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Federated generalized scalar-on-tensor regression

Elif Konyar ® and Mostafa Reisi Gahrooei

Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida

ABSTRACT

Complex systems are generating more and more high-dimensional data for which tensor
analysis showed promising results by capturing complex correlation structures of data. Such
data is often distributed among various sites creating challenges for developing data-driven
models. Specifically, data privacy and security concerns have been exacerbated in recent
years and drove the demand to store and analyze data at the edge of networks rather than
sharing it with a centralized server. Federated learning frameworks have been introduced as
a solution to these concerns. These frameworks allow local clients to learn local models and
collaborate with others to develop a more generalizable aggregated model while handling
data privacy issues. In this article, we propose a federated generalized scalar-on-tensor
regression framework where multiple local tensor models are learned at the edge, and their
parameters are shared with and updated by an aggregator. Experiments on synthetic data
sets and two real-world data sets from agriculture and manufacturing domains show the
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superiority of our approach over several benchmarks.

1. Introduction

Modern complex systems are equipped with numer-
ous sensors, generating data in various forms such as
waveform signals, images, and videos. Such data is
often high-dimensional (HD) with complex structures
that cannot be adequately represented by vectors. Due
to the capability of tensors in preserving the structure
and capturing the between and within-correlation
structures of HD data, methods that use tensors for
data representation have become popular (Zhou, Li,
and Zhu 2013; Hoff 2015; Yu and Liu 2016; Fang,
Paynabar, and Gebraeel 2019). For instance, scalar-on-
tensor regression (SoTR) methods are developed to
predict a scalar given an input tensor (Zhou, Li, and
Zhu 2013; Guhaniyogi, Qamar, and Dunson 2017;
Fang, Paynabar, and Gebraeel 2019; He and Zhang
2020). These tensor regression methods gained a sig-
nificant traction in various applications, including
healthcare (Zhou, Li, and Zhu 2013;
Reimherr 2017), manufacturing (Fang, Paynabar, and
Gebraeel 2019; Yan, Paynabar, and Pacella 2019;
Gahrooei et al. 2021), and agriculture (Ogden et al.
2002; Li et al. 2020a) systems, where high dimensional
data is common. For example, in agriculture, SoTR

Fan and

may be used to predict the health condition (e.g.,

healthy or not) of plants through imaging data col-
lected by unmanned aerial vehicles (UAVs) equipped
with hyperspectral cameras (Abdulridha et al. 2020).
In another example, SOTR can be used in the detec-
tion of faulty vehicle engines using multichannel pro-
files that are generated by several sensors in engines
and represented by tensors (Pacella 2018; Gahrooei
et al. 2021). The main challenge of tensor models is
that the number of parameters to be estimated is gen-
erally significantly larger than the sample size. To
overcome this challenge, tensor decomposition techni-
ques such as rank-R decomposition are incorporated
into tensor regression models (Zhou, Li, and Zhu
2013; Lock 2018; Gahrooei et al. 2021).

In addition, complex systems are often decentral-
ized. Therefore, the HD data they generate is generally
distributed over multiple local sites, each with a small
sample size. In the previously mentioned agriculture
example, the hyperspectral images may be collected at
multiple fields with potentially slightly different wea-
ther and soil conditions. Or, in the engine fault detec-
tion example, multiple factories may be involved in
data collection for fault detection modeling.
Unfortunately, often each local site creates a model in
silo (at each local site) based on the data obtained
from that site, ignoring the data generated in other
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similar locations. This lack of collaboration results in
models with limited generalization power. A potential
solution to address this challenge is that each local
site shares its local data with a server (e.g., cloud),
which will construct potentially more accurate global
models due to its access to the shared data. However,
this framework creates huge communication and stor-
age costs, makes the network susceptible to possible
adversary attacks during communication of raw data,
and leads to data privacy concerns since raw data may
contain sensitive information that data owners are
unwilling to share (McMahan et al. 2017; Yang et al.
2019; Li et al. 2020c). Therefore, there is a need to
develop generalizable models for distributed HD data.
The underlying question of this article is how local
sites can collaborate with each other such that they
benefit from HD data generated, stored, and processed
in other sites without sharing their data. In an attempt
to address this question, this article develops a feder-
ated scalar-on-tensor regression framework.

The idea of federated learning goes back to priv-
acy-preserving methodologies (Du, Han, and Chen
2004). However, the term “federated learning” initi-
ated with Federated Averaging (FedAvg) algorithm,
which is an iterative stochastic gradient descent (SGD)
based approach (McMahan et al. 2017). In this frame-
work, each local client (site) stores local data, applies
SGD to update its local model, and shares the gradi-
ent updates with a central server. This system is coor-
dinated by a central server, which aggregates local
gradients and sends the global update back to the
local clients. These local and global update stages con-
tinue sequentially until global updates converge. This
algorithm serves as the basis for many other federated
learning studies (Kontar et al. 2021).

One of the main challenges in federated learning is
that data sets stored in local sites are often statistically
heterogeneous (i.e., they are not identically distrib-
uted). Therefore, aggregating local models from those
sites may construct an aggregated model with reduced
performance compared to models trained locally (Li
et al. 2018) due to potentially negative transfer of
information. Furthermore, the statistically heteroge-
neous characteristic may negatively affect the conver-
gence of the aggregated model (Li et al. 2018). Some
existing studies address the statistical heterogeneity by
incorporating regularization on the parameter set in
the local objective functions to improve generalization.
One example is FedProx algorithm (Li et al. 2018)
that adds a quadratic regularizer term to local objec-
tives. Similarly, FedDyn (Acar et al. 2021) incorpo-
rates a dynamic regularizer into the local empirical

risk functions, and SCAFFOLD (Karimireddy et al.
2020) tackles statistical heterogeneity, termed as cli-
ent-drifts, by adding control variates to the local
objective functions. In addition, some studies deal
with statistical heterogeneity in terms of fairness to
achieve more uniform solutions across local clients (Li
et al. 2020b, 2021; Yue, Nouiehed, and Kontar 2021;
Pillutla et al. 2022). For instance, Ditto regularizes
local models such that they are close to a global
model by jointly solving local and global models to
achieve fairness and personalization (Li et al. 2021).
Moreover, Pillutla et al. (2022) propose a partial per-
sonalization scheme to improve fairness, and Yue,
Nouiehed, and Kontar (2021) designed GIFAIR-FL
that weights local objective functions dynamically to
attain a fair solution. The aforementioned frameworks
are focused on generic optimization problems mostly
suitable for models under low-dimensional settings
such as logistic regression with the objective of achiev-
ing a reasonable aggregated model. Unfortunately,
these studies do not consider high-dimensional set-
tings, particularly when tensor data is available.

A handful of federated tensor modeling techniques
have recently been introduced. For instance, Kim et al.
(2017) propose a federated tensor factorization approach
for computational phenotyping which preserves patient-
level data privacy. Moreover, Ma et al. (2019) introduce
a privacy-preserving tensor factorization approach that
incorporates collaborative learning using heterogeneous
electronic health records. Furthermore, Gao et al. (2021)
propose a Tucker decomposition-based federated tensor
decomposition approach for feature extraction.
Nevertheless, the focus of these studies is on unsuper-
vised tensor decomposition and therefore, are not suit-
able for tensor regression problems.

In this article, we propose a federated generalized
scalar-on-tensor (FGSoT) regression framework where
the input is a tensor and the output is a scalar. In this
framework, multiple local sites collaborate in construct-
ing an aggregated tensor model. In doing so, each site
trains a tensor regression model at the edge and shares
the model parameters with a central server. Then, the
central server aggregates the shared parameters and
broadcasts aggregated parameters back to each local
site. These two steps continue sequentially, as it is illus-
trated in Figure 1. We estimate model parameters by
minimizing novel local and global objective functions.
To deal with the statistical heterogeneity of local data,
we incorporate proximity regularization terms to con-
trol the deviation of local parameters from the global
parameters. We further personalize local models by
incorporating group lasso penalties on model
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Figure 1. An overview of a federated network for tensor data.

parameters. Finally, to address the high-dimensionality
of the problem and following the original SoTR (Zhou,
Li, and Zhu 2013), we impose rank-R decomposition
on the tensor of model parameters.

The rest of the article is organized as follows: In
Section 2, we introduce our notation and review relevant
tensor algebra. In Section 3, we review the generalized
scalar-on-tensor regression framework. Next, we
describe the proposed methodology in detail and discuss
model parameter estimation algorithms in Section 4. In
Section 5, we evaluate the performance of the proposed
method with three different simulation scenarios. In
Section 6, we explain two case studies and validate the
performance of the proposed approach using real data
sets related to agriculture and manufacturing applica-
tions. In Section 7, we provide our discussion on the
proposed framework. Lastly, we conclude in Section 8.

2. Preliminaries and tensor notation

In this section, we introduce our notation and review
some tensor algebra concepts (Kolda and Bader 2009).
We use lowercase letter for scalars, e.g., x, bold lower-
case letters for vectors, e.g., x, bold capital letters for
matrices, e.g., X, and capital calligraphic letters for ten-
sors, e.g., X. For example, we denote an order-n tensor
by X € R'2-*In where the dimensions of each mode
iis I; (i = 1, ..., n). Furthermore, the mode-j matriciza-
tion of a tensor X, denoted by X(j) e R*DhDoidivedn
is a matrix whose columns are mode-j fibers (tensor
subarrays with all but the j* index fixed) of X.
Moreover, the trace of a matrix X is denoted as Tr(X).
X ®Y € R¥™ stands for Kronecker product of two
matrices, X € R**! and Y € R"™", and is obtained by:

XHY xUY
X®QY=

XY xuY

(Elyil&i]) =
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Furthermore, if I=n, then Khatri-Rao product of
X and Y is obtained by columnwise Kronecker prod-
ucts as XOY = [x; ®y,..x @y, € R¥!. Besides,
outer product of n  vectors, Xj,...X;X; € RE
(i=1,..,n) is a tensor in RM"*E->*I " and is denoted as
X] 0 X, 0 ... 0 X,. Each element of the outer product is cal-
culated as (x;0Xy0...0%,); ;. = [[t_; %kj,» where
Xj, is the jf(h element of xk In addition, the
inner product of two tensors, X, ) € RIXExIn g caleu-
lated as < > Zzl—l le 1 Zz,,—l Kiyiywiy Viyiy---in>
where x;,;,..;, is an element (iy, i, ..., i) of X.

Lastly, we explain rank-R decomposition, also
known as CANDECOMP/PARAFAC (CP) decompos-

ition. CP decomposes a tensor, X € RI>XIn a9 X =
Zle xﬁ” 0..0 x§f>, where xl(r) eRli, (i=1,..,n).

Alternatively, we represent this decomposition as X =
[X1,...X,]] where X;€R"™R is a factor matrix
whose columns are x” (r = 1,..., R).

3. Review of generalized scalar-on-tensor
regression

In this section, we review the generalized scalar-on-
tensor (GSoT) regression framework proposed by
Zhou, Li, and Zhu (2013). Assume we have a scalar
target, y, (i=1,...,N), and associated with that, an
input tensor, X;€ ROl Agsume, given the
input, y; follows an exponential family distribution
with canonical parameters 0; and dispersion parameter
¢, ies yilXi~ [y 05 §) = exp (U5 + (0 9)),
where b(.),a(.) and ¢(.) are dlstrlbutlon specific
known functions. Then, the GSoT regression defines a
generalized linear tensor model (GLM) as follows:
u—+ <Bo, X1> + e;, where B, € RExLexln
is the true parameter tensor, and e; is independent
and identically distributed random noise with zero
mean and constant variance. One solution to estimat-
ing the model parameters given a set of training data
is obtained by vectorizing the parameter and input
tensors, and solving the GLM model using available
vector-based methods. However, the huge number of
parameters (1 + []7.,I;) may lead to an overfitting
problem. To address this challenge, Zhou, Li, and Zhu
(2013) proposed imposing a rank-R decomposition
constraint on the parameter tensor to reduce the
dimensionality. The solution to this problem is
obtained by maximizing the log-likelihood with
low-rankness constraint as follows:

ivi 0
max Zy )—i—Zc(y,, 1]

s.t. B= [[Ul,..., Um]]>
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where 0; = u+ (B, X;),U; € R"® is the factor matrix
associated with mode i, and R is the rank of tensor 8.
The low rank constraint reduces the number of
parameters to 1+ Y . I;. The alternating least
square (ALS) approach can be used to solve (1).

4, Federated generalized scalar-on-tensor
regression

In this section, we describe our proposed federated
generalized scalar-on-tensor regression framework.
Our method consists of local and global update stages.
The aggregator initiates the process by broadcasting
the model structure and the model rank to each site.
Next, in the local update stage, each site trains a gen-
eralized scalar-on-tensor regression model by mini-
mizing its own local objective function and shares the
model parameters with the aggregator. In the global
update stage, the aggregator constructs an aggregated
model by minimizing a global objective function. This
updating procedure is illustrated in Figure 1. Let us
assume T sites are collaborating in constructing mod-
els. Each site has access to a set of training data D, =
{yin X iJ}fil’ where N, is the sample size of the local
data in the " (r =1, ..., T) site.

4.1. Local update mechanism

We assume the data at each local site t follows an
exponential family distribution with canonical param-
eters 0, ; as follows:

)’i,t|Xi,t Nf()’i,t; Hi,ta ¢t)

. yi,tHi,t - b(ei,t)
- < a(y)

where y; ; is the scalar target of the i sample at local site ,
(i=1,..,N,t=1,..., T). Moreover, 0; ; = u, + (B, X; ;)
is the canonical parameter of an exponential family distri-
bution, B; € R"*2-*In jg the parameter tensor, X;; €
R *E-xIn s the input tensor (with m modes), and g, is
the intercept. Furthermore, b(.), a(.) and ¢(.) are distribu-
tion-specific known functions. In addition, it is known
that (0 ;) = E[yi+| X, ], where b'(.) is the first deriva-
tive of b(.), and E[.] is the expected value. While estimat-
ing the mean of y;;, we assume dispersion parameter,
¢, is constant. Since a(.) and ¢(.) depend on the disper-
sion parameter, we rewrite a simplified version of
the distribution suitable for the mean estimation
as yi | Xije ~ f(ir; 0i) = exp (3i,00;c — b(0;1))-

With these assumptions and given a training data,
each site trains a local tensor model by solving the
following minimization problem:

n c<yi,,,¢t>), 2]

N

min (p, B;) = Z (=yie(py + (Bi Xit))

1> By i—1

m

R:
o r
bt + (B X)) +N YD -l

d=1 r=1

m R .
S0 5
TN Dl = v+ N = O
d=1 r=1

(3]
where local parameters are ufif)t € R™ and p,, which are
the " column of the d”* factor matrix U, € R+*R
and the model intercept for site t, respectively.
Furthermore, v‘(;) eRY and (€R are the global
parameters estimated by the aggregator and are known
at this stage, and R; is the rank of B;. In this formula-
tion, we impose rank-R decomposition to address the
high dimensionality of the tensor of parameters. In the
rest of the article, when the context is clear, we will use
R instead of R, to represent the rank of a site.

The first term of the objective function in (3) mini-
mizes the negative log-likelihood of the training data.
The second term is the group lasso penalty for the per-
sonalization of the local models. To be more specific, in
GSoT regression models, one must choose the rank (R)
of the tensor of parameters, which is often done by mini-
mizing a criterion, such as the Bayesian Information
Criterion (BIC). However, in a federated setting, multiple
local sites are available, and each site trains its own tensor
regression model and may have to choose a different
rank from other sites. In that situation, aggregating local
models remains a challenge as it requires one specific
rank. To overcome this issue, one global rank is decided
by the aggregator, then each local site personalizes that
rank through the second term in the objective function
that uses 1 group sparsity-inducing penalties. Through
this term, local sites eliminate some redundant patterns
locally by setting some columns of Uy ; to zero vectors as
illustrated in Figure 2. Note that when no prior know-
ledge of the initial rank is available, the aggregator can
initialize it as a large value and allow it to decrease over
iterations until it converges. An example of the effect of
the initial rank and the convergence of the global rank is
provided in Figure 1 in Supplementary Results (Section
1). Finally, the third and fourth terms control the devia-
tions of local model parameters from global parameters.
These proximity regularization terms prevent the diver-
gence of local models from the aggregated model.
Furthermore, they allow the construction of models
between the fully aggregated and fully localized models.
Adding these terms is essential, especially when data in
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Figure 2. Rank selection mechanism. In factor matrices, gray shaded columns indicate zero vectors.

local sites are heterogeneous. Lastly, we impose a low
rank constraint on the local parameter tensor, B;.

To solve this problem, we propose using the alternat-
ing least square (ALS) algorithm with the Newton’s
search method which has a quadratic convergence prop-
erty. Note that other first/second order search methods
can also be applied (See Section 7 for more details).
First, we transform the inner product as (B;, X;;) =
Tr(ULXL @), Ka1), where Ky; =0, ;0. Ug; O
Us1,¢... © Uy ;. Furthermore, we denote W, ;=
[wg’lit, ...,wg,Rd), =X ), Ka o w ,(2, , € R We then let
gidt = Tr(UL z,d,t2 and gl(’dj =Tr (U( n' Wf;i’rz)
where U;,_p and Wl(_drt are obtained by removing r'" col-
umns of Uy ; and W, 4 ;. Given these equations and defi-
nitions, we convert our objective function in (3) into:

N;
Floul) =S (yieli + 855 +ul) wlh )

i=1
b+ gl +

+MZZ—I| up,

=1 r=1

)t_vd ||2

NI%

r=1

(). [4]

(r)

As the first step, we minimize (4) for u oy
d=1,...,m;r=1,..,R). We fix the rema1n1ng param-
eters iy {Ua,i}y_y gz and {ud t}r, Lt and we
apply the Newton’s search method. Given that u 7é 0,
we update ug))t with *ud’)t = u;’)t Y H(u;’)t) G(ug )t)
where G(.) is the gradient, H(.) is the Hessian matrix,
and v is the step size. The gradient and the Hessian
matrix can be found in AF?endlx A. On the other hand
1f||NZ ( fi)ty” ,dtb/ ,“t"‘g,dt))‘i“pvd I, <
“‘ holds, then u g =0 which means the corresponding
column of Uy, becomes zero vector. Hence, this condi-
tion serves as rank selection for local models. Note that

5
+Nt§(.“t -

when one u;)t in a factor matrix becomes zero, then the

vectors in the " column of other factor matrices are
equated to zero, i.e., uﬁl = ugr)t = )t =0. We
repeat thls procedure until convergence, i.e., when
either ||, u' " t —ul o t||2 becomes less than a threshold, or
the maximum number of iterations is reached. To select
7, we employ the backtracking line search method. After
updating u d)t with this procedure, we repeat these steps
for the remaining modes and factors for each .

Next, we minimize (4) for the model intercept, u;
and employ the Newton s search method by following
a similar idea with u' d r update. The details of the
update procedure are provided in Appendix A.

4.2. Global update mechanism

In this step, local model parameters are collected from
local sites and aggregated globally. To aggregate local
parameters, the aggregator solves

mrant (& vd (5]

()

QVd

where f;(.) is the local objective function (4) for t. This
function is a mixture of local objective functions. First,

we solve (5) forv;r) (d=1,..,m;r =1,...,R) and obtain

T

. Niu
a closed-form solution as vf;) = @ Second, we
Zr 1N‘
Zr 1 Nepy
Zt 1Nt

and { are weighted averages of the corre-

sponding local parameters u((if)t

solve (5) for {, and we obtain { = . Thus, global

parameters V‘(;)

and p,. Figure 3 illus-
trates and Algorithm 1 summarizes our framework.

4.3. Identifiability

In tensor models, two main sources of nonidentifiability
are scaling and permutation indeterminacy (Zhou, Li, and
Zhu 2013). Note that the objective function (4) is convex
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Figure 3. Overview of federated generalized scalar-on-tensor
(FGSoT) regression.

(r)

with respect to u dr)t given u, (and vice versa) in each esti-
mation step. Hence, the solution to the minimization of
(4) is unique, which addresses the scaling indeterminacy
problem. The second source of nonidentifiability is the
permutation indeterminacy: By = [[Uy, s ..., Up (] =
[[Uy, L, ..., U, I1]] where IT is a R-by-R permutation
matrix. To solve the permutation indeterminacy of the
tensor parametrization with , ; norm penalty, we con-
sider a permutation rule, I1, that rearranges the nonzero
elements of the first row of Ud, (1e u' #0) in
descending order such that Um h1 > Unzmst1 > >
Ugf, :yl) and leaves the zero elements at the end of the
ordering. Here, y is the number of zero elements. After
each local update stage for each site t, we employ this rule
to permute the factor matrices. The details about the iden-

tifiability can be found in Appendix B.

Algorithm 1: Federated Generalized Scalar-on-Tensor
(FGSoT) Regression
Input: V: initial ¥, dy: initial o
Data: {{y; 1, Xi (1 Fresines © target vectors and input
tensors
1fort=1,..,T do
2 Set w = O 0:=0, and solve problem (3) for
initial {u] d Z}Vd . and
3 end
4 Set Y := 1, and 0 := Jy
5 while convergence criterion not met do
6  Solve (5) for global parameters, {v p }Vd . and
{, and send them to sites

7 fort=1,...,T do

8 Solve (3) to update {ut(if)t}w’r, 4, and send
them to the aggregator

9 end

10 end

Output: {Vg)}w,,, G {ug)t}v(i,r,t’{#t}vr

4.4. Computational and space complexity

In this section, we study the computational and space
complexities of the proposed method. Let us start
with the computat10na1 comFlex1ty of the global
update. Denote V; = vd ,..»V,; |. The complexity of
computing Vg is O(RT Y 3 I;+R(T—1)> 0 I +
RY W, 1s+T), which reduces to O(RT> 7}, Ii).
The complexity of computing { is O(T + T + 1),
which reduces to O(T). Thus, the computational com-
plexity of the global update step is O(RT >/} | I;).

In the local step, the complexity of computing K; ; =
Um,t ®© ...Ud+1,t © Udfl)t... © Ul,t is O(RH;’;l’#dI,-).
The complexity to compute W; g4, = X @), Ky, is

O(RIT! |I;). The complexity of calculating G(ugl ,) is
O(N,((R = 1)’I; + RII™I,)). Furthermore, computing
H(ufif)t) requires O(Nt((R —1)’I; + RO™ I; + 212))

steps. The inverse calculation of H (u((ift) € Ri*l with
standard Gauss-Jordan elimination requires O(I}) steps.
This can be reduced to O(3I3) with Cholesky decom-
position for I; > 1. Therefore, the complexity of single
Newton’s step is O(N;((R — 1)*I + RII™ I, + 212) +

1I3). Assume we perform n dr , steps to update u dr , for
51te t. Then, the complex1t¥ of local update for a smgle
site, £, is O3~ S 1nd )*I; + RIT" |
2I7) +313)). Note that the Newton s search method is
not integral to the proposed method. Depending on the
dimensionality of the model, other methods such as the
quasi-Newton method might give better computational
complexity (See Section 7 for more details).

Note that we are not sending the tensor B to the
central server. Instead, we share the factor matrices,
U, (d=1,...,m), with the central server. Let us look
at the space complexity of the transferred data to
quantify how much data is transferred per iteration.
The space complexity of decomposed B with rank-R
decomposition is O(RY /., I;). Transferring B rather
than the factor matrices would require O(IT} 1;)
space. Therefore, using decomposition techniques
such as rank-R decomposition reduces the data trans-
fer and the space requirements substantially.

4.5. Selection of tuning parameters

Our proposed approach involves the selection of a few
hyperparameters: ¥, J, and {oct}thl. We set }y and o
based on a sensitivity analysis as described in Section
5.2. To select oy, (t = 1,...,T), which is the parameter
associated with the group lasso penalty, we employ
the Bayesian Information Criterion (BIC). Bayesian



Information Criterion (BIC) is commonly used for
model selection in tensor analysis (Zhou, Li, and Zhu
2013; Fang, Paynabar, and Gebraeel 2019; Roy and
Michailidis 2022). Especially, Zhou, Li, and Zhu
(2013) showed the efficacy of BIC for rank selection
in scalar-on-tensor regression models with rank-R
decomposition. The BIC is calculated as —2I(o;) +
log(N;)p, where —I(.) is the loss in (4) and N; is the
number of samples in site t. Also, p denotes the effect-
ive number of parameters, which is computed as p =
R(I, + L) — R*>, when m=2,and as p=R(>_, Is —
m + 1), when m>2. The terms —R? and R(—m + 1)
are included to adjust the number of parameters for
scaling indeterminacy for rank-R decomposition as
discussed in (Zhou, Li, and Zhu 2013).

4.6. Implementation details

We adopt the termination criteria of FedProx (Li et al.
2018) to design the termination mechanisms for FGSoT,
which include convergence check, divergence check,
and the number of iterations check. The update proced-
ure contlnues until one of these conditions holds: (i)
1) — k= ‘ <€ where [0 is the average log-likeli-
ood over all sites at k™ round (convergence check), (ii)
10 — Jk=2) > ¢ (divergence check), or (iii) the max-
imum number of iterations, K, is reached. The parame-
ters € and K, are user-specified and can be determined
based on the user’s computational resources. The
parameters of the divergence check, T and z, are set
based on the approach in (Li et al. 2018). Note that we
assume local sites share the log-likelihood information
(computed in (4)) as well as the model parameters.

5. Performance evaluation using simulation

This section evaluates the performance of the proposed
method by using several simulated data sets. In these
simulation studies, we seek to answer the following two
questions: First, How well does an aggregated model,
constructed by the collaboration of multiple sites, per-
form when applied to (i) test data in the sites involved in
the collaboration and to (ii) data in new sites which did
not participate in collaboration? Second, How does the
performance of the aggregated model change when statis-
tical heterogeneity exists in data?

5.1. Data generation

For each local site t, we generate {(y; , X )}~ where
vi+ € R is the target and X;; € RIxExE ¢ an input
tensor. The underlying data generation model is:
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yvie =1 if n(B;, X;;) > 0.5 and 0 otherwise, where
(B, Xit) = m, e; is independent and iden-
tically distributed random noise which follows
N(0,02), and k is a multiplier to scale (B, X; ).

Generation of X;;: To generate an input data,
X, we simulate a vector, x;; € RAEL | from a multi-
variate normal distribution, x;; ~ A (h, X). Following
the idea proposed in (Li et al. 2018), we simulate h,
for each site ¢t from a normal distribution with mean
zero and standard deviation of f,, ie, h;~
N(0, $%). Furthermore, we generate the (i,j)" entry
of the covariance matrix T as follows: %;; = pliJl.
After simulating x;,;, we reshape it to obtain X;,;. An
important remark is that f, is a measure of statistical
heterogeneity of data stored in local sites.

Generation of 53;: To simulate the model parame-
ters, B; € RI>E*5 for each site, we generate factor
matrices Uy, € R“*R where R is the rank of B,.
Specifically factor matrices have the following form:
Uy = Ug +Uj%. In other words, each factor
matrix has a global component and a site-specific
component, which serves as statistical heterogenelty
added to the local model. Each entry of Ug bl follows
standard normal distribution, N(0,1). The site-spe-
cific component is simulated element-wise from a
normal distribution, N/ (p,,aﬁ), where p, is the mean
corresponding to site ¢t and follows (0, ﬁjN )
Therefore, f3,y is a measure of statistical heterogen-
eity in local models. We alter ﬁyN x to change the level
of statistical heterogeneity in local models. We also
control the level of heterogeneity by deciding the
number of factor matrices with a site-specific compo-
nent. That is, we may include site-specific components
to all factor matrices or to my, of them. This
approach simulates the situations where heterogeneity
exists along a subset of modes of B;. To generate
homogeneous local models, we let U, = U‘gl()b“l for
all modes. The data generation procedure is illustrated
in Figure 4. In this figure, my,, = 2.

In all the simulation scenarios, we assume the same
level of heterogeneity exists in local data, ie., fy =
0.1. We test the effect of heterogeneity in models by
choosing my,, from {0,1,2,3}, and B, » from
{0.05,0.10,0.15,0.20,0.25}. Note that my,, = 0 means
that true models are homogeneous, and as my,, and
By~x increase, the level of heterogeneity increases.

5.2. Simulation specifications

We evaluate the performance of the proposed model,
FGSoT, using three different simulation studies. In
addition to FGSoT with proximity regularization, we
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Figure 4. Data generation procedure.
Local Sites Local Sites New Sites

evaluate the performance of the proposed approach
without this regularization, meaning that we do not
penalize the deviations between local and global
parameters (}y = 0 =0). This approach is denoted
as FGSoT — NR.

In the first simulation scenario, we consider the
situation where true local models show homogeneous
behavior, i.e., my,; = 0. In the second and third simu-
lation scenarios, we evaluate the performance of the
model under the statistical heterogeneity of underlying
models (my,, > 0). In Scenarios I and II, we divide
data in each local site into training and test sets. The
aggregator constructs an aggregated model by combin-
ing local models trained in local sites (FGSoT,, and
FGSoT — NR,g,). Local sites further personalize the
aggregated model by performing one more stage of
local updates (FGSoTp,r and FGSoT — NRy,;).
Benchmarks in this setting are local model, where
each local site learns its own model without any collab-
oration, and FGSoT — NR. Finally, we evaluate per-
formances of all methods on the test data of local sites.
In Scenario III, we further evaluate the performance of
FGSoT on new local sites which have not participated
in collaboration. In this scenario, we fine-tune local
models of new sites by initializing them with the aggre-
gated model (FGSoT; and FGSoT — NRg). In addition
to FGSoT — NR and the local model, we compare
FGSoT with centralized model, where we combine the
data of train sites and learn a single global model.
These scenarios are illustrated in Figure 5.

P
Aggregator ﬁ

Figure 5. Simulation scenarios (a) Scenarios | & I, (b) Scenario Il

Qe

In the simulations, we set € = 0.01, t1=2, z=10,
and K, = 100. Note that € and K, are the termination
criteria parameters that users can specify based on
their available computing resources. We determine the
values of 7 and z for the divergence criterion by fol-
lowing (Li et al. 2018).

We performed a sensitivity analysis to determine the
number of local iterations, K. Table 1 reports the effect
of the number of local iterations in each round in terms
of mean (and standard deviation) of test accuracy
under the heterogeneous model assumption (R=3,
o, = 0.5, ﬂyNX = 0.10 and my,; = 3). For instance, the
performance of FGSoT g, is 0.882 (0.045), 0.869 (0.047),
and 0.867 (0.056) when the number of local iterations
is 5, 10, and 25, respectively. Table 1 shows no signifi-
cant difference in the performance of the personalized
model, FGSoT,.,, when the number of local iterations
changes from 5 to 25. Furthermore, the site-level per-
formance comparison for different K; values is provided
in Table 1 in Supplementary Results (Section 2). In
addition, Table 2 reports the average number of com-
munication rounds until convergence for different
numbers of local iterations. The table shows that the
number of communication rounds does not change sig-
nificantly, but it is minimum when the number of local
iterations is 5. Therefore, the number of local iterations
is set to 5 because it requires less local computation in
each round and fewer communication rounds until
convergence without compromising the test perform-
ances of FGS0T e and FGS0 T,
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Table 1. Performance comparison of FGSoT,4, and FGSoT,,, in terms of accuracy for different number of local iterations.

# of local iterations

Model 5 8 10 15 25
FGSOT,gq 0.882 (0.045) 0.877 (0.049) 0.869 (0.047) 0.881 (0.041) 0.867 (0.056)
FGSOT er 0.882 (0.052) 0.876 (0.044) 0.877 (0.047) 0.882 (0.050) 0.878 (0.045)
Table 2. Number of communication rounds until convergence.

# of local iterations
5 8 10 15 25
70.5 77.4 76.4 82.7 75.6
Table 3. Performance comparison of FGS0T,q; and FGSoT,, in terms of accuracy for different iy and ¢ values.

V&S

Model 0.001 0.01 0.03 0.05 0.1 0.5 1 5
FGSOT,gq 0.872 (0.042)  0.875(0.047)  0.872(0.047)  0.883 (0.040) 0.878 (0.049)  0.883 (0.039)  0.880 (0.036)  0.854 (0.052)
FGSOT e 0.865 (0.043)  0.877 (0.047)  0.876 (0.039)  0.884 (0.041) 0.881 (0.041)  0.892 (0.034)  0.885 (0.033)  0.858 (0.053)

In order to select  and J, we performed a sensitiv-
ity analysis. Table 3 reports the mean and standard
deviation (shown in parentheses) of the accuracy

of FGSoT,, and FGSoT,., applied to test data
sets for different Y and O values: Yy =0¢€

{0.001,0.01,0.03,0.05,0.1,0.5,1,5} under the hetero-
geneous model assumption (R=3, ¢, =0.5, ,ByN v =
0.10 and my,, = 3). For example, the average perform-
ance of FGS0T,g, is 0.872 (0.042), 0.883 (0.040), 0.883
(0.039), and 0.854 (0.052) when ¥ and o0 are 0.001,
0.05, 0.5 and 5, respectively. Furthermore, the site-level
performance comparison for different values of  and
can be found in Table 1 in Supplementary Results
(Section 3). The table shows that when 1/ and J are not
too small (below 0.05) or too large (above 1), the aver-
age performances of FGSoT,, and FGSoT,. are not
sensitive to the { and 0 selection. Based on this sensi-
tivity analysis, we empirically set  and 6 to 0.5.
Furthermore, we randomly initialize local and cen-
tralized models. For fine-tuned, local, and centralized
models, we set € = 0.0005. We consider three perform-
ance measures: accuracy, precision, and recall. We
compute accuracy, precision and recall as following:

B TP + TN
ccuracy = 5
YT TP L IN G FP+EN

Precision =

TP + FP’
TP

Recall = ——,
TP + FN

where TP, TN, FP and FN are the numbers of true
positives, true negatives, false positives and false nega-
tives. Finally, we repeat the simulations 30 times to
compute the mean and standard deviation of the

performance measures. The following summarizes our
simulation scenarios:

Scenario I: In the first simulation, we generate five
local sites as illustrated in Figure 5(a), each containing
100 training and 100 test samples. In this scenario,
true underlying local models are homogeneous. When
generating data, we set m=3, I =3, =4,I; =5,
k=0.2, f,=0.1,p=0.01 and ¢, =0.1, and simu-
late it with o, = {0.2,0.5,1} and R = {2, 3,4}.

Scenario II: This scenario simulates heterogeneous true
underlying local models. Similar to Scenario I, we consider
five local sites with 100 training and 100 test samples.
Parameters are set similar to Scenario I except that g,
{05,1}, B,.x = {0.05,0.10,0.15,0.20,0.25}, R = {3,4}
and mpe = {1,2,3}.

Scenario III: The third scenario generates five local

sites under heterogeneous model assumption with 100
training samples and four new sites with 100 training
and 100 test samples. This scenario is depicted in
Figure 5(b), under heterogeneous model assumption.
We follow the same procedure explained in the
second scenario to generate data. We set R=3 and
o, = 0.5, and we test the effect of the heterogeneity
level on the performance of the proposed approach.

5.3. Simulation results

Scenario I: Tables 4-6 summarize the results in terms
of mean and standard deviation (shown in paren-
thesis) of accuracy, precision, and recall, respectively,
when true models are homogeneous. For example,
Table 4 shows that the mean accuracy (and
standard deviation) for FGSoT,g, FGS0Tper, FGSoT —
NRgyge, FGSoT — NRyr, and local model is 0.934
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Table 4. Performance comparison for Scenario | with homogeneous models in terms of accuracy.

R G FGSOTagg FGSOT e FGSOT — NRygg FGSOT — NRye, Local

2 02 0.941 (0.028) 0.940 (0.026) 0.920 (0.032) 0.899 (0.028) 0.870 (0.027)
2 0.5 0.887 (0.042) 0.886 (0.042) 0.866 (0.048) 0.848 (0.053) 0.826 (0.052)
2 1 0.813 (0.065) 0.812 (0.070) 0.799 (0.069) 0.761 (0.068) 0.743 (0.069)
3 0.2 0.934 (0.027) 0.933 (0.024) 0.891 (0.046) 0.883 (0.026) 0.845 (0.031)
3 0.5 0.899 (0.033) 0.896 (0.034) 0.865 (0.046) 0.843 (0.039) 0.811 (0.041)
3 1 0.836 (0.039) 0.833 (0.040) 0.795 (0.060) 0.787 (0.049) 0.764 (0.041)
4 0.2 0.913 (0.038) 0.918 (0.030) 0.877 (0.045) 0.868 (0.025) 0.834 (0.028)
4 0.5 0.898 (0.030) 0.903 (0.025) 0.860 (0.039) 0.857 (0.029) 0.824 (0.036)
4 1 0.840 (0.049) 0.837 (0.050) 0.805 (0.043) 0.784 (0.046) 0.757 (0.047)

Table 5. Performance comparison for Scenario | with homogeneous models in terms of precision.

R Te FGSOT g FGSOT e/ FGSOT — NRygq FGSOT — NRye, Local

2 0.2 0.940 (0.033) 0.942 (0.030) 0.922 (0.031) 0.901 (0.028) 0.872 (0.028)
2 0.5 0.889 (0.049) 0.889 (0.044) 0.870 (0.053) 0.850 (0.054) 0.829 (0.055)
2 1 0.815 (0.062) 0.816 (0.067) 0.804 (0.071) 0.767 (0.072) 0.748 (0.073)
3 0.2 0.932 (0.030) 0.933 (0.028) 0.894 (0.045) 0.885 (0.029) 0.849 (0.031)
3 0.5 0.893 (0.042) 0.893 (0.043) 0.863 (0.047) 0.840 (0.046) 0.807 (0.047)
3 1 0.835 (0.050) 0.834 (0.048) 0.800 (0.065) 0.793 (0.052) 0.773 (0.048)
4 0.2 0.904 (0.046) 0.910 (0.036) 0.872 (0.057) 0.860 (0.042) 0.831 (0.045)
4 0.5 0.903 (0.042) 0.908 (0.038) 0.862 (0.046) 0.862 (0.037) 0.827 (0.044)
4 1 0.840 (0.059) 0.838 (0.060) 0.808 (0.050) 0.783 (0.051) 0.756 (0.058)
Table 6. Performance comparison for Scenario | with homogeneous models in terms of recall.

R Ge FGSOTagq FGSOT e FGSOT — NRygq FGSOT — NRye, Local

2 0.2 0.942 (0.031) 0.939 (0.027) 0.915 (0.040) 0.894 (0.032) 0.865 (0.034)
2 0.5 0.883 (0.043) 0.881 (0.045) 0.860 (0.044) 0.844 (0.055) 0.820 (0.053)
2 1 0.811 (0.084) 0.807 (0.087) 0.793 (0.077) 0.754 (0.073) 0.739 (0.075)
3 0.2 0.936 (0.030) 0.933 (0.031) 0.887 (0.050) 0.880 (0.033) 0.838 (0.046)
3 0.5 0.902 (0.035) 0.895 (0.036) 0.859 (0.055) 0.838 (0.045) 0.807 (0.048)
3 1 0.846 (0.046) 0.841 (0.052) 0.800 (0.064) 0.787 (0.055) 0.761 (0.054)
4 0.2 0.919 (0.048) 0.923 (0.040) 0.875 (0.049) 0.870 (0.030) 0.834 (0.033)
4 0.5 0.893 (0.038) 0.898 (0.032) 0.856 (0.048) 0.849 (0.038) 0.821 (0.043)
4 1 0.838 (0.053) 0.834 (0.053) 0.801 (0.048) 0.783 (0.046) 0.755 (0.052)
Table 7. Performance comparison for Scenario Il with heterogeneous models in terms of accuracy.

R 0e B, Mt FGSOT g FGSOT,e/ FGSOT — NRygq FGSOT — NRye, Local

3 0.5 0.05 1 0.898 (0.027) 0.901 (0.026) 0.854 (0.072) 0.853 (0.038) 0.824 (0.041)
3 0.5 0.10 1 0.892 (0.032) 0.898 (0.028) 0.862 (0.053) 0.850 (0.034) 0.821 (0.030)
3 0.5 0.10 2 0.895 (0.024) 0.904 (0.023) 0.839 (0.092) 0.860 (0.036) 0.833 (0.032)
3 0.5 0.10 3 0.880 (0.033) 0.887 (0.036) 0.852 (0.050) 0.848 (0.036) 0.826 (0.033)
3 0.5 0.15 3 0.868 (0.030) 0.877 (0.029) 0.813 (0.087) 0.845 (0.033) 0.821 (0.035)
3 0.5 0.20 3 0.869 (0.036) 0.886 (0.030) 0.833 (0.060) 0.843 (0.035) 0.830 (0.034)
3 0.5 0.25 3 0.858 (0.040) 0.877 (0.035) 0.809 (0.098) 0.845 (0.035) 0.833 (0.031)
3 1 0.10 3 0.832 (0.046) 0.837 (0.051) 0.802 (0.061) 0.787 (0.049) 0.772 (0.049)
4 0.5 0.10 3 0.870 (0.029) 0.879 (0.030) 0.816 (0.077) 0.833 (0.029) 0.813 (0.032)
4 1 0.10 3 0.834 (0.034) 0.839 (0.031) 0.772 (0.103) 0.797 (0.033) 0.780 (0.031)

(0.027), 0.993 (0.024), 0.891 (0.046), 0.883 (0.026) and
0.845 (0.031), respectively, when data is simulated
with R=3 and o, = 0.2. Tables 4-6 report that in the
homogeneous case, both FGSoT and FGSoT — NR
outperform local models for all rank and noise levels
in terms of accuracy, precision, and recall. More spe-
cifically, in most rank and noise combinations,
FGSoT,g, gives the highest accuracy on test sets.
Scenario II: Tables 7-9 show the performance of
the models in terms of accuracy, precision, and recall
under different heterogeneity (in f8,_ and my,, col-
umns), rank, and noise levels (in R and o, columns).

In this scenario, FGS0T, and FGSoTy., outperform
the benchmarks in all cases reaching the highest
accuracy, precision, and recall under the heteroge-
neous model assumption. Moreover, FGSoT,, further
improves the performance with personalization.
Scenario III: Tables 10-12 report that, under different
levels of heterogeneity, FGSoT outperforms the local
model and provides a comparable or better result com-
pared to the centralized model in terms of accuracy, pre-
cision, and recall when applied to new sites. For instance,
the accuracy level of FGSoT,y, FGSoTp, FGSoT —
NRgge, FGSoT — NRy;, local, and centralized models are
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Table 8. Performance comparison for Scenario Il with heterogeneous models in terms of precision.

R e B,x Mipet FGSOT g FGSOT e FGSOT — NRygq FGSOT — NRye, Local

3 0.5 0.05 1 0.900 (0.036) 0.904 (0.032) 0.854 (0.081) 0.856 (0.047) 0.829 (0.048)
3 0.5 0.10 1 0.892 (0.039) 0.898 (0.037) 0.859 (0.060) 0.847 (0.042) 0.823 (0.040)
3 0.5 0.10 2 0.898 (0.027) 0.906 (0.022) 0.840 (0.096) 0.864 (0.036) 0.836 (0.035)
3 0.5 0.10 3 0.881 (0.034) 0.888 (0.039) 0.856 (0.056) 0.849 (0.037) 0.828 (0.048)
3 0.5 0.15 3 0.865 (0.035) 0.875 (0.033) 0.810 (0.095) 0.841 (0.040) 0.815 (0.045)
3 0.5 0.20 3 0.874 (0.042) 0.889 (0.039) 0.835 (0.063) 0.844 (0.038) 0.836 (0.040)
3 0.5 0.25 3 0.858 (0.056) 0.879 (0.045) 0.810 (0.110) 0.826 (0.033) 0.849 (0.044)
3 1 0.10 3 0.822 (0.055) 0.828 (0.057) 0.791 (0.070) 0.779 (0.055) 0.764 (0.055)
4 0.5 0.10 3 0.877 (0.037) 0.886 (0.038) 0.819 (0.078) 0.839 (0.034) 0.820 (0.042)
4 1 0.10 3 0.834 (0.044) 0.841 (0.042) 0.767 (0.101) 0.793 (0.040) 0.778 (0.036)
Table 9. Performance comparison for Scenario Il with heterogeneous models in terms of recall.

R e B,x Mipet FGSOT g FGSOT,er FGSOT — NRygq FGSOT — NRye, Local

3 0.5 0.05 1 0.897 (0.030) 0.898 (0.034) 0.859 (0.059) 0.848 (0.042) 0.819 (0.045)
3 0.5 0.10 1 0.890 (0.039) 0.895 (0.032) 0.866 (0.050) 0.852 (0.039) 0.816 (0.037)
3 0.5 0.10 2 0.891 (0.033) 0.900 (0.032) 0.835 (0.099) 0.856 (0.046) 0.829 (0.045)
3 0.5 0.10 3 0.877 (0.042) 0.887 (0.040) 0.848 (0.052) 0.849 (0.041) 0.826 (0.035)
3 0.5 0.15 3 0.866 (0.041) 0.876 (0.039) 0.812 (0.087) 0.844 (0.034) 0.823 (0.033)
3 0.5 0.20 3 0.863 (0.045) 0.882 (0.035) 0.831 (0.070) 0.841 (0.046) 0.824 (0.043)
3 0.5 0.25 3 0.854 (0.043) 0.871 (0.041) 0.804 (0.104) 0.834 (0.040) 0.828 (0.041)
3 1 0.10 3 0.837 (0.064) 0.838 (0.069) 0.808 (0.071) 0.789 (0.056) 0.772 (0.061)
4 0.5 0.10 3 0.861 (0.041) 0.871 (0.038) 0.813 (0.081) 0.825 (0.041) 0.805 (0.039)
4 1 0.10 3 0.827 (0.045) 0.828 (0.041) 0.770 (0.105) 0.791 (0.037) 0.774 (0.034)

Table 10. Performance comparison for Scenario Il with heterogeneous models and new sites in terms of accuracy.

Byx Mpet FGS0Tgg FGSoTy FGSoT — NR;gg FGSoT — NR¢ Local Centralized

0.05 1 0.895 (0.030) 0.855 (0.030) 0.854 (0.065) 0.841 (0.037) 0.829 (0.028) 0.896 (0.026)
0.10 1 0.886 (0.032) 0.843 (0.032) 0.855 (0.047) 0.830 (0.038) 0.823 (0.031) 0.887 (0.023)
0.10 2 0.892 (0.033) 0.864 (0.032) 0.847 (0.087) 0.851 (0.040) 0.837 (0.031) 0.884 (0.031)
0.10 3 0.874 (0.036) 0.848 (0.039) 0.840 (0.059) 0.832 (0.049) 0.818 (0.038) 0.874 (0.030)
0.15 3 0.857 (0.039) 0.843 (0.043) 0.823 (0.060) 0.833 (0.046) 0.822 (0.045) 0.847 (0.041)
0.20 3 0.858 (0.031) 0.842 (0.040) 0.825 (0.056) 0.839 (0.040) 0.829 (0.036) 0.852 (0.029)
0.25 3 0.833 (0.056) 0.849 (0.041) 0.800 (0.078) 0.843 (0.046) 0.827 (0.043) 0.833 (0.057)
Table 11. Performance comparison for Scenario Il with heterogeneous models and new sites in terms of precision.

By x Mpet FGS0Tagg FGSoTy FGSoT — NR;gg FGSoT — NRg Local Centralized

0.05 1 0.895 (0.037) 0.858 (0.034) 0.853 (0.072) 0.843 (0.044) 0.833 (0.033) 0.897 (0.029)
0.10 1 0.886 (0.037) 0.841 (0.034) 0.856 (0.051) 0.829 (0.040) 0.824 (0.033) 0.885 (0.029)
0.10 2 0.894 (0.038) 0.858 (0.039) 0.848 (0.093) 0.840 (0.051) 0.834 (0.038) 0.884 (0.040)
0.10 3 0.871 (0.050) 0.851 (0.050) 0.837 (0.067) 0.834 (0.058) 0.832 (0.047) 0.871 (0.039)
0.15 3 0.850 (0.046) 0.839 (0.046) 0.816 (0.067) 0.832 (0.046) 0.822 (0.048) 0.840 (0.052)
0.20 3 0.859 (0.040) 0.038 (0.049) 0.829 (0.065) 0.840 (0.042) 0.825 (0.044) 0.849 (0.036)
0.25 3 0.833 (0.052) 0.853 (0.042) 0.804 (0.075) 0.848 (0.045) 0.831 (0.043) 0.831 (0.059)
Table 12. Performance comparison for Scenario Ill with heterogeneous models and new sites in terms of recall.

By x Mpet FGS0Tagg FGSoTx FGSoT — NRggg FGSoT — NRg Local Centralized

0.05 1 0.894 (0.037) 0.847 (0.043) 0.855 (0.060) 0.834 (0.041) 0.818 (0.036) 0.892 (0.036)
0.10 1 0.886 (0.035) 0.847 (0.035) 0.852 (0.048) 0.832 (0.043) 0.820 (0.042) 0.888 (0.033)
0.10 2 0.884 (0.042) 0.866 (0.038) 0.833 (0.097) 0.856 (0.047) 0.834 (0.040) 0.876 (0.037)
0.10 3 0.876 (0.037) 0.840 (0.052) 0.843 (0.054) 0.826 (0.057) 0.806 (0.059) 0.876 (0.038)
0.15 3 0.860 (0.049) 0.840 (0.061) 0.824 (0.065) 0.823 (0.063) 0.808 (0.066) 0.848 (0.046)
0.20 3 0.856 (0.035) 0.849 (0.040) 0.819 (0.065) 0.843 (0.048) 0.840 (0.040) 0.853 (0.038)
0.25 3 0.836 (0.072) 0.843 (0.050) 0.801 (0.080) 0.837 (0.057) 0.821 (0.057) 0.839 (0.061)

0.892 (0.033), 0.864 (0.032), 0.847 (0.087), 0.851 (0.040),
0.837 (0.031) and 0.884 (0.031), respectively, when
By~x = 0.1 and my,, = 2. Note that as the heterogeneity
level increases (i.e., as the sites become more distinct),
the performance difference between FGSoT and the local
model, when applied to new test sites, is expected to

diminish in this scenario. The main reason is that the test
sites have not participated in the collaborative model
learning procedure. However, even in this setting,
FGSoT outperforms the local model. Furthermore, the
centralized model represents the ideal case where all data
is shared across sites. Using data from all local sites
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potentially results in a more generalizable model due to
the access to a larger sample size and shared knowledge
across sites. Therefore, having better or comparable per-
formance with the centralized model shows the efficacy
of FGSoT, which only has access to the local models
trained based on limited data from heterogeneous sites.

Effect of regularization: In all simulation scen-
arios, FGSoT outperforms FGSoT — NR in terms of
accuracy, precision and recall. The results show that
regularization provides a more stable model with a
higher mean and lower standard deviation of accuracy
in all scenarios. During the training process under the
federated scheme, regularization limits the deviation
of the locally trained models from the aggregated
model in heterogeneous model settings (Scenarios II
and III).

Effect of personalization: In the heterogeneous
setting, personalized models outperform the aggre-
gated models. Personalization allows local sites to
benefit from collaboration and site-specific informa-
tion by performing one more stage of local updates.
On the other hand, when true models are homoge-
neous, FGSoTa, is comparable to FGSoTp. since
FGSoT,g, ensembles the local models of homogeneous
sites which are similar in distribution (For more
details, see Section 7). Furthermore, the site-level
results are provided in Supplementary Results
(Section 4).

6. Case study

This section introduces two case studies. The objective
is to validate the performance of FGSoT with real data
sets. In the first study, we apply the proposed
approach to detect a disease in tomato plant leaves by
using hyperspectral image data collected by unmanned
aerial vehicle (UAV). In the second study, we evaluate
the performance of FGSoT to detect fault events in
vehicle engines, using sensor data.

The case study experiments follow the same pro-
cedure to tune o, (t=1,..,T) by minimizing the
Bayesian Information Criterion (BIC) as described in
Section 4.5. We follow the sensitivity analysis
approach to select  and J, which resulted in =
0 = 0.5. Similar to the simulation studies, these case
studies use convergence check, divergence check, and
the maximum number of iterations as stopping crite-
ria. We set the convergence threshold, €, to 0.0005,
the divergence parameters, T and z, to 2 and 10,
respectively, and the maximum number of iterations,
K, to 100. Finally, we set the number of local itera-
tions (K;) to 5.

6.1. Plant disease detection using hyperspectral
images in tomato farm

Fast and accurate detection of diseases in an agricul-
tural farm is critical for farm owners and growers. This
process often requires lab experiments, which are often
expensive and time-consuming. Therefore, constructing
models that can identify diseased plants based on
images obtained from a farm is extremely beneficial.
For this purpose, unmanned aerial vehicles (UAVs)
equipped with remote sensing systems collect spectral
image data from different regions of interest (Rols) on
a farm (Abdulridha et al. 2020; Costa et al. 2022). These
images are then converted to reflectance curves over a
wide wavelength range. This data is then labeled using
lab results to create an often small training data set to
develop a classification model for disease detection.
This model is finally used for future predictions based
on spectral images obtained rapidly from the farm.

This case study considers six sites of tomato seed-
lings at the Southwest Florida Research and Education
Center, some of which are inoculated with a black spot
disease. Hyperspectral images are obtained from each
site and converted into reflectance curves over different
wavelengths, which resulted in a small set of high
dimensional data. These signals may serve as an indica-
tor of healthy/diseased conditions of a plant. Our
objective is to construct a federated classification model
to detect diseased plants based on reflectance profiles,
located at different sites. Figure 6 shows the average
reflectance profiles of three sites, as examples, where
solid lines indicate diseased and dotted lines indicate
healthy instances. In the figure, the relationship
between the healthy/diseased condition and the reflect-
ance levels are different in different sites, indicating
heterogeneity in models. Given the reflectance profiles
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Figure 6. Average hyperspectral reflectance curves.



defined over 180 wavelengths, we generate tensors
X € R (i=1,..,60; t =1,..,6) by reshaping
each profile. Reshaping the tensor balances the dimen-
sions and will improve the computational time (See
Section 7 for more details). To evaluate the perform-
ance of the proposed approach, we consider five train-
ing sites and one testing site, each with 30 healthy and
30 diseased instances. We assume five training sites col-
laborate to construct an aggregated model to be tested
on the testing site data. That is, a new site joins the net-
work and uses the aggregated model constructed based
on the shared knowledge of other sites.

Figure 7 shows the boxplots of each performance
metric (accuracy in Figure 7(a), precision in
Figure 7(b), and recall in Figure 7(c)) of
FGS0T,age, FGS0Tpers FGSOT — NRygg, FGSoT — NRye,
local model, and centralized model. In the boxplots,
red diamond dots show the mean of the correspond-
ing performance measure. Note that the reported val-
ues for the local model benchmark are obtained by
averaging the performance of local models constructed
by each of the five training sites and applied to the
testing site. Figure 7 demonstrates that the mean and
the median of each performance measure of FGSoT,g,
is superior to that of the local models with lower vari-
ance. Furthermore, FGSoT,, provides comparable
performance to the centralized model, which is
expected to perform well as it has access to all the
data from different sites. These results show the
benefit of collaborative modeling frameworks in agri-
cultural applications, where data sharing is not feasible
due to competition and privacy concerns.

6.2. Vehicle engine fault detection using sensor
data

NO, Storage Catalyst (NSC) is a control system for
gas emissions used for combustion engines (Pacella
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2018). In this system, exhaust gas is processed in two
stages: (i) adsorption, where NO, molecules are
catched by an adsorber, and (ii) regeneration, where
NO, molecules are reduced as the adsorber becomes
saturated. However, fault events happening during the
regeneration phase diminish the efficiency of NO,
reduction. Therefore, it is critical to identify those
fault events and find their root causes.

Combustion engines have multiple sensors which
collect real-time profile data. Figure 8 shows signals of
example sensors that measure air/fuel ratio (4), actual
air mass, and injection quantity. The signals are color-
coded with respect to two fault event types. The figure
shows that these signals have different patterns in
regard to these fault events. Hence, the multichannel
profile data can be exploited to help identify fault
events in the regeneration phase of NSC. Detecting
fault events and associating them with their root causes
will boost the efficiency of NSC, which is necessary for
gas emission regulations. In this study, we use signals
of lambda (1), actual air mass (mg/s), injection quan-
tity (mg/s), boost pressure actual value (mbar), and
low-pressure exhaust gas recirculation (EGR) valve
position (%) sensors. Each sensor is a data channel.
The original signals contain 203 observations obtained
in an interval of 2s. The signals are noisy, as shown in
Figure 8. To slightly smoothen the signals, we first per-
form a moving average using a sliding window of size
3. Hence, the smoothed signals have 200 observations.
Based on our experience, reshaping the signals into a
3D tensor by slicing them into pieces is beneficial as it
improves the computational time. Furthermore, ten-
sors can capture the correlations within and between
slices (See Section 7 for more details). Therefore, we
reshape the smoothed signals to generate tensors,
X € RIS (G=1,..,19 or 20;t = 1,...,4). Here,
20 is the slice length, 10 is the number of slices, and 5
is the number of channels (i.e.,, lambda, actual air
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Figure 7. Performance comparison for tomato plants classification case study in terms of (a) accuracy, (b) precision, and (c) recall.
Red diamond dots show the mean of the corresponding performance measure.
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Figure 9. Performance comparison for vehicle engine case study in terms of (a) accuracy, (b) precision, and (c) recall. Red diamond

dots show the mean of the corresponding performance measure.

mass, injection quantity, boost pressure actual value,
and low-pressure gas recirculation). We consider three
training sites and one testing site, each with 19 or 20
samples, and follow the same procedure explained in
the methodology to train models. Thus, three training
sites collaborate to construct an aggregated model to
be tested on the testing site data. Hence, the objective
in this case study is to classify fault events based on
localized and high-dimensional data by using the pro-
posed approach.

Figure 9 shows the boxplots of performance meas-
ures of FGSoT and the benchmarks. Figure 9 shows
that the mean and the median of each performance
measure for FGSoT,g is superior to that of the local
model with lower variance. Furthermore, FGSoT,g
achieves a comparable performance to the centralized
model. These results present the benefit of collabor-
ation in a federated setting in a network of factories.

7. Discussion

The proposed tensor regression framework is general
and can handle functional data as well. Particularly,
the proposed approach is beneficial when multi-chan-
nel functional data is available (For example, Case

Study II). In this setting, each sample in the data can
be arranged as a matrix of channels x profile lengths.
The benefit of our approach compared to existing
functional data analysis methods is that by using a
tensor, the correlation structures between and within
channels can effectively be modeled. Often, the length
of signals may be much larger than the number of
channels. Under this scenario, it is beneficial to slice
the signal into pieces and convert the data into a 3D
tensor (channels X slice lengths x number of slices).
This slicing approach balances the dimensions of the
tensor and will improve the computational time (Lee
et al. 2023). Please note that because tensors can
model correlations between modes, the relationship
between slices (sub-profiles) is still preserved in the
reshaped tensor data. Our results in the case studies
further support the effectiveness of generating tensors
from functional data.

We use CP decomposition in the proposed tensor
regression model. CP decomposition has commonly
been used in tensor regression, and its effectiveness
has been shown in (Zhou, Li, and Zhu 2013; Fang,
Paynabar, and Gebraeel 2019). The main advantage of
CP decomposition over Tucker decomposition is that
it has a fewer tuning parameters. More specifically,



CP decomposition requires selecting a single rank.
In comparison, the Tucker decomposition decomposes
the parameter tensor into a core tensor and a set of
factor matrices, and requires selecting a rank for each
mode of the core tensor. In the federated settings,
selecting a rank for each mode should be done at
each site and globally, exacerbating the problem.
Furthermore, when using CP decomposition, each site
only shares the low-dimensional basis matrices with
the central server to obtain an aggregated model.
However, Tucker decomposition will require each site
to share the core tensor and the factor matrices,
increasing the communication with the central server.
Alternatively, if each site sends only the factor matri-
ces and keeps the core tensor to reduce the communi-
cation, the Tucker method can only construct
personalized local models as there will be no aggre-
gated core tensor to construct an aggregated model.
Given these differences, Tucker decomposition should
be studied separately for federated tensor regression.

Furthermore, Newton’s search method used in par-
ameter estimation is not an integral part of the pro-
posed method. The search method can be determined
by the user depending on the resources they have.
One advantage of Newton’s search method is its quad-
ratic convergence property. For larger-scale problems
where the inverse calculation of the Hessian matrix is
too costly, the proposed framework can easily be
adjusted to use other optimization techniques, such as
quasi-Newton, and first- and zero-order techniques.

Finally, in the proposed framework, personalization
allows local sites to benefit from collaboration and site-
specific information by performing one more stage of
local updates. Our results show that personalization
further improves the performance of the aggregated
model under the heterogeneous model assumption.
Especially as the heterogeneity level increases, the per-
formance gain with additional local updates increases.
In real applications, it may not be possible to know if
the local sites are homogeneous or heterogeneous. In
that situation, training both FGSoT,, and FGSoT.,
and testing on a validation set is possible. However,
our results show that FGSoT),, performs almost equiva-
lently as FGSoT,, under the homogeneous model
assumption and outperforms FGSoT,, under the het-
erogeneous model assumption. Therefore, a personal-
ized model can be selected in all cases.

8. Conclusion

This article proposes a federated generalized scalar-on-
tensor regression (FGSoT) framework to model high-
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dimensional and distributed data. In this framework,
multiple local tensor regression models are trained at
the edge, and their parameters are shared with a cen-
tral server, which aggregates the models by solving an
optimization problem. This framework incorporates
proximity regularization terms in the local objective
functions to tackle statistical heterogeneity among local
sites. In addition, group lasso penalties are included to
personalize local models. To estimate parameters, the
alternating least square (ALS) approach with the
Newton’s search method is applied. The results from
the simulation studies show that under both homoge-
neous and heterogeneous settings, the proposed FGSoT
outperforms the benchmarks. Furthermore, the case
studies from agriculture and manufacturing domains
validated the superiority of the proposed framework
compared to several benchmarks, indicating the bene-
fits of collaboration between local sites. As a future
work, differential privacy approaches can be employed
to generate a federated system that is more secure and
robust against adversarial attacks.
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o are computed as:

(r)
u
m w(rc), )) —i—Ntﬁ 4t Ntl,b(ug)t - vg)), (6]
b 2 |l ’
(r), (r)
))+Noct< 1 ud udt)-l—NthI [7]
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where G(.) is the gradient, H(.) is the Hessian matrix, b'(.) is the first derivative of b(.), and b”(.) is the second derivative

of b(.).
Moreover, the first and the second derivatives of (4) with respect to u,, f'(p,) and f”(p,), are computed as:
of A , -
a1, = () = Y (=yar + V(0 + Te(U X, @, Kar)) + Ned (g = O)s (8]
i=1
aZf 1 % 7 T
e = f"(1) = > 0" (u, + Tr(Uy Xy (), K1) + Nio. (9]
=1

Then, we update y, with the Newton’s search method as .z, =

Appendix B. Identifiability

e —7 ()" f (1), where 7y is the step size.

Two main sources of nonidentifiability are scaling and permutation indeterminacy (Zhou, Li, and Zhu 2013). First, let us
show that the estimates of parameters ug)t and f, are unique in each local step. Recall that the objective function for the

local model is:

N,
:ut’udt) Z =it ,utJFg,( "+

=1 r=1

m

+
X lﬁ
+Ntzz—|\”d (2 +NtZZE

(n 4 r)

W)+ by, + g+ )

i, i,d,t))
(10]

o
"Ezr)H% + th(llt - 0>

In each step, we fix one parameter (e.g., i;) and estimate the other one. We show that th1§ ob%ectlve function (10) is con-

vex with respect to both ufi )t and i, in each step. The first term, i.e.,

—yie(y +gldz+udt z(dt) is linear in u;)t and uy,

and thus is convex. The second term is convex, as its second derivative is positive semi- definite. To see this, let us set 0=

(=) ORE

Pt 8ar 0y Wigy The second derivative of the second term is

c
Polutg o, W) () (0 (" "
o =Wig twi,d,tb (0i,¢). Here, WiaiWid:

dyt

(r)

is a rank-1 positive semi-definite matrix, and b”(0;;) > 0. Thus, the second term is convex with respect to u,. Similarly,
one can show the convexity with respect to y,. By definition, norms are convex. Thus, the last three terms in the objective

function are convex. As a result, the objective function (10) is convex with respect to both u

and 1. Hence, the solution to

(10) is unique, addressing the scaling indeterminacy problem in the estimation procedure.
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The second source of nonidentifiability is the permutation indeterminacy: B, = [[Uy, ..., Up,]] = [[Uy,IL, ..., Uy, [I1]]
where II is a R-by-R permutation matrix. To solve the permutation indeterminacy of the tensor parametrization with I ;
norm penalty, we consider a specific permutation that rearranges the nonzero elements of the first row of Uy, (ie,
U, | #0) in descending order such that U,%)l > Uﬁj}m > > Uﬁfjﬁ and leaves the zero elements to the end of the
ordering. Here, y is the number of zero elements. After each local update stage for each t, we employ this rule to permute
the factor matrices.

Now, denote V as the aggregated model tensor with V = [[Vy,...,V,]] and V,; = [vél),vfiz),...,v((f)] ERVRd=1,..,m.

T
Each V; is obtained by V; = % Suppose we permute Uy, with a permutation matrix IT and obtain Uy, = U, I1.
Note that the permutation rule, H,: is the same over all sites and determined by the aggregator. Suppose the factor matrices
of the permuted aggregated model are obtained as:
o 2 NUar 3L NUa Il
Va= ==l = &=l = V,IL.
Zt:le Zt:le

Let V denote the aggregated model tensor, where V = [[V1,..., V,,]]. We show that (V,X;,) = (V, X;,)
< V, X> = < Vd(Vm ® ... Vd+1 ® Vd—l-u ® Vl)T,X,-’(d),»

(11]

where Ky, =V, ©®..V441 © Vya_1... ® Vy and IIIT" = Ig«z. This concludes that the proposed tensor model is identifiable
up to permutation and has a valid solution under a specific permutation rule.
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