude the force term on the lhs of
Equations (5) and (6). To study flavor transformation, we
employ Hamiltonian-like operators in Equations (5) and (6)
consistent with mean-field treatments. When working to first
order in power counting of the QKEs (Vlasenko et al. 2014), the
Hamiltonian operators are a sum of three potentials. Specifically,

( )= + + nH H H H , 7V M

¯ ( )= - - n*H H H H , 8V M

denoting the vacuum (HV), matter (HM), and self-interaction
(Hν) terms, and where

*

denotes complex conjugation. The
vacuum term arises from nonzero neutrino rest masses, and we
write it as

( )†=H
p
U M U

1

2
, 9V

2

where U is the PMNS matrix and ( )=M m m mdiag , ,2
1
2

2
2

3
2 is

the diagonal matrix of squared neutrino masses. The matter term
is linear and familiar in the context of oscillations with solar
neutrinos. Electrons and positrons interact weakly with neutrinos
in a flavor-dependent manner, which we denote by the following
expression in the case the matter fluid has zero velocity

( )=H G n I2 , 10e eM F

where GF; 1.166× 10−11MeV−2 is the Fermi coupling
constant, ne is the difference between the number density of
electrons and positrons, and Ie is the electron-flavor projection
operator, i.e., Ie= diag(1, 0, 0) for three flavors. We will work in
a frame comoving with the matter fluid implying Equation (10)
is valid (see Appendix B). Finally, the self-interaction potential
is a consequence of neutrinos interacting with the background of
other neutrinos

( )
( )[ ( ) ¯ ( )]

( )

òp
J= - -n  *x q x qH

G
d q t t

2

2
1 cos , , , , ,

11

F
3

3

where ϑ is the angle between the free variable p and the
integration variable q.

2.2. Moment Quantum Kinetic Equations

In general, the density matrices are seven dimensional, since
they depend upon time, space, and momentum. Solving the
QKEs for the density matrices with sufficient temporal, spatial,
and momentum resolution to ensure numerical convergence
will be very computationally expensive. An alternative
approach is to recast the QKEs as an infinite set of transport
equations for the moments of the density matrices, and then
truncate the number of moments that one solves by adopting a
closure. Since moments are only five-dimensional quantities,
solving their transport equations with sufficient fidelity to
ensure convergence is a more feasible, though still difficult,
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computational challenge. In this paper, we adopt a two-moment
scheme in which we evolve only the “zeroth” and “first”
angular-integrated moments. We define the zeroth, first, and
second moment of ñ to be

( )
( )

( ) ( )òp
= W x x pE t p

p
d t, ,

2
, , , 12p

3

3

( )
( )

( ) ( )òp
= W x x pF t p

p
d

p

p
t, ,

2
, , , 13i

p

i3

3

( )
( )

( ) ( )òp
= W x x pP t p

p
d

p p

p
t, ,

2
, , , 14ij

p

i j3

3 2

where i, jä {x, y, z} are spatial indices. Note that a different
convention was chosen with respect to Myers et al. 2022 (no
1/4π prefactors), for consistency with Grohs et al. (2023).
Analogous expressions exist for the antineutrinos. The integrals
in these definitions are only over the momentum-space solid
angle Ωp i.e., the propagation directions of the neutrinos at a
given spacetime location and comoving-frame neutrino energy,
and not the entire phase-space as in Equations (2)–(4).
Furthermore, the p3 in the prefactor of Equations (12)–(14)
indicates that these are the differential energy density and
differential energy flux. These are the quantities we have chosen
to time evolve in the FLASH code since this is the convention
used in many instances of classical neutrino moment transport.
However we will oftentimes show results using instead the
differential number density, which is related to E(t, x, p) via

( ) ( ) ( )=x xN t p
p
E t p, ,

1
, , . 15

From the definition of the moments we see we can recover the
expressions in Equations (2)–(4) by integrating the moments
over the neutrino energy p, i.e.,

( ) ( ) ( )ò= x xt dp N t p, , , , 16

( ) ( ) ( )ò= x xt dp E t p, , , , 17

( ) ( ) ( )ò= x
x

t dp
F t p

p
,

, ,
. 18i

i

In this manuscript, we will only consider monoenergetic
neutrinos and, as a result, our expressions for number density
and number-density moment differ by a factor of energy-bin
width Δp. Note that F is the specific energy flux, but  is the
energy-integrated number flux. For future reference, at this
point, we introduce the flux factor vector (actually a vector of
matrices) which we define to be

( )=f
F
E

, 19ab
ab

ab

with the norm for a component of the flavor matrix defined as

( )∣ ∣ ( )åº =ff f , 20ab ab i ab
i 2

where i runs over the spatial indices x, y, z.
From comparing the definitions of the moments and

Equation (11) for self-interactions, we observe that the self-

interaction term can be written as

( )= - ⋅n p HH H
p

1
, 21E F

where the moment self-interaction terms are

( ) ( )= - *
 H G2 , 22E F

( ) ( )= - * H G2 . 23F
j j j

F

We will use these moment self-interaction expressions for
evolving our dependent variables of E and Fj. Note, however,
that when writing Equations (22) and (23), the energy-integrated
quantities  and  j appear. Indeed, for the particular physical
phenomena we study here, namely the FFI, the ELN crossing
depends on the number moments and not the energy ones ( and
intensity). The simulations we present in this work are for
monoenergetic neutrino distributions where N and E are equal up
to a units factor as shown in Equation (15). Nevertheless, we
make the distinction between  and  for the FFI under the
guise of an eventual incorporation of multi-energy distributions.
Although the physical systems that we model do occur in

environments where general relativity has a pronounced effect
over large distances, we will do all of our calculations in a local
Minkowski reference frame where we may specify the spacetime
metric as gμν= diag(−1, 1, 1, 1). Therefore, the three-vector
contraction in Equation (21) (and all other subsequent three-
vector contractions in this work) is equivalent to the 3D dot
product of Euclidean space. In addition, we will assume that
gradients of the fluid velocity are locally approximately zero,
which further simplifies the equations of motion.
With everything defined, we can now write out the evolution

equations for E and F by performing moment integrations of
Equations (5) and (6) and scaling by appropriate factors of
p3/(2π)3. In Cartesian coordinates, the transport equations for
the neutrino moments are

[ ] [ ] ( )¶
¶

+
¶
¶

= - + + +
E

t

F

x
ı H H H E ı H F, , , 24

j

j E F
j

jV M

[ ] [ ] ( )¶
¶

+
¶
¶

= - + + +
F

t

P

x
ı H H H F ı H P, , , 25

j jk

k E
j

F
k

k
j

V M

where we have ignored the collision and force terms and
assume the background matter to be homogeneous with zero
velocity in the tetrad frame. Note that this form would also be
applicable if we assume a Minkowski metric with nonzero
velocity gradients for energy-integrated moments, but here we
explicitly assume zero velocity everywhere. Note also that the
second (pressure) moment is not an evolved quantity in a M1
transport scheme and is calculated algebraically as a function of
the two time-evolved moments E and F using a closure
relation. The closure relation we use will be discussed in
Section 3.1. Finally for completeness, we give the moment
evolution equations for the antineutrinos

¯ ¯
[ ¯] [ ¯ ] ( )¶

¶
+

¶
¶

= - - - +* *E

t

F

x
ı H H H E ı H F, , , 26

j

j E F
j

jV M
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¯ ¯
[ ¯ ] [ ¯ ]

( )

¶
¶

+
¶
¶

= - - - +* *F

t

P

x
ı H H H F ı H P, , .

27

j jk

k E
j

F
k

k
j

V M

Equations (24), (25), (26), and (27) give the equations of
motion for the neutrino field under study. They comprise a
coupled set of matrix equations with spacetime indices {j, k}
ranging over the 3D space indices {1, 2, 3}. As an interesting
aside, we note that it is possible to write the equations of
motion in a 4D spacetime framework. To begin, construct the
following neutrino arrays in the laboratory (Euler) frame

⎜ ⎟⎛
⎝

⎞
⎠

( )( ) =
-
-n

a
*

* 
 J , 28

⎛
⎝

⎞
⎠

( )=ab F
F P

T E , 29T

( ) ( )( ) ( )= - - +a a a
n
aH u H G J J2 , 30eV F

( ) ( )( ) ( )= - + +a a a
n
a *

H u H G J J2 , 31eV F

where ( ¯ )( ) = -a aJ u n n Ie e e e. In the above Equation (29), FT

denotes the transpose of the row vector F into a column vector.
In addition, we define the four-velocity of the reference frame
uμ= (1, 0, 0, 0) in Equations (30) and (31). With these
definitions, we are able to cast the QKEs for neutrinos and
antineutrinos as

[ ] ( ) = -b
ab

b
abT ı H T, , 32

⎡⎣ ⎤⎦ ( ) = -b
ab

b
abT ı H T, . 33

In Equations (32) and (33), we adopt the convention where
repeated indices are contracted with respect to the metric, i.e.,
AαAα= gαβA

αAβ with a (−, + , + , + ) convention.

3. Moment Closure Relation and Lepton Number Crossing

3.1. The Maximum Entropy Closure

The evolution equations for the fluxes F and F involve the
spatial gradients of the pressure tensors P and P ; the evolution
of the pressure tensors involve the spatial gradients of the next
moment. This pattern continues in perpetuity and results in an
infinite tower of equations. This is an unavoidable property of
moment decomposition. Nevertheless, in some situations the
infinite set of equations can be solved: for example, when the
radiation field is strongly interacting, an equation of state will
relate the pressure to the energy density under the assumption
of Local Thermodynamic Equilibrium (LTE) thereby closing
the set of equations for the first two moments. But in general—
and neutrinos in CCSNe and NSMs are both such cases—no
such equation of state exists that naturally closes the set of
evolution equations. The simplest approach is to propose a
local, analytic relation to close the tower of equations suited for
the individual problem under study that matches analytic
results in the trapped and free-streaming limits. This relation is
called the closure relation (or “closure” for brevity). We will
adopt this same approach when proposing a closure for the
quantum moments of the neutrinos that must be able to account
for both neutrino advection and the flavor transformation. We
begin our explanation of the closure we adopt by ignoring the
flavor structure of the moments for the time being, and consider

the Maximum Entropy Closure (MEC) often used in “classical”
moment transport.
By definition of the MEC, the neutrinos of a particular

species assume an angular distribution in momentum-space
such that the angular entropy is extremized (Minerbo 1978;
Cernohorsky & Bludman 1994). In other words, the neutrinos
are distributed in the momentum-space angles such that an
entropy-like function is maximized under the constraints of a
net number density and flux. These constraints relate directly to
the dynamical variables of interest in Equations (12) and (13).
As with any reasonable closure, the MEC exactly represents the
radiation field in the limits far from a source (where all
radiation is moving in one direction) and when the radiation is
in equilibrium. We will utilize the MEC for our flavor-mixing
neutrino and anti-neutrino distributions, which we summarize
below for completeness.
Under the constraints of number density and flux, the

neutrino distribution of a particular species a per unit solid
angle of momentum-space, ψaa, is (Minerbo 1978; Cerno-
horsky & Bludman 1994)

( )
( )y

p
= mE Z

Z
e

4 sinh
, 34aa

aa aa

aa

Zaa

where Eaa is the energy-density moment for species a, and
ˆ ·m W= Ftet gives the angular dependence. Ω is the direction

unit vector and = /^ FF Faa aatet . The parameter Zaa follows from
the constraint on the magnitude of the flux factor vector faa

( )

ò m y= W

= -

f
E

d

Z
Z

1

coth
1

. 35

aa
aa

aa

aa
aa

Equation (35) must, in general, be inverted numerically to
obtain the value of Zaa corresponding to a given faa. Once Zaa is
obtained, we can construct the angular distribution of the
neutrinos in Equation (34). If we adopt initial neutrino
distributions from a core-collapse supernova or neutron star
merger simulation that uses an MEC, then this is consistent
with the assumptions in the original simulations. While the full
angular information is assumed in our multi-direction calcula-
tions, our two-moment scheme simply uses the MEC to
determine the pressure moment.
Borrowing the terminology from classical radiation hydro-

dynamics, we interpolate the pressure moment between the
optically thin and thick limits as

( ) ( )c c
=

-
+

-
P P P

3 1

2

3 1

2
, 36ij ij ij

thin thick

where the thin and thick limits are

( )=P E
F F

F
, 37ij

i j

thin 2

( )d=P
E

3
, 38ij ij

thick

and we have suppressed the flavor indices for ease in notation.
Minerbo (1978) demonstrated that these assumptions lead to a
simple functional form of the Eddington factor χ:

( ) ( )c = + - +f f f
1

3

2

15
3 3 , 392 2
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such that Equation (36) becomes consistent with the second
angular moment of Equation (34). In Section 4.1, we explore
extending this concept to matrix-valued moments necessary for
quantum neutrino transport.

3.2. Lepton Number Crossing with the Maximum Entropy
Closure

At this point, we give a brief interlude to discuss lepton
number crossings in the context of the MEC. Assuming the
momentum-space angular distributions of two neutrino species
follow an MEC, one can analytically determine whether two
distributions cross (Johns & Nagakura 2021; Richers 2022).
Such crossings (most straightforwardly between electron
neutrino and antineutrino distributions) herald flavor instabil-
ities (Morinaga 2022). Although the conditions for neutrino
flavor instability are more general and involve the other-flavor
lepton numbers, we shall consider initial conditions where the
x-flavor Lepton Number (XLN) is zero and therefore the ELN
crossing is the sole source of the instability. We note that
although only an ELN crossing is initially present, an XLN
crossing can subsequently appear during the evolution.

The intersection of the angular distributions is the boundary
of a 2D surface in the 3D momentum-space. Solving for the
boundary is, in general, a difficult problem. However, for the
purposes of FFC, simply identifying whether or not the
intersection exists suffices to determine whether the system is
unstable or not. Therefore, we can look at the 2D cross-
sectional slice of the 3D distributions in the plane of both flux
vectors to determine whether there is an ELN crossing or not.

We will determine whether an ELN crossing exists using
energy-density distributions, yet an ELN crossing utilizes
number-density distributions by definition. However, we stress
that our energy and number variables are simply related by a
constant of proportionality for monoenergetic distributions, and
as a result, we will continue using the energy quantities below.
Let Eee and Zee define the maximum entropy distributions for
electron neutrinos, and similarly Eee and Zee for electron
antineutrinos (see Equations (34) and (35)). Furthermore, we
assume that the flux factors are separated by an angle θ, i.e.,

·
( )q =

f f

f f
cos . 40ee ee

ee ee

The distributions cross if (Richers 2022)

( )h
a g+

 1, 41
2

2 2

where

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )h =
E Z Z

E Z Z
ln

sinh

sinh
, 42ee ee ee

ee ee ee

¯ ( )a q= Z sin , 43ee

¯ ( )g q= -Z Zcos . 44ee ee

We use the criterion in Equation (41) to indicate the presence of
FFI when choosing the locations from NSM simulations to
consider in Section 5.2.

4. Methods

We have written four QKEs (one energy density and three
components for the flux density) in Equations (24) and (25).

Along with the equations for the antineutrinos, this set of
coupled matrix equations comprises 32 evolution variables per
energy bin per spatial cell. Our goal will be to integrate these
equations under the conditions of FFI to see if this method can
capture the behavior of FFC. Before presenting results of test
and NSM simulations, we give some more of the pertinent
details on the numerical implementation of the moment method
into FLASH. In addition, we give a brief exposition on the
Particle-In-Cell (PIC) method in EMU and how it was tailored to
compare with FLASH.

4.1. FLASH

To study neutrino flavor transformation with moments, we use
the FLASH radiation hydrodynamics code (Fryxell et al. 2000;
Dubey et al. 2009), further modified by O’Connor & Couch
(2018) which includes an M1 moment scheme for classical
neutrino transport. It evolves the energy and flux density
moments for three species: νe, ne, and νother for all other
neutrinos. We modify the classical code by distinguishing nother
from νother, and adding the flavor off-diagonal components of the
moments. This yields a total of eight effective species that follow
from the generalized density matrices of Section 2.1, and
specifically a two-flavor version of Equation (1). For example,
these eight species for the energy-density moments are Eee, Eμμ,

( )mERe e , and ( )mEIm e and the four charge-conjugate counterparts
for the antineutrinos. In reality, neutrinos would oscillate
between e and the other two flavors, namely, μ and τ. Our
implementation of flavor mixing is two-flavor for simplicity,
which artificially assumes that half of the heavy-lepton neutrinos
and antineutrinos do not participate in flavor conversion, but the
number of flavors does not alter our qualitative conclusions and
it will be possible to implement an 18-species framework for
three flavors in the future.
We decompose the domain into cells and group cells together

into blocks to parallelize the computation over processors. Each
block contains 163 cells along with ghost cells. The choice of 163

cells per block results, in part, from the computational resources
we use for this work. For a different platform, we would be free
to change the size of the blocks depending on the number of
cores and available memory. We use six ghost cells in each
dimension so communication occurs only at the end of each full
timestep, given a stencil size of two in each direction and three
substeps within each full step.8 The three-step integrator was
originally designed to ensure consistency in the hydrodynamic
evolution in FLASH using a general tabulated equation of state.
Our calculations do not evolve the hydrodynamics and add an
unnecessary computational cost, but we leave the structure in
place to ensure future consistency with the full FLASH
framework used for ab initio compact object simulations.
We extend the three-species transport subroutines from

Appendix B of O’Connor & Couch (2018) to the eight species
needed for flavor mixing. We use the same Harten–Lax–van
Leer-Einfeldt (HLLE) Riemann solver (Harten et al. 1983) to
compute fluxes between grid cells for all eight species. We use
a first-order method to reconstruct the interface flux and
pressure values, instead of the second-order TVD reconstruc-
tion employed in O’Connor & Couch (2018). Our advection
timestep is set to 0.4 times the grid cell light-crossing time.

8 The stencil size is the number of grid cells referenced when evaluating a
numerical derivative.

6

The Astrophysical Journal, 963:11 (24pp), 2024 March 1 Grohs et al.



The advection and mixing evolution is done using an operator-
split method, where the mixing derivatives are given by the rhs of
Equations (24), (25), (26), and (27). To calculate the commu-
tators of 2× 2 matrices, we decompose the density matrix into
components as detailed above and use the commutation relations
of the Pauli matrices. Mixing is only treated locally, with the
Hamiltonian-like terms specified at a given x, or equivalently a
given cell. Unlike the solver for the advection, we use an
adaptive, explicit fifth-order Runge–Kutta Cash-Karp (RKCK)
method (Press et al. 1992) in the mixing subroutine closely
following the implementation in Grohs et al. (2016). The timestep
is determined by requiring that the difference between the
embedded fourth- and fifth-order solutions is smaller than one
part in 106 for each timestep and violations in unitarity (i.e.,
particle number conservation) are smaller than one part in 103.

Finally, we discuss the MEC as implemented for mixing.
The Eddington factor in Equation (39) is a derived result from
the assumptions of a classical distribution maximizing angular
entropy. Although our evolved quantities are expressed in a
particular flavor basis, the physical evolution should not be
basis dependent. Naively evaluating flux factors and Eddington
factors using Equation (39) would break basis independence.
We could diagonalize the energy-density moment such that the
off-diagonal components of E are zero. We would also need to
apply the same unitary transformation to each vector comp-
onent of F, but there is no guarantee that E and F i are
simultaneously diagonalizable. In addition, the flux factors of
the flavor off-diagonal quantities are in general complex and
can be arbitrarily large or small irrespective of whether the
radiation is in the trapped or free-streaming regime, making
naive flux factors for flavor off-diagonal components a poor
choice for interpolating between these regimes.

To ameliorate these issues, we can make the assumed
pressure tensor independent of the flavor basis if we calculate a
single χ for neutrinos and a single c for antineutrinos using
flavor-traced flux factors. Specifically, those flavor-traced flux
factors are defined as

∣ [ ]∣
[ ]

( )( ) =
F

f
E

Tr

Tr
45FT

∣( ) ˆ ∣ ( )=
+
+

F F x

E E
, 46ee

i
xx
i

i

ee xx

and a similar expression for the antineutrinos and ( )f FT , where x̂i
are the Cartesian unit vectors. These flavor-traced flux factors are
substituted into Equation (39) to obtain χ and c̄, which are in
turn used for all flavor components in Equation (36). This also
prevents the flavor off-diagonal components from appearing to
be in the optically thick regime when the flavor off-diagonal
components are in the free-streaming regime. Note, however, the
principal direction of the pressure tensor is computed as in
Equation (36) separately for each flavor component, i.e., ñee, ñxx,

[ ]Re ex , and [ ]Im ex . In other words, Equations (36), (37), and
(38) all have flavor indices on each quantity, except for χ.

This scheme has the disadvantage that in the limit of no
flavor mixing, it does not reduce to the original two-moment
transport scheme, since different flavors are no longer allowed
to have independent flux factors. However, for many of the
cases we study in Section 5, we are in the optically thick limit
for both e and x species, and as a result fee∼ fxx∼ f (FT) and
similarly for the antineutrino flux factors. We leave a more

detailed analysis of possible closures to future work (J. Kneller
et al. 2024, in preparation).

4.2. EMU

EMU (Richers et al. 2021b) is a three-dimensional particle-in-cell
neutrino flavor-transformation code that evolves Equations (5)–(6)
individually for a large number of computational particles. To
evaluate the self-interaction part of the Hamiltonian
(Equation (11)) we collect the contributions of each particle to
the background angular moments of the distribution using a
second-order shape function, and interpolate the Hamiltonian from
the grid to each particle using the same second-order shape
function. The advection terms are accounted for by simply
translating the position of each computational particle. The flavor-
density matrix and positions of each computational particle are
evolved with a global fourth-order Runge–Kutta method. The
snippets of EMU code that depend on the number of neutrino
flavors are automatically generated using sympy (Meurer et al.
2017) to carry out symbolic matrix operations, simplify the
expressions, and output C++ code. This allows us to run
simulations assuming either two or three neutrino flavors. EMU is
publicly available at Willcox & Richers (2021).
Whereas FLASH is a moment method and only evolves two

angular moments for each flavor component of the neutrino
distribution, EMU simulates particles moving in many indivi-
dual directions. The EMU results we present in this paper were
computed to 378 particles per cell corresponding to an angular
resolution of roughly 11°, following the resolution tests in
Richers et al. (2021a).

4.3. Initial and Boundary Conditions

We assign the flavor-diagonal values to the first two
moments at every point in the domain for a FLASH calculation.
There are eight neutrino species with four values (one energy-
density and three flux components), for a total of 32 initial
values per cell which we need to assign. However, in practice
we always begin with identical moments for ñxx and xx, since
all heavy-lepton neutrino and antineutrino species are gathered
in a single species νother in Foucart et al. (2016a) due to their
very similar evolution in the absence of flavor transformation.
Our calculations of the FFI will only include the self-interacting

term for the Hamiltonian-like operator in Equations (24), (25), and
the antineutrino counterparts. We set the vacuum and matter
potentials to zero so as to focus on the FFI, leaving the interesting
physics cases of slow collective modes and matter-neutrino
resonances to future work. In an actual astrophysical object, such
as a CCSN or NSM, the vacuum potential would act to seed the
flavor off-diagonal elements as a function of path length and
neutrino energy. Since we simulate a local volume within a larger
global system and thus have no information about the advection of
perturbed neutrinos into our domain, we choose to take precise
manual control over the initial seeds and exclude the vacuum
potential. We seed the off-diagonal flavor components with a
perturbation of ( )- 10 6 compared to the diagonal components.
The scale 10−6 is chosen such that the growth in the off-diagonal
components begins in the linear regime. We have verified that
starting with even smaller perturbations does not change the
outcome for FLASH calculations. This is expected, as the growth
should be the same in the linear regime, and thus smaller initial
perturbations only take longer and use more computing resources.
For the pattern of the perturbations, we use random numbers in
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each cell in order to remain agnostic to the scale of the initial
perturbations that would be present in nature.

Specifically, we use the following to seed the initial
perturbations in the off-diagonal components of the energy
densities in FLASH

( ) { }[ ( ) ( )] ( )d = +-x x xE p N A ıB10 max , 47ab
c

cc ab ab
6

where −1< A, B< 1 are uniform random numbers at each
location x, Ncc are the initial number-density moments for the
diagonal components, and the Hermitian perturbation is only
applied for a≠ b. For the flux moment, we copy the energy-
density moment perturbation into the flux moment and use flux
factor vectors to weight the direction

( ) ( ) ( )d d=
S
S

F x x
f

E
N

N
, 48ab ab

c cc cc

c cc

implying the initial perturbations for the off-diagonal compo-
nents of E and F are correlated. Analogous expressions exists
for the antineutrino moments.

In the EMU calculations, each particle is assigned a four-
momentum vector, weight, and density matrix. The four-
momentum vectors are distributed uniformly in space, but
assigned initial weights and density matrices to approximate the
maximum entropy distribution (Equation (34)) separately for
each flavor. In this way, the zeroth and first moments are
reproduced under an appropriate angular integration for each
flavor-diagonal element of the density matrix. We impose a
random perturbation to the flavor off-diagonal elements of the
density matrix at the level of 10−6 and adjust the diagonal values
accordingly to preserve the length of each polarization vector.

The random numbers are determined at run time, so although
the bulk properties of the instability are expected to be related
by the similar initial conditions, the exact values in a particular
cell have no correspondence between EMU and FLASH
calculations. We will make all comparisons in the aggregate
between the two sets of calculations. Furthermore, if we
calculate the energy density for EMU using Equation (12)
(where the angular integration becomes a sum over particle
index), we would expect the incoherent sum for δEab to be
reduced by n for n particles per cell, implying an effectively
smaller perturbation on the initial moments. To reiterate, this
only impacts the length of the linear phase of the instability, not
the growth rate or saturation properties. We give more details
on the differences in the initial conditions between FLASH and
EMU in Appendix C.

In both FLASH and EMU calculations, we use a 3D cubic box
with Cartesian coordinates. The domain sizes and resolutions

of the FLASH production simulations are listed in Tables 1 and
2. We choose the domain size and cell count so that we have
the resolution to resolve the fastest growing mode in the FFI,
along with enough of a spatial domain to contain a few
wavelengths of that fastest growing mode. We do not know the
properties of the fastest growing mode a priori, so we perform
convergence checks inline with the presentation of the results.
The simulation durations are generally longer than the light-
crossing time of the domain, implying the initial particles/
densities will have advected out of the domain before the end
of the simulation. We implement periodic boundary conditions
for both sets of calculations implicitly assuming that the initial
distribution is reasonably approximated as periodic on scales
larger than the simulation domain. We also verify that changing
the domain size does not impact the results.

5. Results

Our results comparing the ability of the two-moment method
to reproduce the fast flavor instability are split into two parts.
First, we consider in Section 5.1 the three test problems in three
dimensions that were previously studied with EMU in Richers
et al. (2021a). In Section 5.2, we move to consideration of
conditions extracted from a dynamical neutron star merger
simulation. We use the symbol ( )WIm to denote the growth rate
of |Nex| during instability. In addition, we use the symbol ∣ ∣k max
to denote the fastest growing mode in the discrete Fourier
transform of Nex during instability.

5.1. 3D Test Problems

The three 3D test problems we consider are named as
Fiducial, 90° (labeled as 90Degree in Table 1 and Figures 1, 2,
and 3), and TwoThirds, all of which are described in detail in
Richers et al. (2021a, 2021b). None of the three tests have
analytic solutions,9 so the comparison is based on how well the
moment method of FLASH can reproduce the PIC results.

5.1.1. Test Parameters

Table 1 gives the initial conditions for simulation parameters of
the three tests. The first three columns of Table 1 give the initial
values of the flavor-diagonal number-density moment. All three
tests start with nonzero numbers of electron neutrinos and
antineutrinos, and zero other-flavor neutrinos. The fourth through
sixth columns give the flux factor vectors. Although these
particular flux factor vectors need at most two dimensions to be

Table 1
List of Simulation Parameters and Initial Conditions for the Three 3D Test Simulations

Name ee ee ( )S x fee fee f(x) L Ngp

(1032 cm−3) (1032 cm−3) (1032 cm−3) (cm)

Fiducial 4.89 4.89 0 (0, 0, 1/3) (0, 0, −1/3) (0, 0, 0) 8 1283

90Degree 4.89 4.89 0 ( )0, 1 18 , 1 18 ( )-0, 1 18 , 1 18 (0, 0, 0) 8 1283

TwoThirds 4.89 3.26 0 (0, 0, 0) (0, 0, −1/3) (0, 0, 0) 32 1283

Note. The first three columns show the number densities of each (anti)neutrino flavor. For clarity, the third column shows the sum of all four heavy lepton (anti)
neutrino densities. Three-flavor simulations assume ( )= = = = Smm mm tt tt     4x , while two-flavor simulations assume ( )= = S   4xx xx x , where we
assume that the other half of the heavy-lepton neutrinos do not participate in flavor mixing. The next three columns show the flux factor vectors, the norm of which are
the flux factors. The seventh column shows the length of each side of the domain and the eighth column the number of grid points for the baseline simulation.

9 The Fiducial calculations of Richers et al. (2021b) assume a slightly
different angular distribution.
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fully described, we stress that the calculations are three-
dimensional and individual cells will generally develop flux
moments where all three spatial components are nonzero. The
seventh column gives the side length of the domain, and the eighth
column the number of cells. Under the MEC, the initial angular
distributions of all three tests in Table 1 exhibit an ELN crossing
and are therefore unstable to FFC.

To visualize the geometry of these three tests, Figure 1
shows the neutrino angular distributions [Equation (34)] for the
electron neutrinos (blue) and antineutrinos (red). The MEC
distributions are 3D as emphasized above and as a result, we
plot polar representations of 2D cross-sectional slices in the top
row of Figure 1. We measure the polar angle ϑ ä [0, 2π]
counter-clockwise from thez axis. We take the slices such that
the maximum values of the distributions (that is the directions
of the fluxes Fee and Fee) lie in the same plane. The polar plots

in the upper panels show a more intuitive representation of the
magnitude of the distribution in different directions, but the size
and depth of the ELN crossings are more apparent in the
standard plots on the lower panel. The vectors originating from
the origin on the polar plots show the peak direction of the
distributions. The difference of the blue and red vectors is
shown in dashed purple, for instance, it is coincident with the
blue vector on the Fiducial case, and the vector difference is
shown vividly in the 90° test. For all three tests, the coordinates
are chosen so that the lepton number flux (i.e., the purple
vector) lies along the z-axis. We then orient the polar plane so
that this axis points in the rightward direction, and indicate this
direction as ϑ= 0 in the lower plots. As in the polar plots, the
blue and red curves give the electron neutrino and the electron
antineutrino distributions. Here, the purple curve gives the
ELN distribution, properly normalized by the sum of the

Table 2
List of Baseline Simulation Parameters for the FLASH NSM Simulations

Name ee ee ( )S x fee fee f(x) L Ngp

(1032 cm−3) (1032 cm−3) (1032 cm−3) (cm)

NSM 1 14.22 19.15 19.65
⎛

⎝
⎜

⎞

⎠
⎟

-

0.0974
0.0421
0.1343

⎛

⎝
⎜

⎞

⎠
⎟

-

0.0723
0.0313
0.3446

⎛

⎝
⎜

⎞

⎠
⎟

-

-

0.0216
0.0743
0.5354

7.87 1283

NSM 2 23.29 28.53 60.11
⎛

⎝
⎜

⎞

⎠
⎟-

-

0.0086
0.0174
0.1635

⎛

⎝
⎜

⎞

⎠
⎟-

-

0.0070
0.0142
0.2338

⎛

⎝
⎜

⎞

⎠
⎟

-
-
-

0.0476
0.0231
0.2679

8.27 2563

NSM 3 28.80 37.42 19.32
⎛

⎝
⎜

⎞

⎠
⎟-

0.0004
0.0033
0.0044

⎛

⎝
⎜

⎞

⎠
⎟-

-

0.0003
0.0025
0.1306

⎛

⎝
⎜

⎞

⎠
⎟

-
-
-

0.0008
0.0051
0.1292

5.80 5123

Note. Column labels are the same as Table 1. Note that all corresponding EMU simulations were run with the same parameters, but using Ngp = 1283 grid cells due to
the longer wavelength of the fastest growing mode.

Figure 1. [Top] Polar representations of angular distributions for electron neutrino (blue) and electron antineutrinos (red) for the three tests at the beginning of the
simulation. Blue (red) vectors indicate the net flux direction. Purple vector is the difference of blue and red vectors. [Bottom] Curves as given by Equation (34) for νe,
ne and the difference (purple) as a function of polar angle ϑ. Angular distributions for νx and nx are zero at the beginning of the simulation. Lepton number crossings
occur when purple line crosses 0.
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energy-density moments. As can clearly be seen in all three
tests, the purple curves cross the horizontal axis implying a
lepton number crossing.

5.1.2. Time Evolution and FFI

We show the time evolution of the domain-averaged values
of Nee(t)/Nee(0) (top) and |Nex(t)|/Nee(0) (bottom) in Figure 2
for FLASH, two-flavor EMU, and three-flavor EMU simulations.

We emphasize that, given the different initial perturbations for
FLASH and EMU calculations (see Section 4.3), we do not
expect identical time evolution. Subsequently, the saturation
time, tsat, when the off-diagonal terms saturate (located at the
peak of the |Nex|/Nee(0) curves) depends on the initial
conditions, as well as the kind of calculation. To aid in
visualization when comparing the growth, saturation, and
decoherence phases between FLASH and EMU, we define the
horizontal axes in Figure 2 as t− tsat using a different tsat for

Figure 2. Density matrix elements versus time for the three tests. The horizontal axis is t − tsat where tsat differs between test case and method of calculation. We use
this definition for visualization purposes and stress the calculations are not simultaneous (see Figure 15 for the same plots using directly the simulation time for the
horizontal axis). Two-flavor FLASH quantities are plotted in red. Two- (Three-) flavor EMU quantities are plotted in solid (dashed) black. All quantities are averaged
over the spatial domain, and in addition over particle number for EMU. [Top] Plotted is the ee component of the number-density moment flavor matrix N (i.e., number
density of νe) scaled by Nee(t = 0). [Bottom] Plotted is the magnitude of the off-diagonal component of N scaled by Nee(0). For three-flavor EMU calculations, we take
the eμ component of N.

Figure 3. Magnitude of the discrete Fourier transform of Nex for all three tests plotted against wavenumber. The DFTs are calculated at a time prior to saturation. The
DFTs for the Fiducial and 90° test cases are taken 0.1 ns before saturation, and TwoThirds 0.35 ns before saturation. Two-flavor (three-flavor) EMU simulations
correspond to the black solid (dashed) curve; FLASH simulations to the red solid curve. The two light-red curves correspond to different resolution tests for FLASH.
The light-red solid curve has half the box side length and half the number of grid points compared to columns 7 and 8 in Table 1. The light-red dashed curve has the
same box side length and half the number of grid points.
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each calculation. We stress that none of the calculations are
simultaneous with one another in simulation time; the
alignment at t− tsat= 0 is a construct of the plot. Finally, we
plot a horizontal green line on the top panel to indicate the
expected number of electron neutrinos in a two-flavor
calculation if the system were to completely mix flavor.

In all three tests, the FLASH simulations exhibit fast flavor
instability with a growth rate very similar to the true value.
Considering the red (FLASH) curves in Figure 2, there exists a
period of exponential growth in 〈|Nex|〉, evidencing one of the
defining characteristics of the FFI. 〈|Nex|〉 continues to grow
until the off-diagonal magnitude reaches the same order of
magnitude as the initial electron-flavor number-density
moment. When |Nex| Nee at saturation, there are rapid
oscillations in the diagonal components, evidencing the other
defining characteristic of FFI. Saturation is a nearly instanta-
neous event with decoherence, i.e., decreasing |Nex|, succeed-
ing the rapid oscillations. The decoherence continues as
oscillations damp, with an end result of 〈Nee〉 approaching an
asymptote at a value less than the starting condition. In
summary, the results presented in Figure 2 are quite remarkable
in that, even though the instability criterion in FFI depends
upon angular crossings of the ELN, the two-moment method
accurately showcases the growth of the FFI without access to
crossing information. Of course, crossings are implied by the
MEC distribution used to generate the closure relation, but the
MEC distribution is nowhere explicitly used in the code.

The growth rate in the FLASH simulations is quantitatively
very similar to that in the full EMU simulations, and even the
final asymptotic neutrino distributions match well in certain
cases. The Fiducial and 90° tests show strong agreement
between the two methods. We see nearly identical growth rates
for both tests, with FLASH producing a slightly higher ( )WIm .
Specifically for the Fiducial test case, ( )W = ´ -Im 7.1 10 s10 1

in FLASH, as compared to ( )W = ´ -Im 6.3 10 s10 1 in EMU, for
a difference of ∼10%. Results are similar for the 90° test, with

( ) ( )W = ´ -Im 5.4 4.4 10 s10 1 in FLASH (EMU).
Also, the asymptotic values for 〈Nee〉 are nearly the same,

with differences of ∼1% for both tests. We nevertheless see
differences between these two tests in the saturation and
decoherence periods. The oscillations in the top panels of
Figure 2 for EMU appear to have larger amplitudes and persist
longer than those of FLASH. Note that, during the post-
saturation decoherence, there appear to be two phases indicated
by different slopes in Nex. In the first, immediately after
saturation, Nex decreases rapidly, but then numerical artifacts
take over and decrease the decoherence rate (e.g., at around
t− tsat= 0.75 ns in the Fiducial case). In the case of the FLASH
calculations, this is due to the numerical diffusion from finite
grid spacing, and, in the case of EMU, this is due to the finite
number of computational particles that achieve a state of
random uncorrelated fluctuations, the amplitude of which scale
very slowly as -Np

1 2. Therefore, the decoherence phase right
after saturation is a robust physical prediction, but the late-time
values of Nex show numerical artifacts.

The small amplitude oscillations for FLASH are especially
evident in the TwoThirds test case. Here, we see a noticeable
difference between FLASH and EMU for the asymptotic values
of 〈Nee〉. The growth rate is faster for FLASH by ∼40% and the
loss of coherence falls off faster. There is a smaller amount of
time when |Nex| Nee, and thus fewer oscillations in the flavor-

diagonal term. The result is an asymptotic value which is
10% of Nee(0).
For the TwoThirds test, we speculate that the reason the

moment calculations do not asymptote at large times to the
same value of 〈Nee〉 as found by EMU is due to our imposition
of the MEC. Recall that, for the FLASH calculations, we use
the quantum implementation of the MEC at every timestep and
substep of the evolution. In contrast, the EMU calculations use
Equation (34) only when generating the initial conditions, and
the future evolution depends directly on the general distribu-
tion. There is no guarantee that the neutrino distributions in
EMU follow the MEC at any point except for initialization.
Although we have argued above that the use of the MEC in

FLASH necessarily restricts the shape the distributions may take
during flavor evolution, there does exist the striking convergence
between FLASH and EMU of 〈Nee〉 in the asymptotic limit for the
Fiducial and 90° tests. This is not a coincidence, but rather a result
of the symmetry of both of these tests. Initially, the system contains
both charge-conjugation parity (CP) and rotational symmetries.
The MEC is agnostic to CP but does preserve the rotational
invariance for constant flavor-traced flux factors. As the energy-
density moment is equal for Eee and Eee, and the initial neutrino
distributions are rotations of the antineutrino distributions, an ELN
crossing is inevitable. The initial conditions and conservation of
three-momentum ensures that neutrinos and antineutrinos will
never have the same flux factor vectors at any point in the test
calculations. As our system of equations is CP symmetric (except
for the initial conditions in the flux factors), we expect any flavor
transformation for Eee to be accompanied by a commensurate
change in Eee. Because three-momentum is conserved, the flux
factors are invariant and the ELN crossing persists to all times. We
have numerically verified that indeed Eee mirrors the evolution of
Eee and an ELN crossing exists in perpetuity. In other words, the
distributions shown in the top panels of Figure 1 only scale in
radial coordinate during their evolution. However, the results in
Figure 2 clearly show a stable system post saturation. For either the
Fiducial or 90° system to become stable, an XLN crossing must
develop, canceling the omnipresent ELN crossing (Nagakura &
Zaizen 2022; Xiong et al. 2023b; Zaizen & Nagakura 2023).
Furthermore, the νx and nx distributions have the same vector flux
factors and use the same flavor-traced flux factor, implying those
distributions are identical to the ones in the top panels of Figure 1
except for a difference in the radial coordinate. In the presence of
non-trivial ELN and XLN crossings, a zero net lepton number at
all angles requires identical energy, flux, and pressure moments for
the xx components as compared to their ee counterparts—implying
near flavor equilibration. Even if the distributions do not follow
Equation (34) and the MEC, the symmetry of the system
guarantees that 〈Nee〉 must converge to 50% of the flavor trace
[equivalent to Nee(0)/2] in both the Fiducial and 90° tests. This
need not be the situation in the TwoThirds test case as the system
neither exhibits CP nor rotational symmetry. Here, the MEC is not
an accurate representation of the distributions at later times, and as
a result, the FLASH and EMU calculations show a stark divergence.
Discrepancies between moment and multi-angle methods were
also seen in Myers et al. (2022).

5.1.3. Pressure Moment

As discussed above, the MEC need not be a true
representation of the distribution even if we find flavor
convergence in the asymptotic limit. Figure 4 gives a plot of
the zz pressure tensor component for the electron neutrinos in
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the Fiducial test case. We pick the zz component for Pee asz is
the direction of the net neutrino flux. For the geometry of the
Fiducial test case, the thin and thick components of the pressure
tensor reduce simply to =P E 1zz

thin and =P E 1 3zz
thick ,

implying that the interpolated value from Equation (36) is
Pzz/E= χ. For the purposes of analyzing our moment and PIC
simulations, we plot the averaged values of c~P Eee

zz
ee

against the time as measured from the saturation peak. We
choose this representation of our data as we do not expect
qualitative differences for different cells. In contrast, Nagakura
& Zaizen (2023) plot the time-averaged values of the pressure
against the radial coordinate when comparing multi-angle
results to closure approximations in a global CCSN simulation,
showing the transition from the optically thick to thin limit. The
solid black curve in Figure 4 corresponds to the baseline EMU
calculation, i.e., the solid black curve in the upper-left plot of
Figure 2. To calculate Pzz

ee for EMU, we use Equation (14) to
sum over the particles in a given cell and obtain the second
angular moment of the distribution. We subsequently average
over the simulation domain and normalize by the energy-
density moment. The dashed red curve gives the same quantity
for the FLASH simulation. For FLASH, we first calculate the
domain average of the energy and flux density moments. Along
with the flavor-traced Eddington factor from Equation (46), we
use Equation (36) with the averaged Eee and Fee to obtain Pzz

ee.
Finally, we normalize by 〈Eee〉. The constant value of the red
dashed line shows that FLASH is conserving both neutrino
energy density (i.e., particle number) and neutrino flux density
(i.e., three-momentum).

For diagnostic purposes, we include two other pressure
quantities in Figure 4. The dashed orange curve gives the
pressure using the output FLASH energy and flux moments
along with the classical MEC prescription (i.e., an Eddington
factor calculated using pure diagonal flux factors without a

trace over flavor). The solid blue curve gives the same but for
output EMU quantities. By comparing the blue and black
curves, we see how much the distribution in the PIC calculation
differs from the classical MEC. Note that, at times t< tsat, a
finite number of particles causes the black curve to deviate
from the blue one (we verified that increasing the number of
particles reduces this discrepancy). After saturation, the black
curve exhibits a larger amplitude of oscillations as compared to
the blue curve. For large values of á ñPee

zz , the actual PIC
calculation is more forward peaked than the MEC approx-
imation. The opposite would be true for small values of á ñPee

zz ,
although it appears that the black and blue curves do not differ
much at their minima. This finding is consistent with Nagakura
& Zaizen (2023) during periods of significant flavor transfor-
mation (see Figures 8 and 9 of the aforementioned work),
despite the differences in plotting axes. Nagakura & Zaizen
(2023) show that the closure relation cannot always describe
the shape of the flavor-transformed distribution during rapid
flavor oscillations as the Eddington factor falls outside of the
classically allowed range. Although á ñ á ñP Eee

zz
ee always falls

within the classically allowed range for our Fiducial case, the
difference between the blue and black lines is most acute at the
maxima, and implies the MEC does not capture the multi-angle
distribution at all times. Last, the black and blue curves
oscillate nearly in phase with one another, indicating that the
MEC contains the correct scaling of Pee

zz with Eee and Fee but
not the correct sensitivity.
We notice another difference in sensitivity when comparing

the solid blue curve to the dashed orange curve of FLASH. The
classical MEC calculation using FLASH data shows a smaller
amplitude of oscillation, along with a larger frequency. We
attribute the smaller amplitudes to the fact that the MEC
underestimates the degree of forward peaking of the distribu-
tion. The larger frequency correlates with the smaller time-
scales exhibited by FLASH, and observed in all three test cases.
Notice that the dashed orange and solid blue curves do
asymptote to similar values during the decoherence period,
implying that the zeroth and first moments have similar values
between the two methods of calculation. Finally, we note that
our choice of utilizing the flavor-traced Eddington factor
(dashed red curve in Figure 4) over the classical MEC in the
FLASH simulation results in a value of á ñPee

zz differing by ∼1%
of 〈Eee〉. As we operate in the optically thick limit at all times
for this test case, we do not foresee that adopting the classical
MEC prescription for calculating χ would alter the results in
Figure 2 by more than a few percent.

5.1.4. Fourier Space Analysis

We have discussed averages of the number density and
pressure moments when presenting Figures 2 and 4. In
Figure 3, we show information on the structure in the
simulation domain by using Discrete Fourier Transforms
(DFTs). The horizontal axes give the wavenumber k, and the
vertical axis the magnitude of the DFT of the complex flavor-
off-diagonal number-density moment Nex, normalized by the
flavor trace. We will refer to wavenumber values as “modes.”
The solid red, solid black, and dashed black lines all
correspond to the same simulations as Figure 2. In lighter
shades of red, we have plotted DFTs from two additional
FLASH calculations of the same test cases. The light-red solid
curve is from a simulation with the same number of grid points
per cm but with a box side length of half the original simulation

Figure 4. The zz component of the pressure tensor for electron-flavor neutrinos
plotted against time for the Fiducial test case. The pressure tensor component is
normalized by the energy-density moment. The solid black curve gives the
pressure tensor for the EMU simulation, while the dashed red curve gives the
same for the FLASH simulation. Also included are diagnostic quantities for
FLASH (dashed orange) and EMU (solid blue) using a classical MEC along with
the number and flux moments as given by the simulations. All quantities are
averaged over the simulation domain.

12

The Astrophysical Journal, 963:11 (24pp), 2024 March 1 Grohs et al.



compared to the values in columns 7 and 8 of Table 1; the
light-red dashed curve is from a calculation with the same
domain size, but half the number of grid points per centimeter
and a smaller maximum value of k.

The three DFTs in each panel of Figure 3 are all from a time
before saturation during the growth period: ∼0.1 ns before
saturation for the Fiducial and 90° cases; ∼0.35 ns before
saturation for the TwoThirds case. While similar, the times of
the snapshots used in the DFTs are not exactly equal between
different calculations so the values of

~
Nex cannot be compared

across either the simulations or the resolution tests. For this
reason, comparisons should be restricted to within an
individual calculation, i.e., the relative heights of peaks.

The DFTs show the scales, via wavenumber k, where there
exists a sinusoidal pattern in the flavor off-diagonal number-
density moment. This superposition of sinusoids need not have
growing amplitudes for each mode. A priori, only one mode is
necessary to explain the growth phase in Figure 2. However,
during the growth phase, all modes in Figure 3 do indeed grow
in power until saturation, implying there are many unstable
modes in the system.

All three tests show a discernible peak in the dark-red curves
of Figure 3. Soon after the simulations begin the DFT exhibits
a peak with an associated wavenumber as evidenced in
Figure 3. The peak remains at that location in k, although with
growing height, until saturation. The DFTs for the resolution
tests show similar behavior in the peak position and growth
phase, indicating that the dark-red curve for the simulation is
indeed spatially resolved. We call the wavenumber at this peak
the fastest growing mode ∣ ∣k max. The growth rate in Figure 2 is
linked to the fastest growing mode via a dispersion relation,
with details provided in Froustey et al. (2023).

The FLASH and EMU calculations both have discernible peaks
with similar fastest growing modes. The wavenumber of the
fastest growing modes for FLASH are slightly larger, reflecting a
smaller scale. For example, ∣ ∣ ( )= -k 3.9 3.1 cmmax

1 for FLASH
(EMU) in the Fiducial test case, and ∣ ∣ ( )= -k 3.1 2.4 cmmax

1 in the
90° case. Also, it appears that the noise floor of the DFT is larger
for FLASH, or equivalently, there exists relatively less power in
the fastest growing mode. Last, there are a few harmonics visible
in FLASH but not present in EMU. This is true for all three test
cases, and more pronounced for the TwoThirds case. These
harmonics, however, only crest slightly above the noise floor.

In summary, Table 3 gives numerical results of FFC to
compare between FLASH and the two-flavor EMU calculations for
all three tests. The values in columns 1–4 are deduced from
Figure 2 and are the following, respectively: the maximum value
of 〈|Nex|/Nee(0)〉 in the bottom panels; the ratio of 〈|Nex|〉 at the
saturation time and a time tdec= tsat+ 0.2 ns during the
decoherence phase; the asymptote of 〈Nee/Nee(0)〉 in the top
panels; and the slope of the line (in semi-log space) in the bottom
panels. The fifth column gives the value of k at the peak of the
DFT in Figure 3. We give an uncertainty in parentheses for ∣ ∣k max
due to the finite box size, namely, δk=± π/L. All tests show the
FLASH calculations have larger values of ( )WIm and ∣ ∣k max
compared to EMU. In addition, the rate of decline of |Nex| is larger
for the FLASH calculations in all three tests. However, even with
the different growth and loss of coherence rates, oscillations occur
while the average value of |Nex| exhibits quite similar values for
each test. This value, in the first column, is similar within a given
test but not uniform across all three tests. Moreover, it varies with
the random initial perturbations and should not be taken as a
robust prediction for each calculation, contrary to the growth rate,
instability length scale, and amount of flavor transformation.

5.2. Neutron Star Merger

Our next set of simulations use initial conditions extracted
from the three-dimensional neutron star merger simulation of
Foucart et al. (2016a). This simulation is general relativistic,
but simulating neutrino oscillations in curved spacetime is
beyond the scope of this work. Appendix B describes our
procedure on transforming the distributions defined in a general
spacetime metric to distributions defined in an orthonormal
tetrad comoving with the fluid. In this frame, the construction
of a flavor-transformation simulation is more intuitive, since we
can treat the spacetime as locally flat.
We analyze and simulate neutrino distributions at a selection of

points in the polar slice of a snapshot at 5ms post merger shown in
Figure 5. Green contours give matter densities of {1011, 1012, 1013,
1014} g cm−3 and the inner contours show the position of the
central compact object at the center of the domain. The red pixels
indicate where an ELN crossing exists according to Equation (41).
White pixels indicate that no such ELN crossing exists, although
these regions are still subject to flavor transformation via other
processes (e.g., the matter-neutrino resonance) or advection of
flavor-transformed distributions into those regions of space. We

Table 3
Numerical Results for FLASH and EMU (2f) Calculations for the Three 3D Test Simulations

Name ∣ ∣ ( ) ∣á ñ =N N 0ex ee t tsat 〈|Nex(tdec)|〉/〈|Nex(tsat)|〉 〈Nee/Nee(0)〉|t→∞ ( )WIm ∣ ∣k max

(1010 s−1) (cm−1)

Fiducial
FLASH 0.314 0.292 0.517 7.1 3.9(4)
EMU (2f) 0.333 0.360 0.506 6.3 3.1(4)
90Degree
FLASH 0.281 0.191 0.510 5.4 3.1(4)
EMU (2f) 0.303 0.333 0.516 4.4 2.4(4)
TwoThirds
FLASH 0.248 0.216 0.627 2.0 1.8(1)
EMU (2f) 0.214 0.579 0.771 1.2 1.4(1)

Note. First column gives the ratio 〈|Nex|/Nee(0)〉 when t = tsat. Second column gives the ratio of off-diagonal magnitudes at two different times: tsat and
tdec = tsat + 0.2 ns. Third column gives the asymptotic ratio 〈Nee/Nee(0)〉 post saturation. Fourth column gives the growth rate ( )WIm when the system is unstable in
units of 1010 s−1. Last column gives the fastest growing mode in the domain ∣ ∣k max in units of cm−1, with an associated uncertainty in parentheses. The values of the
first two columns are much more variable with the initial random perturbations than the last three.
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select three points to simulate in FLASH and EMU, indicated by the
black cross, blue star, and green circle, to model regions above the
accretion disk, within the disk, and just outside of the compact
object, respectively. The black cross is the same point detailed in
Grohs et al. (2023).

Table 2 and Figure 6 are the NSM analogs to Table 1 and
Figure 1 of Section 5.1, and use the same notation and plotting
conventions. Note that the orthogonalization procedure in
Appendix B is location dependent and, as a result, the
directions of the fluences in Table 2 cannot be compared to
one another between points. In other words, for this particular
study, our flavor-transformation simulations are restricted to
the local area of each point and do not affect one another
through advection. However, the neutrinos for points 1 and
2 are generally moving upward, so the leftward direction in the
polar plots in Figure 6 roughly correspond to the ẑ direction in
Figure 5. The leftward direction in the polar plot for point 3 in
Figure 6 roughly corresponds to the x̂ direction in Figure 5.
Note that, while there are healthy ELN crossings in points 1
and 3, the crossings in point 2 are quite tenuous, as would be
expected given the very thin band of instability just above the
compact object in Figure 5.

5.2.1. Time Evolution and FFI

Figure 7 shows the time evolution of the neutrino number-
density moment for all three NSM points. Contrary to the
previous test cases, the conditions in the NSM dictate nonzero
initial distributions of heavy lepton neutrinos. This results in
different two-flavor complete-mixing lines for each simulation,
shown in green in Figure 7. The lighter opacity lines are for
different resolution tests (see descriptions in caption). For
illustrative purposes, we also include a three-flavor EMU
simulation for the first NSM point and plot the eμ component
in the bottom panel.

In all three NSM points, we see growth, saturation, and
decoherence phases as we did in Section 5.1 and Figure 2.
Growth of |Nex| begins soon after the start of the simulation and
proceeds until 〈|Nex|〉∼ 0.1〈Nee〉 in both FLASH and EMU
calculations. Rapid oscillations develop and effect a decrease in
〈Nee〉 toward complete flavor-mixing. Notice that, for the first
NSM point treated by FLASH, the conditions are such that
〈Nee〉 falls below the complete-mixing green line and
asymptotes to a value less than 50% of the flavor trace. This
is the case for all three resolution tests, including the light-red
dashed curve with half the gird spacing compared to the

baseline simulation. The EMU results also briefly dip below the
50% line, and it seems that the more rapid decoherence in the
moment method halts the flavor transformation before it can
oscillate back up. In all other calculations (FLASH and EMU),
〈Nee〉 remains above the green line at all times. Decoherence
enters after saturation in much the same manner as the three test
calculations in Section 5.1. In the first and second NSM points,
the baseline and resolution tests for FLASH begin to lose
convergence in the decoherence phase. The divergence occurs
well after saturation and at a point where 〈Nee〉 has reached a
steady-state value. The FLASH baseline and resolution tests for
the third NSM point maintain convergence longer: a result of
this set of calculations having smaller grid spacings compared
to the other two points.
We identify some general trends in the FLASH and EMU

results. FLASH generally shows faster growth rates, faster
decoherence fall-offs, and less oscillations in the Nee moment,
similar to the test cases in the previous section. The discrepancies
are particularly apparent for the second NSM point. This point is
unique in that the distribution described by the MEC is only
marginally unstable. This type of condition is expected to lead to
slower growth rates, less total flavor transformation, and more
dependence on details in the small angular region between the
ELN crossing points (e.g., Richers et al. 2021b; Bhattacharyya &
Dasgupta 2022). Specifically for FLASH (EMU), ( )W =Im

( ) ´ -5.2 1.1 10 s10 1 for this point. The bottom panels of
Figure 6 show that ELN crossings are initially present for all
three points, but the crossing is most shallow for the second
point. The two-moment method plus MEC we are employing in
FLASH is not able to capture the FFI behavior as well for this
scenario as it is for the more pronounced ELN of the first point,
and seems to behave as if there was a more significant instability
than present in the detailed angular distribution, although we
again emphasize that FLASH still demonstrates a characteristic
evolution pattern for a fast-flavor-unstable distribution in general.
In Figure 8, we show 3D volume renderings of the FLASH

simulation for the first NSM point at four different simulation
times: t= 0.01 ns; t= 0.18 ns; t= 0.21 ns; and t= 0.59 ns. The
contours in each panel are for the phase, fex, of the complex
number Nex. The spatial structure in fex reflects the phase of the
growing mode, and so reflects the 3D structure of the peak of
the DFT during the linear phase and a combination of the
persisting mode structure and random decoherence after the
instability saturates. We plot three contours for the phase:
fex=− π/2 (blue); fex= 0 (white); and fex= π/2 (red). The
first panel shows a time close to the start of the simulation,
where little flavor transformation has occurred and the contours
are close to the initial conditions of the random distributions
with no structure [Equation (47)]. We can see some structure in
the second panel during the growth phase, where the distance
between planar structures reflects the wavelength of the fastest
growing mode and the planes are roughly perpendicular to the
direction of the net ELN flux. The phases are distorted when
the evolution becomes nonlinear as the instability saturates in
the third panel. The last panel is during the decoherence phase
when the flavor field is no longer unstable, yet there still exists
structure in fex. The pattern seen here in Figure 8 is
qualitatively similar to that seen in Figure 2 of Richers et al.
(2021a), albeit for a different simulation that employed the PIC
method. Nevertheless, the similarity in the growth of structure
of fex again shows that the moment method reproduces many
features of the FFI on large and small scales.

Figure 5. NSM crossing information from Foucart et al. (2016a). The snapshot
is taken 5 ms post merger. Red pixels indicate locations where an ELN crossing
exists. The three symbols (black cross, blue star, green circle) indicate the
locations for the three flavor-transformation simulations we consider in
Section 5.2. From outside to inside, the green contours indicate matter densities
of {1011, 1012, 1013, 1014} g cm−3.
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Figure 6. Polar and Cartesian representations of the initial νe and ne distributions for the NSM points. Plotting conventions are the same as Figure 1. Note that the z-
axis, corresponding to ϑ = 0, is a local coordinate chosen differently at each NSM point to be coincident with the lepton number flux direction.

Figure 7. Domain-averaged components for the number-density moment plotted against time measured from the point of saturation. The parameter tsat differs between
calculations in the same manner as in Figure 2 (see Figure 16 for the same plots using directly the simulation time for the horizontal axis). Panels and curve
conventions are similar to Figure 2 and simulation computational parameters are given in the last two columns of Table 2. Gray and light-red lines give results from
resolution tests and are dependent on the NSM point. For NSM 1, the solid (dashed) gray lines are for EMU two-flavor (three-flavor) simulations with half the side
length and half the number of grid points per side, for an identical grid spacing. The solid medium-red line also is for a FLASH simulation with half the side length and
half the number of grid points. In addition, the dashed light-red line is for a simulation with half the side length but the same number of grid points, for half the grid
spacing. For the three-flavor EMU calculation in NSM 1, ex = eμ. NSM 2 and 3 follow identical conventions for resolution testing compared to one another. Gray lines
are for two-flavor EMU simulations with half the domain size and half the number of grid points per side. Medium-red FLASH simulations are also half the domain size
and half the number of grid points per side. The light-red FLASH calculation is for the same domain side length, but only half the number of grid points resulting in
twice the grid spacing of the baseline simulation.
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5.2.2. Pressure Moment

In analogy to the Fiducial test case in Section 5.1, we
compare components of the pressure tensor between FLASH
and EMU calculations for the NSM 1 point in Figure 9. For the

Fiducial test case, we chose the pressure component along the
symmetry axis z when drawing Figure 4. No such symmetry
axis exists for the NSM 1 point, so we instead rotate into a
primed reference frame where a principal axis is aligned with
the flux vector for a given density matrix component. In other
words, if we define a basis ( )  ¢ ¢ ¢x y z, , such that ¢z is the unit
vector in the Faa direction, we compute [ ] º ¢ ¢P Paa aa

z zrot , which we
obtain after an appropriate spatial rotation of the pressure
tensor. The rotation is different for each flavor, i.e., a= e, x,
and computed at each timestep. The solid black curve
represents this quantity, averaged over the simulation domain
and normalized by 〈Eaa〉, for electron and heavy lepton flavor
neutrinos. If the pressure moment is obtained from the closure
relation (Equation 36), then by construction, [ ] c=P Eaa aa aa

rot .
This is indeed the case for the dashed red curve in the top and
bottom panels of Figure 9, which is equal to the flavor-traced
Eddington factor used in FLASH. For diagnostic purposes, we
also represent the pressure moment computed using the
classical MEC prescription, i.e., the non-flavor-traced Edding-
ton factor obtained from the first two angular moments in EMU
(solid blue curve) and FLASH (dashed orange curve).
Similar to the Fiducial test case and Figure 4, the MEC is

able to capture some of the features of the underlying
distribution. We note that the solid blue curve tracks the black
curve quite closely and asymptotes to nearly identical values
for the electron-flavor pressure (similar to Figure 4, the initial
discrepancy between the black and blue curves is due to the
finite number of particles). Similar to the Fiducial test case, the
black curve tends to have more extreme maxima and minima,
implying that the MEC underestimates the degree of forward
peaking (Nagakura & Zaizen 2023). For FLASH, the dashed
orange curve follows the solid blue curve for roughly half a
period during the onset of rapid flavor oscillations immediately
after saturation. These oscillations terminate prematurely for
the FLASH simulation and continue for EMU, implying final
asymptotic values for [ ]á ñPee

rot that differ by few percent.
However, we observe that, for the electron-flavor component,
there is little variation in 〈P[rot]〉 over the simulation time, and
we remain close to the optically thick limit for its entirety. The
differences in the solid black, solid blue, and dashed orange
lines are only a few percent compared to the flavor-traced
Eddington factor displayed in the dashed red curve.

Figure 8. Volume rendering of contours of the phase of Nex, fex, for NSM 1 (black cross in Figure 5). Blue, white, and red contours correspond to fex = − π/2, 0,
π/2, respectively. The four panels are at four different times and roughly correspond to different phases of FFC. From left to right: t = 0.01 ns (initial conditions);
t = 0.18 ns (growth phase); t = 0.21 ns (saturation point); and t = 0.59 ns (decoherence phase).

Figure 9. Component parallel to flux of pressure tensor plotted against time for
the NSM 1 point. Line and axes conventions are the same as Figure 4. Top
panel gives electron-flavor pressure tensor, while bottom panel gives heavy-
lepton x flavor. The rotation of the pressure moment is different for each flavor
and at each timestep.
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In the bottom panel of Figure 9, we again see good
agreement between the black, blue, and orange curves prior to
saturation. The expression [ ]á ñPxx

rot encompasses a larger range
than [ ]á ñPee

rot . Unlike the electron flavor, here the blue and
orange curves show the best agreement for the x flavor,
indicating that the FLASH simulation captures the first two
moments of ñxx in accordance with EMU over a large timespan.
Furthermore, regardless of the flavor, the orange and blue
curves agree closely with the black curve in the growth phase.
Although we use a flavor-traced Eddington factor in FLASH,
the first two moments remain accurate in that linear phase.

5.2.3. Fourier Space Analysis

Figure 10 gives the DFTs for the three NSM points at 0.1 ns
before saturation, roughly corresponding to the second panel in
Figure 8. Because the growth rates are different for the second
(third) points, we pick a time before saturation of 0.5 ns
(0.15 ns) for FLASH, and 0.1 ns (0.05 ns) for EMU, all of which
allow us to most clearly capture the fastest growing mode
before it begins to nonlinearly couple to other modes. For the
first NSM point, we find ∣ ∣ = -k 6.4 cmmax

1, corresponding to a
wavelength of 1.0 cm and matching the distance between
planar structures in the second panel of Figure 8 (domain
size L∼ 8 cm).

Similar to the results of Section 5.1, the DFTs from the FLASH
simulations show the fastest growing modes with smaller
wavelengths, higher noise floors, and visible harmonics for all
three simulation points. The EMU simulations were run with a
larger grid cell size to most optimally resolve the larger unstable
wavelengths, resulting in a DFT that is cut off at smaller
maximum k. Despite the differences between the FLASH and
EMU calculations, we emphasize that all of the FLASH
simulations once again reflect characteristic FFI behavior with
discernible peaks with reasonable values of the fastest grow-
ing mode.
To summarize, Table 4 gives numerical results of FFC to

compare between FLASH and the two-flavor EMU calculations for
the three NSM simulations. The results in Table 4 are presented in
the same way as Table 3. Like the Fiducial, 90°, and TwoThirds
tests, the FLASH calculations for the three NSM points have
larger values of ( )WIm and ∣ ∣k max compared to EMU, but still
exhibit reasonable behavior characteristic of the FFI.

6. Conclusions

Core collapse supernovae and merging neutron stars are
complex systems that require the melding of many different
physics aspects including magnetohydrodynamics, general
relativity, equation of state physics, and neutrino physics.
When neutrino moment methods are used currently in large-

Figure 10. The magnitude of the discrete Fourier transform of Nex in the three NSM simulations plotted against wavenumber. DFTs are at a time prior to saturation.
For NSM 1, both FLASH and EMU DFTs are 0.1 ns before saturation. For NSM 2, the DFT for FLASH occurs 0.5 ns before saturation and 0.1 ns for EMU. For NSM 3,
the DFT for FLASH occurs 0.15 ns before saturation and 0.05 ns for EMU.

Table 4
Results for FLASH and EMU (2f) Calculations for the Three 3D NSM Simulations

Name ∣ ∣ ( ) ∣á ñ =N N 0ex ee t tsat 〈|Nex(tdec)|〉/〈|Nex(tsat)|〉 〈Nee/Nee(0)〉|t→∞ ( )WIm ∣ ∣k max
(1010 s−1) (cm−1)

NSM 1
FLASH 0.158 0.0766 0.643 8.1 6.4(4)
EMU (2f) 0.178 0.306 0.743 5.6 4.8(4)
NSM 2
FLASH 0.0845 0.0395 0.837 5.2 6.1(4)
EMU (2f) 0.0640 0.413 0.960 1.1 3.8(4)
NSM 3
FLASH 0.181 0.00707 0.609 10.7 13.0(5)
EMU (2f) 0.170 0.624 0.831 4.2 6.5(5)

Note. Column labels are the same as Table 3.
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scale simulations, they consist of classical neutrino physics and
typically employ two angular moments with a closure for each
neutrino species. In this work, we have extended the moment
method framework in the context of the FLASH code to take
into account neutrino flavor transformation in a two-moment
scheme with a quantum closure. While, at present, we have
tested the flavor transformation alone, the success of the
moment method in modeling many features of the fast flavor
instability lends confidence to incorporating it into large-scale
multi-physics simulations in the future.

We found that neutrino transformation behavior is well
captured in a number of test problems, including vacuum
oscillations, Mikheyev–Smirnov–Wolfenstein (MSW) reso-
nance, and bipolar oscillations. Additionally, we approximately
reproduced the results of three multidimensional PIC simula-
tions in the literature at a fraction of the computational cost. For
those tests, in the key metric of the final electron neutrino
number density, we find very good agreement among the first
two (∼1%) and more qualitative agreement with the last
(∼15%). Similarly, the two-moment simulations were able to
almost exactly match instability growth rates in the first two
although our moment method has somewhat faster growth in
the last. The moment method also shows fastest growing modes
that peak at a similar, but slightly higher, wavenumber than in
the PIC calculations. Further analysis is required to tease out
the details of the dispersion relation under the two-moment
approximation in regions of instability (Froustey et al. 2023)
and compare with numerical simulation.

We then performed multidimensional simulations of the FFI
in three separate neutrino angular distributions taken from a
full-scale classical simulation of an NSM. In key quantities, we
found similar levels of agreement as we found in the
TwoThirds test. Specific differences include a lower electron
neutrino number density at saturation with the moment method
than with EMU, and a faster growth rate with the moment
method. While we always found qualitative agreement, the
different methods naturally show the largest deviations when
the distribution is only marginally unstable. Quantitative
agreement is best with deep crossings and tends to worsen in
the case of shallow crossings. This shortcoming will be
important to improve upon in future advances of the algorithm,
since the rapid onset of the FFI is likely to drive ELN crossings
to remain shallow in astrophysical environments.

Our two-moment algorithm is based on an extension of the
classical MEC relevant to quantum neutrino transport
(Richers 2020). Figures 4 and 9 show that the classical MEC
by itself cannot fully characterize the underlying distribution,
and most certainly leads to discrepant results for the pressure
tensor on the order of a few percent. As the closure accounts for
missing physics from the unevolved higher-order moments, we
anticipate that future efforts to develop quantum closures will
improve the agreement between this two-moment method and
more exact methods. To go beyond the simple prescription
implemented here requires using all of the components of E
and F in a basis-independent way as suggested by J. Kneller
et al. (2024, in preparation).
Because of the small scales on which flavor transformation

occurs, our method is at present still too computationally
expensive to directly place in a full-scale CCSN or NSM
simulation. However, we anticipate that in the future, methods can
be developed to incorporate the very small-scale physics of flavor
transformations into large-scale simulations. Nevertheless, by

virtue of only following two moments, this method is substantially
computationally cheaper than exact methods that evolve neutrino
distributions along hundreds or thousands of directions. Given the
successes of capturing many features of the FFI in this work, we
believe that moment methods can complement the higher fidelity
methods such as PIC and multi-angle. For example, moment
methods could be useful in doing faster realistic calculations when
searching configuration space (Johns & Nagakura 2021), with
follow-up post-processing being done by PIC or multi-angle
codes. Machine learning is also a possibility, with moments being
used to train the algorithms (Abbar 2023).
Despite the caveats above, we find that our angular-moment

implementation of the QKEs reasonably and effectively
captures the complex and confounding phenomenon of
neutrino flavor transformation in conditions that are plausible
in the environments of CCSNe and binary NSMs. Specifically,
in anisotropic conditions where the angular neutrino distribu-
tions exhibit a lepton number crossing, the two moments of an
M1 transport scheme manifest the phases of fast flavor
conversion: exponential growth during unstable conditions;
peak saturation of the off-diagonal density matrix component;
rapid flavor oscillations of the diagonal components; and post-
saturation decoherence with subsequent freeze-out.
There are many possible extensions that one can make to the

work presented here. Improvements on the closure, the addition
of the collision matrix, and an extension to three flavors are a
few. Finally, while we have included advection in our
simulations, the inclusion of both advection and flavor mixing
in the context of a large-scale simulation will likely alter the
angular distributions of the neutrinos (Padilla-Gay et al. 2021;
Nagakura 2023). These improvements will widen the condi-
tions for which this method can be used and allow us to probe
other predicted phenomena, such as collisional instabilities,
bipolar oscillations, and matter-neutrino resonance transitions.
Including flavor transformation in 3D general-relativistic-

magnetohydrodynamics astrophysics simulations is a major
computational challenge for multi-messenger astrophysics
theory. Our moment-method flavor calculations offer a
contribution to this important field of study.
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Appendix A
1D Test Problems

To test the algorithms for simultaneous flavor transformation
and advection we implemented in FLASH, we have designed
and conducted three tests in 1D to quantify the numerical
accuracy and precision of the code. This appendix contains the
results of those tests, which we term Vacuum; MSW; and
Bipolar Oscillations. We compare to analytic solutions for the
vacuum and MSW tests and to an analytic prediction for the
period of the bipolar test.

A.1. Vacuum Oscillations

In this test problem, we consider only the vacuum potential
HV in the QKEs of Equations (24) and (25), but with a
transformation into spherical coordinates. Neutrinos and
antineutrinos are emitted isotropically from a point source at
the origin. The domain has an outer radius of 4 km. We use a
spherical geometry with an inner radius of r0= 100 m to avoid
dividing by zero errors at the origin, and assume the flux factors
at r0 are all unity as the neutrinos stream outward in the radial
direction. The number of grid points is 640, all evenly spaced
in radius. Initially, all cells have the same density of the four
particle species scaled by 1/r2. The flux factors are set to 1.0.
The energy densities of the off-diagonal species are set to zero.
We have set the outer boundary condition to an outflow, and
the inner boundary to that of an oven emitting n n n, , ,e e x and nx.
At time t= 0, we switch on the emission of neutrinos and
antineutrinos at a constant rate from a source located at r0
moving in the positive outward direction. The neutrinos are
99% the electron flavor and 1% x flavor; the antineutrinos are
90% the electron antineutrino flavor and 10% the x-antineutrino
flavor. For r< c t, the solution of the moment transport
equations is that
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where the function ( )P V
T is the flavor transition probability
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The parameter θ is the mixing angle, δm2 is the squared
neutrino mass difference, and p is the neutrino energy.
Analogous expressions to Equations (A1) and (A2) for the

theoretical antineutrino energy-density moments exist with an
identical transition probability ¯ ( ) ( )( ) ( )=P r P rV V

T T .
Figure 11 shows the results of this test at a time

t= 3.3× 10−5 s. We use a mixing angle θ= 0.28818, a mass-
squared difference δm2= 6.9× 10−4 eV2, and an energy
p= 1MeV. The top panel of the figure shows the flavor content
evolving with the familiar oscillatory pattern. We use the
shorthand notation of ¯ ¯ ºE Eee ee for the electron antineutrino
energy-density moment, and similarly for the ¯ ¯xx component. In
the lower panel, we plot the relative error of the numerical
solution compared to the analytic results in Equations (A1), (A2),
and the antineutrino analogs, namely

∣ ∣ ( )
( )

( )=
-Q Q

Q
Error , A4

th

th

for the relevant quantity Q. In addition to the errors in the
energy-density moments, we give the relative error in the Bloch
polarization vector for neutrinos, L, and antineutrinos, L . The
dominant source of the error arises from the finite grid spacing
in radius. We have verified that decreasing/increasing the
number of grid points increases/reduces the errors. The size of
the error scales inversely with the number of grid points. Notice
that the largest errors occur at small radii for Eee and Eee (and
consequently also for L and L ) at a level of a few parts in 103.
This error is due to numerical oscillations at small radii, which
are a result of the inner boundary condition in spherical
coordinates and not related to flavor transformation. Overall,

Figure 11. Results from the vacuum test of FLASH plotted against radial
coordinate. [Top] Diagonal density matrix components of the energy-density
moment (Eii) normalized by the trace of E. Barred components denote the
antineutrino counterparts, i.e., ¯ ¯ ºE Eee ee and are scaled by the trace of E .
Bottom: errors in various components. Green and black lines correspond to
difference between the calculated Eii and the theoretical predictions for
Equations (A1) and (A2) scaled by the trace of E. Antineutrino counterparts
follow from similar equations. Solid blue (dashed red) correspond to the
difference between the calculated length of the polarization vector and the
initial length of the polarization vector for neutrinos (antineutrinos) scaled by
the initial polarization vector length.

19

The Astrophysical Journal, 963:11 (24pp), 2024 March 1 Grohs et al.



the FLASH calculation is able to successfully reproduce the
analytic results to a precision better than ∼1%.

A.2. MSW Oscillations

Our second 1D test case is similar to the vacuum test case
described in the previous section. In addition to the vacuum
potential, we now add a constant matter density to observe
MSW oscillations (Bethe 1986; Haxton 1986). Our domain
ranges from the inner boundary at r0= 10 km to the outer
boundary at r= 20 km. We use 320 cells evenly spaced in the
radial coordinate. The evolution equations for this test can
actually be transformed such that the analytic solution to the
energy-density moments is the same as Equations (A1) and
(A2) with a different MSW transition probability
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where ρ is the matter density, Ye the electron fraction, and mu

the atomic mass unit. For antineutrinos ¯( )P M
T is calculated the

same as above but with the placement of a minus sign on the
electron fraction, Ye→− Ye. We can then compare this
solution to the FLASH calculation, which simply adds HM to
HV in Equations (24) and (25).
The results of this test case at t= 1.67× 10−4 s are shown in

Figure 12, where the panels have the same plotting conventions
as those in Figure 11. We use a matter density of

ρ= 8× 103 g cm−3 and an electron fraction Ye= 0.5. The
familiar oscillatory evolution of the neutrinos and antineutrinos
as a function of distance is apparent. The difference in period
between the neutrinos and antineutrinos is due to the
replacement of Ye by −Ye in Equation (A8). The errors for
this MSW test case are of a similar order of magnitude as the
vacuum case.

A.3. Bipolar Oscillations

Our final test case is a study of bipolar neutrino oscillations.
This system isolates and tests the numerical convergence in our
flavor-mixing subroutines by obviating the advection pro-
cesses. When using negative energy eigenvalues for the
antineutrino density matrices, systems that are represented by
two nearly oppositely directed flavor polarization vectors are
termed bipolar systems (Duan et al. 2010). As they evolve, the
neutrino polarization vector nearly flips in direction, while the
antineutrino polarization vector exhibits the same behavior but
π radians out of phase. In our treatment, we use positive energy
eigenvalues for the antineutrinos in Equation (8), and so we
begin with aligned flavor polarization vectors to study the
bipolar behavior. As a result, we would expect bipolar
oscillations in phase between the neutrinos and antineutrinos.
We study a simple case where the system is homogeneous and
monochromatic. Only the HV and Hν terms are included in the
Hamiltonian for Equations (24) and (26). The flux moments are
all zero. We pick δm2/p such that the period of vacuum
oscillations is 2π s, and take a small vacuum mixing angle
θ= 0.01. The energy density is picked such that the strength of
self-interactions is 10 rad s−1.
Figure 13 shows the results of our bipolar test for neutrinos;

the antineutrinos evolve in the same manner. The various color
curves label the individual components of the energy-density
matrix. Initially the neutrinos are completely in x-flavor
eigenstates. They subsequently flip to a state which is ∼95%
electron flavor, before reverting back to the initial state. This
pattern repeats indefinitely as the system is always unstable.
Vertical dashed black lines give predictions for the locations in
time of the period of oscillations in Exx, centered on the first
peak of the Eee curve. We use a closed-form expression

Figure 12. Results from the MSW test of FLASH plotted against radial
coordinate. Notation for both panels is the same as Figure 11. Error for the Eii

components corresponds to the difference between the calculated Eii and the
theoretical predictions using the transition probability in Equation (A5) for
neutrinos, and a similar expression for antineutrinos.

Figure 13. Results from the bipolar test of FLASH plotted against time. Only
density matrix components for neutrinos are shown. We include vertical dashed
black lines to indicate the period of the oscillations based on the analytical
result of Hannestad et al. (2006).
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involving elliptic integrals to predict the period of oscillation in
the unstable bipolar system. Note that the period for the flavor
off-diagonal components, ( )ERe ex and ( )EIm ex have double the
period as the diagonal components. There exists a slight
decrease in the period of the FLASH results, which becomes
more apparent as time continues. At the first full period near
t∼ 4.1 s, the relative difference in expected versus calculated
time is 1.7× 10−3. At the second full period, near t∼ 6.8 s, the
drift is 2.1× 10−3. Both of these drift values are within the size
of the timestep.

We compare this calculation using the FLASH architecture to
a more direct and straightforward resolution of the equation of
motion,10 based on the study of Hannestad et al. (2006). Using
the solve_ivp function from the Scipy library with high-
precision parameters (rtol= atol= 10−8), we solve
Equation (12) from Hannestad et al. (2006) for the tilt angle
j. We can solve for the trace-normalized value of Eee by taking
the tilt angle and solving for the Bloch polarization vector [see
Equations (6) and (8) of Hannestad et al. (2006)].11 Figure 14
gives the absolute (top panel) and relative (bottom panel) errors
between FLASH and the Scipy function solve_ivp for the
quantity [ ]E ETree . The relative error is the same expression as
Equation (A4), but we substitute the results from solve_ivp
for Q(th). The absolute error is the numerator of the rhs of
Equation (A4). We see an overall growth in the peak absolute
error with increasing cycle number, consistently with the drift

in the period of oscillations. Both the absolute and relative
errors are the result of numerical convergence in our RKCK
solver. We have verified that these errors scale linearly with the
tolerance criterion of the RKCK algorithm.

Appendix B
Moments in an Orthonormal Tetrad

In order to perform simulations of realistic neutrino
distributions in a small domain using codes that assume a
Minkowski metric, we need to transform the radiation field
quantities output by SpEC-Hydro into an orthonormal tetrad
comoving with the background fluid. The radiation field is
given in terms of the lab-frame energy density ( )nE a , energy flux

( )nFi a , the average neutrino energy ( )n a , and the fluid transport
velocity v i at each point in space and for each neutrino flavor a.
The spacetime metric is given in standard 3+ 1 quantities: the
lapse α, shift β i, and three-metric γij. This is a common
procedure within general-relativistic truncated moment simula-
tion codes (Shibata et al. 2011; Foucart et al. 2016b; Kuroda
et al. 2016), but we make the procedure explicit here for
completeness. Note that, in the main text, we revert to the more
conventional symbols E and F to indicate tetrad quantities, but
they refer to the lab-frame quantities in this appendix for
consistency with Shibata et al. (2011).
The radiation stress-energy tensor can be defined in either

the lab or comoving frames as (Shibata et al. 2011)

[ ]
[ ] ( )

= + + +
= + + +

mn m n m n m n mn

m n m n m n mn
T En n F n n F P

Ju u H u u H S
lab
comoving . B1

To get the moments in the comoving frame, we evaluate the
full stress-energy tensor and project onto suitably chosen tetrad
basis vectors. This is made more complicated by the fact that
the pressure tensor needs to be expressed as a linear
combination of the optically thick and thin limits according
to the two-moment closure.
The index on the shift vector can be lowered with the three-

metric (βi= β jγij). The vector that is normal to the hypersur-
face of constant time t can be constructed as nμ= α(−1, 0, 0,
0). The transport velocity is defined in terms of the four-
velocity as  =v u ui i t, where W= αu t is the generalized
Lorentz factor. From these, it is straightforward to construct the
fluid four-velocity uα and the three-velocity v i= u i/W+ β i/α.
The optically thin pressure tensor is straightforwardly defined

as ( )=P E F F F Fij k
k

i j
thin , where contractions are naturally

evaluated using the lab-frame three-metric γij. Obtaining Pijthick
is more involved, but can be determined analytically as follows.
It is straightforward to write the optically thick pressure tensor in
the lab frame as =S Jh 3ij ij

thick , where h ij= g ij+ u iu j is the
comoving-frame three metric. By contracting Equation (B1) with
various combinations of uα and nα, one can work out that the
comoving-frame radiation energy density is (i.e., starting with
Equation (87) in Foucart et al. (2016b))
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Plugging in S ij from above, this in turn yields the comoving-
frame energy density in the optically thick limit:
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Figure 14. Relative and absolute errors for Eee(t) between the FLASH
calculation and a direct numerical resolution of Equation (12) in Hannestad
et al. (2006).

10 For the interested reader: Xiong et al. (2023d) gives an analytical
formulation of the curves in Figure 13.
11 Since we consider a normal hierarchy scenario with an initial system of x
(anti)neutrinos instead of electronic ones, there are some minor changes to the
equations in Hannestad et al. (2006). Borrowing their notations:
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with here μ/ω = 10 and θ0 = 0.01.
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Similarly,
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Finally, these can be used to calculate the pressure tensor in the
optically thick limit as
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By plugging E, Fi, and Pij [from Equation (36)] into Equation (B1),
we now have the complete stress-energy tensor Tμν.

For a comoving orthonormal tetrad, the time-like basis vector
is the four-velocity (ˆ =m mt u ). We then choose a spacelike trial
vector (0, 1, 0, 0) (and similarly for the y and z trial vectors) and
apply Gram-Schmidt orthonormalization to get the spacelike
basis vectors ( )

mx
i . The moments in the orthonormal tetrad are then

ˆ ˆ ( )= mn
m nJ T t t , B6tet

ˆ ˆ ( )( )= mn
m nH T t x . B7i i

tet

From this point forward, we do not have to think about
spacetime curvature, as at each location, spacetime is locally flat.
Specifically, the moments can now be used more intuitively. For

example, the flux factor is simply ( )= åf H Ji
i
tet

2
tet.

Appendix C
Differences in the Initial Conditions between FLASH

and EMU

We must specify the initial conditions for all six of our test
and NSM simulations shown in Section 5 across the entire
domain. Tables 1 and 2 give the electron and x-flavor number

densities and flux factors for the three tests and NSM points,
respectively. For the off-diagonal coherence terms, we use
random numbers per the procedure outlined in Section 4.3. As
a result of the randomization process, the complex valued ñex
terms add coherently, which acts to reduce the domain-
averaged values of the initial perturbation in 〈|Nex|〉 for the EMU
simulations. The first column of Table 5 gives 〈|Nex|/Nee〉 at
the start of all six simulations for FLASH and EMU (2f).
Starting from smaller initial values, the EMU simulations will

undergo different time evolution as compared to the FLASH
simulations. We give the evolution of 〈Nee〉 and 〈Nex〉 for the

Table 5
Initial Values of Domain-averaged Off-diagonal Magnitude of N and
Saturation Times for All Six FLASH and EMU (2f) FFC Simulations

Name 〈|Nex|/Nee〉|t=0

tsat
(10−9 s)

Fiducial
FLASH 7.65 × 10−7 0.257
EMU (2f) 9.85 × 10−9 0.365
90Degree
FLASH 7.65 × 10−7 0.346
EMU (2f) 9.85 × 10−9 0.511
TwoThirds
FLASH 7.65 × 10−7 0.859
EMU (2f) 8.53 × 10−9 1.73
NSM 1
FLASH 7.65 × 10−7 0.202
EMU (2f) 1.19 × 10−8 0.348
NSM 2
FLASH 7.65 × 10−7 0.380
EMU (2f) 6.19 × 10−9 1.86
NSM 3
FLASH 7.65 × 10−7 0.184
EMU (2f) 1.42 × 10−8 0.491

Figure 15. Density matrix elements versus time for the three tests in Section 5.1. Figure content is the same as Figure 2 except all curves begin at simulation
time t = 0.
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three tests of Section 5.1 (Figure 15) and the three NSM points
of Section 5.2 (Figure 16). The content in Figures 15 and 16 is
the same as Figures 2 and 7, respectively, except for the
definition of the horizontal axis, where we use simulation time
for the figures in this appendix. The smaller initial perturbations
of Nex coupled with the smaller growth rates for EMU lead to
later saturation points. The second column of Table 5 gives the
saturation times for all six simulations.
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