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Abstract

High-dimensional (HD) data, such as images and profiles, are commonly collected
from complex systems and contain significant explanatory and predictive information
for effective systems monitoring and control. Therefore, developing accurate and robust
predictive models based on HD data is crucial. In literature, various methods, including
linear scalar-on-tensor regression, are developed to model a complex system based on
HD data. However, existing estimation techniques ignore the presence of outliers
and are prone to biased estimations. This paper proposes a robust scalar-on-tensor
regression framework that handles multi-dimensional HD input data when the data
contain outliers. Our proposed estimation method is constructed using maximum
Lg-likelihood estimation instead of the classical maximum likelihood estimation. The
asymptotic analysis under the Gaussian distribution assumption and the guideline on
choosing the tuning parameter of our proposed method is provided. Several simulations
and case studies evaluate the proposed method’s efficacy compared to several benchmark
methods in the literature.

Keywords: Robust estimator, Scalar-on-Tensor regression, Lg-likelihood, Asset lifetime
prediction.

1 Introduction

Nowadays, high-dimensional (HD) data, including profiles and images, are vastly available.
For example, in condition monitoring of assets, vibration signals and thermal images are
collected to predict the time to failure of an asset (Fang et al., 2019; Li et al., 2021).
Accurate and robust statistical models developed based on such HD data can be used for
systems monitoring, optimization, and improvement. These statistical models benefit many
applications including manufacturing (Yan et al., 2019; Fang et al., 2019; Gahrooei et al.,
2021), healthcare (Zhou et al., 2013), and agriculture (Ogden et al., 2002; Li et al., 2020).
Specifically, regression models developed based on a sample of HD data to predict a trait

value (scalar) of a system are of particular importance and are the focus of this article.



Developing predictive models based on HD data requires addressing challenges caused
by the high dimensionality of data, including small sample sizes and complex correlation
structures. Many authors dealt with these challenges by proposing functional and tensor
regression techniques. For example, Bayesian, adaptive, and penalized function-on-scalar
models have been proposed in recent years (Chen et al., 2016; Fan and Reimherr, 2017;
Barber et al., 2017; Kowal and Bourgeois, 2020). Zhou et al. (2013) developed a scalar-
on-tensor regression framework to predict a neurological disorder based on neuroimaging
data. Li et al. (2018) extended this approach by using Tucker decomposition. Guhaniyogi
et al. (2017) proposed a Bayesian version of the tensor regression with a scalar response.
Fang et al. (2019) developed a penalized location-scale tensor regression model to predict
the remaining useful life of a system. Also, several studies developed efficient algorithms
for tensor regression estimation (Chen et al., 2019; Zhang et al., 2020). These approaches
are designed based on the assumption that the data is outlier-free. Therefore, they may
produce large biased estimations and predictions when the data contains outlier samples.

In most real-world applications, outlier samples exist and may create bias in model
predictions if not addressed appropriately. For example, in asset management, signals such
as infrared images are used for the prediction of the remaining lifetime of an asset (Fang
et al., 2019). However, given the condition signals, assets with shorter or longer lifetimes may
exist. Figure 1 illustrates the failure time of rotary machines versus a feature (first principal
component score) of thermal images acquired by infrared cameras. As it is depicted, a few
outliers exist in the data. As another example, in agriculture, UAV-captured hyperspectral
images are used to predict the yield of the crop (Kanning et al., 2018). But, some plots of
a crop may show abnormally higher or lower yields. Developing algorithms for HD datasets

that are robust to such outliers is critical for adequate systems modeling.
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Figure 1: The lifetime of a few of the rotary systems appeared as outliers.



In the context of robust linear regression, M-estimation plays an important role in
constructing robust estimators that are not sensitive to outliers. The key idea is to
replace the squared loss in the ordinary least squares with some loss functions that put
less weight on the outliers. There are many commonly used loss functions, e.g., Huber’s
loss (Huber, 1964), Tukey’s Bisquare loss (Beaton and Tukey, 1974), Welsch’s exponential
squared loss (Dennis Jr and Welsch, 1978). In the context of high-dimensional settings
where the number of parameters is larger than the sample size, regularized M-estimations
are often used to obtain robust and sparse estimations. Lambert-Lacroix and Zwald (2011)
proposed a robust variable selection method by using Huber’s loss and adaptive lasso
penalty. Liet al. (2011) show that the M-estimation with some nonconcave penalty functions
can simultaneously perform parameter estimation and variable selection. The exponential
squared loss combined with adaptive lasso penalty is used by Wang et al. (2013) to construct
a robust estimator for sparse estimation and variable selection. Chang et al. (2018) proposed
a robust estimator by combining Tukey’s biweight loss with adaptive lasso penalty. When
the true distributions are fully specified, Ferrari and Yang (2010) propose a robust estimation
method by using Lg-likelihood. All these approaches require representing data as vectors,
which break down the spatial structure of HD data points such as waveforms and images.
That is, they cannot exploit the spatial correlation structure of HD data. Recently, robust
functional regression approaches have been proposed (Maronna and Yohai, 2013; Wang
et al., 2019; Kalogridis and Van Aelst, 2019). While these methods are suitable for modeling
waveform signals, they are difficult to be extended to higher dimensions and cannot capture
the between-correlation structure of multi-channel profiles.

This paper proposes a robust generalized tensor regression approach using maximum
Lg-likelihood estimation to address the aforementioned challenges. Following Zhou et al.
(2013), we formulate a tensor regression model with a scalar response and propose to use the
Lg-likelihood to derive the robust estimation for scalar-on-tensor regression. We also show
that under the Gaussian assumption, our robust estimator is a special case of M-estimator
with Welsch’s exponential squared loss (Dennis Jr and Welsch, 1978). To avoid overfitting
due to the estimation of a large number of parameters, we use a low-rank decomposition of
model parameters.

The rest of the article is organized as follows: In Section 2, we introduce notations



and review some of the multilinear algebra concepts used in the article. In Section 3, we
review the scalar-on-tensor regression model and illustrate the solution for estimating the
parameters. In Section 4, we introduce robust scalar-on-tensor (RSoT) regression and its
penalized form. We discuss the choices of tuning parameters for our proposed method in
Section 4.3. Section 5 shows the asymptotic properties of the proposed robust estimator
under the Gaussian distribution assumption. In Section 6, three simulation studies are
conducted to compare the performance of the RSoT against benchmark methods in terms
of prediction errors. Section 7 introduces the case study of estimating the failure time of
an engine given thermal images. In Section 8, we provide our discussion on the proposed
framework. Finally, Section 9 concludes the paper and provides some insights regarding

future work.

2 Tensor Notation and Multilinear Algebra

In this section, we introduce the notations and basic tensor algebra used in this paper.
Throughout the paper, we denote a scalar by a lower or upper case letter, e.g., a or A; a
vector by a boldface lowercase letter and a matrix by a boldface uppercase letter, e.g., a and
A and a tensor by a calligraphic letter, e.g., A. For example, we denote an order-n tensor
by R € RIvxl2xxIn where I; is the dimension of the i*" mode of tensor R. We also denote
a mode-j matricization of tensor R as R,j) € R *1-i  whose columns are the mode-j fibers
of the corresponding tensor R, and I_; = Iy x Iy x -+ x [j_1 x Ij41 X --- x I,. The vec(R)
operator transforms the entries of a n-dimensional tensor R € RI1>*2XxIn into a column
vector. Furthermore, the Kronecker product of two matrices A € R™*"™ and B € R"*4 ig
denoted as A ® B € R™*™ and is obtained by multiplying each element of matrix A to

the entire matrix B:
anB alnB

A®B=
amB ... ap.B
If A and B have the same number of columns, i.e., n = s, then the Khatri-Rao product is

defined as the mr-by-n columnwise Kronecker product, A® B = [a1 ®b2as @by - - - a, @by,].

Finally, the outer product of n vectors a; € R, i =1,2,--- ,n, is denoted by aj0as - --oa,



and is a Iy x Iy X -+ x I, tensor with entries (a1 0 @2+ 0 @n)iy iy, in = |lpey @i W

denote the trace of a matrix A by Tr(A).

3 Review of Generalized Scalar-on-Tensor Regression

In this section, we review the generalized scalar-on-tensor (SoT) framework proposed by
Zhou et al. (2013). Assume a set of training data of size N that includes response variables
y; € R;(i = 1,---,N) and input tensors &; € RIxf2=xIm.(j — 1 ... N) is available.
Assume y; follows an exponential family distribution with canonical parameters 6; and

dispersion parameter ¢,

R e ) )

where b(.), a(.) and ¢(.) are distribution-specific known functions. Then, SoT regression

characterizes a generalized linear tensor model (GLM) as follows:
9(ElyilX]) = p+ (Xi, Bo) + €53 i =1,2,--- | N. (2)

Here, By € RIxI2=xIm ig the true tensor of parameters to be estimated, and e; is
independent and identically distributed random noise with zero mean and constant variance.
If we vectorize the tensors X; and By in (2), then, the parameters By can be estimated
by available vector-based methods. For instance, for Gaussian distribution, we can use
the method of ordinary least squares estimation by minimizing the mean square loss
function, L = % vaz (i —p— (Xi,8>)2. Nevertheless, without imposing a penalty on
the parameters, this approach results in a severe over-fitting due to a large number of
parameters. To overcome the high dimensionality of the parameters and the potential over-
fitting problem, Zhou et al. (2013) imposed low-rankness on the tensor of parameters by
including a rank-R decomposition of 5. Then, the generalized scalar-on-tensor regression
model is solved by minimizing the negative log-likelihood (maximizing the log-likelihood)

of the training data with low-rankness constraint as follows:

N y0 —b N

= ! ;
min (. B Z ;cy, (3)
st. B= Zul ou2 --ou%), (4)



where 0; = u + (B, ;) and ug) eRlad=1,2,--- ,m; r=1,2,---, R. For convenience,

the decomposition can also be represented by a shorthand, B = [[U1,Us, - ,U,,]|, where
U, = [ug), u&z), e ,uglR)] € RIaxE g =12 ... m. In this way, the number of parameters

will be 14+ R(>"7" | I4), which is much smaller than the number of 1+ [[}-; I; parameters
without the low-rankness assumption. To solve this problem, one can use the Alternating
Least Squares (ALS) procedure. That is, we solve the optimization problem in (3) and
estimate ugj ) by fixing the remaining parameters. Next, we repeat this procedure for the

remaining parameters in a similar way. This procedure is repeated until convergence. The

details of the parameter estimation are provided in Section 1 of Supplementary Materials.

4 Robust Generalized Scalar-on-Tensor Regression

In this section, we consider the problem of robust generalized scalar-on-tensor (RSoT)
regression when the training data {(y;, &;)}Y, contains some outliers. Specifically, we
assume the data follows the generalized linear model with gross outlier corruption. That is,
y follows a mixture distribution with probability density function h(y;6,q) = (1—q) fo(y) +
q9(y), where g € [0,1) is the proportion of the outliers, fy(y) is the pdf of an exponential
family with canonical parameters 6, and g(y) denotes the probability density function of
the outlier that could be arbitrary or depend on X. Then, we write the RSoT regression

model as follows:

p(ii0i,0) = ho,q(yi) = (1 —q) fo,(vi) + q9(vi), Vi (5)
fo,(y) = d(y)exp{ybi —b(0;)} (6)
V() = Elyli] (7)

where 0; = p + (X, Bo), Bo = [[Uo1,Uo2, - ,Upn]], and b(.) is a known function and
depends on the underlying exponential family distribution, &'(.) is its first derivative, and
By is the true tensor of parameters, which is decomposable by a set of true factor matrices
Uo1, -, Uy, Note that if fg, (y) is a single-parameter distribution from exponential family,
then 6; = p + (X;, By). However, for two-parameter exponential family distributions, 6;
becomes a function of the parameters. For instance, when estimating mean of a Gaussian

distribution with unknown variance, o2, then 6; becomes ; = %, where v; = u + (X}, Bo).



Under such gross error model when data contain outliers, the maximum likelihood loss in
(3) will not accurately estimate the true parameter By. Thus, to reduce the effect of outliers,
in Section 4.1, we will construct a robust generalized scalar-on-tensor (RSoT) estimation
procedure using maximum Lg-likelihood estimation (Ferrari and Yang, 2010). Next, we will
introduce the penalized version of the Lg-likelihood to encourage sparsity in the solutions
in Section 4.2. Finally, we discuss the choices of tuning parameters in our proposed method

in Section 4.3.

4.1 Robust Estimation via Lg-likelihood

We propose to estimate By and p by solving the following optimization problem with the
low-rank constraint on the tensor of parameters:
N
. 1-— f@i Yi @
min 04(0;,yi) = Z 1= Vo) (8)

B a
“ i—1

st. B= Zu ou2 cou(),

where fg,(y) = a(y) exp{y#; —b(;)}. In this formulation, the tuning parameter, «, controls
the trade-off between the statistical efficiency and the robustness of our proposed method.
Note that when a — 0, 04(0;,yi) — Zf\;l —log(fo,(y:)). That is, the proposed Lg-likelihood
becomes similar to the negative log-likelihood as in (3). On the other hand, when o — oo,
0a(0i,y;) — 0. Thus, in this case, the resulting estimator may not be affected by any
outliers but will lose all statistical efficiency to estimate the true parameters. Therefore, it
is critical to choose the tuning parameter « for our robust estimation method. We explain
the selection of « in Section 4.3.

Suppose fy, (y) is a single-parameter exponential family distribution. Then, Problem (8)

is equivalent to

N 1= () exp{uili + (X, B) — b+ (%, B)} )

min 2 - (9)
R

st. B= Zu(r) ug) ) ug).
r=1

The estimation of the tensor B is now equivalent to the estimation of the matrices

U,,Uy,--- ,Up,. To solve the optimization problem in (9) and estimate uglj)(d =



1....

)

,m;j = 1,--- | R), we propose to employ Newton’s search method and alternating
least squares (ALS) algorithms. Note that any first/second-order search methods can be
used together with the ALS approach. However, Newton’s search method is advantageous
due to its fast convergence. First, the initial values of {u,Uy,Us,--- ,U,,} are set to the
solution of SoT as it is discussed in Section 3. Then, we re-write the inner product as
(X;,B) = Tr (U;—Xi,(d)KUd), where Ky, = U, © ... Ugp1 © Ug_q ... ® Uy, Furthermore,
we set W, g = [ng,...,wgﬁ)] = & a)Ku, (Wijd) c Rla), Tg; = Tr (UdTWi,d), and
T C(l;j )= Ty (U&_j )TWE;/ )>, where j% columns of Uy and W, 4 are removed. Then, for
fixed p, {Ud’}g’Lzl,d';&dv and {ugjl) ﬁ=1,j’7ﬁj’ we propose to use the Newton’s search algorithm

()

to estimate u;’ by solving,

= AT s AT . 0%
N 1= (d(yi)exp{yi(quTé,i”+ug) W) = b(p+ T, + uf) W%)})
min

) [0
ud] i=1

(10)

We iteratively update u&j ) until it converges to a stationary point through Newton’s search

algorithm as follows:

H® HE=1) -\ 1 H(E=1)
u((f) _ u&]) _GH (u((j) ) G (u‘(ia) ) :

where G(.) is the gradient, H(.) is the Hessian matrix, u?™ s the ul(ij) at t*" iteration, and

(¢ is the learning rate. The gradient and the Hessian matrix can be found in Section 2 of
Supplementary Materials. The convergence criteria are either Hu[(ij ) ufij e |2 becomes
less than a threshold, or the maximum number of iterations is reached. We select the
learning rate by a backtracking algorithm.

We repeat this procedure for the ug ) of the remaining modes and factors
(d = 1,---,m; 7 = 1,--- R ), until convergence. After learning every vector
u&j) (d=1,---,m;j=1,---,R), the intercept p is estimated by using Newton’s search
algorithm by following a similar idea with ugt). The details of the update procedure are
provided in Section 2 of Supplementary Materials.

Our proposed method has a special structure for Gaussian distribution. In this special



case, our robust estimator will reduce to

mmzpa vi — i — (X, B)) (11)
s.t.B= Zugr) o ug") coull),

where p,(t) = 1 — exp(—at?/2) known as the Welsch’s exponential loss function (Wang
et al., 2013). Note that the interpretation of the tuning parameter « in our method is the
same for Welsch’s exponential loss function. The details about the special case are provided

in Section 3 of Supplementary Materials.

4.2 Robust Sparse Estimation through Adaptive Lasso

It often appears that many elements in the input tensor X contain no information in

predicting the output y. Therefore, it is important to identify the informative elements

of the input tensor. For this purpose, we define the penalized Lg-likelihood, which imposes

a sparsity-inducing penalty on the tensor of parameters B. This sparsity is achieved
(r)

equivalently by penalizing the columns of factor matrices Uy, namely u;’, in the objective

function as follows:

1 (dlo) explune + (8 B) — b+ (6B

P> a e

i=1 d17" 1

(12)
st. B= z:u(r)ou2 —ouln),

(r)

Here, c;” € R’a is a vector of weights and ¢ * u is an element-wise multiplication of
vectors. The sparsity-inducing penalty in (12) resembles the adaptive lasso. The solution
to this problem is an extension of the RSoT algorithm and gives sparse estimation of model
parameters. Assuming y, Uy, -+ ,Ugq11,Uq-1 -+ , U7 and {ud }J, 1,574 are given, we use
(4)

an alternating procedure to estimate u;’ by solving the problem as follows:

N 1= (dly) exp{y(t),; +u’ wi) —b(l, +uf) WD)y

() ()
min, a +oaglled <l
u;’ =1

(13)



where léﬂ- =u+T é;j ). We discuss the choice of the penalization parameter c((jj ) in Section
4.2. We employ the proximal Newton algorithm to solve the optimization problem in (13).
Note that other alternative methods, such as proximal gradient descent, can also be applied
to solve the adaptive lasso problem. The proximal function is the solution to the following

adaptive lasso problem:
1 N
p * p— 1 —_— —_ 2 —
prozy(u) = z argzm1n2n||u z|5 + — llex z||1.

The update of vector uy’ with learning rate ( is then obtained as u) = proxn(ug) —

¢CH@P)'amy).

()
d

4.3 Selection of Tuning Parameters

The proposed method requires tuning a few hyperparameters, including the robustness
parameter, «, the model rank, R, and the regularization parameter, c?). n the proposed
method, « is a critical tuning parameter, as it controls the robustness and the quality of the
fit of our proposed method. We perform a joint parameter selection mechanism to identify
these hyperparameters in RSoT. That is, we perform a five-fold cross-validation and select
(a, R) pair, which minimizes a robust performance measure such as truncated Root Mean
Squared Error (tRMSE). When performing RSoT with the adaptive lasso penalty, we select

the three parameters jointly. More specifically, given («, R), we propose to minimize a

BIC-type objective function to select the regularization parameter cg ).
I’ . I '
min Z do (0i,yi) + N Z cg,)g ‘ug,)g(RSOT)) - Z 10g(0.5Ncg],)€) log(N) |, (14)
cerla \ =1 7 k=1 7

() _ _ log(N)
d.k N‘u&{i(RSoT)

which yields é
In this selection mechanism, as the first step, we train the RSoT model for different
(ar, R) pairs and obtain the corresponding u&j)(RSOT) d=1,....M; 5 = 1,...,R) for
each pair. Next, c&j ) s computed given the estimated uéj JBST)  Ag the final step,
the (a,R, c((ij )) tuple is selected based on five-fold cross-validation with tRMSE as the
performance metric.
To determine the range of o, we experimentally search for a large enough value of o which

causes the estimator to lose its statistical power (too robust and ignores all the data) and

10



results in unacceptable prediction performance. Next, we determine the « set by starting
with that large value and logarithmically decreasing it. The user should determine the
number of values in the range based on the available computational resources. Alternatively,
one can reduce the value of « as long as the prediction performance improves. The specific

sets used in the simulations and case studies are provided in the corresponding sections.

5 Asymptotic Analysis Under Gaussian Assumption

In this section, we study the statistical properties of our proposed robust estimator under

normal distribution assumption, i.e.,

y = p+(X,Bo) +e, (15)

e ~ N(0,0%),

which yields to exponential loss defined by p(t) = 1 —exp(—at?/2). For simplicity, we omit
the intercept p, though similar conclusions still hold with the intercept term. To study the
asymptotic properties, we follow the classical asymptotic setting when the dimension of the
tensor B is fixed and the sample size N can go to oo.

Define 9, (t) = pl(t) be the derivative of the exponential squared loss. First, the

following lemma characterizes the gradient and Hessian of the loss pq (y — (X, B)).

Lemma 1. For a rank-R decomposition of a tensor B = [[U1,Us, - -- ,Uy]], we have

V(pa (y — (X,B))) = — taly — (X, B))J T (vec(X)),
V2(pa (y — (X, B))) = — tha(y — (X, B))V(J "vec(X))
+ Ul (y — (X, B))J T (vee(X)) (vee(X)) 1T,
where J; = IL[(Up @ QU1 QU ---0U ) ® I € RUIL= LX) . s the

(IT5Z, ;) x (II5L, ;) permutation matriz that reorders vec(B;)) to obtain vec(B), i.e.,

vec(B) = Ijvec(B;), and J = [J1,J2, -+, Ip].

The proof of Lemma 1 is provided in Section 4 of the Supplementary Materials. Next,
we discuss the identifiability issue. Since the rank-R decomposition B = [[U1, Uy, - - , Up)]

is indeterminable due to scaling and permutation, we borrow the idea in Zhou et al. (2013)

11



and consider the following parameter space:

Uu={U,:-- ,Um:ugj% = 1ford=1,2,--- ,m—1,7=1,2,--- ,R,and
(1) (2) (R))}

,um71 > Um’l > e > um,l

which is open and convex. In the set U, the factor matrices Uy, -- ,Uy,_1 are scaled in
a way that their first row is ones, which determines the first row of U, that is permuted
in a decreasing order to solve the permutation issue. Then, the tensor B with the rank-R
decomposition in the set U is unique to scaling and permutation. Now, we are ready to

present the asymptotic distribution of our robust estimator.

Theorem 1. Assume (yi,Xi)izljgy...7N are i.i.d. following the scalar-on-tensor regression
model with Gaussian assumption in (15). If the true parameter By = [[Uo1, - -+ , Uom]] € U,
then our proposed RSoT estimator B is consistent up to a permutation. That is, B converges

in probability to By up to a permutation.

Theorem 2. Assume (yi,é’(i)izl’g,...7N are i.i.d. following the scalar-on-tensor regression

model in (5) and the residual term ¢€; follows a symmetric distribution with mean 0. Define

N

V(UL Up) = 7|3 (vee()) (vee(X) ] T, (16)
i=1
where J = [J1,Ja, -+, ). Assume the matriz V(Upy, -+ ,Upy) is nonsingular for the

true parameter By = [[Uo1, - -+ ,Uom]] € U. Then,

E (¢a(€))*
[E (4 (e))]?

The proofs of Theorems 1 and 2 are provided in Section 4 of the Supplementary

vn (vec(B) - vec(Bo)> — N(0, (V(Uor, - ,Uom)) ™). (17)

Materials. We should emphasize that the asymptotic results in Theorem 1 and Theorem 2
imply that, under the normal assumption, the optimal solution of the optimization problem
in (8) will be close to the true parameter when no outliers exist. Although these theoretical
results do not imply the robustness of the proposed method, we conduct extensive simulation
studies and case studies in the next sections to illustrate the robustness and efficiency of
our proposed method. In addition, these theorems do not show the convergence of our
algorithm to the global optimal solution. Nevertheless, our empirical analysis (presented in
the next section) shows that the proposed algorithm converges to a stationary point in all

simulations (please see examples in Section 7 of Supplementary Materials).

12



6 Performance Evaluation Using Simulation

In this section, we conduct simulation studies to evaluate the performance of the proposed
method. We seek to compare the performance of the RSoT with the existing methods
under different distribution assumptions. Therefore, we consider three simulation scenarios.
In the first simulation, we assume the target follows Gaussian distribution. In the second
simulation, the target is assumed to follow the Poisson distribution. In these two simulation
settings, we do not consider sparsity. In the third simulation, we assume the target follows
a normal distribution and that the model parameters are sparse. In our simulations, we
compare the prediction performance of the RSoT with three benchmarks, namely SoT
proposed by Zhou et al. (2013), penalized exponential squared loss (ESL-LASSO) proposed
by Wang et al. (2013) and robust linear regression (RLR) with Huber’s loss. To perform
ESL-LASSO and RLR, we vectorize the input tensor. ESL-LASSO method handles the
high-dimensionality of the data by performing variable selection using a lasso penalty. The
method has a hyperparameter that determines its level of robustness. The proposed data-
driven method in Wang et al. (2013), which is based on minimizing the asymptotic variance
of the parameter estimates, does not work properly in the high-dimensional case, as the
asymptotic covariance matrix becomes singular. Thus, we perform cross-validation (CV)
to tune this benchmark’s hyperparameter. Furthermore, RLR cannot handle the situation
where the sample size n is larger than the number of features p (i.e., p >> n). Therefore,
we perform Principal Component Analysis (PCA) to reduce the dimensionality and extract
low dimensional features of the input data. Then, we apply RLR on the target given the
extracted scores by PCA. We evaluate the performance of RLR with PCA, denoted as
PCA-RLR, and without PCA, denoted as RLR.

6.1 Simulation I: Gaussian Distribution

We first randomly generate a set of N training data {(y;, A;)} containing input tensors
X; € RIxI2xIs and output values y; (i = 1,---, N) as follows. Let x; € R/1/2/3 be a random
vector that follows a multivariate normal distribution with mean p,, and the covariance
)th

matrix 3, ie., @; ~ N(pz, ). We generate the (i,7)"" entry of 3 as pl=7|. Tensor X; is

then constructed by reshaping vector ;. The factor matrices U; € RI#*E (1 =1,2,3) are

13



simulated elementwise from a normal distribution with mean zero and variance o2. That
is, each entry of U; follows N(0,02). The tensor of parameters is then constructed as
B= Zfil ugr) o ug) o uér). Furthermore, we simulate responses by y; = (B, X;) + e; where
e1 is a random error simulated from a normal distribution with mean zero and variance 0%.
Then, we randomly select ¢ % of the instances and add a random error, e, simulated from
a normal distribution with mean v and variance a% > 0%, ie., yi = (B, X;) +e1 +ea. These
instances are considered outliers.

When generating data, we set p, = 0.1 € Ri2l3 5, = 0.5, p = 0.001, oy = 0.5,
oo = 1, Iy = 10,1, = 10,13 = 10, and R = 2. We simulate training data sets
of size N = 315 by choosing the mean of outlier distribution v € {1,2,3,4,5} and
q € {0%,3%,5%,8%,10%,15%}. Note that ¢ = 0% means no outlier is added to training
data. Using the simulated data, we train a model for each method (i.e., RSoT, SoT, ESL-
LASSO, RLR). For the RSoT method, we select the rank from the set {2,3,4}, and « from
the set {2,1.414,1,0.707,0.5,0.353} (i.e., 2,;%, k = 2,...,7) by using cross-validation as
explained in Section 4.3. Our cross-validation performance measure is truncated RMSE,
calculated based on 90 % of the instances of the least squared errors. Next, we generate
a set of 135 test data to evaluate the performance of each method. The testing dataset
is generated as explained before, except that it does not contain outliers. We calculate
the root mean square prediction error (RMSPE) as the performance measure, computed as
RMSPE = M, where ¥ is the actual target, and ¥ is the predicted value. This
procedure is repeated 25 times to capture the variance of the RMSPE. In each scenario, we
compare the proposed method with benchmarks based on the RMSPE calculated at different
outlier magnitudes (v) and the percentage of outliers (¢). Table 1 reports the average and
standard deviation of RMSPE in each scenario.

As it is reported in Table 1, under all the outlier magnitudes and the percentage of
outliers, the RSoT outperforms the benchmarks. For example, when v = 3 and ¢ = 10%,
the RMSPEs are 0.611, 0.850, 11.330, and 24.671 for the RSoT, SoT, ESL-LASSO, and
RLR, respectively. In addition, the performance of the RSoT is more stable compared to
the benchmarks when both the outlier magnitude and the percentage of outliers increase.

Furthermore, when no outlier exists, RSoT outperforms ESL-LASSO and RLR and achieves

similar performance to SoT. Thus, it is still advantageous to use RSoT when it is unknown
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Table 1: Simulation I (Gaussian Case): Comparison between the proposed method (RSoT)
and the benchmarks in terms of RMSPE.

RSoT SoT ESL-LASSO RLR

0.581 (0.047) 0.574 (0.044) 10.825 (4.679) 21.711 (7.174)
0.581 (0.034) 0.587 (0.037)  10.667 (4.526)  22.910 (7.149)
0.593 (0.056)  0.625 (0.051)  13.936 (11.832)  23.624 (7.800)
0.584 ) 0.664 (0.080)  8.550 (3.757)  20.244 (7.368)
0.602 (0.046) 0.730 (0.089)  8.968 (3.078)  24.615 (11.659)
0.581 (0.042) 0.788 (0.114)  11.747 (7.406)  22.412 (7.177)

S

—~

S|
N

0.046

0.603 (0.050) 0.625 (0.047)  10.398 (6.479)  25.660 (10.662)
0.619 (0.062) 0.716 (0.139)  9.820 (4.933)  22.112 (6 591)
0.591 (0.053) 0.725 (0.101)  10.867 (7.910)  22.645 (15.204)
0.624 (0.063) 0.914 (0.126)  9.895 (3.905)  22.783 (7.374)

0.593 (0.049)  0.970 (0.152)  10.747 (6.898) 26.816 (11.376)
0.619 (0.053) 0.635 (0.059)  I1L.701 (8.661)  20.801 (6.050)
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0.624 (0.053)  0.709 (0.085)  9.359 (4.336)  23.228 (11.423)

) 0.820 (0.084) 11.228 (6.391) 25.676 (11.703)

0.623 (0.073) 0.976 (0.112)  9.612 (3.590)  29.258 (15.906)
(

0.637 (0.068) 1.183 (0.202)  12.070 (10.618) 27.503 (10.582)
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10 0.616 (0.055) 0.644 (0.060)  8.799 (4.609)  20.105 (7.130)
10 0.620 (0.050) 0.724 (0.075)  10.566 (6.501) 22.987 (10.152)
10 0.611 (0.071)  0.850 (0.105)  11.330 (7.995)  24.671 (9.714)
10 0.622 (0.054) 1.080 (0.117)  9.451 (2.696)  25.199 (9.725)
10 0.619 (0.047) 1.343 (0.224) 13.740 (12.322) 23.771 (8.776)
5 0.657 (0.073) 0.600 (0.067)  9.745 (4.586)  21.886 (8.339)
15 0.705 (0.099)  0.797 (0.098)  12.448 (10.179) 23.652 (10.709)
15 0.652 (0.089) 0.967 (0.095)  9.503 (4.188)  23.112 (6.335)
15 0.648 (0.074) 1.194 (0.143)  8.747 (4.396)  28.678 (16.902)
15 0.634 (0.067) 1.468 (0.219)  10.498 (3.950)  23.521 (7.166)

whether the data contains outliers or not. Furthermore, the performance comparison in
terms of R? and Median Absolute Error (MAE) are provided in Tables 1 and 2 in Section
9 of the Supplementary Materials.

Moreover, Figure 2 shows the effect of the percentage of outliers, ¢, when v = 3.
The figures show that as ¢ increases, the performance of RSoT is the least affected,
preserving similar performance over different percentages. However, the performance of
all the benchmarks worsens substantially as ¢ becomes larger. Figure 3 shows the effect
of the mean of outlier distribution, v, when ¢ = 8%. The figures demonstrate that the
performance of RSoT is the least impacted by different levels of outlier means, whereas the

performance of the benchmarks worsens dramatically as v increases.

6.2 Simulation ll: Poisson Distribution

In this simulation study, we evaluate the performance of the proposed method when the
target given the input data follows Poisson distribution, i.e., y;|&; ~ Poisson(A;), where \;

is the rate parameter (i = 1,..., N). We construct &; and U; similar to the first simulation.
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Figure 2: The effect of the percentage of outliers, ¢, when v = 3 in Simulation I
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Figure 3: The effect of the mean of outlier distribution, v, when ¢ = 8% in Simulation I

Particularly, we generate x; € R/1/2/3 from multivariate normal distribution with mean g,
and the covariance matrix X, i.e., ; ~ N (g, ). The (i,)" entry of 3 is pl=7l. &,
is then constructed by reshaping x;. U; € RI*E (i = 1,2,3), are simulated elementwise
from a normal distribution with mean zero and variance o2, i.e., U; ~ N'(0,02). B is then

constructed as B = Y"1 ugr) o ug) o u:(;)

. Then, we generate the rate parameter using log
link as follows: \; = exp{k(B, X;) + p}, where p is the intercept and k is the multiplier to
scale the inner product. We randomly select (100 — g) % of the instances and simulate the
responses as: y; ~ Poisson();), where ¢ is the percentage of outliers. For the remaining g %
of the instances, we simulate the responses as: y; ~ Poisson(\; 4+ ¢);), where ¢ is the level
of change in the rate parameter for the outliers. These instances are considered as outliers.

When constructing data, we set g, = 0.1 € RIiEB 5 = 05, p = 0.001, I; =
10,1, = 10,13 = 10, R = 2 and p = 1.5. We simulate training data sets of size
N = 315 with ¢ € {2,3,4,5} and ¢ € {0%, 3%, 5%,8%,10%,15%}. We train models
using the simulated data with the proposed method and benchmarks (i.e., SoT, ESL-
LASSO, PCA-RLR, RLR). For the RSoT method, we select the rank from the set {2,3,4},
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and « from the set {2,1.414,1,0.707,0.5,0.353} (i.e., 2,;%, k = 2,...,7) by using cross-
validation as explained in Section 4.3, similar to Simulation I. To evaluate the performance
of each method, we generate a test data set with 135 samples without any outliers. Our

performance measure is Weighted Root Mean Squared Error (WRMSE) which is computed

as wRMSE = Z’]LNL{W, where y is the actual target, and 7 is the predicted value.
In Poisson distribution, the variance of the random variable (r.v.) is equal to the mean of
the r.v., which is the rate, \. Therefore, as the mean of the r.v. increases, its variance
also increases. The proposed performance measure (WRMSE) adjusts for the increase in
the variance as the mean estimate for the target increases. That is, it adjusts the squared
deviations, (y; — ;)?, with the mean estimate, 7;, (i = 1,...,N). In each scenario, we
compare the performance of RSoT with the benchmarks in terms of wRMSE for different
values of \ (identified by ¢) and the percentage of outliers (denoted by q).

Table 2 reports the mean and the standard deviation (shown in parenthesis) of wRMSE
for each scenario. In addition, the average and the standard deviation of minimum error
that can be achieved are reported in the last column. The minimum error is calculated by

%ﬁ, where ); is the true rate parameters for i*" sample. Note that ESL-LASSO
and RLR methods have Gaussian assumptions for the parameter estimation. Thus, these
models may violate the non-positive mean estimation assumption, i.e., their estimated value
could be non-positive (y; < 0). To handle this situation in the performance evaluation, we
cap the non-positive predicted values with one from below. Therefore, the denominator of
the wRMSE for those samples is one, meaning that we do not incur an additional multiplying
effect on the error term for those samples.

Table 2 shows that RSoT demonstrates superior performance compared to ESL-LASSO
and RLR under all the outlier magnitudes (¢) and the percentage of outliers (¢). Moreover,
RSoT outperforms SoT in almost all the scenarios, and it gives similar performance when
there is no outlier and when the percentage and the level of outliers are the lowest. For
instance, when ¢ = 10% and ¢ = 4, the wRMSE obtained by the proposed method is
1.628, whereas the wRMSEs are 2.191, 5.539, and 6.071 for SoT, ESL-LASSO, and RLR,
respectively. These results indicate the robustness of RSoT when there exist outliers and
show that the proposed method still has the predictive power of SoT when there is no

outlier. The boxplots showing the effect of the percentage of outliers, ¢, and the level of
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Table 2: Simulation IT (Poisson Case): Comparison between the proposed method (RSoT)
and the benchmarks in terms of wRMSE.

q (%) ¢ ‘ RSoT SoT ESL-LASSO RLR ‘ Minimum Error
0 0| 1.428 (0.189) 1.375 (0.209)  6.996 (5.345)  4.917 (1.239) 1.001 (0.048)
3 2| 1.488(0.262) 1.420 (0.175) 5.413 (2.175)  5.173 (1.770) 1.004 (0.057)
3 31 1.490 (0.228) 1.596 (0.220)  7.667 (6.781)  5.566 (1.592) 1.010 (0.048)
3 4|1.424 (0.138) 1.599 (0.184)  5.194 (1.733)  5.328 (1.615) 0.996 (0.055)
3 5 | 1.487 (0.251)  1.984 (0.444) 7.054 (6.034)  5.537 (1.030) 1.015 (0.059)
5 2 | 1.469 (0.193) 1.512 (0.233) 5.886 (1.790)  5.094 (0.851) 0.997 (0.056)
5 3| 1.501 (0.264) 1.637 (0.192)  5.924 (1.586)  5.670 (1.209) 0.983 (0.070)
5 4| 1.546 (0.289) 1.861 (0.364)  5.651 (1.868)  5.522 (0.719) 0.984 (0.056)
5 5| 1.494 (0.285) 1.980 (0.247)  5.761 (2.300)  6.179 (1.296) 0.997 (0.057)
8 2 | 1.569 (0.208) 1.670 (0.197) 5.553 (2.176)  5.168 (0.714) 1.004 (0.069)
8 3| 1.606 (0.336) 1.929 (0.292) 5.058 (1.066)  5.493 (0.882) 1.000 (0.056)
8 4 |1.641 (0.293) 2.112 (0.397)  7.287 (4.231)  5.777 (0.876) 0.998 (0.077)
8 5| 1.564 (0.332) 2.176 (0.382) 10.196 (10.690) 5.860 (0.723) 0.994 (0.058)
10 2 | 1.635 (0.302) 1.758 (0.287) 7.194 (3.822)  5.834 (1.264) 0.980 (0.061)
10 3| 1.701 (0.273) 2.002 (0.404)  8.413 (4.519)  5.888 (0.946) 0.991 (0.070)
10 4| 1.628 (0.390) 2.191 (0.438)  5.539 (2.409)  6.071 (0.760) 0.971 (0.050)
10 51 1.695 (0.377) 2.457 (0.433) 7.415 (6.387)  6.374 (0.889) 0.989 (0.069)
15 2] 1.735 (0.276) 1.752 (0.222)  6.437 (3.776)  5.718 (1.578) 0.986 (0.056)
15 3| 1.918 (0.366) 2.071 (0.353) 8.202 (7.355)  6.553 (1.304) 0.976 (0.053)
15 4| 1.953 (0.372) 2.389 (0.356)  7.562 (6.612)  6.180 (1.068) 1.007 (0.066)
15 5| 1.762 (0452) 2.577 (0.392)  9.164 (8.338)  7.178 (1.528) 0.980 (0.057)

change in the rate parameter of outliers, ¢, can be found in Section 5 of Supplementary
Materials. Furthermore, the performance comparison in terms of Median Absolute Error

(MAE) is provided in Table 3 in Section 10 of the Supplementary Materials.

6.3 Simulation Ill: Gaussian Distribution with Sparsity

In this simulation study, we evaluate the performance of the proposed method when the
tensor of parameters is sparse. For this purpose, we follow the simulation study in (Zhou
et al., 2013). First, we employ the procedure described in Simulation I to construct input
tensors. Particularly, we simulate X € ROX2 with [} = I, = 16. Next, we construct
the tensor of parameters B € R1*!2 by setting Bij = 10if 6 < 4,5 < 10 and B;; = 0,
otherwise. Hence, the tensor of parameters is sparse on its peripheral regions. Next, we
simulate the responses by y; = (B, X;) + e1, where e; is a random error simulated from a
Gaussian distribution with mean zero and variance 7. Then, we randomly select ¢ % of
the instances and add outliers such that y; := y; + By;, where (8 is the proportion of the

target value added to the outlier instances.

We simulate training data sets of size N = 315 with o1 =1, § € {0.1,0.2,0.3,0.4,0.5},
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and q € {0%,3%,5%,8%,10%,15%}. We train a model using each method (i.e., RSoT,
SoT, RLR). That is, we include sparsity penalty to the RSoT, SoT, and RLR approaches
to perform variable selection. For RSoT and SoT, we select the sparsity penalty parameter,
as explained in Section 4.3. We do 10-fold cross-validation to select the sparsity penalty
parameter for RLR.For RSoT, we select a from the set {2,1.414,1,0.707,0.5,0.353} (i.e.,
2,;%, k =2,...,7) by using cross-validation as explained in Section 4.3 similar to Simulations
I and II. To evaluate the performance of the RSoT and the benchmarks in terms of RMSPE,
we generate a test data set with 135 samples without any outliers. We repeat this procedure
25 times to obtain the mean and the standard deviation of RMSPE. Figures 4 and 5 show
examples of the true and the estimated parameters by each method when ¢ = 10% and
B8 = 0.5. These figures show the parameters using two different scaling for more clear
visualization. As illustrated, the RLR estimation is inferior compared to RSoT and SoT.
The estimated parameters deviate from the true values inside (Figure 4) and outside (Figure
5) of the light square. Furthermore, the SoT overestimates the value of the parameters inside
the light square (see Figure 5) due to the lack of robustness. Table 3 reports the mean
(standard deviation) of RMSPE for the proposed and benchmark methods for different
percentages of outliers (¢) and outlier levels (3). As it is reported, the proposed method
demonstrates superior performance in the prediction of outputs, indicating the robustness
of the proposed method in estimating sparse parameters. For instance, when ¢ = 8% and
8 = 0.3, the RMSPE obtained by the proposed method is 1.034, whereas the SoT and
RLR result in higher errors of 2.179 and 3.079, respectively. Moreover, when there is no
outlier, the RSoT achieves the performance of the state-of-art tensor regression model. We
also tested ESL-LASSO in the sparse setting, but it performed very poorly compared to
the RSoT and the other benchmarks. Thus, we omit the results for ESL-LASSO in the
table. The boxplots showing the effect of the percentage of outliers, ¢ and the level of
change in the rate parameter of outliers, ¢, can be found in Section 5 of Supplementary
Materials. Furthermore, the performance comparison in terms of R? and Median Absolute

Error (MAE) are provided in Tables 4 and 5 in Supplementary Results (Section 11).
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Figure 4: Simulation III (Gaussian Case with Sparsity): True and estimated tensor of

parameters (with cubic-scaling for illustration) by each method when ¢ = 10% and 8 = 0.5.
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Figure 5: Simulation ITI (Gaussian Case with Sparsity): True and estimated tensor of

parameters (with log-scaling for illustration) by each method when ¢ = 10% and 8 = 0.5.

7 Case Study

In this case study, we evaluate the performance of the proposed method in predicting the
failure time of a rotating machinery given infrared thermal degradation images. Accelerated
degradation tests were performed on rolling element thrust bearings using the experimental
test bed described in Gebraeel et al. (2009). Test bearings were run from brand new until
failure. Vibration signals were collected to monitor the health of the system and used as a
proxy to the failure time of bearings. Once the amplitude of vibration frequencies exceed a
pre-specified threshold based on ISO standards for machine vibration, a failure is recorded.
Meanwhile, an FLIR T300 infrared camera captured thermal images of the bearing over the
duration of the test. The images are 40 x 20 and are stored every 10 seconds illustrating
the temperature signature of the degraded part over time. Four different experiments were
run to failure. Each experiment resulted in an image stream containing 375, 611, 827, and

1478 images, respectively. Re-sampling is performed over the original four image streams,
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Table 3: Simulation IIT (Gaussian Case with Sparsity): Comparison between the proposed
method (RSoT) and the benchmarks in terms of RMSPE when the tensor of parameters is

sparse.

Q
—

X
N

B ‘ RSoT SoT RLR

1.034 (0.061) 1.069 (0.081) 1.283 (0.087
0.1 | 1.030 (0.070) 1.106 (0.084) 1.236 (0.068
0.2 | 1.017 (0.061) 1.277 (0.155) 1.835 (0.264
0.3 | 1.011 (0.057) 1.484 (0.202) 2.299 (0.264
0.4 | 1.006 (0.060) 1.822 (0.436) 2.795 (0.471
0.5 | 1.026 (0.057) 2.014 (0.531) 3.334 (0.741
0.1 | 1.026 (0.058) 1.172 (0.059) 1.511 (0.125
0.2 | 1.019 (0.053) 1.383 (0.139) 2.023 (0.229
0.3 | 0.998 (0.054) 1.854 (0.431) 2.649 (0.355
0.4 | 1.026 (0.057) 2.215 (0.329) 3.259 (0.408
0.5 | 1.034 (0.059) 2.513 (0.488) 3.717 (0.583
0.1 | 1.051 (0.063) 1.245 (0.099) 1.601 (0.161
0.2 | 1.015 (0.055) 1.695 (0.224) 2.277 (0.220
0.3 | 1.034 (0.057) 2.179 (0.344) 3.079 (0.394
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0.4 | 1.017 (0.052) 2.705 (0.483) 3.560 (0.419
0.5 | 1.024 (0.064) 3.330 (0.612) 4.313 (0.566
0.1 | 1.049 (0.072) 1.319 (0.122) 1.728 (0.202
0.2 | 1.047 (0.070) 1.857 (0.248) 2.539 (0.346
0.3 | 1.020 (0.060) 2.474 (0.430) 3.215 (0.506
0.4 | 1.012 (0.070) 3.079 (0.523) 3.888 (0.481
0.5 | 1.029 (0.062) 3.765 (0.659) 4.478 (0.474
0.1 | 1.065 (0.054) 1.433 (0.118) 1.812 (0.182
15 0.2 | 1.058 (0.067) 2.282 (0.308) 2.651 (0.341
15 0.3 | 1.053 (0.069) 3.041 (0.474) 3.455 (0.355
15 0.4 | 1.024 (0.063) 4.261 (0.816) 4.140 (0.554
15 0.5 | 1.055 (0.072) 5.113 (1.088) 4.834 (0.606
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to produce a total of 284 image streams. For more details regarding this experiment please
see Fang et al. (2019). Figure 6 illustrates a sequence of images collected over time.

One challenge is the variable length (duration) of the collected degradation signals, which
causes different sizes of input tensors. In this case study, we take the length of the signal to be
7 and only consider the first 7 images of the samples that failed after time 7. The underlying
reason is that, in real applications, when predicting the failure time of a machine, we can
only exploit the information in the image streams collected from the beginning until the
current time point ¢. For example, at ¢ = 10, we only have access to the image streams until
t =10 (7 = 10). As time passes, we will have access to more images, which will potentially
help improve the prediction performance since more information becomes available. Hence,
each image stream is truncated by only keeping images observed in the time interval [0,7].
Therefore, the input tensors are 40 x 20 x 7. The lifetime T; is associated to each of the input

tensors X;. Note that the sample size of the original data is very small and contains only four
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Figure 6: Illustration of a sequence of thermal images captured by an infrared camera.

actual tests due to the high cost of running degradation experiments. Therefore, we followed
the resampling strategy of (Fang et al., 2019) to produce a dataset with a larger sample
size (dataset A). Figure 7a illustrates the relationship between the first principal component
score of the images and the failure time when 7 = 10. Data does not show the existence of
outliers with respect to this specific extracted feature. However, this does not necessarily
mean that the original data does not contain outliers. In real applications, we usually
do not know if outliers exist in the data. Therefore, it is crucial to have a model which
preserves its performance when trained with data that may or may not contain outliers.
We used dataset A to evaluate the performance of the method when no information about
the existence of outliers was available. Furthermore, to evaluate the performance of our
method under the scenario that outliers certainly exist, we performed a slightly different
resampling strategy from (Fang et al., 2019) to produce outliers by changing the frequency
of the resampling in 5 % of image streams from the original streams (dataset B). That is, we
distort the temporal pattern of an image stream to create outliers. More details about this
resampling strategy are provided in the Supplementary Materials. Figure 7b demonstrates
the relationship between the first principal component score of the images and the failure
time with additional outliers shown in red circles.

We evaluate the performance of the proposed method, both with and without additional
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Figure 7: Tllustration of extracted feature from (a) thermal image sequences with no outliers

and (b) from thermal image sequences with outliers.

outliers. We aim to show the effect of the existence of outliers on the performance of
the proposed method. Since the data contains outliers, we evaluate the performance of
the proposed method in terms of median absolute error (MAE) calculated as MAE =
median;(|y; — ¥;|), where y; is the actual value and g; is the predicted value. In the case
study, the test set contains outliers, unlike in the simulation studies. Therefore, choosing a
performance measure that is robust to outliers is important.

To evaluate the performance of RSoT and SoT, we first perform Multilinear Principal
Component Analysis (MPCA) on the image streams for enhanced computation by following
(Fang et al., 2019). The MPCA exploits the high spatial correlation structure in the
thermal images to reduce the input tensor dimensions. Proposition 1 in (Fang et al., 2019)
shows that original high-dimensional tensors and their low-dimensional projections result in
similar output predictions. After this step, we obtain image streams of size 2 x 2 x 7. The
dimensions are chosen such that around 95 % of the variance in the image stream tensors
is explained. We compare the proposed method to the SoT and RLR. As RLR fails to
provide estimations due to the high dimensionality of the data (n < p), we first perform
Principal Component Analysis (PCA) on the vectorized image streams. First, we obtain
the principal component scores such that 95 % variance is explained. Then, we evaluate
the performance of RLR on this data of extracted scores, denoted as PCA-RLR;. In the
second case, we select the number of the principal component scores as 2 X 2 X 7 = 47.
Thus, in this case, the input data for RLR has the same size as the input data for RSoT

and SoT. Then, we evaluate the performance of RLR on this input data, denoted as PCA-
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RLRy. We divide 70 % of the data for training and 30 % for testing. We perform the
comparison at different values of 7, 7 = {4,6,8,...,24}. The larger the 7 is, the more
information is available for predicting the failure time. For the RSoT method, we select
a from the set {0.125,0.0884,0.0625,0.0442,0.0312,0.0221,0.0156,0.0110,0.0078,0.0055}
(i.e., 2;%, k = 10,...,19) by using cross-validation as explained in Section 4.3. Our
cross-validation performance measure is truncated RMSE, calculated based on 90 % of the
instances of the least squared errors. We also test ESL-LASSO on this dataset. Although
we carefully tune the hyperparameters which control the robustness and regularization, it
performs very poorly compared to RSoT and the other benchmarks. Therefore, we do not
report the results for ESL-LASSO.

One challenge in this case study is that failure times do not follow the Gaussian
distribution. Fang et al. (2019) show that log-normal distribution is one of the distributions
that perform well for this data. Since they are generalized models, RSoT and SoT can
handle log-normal distribution. However, RLR can only handle Gaussian distribution. To
make the comparison fair for all the benchmarks, we transform the failure times using
log transformation and then test PCA-RLR; and PCA-RLRs. Note that we report the
performance measures on a log scale. Figure 8a illustrates the performance of each method
in terms of MAE when there are no additional outlier streams. As it is depicted, the
RSoT outperforms the PCA-RLR; and PCA-RLRy for all 7 values. Furthermore, RSoT
performs very similarly to the SoT. Also, the larger the value of 7, the more accurate the
estimations become. Moreover, Figure 8b shows the performance of each method when few
outlier streams are added additionally. In this setting, RSoT outperforms all the benchmark.
These results show that RSoT provides superior performance when there are outliers and
does not lose the power of SoT when there are no outliers. The superior performance of
RSoT is because it captures the spatio-temporal correlation structures in the image streams,
and it is robust to the outlier instances. Therefore, it is advantageous to use RSoT as in
most real-life cases, it is unknown whether outliers exist in a dataset.

Figures 9a and 9b depict the prediction errors of RSoT with a 95 % confidence interval
both when there is no outlier and when there are outliers, respectively. Both figures show
that as image streams contain more images, i.e., as 7 gets larger, the prediction errors

decrease as expected because more information can be used to predict the failure time of
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Figure 8: Performance comparison of all the methods (a) without outlier and (b) with
outliers (b). RSoT outperforms the benchmarks and has the same power as SoT when there

are no outliers.

the machines. Furthermore, as 7 gets larger, the prediction error intervals decrease since

using more images diminishes the uncertainty.
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Figure 9: Prediction errors of RSoT with 95 % confidence interval when (a) there are no

outliers and (b) when there are outliers

8 Discussion

In the paper, although we only show the theoretical results for the normal distribution in
the paper, our proposed methodologies with Lg-likelihood function work for the generalized
tensor regression model. In particular, we have conducted simulations and case studies
to show our method also yields adequate performance for non-Gaussian distribution. We
only conduct theoretical analysis for Gaussian distribution because, under the Gaussian

assumption, our general robust estimator will reduce to the classical M-estimator with a
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special exponential square loss po(.). This will allow us to apply theoretical results of
general robust M-estimators to obtain our asymptotic results. This is also why one can
see similarities between our results and (Zhou et al., 2013) since both estimators (Lg under
Gaussian and log-likelihood) belong to the family of M-estimators. Unfortunately, it is
still very challenging to derive the theoretical asymptotic properties for the generalized
tensor regression model with the Lg-likelihood function, as the results from the family of M-
estimators do not apply when the underlying distribution is not Gaussian. As far as we know,
the only asymptotic results for the maximum Lg-likelihood estimator were derived in (Ferrari
and Yang, 2010). However, that paper only focuses on the robust point estimation problem
when data are i.i.d. with the exponential family. For our generalized tensor regression
model, under the low-rank assumption where By = [[Up1, Upg, - - - , Uom]] , the parameters
Uy; are not the parameters of any exponential family distributions. Moreover, when the

input tensors A; are fixed, the observed data yi,¥2, - ,¥y, are not i.i.d, which means the
1—(fo,; (i)

L in our objective function are not i.i.d. Therefore, extending such results

elements
in (Ferrari and Yang, 2010) to our generalized tensor regression model remains a very
challenging task and new techniques may be developed to solve the problem. Studying
these challenges is an important future direction for us to pursue.

The major contribution of our paper is to propose a new framework for generalized
tensor regression using the general Lg-likelihood to achieve robustness. In many cases,
it is not known whether the data contains outliers, and using robust algorithms allows
for achieving models with strong prediction performance. To complete the framework, we
introduced algorithms to estimate the robust estimator, derived some theoretical properties
of our estimator, provided guidelines on the selection of tuning parameters, and performed
multiple simulations and case studies to illustrate the superior performance of our proposed
method.

We use CP decomposition in the proposed tensor regression model. CP decomposition
has also commonly been used in tensor regression, and its effectiveness has been shown in
(Zhou et al., 2013; Fang et al., 2019). The main advantage of CP decomposition over Tucker
decomposition is that it has a fewer tuning parameters. More specifically, CP decomposition
requires selecting a single rank. Since our proposed method contains other tuning parameters

other than rank (e.g., a), the CP decomposition has been selected to reduce the model tuning
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efforts. However, we agree that Tucker decomposition would be an alternative decomposition
technique which has been shown to work well in high-dimensional settings, which can also
be a future direction for us.

Furthermore, Newton’s search method is not an integral part of the proposed method.
The search method used in parameter estimation can be determined by the user depending
on the resources they have. Particularly, in the proposed method, the complexity to
calculate the gradient is O(N(R?I; + RII™,I;)), whereas the complexity to calculate
the Hessian matrix is O(N(R?I; + RII",I; 4+ I%)). Thus, the computational complexity
of parameter estimation with Newton’s search method is O(ZF:1 Yoy ng) (N(R?1; +
RI™,I; 4+ I3) + $13)), where n((;) is the number of iterations to update u((ir) and when
Cholesky decomposition is used for inverse calculation of the Hessian matrix. For larger-
scale problems where the inverse calculation of the Hessian matrix is too costly, the proposed
framework can easily be adjusted to use other optimization techniques, such as quasi-

Newton, and first- and zero-order techniques.

9 Conclusion

This paper proposes a robust estimation approach to the generalized linear scalar-on-tensor
regression model, which is widely used to capture high-dimensional structured data such as
images and profiles. To achieve robustness, Lg-likelihood loss is used and the corresponding
robust estimator is computed through an alternating least squares algorithm with a second-
order search method. A large number of model parameters may result in overfitting, which
is handled by introducing a low-rank constraint on the tensor of parameters. The efficacy
of the proposed approach is evaluated using simulation and case studies. The simulation
results under both Gaussian and Poisson distribution assumptions indicate that considering
the robustness in the tensor model creates superior performance in comparison to the
benchmarks that are either not robust or may not capture the structure of the data. The
case study evaluates the performance of the method in predicting the failure time of a
rotary machine given thermal images. Many future directions can be considered, including

the existence of outliers and missing values within the input data.
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10 Data Availability

To request access to the data used in the case study, one may contact the corresponding

author of (Gebraeel et al., 2009), who owns the data.
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