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Symmetry is usually defined via transformations described by a (higher) group. But a symme-
try really corresponds to an algebra of local symmetric operators, which directly constrains the
properties of the system. In this paper, we point out that the algebra of local symmetric opera-
tors contains a special class of extended operators – transparent patch operators, which reveal the
selection sectors and hence the corresponding symmetry. The algebra of those transparent patch
operators in n-dimensional space gives rise to a non-degenerate braided fusion n-category, which
happens to describe a topological order in one higher dimension (for finite symmetry). Such a
holographic theory not only describes (higher) symmetries, it also describes anomalous (higher)
symmetries, non-invertible (higher) symmetries (also known as algebraic higher symmetries), and
non-invertible gravitational anomalies. Thus, topological order in one higher dimension, replacing
group, provides a unified and systematic description of the above generalized symmetries. This is
referred to symmetry/topological-order (Symm/TO) correspondence. Our approach also leads to
a derivation of topological holographic principle: boundary uniquely determines the bulk, or more
precisely, the algebra of local boundary operators uniquely determines the bulk topological order.
As an application of the Symm/TO correspondence, we show the equivalence between Z2 × Z2

symmetry with mixed anomaly and Z4 symmetry, as well as between many other symmetries, in
1-dimensional space.
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I. INTRODUCTION

It is well known that symmetry, higher symmetry,[1–
4] gravitational anomaly,[5, 6] and anomalous (higher)
symmetry[7] can all constrain the properties of quan-
tum many-body systems or quantum field theory.[3, 4,
8–32] Recently, motivated by anomaly in-flow[33–37]
as well as the equivalence[38] between non-invertible
gravitational anomalies[38–43] and symmetries, it was
proposed that non-invertible gravitational anomalies,
(higher) symmetries, anomalous symmetries,[7] algebraic
higher symmetries,[44, 45] etc, can be unified by view-
ing all of them as shadow of topological order[46, 47]
in one higher dimension.[38–41, 45, 48–53] A compre-
hensive theory was developed along this line.[44, 45, 53]
More specifically, the properties of quantum many-body
systems constrained by a non-invertible gravitational
anomaly or a finite (anomalous and/or higher and/or al-
gebraic) symmetry are the same as the boundary prop-
erties constrained by a bulk topological order in one
higher dimension. Thus gravitational anomaly and/or fi-
nite symmetry can be fully replaced and is equivalent to
topological order in one higher dimension. Such a point
of view is called the holographic point view of symmetry.
To place the above holographic point view on a firmer

foundation, we note that even though we use transfor-
mations described by groups or higher groups to define
symmetries, in fact, a symmetry is not about transfor-
mations. What a symmetry really does is to select a set
of local symmetric operators which form an algebra. The
algebra of all local symmetric operators determines the
possible quantum phases and phase transitions, as well as
all other properties allowed by the symmetry. However,

the algebra of local symmetric operators does not con-
tain symmetry transformations and it is hard to identify
the corresponding symmetry group from such an algebra
(but see Refs. 54 and 55 where symmetry is reconstructed
using commutant algebras).
In this paper, we show that the algebra generated by lo-

cal symmetric operators includes not only point-like local
operators, but it also includes extended operators alge-
braically generated by local symmetric operators, such as
string-like operators, membrane-like operators, etc. We
find that a subclass of the extended operators – trans-
parent patch operators – are important. These transpar-
ent patch operators reveal the symmetry selection sectors
hidden in the algebra of local symmetric operators, and
thus reveal the selection rules and the corresponding sym-
metry. Thus, isomorphic algebras of transparent patch
operators give rise to equivalent symmetries.1 Those iso-
morphic classes of algebra were referred to as categorical
symmetries in Ref. 45 and 53, which, by definition, de-
scribe all known and unknown types of symmetries. How-
ever, the term “categorical symmetry” has also been used
to refer to algebraic higher symmetry (i.e. non-invertible
symmetry) by some authors. So here, we use categorical
symmetry to stress that the term is used in the sense of
Ref. 45 and 53.
We find that, for a finite symmetry in n-dimensional

space, such an algebra of transparent patch operators de-
termines a braided fusion n-category. If the algebra in-
clude all local symmetric operators, the braided fusion n-
category will be non-degenerate. Further more, isomor-
phic algebras of transparent patch operators give rise to
the same non-degenerate braided fusion n-category. Thus
categorical symmetries are described by non-degenerate
braided fusion n-categories, which happen to correspond
to topological orders in one higher dimension.[44, 45]
In other words, we suggest that group is not a proper
description of symmetry, since (higher) symmetries and
anomalous (higher) symmetries described by different
(higher) groups can be equivalent. Finite symmetries
are really described by non-degenerate braided fusion n-
categories (i.e. topological orders in one higher dimen-
sion).

The calculation in this paper is based on operator al-
gebra2. A similar picture was obtained in Ref. 56 based
on ground state and their excitations. The operator al-
gebra discussed in this paper may be related to the nets
of local observable algebras in Ref. 57 and topological
net of extended defects in Ref. 58. See also Ref. 50 for
related discussion on some of the examples discussed in
this paper.

The holographic theory of symmetry allows us to iden-
tify equivalent (higher and/or anomalous) symmetries,

1 Such equivalent symmetries were call holo-equivalent symmetries
in Ref. 45.

2 i.e. algebra generated by local symmetric operators (LSOs),
which we will refer to as LSO algebra for short throughout the
rest of the paper



3

that can look quite different. For example, two (higher
and/or anomalous) symmetries can be realized at bound-
aries of two symmetry protected topological (SPT) states
with those symmetries in one higher dimension. If after
gauging the respected symmetries in the SPT states, we
obtain the same topological order, then the two corre-
sponding symmetries have the same categorical symmetry
and are equivalent. This is a systematic way to identify
equivalent symmetries and their categorical symmetry.
In Ref. 45 it was conjectured that if two anomaly-free

(invertible or non-invertible) symmetries described by lo-
cal fusion higher categories, R and R′, are equivalent
(i.e. have the equivalent monoidal center Z(R) ≃ Z(R′)),
then the two symmetries provide the same constraint on
the physical properties. This leads to the following con-
jecture: for any pair of equivalent symmetries, there is
a lattice duality map, that maps a lattice model with
one symmetry R to a lattice model with another sym-
metry R′. More specifically, the sets of local symmet-
ric operators selected by the two symmetries, {OR} and
{OR′}, have an one-to-one correspondence and generate
the same algebra, under such a duality map. The duality
map also maps the lattice Hamiltonians (as sums of local
symmetric operators) of the two lattice models into each
other. The two lattice models have identical dynamical
properties, e.g. they have identical energy spectrum in
symmetric sub Hilbert space.[53] This can be viewed as
the physical meaning of “equivalent symmetry”.

This conjecture is motivated and supported by the
studies of some explicit examples of well known and
new dualities. The notion of dual symmetry was in-
troduced in Ref. 16 and 17 via gauging. Ref. 53
used Kramers–Wannier duality and its generalization to
study the equivalence and its holographic understand-
ing of 1d RepZ2

-symmetry (the Z2 0-symmetry) and
VecZ2

-symmetry (the dual Z2 0-symmetry), as well as
2d 2RepZ2

-symmetry (the Z2 0-symmetry) and 2VecZ2
-

symmetry (the Z(1)
2 1-symmetry). Ref. 45 used a lattice

duality map to study the equivalence and its holographic
understanding of nd nRepG-symmetry (the 0-symmetry
described by a finite group G) and nVecG-symmetry
(the dual non-invertible (n − 1)-symmetry). Ref. 56
studied the duality maps and holographic equivalence
of 1d RepZ2

-symmetry, VecZ2
-symmetry, and sRepZ2

-

symmetry (the 1d Zf
2 fermionic symmetry). In the above

examples, the duality map can be viewed as gauging pro-
cess. In Ref. 59 and 60, a more general duality map
between lattice systems is discussed via category theory
and tensor network.

In this paper, we studied a duality between anomaly-
free symmetry and anomalous symmetry. We obtain
new duality maps between many pairs of equivalent sym-
metries, such as 1d Z2 × Z2 symmetry with the mixed
anomaly and anomaly-free Z4 symmetry (see Section XI
for many more examples).

Viewing symmetry as topological order in one higher
dimension generalizes the fundamental concept of sym-
metry. It allows us to describe new type of non-

invertible symmetries (also called algebraic (higher)
symmetries)[45, 51, 61–64] that are beyond group and
higher group, as well as new type of symmetries that
are neither anomalous nor anomaly-free. But why do we
want a more general notion of symmetry?

We know that symmetry can emerge at low energies.
So we hope our notion of symmetry can include all the
possible emergent symmetry. It turns out that the low
energy emergent symmetries can be the usual higher
and/or anomalous symmetries. They can also be non-
invertible symmetries. They can even be symmetries that
are neither anomalous nor anomaly-free. Therefore, we
need a most general and unified view of higher and/or
anomalous symmetries and beyond, if we want to use
emergent symmetry as a guide to systematically under-
stand or even classify gapless states of matter.

For example, using this generalized notion of symme-
try, we gain a deeper understanding of quantum critical
points. We find that the symmetry breaking quantum
critical point for a symmetry described by a finite group
G in n-dimensional space is the same as the symmetry
breaking quantum critical point for an algebraic higher
symmetry described by fusion n-category nVecG.[45, 53]
In fact, both the ordinary symmetry described by group
G and the algebraic higher symmetry (a non-invertible
symmetry) described by fusion n-category nVecG are
present and are not spontaneously broken at this crit-
ical point. The G-symmetry and the algebraic higher
symmetry nVecG may give us a more comprehensive un-
derstanding of the symmetry breaking quantum critical
point.

Symmetry can constrain the properties of a physical
system. On the other hand, when certain excitations
in a system have a large energy gap, below that energy
gap, the system can have emergent symmetry, which can
be anomalous and/or non-invertible.[45, 53, 65] In this
case, we can use the emergent symmetry to reflect and
to characterize the special low energy properties of the
system below the gap. Here we make a preparation to
go one step further. We intend to propose that the low
energy properties and the emergent symmetries are the
same thing. In other words, we intend to propose that
the full emergent symmetry may fully characterize the
low energy effective theory. We may be able to study
and to classify all possible low energy effective theories
by studying and classifying all possible emergent symme-
tries.

Such an idea cannot be correct if the above symme-
tries are still considered as being described by groups and
higher groups. This is because the symmetries described
by groups and higher groups are quite limited, and they
cannot capture the much richer varieties of possible low
energy effective theories. However, after we greatly gen-
eralize the notion of symmetry to algebraic higher sym-
metry, and even further to topological order in one higher
dimensions – which includes (anomalous and/or higher)
symmetries, (invertible and non-invertible) gravitational
anomalies, and beyond – then it may be possible that
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those generalized symmetries can largely capture the low
energy properties of quantum many-body systems. This
may be a promising new direction to study low energy
properties of quantum many-body systems.

The above proposal is supported by the recent study
of 1d gapless conformal field theory where a topo-
logical skeleton was identified for each conformal field
theory.[66–68] Such a topological skeleton is a non-
degenerate braided fusion category corresponding to a
2d topological order, where the involved conformal field
theory is one of the gapless boundary.

The low energy properties of quantum many-body sys-
tems are described by quantum field theories. A system-
atic understanding and classification of low energy prop-
erties is equivalent to a systematic understanding and
classification of quantum field theories. Thus the holo-
graphic view of symmetry can have an impact on our
general understanding of quantum field theories. Using
this holographic point of view of symmetry, one can also
obtain a classification of topological order and symme-
try protected topological orders, with those generalized
symmetry, for bosonic and fermionic systems, and in any
dimensions.[44, 45]

The holographic point view of symmetry has a close re-
lation to AdS/CFT duality, where a boundary CFT and
a bulk quantum gravity in AdS space determine each
other. In the holographic point view of symmetry, there
is a topological holographic principle: boundary deter-
mines bulk, while bulk does not determine boundary. In
this paper, we give the above statement a more precise
meaning which allows us to derive the topological holo-
graphic principle. We regard boundary as an algebra
of local boundary operators. From the algebra of lo-
cal boundary operators, we can obtain the sub-algebra
of a special class of extended operators – transparent
patch operators, which in turn encodes a non-degenerate
braided fusion (higher) category. This category describes
a topological order in one higher dimension, which is the
bulk. We see that boundary uniquely determines bulk.

II. NOTATIONS AND TERMINOLOGY

In this paper, we will use n+1D to represent spacetime
dimensions, and nd to represent spatial dimensions. We
will use mathcal fontA,B, C to describe fusion categories,
and euscript font A,B,C to describe braided fusion cat-
egories. We will use the theorem style Definitionph to
provide “physical definitions”, which serve the purpose of
introducing concepts without delving into mathematical
rigor.

Let us also remark on some terminology. In this paper
we use categorical symmetry to mean the combination of
symmetry and dual symmetry [53]. If a categorical sym-
metry is finite, it turns out that the categorical symmetry
corresponds to a topological order [69, 70] in one higher
dimension.[44, 45] Such a topological order in one higher
dimension has also been referred to as symmetry topo-

logical field theory (symmetry TFT) in the field theory
literature.[71] In this context, one describes the topolog-
ical operators corresponding to the (finite) symmetries
of a quantum field theory in d dimensions in terms of
the topological excitations of a corresponding TFT in
d+1 dimensions. The symmetry data are encoded in the
global topological properties of this TFT, which may be
described in the form of some action. However, such an
action is not necessarily unique. So one should keep in
mind that “symmetry TFT” really refers to the topolog-
ical data of the theory which is independent of the fields
one uses to describe it. The topological data encoded
by such a TFT may also be captured by a lattice model
exhibiting topologically ordered ground states. In this
limit, the two notions of symmetry TFT and categorical
symmetry coincide. This concept was also explored under
the name of “topological symmetry” in Ref. 72.

Let us note that in physics contexts, one usually inter-
prets topological field theory as a particular kind of field
theory, i.e. a theory in terms of smoothly varying fields.
If we have a lattice regularization in mind for the field
theory, we must first take the limit where the lattice spac-
ing vanishes. Under such an interpretation, topological
field theory describes a topological order near a critical
point, where the smoothly varying field describes the long
wavelength fluctuations near the critical point. Since
a topologically ordered phase can have many different
phase boundaries described by different critical points,
it is common that different topological field theories can
describe the same topological order. Moreover, for con-
tinuous or infinite symmetry, categorical symmetry does
not correspond to topological order or symmetry TFT
in one higher dimension. We need some generalization of
fusion categories with an infinite number of objects to de-
scribe such symmetries. Whatever this generalization is,
it is clear that the notion of categorical symmetry for such
symmetries is more general than topological order/TFT
in one higher dimension.

In this paper, we conjecture that categorical symmetry
(as the combination of symmetry and dual symmetry)
corresponds to equivalence class of isomorphic algebra of
transparent patch operators. So we will use this as a more
precise definition of categorical symmetry. We conjecture
that, in n-dimensional space, categorical symmetry (as
equivalence class of isomorphic algebras of transparent
patch operators) is described by non-degenerate braided
fusion n-category. For continuous or infinite symmetry,
the corresponding braided fusion n-category will have in-
finite objects/morphisms. We will discuss some simple
examples to support our conjecture.

In this paper, we also interpret quantum field theory as
an algebra of local operators, along with a Hamiltonian.
Under such an interpretation, the algebra of local oper-
ators may have an energy dependence: we may exclude
some local operators that generate high energy excita-
tions. Then, the remaining local operators may generate
a different algebra. This low energy operator algebra
gives rise to emergent categorical symmetry. We propose
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FIG. 1. A 2d lattice bosonic model, whose degrees of freedom
live on the vertices and are labeled by the elements in a set:
gi ∈ G

that the full low energy emergent categorical symmetry
may largely characterize gapless liquid states.

Similarly, we also interpret boundary of a topological
order as an algebra of local boundary operators along
with a boundary Hamiltonian. Here, the local boundary
operators only create excitations with energy less then
the bulk energy gap which is assumed to be infinite. Un-
der such an interpretation, we see a close connection be-
tween quantum field theory and boundary of topological
order.

We would like to point out that categorical symmetry
(as non-degenerate braided fusion n-category M) is not
algebraic higher symmetry [44, 45] nor fusion category
symmetry [51]. The latter are described by local fusion
higher category R. In fact, the categorical symmetry M
is given by the center of R [44, 45]

M = Z(R). (1)

III. BOSONIC QUANTUM SYSTEM AND ITS
ALGEBRA OF LOCAL OPERATORS

A. Total Hilbert space, local operator algebra, and
local Hamiltonian

A lattice bosonic quantum system is defined by four
components:

1. A triangulation of space (see Fig. 1).

2. A total Hilbert space

V =
⨂︂
i

Vi, (2)

where Vi = span{|g⟩
⃓⃓
g ∈ G} is the local Hilbert

space on vertex-i. The basis vectors of Vi are la-
beled by the elements in a finite set G.

3. An algebra of local operators formed by all the
local operators, A = {Oi}. Here local operator
is defined as an operator Oi that acts within the
tensor product of a few nearby local Hilbert spaces,
say near a vertex-i.

n

m m

n1 2

1 2 ... ...

... ...

ba

FIG. 2. The matrix elements of a string-like tensor network
operator, Om1,m2,··· ;n1,n2,···, can be given by a contraction of
rank-4 tensors Tn2,m2,a,b, etc. Each tensor is represented by a
vertex, where the legs of the vertex correspond to the indices
of the tensor. The connected legs have the same index and
is summed over (which correspond to the tensor contraction).
This is just one representation of tensor network operator.

4. A local Hamiltonian H = −
∑︁

iOi which is a sum
of hermitian local operators.

B. Transparent patch operators

The algebra of local operators will play a central role
in this paper. This algebra, which is generated by the
local operators, does not only contain local operators
but, beyond 0-dimensional space, also contains the prod-
ucts of local operators. These products can generate ex-
tended operators that can be string-like, membrane-like,
etc. Thus the closure of the algebra of local operators
must contain those extended operators. An algebra of lo-
cal operators may have many different extensions. Since
we are going to use the algebra of local operators to de-
scribe symmetries, we will consider a particular exten-
sion. We would like to organize those local and extended
operators into point operators, string operators, disk op-
erators, etc, with a special transparency property. We
refer to these operators generally as transparent patch
operators. More precisely,

Definitionph 1. a patch operator is a tensor net-
work operator (see Fig. 2). It also has the following
form

Opatch =
∑︂
{ai}

Φ({ai})
∏︂

i∈patch

Oai
i (3)

where “patch” has a topology of n-dimensional disk, n =
0, 1, 2, · · · . A transparent patch (t-patch) operator
is a patch operator that satisfies the following trans-
parency condition (or invisible-bulk condition):

OpatchOLSO = OLSOOpatch, (4)

if the boundaries of the patch, ∂patch is far away from
the LSO OLSO. The above condition is also equivalent to

OpatchOpatch′ = Opatch′Opatch, (5)

if the boundaries of two patches, ∂patch and ∂patch′, are
not linked and are far away from each other.
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In the above definition, Oai
i ’s are local operators act-

ing near vertex-i. For each vertex, there can be several
different local operators (including the trivial identity op-
erator) which are labeled by ai.

∏︁
i∈patchO

ai
i is a product

of those local operators over all the vertices i in the patch.
Different choices of {ai} give rise different operator pat-
tern.

∑︁
{ai} Φ({ai}) is the sum of all operator pattern

with complex weight Φ({ai}). One may think Oai
i ’s cre-

ate different types of particles labeled by ai at vertex-
i. Then Opatch =

∑︁
{ai} Φ({ai})

∏︁
i∈patchO

ai
i creates a

quantum liquid state of those particles on the patch. The
quantum liquid state is described by the many-body wave
function Φ({ai}).

In the above definition, we also used a notion of far
away which is not rigorously defined. To define such a
notion, we first introduce a notion of small local oper-
ators as operators acting on vertices whose separations
are less then a number Lop. (The separations between
two vertices is defined as the minimal number of links
connecting the two vertices.) In the rest of this paper,
the terms “local operator” and “0-dimensional patch op-
erator” will refer to this kind of small local operators.

However, the algebra of small local operators contains
big local operators, acting on vertices whose separa-
tions are larger then the number Lop. “n-dimensional
patch operator” for n > 0 refer to those big local oper-
ators. The notion of far away means further than the
distance Lop. When we take the large system size limit:
Lsys → ∞, we also assume Lop → ∞ and Lop/Lsys → 0.
We will see in this paper that it is this particular way to
take the large system size limit that ensures the algebra
of small local operators to contain large extended opera-
tors. Such an algebra of small local operators and large
extended operators in n-dimensional space have a struc-
ture of non-degenerate braided fusion n-category. This
emergent phenomenon is the key point of this paper.

There is another important motivation to introduce
transparent patch operators. The bulk of transparent
patch operators is invisible. Thus a transparent open
string operator can be viewed as two point-like particles,
one for each string end. A transparent disk operator can
be viewed as a closed string at the boundary of the disk.
In general, a transparent patch operator gives rise to an
extended excitation in one lower dimension, correspond-
ing to the boundary of the patch. Later we will see that
those point-like, string-like, etc excitations can fuse and
braid, forming a braided fusion category that describe
the operator algebra.

The boundaries of transparent patch operators can be
viewed as charged particles, although the patch operators
are fromed by LSO’s that carry no symmetry charge. The
boundaries of transparent patch operators can also be
viewed as fractionalized particles, which may carries frac-
tionalized degrees of freedom and/or fractionalized quan-
tum numbers. So the boundaries of transparent patch op-
erators reveal the selection sectors of a symmetry. Such
selection sectors are hidden in the algebra generated by
the LSOs.

C. Patch symmetry and patch charge operators

Symmetry transformation operators and symmetry-
charge creation operators play important roles in our the-
ory about symmetry (including higher symmetry and al-
gebraic higher symmetry). Those operators also appear
in our setup of local operator algebra after we include the
extended operators.

Definitionph 2. A t-patch operator is said to have an
empty bulk if Oai

i = idi for all i’s far away from the
boundary of the patch. A t-patch operator with an empty
bulk is also referred to as a patch charge operator.
A t-patch operator with non-empty bulk is referred to as
a patch symmetry operator (see Section IVB for a
concrete example).

We would like to remark that due to the transparency
condition eqn. (5), a charge patch operator always com-
mutes with symmetry transformation operator (acting on
the whole space for 0-symmetry, or closed sub-manifold
for higher symmetries). Thus the patch charge operator
always carry zero total charge. So the patch charge oper-
ators are not charged operators, since charged operators
do not commute with symmetry transformations. The
patch charge operators defined above are something like
operators that create a pair of charge and anti-charge,
which correspond to a charge fluctuations with vanishing
total net charge.
We want to point out that the definition 2 is not that

important physically, since the notations of charge and
symmetry transformation are not the notions of algebra
of local operators. They are the notions of a representa-
tion of an operator algebra. For different representations
of the same operator algebra, the same operator in the
algebra can some times be patch charge operator and
other times be patch symmetry operator.

In next section, we will discuss a concrete simple ex-
ample: a bosonic system in 1-dimensional space with Z2

symmetry, to illustrate the above abstract definition. We
will give the explicit form of t-patch operators, to show
how they reveal a braided fusion category in the algebra
of local operators. In Appendix A, we will discuss an
example of bosonic system in 3-dimensional space with-
out symmetry. We will illustrate how they give rise to a
non-degenerate braided fusion 3-category 3Vec.

D. Algebra of t-patch operators and Categorical
symmetry

The symmetric Hamiltonian is a sum of local symmet-
ric operator H =

∑︁
iO

symm
i . If our measurement equip-

ments do not break the symmetry, then the measurement
results are correlations of local symmetric operators. We
see that a symmetry is actually described by the algebra
of local symmetric operators, rather than by the sym-
metry transformations. Or more precisely, symmetry is
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defined by the commutant algebra of local symmetric op-
erators. Here a commutant algebra of a local operator al-
gebra is formed by all the operators (local or non-local)
that commute with all the operators in the local operator
algebra. In particular

Isomorphic commutant algebras ↔ Equivalent symmetry.
(6)

In this paper, we will view symmetry from this operator
algebra point of view:

Definitionph 3. A categorical symmetry is an equiva-
lence class of isomorphic commutant algebra.

We remark that if the operator algebra contains all the
local operators in a lattice model, then the categorical
symmetry is trivial, describing a trivial symmetry (i.e. no
symmetry). If the local operator algebra contain only a
subset of local operators (such as containing only sym-
metric local operators), then the categorical symmetry is
non-trivial. Also note that categorical symmetry is differ-
ent from the usual symmetry defined via the symmetry
transformations. Two symmetries defined by different
symmetry transformations may have isomorphic algebra
of local symmetric operators. In that case, the two sym-
metries correspond to the same categorical symmetry, and
are said to be equivalent.

IV. A 1D BOSONIC QUANTUM SYSTEM
WITH Z2 SYMMETRY

In this section, we consider the simplest symmetry –
Z2 symmetry in one spatial dimension. A bosonic system
with Z2 symmetry is obtained by modifying the algebra
of the local operators. For convenience, let we assume
the degrees of freedom live on vertices, which are labeled
by elements in the Z2 group +1 and −1.

A. Z2 symmetry and its algebra of local symmetric
operators

In the standard approach, a symmetry is described by
a symmetry transformation, which has the following form
for our example:

W =
⨂︂

i∈whole space

Xi, X =

(︄
0 1

1 0

)︄
. (7)

Since W 2 = 1 which generates a Z2 group, we call the
symmetry a Z2 symmetry. We can use the Z2 transfor-
mation W to define an algebra of local operators:

A = {Osymm
i

⃓⃓
Osymm

i W =WOsymm
i } (8)

The local operator Osymm
i , satisfying Osymm

i W =
WOsymm

i , is called local symmetric operator.

i k

(a)

i k
jj j

(b) (c)

FIG. 3. (a) “Fusion” of two string operators. (b) Non-
trivial “braiding” between two string operators. (c) Trivial
“braiding” between two string operators.

To see the connections between operator algebra and
braided fusion category, we use the t-patch operators in-
troduced in last section to organize the local symmetric
operators:

1. 0-dimensional t-patch operators: Xi, ZiZi+1,

where Z =

(︄
1 0

0 −1

)︄
.

2. 1-dimensional t-patch operators – string operators:
for i < j

Zstrij = ZiZj , Zstrji ≡ Z†
strij , (9)

where the stringij connects the vertex-i and vertex-
j. The above string operator has an empty bulk
and is called as patch charge operator. We have
another string operator: for i < j

Xstrij = Xi+1Xi+2 · · ·Xj , Xstrji ≡ X†
strij . (10)

Note that the boundaries of X-strings actually live
on the links ⟨i, i+1⟩ and ⟨j, j+1⟩. We labeled those
links by i, j. This leads to the special choice of the
boundary of the string operator. The second string
operator has a non trivial bulk, which generates our
Z2 symmetry.

We remark that, in general, the operators in the string
may not commute and the order of the operator product
will be important in that case. Here we adopted a con-
vention that in string operator Ostrij , the operators near
i appear on the left side of the operators near j.
In terms of t-patch operators, algebra of local symmet-

ric operators takes the following form (only important
operator relations are listed)

ZstrijZstrjk = Zstrik , (11)

XstrijXstrjk = Xstrik , (12)

ZstrijXstrkl
= −Xstrkl

Zstrij , (i < k < j < l) (13)

ZstrijXstrkl
= +Xstrkl

Zstrij , (else) (14)

Eqn. (11) and (12) describe the fusion of string operators
(see Fig. 3a). The commutator between the two kinds
of string operators depends on their relative positions.
If one string straddles the boundary of the other string,
such as i < k < j < l as in Fig. 3b, commutator has
a non-trivial phase. Otherwise (see Fig. 3c), the string
operators commute, which ensure the string operators are
indeed transparent patch (t-patch) operators. All such
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“non-straddling” orderings of i, j, k, l are understood to
be captured in eqn. (14). In Section IVF, we will discuss
the full algebra of extended t-patch operators in more
detail.

B. Patch symmetry transformation

We note that Zi operator transforms as the non-trivial
representation of Z2 group:

WZiW
−1 = −Zi. (15)

Thus we say Zi carries a non-trivial representation, or
more commonly, a non-trivial Z2 charge. The string op-
erator Zstr is formed by two Z2 charges and carry a trivial
total Z2 charge. In fact, by definition, all local symmetric
operators carry trivial Z2 charge (see later discussion).

We have stressed that a symmetry is fully character-
ized by its algebra of local symmetric operators. But
all those local symmetric operators carry no symmetry
charge. It appears that a key component of symmetry,
the symmetry charge ( i.e. the symmetry representation)
is missing in our description.

In fact, the symmetry representation can be recovered.
As pointed out in Ref. 53, there is a better way to describe
symmetry transformations using t-patch operators. We
notice that the only use of the symmetry transformations
is to select local symmetric operators. After that we no
longer need the symmetry transformations. Since local
symmetric operators are local, we do not need the sym-
metry transformations that act on the whole space. We
only need symmetry transformations that act on patches
to select local symmetric operators. This motivates us to
introduce patch symmetry transformation

Wpatch =
⨂︂

i∈patch

Xi. (16)

We can use the patch symmetry transformation Wpatch

to define the local symmetric operators:

A = {Osymm
i

⃓⃓
Osymm

i Wpatch =WpatchO
symm
i ,

i far away from ∂patch}. (17)

So a symmetry can also be defined via the patch symme-
try transformations.

For the Z2 symmetry in 1-dimensional space, the patch
symmetry transformations happen to be generated by
one of the string operators with non-empty bulk, Xstr,
and this is why we call them patch symmetry operators.
In this example, we also see that the string operator Zstrij

with empty bulk corresponds to a charge-anti-charge pair
operator. This is the why we call t-patch operators with
empty bulk as patch charge operators.

The patch symmetry transformations have an advan-
tage that they can detect the symmetry charge hidden
in the patch charge operators (which have zero total
charge): when the patch charge operator Zstr straddle the

charged

charged

charged

FIG. 4. Non-trivial “braiding” between two string opera-
tors, the patch symmetry operator (the solid line) and the
patch charge operator (the dashed-line), measures the sym-
metry charge carried by boundary of patch charge operator,
if the patch symmetry operator generates the symmetry.

boundary of the patch symmetry transformation Wpatch,
the two operators have a non-trivial commutation rela-
tion:

ZstrWpatch = −WpatchZstr. (18)

This non-trivial commutation relation measures the
charge carried by one end of the string operator.
If we view the order of the operator product as the or-

der in time, and view the string as world line of a particle
in spacetime (see Fig. 4), then the commutation relation
eqn. (18) can be viewed as a braiding of the charged
particle around the boundary of the patch symmetry op-
erator. The boundary of the patch symmetry operator
can be viewed as a “symmetry twist flux”. The charge
is measured by a braiding of symmetry charge around
symmetry twist flux. This is why we refer to eqn. (13)
and eqn. (14) as “braiding” relations in Fig. 3.

C. The algebra of patch charge operators and its
braided fusion category

Let us concentrate on patch charge operators. The
properties of the charges of a symmetry can be system-
atically and fully described by a braided fusion category.
To connect the Z2 symmetry charges to fusion category,
we view the local symmetric operators Osymm

i as the mor-
phisms, and the ends of string operator Zstrij (i.e. the
point-like Z2-charge) as objects ei and ēj in a fusion cat-
egory. In other words, we write the string operator as

Zstrij = Te(i→ j). (19)

The notation Te(i→ j) is more precise and carries several
meanings. (1) We view Te(i → j) as a world-line of a
particle labeled by e that travels from i to j. Te(i → j)
can also be viewed as a hopping operator of e from i to
j. Here, we have adopted a convention that the arrow
indicate the direction of the hopping. (2) The notation
of string operator Te(i → j) also specify the ordering of
operators: the operators near left index i appears to the
left of the operators near the right index j.
Since the local symmetric operators Zstrii′ (the mor-

phisms) can move the string ends (the Z2-charges):

ei
Osymm

→ ei′ , ei′
Osymm

→ ei, (20)
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0 1 2 3

ba c

a
b

c

0 1 2 3

ba c

a c

ab

abc abc

bc

bc

FIG. 5. Two ways to fuse three particles a, b, c into abc, as
operator product. The phase difference of the two resulting
operators is F (a, b, c). The horizontal lines and the corre-
sponding 45◦ lines correspond to hopping operators. For ex-

ample 1
b−→ 2 ∼ Tb(1 → 2). The hopping operators with

higher location are applied first. Thus we have the relation
Tc(3 → 1)Tb(2 → 1)Ta(0 → 1) = F (a, b, c)Ta(0 → 1)Tc(3 →
1)Tb(2 → 1).

the Z2-charges (at the string ends) at different places are
isomorphic ei ∼= ei′ , i.e. they belong to the same type of
excitations. More generally, two excitations that can be
connected by local symmetric operators are regarded as
the same type of excitations.

From the above expression of t-patch operators, we can
compute the fusion ring

a⊗ b =
⨁︂
c

Nab
c c (21)

of the braided fusion category. Notice that Te(−∞ → i)
creates an e particle at i (and creates another particle
at −∞ which we ignore). Creating two e particles, we
obtain

Te(−∞ → i)Te(−∞ → i) = id. (22)

In other words, we get a trivial particle 1. This allows
us to obtain the fusion rule

ei ⊗ ei = 1. (23)

The isomorphic relation is an equivalence relation. After
quotienting out the equivalence relation, ei ∼= ej , we find
that the fusion category has only two objects: 1, e. The
morphism of the fusion category is given by local sym-
metric operators Osymm

i near a vertex-i. Also, with this
equivalence relation, we can interpret eqn. (23) as

e⊗ e = 1, (24)

which tells us that the e particle is its own anti-particle.
However, the fusion rule Nab

c fails to completely deter-
mines the fusion category, because it is possible for two
different fusion categories to have the same fusion ring.
To complete the description of the fusion category, we

0 1 2 3 0 1 2 3

a ba b

a
b

b ba
a

FIG. 6. The two ways of a, b particle hopping give rise to two
configurations which exchange their positions. When a = b,
the phase difference of the two resulting operators is e iθa ,
which is the self statistics of the a-particle. Thus we have
a relation Tb(3 → 1)Tb(1 → 2)Ta(0 → 1) = e iθaTa(0 →
1)Tb(1 → 2)Tb(3 → 1).

also need to compute the F -symbol, which is defined as
the relative phases of different ways to fuse three parti-
cles a, b, c together, a ⊗ b ⊗ c → (ab) ⊗ c → (ab)c and
a⊗ b⊗ c→ a⊗ (bc) → a(bc) (see Fig. 5), if we treat the
result of fusion, as quantum state or as operator:

|(ab)c⟩ = F (a, b, c)|a(bc)⟩,
O((ab)c) = F (a, b, c)O(a(bc)). (25)

Following Ref. 73, the F -symbol is computed from the
relative phase of the two ways to compute operator prod-
ucts in Fig 5. It is trivial to check that

Te(1 → 2)Te(0 → 1)Te(2 → 1)Te(3 → 1)

≡ Zstr12Zstr01Z
†
str12Z

†
str13

= Z†
str13Zstr01

= Te(3 → 1)T1(1 → 2)Te(0 → 1)T1(2 → 1) (26)

therefore F (e, e, e) = 1. Similarly, we can show that
F (1,1,1) = F (e,1,1) = F (1, e,1) = F (1,1, e) =
F (e, e,1) = F (e,1, e) = F (1, e, e) = 1, since the hop-
ping operators of e and 1 particles all commute. This
implies that the category formed by 1, e and described
by data Nab

c , F (a, b, c) is a fusion category RepZ2
– the

fusion category of the representations of Z2 group.
In fact, the 1, e particles not only form a fusion cat-

egory, they actually form a braided fusion category. To
calculate the braiding properties, we first calculate the
self statistics of e particle using the statistical hopping
algebra prescription introduced in Ref. 74 and depicted
in Fig 6,

Te(0 → 1)Te(1 → 2)Te(3 → 1)

= Zstr01Zstr12Z
†
str13

= e iθeZ†
str13Zstr12Zstr01

= e iθeTe(3 → 1)Te(1 → 2)Te(0 → 1)

(27)

from which we can read off the self-statistical angle
e iθe = 1. This shows that e particles have bosonic self-
statistics. We can also use Fig 7 to compute mutual
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0 1 2 3

a b

a
b

0 1 2 3

a b

b
a

FIG. 7. The two ways of a, b particles hopping give rise to the
same final configuration but via different braiding paths. The
phase difference of two hopping processes is e iθab , which is
the mutual statistics of the a- and b-particles. Thus we have
a relation Tb(3 → 1)Ta(0 → 2) = e iθabTa(0 → 2)Tb(3 → 1).

statistics of 1, e particles. We find that 1, e particles are
bosons with trivial mutual statistics. This implies that
the category formed by 1, e is a braided fusion category
RepZ2

. It is actually a special braided fusion category
called symmetric fusion category, since all the mutual
statistics are trivial.

According Tannaka duality, the symmetric fusion cat-
egory RepZ2

can fully describe the symmetry group G =
Z2. So, instead of using a group G (formed by the trans-
formations), we can also use a symmetric fusion category
of patch charge operators (i.e. formed by charged objects
or the representations) to fully describe a symmetry.

D. Representation category and symmetry

Above picture also works for generic finite group G:
a symmetry G can also be described by a symmetric fu-
sion category RepG (formed by the representations of G).
This is the categorical point of view of symmetry, which
was used in Ref. 44 and 75 and will be used in this pa-
per. The symmetric fusion category generated by patch
charge operators is nothing but the mathematical frame-
work that describes the properties of symmetry charges
(such as their fusion and braiding).

Definitionph 4. We will call the symmetric fusion cat-
egory R formed by patch charge operators as represen-
tation category.[32]

In fact, there is another definition of representation
category. We may ignore the braiding structure and con-
sider the fusion category R formed by patch charge op-
erators. Instead of the braiding structure, we consider
a symmetry-breaking structure, i.e. a faithful functor
β : R → Vec (which is also called fiber functor) that
describe the process of ignoring the symmetry:

Definitionph 5. If a fusion category R has a fiber func-
tor β, then the pair (R, β) will be called a local fusion
category. Such a local fusion category can also be viewed
as the representation category of the symmetry. [45].

In higher dimension, the notion of symmetric fusion
higher category used in Ref. 44 may be hard to define.
In this case, the second Definition 5 is can be used as in
Ref. 45.
Thus we can say that an anomaly-free symmetry in

1-dimensional space described by a finite group G is
fully described by its representation category, a sym-
metric fusion category RepG or a local fusion category
(RepG, β). This point of view can be generalized to
described anomaly-free symmetries beyond group and
higher group. In Ref. 45, it is proposed that the most
general anomaly-free symmetries in n-dimensional space
are fully described by local fusion n-categories (R, β).
Such a description includes non-invertible symmetries
(i.e. algebraic higher symmetries).
In the above we have used a notion of anomaly-free

symmetry. For symmetry described by group and/or
higher group, an anomaly-free symmetry is defined as a
symmetry that can be gauged. But such a definition does
not apply to non-invertible symmetries, for which we do
not how to gauge them. To solve this problem, Ref. 45
proposed the following macroscopic definition without
using gauging

Definitionph 6. Anomaly-free symmetry is the
symmetry that allows non-degenerate symmetric gapped
states for any closed space manifolds.

A microscopic definition was also proposed

Definitionph 7. Anomaly-free symmetry is the sym-
metry that allows symmetric state of form |Ψ⟩ =

⨂︁
i |ψi⟩,

where |ψi⟩ is a symmetric state on site-i.

We would like to remark that representation cate-
gories (i.e. symmetric fusion n-categories or local fusion
n-categories) only fully describe anomaly-free symme-
tries, but fail to fully describe anomalous symmetries.
This is because different anomalous symmetries can have
the same representation category. In fact, an anomalous
symmetry G can be described by symmetry transforma-
tions Wg, g ∈ G: WgWh =Wgh that may not be on-site.
The non-invariant local operators that form representa-
tions of of the symmetry group G. Thus

Proposition 1. all the different anomalous symmetries
of the same group G have the same representation cate-
gory RepG.

Later in Section VII, we will give a 1d example of emer-
gent Z2 × Z2 symmetry, whose representation category
formed by the Z2 × Z2 charge is not a local fusion cate-
gory. This implies that the emergent Z2 × Z2 symmetry
is not an anomaly-free symmetry, since the representa-
tion categories of all anomaly-free symmetries are local
fusion categories. This also implies that the emergent
Z2 × Z2 symmetry is not an anomalous symmetry (in
the usual sense), since the representation categories of
all anomalous symmetries are also described by local fu-
sion categories. Here we have an example of an emergent
symmetry that is neither anomalous nor anomaly-free.
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E. The algebra of patch symmetry operators and
its braided fusion category – transformation

category

In the above, we show that the operator algebra of
a class of string operators, the patch charge operators
Zstr, gives rise to a symmetric fusion category RepZ2

. In
this section, we are going to consider the operator alge-
bra of another class of t-patch operators Xstr, the patch
symmetry operators, and show that they give rise to a
fusion category VecZ2

which happens to be isomorphic to
RepZ2

.
Patch symmetry operators are defined by restricting

the global symmetry to finite patches as discussed in Sec
IVB (assume i < j)

Wpatchij
= Xstrij = Xi+1 · · ·Xj−1Xj . (28)

Since the bulk of a patch symmetry operator is invisible,
it is completely legitimate to think of the boundary of the
1d patch symmetry operator as particles. We can define
a fusion operation of those particles, which is called m.3

Analogous to the discussion in the previous subsection,
we may construct a braided fusion category correspond-
ing to these m particles.
To do so, we can think of these patch symmetry op-

erators as operators that transport m particles from one
point to another on the one-dimensional space

Wpatchij
= Tm(i→ j), (29)

The above can also be viewed as a world-line ofm particle
from i to j. In fact, the m particle live on the link, such
as ⟨i, i + 1⟩. In the above, we view such a m particle as
located at i.
We can work out the fusion of the m particles as we

did for the e particles in Sec IVC. From

Tm(−∞ → i)Tm(−∞ → i) = id (30)

we find the fusion rule m⊗m = 1. It tells us that the m
particles are their own antiparticles.

Next, we work out F -symbol from Fig. 5. We find
that F (a, b, c) = 1 for a, b, c = 1,m. This is not surpris-
ing because the patch operators all commute with each
other since they are just products of Pauli X operators
and identity operators. Thus 1,m form a fusion category
VecZ2

, which is isomorphic to RepZ2
.

1,m also have a braiding structure and form a braided
fusion category. Using Fig. 6, we find that m particles
have trivial self-statistics. Using Fig. 7, we find that 1
andm particles have trivial mutual statistics. This allows
us to show that 1,m form a symmetric fusion category
VecZ2 .

3 The reason for this name will become clear in next subsection.

Definitionph 8. We will call the symmetric fusion cat-
egory T formed by patch symmetry operators as trans-
formation category.[32]

Similar to representation category, we believe that the
transformation category in n-dimension space can also
be described by local fusion n-categories. We ignore the
braiding structure and consider the fusion category T
formed by patch symmetry operators. We replace braid-
ing structure with a faithful functor β : T → Vec.[45]
The local fusion category (T , β) can also be viewed as
the transformation category of the symmetry.

F. The algebra of all string operators and its
non-degenerate braided fusion category

In this subsection, we are going to consider the oper-
ator algebra of all string operators, i.e. the patch charge
operators Zstr and the patch symmetry operators Xstr.
The isomorphic class of such a complete operator algebra
is called a categorical symmetry.
We have seen that the algebra of Zstr corresponds to a

symmetric fusion category RepZ2
, and the algebra of Xstr

corresponds to a symmetric fusion category VecZ2
. The

algebra of Zstr and Xstr corresponds to a braided fusion
category formed by RepZ2

and VecZ2
. Here, we would

like to show that such a braided fusion category describes
the topological excitations in Z2-topological order with
topological excitations 1, e,m, f in 2-dimensional space.
We will denote such a braided fusion category as GauZ2

.
The algebra of Zstr and Xstr also contain their product

XstrijZstrij = Tf (i→ j) (31)

Tf (i → j) is the world-line of a new particle f . We see
that a f particle at i is the bound state of an e particle
at i and an m particle on the link ⟨i, i + 1⟩. Tf (i → j)
satisfies the following algebra

Tf (i→ j)Tf (j → k) = Xi+1 · · ·XjZiZjXj+1 · · ·XkZjZk

= Xi+1 · · ·XkZiZk = Tf (i→ k)

Next, we compute the fusion rules for the f particles:

Tf (−∞ → i)Tf (−∞ → i) = −id (32)

This implies the fusion rule f ⊗ f = 1, upto an over-
all phase factor. This phase factor does not carry any
meaning for the fusion rule.

We can also compute the F symbol for the f particle,
using the prescription in Fig 5. It is easy to check that all
the components of F (a, b, c) with a, b, c = 1, f are equal
to 1. Let us compute two cases explicitly, F (f, f, f) and
F (f, 1, f). The first, F (f, f, f), is obtained as follows:

Tf (1 → 2)Tf (0 → 1)Tf (2 → 1)Tf (3 → 1)

≡ Xstr12Zstr12Xstr01Zstr01Z
†
str12X

†
str12Z

†
str13X

†
str13

= Z†
str13X

†
str13Xstr01Zstr01

= Tf (3 → 1)T1(1 → 2)Tf (0 → 1)T1(2 → 1) (33)
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i.e. F (f, f, f) = 1 and the second, F (f, 1, f), is obtained
from:

T1(1 → 2)Tf (0 → 1)T1(2 → 1)Tf (3 → 1)

≡ Xstr01Zstr01Z
†
str13X

†
str13

= Z†
str13X

†
str13Xstr12Zstr12Xstr01Zstr01Z

†
str12X

†
str12

= Tf (3 → 1)Tf (1 → 2)Tf (0 → 1)Tf (2 → 1) (34)

i.e. F (f, 1, f) = 1. The product F (f, f, f)F (f, 1, f) =
1 is gauge invariant; in fact, (the sign of) this product
encodes the Frobenius-Schur indicator of f .
Further, we can calculate the self-statistics of the f

particle using the hopping algebra method used in previ-
ous subsections,

Tf (3 → 1)Tf (1 → 2)Tf (0 → 1)

= (X2X3Z1Z3)
†(X2Z1Z2)(X1Z0Z1)

= −(X1Z0Z1)(X2Z1Z2)(X2X3Z1Z3)
†

= −Tf (0 → 1)Tf (1 → 2)Tf (3 → 1), (35)

from which we find that f particles have fermionic self-
statistics.

Mutual statistics of e, m, and f particles can be ob-
tained by the use of the patch operators. For example,
when i < k < j < l, we have

ZstrijXstrkl
= −Xstrkl

Zstrij . (36)

Thus the e and m particles have π mutual statistics. In
fact, the e, m, and f particles all have π mutual statistics
respect to each other.

Since every non-trivial topological excitations
(i.e. e,m, f) can be detected remotely via mutual
statistics, the particles 1, e,m, f form a non-degenerate
braided fusion category GauZ2 . We believe that such
a non-degenerate braided fusion category fully char-
acterized the isomorphic class of the algebras of local
symmetric operators. Thus categorical symmetry is
fully characterized by non-degenerate braided fusion
category. Since the non-degenerate braided fusion
category describes a topological order in 2-dimensional
space, we can also say that categorical symmetry is
fully characterized by topological order in one higher
dimension. This connection between algebra of local
symmetric operators and non-degenerate braided fusion
category, as well as topological order in one higher
dimension is the key result of this paper.

G. A holographic way to compute categorical
symmetry

In the above, we have computed the categorical symme-
try of Z2 symmetry directly from the definition of cate-
gorical symmetry, i.e. from the algebra of local symmetry
operators and their string extensions. We find that the

categorical symmetry of Z2 symmetry is a topological or-
der in one higher dimension. In fact, we can compute
this topological order in one higher dimension directly.
We know that a system with Z2 symmetry can be re-

alized as a boundary of a trivial product state with Z2

symmetry in one higher dimension. If we gauge the bulk
symmetric product state, we will obtain a Z2 topological
order GauZ2 described by Z2 gauge theory. Such a Z2

topological order in one higher dimension happen to be
the categorical symmetry of Z2 symmetry.
This result can be generalized. An anomaly-free

(higher) symmetry described by (higher) group G can be
realized as a boundary of a trivial product state with G
(higher) symmetry in one higher dimension. If we gauge
the bulk symmetric product state, we will obtain a topo-
logical order GauG described by G (higher) gauge theory.
Such a topological order in one higher dimension is the
categorical symmetry of the G (higher) symmetry.
We note that in Ref. 76, the authors consider various

G-symmetric 1+1D models as realized on the edge of
2+1D G-gauge theory (i.e. G quantum double). This
is one particular instance of the general argument we
present in this paper.

V. A 1D BOSONIC QUANTUM SYSTEM WITH
ANOMALOUS Z2 SYMMETRY

Now we discuss the next simplest example: a bosonic
system

HaZ2
= −B

L∑︂
i=1

ZiZi+1 − J1

L∑︂
i=1

(Xi − Zi−1XiZi+1)

+ J2

L∑︂
i=1

Zi−1(Xi + Zi−1XiZi+1), (37)

in 1-dimensional space with an anomalous Z2 symme-
try (i.e. a non-on-site symmetry). Our discussions here
follow closely the discussions in the last section.

The non-on-site Z2 symmetry [53, 77–79]) is described
by the symmetry operator

W =
∏︂
i

Xi

∏︂
i

si,i+1 =
∏︂
i

Xi

∏︂
i

i
−Zi+Zi+1+ZiZi+1−1

2

(38)
which we represent pictorially as

X X X X

s s s s

X

where the operators on top act first. The phase factor
si,i+1 is real despite appearances as can be checked by
substituting {+1,−1} for Zi and Zi+1 (i.e. we work in
the Z basis). It’s easy to see that it evaluates to +1 when
there is no domain wall between i and i + 1. Moreover
it evaluates to −1 for only one kind of domain walls, the
+1 → −1 kind; it evaluates to +1 for the −1 → +1 kind.
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A. Braided fusion category of patch symmetry
transformation operator

In order to identify the braided fusion category (i.e. the
categorical symmetry) corresponding to this anomalous
symmetry, we will work out the patch symmetry opera-
tors corresponding to the above global symmetry opera-
tion. Legitimate patch symmetry operators must satisfy
the transparent and fusion properties i.e.

1. Wpatchij
Wpatchjk

=Wpatchik
for i < j < k

2. Wpatchij
Wpatchkl

W †
patchij

= Wpatchkl
for i < k <

l < j

In order to ensure these properties are satisfied, we
need to choose appropriate boundary operators for the
Wpatchij

. To that end, we propose the following defini-
tion:

Wpatchij
= O†

i

j∏︂
k=i+1

Xk (−ZjOj)

j∏︂
k=i+1

sk,k+1 (39)

where Oj = (1 − iZj)/
√
2. We may write this operator

pictorially as

i j

X X X

s s s
O†

s

ZX

O

It is straightforward to check that this satisfies the prop-
erties mentioned above. Let us label the particles at the
boundaries of this patch operator as s. The patch sym-
metry operator Wpatchij

can also be understood as an
operator transporting an s particle from i to j, i.e.

Ts(i→ j) =Wpatchij
(40)

The fusion of s particles turns out to be identical to
that of the e particles discussed above: they are their
own antiparticles so that s ⊗ s = 1. Here 1 is the triv-
ial particle, an end of trivial string formed by product
of identity operators. To see this fact, we consider the
product of two semi-infinite strings as in eqn. (22).

Ts(−∞ → i)Ts(−∞ → i) = O−∞(−ZiZi+1) (41)

where we use O−∞ to represent a local symmetric oper-
ator at −∞ of the type ZjZj+1 (see section VB). Note
that such a local symmetric operator represents a trivial
particle 1, so we can ignore it. A graphical representation

of this is shown below.

X X X

O

s s s s s

ZXX

−∞

X X X

O

s s s s s

ZXX

=

Z−ZO−∞

The product is identical to a 1-patch operator modulo
the LSOs at −∞ and near i. So we can conclude that
this corresponds to the fusion s ⊗ s = 1. The complete
fusion ring is given by

s⊗ s = 1, s⊗ 1 = s, 1⊗ 1 = 1, (42)

or equivalently,

N11
1 = Nss

1 = Ns1
s = N1s

s = 1, others = 0. (43)

Fusion ring Nab
c is only a part of data that describe

the braided fusion category. We need to supply the F -
symbol, F (a, b, c), to promote the fusion ring to a fu-
sion category. Similar to the e and f particles, we have
F (s,1, s) = 1. However, the F -symbol F (s, s, s) is dif-
ferent (again, referring to Fig 5):

Wpatchjk
Wpatchij

W †
patchjk

W †
patchjl

= F (s, s, s)W †
patchjl

1patchjk
Wpatchij

1†
patchjk

(44)

Working out the algebra (see Appendix B 1) gives
us F (s, s, s) = −1. The guage-invariant product
F (s, s, s)F (s,1, s) = −1 gives us a non-trivial Frobenius-
Schur indicator, unlike in the cases of e and f discussed
in the previous sections. This distinguishes the fusion
category encoded by the anomalous Z2 patch symmetry
operators from that of the anomaly-free Z2 symmetry
without even considering the braiding structure.
Similarly, the fusion category data, (Nab

c , F (a, b, c)), is
only a part of data to describe a braided fusion category.
To obtain the full data to describe a braided fusion cat-
egory, we need to supply the data that describes mutual
and self statistics. The mutual statistics between s and
1 is trivial θs1 = 0. We can calculate the self statis-
tics of s by calculating the statistical hopping algebra of
the particle-like endpoints of the patch symmetry oper-
ator, as outlined above in Fig. 6. In this case, we find
(see Appendix B 2) e iθs = i, i.e. a statistical phase of
θs = π/2. This shows that the endpoints are semions.
Thus unlike the anomaly-free Z2 symmetry, the trans-
formation category of anomalous Z2 symmetry is not
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a symmetric fusion category. The transformation cat-
egory happens to be non-degenerate, and correspond to
the single-semion topological order in 2d, which will be
denoted as Msingle-semion. Note that, in general, a trans-
formation category may be degenerate, in which case it
does not correspond to a topological order in one higher
dimension.

B. Braided fusion category of patch charge
operator

We can also define patch charge operators for anoma-
lous Z2 symmetry, which have empty bulk and a pair of
Z2 charges at the endpoints,

Zstringij = ZiZj (45)

Let us label the particles at the ends of this operator as b.
This operator is identical to the patch charge operator in
the case of anomaly-free Z2 symmetry discussed in the
previous section. All the results discussed there carry
forward to this case. In particular, these patch charge
operators produce the representation category, which is
a symmetric fusion category RepZ2

. We see that the rep-
resentation category cannot distinguish anomalous and
anomaly-free symmetries, but the transformation cate-
gory can.

C. Braided fusion category of all t-patch operators

To consider all t-patch operators, we must consider
fusion of the semion and the boson. The b particles fuse
with s to give another semion, let’s call it s̃. Along with
the trivial one, we thus end up with four particles. We
can easily check that s and b have π mutual statistics,

ZstringijWpatchkl
= −Wpatchkl

Zstringij (46)

Combining this with the fact that s has semionic self-
statistics, we see that s and s̃ ≡ s⊗ b have trivial mutual
statistics.

Putting the transformation category Msingle-semion and
the representation category RepZ2

together, the above set
of anyons and their braiding and fusion data corresponds
to the double-semion topological order Mdouble-semion.
Double-semion is an Abelian topological order which are
classified K-matrix.[80, 81] The K-matrix for the double-
semion topological order is given by

KDS =

(︄
−2 0

0 2

)︄
(47)

The topological quasiparticles are described by integer
vectors l, and there det(K) = 16 is them. The trivial par-
ticle 1 is described by 1 ∼ (0, 0)⊤, semion s ∼ (0, 1)⊤,
semion s̃ ∼ (1, 0)⊤, and boson b ∼ (1, 1)⊤. The self
statistics of anyon l is given by θl = πl⊤K−1

DS l, the

mutual statistics between anyon l1 and l2 is given by
θl1l2 = 2πl⊤1 K

−1
DS l2. The above K-matrix reproduces

the self/mutual statistics of s, s̃, b. Thus, the categor-
ical symmetry for the anomalous Z2 symmetry in 1-
dimensional space is the double-semion topological order
Mdouble-semion in 2-dimensional space.

D. A holographic way to compute categorical
symmetry

We can also compute categorical symmetry of anoma-
lous symmetry directly by computing the corresponding
topological order in one higher dimension. We know that
a system with (certain) anomalous G (higher) symmetry
can be realized as a boundary of a G-symmetry protected
topological (SPT) state in one higher dimension. If we
gauge the G-symmetry in the bulk SPT state, we will ob-
tain a topological order described by a twisted G (higher)
gauge theory. Such a topological order in one higher di-
mension is the categorical symmetry of the G (higher)
symmetry.

Applying this method to 1d anomalous Z2 symmetry,
we find the corresponding categorical symmetry to be the
2d double-semion topological order. The connection be-
tween 1d anomalous Z2 symmetry and 2d double-semion
topological order was first observed in Ref. 82.

VI. A 1D BOSONIC QUANTUM SYSTEM WITH
Z2 × Z2 SYMMETRY WITH A MIXED ANOMALY

In this section, we calculate the categorical symme-
try (i.e. the non-degenerate braided fusion category) for
bosonic Z2 × Z2 symmetry with the mixed anomaly in
1-dimensional space. Following Ref. 79, (see Appendix
C for details) we have two qubits on each site and two
symmetry generators of Z2 × Z2,

W =
∏︂
i

Xi (48)

W̃ =
∏︂
i

X̃i

∏︂
i

si,i+1 (49)

where si,i+1 = i
1
2 (Zi+1−Zi)(Z̃i+1+1) is the non-on-site

phase factor that encodes the mixed anomaly. Xi, Zi

act on one qubit and X̃i, Z̃i on the other qubit.

A. Braided fusion category of patch operators

The operators W and W̃ above are global symmetry
transformations, which have corresponding t-patch sym-
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metry operators as discussed in the previous sections.

Wpatchij
= Õi

(︄
j−1∏︂
k=i

Xk

)︄
Õ

†
j (50)

W̃ patchij
=

j∏︂
k=i+1

X̃k

j−1∏︂
k=i

sk,k+1 (51)

To satisfy the transparency condition and the compo-
sition algebra of the t-patch operators (see Fig. 3),

Õj in eqn. (50) needs to be chosen carefully: Õj =

(1− iZ̃j)/
√
2. Pictorially, we can represent Wpatchij

as

X X XX

Õ

i j

Õ
†

and W̃ patchij
as

X̃
s s s s

i j

X̃ X̃ X̃

We label the endpoints of these patch operators m and
m̃, respectively. More carefully, we should choose one
end of the string to be m (or m̃) while the other end is
its antiparticle m̄ (m̃∗ respectively). The patch charge
operators are generated by

Zstringij = ZiZj (52)

Z̃stringij = Z̃iZ̃j (53)

Let us name the charge operators at the ends of these as
e and ẽ. We note here that m, m̃ are order 4 whereas e, ẽ
are order 2. We can see this from the fact thatW 4

patchij
=

1 = W̃
4

patchij
while W 2

patchij
̸= 1, W̃

2

patchij
̸= 1. On the

other hand, Z2
stringij

= 1 = Z̃
2

stringij
. The fusion ofm and

m̃ gives s (say). The self-statistics of e and ẽ are trivial,
by the same logic as in the anomaly-free Z2 symmetry
discussed in Sec IVC. We can also check that m and
m̃ have trivial self-statistics. However, s particles have
semionic self-statistics, as can be seen from the hopping
algebra calculation. This is closely related to the fact
that m and m̃ have π/2 mutual statistics; we find (cf.
Fig 7)

Wpatch02
W̃ patch13

= iW̃ patch13
Wpatch02

(54)

Further details may be found in Appendix B 3. We also
note that the m and e particles have π mutual statistics,
and so do m̃ and ẽ.

The particles m, m̃, e, ẽ generate a non-degenerate
braided fusion category that correspond to a 2d Abelian
topological order. By comparing the self/mutual statis-
tics of those topological excitations, we find that the 2d
Abelian topological order is described by the K-matrix

K =

⎛⎜⎜⎜⎜⎝
0 2 −1 0

2 0 0 0

−1 0 0 2

0 0 2 0

⎞⎟⎟⎟⎟⎠ (55)

This 2d topological order is the categorical symmetry for
the Z2 × Z2 symmetry with the mixed anomaly in 1-
dimensional space. The topological excitations in such an
Abelian topological order are labeled by integer vectors l.
Them, m̃, e, ẽ correspond to the following integer vectors:

e ∼ (1, 0, 0, 0)⊤, m ∼ (0, 1, 0, 0)⊤,

ẽ ∼ (0, 0, 1, 0)⊤, m̃ ∼ (0, 0, 0, 1)⊤. (56)

The self statistics of particle l and mutual statistics be-
tween particles l1 and l2 can be calculated via

θl = πl⊤K−1l, θl1,l2 = 2πl⊤1 K
−1l2, (57)

where

K−1 =

⎛⎜⎜⎜⎜⎝
0 1

2 0 0
1
2 0 0 1

4

0 0 0 1
2

0 1
4

1
2 0

⎞⎟⎟⎟⎟⎠ . (58)

The entry 1
4 inK−1 gives rise to the π/2 mutual statistics

between m and m̃.

B. A holographic calculation of categorical symmetry

The above 2d Abelian topological order (i.e. the cate-
gorical symmetry) can be obtained via another approach.
We know that the Z2 × Z2 symmetry with the mixed
anomaly is realized by the boundary of a 2d Z2 × Z2

SPT state. If we gauge the 2d Z2 × Z2 symmetry, we
will turn the 2d Z2 × Z2 SPT state into a 2d topological
order. Such a 2d topological order is the Abelian topo-
logical order described above. Such an Abelian topolog-
ical order was given by the K-matrix in equations (64)
and (67) in Ref. 83. For our case, we need to substitute
the values n1 = n2 = 2, and m0 = m3 = 0,m2 = 1,
which gives us the K-matrix in eqn. (55). This Abelian
topological order is the categorical symmetry for the 1d
Z2 × Z2 symmetry with the mixed anomaly. The holo-
graphic calculation gives rise to the same result as the
operator algebra calculation.



16

C. The equivalence between 1d Z2 × Z2 symmetry
with mixed anomaly and 1d Z4 symmetry

Generalizing our Z2 result, we know that the categor-
ical symmetry of 1d anomaly-free Z4 symmetry is the 2d
Z4 topological order (Z4 gauge theory), denoted as GauZ4

and described by the K-matrix,

KZ4 =

(︄
0 4

4 0

)︄
(59)

The set of topological quasiparticle is described by inte-
ger vectors {(a, b)⊤|a, b ∈ Z4}, and there also |detKZ4 | =
16 of them. Their self and mutual statistics can be read
off from the inverse of the 2× 2 K-matrix, which are the
same as those for the 4× 4 K-matrix in eqn. (55). This
allows us to make the following identification

(0, 1)⊤ ↔ m, (1, 0)⊤ ↔ m̃, (1, 1)⊤ ↔ s

(2, 0)⊤ ↔ e, (0, 2)⊤ ↔ ẽ
(60)

For example, note that (0, 1)⊤ and (1, 0)⊤ have trivial
self statistics,

π (0, 1) ·K−1 · (0, 1)⊤ = 0 (61)

π (1, 0) ·K−1 · (1, 0)⊤ = 0 (62)

but have π
2 mutual statistics,

2π (0, 1) ·K−1 · (1, 0)⊤ =
π

2
(63)

so these must correspond to them, m̃ particles. Note also
that these are order 4 quasiparticle vectors, i.e. 4 of them
will fuse to a trivial quasiparticle. On the other hand,
the quasiparticle vectors (2, 0)⊤ and (0, 2)⊤ correspond
to e, ẽ particles because not only do they have trivial self
statistics,

π (0, 2) ·K−1 · (0, 2)⊤ = 0 (64)

π (2, 0) ·K−1 · (2, 0)⊤ = 0 (65)

but they also have trivial mutual statistics,

2π (0, 2) ·K−1 · (2, 0)⊤ = 2π (66)

Similar calculations show that (0, 2)⊤ and (1, 0)⊤ have π
mutual statistics, and so do (2, 0)⊤ and (0, 1)⊤.
In fact, 2d Abelian topological orders described by (55)

and (59) are actually the same topological order [84]. It
turns out, this K-matrix in (55) can be transformed K →
WKW⊤ by an integer matrixW with det(W ) = ±1 into
a Z4 K-matrix, direct summed with a trivial block.

W =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 2 0

2 0 0 1

⎞⎟⎟⎟⎟⎠ =⇒ WKW⊤ =

⎛⎜⎜⎜⎜⎝
0 −1 0 0

−1 0 0 0

0 0 0 4

0 0 4 0

⎞⎟⎟⎟⎟⎠
(67)

TABLE I. Group “multiplication” table of Z4 ≡ Z2 ⋋e2 Z2.
The entries left blank are redundant since the group is
Abelian.

Z2 ⋋e2 Z2 (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0)

(0,1) (0,1) (0,0)

(1,0) (1,0) (1,1) (0,1)

(1,1) (1,1) (1,0) (0,0) (0,1)

To summarize, 1d Z2 × Z2 symmetry with the mixed
anomaly is realized by the boundary of a 2d Z2 × Z2

SPT state. 1d anomaly-free Z4 symmetry is realized by
the boundary of a 2d trivial Z4 SPT state. The cat-
egorical symmetry of the 1d mixed-anomalous Z2 × Z2

symmetry is the Z2 ×Z2 gauging of the 2d Z2 ×Z2 SPT
state. The categorical symmetry of the 1d Z4 symmetry is
the Z4 gauging of the 2d trivial Z4 SPT state. The two
symmetries give rise to the same 2d topological order.
Thus 1d Z2×Z2 symmetry with the mixed anomaly and
1d anomaly-free Z4 symmetry have the same categorical
symmetry and are equivalent.

D. A new duality mapping

By comparing with the corresponding table for Z4 in
the additive presentation {0, 1, 2, 3}, we can make the fol-
lowing (non-unique) one-to-one mapping between these
two representations of Z4.

(0, 0) ↔ 0 (0, 1) ↔ 2 (68)

(1, 0) ↔ 3 (1, 1) ↔ 1 (69)

The above holographic equivalence of 1d mixed-
anomalous Z2 × Z2 symmetry and 1d anomaly-free Z4

symmetry suggests the existence of a new duality map-
ping, between a model with Z2 ×Z2 non-on-site symme-
try and model with Z4 on-site symmetry. Such an exact
duality maps between the Z4 patch symmetry/charge op-
erators and the patch symmetry/charge operators of the
mixed-anomalous Z2×Z2 symmetry we have been outlin-
ing in this section. This duality is a Kramers-Wannier-
like transformation that transforms one set of Z2 vari-
ables from order to disorder (or site to link) variables,
followed by an on-site (local) unitary transformation. To
state the duality mapping, we first re-write the group
Z4 as a cocycle-twisted product of two Z2 groups, as de-
scribed in Appendix N of Ref. 85. With G = Z4, and
A = Z2 ≤ G, we extend A by H = Z2 with α = id and
e2(h1, h2) = ⌊h1.h2⌋mod 2.

4 The group operation with

4 The multiplication of elements of H in the definition of e2 is
understood to be done in Z and then mapped back to Z2.



17

TABLE II. Patch operators of Z2 × Z2 with mixed anomaly and their dual Z4 patch operators. (O′
i =

1− iZ′
i√

2
)

Z2 × Z2 with mixed anomaly Anomaly-free Z4

Wpatchij
= Õi

(︂∏︁j−1
k=i Xk

)︂
Õ

†
j O′

iZ̄i− 1
2

(︁
O′

j

)︁†
Z̄j− 1

2

W̃ patchij
=

∏︁j
k=i+1 X̃k

∏︁j−1
k=i sk,k+1

∏︁j
k=i X

′
kCX(g′k, ḡk− 1

2
) ≡

∏︁j
k=i L+3|k

Zstringij = ZiZj

∏︁j−1
i X̄k+ 1

2
≡

∏︁j
k=i+1 L+2|k

Z̃stringij = Z̃iZ̃j Z′
iZ

′
j

these choices can be expressed as

(h1, x1)∗ (h2, x2) = (h1 + h2, x1 + x2 + e2(h1, h2)) (70)

where the additions are to be understood modulo 2. Us-
ing this, we may write elements of Z4 using two Z2 labels
as g ≡ (h, x) where x ∈ A and h ∈ H. There are four
Z4 symmetry transformations: one trivial and three non-
trivial. Taking Z4 to be represented as {0, 1, 2, 3}, with
the group operation being addition modulo 4, we have
two generators L+1 and L+3 of the symmetry group,

L+1 |g⟩ = |g + 1 mod 4⟩
L+3 |g⟩ = |g + 3 mod 4⟩

(71)

In the (h, x) representation, what do these generators
look like? We can work this out by looking at the group
“multiplication” table of Z4 in this representation: see
Table I.

Using this mapping, we re-write eqn. (71) as follows.

L+1 |(h, x)⟩ = |(h, x) ∗ (1, 1)⟩
L+3 |(h, x)⟩ = |(h, x) ∗ (1, 0)⟩

(72)

Inspecting this case-by-case, one observes that the gener-
ator L+3 is nothing but the operator X1CX1,0, acting on
kets |(h, x)⟩. Here h and x are labeled as qubits 1 and 0
respectively, and CX1,0 denotes the controlled NOT gate
with qubit 1 as the control.

Now we apply a duality transformation on the t-patch
operators of the Z2 × Z2 symmetry with mixed anomaly
in order to show that we recover the t-patch operators
of anomaly-free Z4 symmetry. The reader who is inter-
ested in the explicit form of the duality instead of the
steps leading up to it is invited to skip to the end of this
subsection.

On the Z2 × Z2 side, our states are defined by a pair
of Z2 variables on each site i, denoted (gi, g̃i). The def-

initions gi = Zi−1
2 , g̃i = Z̃i−1

2 map the Z-basis {±1} to
the additive Z2 basis {0, 1}.
Step 1 of duality transformation D: We transform

(gi, g̃i) to (g′i, ḡi−1/2) by defining ḡi− 1
2
= gi−gi−1 mod 2

and g′i = g̃i. The Pauli operators transform as

Xi → X̄i− 1
2
X̄i+ 1

2
, ZiZi+1 → Z̄i+ 1

2
(73)

The new degrees of freedom may be shown pictorially as

ḡg′ g′ g′ḡ ḡ

i− 1 i i+ 1 · · ·

ḡ

· · ·

For each site i, let us define g′′i = ḡi− 1
2
. Then we have

a two-qubit Hilbert space labeled as (g′i, g
′′
i ) associated

with site i. Let us choose g′i as qubit-1 and g′′i as qubit-2.
Step 2 of duality transformation D: Now we perform

a Hadamard transformation on qubit-2 of each site. The
states transform as

|g′i⟩ ⊗ |g′′i ⟩ → |g′⟩ ⊗ (H |g′′⟩) (74)

whereH is the Hadamard operator. We will instead work
in the Heisenberg picture, where the Hadamard transfor-
mation acts on the operators and interchanges X̄ and Z̄.
Then the states on which these transformed operators
act are labeled by Z4 elements in the (h, x) representa-
tion with hi = g′i and xi = g′′i = ḡi− 1

2
= gi− gi−1 mod 2.

Summarizing the mapping of the basis states,

(gi, g̃i) → (g′i = g̃i, g
′′
i = gi − gi−1 mod 2) (75)

with (gi, g̃i) ∈ Z2 × Z̃2 and (g′i, g
′′
i ) ∈ Z2 ⋋e2 Z2

∼= Z4.
On the other hand, under the combined effect of steps 1
and 2 of D, we have the operator maps.

Xi → Z ′′
i Z

′′
i+1, ZiZi+1 → X ′′

i+1 (76)

Using this, one finds that the operator si−1,i becomes
CX(g′i, g

′′
i ). We can also denote this as CX1,0|i with the

qubit labels 1 and 0 as described above. In fact, we can
check that the patch operators in the left column of Table
II are transformed to those in the right column, under the
transformation D.

In particular, we find the dual of W̃ patchij
to be

the patch symmetry operator corresponding to the L+3

transformation discussed above. This operator then
generates all the Z4 patch symmetry operators in the
Z2 ⋋e2 Z2 representation. On the other hand, the dual
of Wpatchij

is a t-patch operator with empty bulk that
has order 4. This operator may be identified with one of
the charge patch operators of anomaly-free Z4 symme-
try. This completes the mapping between patch opera-
tors on both sides of our duality D : (Z2 × Z2)

ω12 ↔ Z4.
This exact duality mapping allows us to show that the 1d
Z2×Z2 symmetry with mixed anomaly and anomaly-free
Z4 symmetry have isomorphic local symmetric operator
algebra i.e. they have the same categorical symmetry.
A comment on gauging: The duality we described

above can also be understood as coupling the degrees of
freedom of Z4 symmetric system to a Z2 gauge field. The
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Kramers-Wannier-like transformation in the first step of
D essentially amounts to such a gauging procedure. In
the case of Z2 symmetry in 1d, the Kramers-Wannier
duality transformation allows one to relate Z2 order and
disorder operators, where the latter can be obtained from
the former by gauging the local Z2 symmetry and then
restricting to the Z2 charge even sector of the Ising gauge
theory. Our duality transformation above involves an on-
site unitary (Hadamard) transformation in addition to
this gauging procedure.

VII. A 1D BOSONIC QUANTUM SYSTEM
WITH AN EMERGENT Z2 × Z2 SYMMETRY

WHICH IS “BEYOND ANOMALY”

In this section, we are going to study a case of emer-
gent symmetry. We find that the emergent symmetry is
neither anomaly-free nor anomalous. It illustrates that
categorical symmetry (i.e. topological order in one higher
dimension) is a better way to view symmetry. We get a
simpler, more uniform, and more systematic picture.

Let us briefly recall the model from section II.C of
Ref. 53. This model describes a 1+1D bosonic quantum
system with spin-1/2 degrees of freedom on each site and
each link. The Hamiltonian describing the model is:

H = −
∑︂
i

(︂
BX̃i− 1

2
XiX̃i+ 1

2
+ JZ̃i+ 1

2

)︂
+U

∑︂
i

(︂
1− ZiZ̃i+ 1

2
Zi+1

)︂ (77)

This Hamiltonian has two on-site (i.e. anomaly-free) Z2

symmetries, generated by

W =
∏︂
k

Xk, W̃ =
∏︂
k

Z̃k+ 1
2

(78)

Let us denote the corresponding symmetries as Z2 and
Z̃2. The algebra of local operators is constrained by these
symmetries. We add an additional constraint on this
algebra: the low-energy constraint. This constraint is
imposed by taking the limit of U → ∞. Low energy
sector of the Hilbert space must then satisfy

1− ZiZ̃i+ 1
2
Zi+1 = 0, ∀i (79)

In operator language, we demand that the allowed lo-
cal operators commute with the operator appearing in
eqn. (79). The algebra of the allowed local operators will
give rise to emergent low energy symmetry.

The question is then, how does this additional con-
straint5 change the algebra of t-patch operators? It turns

5 The experienced reader may note that this is sometimes colloqui-
ally referred to as “gauging” in the literature. We are particular
about not calling it by this name since we don’t introduce any
extra unphysical, or gauge, degrees of freedom in this discussion.
Instead we are restricting to a subspace of the full Hilbert space
to focus on the effective theory.

out that this modified algebra involves a non-trivial rela-
tionship between the Z2 and Z̃2 symmetries. To be clear,
this is not a case of mixed anomaly of two Z2 symmetries
like the case discussed in the previous section. Nor is
this a case of an anomaly-free symmetry: the patch sym-
metry operators form a non-symmetric fusion category.
This is thus an example of a symmetry that is, in some
sense, beyond the usual notion of “anomalous symme-
try”. The categorical symmetry of the low-energy sector
of this model is not GauZ2×Z2 (i.e. Z2 ×Z2 gauge theory
coupled to matter), as would be the case for a anomaly-
free global Z2×Z2 symmetry. Instead it has the categor-
ical symmetry GauZ2 , same as that of anomaly-free global
Z2 symmetry. Let us now expand on this using the lan-
guage we have been developing in the previous sections.
The algebra generated by the LSOs can be organized in

terms of the t-patch operators, which serve as a particular
convenient choice of generators:

1. 0-dimensional t-patch operators are the local sym-
metric operators that act within the low-energy sec-
tor:

X̃i− 1
2
XiX̃i+ 1

2
, Z̃i+ 1

2
. (80)

2. 1-dimensional t-patch operators – string operators:

Zstrij =

j−1∏︂
k=i

Z̃k+ 1
2
= ZiZj ,

Xstrij = X̃i− 1
2

j∏︂
k=i

XkX̃j+ 1
2
. (81)

One may note that the new constraint, eqn. (79) has the
effect of restricting the set of allowed t-patch operators.

For example, the two string operators
∏︁j−1

k=i Z̃k+ 1
2
and

ZiZj become identical within the low energy subspace.

Also two string operators
∏︁j

k=iXk and X̃i+1/2X̃j+1/2

must appear together. Without this constraint, the list
of t-patch operators would be a bigger one – one that
would encode anomaly-free Z2 × Z2 symmetry.
The algebra of the extended t-patch operators takes

the form:

ZstrijXstrkl
= ±Xstrkl

Zstrij (82)

ZstrijZstrjk = Zstrik (83)

XstrijXstrjk = Xstrik (84)

where the sign in eqn. (82) is − if i < k < j < l, and
+ otherwise. We see here that the algebra of the patch
operators above mirrors that of anomaly-free Z2 symme-
try, as discussed in Section IVF. Specifically, note that
eqn. (83) and eqn. (84) are identical to eqn. (11) and
eqn. (12) respectively. These represent the fusion of the
endpoints of these t-patch operators. The mutual statis-
tics of these endpoints are also identical in the two cases
as can be seen by comparing eqn. (82) with eqn. (13) and
eqn. (14).
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Therefore, the exact 1d Z2 × Z2 on-site symmetry in
the model (77) becomes a different Z2 ×Z2 symmetry at
low energies. The new Z2 × Z2 symmetry has the cate-
gorical symmetry GauZ2

, while the original Z2×Z2 on-site
symmetry has the categorical symmetry GauZ2×Z2

. The
new Z2 ×Z2 symmetry has a special property: a gapped
state must spontaneously break one of the Z2 symmetry.
A state with both Z2 symmetry must be gapless. There
is no state that can spontaneously break both the Z2

symmetries.[53, 86] Those properties have some similar-
ities to Z2 ×Z2 symmetry with the mixed anomaly. But
the Z2 × Z2 symmetry with the mixed anomaly has the
categorical symmetry GauZ4

. Since the categorical symme-
try GauZ2

for the new Z2×Z2 symmetry is different from
both the categorical symmetry GauZ2×Z2

for anomaly-free
Z2 × Z2 symmetry and the categorical symmetry GauZ4

for Z2 × Z2 symmetry with the mixed anomaly, the new
Z2 × Z2 symmetry is beyond anomaly.

VIII. 2D Z2 SYMMETRY AND ITS DUAL

In the above, we have discussed symmetries and cate-
gorical symmetries in 1-dimensional space. In this section,
we will start to consider symmetries in higher dimensions,
where we will encounter higher symmetries.

First, we consider the simplest symmetry – Z2 sym-
metry, in 2-dimensional space. For convenience, let we
assume the degrees of freedom on each vertex (labeled by
i) are labeled by elements in the Z2 group.

A. Z2 symmetry transformation and t-patch
operators as local symmetric operators

The Z2 symmetry is described by a symmetry trans-
formation:

W =
∏︂

i∈whole space

Xi, W 2 = id. (85)

The Z2 transformation W select a set of local symmetric
operators which form an algebra:

A = {Osymm
i

⃓⃓
Osymm

i W =WOsymm
i } (86)

As before, we can use the t-patch operators to organize
the local symmetric operators:

1. 0-dimensional t-patch operators,Xi, ZiZi+µ, where
µ connects vertex-i to its neighbors.

2. 1-dimensional t-patch operators – string operators,

Zstrij = ZiZj , (87)

where the stringij connects the vertex-i and vertex-
j. We see that the string operator has an empty
bulk.

3. 2-dimensional t-patch operators – disk operators,

Xdisk =
∏︂

i∈disk

Xi. (88)

The disk operator has a non trivial bulk, which
generate our Z2 symmetry.

In terms of t-patch operators, algebra of local symmet-
ric operators takes the following form

ZstrijZstrjk = Zstrik , (89)

Xdisk1
Xdisk2

= Xdisk1+2
(90)

ZstrXdisk = −XdiskZstr, (91)

ZstrXdisk = +XdiskZstr (92)

Eqn. (89) describes the fusion of string operators (see
Fig. 12a). Eqn. (90) describes the fusion of disk op-
erators (see Fig. 12b). The commutator between the
string and the disk operators depends on their relative
positions. If the string straddle the boundary of the disk
as in Fig. 12c, commutator has a non-trivial phase as in
eqn. (91). Otherwise (see Fig. 12d), the string and the
disk operators commute as in eqn. (92).

Since the string operators have empty bulk, they cor-
respond to patch charge operators, and the ends of the
string operators correspond to charged particles. The
disk operators have non-trivial bulk, and correspond to
patch Z2-symmetry operators, which generate the Z2

symmetry transformations and select local symmetric op-
erators.

As before, the patch symmetry transformations can
detect the symmetry charge hidden in the local symmet-
ric operators: when the string operator Zstr straddle the
boundary of the disk operator Wpatch, the two operators
have a non-trivial commutation relation:

ZstrXdisk = −XdiskZstr. (93)

This non-trivial commutation relation measures the
charge carried by one end of the string operator. If we
view the order of the operator product as the order in
time, and view the string as world line of a particle in
spacetime (see Fig. 13), then the commutation relation
eqn. (93) can be viewed as a braiding of the particle
around the boundary of the disk operator. The charge is
measured by such a braiding process.

B. Algebra of patch charge operators and braided
fusion higher category of charge objects

The properties of the charges of an anomaly-free sym-
metry in n-dimensional space can be systematically and
fully described by a braided fusion n-category or a lo-
cal n-fusion category.[45] Let us first give a brief phys-
ical introduction of fusion n-category (see Fig. 8). A
fusion n-category can be used to describe extended phys-
ical objects in nd space. For example, in 3d space,
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(a) (b) (c)

FIG. 8. (a) A graphic representation of objects (the points),
1-morphism (the lines connecting points), and 2-morphism
(the disk connecting lines), in a higher category. (b) In 2d
spacetime (the vertical direction is the time direction), two
world sheets of string-like excitations are separated by two
world lines of point-like excitations. The two two world lines
of point-like excitations are separated by an instanton (a local
operator). (c) A higher category describes the structure of ex-
tended excitations: in 2d, object ↔ co-dimension-1 excitation
(string); 1-morphism ↔ co-dimension-2 excitation (particle);
2-morphism ↔ co-dimension-3 instanton (local operator).

2-dimensional membranes (co-dimension-1) correspond
to the objects in the fusion 3-category. 1-dimensional
strings (co-dimension-2) correspond 1-morphisms, and
0-dimensional particles (co-dimension-3) correspond 2-
morphisms. The above are physical excitations. Instan-
tons or local operators (0-dimensional in spacetime) cor-
respond 3-morphisms, which are top morphisms. The
physical excitations and local operators form the fusion
n-category.

To connect the Z2 symmetry in 2-dimensional space to
a braided fusion 2-category, we view the local symmet-
ric operators Osymm

i as the 2-morphisms, and the end of
string operator Zstr (i.e. Z2-charge) as a 1-morphism e in
a fusion 2-category. Operator product of string operator
can be viewed as fusion of string ends, which gives rise
to the fusion rule of the 1-morphisms ei:

e⊗ e = 1, 1⊗ e = e⊗ 1 = e. (94)

e’s are the point-like Z2-charges for Z2 symmetry.
Those Z2-charges can form a 1d quantum liquid state,
which correspond to a string excitation [40]. Let sZ2

be a string excitation that corresponds to the 1d sponta-
neous symmetry breaking state formed by the Z2-charges
(which is a state with a non-zero energy gap). (Note that
the Z2-charges have a Z2 conservation as implies by the
Z2 fusion e ⊗ e = 1. So they can form a non-trivial 1d
gapped quantum liquid state – a spontaneous symme-
try breaking state.) We have another string excitation
1str which is formed by Z2 charges along the string in
a gapped symmetric state. Note that a string with no
Z2 charge is also a symmetric gapped state. So 1str may
mean null string, a string that does not have any thing.
The string formed by Z2 charges in gapped symmetric
state and the string formed by nothing are equivalent
(i.e. they can deform into each other without closing the
energy gap), and both are denoted as 1str.
In addition to the point-like excitation e, we have an-

other point-like excitation, denoted as bs, which is the

domain wall that connects the string-sZ2
and string-1str.

Since, string-1str is trivial (i.e. can be nothing), bs can
also be viewed as a boundary of string sZ2 . The fusion
of e and bs gives us the third point-like excitation e⊗ bs.
The above excitations, plus the Z2 symmetric local op-

erators form a symmetric fusion 2-category denoted as
2RepZ2

:[45]

1. The string-like excitations 1str and sZ2
are objects

in 2RepZ2
.

2. The point-like excitations 1, e, and bs are 1-
morphisms:

1str
bs→ sZ2

, sZ2

bs→ 1str, 1str
e⊗bs→ sZ2

, sZ2

e⊗bs→ 1str,

1str
1→ 1str, 1str

e→ 1str, sZ2

1→ sZ2
. (95)

The 1-morphisms describe how objects are con-
nected — in our case, how strings are connected
by point-like domain walls. The point-like domain
walls connecting trivial string 1str to trivial string
1str are what we usually call point-like excitations.

3. The symmetric operators Osymm are 2-morphisms:

1
Osymm

→ 1, e
Osymm

→ e, e⊗ bs
Osymm

→ e⊗ bs,

bs
Osymm

→ bs, bs
Osymm

→ e⊗ bs, e⊗ bs
Osymm

→ bs. (96)

The symmetric operators Osymm describe the pos-
sible ways a point-like excitation can change
(i.e. possible “domain walls” on world lines of
point-like excitations in spacetime) . We note that,
e⊗ bs and bs are connected by 2-morphisms. Phys-
ically, it means that the Z2 charge e can disap-
pear or appear by itself near bs, by processes in-
duced by symmetric operators. This is expected bs
is connected to a spontaneous symmetry breaking
state. We also note that e is the Z2 charge which
is not connected to the trivial excitation 1 by any
2-morphisms.

Here we would like to introduce a notion elementary-
type:[40, 45]

Definitionph 9. Two morphisms (or objects which can
be viewed as 0-morphisms) connected by higher mor-
phisms are said to have the same elementary-type.

We see that 2RepZ2
has only one elementary-types of

objects, which is the trivial elementary-type, i.e. both
string-1str and string-sZ2

belong to trivial elementary-
type. 2RepZ2

has only three elementary-types of 1-
morphisms (particles), 1, e, and bs ∼= e⊗ bs. e is an exci-
tation in the usual physics sense since it connect string-
1str to string-1str. e is not connected to trivial excitation
1 by 2-morphisms, and thus is a non-trivial elementary
excitation.

In the above, we describe the symmetric fusion 2-
category 2RepZ2

from the point of view of excitations.
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We can also describe the symmetric fusion 2-category
2RepZ2

from the point of view of patch charge operators,
generated by Zstrij . Note that patch charge operators
from a sub-algreba of the algebra of all t-patch opera-
tors.

To switch from the excitation point of view to opera-
tor point of view, we replace the excitations by the patch
charge operators, that create the corresponding excita-
tions from Z2 symmetric product state. Here, the Z2

symmetric product state is given by

|Ψsymm⟩ =
⨂︂
i

|0⟩i, |0⟩ = |+ 1⟩+ | − 1⟩√
2

, (97)

where the Z2-symmetry action W is given by | + 1⟩ ↔
|−1⟩. This gives rise to a description of symmetric fusion
2-category 2RepZ2

in terms of patch charge operators
(i.e. t-patch operator with empty bulk)

1. The object 1str in 2RepZ2
corresponds to a disk-

operator (a patch-operator with 2-dimensional
patch) with empty bulk

1̂str(loop) =
∏︂

i′∈loop=∂disk

idi′ . (98)

where idi is the identity operator. Here loop is a
closed string, corresponding to the boundary of the
disk. The algebra of the operator 1̂str

1̂str(loop)1̂str(loop) = 1̂str(loop). (99)

is consistent with the fusion of the object

1str ⊗ 1str = 1str. (100)

The object sZ2 corresponds to a different disk-
operator with empty bulk

ŝZ2
(loop) =

∏︂
i′∈loop=∂disk

P+,i′ +
∏︂

i′∈loop=∂disk

P−,i′ ,

P± =
id± Z

2
. (101)

(Here P± can be any local operators that sat-
isfy P+ ̸= P− and WP+ = P−W .) Again, sZ2

is a closed string, corresponding to the boundary
of the disk. We note that string sZ2

correspond
to a spontaneous symmetry breaking state that
has a 2-fold degenerate ground states, ⊗i| + 1⟩i
and ⊗i| − 1⟩i. The operator

∏︁
i′∈loop=∂disk P+,i′

creates the state ⊗i| + 1⟩i from |Ψsymm⟩, while
the operator

∏︁
i′∈loop=∂disk P−,i′ creates the state

⊗i| − 1⟩i. A particular superposition of the two
states

∏︁
i′∈loop=∂disk P+,i′ +

∏︁
i′∈loop=∂disk P−,i′ is

invariant under the Z2 symmetry transformation
W . The operator ŝZ2(loop) creates such Z2 sym-
metric state, and satisfies

ŝZ2
(loop)Xdisk = XdiskŝZ2

(loop) (102)

as long as the string is far away from the boundary
of patch symmetry operator Xdisk.

The operator algebra

ŝZ2(loop)ŝZ2(loop
′) (103)

=
(︂ ∏︂

i′∈loop

P+,i′

∏︂
i′∈loop′

P+,i′ +
∏︂

i′∈loop

P−,i′

∏︂
i′∈loop′

P−,i′

)︂
+
(︂ ∏︂

i′∈loop

P+,i′

∏︂
i′∈loop′

P−,i′ +
∏︂

i′∈loop

P−,i′

∏︂
i′∈loop′

P+,i′

)︂
≡ ŝZ2

(loop′′1) + ŝZ2
(loop′′2).

implies the following fusion rule for the loop-like
object sZ2

:

sZ2
⊗ sZ2

= sZ2
⊕ sZ2

= 2sZ2
, (104)

which is non-trivial. Here, we have assumed that
the two strings, loop and loop′, are not on top of
each other, but are just nearby. Also

ŝZ2(loop
′′
1) ≡

∏︂
i′∈loop

P+,i′

∏︂
i′∈loop′

P+,i′ +
∏︂

i′∈loop

P−,i′

∏︂
i′∈loop′

P−,i′ ,

ŝZ2
(loop′′2) ≡

∏︂
i′∈loop

P+,i′

∏︂
i′∈loop′

P−,i′ +
∏︂

i′∈loop

P−,i′

∏︂
i′∈loop′

P+,i′ ,

(105)

and they both create spontaneous symmetry break-
ing states.

2. The 1-morphisms 1, e, and bs (or more precisely,
pairs of 1-morphisms) correspond to boundary of
open-string operators:

1̂i1̂j =
∏︂

i′∈∂strij

idi′ = idiidj ,

êiêj =
∏︂

i′∈∂strij

Zi′ = ZiZj ,

b̂s,i ⊠s b̂s,j =
∏︂

i′∈strij

P+,i′ +
∏︂

i′∈strij

P−,i′ (106)

They are consistent with eqn. (95), which describes
how objects are connected by the 1-morphisms.

We would like to remark that 1̂i1̂j and êiêj are
t-patch operators with an 1-dimensional patch,

while b̂s,i ⊠s b̂s,j is a t-patch operators with a 2-
dimensional patch (i.e. a disk). The string sZ2

form a part of the boundary of the disk, and the
string 1str form the other part of the boundary.
The two types of boundaries are connected by the
1-morphism bs.

3. The symmetric operators Osymm are 2-morphisms.
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id

FIG. 9. The structure of a disk-like operator with empty bulk
in term of tensor network. The short detached vertical lines
represent identity operators on different sites, which given rise
to the empty bulk of the disk-like operator. The non-trivial
string operator on the boundary of the disk may have a Wess-
Zumino form, i.e. may be given by a tensor network on the
disk bounded by the string.

From the operator algebra

êiêj
(︁
b̂s,i ⊠s b̂s,j

)︁
= ZiZj

∏︂
i′∈strij

P+,i′ + ZiZj

∏︂
i′∈strij

P−,i′

=
∏︂

i′∈strij

P+,i′ +
∏︂

i′∈strij

P−,i′

= b̂s,i ⊠s b̂s,j (107)

we see that we cannot distinguish bs,i from ei⊗bs,i,
i.e. they are connected by identity operator. This

implies the relations bs,i
Osymm

→ ei ⊗ bs,i and ei ⊗
bs,i

Osymm

→ bs,i, proposed in eqn. (96). We also note

that operator 1̂i1̂j = idiidj cannot be connected to
operator êiêj = ZiZj via local symmetric operators
near vertex-i and vertex-j. This implies that there
is no 2-morphisms connecting 1 and e.

In our above description of symmetric fusion 2-
category 2RepZ2

, we include a descendant excitation[40,
45, 87, 88] sZ2 formed by elementary excitations e. Such
a descendant string excitation sZ2 is a spontaneous Z2

symmetry breaking state formed by 1d e gas.
In the above description of operator algebra, we con-

struct the string operators (or the disk operator with
empty bulk) via operators P± on the string. In general,
the disk operator with empty bulk is given by a tensor
network operator, whose structure is given in Fig. 9.
Since descendant excitations are formed by lower di-

mensional excitations, their existence and properties can
be derived. Thus, we may drop all the descendant exci-
tations and use only elementary excitations,[40, 41]6 to
obtain a simpler description of the symmetric fusion 2-
category:

1. The string-like excitations 1str is the only elemen-
tary object in 2RepZ2

.

6 The elementary excitations are not formed by lower dimensional
excitations. They are defined as the excitations that do not have
any domain wall with the trivial excitations.

i

j
g
ij

FIG. 10. A 2d lattice bosonic model, whose degrees of freedom
live on the links and are labeled by the elements in a group:
gij ∈ G

2. The point-like excitations 1 and e are the only ele-
mentary 1-morphisms:

1str
1→ 1str, 1str

e→ 1str, (108)

3. The symmetric operators Osymm are all the 2-
morphisms:

1
Osymm

→ 1, e
Osymm

→ e. (109)

Note that the elementary morphisms (or objects)
1 and e are not connected to any other elemen-
tary morphisms (except themselves) by higher mor-
phisms. This defines the elementary morphisms
or objects[40, 41].

Through the above example, we see that the algebra
of the patch charge operators generated by Zstrij from a
symmetric fusion 2-category 2RepZ2

. Such a symmetric
fusion 2-category 2RepZ2

fully characterize Z2 symmetry
in 2-dimensional space, which is called the representation
category of the symmetry.
Similarly, we can use a fusion 2-category to describe

the symmetry transformations of the Z2 0-symmetry,
i.e. to describe the operator algebra generated by the
patch symmetry operators Xdisk. The boundary of the
disk operators Xdisk are labeled by the group elements
in G = Z2, and correspond to the objects in the fusion
2-category. Adding the trivial 1-morphisms and the top
2-morphisms formed by the local operators Xi (i.e. the
small disk operators), we get a fusion 2-category 2VecZ2 .
The fusion 2-category 2VecZ2

fully describes the Z2 0-
symmetry in 2d space, which is the transformation cate-
gory of the symmetry.

C. Z(1)
2 1-symmetry in 2d space

In this section, we are going to discuss a lattice model
with the simplest higher symmetry, and the algebra of its
local symmetric operators, as well as its categorical de-
scription. Let us consider a 2d lattice bosonic quantum
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patch

string

FIG. 11. A loop formed by links and a patch formed by
vertices. The boundary of the patch is formed by the links of
the dual lattice.

(c) (d)

i j k 21

(a) (b)

FIG. 12. (a) “Fusion” of two string operators. (b) “Fu-
sion” of two disk operators. (c) Non-trivial “braiding” be-
tween string operator and disk operator. (d) Trivial “braid-
ing” between string operator and disk operator.

system with two state on every link of the lattice (see
Fig. 10). The Z2 1-symmetry is defined by the transfor-
mations on all the loops S1 (formed by the links, see Fig.
11):

W (S1) =
⨂︂

⟨ij⟩∈S1

X̃ij , (110)

where X̃ij are the Pauli X-operators acting in the link
⟨ij⟩. Local symmetric operators satisfy

W (S1)Osymm
i = Osymm

i W (S1), ∀ loops S1. (111)

Such kind of symmetry was called d-dimensional gauge-
like symmetry [1] or higher form symmetry [4].

The algebra of local symmetric operators is generated
by the following open string operators and disk operators:

X̃strij =
⨂︂

⟨i′j′⟩∈strij

X̃i′j′ , Z̃disk =
⨂︂

⟨i′j′⟩∈∂disk

Z̃i′j′

(112)

The key relations of the patch operator algebra are given
by (see Fig. 12)

X̃strij X̃strjk = X̃strik , Z̃disk1
Z̃disk2

= Z̃disk1+2

X̃strZ̃disk = ±Z̃diskX̃str, (113)

where the ± signs depend on the relation between the
string and the disk (see Fig. 12(c,d)). Here and later in
this paper, we will ignore the operators associated with
the descendant excitations. All those descendant opera-
tors are generated by the elementary operators (associ-
ated with the elementary excitations) listed above.

FIG. 13. Non-trivial “braiding” between string opera-
tor and disk operator measures the 0-symmetry charge car-
ried by boundary of string, if the disk operator generates
a 0-symmetry. It measures the 1-symmetry charge carried
by boundary of disk, if the string operator generates a 1-
symmetry.

We can also use the patch operators X̃str on open
strings to define the 1-symmetry (see Fig. 13):

X̃strO
symm
i = Osymm

i X̃str, (114)

where i is far away from string ends. Using such patch

symmetry operators, we can measure the Z(1)
2 1-charge

on the boundary of the disk operator Z̃disk:

Z̃diskX̃str = −X̃strZ̃disk (115)

when the string straddle across the boundary of the

disk. We see that a Z(1)
2 1-charge in 2-dimensional space

is a 1-dimensional extended object. In general, an n-
dimensional charge object correspond to n-symmetry, in
any space dimensions.
We can use a fusion 2-category to describe the charges

of the Z(1)
2 1-symmetry, i.e. to described the opera-

tor algebra of the patch charge operators Z̃disk. The
1-dimensional (co-dimension-1) extended charge objects

(the boundary of the disk operators Z̃disk) are labeled
by the group elements in G = Z2, and correspond to
the objects in the fusion 2-category. Adding the triv-
ial 1-morphisms and the top 2-morphisms formed by the
local operators

∏︁
i∈small loop Z̃i (i.e. the small disk oper-

ators), we get a fusion 2-category 2VecZ2
. The fusion

2-category 2VecZ2
fully describes the Z2 1-symmetry in

2d space. Such a fusion 2-category 2VecZ2
is the repre-

sentation category of the symmetry.
We can also use a fusion 2-category to describe the

symmetry transformations of the Z(1)
2 1-symmetry, i.e. to

describe the operator algebra of the patch symmetry op-
erators X̃str. The boundary of the string operators X̃str)
are labeled by the representations in G = Z2, and cor-
respond to the 1-morphisms in the fusion 2-category.
Adding the trivial objects and the top 2-morphisms
formed by the local operators X̃i (i.e. the small string op-
erators), we get a fusion 2-category 2RepZ2

.7 The fusion
2-category 2RepZ2

fully describes the Z2 1-symmetry
in 2d space. Such a fusion 2-category 2RepZ2

is the

transformation category of the Z(1)
2 1-symmetry in 2-

dimensional space.

7 In this paper, when we refer to 2RepG, we mostly only consider
its associated elementary excitations and the related structures
(which correspond to a pre-fusion 2-category). We do not fully
discuss the associated descendent excitations in 2RepG.
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D. The equivalence between Z2 0-symmetry and

Z(1)
2 1-symmetry in 2d space

We have seen that a Z2 0-symmetry can be fully de-
scribed by a representations category 2RepZ2

or by a

transformation category 2VecZ2 . We also see that a Z(1)
2

1-symmetry can be fully described by a representations
category 2VecZ2 or by a transformation category 2RepZ2

.
Now it is clear that the two very different looking sym-

metries, Z2 and Z(1)
2 , are closely related, i.e. they become

identical if we exchange what we call patch charge oper-
ators and what we call patch symmetry operators.

In fact, the two symmetries, Z2 and Z(1)
2 , are indeed

equivalent, if we consider the operator algebras of all lo-
cal symmetric operators, i.e. the operator algebras gener-
ated by both patch charge operators and patch symmetry
operators. The full operator algebra of Z2 symmetry is
defined via the following operator relations

ZstrijZstrjk = Zstrik , Xdisk1Xdisk2 = Xdisk1+2

ZstrXdisk = ±XdiskZstr, (116)

The full operator algebra of Z(1)
2 symmetry is defined via

the following operators relations

X̃strij X̃strjk = X̃strik , Z̃disk1
Z̃disk2

= Z̃disk1+2

X̃strZ̃disk = ±Z̃diskX̃str, (117)

We see that the two operator algebras are isomorphic.

Thus the Z2 and Z(1)
2 symmetries have the same categor-

ical symmetry, which implies that they are equivalent.
In fact, the categorical symmetry from the full alge-

bra of extended t-patch operators corresponds to a non-
degenerate braided fusion 2-category 2GauZ2

(which de-
scribes the excitations in a 2d Z2-gauge theory). The
boundary of the disk operators are labeled by the group
elements of Z2, and correspond to the object in the
braided fusion 2-category 2GauZ2

. The ends of the string
operators are labeled by the group representations, and
correspond to the 1-morphisms in 2GauZ2

. The local
symmetric operators (i.e. the small string and small disk
operators) correspond to the 2-morphisms in 2GauZ2

.
The string-like elementary excitations (the objects) and
the point-like elementary excitations (the 1-morphisms)
can fully detect each others, due to their non-trivial mu-
tual statistics, as implied by the operator relation

ZstrXdisk = ±XdiskZstr. (118)

Thus the braided fusion 2-category for the full algebra of
extended t-patch operators is non-degenerate. 8

A mathematically rigorous proof of this equivalence
was presented in Ref. 89, in terms of the category theo-
retical notion of Morita equivalence.

8 The adjective “full” here refers to the “non-degeneracy” of the
associated braided fusion category.

IX. A REVIEW OF HOLOGRAPHIC THEORY
OF (ALGEBRAIC HIGHER) SYMMETRY

In the previous sections, we studied many simple ex-
amples, trying to demonstrate a holographic theory of
(algebraic higher) symmetry via algebras of local sym-
metric operator. In this section, we are going to present
the holographic theory for generic cases. Such a holo-
graphic theory was developed in Ref. 45 via excitations
above the symmetric ground state. Here we will present
a simplified version, ignoring some subtleties.

A. Representation category

We know that symmetries are classified by groups and
higher symmetries are classified by higher groups. As
demonstrated in the last section, it turns out that alge-
braic higher symmetries (i.e. non-invertible symmetries)
are described by fusion higher categories,[45] which is the
representation category[32] generated by patch charge
operators that we introduced in Section IVD.
However, not all fusion higher categories can be repre-

sentation categories that describe algebraic higher sym-
metries. To identify which fusion higher category can de-
scribe a symmetry, we note that a symmetry is breakable.
The symmetry breaking will change the fusion higher cat-
egory into a trivial fusion higher category nVec. This
motivate Ref. 45 to conjecture that local fusion higher
categories R (i.e. representation categories generated by
patch charge operators) describe and classify algebraic
higher symmetries:

Definitionph 10. A fusion n-category R equipped with
a top-faithful surjective monoidal functor β from R
to the trivial fusion n-category, R β→ nVec, is called a
local fusion n-category. Here, top-faithful means
that the functor β is injective when acting on the top
morphisms (i.e. the n-morphism in this case). The pair
(R, β) classify anomaly-free algebraic higher symmetries
in n-dimensional space (which include anomaly-free sym-
metries, higher symmetries, and non-invertible symme-
tries).

To be brief, we usually drop β in the pair. This gen-
eralizes the discussion in Section IVD. Physically, the
functor β means “ignore the symmetry” or “explicitly
break the symmetry by small perturbations”. Thus at
the top-morphism level, β maps local symmetric oper-
ators to local operators, which is a injective map. At
lower-morphism/object level, the charged excitations in
R are mapped to the excitations in nVec. This im-
plies that all the objects and morphisms in a local fusion
higher category R have integral quantum dimensions.
For example, if we have an SU(2) symmetry, then

there is a “charged” excitation, spin-1/2 excitation (car-
rying the 2-dim representation of SU(2)). If we ignore
the SU(2) symmetry, such a spin-1/2 excitation can be
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β

R

nVec

FIG. 14. A spacetime picture of the symmetry breaking pro-
cess β (the vertical direction is the time). β can be viewed
as a domain wall between a product state with the symmetry
and a product state with no symmetry. The (extended) exci-
tations on the product state with the symmetry are described
by a fusion higher category R. The (extended) excitations
on the product state with no symmetry are described by the
fusion higher category nVec. All the top morphisms (the sym-
metric spacetime instantons or symmetric local operators) in
R can go through the domain wall β and become the top mor-
phisms (the spacetime instantons or local operators) in nVec
without modification.

C

M

i j

k

n

n+1

FIG. 15. The holographic principle of topological order:
boundary Cn uniquely determines bulk Mn+1.

viewed as an accidental degeneracy of two trivial excita-
tions:

spin-1/2⏞ ⏟⏟ ⏞
∈R

β→ 1⊕ 1⏞ ⏟⏟ ⏞
∈nVec

. (119)

As we have mentioned above, β is a symmetry breaking
process. We can also view R as the fusion higher cate-
gory describing the (extended) excitations in a symmetric
product state with the symmetry. From this angle, we
can view β as a domain wall between R and nVec. The
domain wall is transparent to all the top morphisms in
R (see Fig. 14).

B. A holographic point view of symmetry

Consider two nd (algebraic higher) symmetries de-
scribed by two local fusion n-categories, R and R′. We
know that the two symmetries are equivalent if their al-
gebras of local symmetric operators are isomorphic. We
have demonstrated that an isomorphic class of local sym-
metric operator algebras is described by a braided fusion
n-category, and called such an isomorphic class as a cate-
gorical symmetry. So what is the categorical symmetry for
a symmetry described by local fusion higher categories,
R?

To answer this question, let us first review the
holographic principle of topological order: boundary

Vec

Vec

VecR

Vec

n

(n+1)

n

M

R’

(n+1)

β β

FIG. 16. Two symmetries described by fusion n-categories
R and R′ are equivalent (i.e. have the same categorical sym-
metry) iff they have the same bulk topological order in one
higher dimension: Z(R) ∼= Z(R′).

uniquely determines bulk. In physics, topological orders
(i.e. gapped quantum liquids) in n + 1d space are char-
acterized by their co-dimension-1, co-dimension-2, ... ex-
citations. In other words, such a topological orders are
characterized by fusion n+ 1-category Mn+1

On a n-dimensional gapped boundary of the n + 1-
dimensional topological order, the excitations are de-
scribed by a fusion n-category Cn. The holographic prin-
ciple of topological order state that the boundary Cn

uniquely determines the bulk Mn+1. Such a boundary-
bulk relation is given by the center map Z in mathematics
(see Fig. 15):[40, 41, 49, 90, 91]s

Z(Cn) = Mn+1. (120)

We see that the physical meaning of “center” is “bulk”.
The center map (or the bulk map) Z has a property that
the center of a center (or the bulk of a bulk) is trivial

Z(Z(Cn)) = (n+ 2)Vec. (121)

This is dual to the well known fact: the boundary of a
boundary is trivial.
It was conjectured that,[45] in n-dimensional space, the

relation between the representation categoryR generated
by all the patch charge operators and the braided fusion
n-category M (i.e. the categorical symmetry) generated
by all the patch charge operators and the patch symme-
try operators is given by another center map, denoted
as Z,[40, 41, 49] that maps a fusion n-category R into
a braided fusion n-category M. The new center map
Z is closely related to the previous center map Z that
maps a fusion n-category R into a fusion (n+1)-category
M. This is because both fusion (n+1)-category M and
braided fusion n-category M can be use to fully describe
an anomaly-free topological order in n + 1-dimensional
space.

We note that in an anomaly-free topological order in
(n + 1)-dimensional space, all the co-dimension-1 exci-
tations are descendant (i.e. formed by lower dim excita-
tions). Dropping the co-dimension-1 excitations (called
looping Ω) maps a fusion (n + 1)-category M into a
braided fusion n-category M: M = ΩM. Adding
back the descendant co-dimension-1 excitations is called
de-looping followed by Karoubi completion: ΣM =
M.[40, 88] Thus the anomaly-free topological order can
be described either by the braided fusion n-category M,
or by fusion (n + 1)-category M. The anomaly-free
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condition of topological order corresponds to the non-
degeneracy condition for the braided fusion n-category
M, which becomes the trivial center condition for the fu-
sion (n+ 1)-category M: Z(M) = (n+ 2)Vec. The two
kinds of center maps are related by

ΣZ = Z, ΩZ = Z. (122)

This mathematical result provides a macroscopic way
to compute the holographic equivalence classes of sym-
metries (i.e. the topological order in one higher dimen-
sion). In particular, the two symmetries, described by
two representations categories R and R′, are equivalent,
iff they have equivalent centers (i.e. have the same bulk
topological order, or have the same categorical symmetry,
see Fig. 16)[45]

Z(R) ∼= Z(R′). (123)

Not every braided fusion higher category describes a
categorical symmetry. The operator algebra is formed by
all the local symmetric operators. The condition of all, is
translated into a condition on the braided fusion higher
category M: M must be non-degenerate, i.e. satisfying
Z(ΣM) = (n + 1)Vec. Therefore, categorical symmetries
(i.e. the isomorphic classes of algebras of symmetric local
operator) in nd space are classified by non-degenerate
braided fusion n-categories M.

C. Transformation category – dual of the
representation category

Instead of representation category generated by patch
charge operators, we can also use transformation cate-
gory generated by patch symmetry operators to fully de-
scribe an (algebraic higher) symmetry. We believe both
characterizations are complete characterizations. This
belief is supported by the following result [45]:

Proposition 2. Consider two fusion n-category R and

R̃, such that M = Z(R) = Z(R̃). If nVec = R⊠M R̃rev

(see Fig. 17), then both R and R̃ are local fusion n-

categories. Furthermore, for each R, R̃ is unique. We
say that R̃ is the dual of R.

For example, an nd bosonic lattice model with a finite
symmetry G has a representations category nRepG and a
transformation category is nVecG. nVecG happens to be
the dual of nRepG. Such a bosonic model has a dual lat-

tice model with a dual symmetry G
(n−1)
rep (see Ref. 45 for

an explicit construction). The representations category

of the dual symmetry G
(n−1)
rep is nVecG, and the transfor-

mation category of the dual symmetry is nRepG. This
example illustrates the dual relation between the repre-
sentations category and the transformation category.

Putting the representation category and the transfor-
mation category together – i.e. combining the algebras
of patch charge operators and patch symmetry operators

Vec

VecR

M Vec

β

β

RF

~
RF

RA

~
RA

Vecn

n

n

(n+1)

R
~

~

FIG. 17. R⊠M R̃rev
is a fusion n-category that describes the

excitations in a slab of topological order in (n+1)-dimensional
space. One boundary of the slab has excitations described by
fusion n-category R. The other boundary of the slab has ex-
citations described by fusion n-category R̃rev

. The condition
R ⊠M R̃rev

= nVec ensure that all the excitations on the
boundary R and R̃ comes from symmetry described by the
bulk M. In other words, all the excitations on the boundary
are symmetry charges. There is no topological excitations.
FR is the forgetful functor that maps bulk excitations de-
scribed by M to boundary excitations described by R. AR is
a Lagrangian condensable algebra formed by bulk excitations,
which are mapped to trivial excitations on the boundary R.
AR, with a trivial action on the symmetric boundary, cor-
respond to the patch symmetry operators on the boundary.
The non-trivial excitations R on the R-boundary are created
by the patch charge operator. R and R̃ are dual to each other
is all the bulk excitations either condense on the R-boundary
or R̃-boundary.

– gives us the full algebra of local symmetric operators.
This algebra contains the full information of the categor-
ical symmetry, which represents the essence of symmetry.
From this point of view, symmetry and dual symmetry
have the same categorical symmetry and are equivalent.
They only differ by swapping the names for patch charge
operators and patch symmetry operators.

D. A simple example

In this subsection, we are going to discuss a simple
example, to illustrate the above abstract discussions.

1. Holographic view of 2d Z2 0-symmetry

As we have discussed in Section VIIIA, the representa-
tion category of 2d Z2 0-symmetry is a fusion 2-category
R = 2RepZ2

. The transformation category of 2d Z2 0-

symmetry is a fusion 2-category R̃ = 2VecZ2
. It has the

categorical symmetry 2GauZ2
= Z(2RepZ2

) = Z(2VecZ2
),

which is the 3d topological order described by Z2 gauge
theory. In the following, we will use the holographic pic-
ture to understand the above results.

The elementary excitations in 3d Z2-gauge theory in-
clude point-like excitations e (the bosonic Z2 charge) and
string-like excitations s (the bosonic Z2-flux string), as
well as the trivial excitations 1 and 1str. They satisfy the
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s
e

e

FIG. 18. A boundary of 3d Z2 topological order M = 2GauZ2

induced by s-string condensation. The boundary excitations
is described by fusion 2-category R = 2RepZ2

.

s

s

e

FIG. 19. A boundary of 3d Z2 topological order M = 2GauZ2

induced by e-particle condensation. The boundary excitations
is described by fusion 2-category R̃ = 2VecZ2 .

fusion rule:

e⊗ e = 1 s⊗ s = 1str (124)

The string-like excitation s corresponds to the flux line
in the 3d Z2-gauge theory, which is an elementary excita-
tion. The 3d Z2-gauge theory also has a non-elementary
excitation (i.e. descendant) string-like excitation, sZ2

,
which is a Z2 spontaneous-symmetry-break state formed
by the e-particles. Here we ignore all the descendant
excitations.

R = 2RepZ2
is a boundary of 2GauZ2 , induced by the

Z2-flux loop condensation, so on the boundary s ∼ 1str.
The boundary excitations then are described by {1, e} =
2RepZ2

. Fig. 18 represents the picture that a symmetry
characterized by representation category R = 2RepZ2

has the categorical symmetry 2GauZ2 . The Lagrangian
condensible algebra is generated by s, which corresponds
to the transformation category R̃ = 2VecZ2

. Thus Fig.
18 also represents the picture that a symmetry charac-
terized by transformation category R̃ = 2VecZ2

has the
categorical symmetry 2GauZ2

.

2. Holographic view of 2d Z2 1-symmetry

As we have discussed in Section VIIIC, the representa-
tion category of 2d Z2 0-symmetry is a fusion 2-category
R̃ = 2VecZ2 . The transformation category of 2d Z2 0-
symmetry is a fusion 2-category R = 2RepZ2

. It be-
longs to categorical symmetry 2GauZ2 = Z(2RepZ2

) =
Z(2VecZ2), which is the 3d topological order described
by Z2 gauge theory.

R̃ = 2VecZ2
is a boundary of 2GauZ2

, induced by the
Z2-charge condensation, so on the boundary e ∼ 1. The
boundary excitations then are described by {1str, s} =
2VecZ2

. Fig. 18 represents the picture that a symmetry

characterized by representation category R̃ = 2VecZ2
has

trivial

order

topo.

condense

condense

dual symmetry

symmetry

s

s
e

e

FIG. 20. All the non-trivial excitations in the bulk 2GauZ2 ,
either condense on the 2RepZ2

-boundary (s condense) or con-
dense on the 2VecZ2 -boundary (e condense). Thus the slab
has no topological excitations and correspond to a trivial
topological order.

the categorical symmetry 2GauZ2
. The Lagrangian con-

densible algebra is generated by e, which corresponds to
the transformation category R = 2RepZ2

. Thus Fig. 19
also represents the picture that a symmetry character-
ized by transformation category R = 2RepZ2

has the
categorical symmetry 2GauZ2

.

3. Symmetry R = 2RepZ2
and dual-symmetry R̃ = 2VecZ2

In 2d space, Z2 0-symmetry and Z(1)
2 1-symmetry are

equivalent, and are dual to each other. This means that

Z2 0-symmetry and Z(1)
2 1-symmetry have the same 3d

bulk topological order 2GauZ2
(i.e. have the same categor-

ical symmetry). When we consider a slab 3d bulk topolog-
ical order 2GauZ2

with one boundary being 2RepZ2
and

the other boundary being 2VecZ2
, then all the non-trivial

excitations in the bulk, either condense on the 2RepZ2
-

boundary or condense on the 2VecZ2
-boundary (see Fig.

20). So the slab is actually a trivial 2d topological order.
This implies that 2RepZ2

and 2VecZ2
are dual to each

other.

X. A DERIVATION OF TOPOLOGICAL
HOLOGRAPHIC PRINCIPLE

In this paper, we have derived a holographic point of
view of symmetry. For a lattice system with a symmetry,
we concentrate on the algebra of local symmetric oper-
ators, and its irreducible representation – the symmet-
ric sub-Hilbert space. The symmetric sub-Hilbert space
does not have a tensor product decomposition, which in-
dicates a (non-invertible) gravitational anomaly.9 Since
the (non-invertible) gravitational anomaly corresponds
to a topological order in one higher dimension (for finite
symmetries) [39, 40], the symmetric sub-Hilbert space,

9 Here, we view a gravitational anomaly is an obstruction to have
a lattice realization without symmetry.
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plus the algebra of local symmetric operators in it, gives
rise to a topological order in one higher dimension.

The above is just some vague ideas. In this paper, we
out line a way to compute this topological order in one
higher dimension, using the algebra of local symmetric
operators. This approach is very general. Even if we do
not know the symmetry transformation and do not know
the symmetric sub-Hilbert space, but if we know the set
of local operators and its algebra, then we can compute
the bulk topological order, by compute the braided fusion
(higher) category from the operator algebra.

Under such a general setting, our approach can be
viewed a derivation of topological holographic principle,
which can be simply stated as: boundary determines the
bulk. The usual holographic principle in AdS/CFT refers
to boundary conformal field theory (CFT) with a global
symmetry determines a bulk quantum gravity with a
gauge theory in an anti-de Sitter (AdS) space in one
higher dimension. The topological holographic princi-
ple here refers to boundary quantum field theory deter-
mines a bulk topological order in one higher dimension.
In this paper, we make the above statement more precise
by treating quantum field theory as an algebra of local
operators. As was shown in this paper, from the algebra
of local operators, we can determine a non-degenerate
braided fusion (higher) category, which in turn determine
the bulk topological order (provided that the braided fu-
sion (higher) category is finite). This corresponds to a
derivation of the topological holographic principle.

We may also consider one of the many boundaries of
a topological order. The boundary is more precisely de-
scribed by an algebra of boundary local operators, which
create all the low energy boundary excitations.10 Then,
from the boundary operator algebra, we can determine
a braided fusion (higher) category which determine the
bulk topological order, up to an invertible topological or-
der. The invertible topological order correspond to the
usual invertible gravitational anomaly of the boundary
theory, which is also determined by the boundary. This
way, we showed that

boundary theory uniquely determines the topological
bulk,

which is the topological holographic principle.
In this paper, we try to use topological order to de-

scribe generalized symmetry (which can go beyond group
and higher group) in one lower dimension. We like to re-
mark that, it is the non-invertible topological order that
is close to symmetry. The invertible topological order
(and the associated usual more familiar invertible grav-
itational anomaly) is furthest from symmetry. At mo-
ment, it is not clear should we generalize the symmetry

10 Here, we may assume the bulk topological order to have an infi-
nite energy gap. Then any finite energy excitations can be viewed
as boundaries excitations.

even more to include the ones associated with invert-
ible topological order in one higher dimension, or should
we use equivalent classes of bulk topological order up to
invertible topological order to describe generalized sym-
metry.

XI. EQUIVALENT SYMMETRIES

One application of the holographic theory of symme-
try is to identify equivalence between symmetries, higher
symmetries, anomalous (higher) symmetries, algebraic
(higher) symmetries, and gravitational anomalies. All
those (anomalous and/or higher) symmetries and gravi-
tational anomalies impose constraint on the low energy
dynamics of the system. They are equivalent if they im-
pose the identical constraint. Such an equivalence was
called holo-equivalence in Ref. 45, to stress its connec-
tion holographic picture.
As we have discussed in this paper, two symmetries

(described by representation categories R and R′) are
equivalent if they have the same categorical symmetry,
i.e. have the same bulk topological order:

Z(R) ∼= Z(R′). (125)

In practice, if we know a (higher) symmetry R is realized
as a boundary of a SPT state or a symmetric product
state, then the categorical symmetry is simply the bulk
topological order obtained by gauging the (higher) sym-
metry in the bulk SPT state or the symmetric product
state. We can identify many equivalent symmetries this
way.

A. Some known examples

First, let us list some known examples. In nd space,

Z
(m)
N m-symmetry can be realized by a boundary of

(n + 1)d product state with Z
(m)
N m-symmetry. Thus

the categorical symmetry of nd Z
(m)
N m-symmetry is the

(n+1)d ZN (m+1)-gauge theory. In (n+1)-dimensional
space, ZN (m + 1)-gauge theory and ZN (n −m)-gauge
theory correspond to the same topological order. There-

fore, in nd space, Z
(m)
N m-symmetry is equivalent to

Z
(n−m−1)
N (n−m− 1)-symmetry:

Z
(m)
N ∼ Z

(n−m−1)
N . (126)

Furthermore, the two symmetries are dual to each other.
Using the similar argument, we can obtain the follow-

ing results

• In 2d, Z3×Z2 ∼ Z(1)
3 ×Z2. This is actually a direct

application of eqn. (126).

• In 2d, S3 = Z3 ⋊ Z2 ∼ Z(1)
3 ⋊ Z2.[53] This is the

twisted version of the above. Z(1)
3 ⋊ Z2 is a non-

trivial mix of Z(1)
3 1-symmetry and Z2 0-symmetry.
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The charge objects of Z(1)
3 are strings labeled by

s, s̄. The Z2 0-symmetry exchange s and s̄.

• In 1d, an anomalous Z2×Z2×Z2 symmetry is equiv-
alent to D4 symmetry, for a very different reason
than the above two examples.[92, 93]

B. Equivalence between anomalous and
anomaly-free Zn and Zn1 × Zn2 symmetries in

1-dimensional space

In Section VIC, we find an equivalence between 1d
Z4 symmetry and Z2 × Z2 symmetry with the mixed
anomaly. In this section, we would like to generalize that
result. An 1d anomalous Zn symmetry is realized by a
boundary of 2d Zn SPT state. After gauging the Zn

symmetry in the 2d SPT state, we obtain a 2d Abelian
bosonic topological order, which is classified by even K-
matrices.[80] In the present case, the corresponding topo-
logical order is given by[83]

K =

(︄
−2m n

n 0

)︄
(127)

where m ∈ H3(Zn;R/Z) = Zn charactering the Zn

anomaly (m = 0 for anomaly-free). We will label the
anomalous Zn symmetry by (n;m).

Similarly, the anomalous 1d Zn1
× Zn2

symmetry is
realized by a boundary of 2d Zn1

×Zn2
SPT state. After

gauging the Zn1
×Zn2

symmetry, we obtain a 2d Abelian
topological order characterized by[83]

K =

⎛⎜⎜⎜⎜⎝
−2m2 n1 −m12 0

n1 0 0 0

−m12 0 −2m1 n2

0 0 n2 0

⎞⎟⎟⎟⎟⎠ , (128)

where m1 ∈ Zn1
describing the anomaly of the Zn1

sym-
metry, m2 ∈ Zn2

describing the anomaly of the Zn2

symmetry, and m12 ∈ Zgcd(n1,n2) describing the mixed
anomaly of the Zn1

× Zn2
symmetry. We will label the

anomalous Zn1
×Zn2

symmetry by (n1, n2;m1,m12,m2).
By computing the S, T matrices of the 2d topological

orders[47, 94] described by K-matrices, we can identify a
set ofK-matrices that give rise to the same 2d topological
order, and hence correspond to equivalent symmetries.
This allows us to find the following sets of equivalent
symmetries:

• (2,2;0,0,1), (2,2;1,0,0), (2,2;1,0,1)

• (4;0), (2,2;0,1,0), (2,2;0,1,1), (2,2;1,1,0)

• (5;2), (5;3)

• (5;1), (5;4)

• (6;1), (2,3;1,0,1)

• (6;5), (2,3;1,0,2)

• (6;3), (2,3;1,0,0)

• (6;4), (2,3;0,0,1)

• (6;2), (2,3;0,0,2)

• (6;0), (2,3;0,0,0)

• (7;3), (7;5), (7;6)

• (7;1), (7;2), (7;4)

• (2,4;0,0,1), (2,4;1,0,1)

• (2,4;0,0,3), (2,4;1,0,3)

• (2,4;1,1,1), (2,4;1,1,3)

• (8;0), (2,4;0,1,0), (2,4;0,1,2), (2,4;1,1,0), (2,4;1,1,2)

• (8;4), (2,4;0,1,1), (2,4;0,1,3)

• (3,3;1,0,1), (3,3;1,1,2), (3,3;1,2,2), (3,3;2,1,1),
(3,3;2,2,1), (3,3;2,0,2)

• (3,3;0,0,1), (3,3;1,0,0), (3,3;1,1,1), (3,3;1,2,1)

• (9;1), (9;4), (9;7)

• (9;2), (9;5), (9;8)

• (3,3;0,0,2), (3,3;2,0,0), (3,3;2,1,2), (3,3;2,2,2)

• (9;0), (3,3;0,1,0), (3,3;0,2,0), (3,3;0,1,1), (3,3;0,2,1),
(3,3;0,1,2), (3,3;0,2,2), (3,3;1,1,0), (3,3;1,2,0),
(3,3;1,0,2), (3,3;2,1,0), (3,3;2,2,0), (3,3;2,0,1)

• (10;3), (10;7)

• (10;1), (10;9)

• (10;2), (10;8)

• (10;4), (10;6)

• (11;2), (11;6), (11;7), (11;8), (11;10)

• (11;1), (11;3), (11;4), (11;5), (11;9)

• (12;1), (3,4;1,0,1)

• (12;7), (3,4;1,0,3)

• (12;5), (3,4;2,0,1)

• (12;11), (3,4;2,0,3)

• (12;9), (3,4;0,0,1)

• (12;3), (3,4;0,0,3)

• (12;10), (3,4;1,0,2)

• (12;4), (3,4;1,0,0)

• (12;2), (3,4;2,0,2)
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• (12;8), (3,4;2,0,0)

• (12;6), (3,4;0,0,2)

• (12;0), (3,4;0,0,0)

• (13;2), (13;5), (13;6), (13;7), (13;8), (13;11)

• (13;1), (13;3), (13;4), (13;9), (13;10), (13;12)

• (14;3), (14;5), (14;13)

• (14;1), (14;9), (14;11)

• (14;6), (14;10), (14;12)

• (14;2), (14;4), (14;8)

• (15;7), (15;13)

• (15;1), (15;4)

• (15;2), (15;8)

• (15;11), (15;14)

• (15;3), (15;12)

• (15;6), (15;9)

• (4,4;1,0,1), (4,4;1,2,2), (4,4;2,2,1)

• (4,4;1,0,2), (4,4;1,2,3), (4,4;2,0,1), (4,4;2,0,3),
(4,4;3,2,1), (4,4;3,0,2)

• (4,4;2,2,3), (4,4;3,2,2), (4,4;3,0,3)

• (4,4;0,0,1), (4,4;1,0,0), (4,4;1,2,1)

• (4,4;0,2,1), (4,4;0,2,3), (4,4;1,2,0), (4,4;1,0,3),
(4,4;3,2,0), (4,4;3,0,1)

• (4,4;0,0,3), (4,4;3,0,0), (4,4;3,2,3)

• (4,4;0,0,2), (4,4;2,0,0), (4,4;2,0,2)

• (4,4;0,2,0), (4,4;0,2,2), (4,4;2,2,0)

• (4,4;1,1,1), (4,4;1,3,1), (4,4;1,1,3), (4,4;1,3,3),
(4,4;3,1,1), (4,4;3,3,1), (4,4;3,1,3), (4,4;3,3,3)

• (16;1), (16;9)

• (16;5), (16;13)

• (16;7), (16;15)

• (16;3), (16;11)

• (16;0), (4,4;0,1,0), (4,4;0,3,0), (4,4;0,1,1),
(4,4;0,3,1), (4,4;0,1,2), (4,4;0,3,2), (4,4;0,1,3),
(4,4;0,3,3), (4,4;1,1,0), (4,4;1,3,0), (4,4;1,1,2),
(4,4;1,3,2), (4,4;2,1,0), (4,4;2,3,0), (4,4;2,1,1),
(4,4;2,3,1), (4,4;2,1,2), (4,4;2,3,2), (4,4;2,1,3),
(4,4;2,3,3), (4,4;3,1,0), (4,4;3,3,0), (4,4;3,1,2),
(4,4;3,3,2)

FIG. 21. The same topological order (in one higher dimen-
sion) can have different shadows, which correspond to equiv-
alent symmetries, and gives rise to the notion of categorical
symmetry.

We see that the two symmetries (4; 0) and (2, 2; 0, 1, 0)
are equivalent. This is the equivalence between Z2 × Z2

symmetry with the mixed anomaly and Z4 symmetry in
1d discussed in Section VIC, where we also find a duality
transformation, that maps a lattice model with anoma-
lous Z2 ×Z2 symmetry to another lattice model with Z4

symmetry. We believe that, in general, for any pair of
equivalent symmetries, there is a lattice duality transfor-
mation, that maps a lattice model with one symmetry to
another lattice model with the other equivalent symme-
try. Each pair of the equivalent symmetries in the above
list implies a lattice duality map.
We also see that (4; 0) and (2, 2; 0, 1, 1) are equivalent.

Thus the Z4 symmetry is also equivalent to Z2×Z2 sym-
metry with the mixed anomaly and an anomaly in one of
the Z2 symmetry. More generally, it appears that Zn×Zn

symmetry with a particular mixed anomaly is equivalent
to Zn2 symmetry. It is also interesting to note that, for
Zp group (2 < p = prime), its p − 1 anomalous symme-
tries form just two equivalent classes, and its anomaly-
free symmetry form its own equivalent class.

XII. SUMMARY – THE ESSENCE OF A
SYMMETRY

With so many equivalences between symmetries la-
beled by (higher) groups and anomalies, it is clear that
group, higher group, anomalies, local fusion higher cate-
gories, etc are not the best notions to describe a symme-
try. The algebra of local symmetric operators provides
a more fundamental description of symmetries and (in-
vertible and non-invertible) anomalies of quantum many
body systems. In this paper, we show that this algebra
contains a special subset of extended operators, dubbed
t-patch operators, whose algebraic relations encode the
data of a non-degenerate braided fusion n-category. This
category happens to capture the universal data of a topo-
logical order in one higher dimension. So, this point of
view leads to a holographic theory of symmetries and
anomalies.

With this, we re-iterate our slogan: “Finite symmetry
(with or without anomaly) is the shadow of topological
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order in one higher dimension” (see Fig. 21). The topo-
logical order in one higher dimension – the categorical
symmetry – captures the essence of the symmetry. We
end the paper by listing different aspects of categorical
symmetry:
A categorical symmetry is

• a symmetry plus its dual symmetry [45, 53].

• a non-invertible gravitational anomaly [38, 40–43,
49].

• a class of isomorphic algebras of local symmetric
operators.

• a non-degenerate braided fusion higher category.

• a topological order in one higher dimension [45, 50,
51, 53].

We would like to thank Yu-An Chen, Michael De-
Marco, Wenjie Ji, Kyle Kawagoe, Sal Pace, and Carolyn
Zhang for useful discussions. This work is partially sup-
ported by NSF DMR-2022428 and by the Simons Collab-
oration on Ultra-Quantum Matter, which is a grant from
the Simons Foundation (651446, XGW).

Appendix A: Local symmetric operator algebra and
non-degenerate braided fusion 3-category – a
3-dimensional example without symmetry

Let us discuss an example to illustrate the definitions
in Section III, for the case without any symmetry. We
assume the space to be 3-dimensional. On each vertex-
i, we have two degrees of freedom labeled by elements
in Z2 ≡ {+1,−1}, i.e. the local Hilbert space Vi on a
vertex 2-dimensional. The algebra of local operators is
then generated by Xi, Zi acting on Vi:

A = {Xi, Zi, XiZi, XiXj , ZiZj , · · · } (A1)

where i, j are near each other, and the Pauli-X,Z oper-
ators are defined by

X| ± 1⟩ = | ∓ 1⟩, Z| ± 1⟩ = ±| ± 1⟩. (A2)

Our local symmetric operator algebra (after the closure
by the extended operators) is generated by the following
t-patch operators:

1. 0-dimensional t-patch operators, Xi, Zi.

2. 1-dimensional t-patch operators – string operators,

Xstrij = XiXj , Zstrij = ZiZj , (A3)

where the stringij connects the vertex-i and vertex-
j. The string operators must have an empty bulk to
commute with the 0-dimensional t-patch operators,
when they are far away from the ends of the strings.

3. 2-dimensional t-patch operators – disk operators,

Xdisk =
∏︂

i∈∂disk

Xi, Zdisk =
∏︂

i∈∂disk

Zi,

Odisk =
∏︂

i∈∂disk

Oi, (A4)

where Oi can be any local operators.

4. 3-dimensional t-patch operators – ball operators,

Xball =
∏︂

i∈∂ball

Xi, Zball =
∏︂

i∈∂ball

Zi,

Oball =
∑︂
{mi}

Ψ({mi})
∏︂

i∈∂ball

Oi(mi). (A5)

where Oi(mi) can be any local operators. For ex-
ample, Oi(0) = id andOi(1) = Xi. (More precisely,
Oball is a tensor network operator on the boundary
of the ball, ∂ball.)

We see that the t-patch operators all have empty bulk,
i.e. are patch charge operators. There is no patch sym-
metry operators. This implies that our bosonic system
has no symmetry.

If some t-patch operators have non-trivial bulk, then
our system will have non-trivial symmetry, as we see in
the examples in Section IV and beyond of the main text.
In fact, the non-trivial bulk of the t-patch operators will
generate the corresponding symmetries, higher symme-
tries, and/or non-invertible higher symmetries.

We believe that the above algebra of extended t-patch
operators is closely related of a braided fusion 3-category
3Vec. At moment, we can only give a very rough de-
scription of this connection. A 3-category is formed
by 0-morphisms (also called objects), 1-morphisms, 2-
morphisms, and 3-morphisms (also called top mor-
phisms). All those morphisms have relations between
them. In fact, the collection of all relations between
n-morphisms is the collection of all (n + 1)-morphisms.
The ball operators correspond to the objects, the disk
operators the 1-morphisms, the string operators the 2-
morphisms, and the local operators the top 3-morphisms.
The difference of two ball operators are given by the disk
operators, the difference of two disk operators are given
by the string operators, etc.

For example, if two string operators Ostrij and O′
strij

are related by local operators Oi and Oj :

O′
strij = OiOjOstrij , (A6)

we say the 2-morphism Ostrij connects to the 2-morphism
O′

strij via the 3-morphism OiOj on the left:

Ostrij

L:OiOj−−−−−→ O′
strij . (A7)

Similarly, if Ostrij and O′
strij are related by local opera-

tors Oi and Oj on the right:

O′
strij = OstrijOiOj , (A8)
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we also say the 2-morphism Ostrij connects to the 2-
morphism O′

strij via the 3-morphism OiOj :

Ostrij

R:OiOj−−−−−→ O′
strij . (A9)

The 3-morphisms connecting 2-morphisms allow us
to defined the notion of simple 2-morphisms. A 2-
morphism Ostrij is simple if an existence of 3-morphism

Ostrij
f−→ O′

strij always implies an existence of 3-

morphism O′
strij

g−→ Ostrij in the opposite direction. It
turns out that Xstrij and Zstrij introduced above are not
simple. The following string operators are simple

P±
strij = P±

i P
±
j , P±

i =
1± Zi

2
, P±

j =
1± Zj

2
.

(A10)

Certainly, the notion of simpleness applies to all mor-
phisms.

If two 2-morphisms, Ostrij and O′
strij , satisfy

Ostrij
f−→ O′

strij , O′
strij

g−→ Ostrij ,

Ostrij
f◦g=id−−−−→ Ostrij , O′

strij

g◦f=id−−−−→ O′
strij , (A11)

then we say the two 2-morphisms are isomorphic. In the

above example, Ostrij

L:OiOj−−−−−→ O′
strij , if Oi and Oj are

invertible, then the 2-morphism O′
strij connects to the

2-morphism Ostrij via the 3-morphism O−1
i O−1

j :

Ostrij = O−1
i O−1

j O′
strij ,

or O′
strij

L:O−1
i O−1

j−−−−−−−→ Ostrij (A12)

In this case, the two 2-morphisms Ostrij and O′
strij are

isomorphic.
The isomorphic relations between 2-morphisms is an

equivalent relation. For example P−
strij

∼= P+
strij . Al-

though there are infinite many simple 2-morphisms in
our example, there is only one equivalence class of sim-
ple 2-morphisms. A representative in this equivalence
class is given by P−

strij = P−
i P

−
j .

In this paper, when we refer to objects and morphisms,
we usually refer to the equivalence classes of objects
and morphisms, under the isomorphisms discussed above.
Combining the definition of simpleness and isomorphism,
we see that two simple morphisms cannot be connected
by a higher morphism if they are not isomorphic. In
other words, different types of morphisms (i.e. different
equivalence classes of morphisms) cannot be connected
by a higher morphism.

We would like to stress that although the t-patch op-
erator considered above all have an empty bulk, the ten-
sor network operator on the boundary can have a Wess-
Zumino form. For example, Oball is a tensor network
operator on the boundary of the ball, but it can be de-
fined i.e. defined by a tensor network on an extension of

∂ball in one higher dimension. Such a tensor network
can be viewed as a spacetime path integral on the ball,
which can give rise to a topologically ordered state on
∂ball described by wave function Ψ({mi}). We see that
we can have infinitely many types of ball operators, each
type corresponds to a topological order in 2-dimensional
space. Since there is no non-trivial topological order in 0-
and 1-dimensional space, thus we have only one type of
string-like t-patch operators and one type of membrane-
like t-patch operators. Such a structure matches the
structure of braided fusion 3-category 3Vec.[45, 88]

Appendix B: Detailed calculations

1. Calculation of F (s, s, s)

To compute the F-symbol F (s, s, s), described in
eqn. (44), we refer to Fig. 5 and substitute a = b = c = s.
Using the definitions in equations 39 and 40, this picture
translates to the following calculation:

X ZX

s s s

XO†

O

X ZX

s s s

XO†

O

X XZ

s s s

X

O†

O

X XZ

s s s

X

O†

O

s

X

s

X

=

X ZX

s s s

XO†

O

X XZ

s s s

XO

s

X

s

X

O†

(−1)·

0 1 2 3

This tells us that F (s, s, s) = −1. Note that our opera-
tor ordering convention is top-to-bottom and left-to-right
(when in the same row).

2. Self-statistics of s particles

We express Fig 6 in equations as

Ts(0 → 1)Ts(1 → 2)Ts(3 → 1)

=Wpatch01
Wpatch12

W †
patch13

= e iθsW †
patch13

Wpatch12
Wpatch01

= e iθsTs(3 → 1)Ts(1 → 2)Ts(0 → 1)

(B1)
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The l.h.s. can be simplified as

X ZX

s s s

XO†

O

X ZX

s s s

XO†

O

X XZ

s s s

XO

s

X

s

X

O†

0 1 2 3

=

X ZX

s s s

XO†

O

X

s s

X X

s

X XZ

s s s

XO

s

X

s

X

O†

=

X XZ

s s s

XO

s

X

s

X

O†

X ZX

s s s

XO†

O

X

s s

X X

s

(-1)·

while the r.h.s. can be simplified as

X ZX

s s s

XO†

O

X ZX

s s s

XO†

O

X XZ

s s s

XO

s

X

s

X

O†

0 1 2 3

=

X XZ

s s s

XO

s

X

s

X

O†

X ZX

s s s

XO†

O

X

s s

X X

s

i ·

Comparing the two, we can see that the self-statistics
phase e iθs equals i , i.e. θs = π/2. Thus, the s particles
have semionic self-statistics.

3. Mutual and self statistics of m, m̃, s particles in
Z2 × Z2 with mixed anomaly

First we calculate the mutual statistics of m and m̃,
as discussed in eqn. (54). Representing it pictorially, we
find

X X X Õ
†X

0

Õ

1 2

s s s s
X̃

3

=

s s s s

X X X Õ
†X

Õ

i

X X X Õ
†X

Õ

s s s s

− iZ̃

=

X X X Õ
†X

Õ

s s s s

− iZ̃

=

−Z̃

X̃ X̃ X̃

X̃ X̃ X̃ X̃

X̃ X̃ X̃ X̃

X̃ X̃ X̃ X̃

This proves eqn. (54). Now, recall that s is a bound state
of m and m̃. In other words,

W s
patchij

def
= Wpatchij

· W̃ patchij
(B2)

Then the self-statistics calculation shown in Fig 6 corre-
sponds to the computation of the phase in the following
sequence of operations:

mm̃ mm̃

0 1 2 3

mm̃ mm̃

mm̃

mm̃

mm̃ mm̃

(B3)
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From the above picture, it is clear that the computation
of self-statistics of s particles is equivalent to the compu-
tation of mutual statistics of m and m̃ particles.

Appendix C: Global action of 1+1D Z2 × Z2

symmetry with mixed anomaly

Symmetry protected topological (SPT) states in d
space dimensions are associated with anomalous symme-
try actions on their (d− 1)-dimensional boundary. Such
non-onsite action of the symmetry encodes a ’t Hooft
anomaly of the symmetry, when considered exclusively on
the boundary. In Ref. 79 (Section 4), the authors wrote
down an exactly soluble path integral model (also known
as cocycle model[95]) to realize SPT states in general d
space dimensions. These were then used to construct
the corresponding anomalous symmetry action for the
boundary effective theory. This framework then provides
us with a recipe to write down a representative symme-
try action for any anomalous symmetry in any number
of dimensions. In particular, we can use this recipe to
write down the anomalous (non-onsite) symmetry action
for the 1+1D bosonic theory having a Z2×Z2 symmetry
with a mixed anomaly. For this we must consider an SPT
state in 2+1D that is protected by Z2 × Z2 symmetry.11

The path integral is defined on a 3-manifold M3 with
boundary M2 = ∂M3, and involves a 3-cocycle ν3. In
Euclidean signature, the integrand of the path integral
reads

e−
∫︁
M3 LBulkd

3x =
∏︂
M3

e2π iν3(gi,gj ,gk,gl) (C1)

where the ordered collections (i, j, k, l) are the tetrahedra
belonging to the triangulation of M3. For the effective
boundary theory, one can simplify the bulk so that it
contains a single point. This reduces to an effectively
1 + 1D path integral due to properties of the cocycle
which we will not go into here – the interested reader is
directed to section 4.2 of Ref. 79. This path integral still
has the original protecting symmetry of the SPT state,
however it is no longer realized in an on-site manner.
In Hamiltonian formalism, this symmetry action on the
1+1D boundary is given by

U(g) |{gi}⟩ =
∏︂
(i,j)

e2π iν3(gi,gj ,g
∗,−g+g∗) |{g + gi}⟩ (C2)

where (i, j) are nearest neighbors on the 1d spatial
boundary, −g denotes the inverse of the group element
g ∈ Z2 × Z2, and g

∗ is an arbitrary reference group ele-
ment, which can be taken to be the identity element of
the symmetry group without any loss of generality. One

11 We use the additive presentation of the Z2 group in this ap-
pendix.

choice of ν3 that encodes the mixed anomaly of two Z2

symmetries is

ν3 = a1 ⌣ a2 ⌣ a2 (C3)

with a = dg taking values on links, and the subscripts on
a labeling the two Z2 groups. Using equations C2 and C3
allows us to write down the global symmetry generators
in equations 48 and 49.

Appendix D: 2d non-Abelian symmetry and its dual

In the section VIII, we see that a 2d Z2 0-symmetry is

equivalent to its dual, a 2d Z(1)
2 1-symmetry. The dual

symmetry is obtained by exchanging patch charge oper-
ators and patch symmetry operators. We note that for
a symmetry described by a non-Abelian finite group G,
it also has patch charge operators and patch symmetry
operators. Naturally, one may ask what is the dual of the
G symmetry? Are symmetry and dual symmetry equiv-
alent? In this section, we will discuss briefly the algebra
of local symmetric operators for a non-Abelian symme-
try, and the dual of a non-Abelian symmetry. Although
our discussion is far from complete, it suggests that the
dual of the G 0-symmetry (whose charge-objects form a
fusion 2-category 2RepG) is a symmetry whose charge-
objects form a fusion 2-category 2VecG. In other words,
the symmetries 2RepG and 2VecG are dual to each other.

1. The G 0-symmetry in 2d space

Let us consider a bosonic quantum system, whose de-
grees of freedoms live on the vertices and are labeled by
a non-Abelian group G. In other words, the total Hilbert
space is given by V =

⨂︁
i Vi (Vi = span{|gi⟩

⃓⃓
gi ∈ G} ).

The G 0-symmetry is defined by the transformations
on the whole 2d space

Th =
∏︂
i

Ti(h), h ∈ G, (D1)

where Ti(h) acts on Vi:

Ti(h)|gi⟩ = |hgi⟩. (D2)

The associated t-patch symmetry operator is given by

χ̂disk =
∑︂
h∈χ

ĥdisk, (D3)

where ĥdisk =
∏︁

i∈disk Ti(h) and χ is a conjugacy class of
G. Note that here we need to sum over conjugacy class
as required by the transparency condition (i.e. Tdisk(χ)
must carry vanishing total charge):

Tdisk(χ)Tdisk(χ
′) = Tdisk’(χ

′)Tdisk(χ), (D4)
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where the boundaries, ∂disk and ∂disk’, are far away
(i.e. do not intersect). Local symmetric operators satisfy

χ̂diskO
symm
i = Osymm

i χ̂disk, ∀ χ, (D5)

where i is far away from ∂disk.
The patch charge operators, with empty bulk, are

given by

R̂strij = Tr[R(ĝi)R(ĝ
−1
j )], ĝi|gi⟩ = gi|gi⟩, (D6)

where R is an irreducible matrix representation of G.
The transparency condition requires us to take the trace:

χ̂diskR̂strij = R̂strij χ̂disk, (D7)

where strij is far away from ∂disk. But the one end
of string operator carries a non-zero charge, which can
be seen by trying to calculate the commutation between
χ̂disk and R̂strij with one end of string, i inside the disk
and the other end of string, j outside the disk:

χ̂diskR̂strij (D8)

=
(︂∑︂

h∈χ

∏︂
i∈disk

Ti(h)
)︂
Tr
(︁
R(ĝi)R(ĝ

−1
j )
)︁

=
(︂∑︂

h∈χ

Tr
(︁
R(h)R(ĝi)R(ĝ

−1
j )
)︁ ∏︂
i∈disk

Ti(h)
)︂

We see that commutator is complicated. In fact, they do
not even form a proper commutator. The non-trivial re-
lation indicates that the ends of string carries non-trivial
charge. But for a non-Abelian group G, the charge is not
described by a simple phase factor.

We know that the algebra generated by the patch
charge operators R̂strij and patch symmetry operators
χ̂disk should correspond to a 3d topological order. For
the present case, such a 3d topological order should be
the one described by the G-gauge theory. The 1d bound-
ary of the disk operator χ̂disk corresponds to the flux loop
in the G-gauge theory. When G is non-Abelian, a single
flux loop in G-gauge theory is not labeled by a group
element in G, but rather by a conjugacy class χ. For n
flux loops with gauge flux described by h1, · · · , hn, the
distinct physical states that labeled the conjugacy class
[h1, · · · , hn] = {hh1h−1, · · · , hhnh−1|h ∈ G} For large n,
the number of distinct physical states is of order |G|n.
In this case, we may say the gauge flux is labeled by the
group elements of G.
Similarly, if we consider a more general patch symme-

try operators formed by n disks, it is given by

χ̂n-disk =
∑︂

h1,··· ,hn∈[h1,··· ,hn]

(ĥ1)disk1
· · · (ĥn)diskn

. (D9)

We see that the number of generalized patch symmetry
operators is of order |G|n. We may say n disk-like patch
symmetry operators are labeled by the elements in Gn,
and each disk-like patch symmetry operators are labeled

by the elements in G. This agrees with the picture from
the gauge flux.
The patch charge operator R̂strij corresponds to the

charge excitations in the 3d G-gauge theory on S0, i.e. on
two points with one carries charge R and the other charge
R̄. Here R is a representation of G and R̄ is its charge
conjugate. The fusion of the charges is given by the fusion
of G-representations

R1 ⊗R2 =
⨁︂
R3

NR3

R1,R2
R3. (D10)

To measure the charge in the G-gauge theory, let us
braid a charge R around a single flux χ. When G is
non-Abelian, both the charge R and the flux χ can be
degenerate. The degeneracy of the charge R is dim(R).
The degeneracy of the flux χ is is the number of group
elements in conjugacy class χ, |χ|. With those degen-
eracies, the braiding of a charge around a flux loop is
not simply a phase factor. This is why the commutation
eqn. (D8) is complicated.
The above correspondence suggests that the categorical

symmetry of a 2d G 0-symmetry is a 3d topological order
described by a G-gauge theory, which will be denoted as
2GauG. 2GauG can also be viewed as a non-degenerate
braided fusion 2-category describing the point-like exci-
tations (the G-gauge charge) and string-like excitations
(the G-gauge flux) in the 3d G-gauge theory. Thus the
categorical symmetry of a 2d G 0-symmetry is a non-
degenerate braided fusion 2-category 2GauG.

We would like to mention that the patch charge oper-
ators R̂str should generate a symmetric fusion 2-category
2RepG. The patch symmetry operators χ̂disk should gen-
erate a braided fusion 2-category 2VecG.

We would like to remark that the simple objects in
2VecG are labeled by the elements g of the group G. The
boundary of a single patch symmetry operator χ̂disk cor-
respond to a composite object χ =

⨁︁
g∈χ g, where χ is a

conjugacy class of G. On the other hand, the boundary of
n patch symmetry operators χ̂n-disk, in the large n limit,
correspond to the simple objects in 2VecG. Since both

0-symmetry G and the algebraic 1-symmetry G
(1)
rep have

the same categorical symmetry, they are equivalent sym-
metries. The class of quantum systems with 0-symmetry
G and the class of quantum systems with algebraic 1-

symmetry G
(1)
rep will have a 1-to-1 correspondence, so that

the corresponding quantum systems have identical local
low energy properties.

2. The G
(1)
rep 1-symmetry in 2d space

The Z(1)
2 1-symmetry discussed before is described by

a higher group. In this section, we are going to study a
symmetry that is beyond higher group since the symme-
try transformation is not invertible. Such a symmetry is
called algebraic higher symmetry in Ref. 45.
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Let us consider a bosonic quantum system, whose de-
grees of freedoms live on the links and are labeled by
by an non-Abelian group G. In other words, the to-
tal Hilbert space is given by V =

⨂︁
⟨ij⟩ Vij (Vij =

span{|gij⟩
⃓⃓
gij ∈ G} )

The symmetry is defined by the transformations on all
the loops S1:

WR(S
1) = Tr

∏︂
⟨ij⟩∈S1

R(ĝij), ĝij |gij⟩ = gij |gij⟩, (D11)

for all matrix representation R of G. Local symmetric
operators satisfy

WR(S
1)Osymm

i = Osymm
i WR(S

1), ∀ S1, R. (D12)

We will call such a symmetry as G
(1)
rep 1-symmetry.

The algebra of local symmetric operators is generated
by the following two kinds of operators:

R̂strij = Tr
(︁
R(ĝik)R(ĝkl) · · ·R(ĝmj)

)︁
,

χ̂disk =
∑︂
h∈χ

ĥdisk, (D13)

where χ is a conjugacy class of G, ĥdisk =
∏︁

i∈disk Ti(h),
and the Ti(h) operator (for h ∈ G) is defined as

Ti(h)| · · · , gki, gij · · ·⟩ = | · · · , gkih−1, hgij · · ·⟩. (D14)

One can check that the above patch operators are t-patch
operators, satisfying the transparency condition eqn. (5).

The trace in the definition of R̂strij and the sum over
conjugacy class in the definition of χ̂disk are important
to ensure the transparency property.

The symmetry transformations WR(S
1) =

Tr
∏︁

⟨ij⟩∈S1 R(gij) are not invertible. They form a

more general algebra

WR1
(S1)WR2

(S1) =
∑︂
R3

NR3

R1,R2
WR3

(S1), (D15)

where NR3

R1,R2
is the fusion coefficients of the irreducible

representations, R1, R2, R3, of G (see eqn. (D10)). Thus
the symmetry generated by WR(S

1)’s is a new kind of
symmetry.

We would like to remark that non-invertible sym-
metry also exist in 1-dimensional space, which can be
constructed in a very similar way. In 1d, the non-
invertible symmetry is still described by the transforma-
tion WR(S

1) = Tr
∏︁

⟨ij⟩∈S1 R(gij), which correspond to

an non-invertible 0-symmetry denoted as Grep. Those
1d beyond-group symmetries have been studied under
the name (1) topological defect-lines/twisted-boundary-
conditions in 1+1D (spacetime dimension) CFT [64, 96–
98]; (2) fusion category symmetry,[51, 99]; (3) quantum
group symmetry,[100]; etc.

Now let us go back to 2-dimensional space. We can use
the t-patch operators R̂str on open strings to define the

1-symmetry, i.e. to select the local symmetric operators:

R̂strO
symm
i = Osymm

i R̂str, i far away from string ends
(D16)

The patch charge operator χ̂disk carry vanishing 1-
charge since

R̂strχ̂disk = χ̂diskR̂str (D17)

if the disk of χ̂disk is far away from the string ends of R̂str.
However, a segment of the boundary of the disk operator
χ̂disk can carry a non zero 1-charge. To measure such a
1-charge, we try to compute the commutator

χ̂diskR̂strij (D18)

=
(︂∑︂

h∈χ

∏︂
i∈disk

Ti(h)
)︂
Tr
(︁
R(gik)R(gkl) · · ·R(gmj)

)︁
=
(︂∑︂

h∈χ

Tr
(︁
R(h)R(gik)R(gkl) · · ·R(gmj)

)︁ ∏︂
i∈disk

Ti(h)
)︂

assuming one end of string, i, is inside the disk and the
other end of string, j, is outside the disk. We see that
commutator is complicated. The non-trivial relation at
least indicates that the boundary of the disk carries non-
trivial 1-charge. But for a non-Abelian group G, the
1-charge is not described by a simple phase factor. This,
in fact, is an expected result.
The above discussion suggests the algebra of local sym-

metric operator for 2d algebraic 1-symmetry G
(1)
rep is iso-

morphic to the algebra of local symmetric operator from
2d 0-symmetry G. To see this more clearly, we remove
the trace and the sum over conjugacy class in equations
(D8) and (D18), and rewrite them as

ĥdiskR̂
αβ

strij

=
(︂ ∏︂

i∈disk

Ti(h)
)︂(︁
R(gi)R(g

−1
j )
)︁αβ

=
(︂∑︂

γ

R(h)αγ
(︁
R(gi)R(g

−1
j )
)︁γβ ∏︂

i∈disk

Ti(h)
)︂

=
∑︂
γ

R(h)αγR̂
γβ

strij ĥdisk (D19)

and

ĥdiskR̂
αβ

strij

=
(︂ ∏︂

i∈disk

Ti(h)
)︂(︁
R(gik)R(gkl) · · ·R(gmj)

)︁αβ
=
(︂∑︂

γ

R(h)αγ
(︁
R(gik)R(gkl) · · ·R(gmj)

)︁γβ ∏︂
i∈disk

Ti(h)
)︂

=
∑︂
γ

R(h)αγR̂
γβ

strij ĥdisk (D20)

The above two equations have the same form, suggesting
that the two operator algebras are isomorphic. In this
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case, the 2d algebraic 1-symmetry G
(1)
rep also has the cat-

egorical symmetry 2GauG, the 3d G-gauge theory. The

only difference is that, for 2d algebraic 1-symmetry G
(1)
rep,

the patch symmetry operators generate a symmetric fu-

sion 2-category 2RepG, while the patch charge operators
generate a braided fusion 2-category 2VecG. So compare
to 2d 0-symmetry G, the patch symmetry operators and
the patch charge operators are switched.
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