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Abstract

Computing platforms that packagemultiple types ofmemory,
each with their own performance characteristics, are quickly
becoming mainstream. To operate efficiently, heterogeneous
memory architectures require new data management solu-
tions that are able to match the needs of each application
with an appropriate type of memory. As the primary gener-
ators of memory usage, applications create a great deal of
information that can be useful for guiding memory tiering,
but the community still lacks tools to collect, organize, and
leverage this information effectively. To address this gap, this
work introduces a novel software framework that collects
and analyzes object-level information to guide memory tier-
ing. Using this framework, this study evaluates and compares
the impact of a variety of data tiering choices, including how
the system prioritizes objects for faster memory as well as
the frequency and timing of migration events. The results,
collected on a modern Intel® platform with conventional
DRAM as well as non-volatile RAM, show that guiding data
tiering with object-level information can enable significant
performance and efficiency benefits compared to standard
hardware- and software-directed data tiering strategies.

CCS Concepts: · Software and its engineering → Run-

time environments; · Computer systems organization →

Heterogeneous (hybrid) systems.

Keywords: heterogeneous memory systems, profiling, run-
time systems, memory management, NVM
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1 Introduction

In recent years, multiple concurrent trendsÐincluding the
proliferation of AI and other data-driven analyses, rising
CPU core counts, and the relative stagnation of DRAM per-
formance and capacity scalingÐhave combined to place enor-
mous strain on modern memory systems. At the same time,
several new media technologies (e.g., high-bandwidth mem-
ory [HBM] and non-volatile memory [NVM]), as well as new
memory interconnect options (e.g., Compute Express Link),
are bringing new capabilities that can potentially address the
limitations of conventional memory hardware. As a result,
many computing systems are adopting a heterogeneous mix
of memory devices and organizations, with the hope that
the unique benefits and capabilities of diverse technologies
can be seamlessly combined into a single architecture.

Despite their potential benefits, heterogeneous memories
present significant challenges for data management. Memory
has traditionally been viewed as a homogeneous resource,
sometimes divided into separate non-uniform memory ac-
cess (NUMA) domains, but composed of devices with similar
performance and capabilities. As a result, most modern oper-
ating systems (OSes) allocate and distribute physical memory
with little or no knowledge of how applications intend to use
these resources. However, to manage heterogeneous mem-
ories efficiently, the OS must be able to match allocation
requests to the appropriate technology in consideration of
both application requirements and hardware capabilities.
To address this problem, many recent projects have pro-

posed software frameworks and tools to guide data man-
agement in hybrid memory environments [2, 6, 11, 13, 16ś
18, 20, 22ś24]. Although these efforts have shown that guided
data tiering can be effective, they each have constraints that
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limit their impact in certain scenarios. For instance, some
approaches require separate, earlier execution of each ap-
plication with representative input in order to profile its
memory usage. Others conduct data tiering at the system
level and without feedback from the application itself, and
are therefore more likely to make decisions that are at odds
with application intentions. Section 2.1 further describes the
advantages and disadvantages of these prior efforts.

This work proposes a new software framework that aims
to provide application-guided data tiering without the con-
straints and shortcomings of existing solutions. Our ap-
proach employs a custommemory allocator, known as bkmal-

loc, and a system-wide profiling and management tool called
the Memory Auto Tiering (MAT) Daemon, which together en-
able automated tiering of program objects. bkmalloc allocates
new objects into page-aligned regions of virtual memory and
shares the address and size of each object with the running
daemon. In turn, MAT Daemon profiles the memory usage
of each known data object and then uses this information to
create and enforce tier recommendations across the platform.
The proposed approach is fully automatic and does not

require offline profiling, modifications, or recompilation of
system or application software. Our Linux-based implemen-
tation employs standard system facilities, including BPF [7]
and Linux system calls, to profile and move program data
from a user-level daemon. In this work, we demonstrate the
flexibility and effectiveness of this approach by using it to
direct data tiering for a variety of memory-intensive work-
loads on a modern Intel® platform with two tiers of memory:
DDR4 SDRAM and non-volatile Optane DC RAM.

This work makes the following important contributions:

1. We design and develop a novel software framework for
guiding data object tiering on heterogeneous memory
platforms. The proposed approach provides fast and
flexible data tiering for single or multiprocess work-
loads without the need for offline profiling or recom-
pilation of target applications.

2. We evaluate the effectiveness of a range of object tier-
ing policies and parameters, including multiple strate-
gies for profiling and prioritizing program data as well
as novel approaches for deciding if and when to mi-
grate program data between memory tiers. Overall, we
find that different policies and parameters can have a
significant impact on the effectiveness of this approach,
and no single set of options produces the optimal per-
formance for all scenarios.

3. Using a set of memory intensive applications, we com-
pare the best object tiering policies to popular alterna-
tive approaches, including hardware-directed caching
and profile guided paging in theOS.While the hardware-
based approach performs best on average, we find that
object tiering can achieve similar or (up to 6%) better
performance than caching in some cases, with much

less data movement between tiers and without sacri-
ficing the capacity of fast memory. Moreover, the best
object tiering strategy always performs as well or bet-
ter than the purely OS-based approach, and reduces
execution time of our workloads by an average of 6%
compared to this approach.

2 Background and Related Work

Researchers and engineers across the computing commu-
nity have implemented a variety of tools and techniques to
enable better data management on heterogeneous memory
platforms. One common strategy is to exercise the faster,
smaller capacity tier(s) as a hardware-managed cache. For
example, Intel®’s Cascade Lake processors include a łMem-
ory Modež option, which applies this approach with DDR4
as a direct-mapped cache to non-volatile OptaneTM DCmem-
ory [9]. Although hardware-managed caching provides some
immediate advantages, such as software-transparency and
backwards compatibility, it is inflexible, often less efficient,
and reduces the system’s available capacity.
The alternative strategy of software-directed data tiering

uses either the OS itself, or the OS in conjunction with ap-
plications, to assign data into different memory tiers with
facilities to migrate data between tiers as needed. Implemen-
tations of this approach are often similar to datamanagement
on NUMA platforms [12], with each tier represented as its
own NUMA domain. In many cases, the OS will also expose
data tiering controls to user programs through the system
call interface. For example, Linux applications can use the
mbind or move_pages system calls to request or require that
a specific range of virtual memory be backed with physical
pages from a particular memory tier. These finer-grained
controls allow applications to coordinate tier assignments
with allocation and usage patterns, potentially enabling pow-
erful efficiencies. However, because this approach requires
expert knowledge and modifications to program source, its
usage is still limited.

2.1 Automated Approaches for Guiding Data Tiering

Several recent efforts have proposed software tools and tech-
niques that seek to address the limitations of these existing
solutions by automating all or part of the data classification
andmigration processes. The present work has a similar goal,
but it also has some distinct advantages over these prior ef-
forts. Table 1 summarizes how our approach compares with
other proposed efforts in terms of features that affect the
transparency, flexibility, and efficacy of each approach.
Some previous studies developed tools to profile the us-

age of certain data structures offline, and then use heuristic
models to assign data objects to the appropriate tier [3, 6,
13, 17, 18, 22, 24]. Although these efforts facilitate the pro-
duction of high-quality tiering guidance, they still require
manual updates to application code and/or recompilation of
the target program to attach recommendations to program
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Table 1. Features of our approach (bkmalloc + MAT Daemon) compared with other software-directed data tiering approaches.

Approach

Does not

require offline

profiling

Does not require

modification, recompilation

of user applications

Does not require

OS modifications

Supports tiering of

logical program units

(objects, data structures)

Allows user-level

software to define

tiering policy

Supports

multi-process

workloads

XMem [6],

Servat et al. [22],

RTHMS [18],

Unimem [24],

MemBrain [17],

Laghari [13],

Akram [3]

× × ✓ ✓ ✓ ×

Thermostat [2],

Kim et al. [11],

Choi et al. [4],

Linux tiering

patches [23]

✓ ✓ × × × ✓

HeMem [20] ✓ ✓ × × ✓ ×

SICM +

MemBrain [16]
✓ × ✓ ✓ ✓ ×

bkmalloc + MAT

Daemon
✓ ✓ ✓ ✓ ✓ ✓

data. In contrast, our approach generates and enforces tier
recommendations online in a concurrent process, without
requiring any updates to existing applications.

Another set of efforts employed architectural profiling of
physical memory regions (often pages) to assist data tier-
ing in the OS [2, 4, 11, 23]. Although these approaches are
completely transparent to user-level software, they also con-
duct data tiering with no knowledge of the logical structure
of program data. Additionally, due to their dependence on
system-level management, they are less flexible and cannot
customize data management for individual applications. On
the contrary, our approach monitors the usage of individual
data objects and uses this information to build better profiles
of memory behavior during execution. Moreover, it allows
applications to implement their own feedback-directed data
tiering policies in a modular user-level framework.

Some recent efforts have proposed tools and frameworks
that address some of the drawbacks of these earlier ap-
proaches. Olson et al. extended MemBrain with functions
to analyze memory usage and direct data tiering online and
without the need for offline profiling. However, applications
that use it still need to be recompiled [16]. The HeMem
project provides facilities to define data tiering policies in
user-level software, but it does not provide any mechanism
for these policies to know or exploit the logical structure of
application data [20]. Moreover, both SICM+MemBrain and
HeMem enable guided data tiering by linking their capabil-
ities into a single target process. Hence, these approaches
can only support one process at a time. By combining allo-
cator instrumentation with a separate daemon process, our
approach is the first to support transparent and flexible data
object tiering for both single- and multi-process workloads.

3 Flexible and Effective Object Tiering for
Heterogeneous Memory Systems

This section presents the high-level design of our approach,
including its major components and the interactions among
them. Later, it also describes the policies and heuristics that
we implemented to evaluate this approach.

3.1 Design Overview

Figure 1 depicts themain components of our approach, which
primarily consists of two new pieces of user-level software:

1. The bkmalloc allocator provides two essential capa-
bilities: (1) page-aligned allocations for objects larger
than a certain size and (2) instrumentation that records
when an application allocates or frees an object.

2. The MAT Daemon runs alongside the applications
and conducts object tiering through a series of com-
plementary activities, including (1) monitoring and
structuring profiles of object allocation and usage, (2)
automated heuristics to prioritize objects for place-
ment in fast memory, and (3) mechanisms to enforce
tier recommendations when a particular event occurs.

3.2 Tracking Object Creation and Removal

On initialization, applications that will participate in guided
object tiering dynamically link the bkmalloc allocator (marked

with 1 in Figure 1). bkmalloc is a general-purpose malloc
implementation with capabilities similar to other modern
allocators, such as the GNU allocator or jemalloc, but it in-
cludes additional features to support object tiering with MAT
Daemon. When the application requests an allocation larger
than a certain size, bkmalloc allocates the object in a page-
aligned region of virtual memory and notifies MAT Daemon
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Figure 1. Design overview of our approach.

of the new object’s address and size. Similarly, bkmalloc will
send a corresponding notification whenever the application
frees an object from its heap.
In our current implementation, the size threshold for in-

dividually tracked data objects is 4 KB, which matches the
page size on our platform. Objects smaller than 4 KB are
slot allocated into a set of buckets composed of page-aligned
blocks, in which the size of each block depends on the size
of the allocation. bkmalloc also notifies MAT Daemon of
each active block, allowing the framework to manage data
associated with smaller program objects in block-size units.

MAT Daemon receives object notifications through a first-

in-first-out (FIFO) message queue 2 . To minimize the exe-
cution time of this communication, insertions into the queue
are non-blocking except in the rare event that the queue is
full. Additionally, to keep the latency of these operations as
low as possible, the daemon polls the queue continuously
from a separate thread, which is ideally pinned to its own,
otherwise unused, computing core.

3.2.1 Handling Ephemeral Objects. For many applica-
tions, a significant portion (in some cases, the vast majority)
of object allocations have very short lives and are quickly re-
placed in the address space by new allocations. Such ephemeral
objects are not very consequential for data tiering because
they typically consume a relatively small portion of capac-
ity, which is often captured in processor caches. However,
record keeping for ephemeral objects can be problematic
for our approach because it can delay the collection of pro-
files for longer-lived objects with more impactful tiering
consequences. Thus, rather than create and destroy object
records immediately as new allocations are seen, our ap-
proach buffers the allocation events until the end of the

current profiling interval. If MAT Daemon then receives a
de-allocation event that corresponds to a buffered allocation
event before the end of the interval, it simply removes that
allocation from its buffer. In this way, our approach avoids
record keeping for most ephemeral program objects.

3.2.2 Split Records for Large Objects. During our initial
testing, we found that some applications allocate a small
number of very large objects that comprise much or most
of their overall memory capacity. To enable more precise
monitoring and more fine-grained control over the place-
ment of data within such large allocations, MAT Daemon
provides the option to split objects that are larger than a
certain size into multiple records. Specifically, this option
splits large allocations into ⌈𝑛/𝑠⌉ records, where 𝑛 is the size
of the original allocation, and 𝑠 is the given split size. All
split records, except possibly the last record by address order,
cover a range of addresses equal to the split size.

3.3 Monitoring the Memory Usage of Active Objects

To understand how objects are using memory, our approach
efficiently monitors memory usage events through architec-
tural sampling and system-level instrumentation. Specifi-
cally, it integrates MAT Daemon with two facilities that are
commonly available on modern Linux distributions: (1) the
perf subsystem for architectural sampling [1] and (2) BPF [7],
which is a compiler framework and tool set that allow user
programs to insert custom instrumentation into a running
kernel safely and dynamically without modifying kernel
source code. Upon initialization, MAT Daemon configures
perf to begin sampling memory reads that result in a miss

in the processor’s last level cache (LLC) 3 . It then invokes
BPF to install system-level instrumentation that intercepts
the LLC miss events generated by perf and then transmits

them to MAT Daemon through a shared ring buffer 4 .
Next, as MAT Daemon receives allocation events from

the attached applications, it creates records for the active

heap objects 5 . Each record contains the starting virtual
address and size of each object as well as a set of fields
that can be used to aggregate and store profile information
related to the usage of the object in memory. In our current
implementation, these fields record the creation time of the
object, the time corresponding to the most recent sampled
LLC miss, as well as the number of LLC misses scaled and
normalized over a configurable time interval.

3.3.1 Unified System and Application Guidance. One
of the key advantages of our design is that it allows MAT
Daemon to monitor and leverage allocation behavior as well
as system-level events to direct memory tiering. Moreover, al-
though our current implementation only uses BPF to record
samples of LLC miss events, this approach could easily be
extended to collect and incorporate other types of system-
level guidance to further enhance data tiering. Indeed, earlier
iterations of this work used BPF to monitor page fault and
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page release events to track the physical memory capacity
of every data object. However, we disabled this feature for
our evaluation because we found that the additional instru-
mentation can cause significant execution time overheads
(up to 10% in our testing) without any discernible benefit
compared with simply using the allocated size of each object
as an estimate of its capacity utilization.

Similarly, BPF instrumentation could also be used to moni-
tor the memory usage of kernel objects (e.g., file and network
buffers) that are not mapped into any user process. Recent
work has shown that kernel data usage is a significant and
important factor in data tiering for some applications [10].
Although support for this feature is outside the scope of
this study, we plan to investigate policies that can monitor
and control the placement of kernel and application data
simultaneously in future work.

3.4 Profile-Guided Object Tiering with MAT Daemon

To support profile-guided object tiering,MATDaemon spawns
a separate thread that operates on a timer-driven signal. At
each timer tick, this thread invokes a set of routines to (1)
aggregate the most recent profile information with informa-
tion collected during prior intervals (aggregation routine) (2)
calculate object priorities for placement in the smaller, faster
memory (prioritization routine) (3) determine whether or not
to enforce new tier assignments for the active objects at this
time (trigger routine), and, if necessary, (4) convert the object
priorities into object-tier assignments and migrate and/or
change the mapping policy for certain objects to enforce the

new tier assignments (enforcement routine) 6 .
Because our design is modular, users can create custom

tiering policies by selecting from a set of existing routines
or by providing their own implementations of each of the
above functionalities. For this work, we use this modular
design to evaluate and compare the effectiveness of a variety
of choices and policies for object tiering. Next, we describe
the set of routines we implemented for this study.

3.4.1 Profile Aggregation. The goal of the aggregation
routine is to combine profile information from the most
recent interval with information collected during prior inter-
vals. For some statistics, such as the address, size, creation
time, and most recent access time, aggregation across in-
tervals is unnecessary. Estimating the relative access rates
of each object is more complicated because the frequency
with which a program accesses a particular data object may
shift substantially from interval to interval. Our approach
computes a weighted average of the number of sampled ac-
cesses for each object during the most recent interval with
the average from earlier intervals. Specifically, we use the
following formula:

𝜏𝑛+1 = 𝛼 ∗ 𝑡𝑛 + (1 − 𝛼) ∗ 𝜏𝑛, (1)

where 𝜏𝑛+1 is the predicted number of sampled LLC misses
for the object for the next program interval, 𝑡𝑛 is the actual

number of sampled LLC misses for the object during interval
𝑛, and 𝛼 is a parameter ranging from 0.0 to 1.0. For this work,
we selected an 𝛼 value of 0.1 after a brief tuning process,
which is described in Section 4.5.1.

3.4.2 Calculating Object Priorities. The prioritization
routine computes an ordering of all active objects that de-
scribes their priority for placement within the fast memory
tier. Our study evaluates three prioritization routines:

1. First-in-first-out (FIFO): Priority is based on the age
of the objects. Older objects have lower priority.

2. Least recently used (LRU): Priority is based on time
since last access. The LRU objects have lower priority.

3. Accesses per byte (APB): Priority is based on the
weighted average of accesses per byte of capacity. Ob-
jects with lower APB have lower priority.

3.4.3 Deciding When to Migrate Data Objects. Similar
to other software-directed tiering approaches, our approach
migrates program data from one tier to another by remap-
ping virtual memory to a different set of physical pages.
Unfortunately, this is often an expensive operation on mod-
ern computing systems. Before moving any program data,
the OS must interrupt and suspend application threads to
prevent inconsistencies caused by data races. There are addi-
tional costs for actually copying data from one tier to another
as well as keeping page tables (and TLBs) synchronized with
upper-level software. Thus, while object priorities may shift
from interval to interval, frequently migrating program data
to match these priorities can be counterproductive.

To control migration costs, MAT Daemon employs a trig-
ger routine to decide when it should migrate program data to
match object priorities. Our study evaluates three approaches
for triggering the reassignment of objects to tiers.

1. Time Trigger: Reassign every 𝑛 timer ticks.
2. LLC Misses Per Instruction (LLCMPI) Trigger: Re-

assign when the difference between the LLCMPI of the
most recent interval and the average LLCMPI of the
previous ten intervals, and normalized by the average
LLCMPI, exceeds a certain threshold.

3. Allocation Trigger: Reassign when𝑛 bytes have been
allocated since the previous re-assignment.

3.4.4 Converting Priorities to TierAssignments: When
the trigger routine indicates that it is ready to migrate pro-
gram data, MAT Daemon will invoke the enforcement rou-
tine to create and enforce new object-tier assignments. To
implement this routine on our Intel® Linux platform, we
configure the OS to view each tier of memory as a distinct
(memory-only) NUMA node in a single physical address
space.1 This way, user software can use the standard NUMA
API and related system calls to assign and remap virtual

memory to a specific type of memory 7 .

1Additional details and an example of this procedure are available at [21].
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Table 2. Benchmark descriptions with default performance. For each benchmark, the columns show a short description; an
input description with arguments; how the application parallelizes its workload; and the execution time (ET), peak resident set
size (GB), and average memory bandwidth (GB/s) of the default configuration (32 core, DRAM-only, system allocator).

App Description Parallel Input Input Arguments ET (s) GB GB/s

LULESH
Hydrodynamics stencil calculation, very little

communication between computational units.
OpenMP

small -s 300 -i 12 -r 11 -b 0 -c 64 307.7 23.17 87.68

full -s 850 -i 3 -r 11 -b 0 -c 64 -p 16,205 573.21 8.47

AMG
Parallel algebraic multigrid solver for linear sys-

tems on unstructured grids.
OpenMP

small -problem 2 -n 300 300 300 297.86 46.41 84.60

full -problem 2 -n 700 700 700 9,326 587.39 33.6

SNAP
Mimics the computational needs of PARTISN, a

Boltzmann transport equation solver.
OpenMP

small nx=320, ny=60, nz=46 297.20 27.18 42.05

full nx=5120, ny=60, nz=46 14,757 424.98 15.96

QMCPACK
Quantum Monte Carlo simulation of the elec-

tronic structure of atoms, molecules.
OpenMP

small NiO S64, VMC method, 40 walkers 256.63 19.40 20.99

full NiO S256, VMC method, 40 walkers 12,948 353.22 21.24

WarpX
Highly optimized and parallelized advanced elec-

tromagnetic Particle-In-Cell computation.
OpenMP

small max_step=20, n_cell=256 256 4096 289.56 50.23 29.59

full max_step=20, n_cell=1024 1024 4096 15,267 425.38 5.44

IdenProf
DenseNet-121 (dense neural network) training

for a large set of images of professionals.

Thread small num_objects=10 batch_size=256 740.84 37.30 36.85

Pool full num_objects=10 batch_size=2575 1,448 306.68 9.62

Graph500
Search and find the shortest path to a set of ran-

dom keys in a large undirected graph.
MPI small

graph500_reference_bss
258.88 9.10 44.26

with scale_of_graph=24

The enforcement routine then partitions the active ob-
jects into different sets that correspond to each memory tier.
Specifically, it traverses the live objects in the order of their
priorities and adds objects to the fast memory set until the ag-
gregate size of these objects is greater than the capacity limit
of the fast tier. All the remaining objects are then assigned
to the slow memory set. To move program data, the daemon
invokes the move_pages system call to (1) demote objects
that are currently in the fast tier but belong in the slow mem-
ory set and then (2) promote objects that are currently in the
slow tier but belong in the fast memory set.

4 Experimental Setup

4.1 Platform Details

Our evaluation platform contains a single Intel® Xeon® Gold
6246R CPU (code named Cascade Lake or CLX) with 16
physical compute cores hyperthreaded to 32 logical cores.
The cores all run a 3.4 GHz clock and share a 35.75 MB
L3 cache. The processor includes a memory controller that
services requests to both DDR4 SDRAM as well as OptaneTM

DC persistent memory through a common memory bus. The
bus is divided into six identical channels, each of which
is connected to one 32 GB, 2933 MT/s, DDR4 DIMM and
one 128 GB, 2666 MT/s, OptaneTM DC module. Thus, the
system contains a total of 192 GB of DDR4 SDRAM and
768 GB of OptaneTM DC persistent memory. Data reads from
the non-volatile memory require 2× to 3× longer latencies,
and sustain only 30%ś40% of the bandwidth of the DDR4
memory. Although latency for writes is similar for both types
of memory, the DDR4 also supports 5×ś10× more write
bandwidth than the OptaneTM memory [9]. All experiments
use Debian 11 with Linux as the base operating system.

4.2 Workloads
Our evaluation employs a variety of benchmark applications
that we selected based on their ability to stress cache and

memory performance on our platform. Table 2 describes our
selected benchmarks, the inputs we use to run them, and
some basic performance characteristics with our default con-
figuration. Several of these applications, namely LULESH,
AMG, SNAP, and QMCPACK, come from the CORAL [14]
benchmark suite, which is a set of high-performance comput-
ing applications developed and maintained by the US Depart-
ment of Energy. The other applications represent important
and widely used computations frommachine learning, graph
search, and scientific computing domains.

We tested our approach with two input sizes, called small

and full, for all applications, aside from Graph500, which
only ran successfully with smaller input sizes.2 The full in-
puts are designed to take advantage of the large capacity
NVM on our platform and thus generate data outlays beyond
the available DRAM. While the full size workloads generate
high rates of memory access, their observed bandwidths are
relatively low because a substantial portion of their hot data
are on the slower memory devices in the default configura-
tion. Moreover, they often require several hours of execution
time for each experimental run. Hence, for faster evaluation
and for comparisons with an ideal everything-in-DRAM con-
figuration, we also constructed a smaller set of inputs that
are able to complete their execution within a few minutes
and fit entirely within the DRAM tier. Note that these small
inputs still require several to dozens of GBs of memory ca-
pacity and generate memory bandwidth well beyond what
is sustainable by the NVM tier.

4.3 Operating System Details

Experiments with the small input sizes were run with Linux
kernel version 5.14. To control and generate contention for

2Constructing larger inputs for Graph500 is relatively straightforward, but

we found that execution with larger inputs always crashed with a segmen-

tation fault on our platform, even with the default configuration.
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capacity in the fast memory tier with relatively small work-
loads, we extended this kernel with facilities to constrain the
amount of DRAM available to each application. Specifically,
we added an option to the memory control group (cgroups)
interface to limit the amount of physical memory that pro-
cesses in the group can allocate and keep resident in fast
memory at any given point in time. Thus, if a process re-
quests a page from the faster tier when the specified limit has
been reached, the kernel will supply a page from the slower
memory tier or fallback to page reclaim if no other memory
is available. In addition to allowing relatively fast evaluation
of many tiering configurations, this approach also enables
easy and direct control over the amount of fast memory
available as well as comparison with an ideal configuration
in which the size of the faster tier is unconstrained.
To test our approach against alternative tiering strate-

gies at full system scale, we deployed and ran the full size
inputs on Linux kernel version 5.15 with Intel®’s tiering
patches [23] patches applied. While our approach does not
require any functionalities included with these patches, the
results with the full inputs are affected by some page migra-
tion optimizations included in this patch. Specifically, the
patch significantly improves page migration throughput by
batching certain operations (e.g., TLB shootdowns) when mi-
grating application pages from one tier to another.3 Since we
expect these optimizations will likely be included in future
kernels that support software-based tiering, we left them
enabled for runs with our own approach.

4.4 Compilation and Parallelization

Aside from IdenProf, which relies on several Python-based li-
braries, including TensorFlow and numpy, all of the selected
benchmarks are written entirely in popular, statically com-
piled languages, such as C, C++, and Fortran. We compiled
these static language applications and the static components
of IdenProf by using the GNU Compiler Collection v.10.2.1
with default optimization settings. We execute IdenProf us-
ing the standard CPython implementation of Python v.3.7.6.

Each benchmark provides amethod to parallelize its execu-
tion over multiple concurrent threads or processes. LULESH,
AMG, SNAP, QMCPACK, andWarpX employ OpenMP to dis-
tribute their workloads across multiple concurrent threads.
Graph500 achieves a similar effect withmultiple separate pro-
cesses by using MPI. To enable these features, we linked each
application with the standard OpenMP (v.4.5) or MPI runtime
(MPICH v.3.4.1-4) during compilation. IdenProf executes as
a single process but uses a pool of threads to parallelize the
DenseNet-121 training procedure.

Our tiering experiments use numactl to restrict the appli-
cation to 30 logical cores and reserve the remaining two cores
(which correspond to the same physical core) for the MAT

3In experiments with the LULESHworkload, the page migration throughput

improved by about 2.8× with these optimizations enabled.

Daemon process. In comparison to a configuration that cre-
ates 32 software threads for the application alone, we found
that using two fewer threads to avoid scheduling conflicts
with MAT Daemon enabled better overall performance for
our benchmarks. For all benchmarks except IdenProf, which
automatically adjusts the number of threads in its thread
pool based on the available computing resources, we also
employ the relevant OpenMP or MPI configuration options
to set the number of software threads to match the number
of available cores.

4.5 Common Experimental Configuration

For each experimental configuration, we report overhead
and performance results as the mean execution time of five
experimental runs relative to the default configuration. To
estimate and report variability in these results, we also com-
pute the 95% confidence intervals for the difference between
the means of the experimental and default configurations, as
described in Georges et al. [8]. These intervals are plotted as
error bars around the sample means in the relevant figures.
To reduce sources of variability between runs, all experi-
ments execute in isolation on an otherwise idle machine. An
automated script also clears out the page cache and disables
transparent huge pages for the application process prior to
each experimental run.

4.5.1 Common Profiling and Tiering Parameters. To
monitor memory access behavior, MAT Daemon configures
perf to sample the MEM_LOAD_L3_MISS_RETIRED.LOCAL_-

DRAM and MEM_LOAD_UOPS_RETIRED.LOCAL_PMM events with
a sampling period of 4,096. We selected this sampling period
because we found that it is sufficient to generate tens of
thousands of samples per second with only negligible (< 1%)
execution time costs for our workloads. The LLCMPI trigger
policy also uses perf to compute the number of LLC misses
per instruction as the ratio of the MEM_LOAD_RETIRED.L3_-
MISS and INST_RETIRED.ALL hardware counters.
We experimented with several timer interval lengths for

operating the profile collection and aggregation capabilities
in MAT Daemon, including 0.1, 0.2, 1.0, 2.0, and 10 seconds.
We found no difference in the execution time overhead of
the concurrent workload with each interval. However, val-
ues less than 2 seconds produced more irregular profiles be-
cause the aggregation and analysis procedures often required
longer than the profile period. Hence, all of our profiling
and profile-guided configurations operate the timer-driven
thread in MAT Daemon with a 2-second interval.

Using this 2-second interval, we also tried a number of 𝛼
values for aggregating the profiles of object access counts
(see Equation 1 in Section 3.4.1), including 0.01, 0.1, 0.5, 0.9,
and 1.0. We found that 0.1 provided relatively high accuracy
when predicting usage in the next program interval while
still being responsive to shifts in program behavior. Thus,
experiments that use this capability always set 𝛼 to 0.1.

169



ISMM ’23, June 18, 2023, Orlando, FL, USA Brandon Kammerdiener, J. Zach McMichael, Michael R. Jantz, Kshitij A. Doshi, and Terry Jones

0.8

0.9

1.0

1.1

1.2

E
x

e
c
u

ti
o

n
 T

im
e
 R

e
la

ti
v

e
 

to
 D

e
fa

u
lt

 (
3

2
 c

o
r
e
s)

default (30 cores)

bkmalloc alone

bkmalloc + MAT Daemon

LU
LESH

A
M

G

SN
A

P

Q
M

C
PA

C
K

G
raph500

W
arpX

IdenProf

A
verage

Figure 2. Execution time overhead of object profiling relative
to default (32-cores, system allocator) (lower is better).

We configured MAT Daemon to always split objects larger
than 64 MB into multiple records (Section 3.2.2). In early
testing, we found that 64 MB is small enough to enable suffi-
cient control over the placement of data within large objects
without increasing the execution time overhead of profiling.
Lastly, to leave a portion of fast memory for future alloca-
tions, each tier reassignment only fills the fast memory up to
90% of its available capacity. In preliminary testing, we found
this approach produced better overall performance than con-
figurations that use 50%, 80%, or 100% of the available DRAM
at each migration event.

5 Evaluation

5.1 Online Profiling Overhead

Let us first consider the performance and memory overhead
of object profiling with bkmalloc and MAT Daemon. For
this evaluation, we compare execution with the standard
malloc implementation from glibc (v.2.3.1) against execution
with our custom allocator and profiling tools. To avoid per-
formance effects related to data tiering, the experiments in
this subsection only use the small input sizes and assign all
program data to the DRAM tier. They do not include any
of the object tiering or migration capabilities described in
Section 3.4.

5.1.1 Execution Time Overhead. Figure 2 shows the
execution time of each benchmark when run with bkmal-
loc alone and when run with bkmalloc and MAT Daemon
collecting object usage statistics throughout the run. Since
both bkmalloc alone and bkmalloc + MAT Daemon restrict
the application to use only 30 logical cores (as discussed in
Section 4.4), we also plot the execution time of the default
system allocator with the application restricted to only 30
logical cores to isolate this effect. All results are relative to
the execution time of a default (32 core) configuration with
the standard system allocator (lower is better).
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Figure 3. Memory capacity overhead of object profiling rel-
ative to default (32-cores, system allocator) (lower is better).

Thus, limiting the workload to only 30 logical cores has
very little impact on the performance of these benchmarks.
The worst case of Graph500 slows down by about 6%, but in
some cases, performance slightly improves when computing
resources are restricted, perhaps due to less communication
overhead than the default configuration. Similarly, bkmalloc
has a muted impact overall, but it can have small yet sig-
nificant effects on the performance of individual workloads,
which are likely due to changes in data layout and the ef-
ficiency of processor caches. In some cases (e.g., LULESH
and IdenProf), these effects do cause some slowdown, but
in others (e.g., SNAP and WarpX), they actually improve
performance compared to the default allocator. Across all
seven benchmarks, these effects mostly cancel each other
out and result in a slight (< 1%) average improvement over
the default allocator. We also find that adding object pro-
filing with MAT Daemon has only a small additional cost
compared to bkmalloc alone. In the worst case of QMCPACK,
MAT Daemon adds an extra 5.8% of execution time overhead,
whereas the average execution time cost of object profiling
is only 2.8%.

5.1.2 Memory Capacity Overhead. Figure 3 shows the
peak memory usage of each workload with the default (30
cores), bkmalloc alone, and bkmalloc + MAT Daemon configu-
rations relative to the default (32 core) configuration (lower
is better). Similar to execution time, bkmalloc has a mixed im-
pact on the memory capacity of our workloads. On average,
these effects cancel each other out, and there is essentially
no difference between the peak capacity utilization of the
default and bkmalloc allocators. As expected, MAT Daemon
requires very little additional capacity to maintain its pro-
filing structures, and the relative increase in peak memory
capacity caused by MAT Daemon is not a significant factor
for this approach.
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Table 3. Object statistics: For each benchmark, the columns
show the peak number of active object records, the number
of object records created per second, the number of MBs
allocated per second, the average lifetime of each tracked
object (in seconds), and the portion of LLC miss events that
are associated with some object during profiling.

Small inputs (30 cores)

Application Peak OR OR/sec MB/sec Life (s) LLC

LULESH 346 5.26 235.90 35.96 0.951

AMG 997 8.93 428.21 67.26 0.956

SNAP 628 2.12 93.17 290.11 0.997

QMCPACK 191,706 747.01 79.57 243.77 0.99

WarpX 37,130 475.87 577.00 25.30 0.678

Graph500 1,125 7.65 47.76 115.74 0.999

IdenProf 3,981 44.44 1,508.35 77.03 0.367

5.2 Object Usage Characteristics

Next, let us examine how our selected workloads allocate
and use objects in memory. Since these experiments depend
on execution rates and timing statistics, we omit results for
the full inputs, which could be impacted by tiering effects,
and only present results for the small inputs with all data
assigned to DRAM.
Table 3 presents statistics about the object records cre-

ated by each application run with its small input. Note that,
since these statistics only include object records, they do not
include ephemeral objects, and allocations larger than 64
MB are split into multiple records (Sections 3.2.1 and 3.2.2).
Thus, for these workloads, the peak number of object records
ranges from only a few hundred to over 190,000. The peak
number of records is relatively low because the vast majority
of allocation events are for small and/or ephemeral objects,
which are never converted to object records. For the same
reason, the average lifetime of each record is relatively high,
at least 21 seconds for all applications. This property is im-
portant because longer lifetimes enable our tools to collect
more information about the usage of each object.
The column on the right shows the portion of memory

read events (i.e., LLC misses) that are associated with an
active object record during execution. Thus, for most bench-
marks, the vast majority (> 95%) of sampled LLC misses
correspond to an active object record. However, for WarpX
and IdenProf, many of the sampled accesses correspond to
addresses that are not part of any object record. This result
indicates that a significant portion of their memory band-
width corresponds to non-heap data (e.g., stack or kernel
objects) or possibly ephemeral heap objects. Despite this
result, we found that our approach can still be effective for
these workloads because it identifies and moves a large pro-
portion of cold application data to slower memory, thereby
freeing up fast memory for untracked application data.

5.3 Comparison of Object Tiering Policies

Our next set of experiments aims to identify the best per-
forming tiering policies for each workload under different
capacity constraints. In order to compare a larger number
of policies and configurations, these experiments only test
the small inputs and use the custom control group inter-
face (described in Section 4.2) to control the capacity of the
fast memory tier. Specifically, these experiments limit the
amount of DRAM for each workload to be 12.5%, 25%, and
50% of the same workload’s peak capacity utilization in its
default (32 core) configuration.

5.3.1 Selection of Trigger Thresholds. Each of the strate-
gies that our framework uses to decide when to migrate
program data includes a threshold value that can affect per-
formance in different scenarios. To limit the set of configu-
rations in our comparisons, we conducted some preliminary
experiments to identify reasonable threshold values for each
approach. For these initial tests, we limited the capacity
available in the DRAM tier to 25% of the application’s peak
utilization and configured MAT Daemon to use the APB ob-
ject prioritization policy. We then executed each workload
once with a range of options for each trigger policy and se-
lected the value that provided the best performance for our
full set of experiments. The range of options we evaluated
with each trigger policy are shown below with the value we
selected for our experiments emphasized and in bold.

• Time trigger (number of profiling intervals, each in-
terval is 2 seconds): 1, 2, 5, 10, and 100.

• LLCMPI trigger (normalized difference between LL-
CMPI of the current interval and average LLCMPI of
prior intervals): 0.5, 1, 2, 5, 10, 20, 30, 40, and 50.

• Allocation trigger (MBs allocated): 512; 1,024; 2,048;
and 4096.

5.3.2 Object Tiering Performance. Figure 4 presents the
performance of each object prioritization policy with each
migration trigger policy when the fast memory capacity is
limited to 12.5%, 25%, and 50% of the application’s peak ca-
pacity. For each workload and capacity limit, we also plot the
performance of an unguided, first touch (FT) configuration.
Similar to the standard Linux policy for non-uniform memo-
ries, FT simply faults data into the DRAM tier until it is full
and then assigns new data to the NVM tier. Note also that,
aside from the DRAM capacity limit, FT is identical to default
(32 core) execution. All results are shown in execution time
relative to the default configuration with all program data
assigned to the DRAM tier (lower is better).
The results show that, for most workloads and capacity

limits, there is at least one object tiering policy that signifi-
cantly outperforms the unguided FT configuration. However,
in a few cases (e.g., LULESH-50%, AMG-12.5%, and Graph500-
50%), profile-guided object tiering provides no benefit or can
even degrade performance vs. an unguided approach. On
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Figure 4. Performance (execution time) of guided object tiering with varying amounts of capacity available in the faster DDR4
memory tier. All results are shown relative to the default (32 core) configuration with all program data allocated to the DDR4
tier (lower is better). The DDR4 capacities shown along the 𝑥 axis are calculated as a percentage of the peak resident set size
during execution with the default configuration.

further analysis, we found that although our approach does
produce slightly more efficient data-tier assignments for
these cases, the additional profiling and migration costs im-
posed by our tools negate their benefits. Despite these cases,
our approach still produces substantial performance gains
on average compared to unguided FT. The best configura-
tions overall use the allocation trigger with either the LRU
or APB object prioritization policies and achieve speedups
of 1.4×, 1.6×, and 1.35× over FT with the 12.5%, 25%, and
50% capacity limits, respectively.
Comparing the effectiveness of the tiering strategies al-

lows us to make several additional observations:

1. In general, the LRU andAPB object prioritization strate-
gies aremore effective than FIFO. Intuitively, this result

makes sense because past and recent usage of a partic-
ular data object are more likely to predict future usage
than the age of the data. However, for workloads such
as IdenProf, which creates new data more quickly than
the other benchmarks, FIFO can be effective because
it does not need to wait to build a usage profile to
identify hot program data.

2. On average, the time and allocation trigger policies
are more effective than the LLCMPI trigger. Although
the LLCMPI policy can be effective when tuned for
individual workloads, we found that each individual
threshold value we tested was significantly worse than
the best threshold for at least some benchmarks.
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Table 4. Configurations used in the full scale evaluation.

Name Description

First Touch

(FT)

DRAM andNVM available to software in a flat address

space. The OS assigns new allocations to DRAM until

it is full and then assigns new data to NVM.

Memory

Mode

Hardware exercises DRAM as a large last level cache

to program data, which is stored in NVM. DRAM

capacity is not visible to upper-level software.

Linux Tiering

Patches

(LTP) [23]

Similar to FT, but uses page-based profiling to pro-

mote hot pages to DRAM periodically. Algorithm

and interface extend the standard NUMA balanc-

ing facility, with all parameters set to default values

(i.e., rate_limit_mbps is set to 65536 and wake_up_-

kswapd_early and scan_demoted are disabled).

bkmalloc+MD

avg-best

Employs the best performing bkmalloc+MD config-

uration on average (across all six workloads) for the

small input sizes with the 50% capacity limit (i.e., Al-

location Trigger, APB object priority).

bkmalloc+MD

indv-best

Employs the best performing bkmalloc+MD config-

uration for each individual workload with the small

input and 50% capacity limit.

3. Although the results show that the allocation trigger
with either the LRU or APB object prioritization poli-
cies work best on average, there is no single policy
that works best for all workloads and capacities. For
instance, although the allocation trigger effectively
identifies the beginning of new program phases for
SNAP and QMCPACK, this policy is too conservative
for Graph500 and results in worse performance due to
cold and stale data remaining in the fast memory tier
throughout much of the execution.

Overall, the results suggest that a single approach is un-
likely to work best for all workloads and architectures. How-
ever, by providing tools and controls that allow user-level
software to customize object tiering policies quickly and
easily, this work can enable applications to adapt to various
hardware capabilities and constraints more efficiently.

5.4 Full Scale Evaluation

Next, let us consider the performance of guided object tier-
ing with the full size workloads. In addition to evaluating
our approach at real system scale, these experiments allow
for direct comparison with other system level tiering strate-
gies, including hardware-directed caching and profile guided
paging in the OS. The full set of configurations we compare
for these experiments is described in Table 4. There are a
few other important notes: 1) For FT, Memory Mode, and
LTP, the application is configured to use the default system
allocator and all 32 logical computing cores, 2) bkmalloc+MD

avg-best and bkmalloc+MD indv-best use the results for the
small workloads with the 50% capacity limit because this
ratio most closely matched the ratio of each application’s
peak RSS to fast memory capacity on our server platform,
3) we ran indv-best for only two applications, IdenProf and
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Figure 5. Performance (execution time) of different tiering
configurations with full inputs (lower is better).

LULESH AMG SNAP QMCPACK WarpX IdenProf geomean

0

1

2

T
o

ta
l 

B
y

te
s 

R
ea

d
 f

ro
m

 M
em

o
ry

 

R
el

a
ti

v
e 

to
 S

ta
ti

c 
F

ir
st

T
o

u
ch

Memory Mode

Linux Tiering Patches

bkmalloc+MD avg-best

bkmalloc+MD indv-best

Full Scale Evaluation: 

Total Memory Read

Figure 6.Memory read bandwidth of different tiering config-
urations over the entire run with full inputs (lower is better).

WarpX, because these were the only workloads with a con-
figuration that performed significantly better (i.e., outside
the 95% confidence interval) than avg-best with the small
input, and 4) to account for the larger capacities of the full
scale workloads, we tested each application with 1 GB and 10
GB, and 100 GB allocation trigger thresholds and report per-
formance of the best threshold. Hence, the avg-best results
use a 1 GB threshold for QMCPACK and 10 GB thresholds
for every other workload.
Figure 5 shows the execution times of the full size work-

loads with the Memory Mode, LTP, bkmalloc+MD avg-best,
and bkmalloc+MD indv-best configurations, relative to the
execution times of the FT configuration. We find that the au-
tomated tiering strategies significantly improve performance
over the static FT approach in almost every case. While
Memory Mode performs best on average, there are cases
where our approach performs similarly (e.g., LULESH and
IdenProf) or outperforms (by up to 6% for AMG) hardware-
directed caching. In contrast to Memory Mode, our approach
achieves high performance in these cases without requiring
hard-wired architectural features and without sacrificing
the capacity of the fast memory devices. It is also important
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to note that we selected full size inputs that do not exceed
the capacity of the NVM devices so that we could directly
compare our approach to Memory Mode. Larger inputs that
take advantage of the additional capacity available in the
software-based tiering configurations would almost certainly
perform much worse (or crash) in Memory Mode.

Moreover, our approach can potentially operate more effi-
ciently than Memory Mode, in some cases. Consider Figure 6,
which shows the total memory read on our platform (includ-
ing data transfers between memory tiers) during execution
of each workload with each tiering configuration. All re-
sults are shown relative to the total memory read during
execution with the default FT configuration. While SNAP
is a significant outlier,4 most applications generate much
more memory bandwidth with Memory Mode than with
the software-based tiering configurations. On average, work-
loads aside from SNAP generate 23% more memory traffic
in Memory Mode than with bkmalloc+MD avg-best. Further,
since operational and data movement costs are the dominant
factor in memory power consumption [15, 19], these results
show there is significant potential for guided object tiering
to reduce energy costs in memory, while still achieving the
best possible performance, for some workloads.

Additionally, we find that avg-best achieves similar or bet-
ter performance than LTP for every workload. Specifically,
avg-best reduces execution time compared to LTP by 6.4%,
on average, with a best case reduction of 32% for QMCPACK.
The LTP approach extends the NUMA balancing infrastruc-
ture to scan and find themost frequently used pages in slower
memory and then promotes them to faster memory. In addi-
tion to being entirely page based, LTP relies on timing-based
heuristics that are very workload dependent and relatively
slow to respond to changing access patterns [5]. As a result,
LTP is much more conservative when moving data between
tiers than our approach, as evidenced by the bandwidth
results in Figure 6. However, the increased efficiency of pro-
filing objects rather than pages and a migration policy that
responds more quickly to changing program behavior can
overcome the additional migration overhead of our approach,
and leads to better overall performance for these workloads.
Lastly, in the two cases where the indv-best configura-

tion differs from avg-best, indv-best exhibits similar or worse
performance than avg-best in both cases. Thus, while the
avg-best policy performs relatively well for all full size ap-
plications, some individual object tiering policies may not
scale with different inputs of the same application.

4The full scale SNAP workload seems to be very sensitive to microarchitec-

tural effects on our platform. We suspect that changes in the data layout

are causing outsize differences in memory traffic due to their effects on

processor caching and prefetching. Indeed, we found that simply disabling

the hardware prefetchers causes Memory Mode and LPT to generate more

memory bandwidth than the default configuration (but still less than bkmal-

loc+MD avg-best). We are still investigating how these effects may limit the

effectiveness, or could perhaps be exploited by, our approach.

6 Future Work

There are many avenues for future research. First, we plan to
develop techniques that leverage deeper integration of MAT
Daemon with system-level migration routines to reduce data
migration costs. In particular, we will create new tools that
identify and replicate RD-only and RD-mostly data across
memory tiers and coordinate moving pages into and out
of faster memory with application behavior. Next, we will
investigate opportunities to enhance data tiering guidance.
Towards this goal, we will extend our approach with static,
compiler-based, tools and analyses that identify and track
program data features, such as the set of instructions that
allocate or access groups of data. In this way, our runtimewill
be able to distinguish related sets of objects before dynamic
profile information is available. At the same time, we will
also extend our BPF tools to enhance system-level profiling
and enable control over the placement of kernel memory
objects, as described in Section 3.3.1. Additionally, we will
use our framework to evaluate object tiering with a broader
set of architectural configurations and workloads, including
multi-tenant/ cloud computing scenarios. In the next few
years, memory systems will become even more complex,
with more diverse memory technologies and capabilities. As
we take this work forward, we will modify our framework
to support these new technologies, and we will explore the
challenges and opportunities that arise from applying this
approach on more complex memory architectures.

7 Conclusion

This work presents a novel software framework for enabling
profile-guided object tiering on heterogeneous memory plat-
forms. The approach employs a custom allocator and system-
wide monitoring daemon to provide fast and flexible object
tiering for single or multiprocess workloads without offline
profiling or recompilation of target applications. The frame-
work is also used to evaluate the effectiveness of various
choices made during object tiering, including how to priori-
tize objects for placement in the fast memory tier and when
to migrate program data. Overall, the findings show that
profile-guided object tiering produces substantial speedups
compared to other software-based approaches, including
a recent OS-based approach that uses page profiling to di-
rect memory tiering. Moreover, it shows that this approach
can achieve similar or better performance than hardware-
directed caching for some applications, while generating
significantly less data movement between tiers and without
sacrificing any memory capacity on the platform.
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