
Robust Generalized Scalar-on-Tensor Regression

Elif Konyar a, Mostafa Reisi Gahrooei∗a and Ruizhi Zhang b

a Department of Industrial and Systems Engineering,
University of Florida, Gainesville, FL

b Department of Statistics, University of Georgia, Athens, GA

Abstract

High-dimensional (HD) data, such as images and profiles, are commonly collected
from complex systems and contain significant explanatory and predictive information
for effective systems monitoring and control. Therefore, developing accurate and robust
predictive models based on HD data is crucial. In literature, various methods, including
linear scalar-on-tensor regression, are developed to model a complex system based on
HD data. However, existing estimation techniques ignore the presence of outliers
and are prone to biased estimations. This paper proposes a robust scalar-on-tensor
regression framework that handles multi-dimensional HD input data when the data
contain outliers. Our proposed estimation method is constructed using maximum
Lq-likelihood estimation instead of the classical maximum likelihood estimation. The
asymptotic analysis under the Gaussian distribution assumption and the guideline on
choosing the tuning parameter of our proposed method is provided. Several simulations
and case studies evaluate the proposed method’s efficacy compared to several benchmark
methods in the literature.

Keywords: Robust estimator, Scalar-on-Tensor regression, Lq-likelihood, Asset lifetime
prediction.

1 Introduction

Nowadays, high-dimensional (HD) data, including profiles and images, are vastly available.

For example, in condition monitoring of assets, vibration signals and thermal images are

collected to predict the time to failure of an asset (Fang et al., 2019; Li et al., 2021).

Accurate and robust statistical models developed based on such HD data can be used for

systems monitoring, optimization, and improvement. These statistical models benefit many

applications including manufacturing (Yan et al., 2019; Fang et al., 2019; Gahrooei et al.,

2021), healthcare (Zhou et al., 2013), and agriculture (Ogden et al., 2002; Li et al., 2020).

Specifically, regression models developed based on a sample of HD data to predict a trait

value (scalar) of a system are of particular importance and are the focus of this article.

1

Developing predictive models based on HD data requires addressing challenges caused

by the high dimensionality of data, including small sample sizes and complex correlation

structures. Many authors dealt with these challenges by proposing functional and tensor

regression techniques. For example, Bayesian, adaptive, and penalized function-on-scalar

models have been proposed in recent years (Chen et al., 2016; Fan and Reimherr, 2017;

Barber et al., 2017; Kowal and Bourgeois, 2020). Zhou et al. (2013) developed a scalar-

on-tensor regression framework to predict a neurological disorder based on neuroimaging

data. Li et al. (2018) extended this approach by using Tucker decomposition. Guhaniyogi

et al. (2017) proposed a Bayesian version of the tensor regression with a scalar response.

Fang et al. (2019) developed a penalized location-scale tensor regression model to predict

the remaining useful life of a system. Also, several studies developed efficient algorithms

for tensor regression estimation (Chen et al., 2019; Zhang et al., 2020). These approaches

are designed based on the assumption that the data is outlier-free. Therefore, they may

produce large biased estimations and predictions when the data contains outlier samples.

In most real-world applications, outlier samples exist and may create bias in model

predictions if not addressed appropriately. For example, in asset management, signals such

as infrared images are used for the prediction of the remaining lifetime of an asset (Fang

et al., 2019). However, given the condition signals, assets with shorter or longer lifetimes may

exist. Figure 1 illustrates the failure time of rotary machines versus a feature (first principal

component score) of thermal images acquired by infrared cameras. As it is depicted, a few

outliers exist in the data. As another example, in agriculture, UAV-captured hyperspectral

images are used to predict the yield of the crop (Kanning et al., 2018). But, some plots of

a crop may show abnormally higher or lower yields. Developing algorithms for HD datasets

that are robust to such outliers is critical for adequate systems modeling.

Figure 1: The lifetime of a few of the rotary systems appeared as outliers.

2

In the context of robust linear regression, M-estimation plays an important role in

constructing robust estimators that are not sensitive to outliers. The key idea is to

replace the squared loss in the ordinary least squares with some loss functions that put

less weight on the outliers. There are many commonly used loss functions, e.g., Huber’s

loss (Huber, 1964), Tukey’s Bisquare loss (Beaton and Tukey, 1974), Welsch’s exponential

squared loss (Dennis Jr and Welsch, 1978). In the context of high-dimensional settings

where the number of parameters is larger than the sample size, regularized M-estimations

are often used to obtain robust and sparse estimations. Lambert-Lacroix and Zwald (2011)

proposed a robust variable selection method by using Huber’s loss and adaptive lasso

penalty. Li et al. (2011) show that the M-estimation with some nonconcave penalty functions

can simultaneously perform parameter estimation and variable selection. The exponential

squared loss combined with adaptive lasso penalty is used by Wang et al. (2013) to construct

a robust estimator for sparse estimation and variable selection. Chang et al. (2018) proposed

a robust estimator by combining Tukey’s biweight loss with adaptive lasso penalty. When

the true distributions are fully specified, Ferrari and Yang (2010) propose a robust estimation

method by using Lq-likelihood. All these approaches require representing data as vectors,

which break down the spatial structure of HD data points such as waveforms and images.

That is, they cannot exploit the spatial correlation structure of HD data. Recently, robust

functional regression approaches have been proposed (Maronna and Yohai, 2013; Wang

et al., 2019; Kalogridis and Van Aelst, 2019). While these methods are suitable for modeling

waveform signals, they are difficult to be extended to higher dimensions and cannot capture

the between-correlation structure of multi-channel profiles.

This paper proposes a robust generalized tensor regression approach using maximum

Lq-likelihood estimation to address the aforementioned challenges. Following Zhou et al.

(2013), we formulate a tensor regression model with a scalar response and propose to use the

Lq-likelihood to derive the robust estimation for scalar-on-tensor regression. We also show

that under the Gaussian assumption, our robust estimator is a special case of M-estimator

with Welsch’s exponential squared loss (Dennis Jr and Welsch, 1978). To avoid overfitting

due to the estimation of a large number of parameters, we use a low-rank decomposition of

model parameters.

The rest of the article is organized as follows: In Section 2, we introduce notations

3

and review some of the multilinear algebra concepts used in the article. In Section 3, we

review the scalar-on-tensor regression model and illustrate the solution for estimating the

parameters. In Section 4, we introduce robust scalar-on-tensor (RSoT) regression and its

penalized form. We discuss the choices of tuning parameters for our proposed method in

Section 4.3. Section 5 shows the asymptotic properties of the proposed robust estimator

under the Gaussian distribution assumption. In Section 6, three simulation studies are

conducted to compare the performance of the RSoT against benchmark methods in terms

of prediction errors. Section 7 introduces the case study of estimating the failure time of

an engine given thermal images. In Section 8, we provide our discussion on the proposed

framework. Finally, Section 9 concludes the paper and provides some insights regarding

future work.

2 Tensor Notation and Multilinear Algebra

In this section, we introduce the notations and basic tensor algebra used in this paper.

Throughout the paper, we denote a scalar by a lower or upper case letter, e.g., a or A; a

vector by a boldface lowercase letter and a matrix by a boldface uppercase letter, e.g., a and

A; and a tensor by a calligraphic letter, e.g., A. For example, we denote an order-n tensor

by R ∈ RI1×I2×···×In , where Ii is the dimension of the ith mode of tensor R. We also denote

a mode-j matricization of tensor R as R(j) ∈ RIj×I−j , whose columns are the mode-j fibers

of the corresponding tensor R, and I−j = I1 × I2 × · · · × Ij−1 × Ij+1 × · · · × In. The vec(R)

operator transforms the entries of a n-dimensional tensor R ∈ RI1×I2×···×In into a column

vector. Furthermore, the Kronecker product of two matrices A ∈ Rm×n and B ∈ Rr×s is

denoted as A ⊗B ∈ Rmr×ns and is obtained by multiplying each element of matrix A to

the entire matrix B:

A⊗B =


a11B ... a1nB

...
. . .

...

am1B ... amnB

 .
If A and B have the same number of columns, i.e., n = s, then the Khatri-Rao product is

defined as the mr-by-n columnwise Kronecker product, A⊙B = [a1⊗b2a2⊗b2 · · ·an⊗bn].

Finally, the outer product of n vectors ai ∈ RIi , i = 1, 2, · · · , n, is denoted by a1 ◦a2 · · · ◦an

4

and is a I1 × I2 × · · · × In tensor with entries (a1 ◦ a2 · · · ◦ an)i1,i2,··· ,in =
∏n

k=1 ak,ik . We

denote the trace of a matrix A by Tr(A).

3 Review of Generalized Scalar-on-Tensor Regression

In this section, we review the generalized scalar-on-tensor (SoT) framework proposed by

Zhou et al. (2013). Assume a set of training data of size N that includes response variables

yi ∈ R; (i = 1, · · · , N) and input tensors Xi ∈ RI1×I2···×Im ; (i = 1, · · · , N) is available.

Assume yi follows an exponential family distribution with canonical parameters θi and

dispersion parameter ϕ,

yi|Xi ∼ f(yi; θi, ϕ) = exp
{yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

}
, (1)

where b(.), a(.) and c(.) are distribution-specific known functions. Then, SoT regression

characterizes a generalized linear tensor model (GLM) as follows:

g(E[yi|Xi]) = µ+ ⟨Xi,B0⟩+ ei; i = 1, 2, · · · , N. (2)

Here, B0 ∈ RI1×I2···×Im is the true tensor of parameters to be estimated, and ei is

independent and identically distributed random noise with zero mean and constant variance.

If we vectorize the tensors Xi and B0 in (2), then, the parameters B0 can be estimated

by available vector-based methods. For instance, for Gaussian distribution, we can use

the method of ordinary least squares estimation by minimizing the mean square loss

function, L = 1
N

∑N
i=1 (yi − µ− ⟨Xi,B⟩)2. Nevertheless, without imposing a penalty on

the parameters, this approach results in a severe over-fitting due to a large number of

parameters. To overcome the high dimensionality of the parameters and the potential over-

fitting problem, Zhou et al. (2013) imposed low-rankness on the tensor of parameters by

including a rank-R decomposition of B. Then, the generalized scalar-on-tensor regression

model is solved by minimizing the negative log-likelihood (maximizing the log-likelihood)

of the training data with low-rankness constraint as follows:

min
µ,B

−l(µ,B) =
N∑
i=1

−yiθi − b(θi)

a(ϕ)
−

N∑
i=1

c(yi, ϕ) (3)

s.t. B =
R∑

r=1

u
(r)
1 ◦ u(r)

2 · · · ◦ u(r)
m , (4)

5

where θi = µ + ⟨B,Xi⟩ and u
(r)
d ∈ RId , d = 1, 2, · · · ,m; r = 1, 2, · · · , R. For convenience,

the decomposition can also be represented by a shorthand, B = [[U1,U2, · · · ,Um]] , where

Ud = [u
(1)
d ,u

(2)
d , · · · ,u(R)

d] ∈ RId×R, d = 1, 2, · · · ,m. In this way, the number of parameters

will be 1 +R(
∑m

d=1 Id), which is much smaller than the number of 1 +
∏m

d=1 Id parameters

without the low-rankness assumption. To solve this problem, one can use the Alternating

Least Squares (ALS) procedure. That is, we solve the optimization problem in (3) and

estimate u
(j)
d by fixing the remaining parameters. Next, we repeat this procedure for the

remaining parameters in a similar way. This procedure is repeated until convergence. The

details of the parameter estimation are provided in Section 1 of Supplementary Materials.

4 Robust Generalized Scalar-on-Tensor Regression

In this section, we consider the problem of robust generalized scalar-on-tensor (RSoT)

regression when the training data {(yi,Xi)}Ni=1 contains some outliers. Specifically, we

assume the data follows the generalized linear model with gross outlier corruption. That is,

y follows a mixture distribution with probability density function h(y; θ, q) = (1− q)fθ(y)+

qg(y), where q ∈ [0, 1) is the proportion of the outliers, fθ(y) is the pdf of an exponential

family with canonical parameters θ, and g(y) denotes the probability density function of

the outlier that could be arbitrary or depend on X . Then, we write the RSoT regression

model as follows:

p(yi; θi, q) = hθi,q(yi) = (1− q)fθi(yi) + qg(yi), ∀i (5)

fθi(y) = d(y) exp{yθi − b(θi)} (6)

b′(θi) = E[y|Xi] (7)

where θi = µ + ⟨Xi,B0⟩, B0 = [[U01,U02, · · · ,U0m]], and b(.) is a known function and

depends on the underlying exponential family distribution, b′(.) is its first derivative, and

B0 is the true tensor of parameters, which is decomposable by a set of true factor matrices

U01, · · · ,U0m. Note that if fθi(y) is a single-parameter distribution from exponential family,

then θi = µ + ⟨Xi,B0⟩. However, for two-parameter exponential family distributions, θi

becomes a function of the parameters. For instance, when estimating mean of a Gaussian

distribution with unknown variance, σ2, then θi becomes θi = γi
σ2 , where γi = µ+ ⟨Xi,B0⟩.

6

Under such gross error model when data contain outliers, the maximum likelihood loss in

(3) will not accurately estimate the true parameter B0. Thus, to reduce the effect of outliers,

in Section 4.1, we will construct a robust generalized scalar-on-tensor (RSoT) estimation

procedure using maximum Lq-likelihood estimation (Ferrari and Yang, 2010). Next, we will

introduce the penalized version of the Lq-likelihood to encourage sparsity in the solutions

in Section 4.2. Finally, we discuss the choices of tuning parameters in our proposed method

in Section 4.3.

4.1 Robust Estimation via Lq-likelihood

We propose to estimate B0 and µ by solving the following optimization problem with the

low-rank constraint on the tensor of parameters:

min
µ,B

δα(θi, yi) =
N∑
i=1

1− (fθi(yi))
α

α
(8)

s.t. B =

R∑
r=1

u
(r)
1 ◦ u(r)

2 · · · ◦ u(r)
m ,

where fθi(y) = a(y) exp{yθi− b(θi)}. In this formulation, the tuning parameter, α, controls

the trade-off between the statistical efficiency and the robustness of our proposed method.

Note that when α→ 0, δα(θi, yi) →
∑N

i=1− log(fθi(yi)). That is, the proposed Lq-likelihood

becomes similar to the negative log-likelihood as in (3). On the other hand, when α → ∞,

δα(θi, yi) → 0. Thus, in this case, the resulting estimator may not be affected by any

outliers but will lose all statistical efficiency to estimate the true parameters. Therefore, it

is critical to choose the tuning parameter α for our robust estimation method. We explain

the selection of α in Section 4.3.

Suppose fθi(y) is a single-parameter exponential family distribution. Then, Problem (8)

is equivalent to

min
µ,B

N∑
i=1

1−
(
d(yi) exp{yi(µ+ ⟨Xi,B⟩)− b(µ+ ⟨Xi,B⟩)}

)α
α

(9)

s.t. B =

R∑
r=1

u
(r)
1 ◦ u(r)

2 · · · ◦ u(r)
m .

The estimation of the tensor B is now equivalent to the estimation of the matrices

U1,U2, · · · ,Um. To solve the optimization problem in (9) and estimate u
(j)
d (d =

7

1, · · · ,m; j = 1, · · · , R), we propose to employ Newton’s search method and alternating

least squares (ALS) algorithms. Note that any first/second-order search methods can be

used together with the ALS approach. However, Newton’s search method is advantageous

due to its fast convergence. First, the initial values of {µ,U1,U2, · · · ,Um} are set to the

solution of SoT as it is discussed in Section 3. Then, we re-write the inner product as

⟨Xi,B⟩ = Tr
(
U⊤

d Xi,(d)KUd

)
, where KUd

= Um ⊙ . . .Ud+1 ⊙Ud−1 . . . ⊙U1. Furthermore,

we set Wi,d = [w
(1)
i,d , . . . ,w

(R)
i,d] := Xi,(d)KUd

(w
(j)
i,d ∈ RId), Td,i := Tr

(
U⊤

d Wi,d

)
, and

T
(−j)
d,i := Tr

(
U

(−j)⊤

d W
(−j)
i,d

)
, where jth columns of Ud and Wi,d are removed. Then, for

fixed µ, {Ud′}md′=1,d′ ̸=d, and {u(j′)
d }Rj′=1,j′ ̸=j , we propose to use the Newton’s search algorithm

to estimate u
(j)
d by solving,

min
u
(j)
d

N∑
i=1

1−
(
d(yi) exp{yi(µ+ T

(−j)
d,i + u

(j)⊤

d w
(j)
i,d)− b(µ+ T

(−j)
d,i + u

(j)⊤

d w
(j)
i,d)}

)α
α

. (10)

We iteratively update u
(j)
d until it converges to a stationary point through Newton’s search

algorithm as follows:

u
(j)(t)

d = u
(j)(t−1)

d − ζtH
(
u
(j)(t−1)

d

)−1
G
(
u
(j)(t−1)

d

)
,

where G(.) is the gradient, H(.) is the Hessian matrix, u(j)(t)

d is the u
(j)
d at tth iteration, and

ζt is the learning rate. The gradient and the Hessian matrix can be found in Section 2 of

Supplementary Materials. The convergence criteria are either ||u(j)(t)

d − u
(j)(t−1)

d ||2 becomes

less than a threshold, or the maximum number of iterations is reached. We select the

learning rate by a backtracking algorithm.

We repeat this procedure for the u
(j)
d of the remaining modes and factors

(d = 1, · · · ,m; j = 1, · · · , R), until convergence. After learning every vector

u
(j)
d (d = 1, · · · ,m; j = 1, · · · , R), the intercept µ is estimated by using Newton’s search

algorithm by following a similar idea with u
(r)
d,t . The details of the update procedure are

provided in Section 2 of Supplementary Materials.

Our proposed method has a special structure for Gaussian distribution. In this special

8

case, our robust estimator will reduce to

min
µ,B

N∑
i=1

ρα (yi − µ− ⟨Xi,B⟩) (11)

s.t. B =
R∑

r=1

u
(r)
1 ◦ u(r)

2 · · · ◦ u(r)
m ,

where ρα(t) = 1 − exp(−αt2/2) known as the Welsch’s exponential loss function (Wang

et al., 2013). Note that the interpretation of the tuning parameter α in our method is the

same for Welsch’s exponential loss function. The details about the special case are provided

in Section 3 of Supplementary Materials.

4.2 Robust Sparse Estimation through Adaptive Lasso

It often appears that many elements in the input tensor X contain no information in

predicting the output y. Therefore, it is important to identify the informative elements

of the input tensor. For this purpose, we define the penalized Lq-likelihood, which imposes

a sparsity-inducing penalty on the tensor of parameters B. This sparsity is achieved

equivalently by penalizing the columns of factor matrices Ud, namely u
(r)
d , in the objective

function as follows:

min
µ,B

N∑
i=1

1−
(
d(yi) exp{yi(µ+ ⟨Xi,B⟩)− b(µ+ ⟨Xi,B⟩)}

)α
α

+
N

mR

m∑
d=1

R∑
r=1

∥c(r)d ∗ u(r)
d ∥1

(12)

s.t. B =

R∑
r=1

u
(r)
1 ◦ u(r)

2 · · · ◦ u(r)
m .

Here, c
(r)
d ∈ RId is a vector of weights and c ∗ u is an element-wise multiplication of

vectors. The sparsity-inducing penalty in (12) resembles the adaptive lasso. The solution

to this problem is an extension of the RSoT algorithm and gives sparse estimation of model

parameters. Assuming µ, Um, · · · ,Ud+1,Ud−1 · · · ,U1 and {u(j′)
d }Rj′=1,j′ ̸=j are given, we use

an alternating procedure to estimate u
(j)
d by solving the problem as follows:

min
u
(j)
d

N∑
i=1

1−
(
d(yi) exp{yi(ljd,i + u

(j)⊤

d w
(j)
i,d)− b(ljd,i + u

(j)⊤

d w
(j)
i,d)}

)α
α

+
N

mR
∥c(j)d ∗ u(j)

d ∥1,

(13)

9

where ljd,i = µ+ T
(−j)
d,i . We discuss the choice of the penalization parameter c

(j)
d in Section

4.2. We employ the proximal Newton algorithm to solve the optimization problem in (13).

Note that other alternative methods, such as proximal gradient descent, can also be applied

to solve the adaptive lasso problem. The proximal function is the solution to the following

adaptive lasso problem:

proxη(u) = z∗ = argmin
z

1

2η
∥u− z∥22 +

N

mR
∥c ∗ z∥1.

The update of vector u
(j)
d with learning rate ζ is then obtained as u

(j)
d = proxη(u

(j)
d −

ζH(u
(j)
d)−1G(u

(j)
d)).

4.3 Selection of Tuning Parameters

The proposed method requires tuning a few hyperparameters, including the robustness

parameter, α, the model rank, R, and the regularization parameter, c(j)d . In the proposed

method, α is a critical tuning parameter, as it controls the robustness and the quality of the

fit of our proposed method. We perform a joint parameter selection mechanism to identify

these hyperparameters in RSoT. That is, we perform a five-fold cross-validation and select

(α,R) pair, which minimizes a robust performance measure such as truncated Root Mean

Squared Error (tRMSE). When performing RSoT with the adaptive lasso penalty, we select

the three parameters jointly. More specifically, given (α,R), we propose to minimize a

BIC-type objective function to select the regularization parameter c
(j)
d :

min
c
(j)
d ∈RId

(∑
i

δα (θi, yi) +N

Id∑
k=1

c
(j)
d,k

∣∣∣u(j)(RSoT)
d,k

∣∣∣− Id∑
k=1

log(0.5Nc
(j)
d,k) log(N)

)
, (14)

which yields ĉ(j)d,k = log(N)

N
∣∣∣u(j)(RSoT)

d,k

∣∣∣ .
In this selection mechanism, as the first step, we train the RSoT model for different

(α,R) pairs and obtain the corresponding u
(j)(RSoT)
d (d = 1, . . . ,M ; j = 1, . . . , R) for

each pair. Next, c
(j)
d is computed given the estimated u

(j)(RSoT)
d . As the final step,

the
(
α,R, c

(j)
d

)
tuple is selected based on five-fold cross-validation with tRMSE as the

performance metric.

To determine the range of α, we experimentally search for a large enough value of α which

causes the estimator to lose its statistical power (too robust and ignores all the data) and

10

results in unacceptable prediction performance. Next, we determine the α set by starting

with that large value and logarithmically decreasing it. The user should determine the

number of values in the range based on the available computational resources. Alternatively,

one can reduce the value of α as long as the prediction performance improves. The specific

sets used in the simulations and case studies are provided in the corresponding sections.

5 Asymptotic Analysis Under Gaussian Assumption

In this section, we study the statistical properties of our proposed robust estimator under

normal distribution assumption, i.e.,

y = µ+ ⟨X ,B0⟩+ ϵ, (15)

ϵ ∼ N(0, σ2),

which yields to exponential loss defined by ρα(t) = 1−exp(−αt2/2). For simplicity, we omit

the intercept µ, though similar conclusions still hold with the intercept term. To study the

asymptotic properties, we follow the classical asymptotic setting when the dimension of the

tensor B is fixed and the sample size N can go to ∞.

Define ψα(t) = ρ′α(t) be the derivative of the exponential squared loss. First, the

following lemma characterizes the gradient and Hessian of the loss ρα (y − ⟨X ,B⟩) .

Lemma 1. For a rank-R decomposition of a tensor B = [[U1,U2, · · · ,Um]], we have

∇(ρα (y − ⟨X ,B⟩)) =− ψα(y − ⟨X ,B⟩)J⊤(vec(X)),

∇2(ρα (y − ⟨X ,B⟩)) =− ψα(y − ⟨X ,B⟩)∇(J⊤vec(X))

+ ψ′
α(y − ⟨X ,B⟩)J⊤(vec(X))(vec(X))⊤J ,

where Ji = Πi [(Um ⊙ · · · ⊙Ui+1 ⊙Ui−1 · · · ⊙U1)⊗ IIi] ∈ R(
∏m

j=1 Ij)×(IiR), Πi is the

(
∏m

j=1 Ij) × (
∏m

j=1 Ij) permutation matrix that reorders vec(B(i)) to obtain vec(B), i.e.,

vec(B) = Πivec(B(i)), and J = [J1,J2, · · · ,Jm].

The proof of Lemma 1 is provided in Section 4 of the Supplementary Materials. Next,

we discuss the identifiability issue. Since the rank-R decomposition B = [[U1,U2, · · · ,Um]]

is indeterminable due to scaling and permutation, we borrow the idea in Zhou et al. (2013)

11

and consider the following parameter space:

U = {(U1, · · · ,Um : u
(j)
d,1 = 1ford = 1, 2, · · · ,m− 1, j = 1, 2, · · · , R, and

, u
(1)
m,1 > u

(2)
m,1 > · · · > u

(R)
m,1)},

which is open and convex. In the set U , the factor matrices U1, · · · , Um−1 are scaled in

a way that their first row is ones, which determines the first row of Um that is permuted

in a decreasing order to solve the permutation issue. Then, the tensor B with the rank-R

decomposition in the set U is unique to scaling and permutation. Now, we are ready to

present the asymptotic distribution of our robust estimator.

Theorem 1. Assume (yi,Xi)i=1,2,··· ,N are i.i.d. following the scalar-on-tensor regression

model with Gaussian assumption in (15). If the true parameter B0 = [[U01, · · · ,U0m]] ∈ U ,

then our proposed RSoT estimator B̂ is consistent up to a permutation. That is, B̂ converges

in probability to B0 up to a permutation.

Theorem 2. Assume (yi,Xi)i=1,2,··· ,N are i.i.d. following the scalar-on-tensor regression

model in (5) and the residual term ϵi follows a symmetric distribution with mean 0. Define

V (U1, · · · ,Um) = J⊤
[N∑

i=1

(vec(Xi))(vec(Xi))
⊤
]
J , (16)

where J = [J1,J2, · · · ,Jm]. Assume the matrix V (U01, · · · ,U0m) is nonsingular for the

true parameter B0 = [[U01, · · · ,U0m]] ∈ U . Then,

√
n
(
vec(B̂)− vec(B0)

)
→ N(0,

E (ψα(ϵ))
2

[E (ψ′
α(ϵ))]

2
(V (U01, · · · ,U0m))−1). (17)

The proofs of Theorems 1 and 2 are provided in Section 4 of the Supplementary

Materials. We should emphasize that the asymptotic results in Theorem 1 and Theorem 2

imply that, under the normal assumption, the optimal solution of the optimization problem

in (8) will be close to the true parameter when no outliers exist. Although these theoretical

results do not imply the robustness of the proposed method, we conduct extensive simulation

studies and case studies in the next sections to illustrate the robustness and efficiency of

our proposed method. In addition, these theorems do not show the convergence of our

algorithm to the global optimal solution. Nevertheless, our empirical analysis (presented in

the next section) shows that the proposed algorithm converges to a stationary point in all

simulations (please see examples in Section 7 of Supplementary Materials).

12

6 Performance Evaluation Using Simulation

In this section, we conduct simulation studies to evaluate the performance of the proposed

method. We seek to compare the performance of the RSoT with the existing methods

under different distribution assumptions. Therefore, we consider three simulation scenarios.

In the first simulation, we assume the target follows Gaussian distribution. In the second

simulation, the target is assumed to follow the Poisson distribution. In these two simulation

settings, we do not consider sparsity. In the third simulation, we assume the target follows

a normal distribution and that the model parameters are sparse. In our simulations, we

compare the prediction performance of the RSoT with three benchmarks, namely SoT

proposed by Zhou et al. (2013), penalized exponential squared loss (ESL-LASSO) proposed

by Wang et al. (2013) and robust linear regression (RLR) with Huber’s loss. To perform

ESL-LASSO and RLR, we vectorize the input tensor. ESL-LASSO method handles the

high-dimensionality of the data by performing variable selection using a lasso penalty. The

method has a hyperparameter that determines its level of robustness. The proposed data-

driven method in Wang et al. (2013), which is based on minimizing the asymptotic variance

of the parameter estimates, does not work properly in the high-dimensional case, as the

asymptotic covariance matrix becomes singular. Thus, we perform cross-validation (CV)

to tune this benchmark’s hyperparameter. Furthermore, RLR cannot handle the situation

where the sample size n is larger than the number of features p (i.e., p >> n). Therefore,

we perform Principal Component Analysis (PCA) to reduce the dimensionality and extract

low dimensional features of the input data. Then, we apply RLR on the target given the

extracted scores by PCA. We evaluate the performance of RLR with PCA, denoted as

PCA-RLR, and without PCA, denoted as RLR.

6.1 Simulation I: Gaussian Distribution

We first randomly generate a set of N training data {(yi,Xi)} containing input tensors

Xi ∈ RI1×I2×I3 and output values yi (i = 1, · · · , N) as follows. Let xi ∈ RI1I2I3 be a random

vector that follows a multivariate normal distribution with mean µx, and the covariance

matrix Σ, i.e., xi ∼ N (µx,Σ). We generate the (i, j)th entry of Σ as ρ|i−j|. Tensor Xi is

then constructed by reshaping vector xi. The factor matrices Ui ∈ RIi×R, (i = 1, 2, 3) are

13

simulated elementwise from a normal distribution with mean zero and variance σ2u. That

is, each entry of Ui follows N(0, σ2u). The tensor of parameters is then constructed as

B =
∑R

r=1 u
(r)
1 ◦u(r)

2 ◦u(r)
3 . Furthermore, we simulate responses by yi = ⟨B,Xi⟩+ e1 where

e1 is a random error simulated from a normal distribution with mean zero and variance σ21.

Then, we randomly select q % of the instances and add a random error, e2, simulated from

a normal distribution with mean ν and variance σ22 > σ21, i.e., yi = ⟨B,Xi⟩+ e1 + e2. These

instances are considered outliers.

When generating data, we set µx = 0.1 ∈ RI1I2I3 , σu = 0.5, ρ = 0.001, σ1 = 0.5,

σ2 = 1, I1 = 10, I2 = 10, I3 = 10, and R = 2. We simulate training data sets

of size N = 315 by choosing the mean of outlier distribution ν ∈ {1, 2, 3, 4, 5} and

q ∈ {0%, 3%, 5%, 8%, 10%, 15%}. Note that q = 0% means no outlier is added to training

data. Using the simulated data, we train a model for each method (i.e., RSoT, SoT, ESL-

LASSO, RLR). For the RSoT method, we select the rank from the set {2, 3, 4}, and α from

the set {2, 1.414, 1, 0.707, 0.5, 0.353} (i.e., 4
2k/2

, k = 2, . . . , 7) by using cross-validation as

explained in Section 4.3. Our cross-validation performance measure is truncated RMSE,

calculated based on 90 % of the instances of the least squared errors. Next, we generate

a set of 135 test data to evaluate the performance of each method. The testing dataset

is generated as explained before, except that it does not contain outliers. We calculate

the root mean square prediction error (RMSPE) as the performance measure, computed as

RMSPE =

√∑N
i=1(yi−ŷi)2

N , where y is the actual target, and ŷ is the predicted value. This

procedure is repeated 25 times to capture the variance of the RMSPE. In each scenario, we

compare the proposed method with benchmarks based on the RMSPE calculated at different

outlier magnitudes (ν) and the percentage of outliers (q). Table 1 reports the average and

standard deviation of RMSPE in each scenario.

As it is reported in Table 1, under all the outlier magnitudes and the percentage of

outliers, the RSoT outperforms the benchmarks. For example, when ν = 3 and q = 10%,

the RMSPEs are 0.611, 0.850, 11.330, and 24.671 for the RSoT, SoT, ESL-LASSO, and

RLR, respectively. In addition, the performance of the RSoT is more stable compared to

the benchmarks when both the outlier magnitude and the percentage of outliers increase.

Furthermore, when no outlier exists, RSoT outperforms ESL-LASSO and RLR and achieves

similar performance to SoT. Thus, it is still advantageous to use RSoT when it is unknown

14

Table 1: Simulation I (Gaussian Case): Comparison between the proposed method (RSoT)

and the benchmarks in terms of RMSPE.

q (%) ν RSoT SoT ESL-LASSO RLR
0 0 0.581 (0.047) 0.574 (0.044) 10.825 (4.679) 21.711 (7.174)

3 1 0.581 (0.034) 0.587 (0.037) 10.667 (4.526) 22.910 (7.149)

3 2 0.593 (0.056) 0.625 (0.051) 13.936 (11.832) 23.624 (7.800)

3 3 0.584 (0.046) 0.664 (0.080) 8.550 (3.757) 20.244 (7.368)

3 4 0.602 (0.046) 0.730 (0.089) 8.968 (3.078) 24.615 (11.659)

3 5 0.581 (0.042) 0.788 (0.114) 11.747 (7.406) 22.412 (7.177)

5 1 0.603 (0.050) 0.625 (0.047) 10.398 (6.479) 25.660 (10.662)

5 2 0.619 (0.062) 0.716 (0.139) 9.820 (4.933) 22.112 (6.591)

5 3 0.591 (0.053) 0.725 (0.101) 10.867 (7.910) 22.645 (15.294)

5 4 0.624 (0.063) 0.914 (0.126) 9.895 (3.905) 22.783 (7.374)

5 5 0.593 (0.049) 0.970 (0.152) 10.747 (6.898) 26.816 (11.376)

8 1 0.619 (0.053) 0.635 (0.059) 11.701 (8.661) 20.801 (6.050)

8 2 0.624 (0.053) 0.709 (0.085) 9.359 (4.336) 23.228 (11.423)

8 3 0.617 (0.059) 0.820 (0.084) 11.228 (6.391) 25.676 (11.703)

8 4 0.623 (0.073) 0.976 (0.112) 9.612 (3.590) 29.258 (15.906)

8 5 0.637 (0.068) 1.183 (0.202) 12.070 (10.618) 27.503 (10.582)

10 1 0.616 (0.055) 0.644 (0.060) 8.799 (4.609) 20.105 (7.130)

10 2 0.620 (0.050) 0.724 (0.075) 10.566 (6.501) 22.987 (10.152)

10 3 0.611 (0.071) 0.850 (0.105) 11.330 (7.995) 24.671 (9.714)

10 4 0.622 (0.054) 1.080 (0.117) 9.451 (2.696) 25.199 (9.725)

10 5 0.619 (0.047) 1.343 (0.224) 13.740 (12.322) 23.771 (8.776)

15 1 0.657 (0.073) 0.690 (0.067) 9.745 (4.586) 21.886 (8.389)

15 2 0.705 (0.099) 0.797 (0.098) 12.448 (10.179) 23.652 (10.709)

15 3 0.652 (0.089) 0.967 (0.095) 9.503 (4.188) 23.112 (6.335)

15 4 0.648 (0.074) 1.194 (0.143) 8.747 (4.396) 28.678 (16.902)

15 5 0.634 (0.067) 1.468 (0.219) 10.498 (3.959) 23.521 (7.166)

whether the data contains outliers or not. Furthermore, the performance comparison in

terms of R2 and Median Absolute Error (MAE) are provided in Tables 1 and 2 in Section

9 of the Supplementary Materials.

Moreover, Figure 2 shows the effect of the percentage of outliers, q, when ν = 3.

The figures show that as q increases, the performance of RSoT is the least affected,

preserving similar performance over different percentages. However, the performance of

all the benchmarks worsens substantially as q becomes larger. Figure 3 shows the effect

of the mean of outlier distribution, ν, when q = 8%. The figures demonstrate that the

performance of RSoT is the least impacted by different levels of outlier means, whereas the

performance of the benchmarks worsens dramatically as ν increases.

6.2 Simulation II: Poisson Distribution

In this simulation study, we evaluate the performance of the proposed method when the

target given the input data follows Poisson distribution, i.e., yi|Xi ∼ Poisson(λi), where λi

is the rate parameter (i = 1, . . . , N). We construct Xi and Ui similar to the first simulation.

15

(a) q = 3% (b) q = 5% (c) q = 8% (d) q = 10% (e) q = 15%

Figure 2: The effect of the percentage of outliers, q, when ν = 3 in Simulation I

(a) ν = 1 (b) ν = 2 (c) ν = 3 (d) ν = 4 (e) ν = 5

Figure 3: The effect of the mean of outlier distribution, ν, when q = 8% in Simulation I

Particularly, we generate xi ∈ RI1I2I3 from multivariate normal distribution with mean µx

and the covariance matrix Σ, i.e., xi ∼ N (µx,Σ). The (i, j)th entry of Σ is ρ|i−j|. Xi

is then constructed by reshaping xi. Ui ∈ RIi×R, (i = 1, 2, 3), are simulated elementwise

from a normal distribution with mean zero and variance σ2u, i.e., Ui ∼ N (0, σ2u). B is then

constructed as B =
∑R

r=1 u
(r)
1 ◦u(r)

2 ◦u(r)
3 . Then, we generate the rate parameter using log

link as follows: λi = exp{k⟨B,Xi⟩ + µ}, where µ is the intercept and k is the multiplier to

scale the inner product. We randomly select (100− q) % of the instances and simulate the

responses as: yi ∼ Poisson(λi), where q is the percentage of outliers. For the remaining q %

of the instances, we simulate the responses as: yi ∼ Poisson(λi + cλi), where c is the level

of change in the rate parameter for the outliers. These instances are considered as outliers.

When constructing data, we set µx = 0.1 ∈ RI1I2I3 , σu = 0.5, ρ = 0.001, I1 =

10, I2 = 10, I3 = 10, R = 2 and µ = 1.5. We simulate training data sets of size

N = 315 with c ∈ {2, 3, 4, 5} and q ∈ {0%, 3%, 5%, 8%, 10%, 15%}. We train models

using the simulated data with the proposed method and benchmarks (i.e., SoT, ESL-

LASSO, PCA-RLR, RLR). For the RSoT method, we select the rank from the set {2, 3, 4},

16

and α from the set {2, 1.414, 1, 0.707, 0.5, 0.353} (i.e., 4
2k/2

, k = 2, . . . , 7) by using cross-

validation as explained in Section 4.3, similar to Simulation I. To evaluate the performance

of each method, we generate a test data set with 135 samples without any outliers. Our

performance measure is Weighted Root Mean Squared Error (wRMSE) which is computed

as wRMSE =

√∑N
i=1(yi−ŷi)2

Nŷi
, where y is the actual target, and ŷ is the predicted value.

In Poisson distribution, the variance of the random variable (r.v.) is equal to the mean of

the r.v., which is the rate, λ. Therefore, as the mean of the r.v. increases, its variance

also increases. The proposed performance measure (wRMSE) adjusts for the increase in

the variance as the mean estimate for the target increases. That is, it adjusts the squared

deviations, (yi − ŷi)
2, with the mean estimate, ŷi, (i = 1, . . . , N). In each scenario, we

compare the performance of RSoT with the benchmarks in terms of wRMSE for different

values of λ (identified by c) and the percentage of outliers (denoted by q).

Table 2 reports the mean and the standard deviation (shown in parenthesis) of wRMSE

for each scenario. In addition, the average and the standard deviation of minimum error

that can be achieved are reported in the last column. The minimum error is calculated by√∑N
i=1(yi−λi)2

Nλi
, where λi is the true rate parameters for ith sample. Note that ESL-LASSO

and RLR methods have Gaussian assumptions for the parameter estimation. Thus, these

models may violate the non-positive mean estimation assumption, i.e., their estimated value

could be non-positive (ŷi ≤ 0). To handle this situation in the performance evaluation, we

cap the non-positive predicted values with one from below. Therefore, the denominator of

the wRMSE for those samples is one, meaning that we do not incur an additional multiplying

effect on the error term for those samples.

Table 2 shows that RSoT demonstrates superior performance compared to ESL-LASSO

and RLR under all the outlier magnitudes (c) and the percentage of outliers (q). Moreover,

RSoT outperforms SoT in almost all the scenarios, and it gives similar performance when

there is no outlier and when the percentage and the level of outliers are the lowest. For

instance, when q = 10% and c = 4, the wRMSE obtained by the proposed method is

1.628, whereas the wRMSEs are 2.191, 5.539, and 6.071 for SoT, ESL-LASSO, and RLR,

respectively. These results indicate the robustness of RSoT when there exist outliers and

show that the proposed method still has the predictive power of SoT when there is no

outlier. The boxplots showing the effect of the percentage of outliers, q, and the level of

17

Table 2: Simulation II (Poisson Case): Comparison between the proposed method (RSoT)

and the benchmarks in terms of wRMSE.

q (%) c RSoT SoT ESL-LASSO RLR Minimum Error

0 0 1.428 (0.189) 1.375 (0.209) 6.996 (5.345) 4.917 (1.239) 1.001 (0.048)

3 2 1.488 (0.262) 1.420 (0.175) 5.413 (2.175) 5.173 (1.770) 1.004 (0.057)

3 3 1.490 (0.228) 1.596 (0.220) 7.667 (6.781) 5.566 (1.592) 1.010 (0.048)

3 4 1.424 (0.138) 1.599 (0.184) 5.194 (1.733) 5.328 (1.615) 0.996 (0.055)

3 5 1.487 (0.251) 1.984 (0.444) 7.054 (6.034) 5.537 (1.030) 1.015 (0.059)

5 2 1.469 (0.193) 1.512 (0.233) 5.886 (1.790) 5.094 (0.851) 0.997 (0.056)

5 3 1.501 (0.264) 1.637 (0.192) 5.924 (1.586) 5.670 (1.209) 0.983 (0.070)

5 4 1.546 (0.289) 1.861 (0.364) 5.651 (1.868) 5.522 (0.719) 0.984 (0.056)

5 5 1.494 (0.286) 1.980 (0.247) 5.761 (2.300) 6.179 (1.296) 0.997 (0.057)

8 2 1.569 (0.208) 1.670 (0.197) 5.553 (2.176) 5.168 (0.714) 1.004 (0.069)

8 3 1.606 (0.336) 1.929 (0.292) 5.058 (1.066) 5.493 (0.882) 1.000 (0.056)

8 4 1.641 (0.293) 2.112 (0.397) 7.287 (4.231) 5.777 (0.876) 0.998 (0.077)

8 5 1.564 (0.332) 2.176 (0.382) 10.196 (10.690) 5.860 (0.723) 0.994 (0.058)

10 2 1.635 (0.302) 1.758 (0.287) 7.194 (3.822) 5.834 (1.264) 0.980 (0.061)

10 3 1.701 (0.273) 2.002 (0.404) 8.413 (4.519) 5.888 (0.946) 0.991 (0.070)

10 4 1.628 (0.390) 2.191 (0.438) 5.539 (2.409) 6.071 (0.760) 0.971 (0.050)

10 5 1.695 (0.377) 2.457 (0.433) 7.415 (6.387) 6.374 (0.889) 0.989 (0.069)

15 2 1.735 (0.276) 1.752 (0.222) 6.437 (3.776) 5.718 (1.578) 0.986 (0.056)

15 3 1.918 (0.366) 2.071 (0.353) 8.202 (7.355) 6.553 (1.304) 0.976 (0.053)

15 4 1.953 (0.372) 2.389 (0.356) 7.562 (6.612) 6.180 (1.068) 1.007 (0.066)

15 5 1.762 (0.452) 2.577 (0.392) 9.164 (8.338) 7.178 (1.528) 0.980 (0.057)

change in the rate parameter of outliers, c, can be found in Section 5 of Supplementary

Materials. Furthermore, the performance comparison in terms of Median Absolute Error

(MAE) is provided in Table 3 in Section 10 of the Supplementary Materials.

6.3 Simulation III: Gaussian Distribution with Sparsity

In this simulation study, we evaluate the performance of the proposed method when the

tensor of parameters is sparse. For this purpose, we follow the simulation study in (Zhou

et al., 2013). First, we employ the procedure described in Simulation I to construct input

tensors. Particularly, we simulate X ∈ RI1×I2 with I1 = I2 = 16. Next, we construct

the tensor of parameters B ∈ RI1×I2 by setting Bij = 10 if 6 ≤ i, j ≤ 10 and Bij = 0,

otherwise. Hence, the tensor of parameters is sparse on its peripheral regions. Next, we

simulate the responses by yi = ⟨B,Xi⟩ + e1, where e1 is a random error simulated from a

Gaussian distribution with mean zero and variance σ21. Then, we randomly select q % of

the instances and add outliers such that yi := yi + βyi, where β is the proportion of the

target value added to the outlier instances.

We simulate training data sets of size N = 315 with σ1 = 1, β ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

18

and q ∈ {0%, 3%, 5%, 8%, 10%, 15%}. We train a model using each method (i.e., RSoT,

SoT, RLR). That is, we include sparsity penalty to the RSoT, SoT, and RLR approaches

to perform variable selection. For RSoT and SoT, we select the sparsity penalty parameter,

as explained in Section 4.3. We do 10-fold cross-validation to select the sparsity penalty

parameter for RLR.For RSoT, we select α from the set {2, 1.414, 1, 0.707, 0.5, 0.353} (i.e.,
4

2k/2
, k = 2, . . . , 7) by using cross-validation as explained in Section 4.3 similar to Simulations

I and II. To evaluate the performance of the RSoT and the benchmarks in terms of RMSPE,

we generate a test data set with 135 samples without any outliers. We repeat this procedure

25 times to obtain the mean and the standard deviation of RMSPE. Figures 4 and 5 show

examples of the true and the estimated parameters by each method when q = 10% and

β = 0.5. These figures show the parameters using two different scaling for more clear

visualization. As illustrated, the RLR estimation is inferior compared to RSoT and SoT.

The estimated parameters deviate from the true values inside (Figure 4) and outside (Figure

5) of the light square. Furthermore, the SoT overestimates the value of the parameters inside

the light square (see Figure 5) due to the lack of robustness. Table 3 reports the mean

(standard deviation) of RMSPE for the proposed and benchmark methods for different

percentages of outliers (q) and outlier levels (β). As it is reported, the proposed method

demonstrates superior performance in the prediction of outputs, indicating the robustness

of the proposed method in estimating sparse parameters. For instance, when q = 8% and

β = 0.3, the RMSPE obtained by the proposed method is 1.034, whereas the SoT and

RLR result in higher errors of 2.179 and 3.079, respectively. Moreover, when there is no

outlier, the RSoT achieves the performance of the state-of-art tensor regression model. We

also tested ESL-LASSO in the sparse setting, but it performed very poorly compared to

the RSoT and the other benchmarks. Thus, we omit the results for ESL-LASSO in the

table. The boxplots showing the effect of the percentage of outliers, q and the level of

change in the rate parameter of outliers, c, can be found in Section 5 of Supplementary

Materials. Furthermore, the performance comparison in terms of R2 and Median Absolute

Error (MAE) are provided in Tables 4 and 5 in Supplementary Results (Section 11).

19

(a) True (b) RSoT (c) SoT (d) RLR

Figure 4: Simulation III (Gaussian Case with Sparsity): True and estimated tensor of

parameters (with cubic-scaling for illustration) by each method when q = 10% and β = 0.5.

(a) True (b) RSoT (c) SoT (d) RLR

Figure 5: Simulation III (Gaussian Case with Sparsity): True and estimated tensor of

parameters (with log-scaling for illustration) by each method when q = 10% and β = 0.5.

7 Case Study

In this case study, we evaluate the performance of the proposed method in predicting the

failure time of a rotating machinery given infrared thermal degradation images. Accelerated

degradation tests were performed on rolling element thrust bearings using the experimental

test bed described in Gebraeel et al. (2009). Test bearings were run from brand new until

failure. Vibration signals were collected to monitor the health of the system and used as a

proxy to the failure time of bearings. Once the amplitude of vibration frequencies exceed a

pre-specified threshold based on ISO standards for machine vibration, a failure is recorded.

Meanwhile, an FLIR T300 infrared camera captured thermal images of the bearing over the

duration of the test. The images are 40 × 20 and are stored every 10 seconds illustrating

the temperature signature of the degraded part over time. Four different experiments were

run to failure. Each experiment resulted in an image stream containing 375, 611, 827, and

1478 images, respectively. Re-sampling is performed over the original four image streams,

20

Table 3: Simulation III (Gaussian Case with Sparsity): Comparison between the proposed

method (RSoT) and the benchmarks in terms of RMSPE when the tensor of parameters is

sparse.

q (%) β RSoT SoT RLR

0 0 1.034 (0.061) 1.069 (0.081) 1.283 (0.087)

3 0.1 1.030 (0.070) 1.106 (0.084) 1.236 (0.068)

3 0.2 1.017 (0.061) 1.277 (0.155) 1.835 (0.264)

3 0.3 1.011 (0.057) 1.484 (0.202) 2.299 (0.264)

3 0.4 1.006 (0.060) 1.822 (0.436) 2.795 (0.471)

3 0.5 1.026 (0.057) 2.014 (0.531) 3.334 (0.741)

5 0.1 1.026 (0.058) 1.172 (0.059) 1.511 (0.125)

5 0.2 1.019 (0.053) 1.383 (0.139) 2.023 (0.229)

5 0.3 0.998 (0.054) 1.854 (0.431) 2.649 (0.355)

5 0.4 1.026 (0.057) 2.215 (0.329) 3.259 (0.408)

5 0.5 1.034 (0.059) 2.513 (0.488) 3.717 (0.583)

8 0.1 1.051 (0.063) 1.245 (0.099) 1.601 (0.161)

8 0.2 1.015 (0.055) 1.695 (0.224) 2.277 (0.220)

8 0.3 1.034 (0.057) 2.179 (0.344) 3.079 (0.394)

8 0.4 1.017 (0.052) 2.705 (0.483) 3.560 (0.419)

8 0.5 1.024 (0.064) 3.330 (0.612) 4.313 (0.566)

10 0.1 1.049 (0.072) 1.319 (0.122) 1.728 (0.202)

10 0.2 1.047 (0.070) 1.857 (0.248) 2.539 (0.346)

10 0.3 1.020 (0.060) 2.474 (0.430) 3.215 (0.506)

10 0.4 1.012 (0.070) 3.079 (0.523) 3.888 (0.481)

10 0.5 1.029 (0.062) 3.765 (0.659) 4.478 (0.474)

15 0.1 1.065 (0.054) 1.433 (0.118) 1.812 (0.182)

15 0.2 1.058 (0.067) 2.282 (0.308) 2.651 (0.341)

15 0.3 1.053 (0.069) 3.041 (0.474) 3.455 (0.355)

15 0.4 1.024 (0.063) 4.261 (0.816) 4.140 (0.554)

15 0.5 1.055 (0.072) 5.113 (1.088) 4.834 (0.606)

to produce a total of 284 image streams. For more details regarding this experiment please

see Fang et al. (2019). Figure 6 illustrates a sequence of images collected over time.

One challenge is the variable length (duration) of the collected degradation signals, which

causes different sizes of input tensors. In this case study, we take the length of the signal to be

τ and only consider the first τ images of the samples that failed after time τ . The underlying

reason is that, in real applications, when predicting the failure time of a machine, we can

only exploit the information in the image streams collected from the beginning until the

current time point t. For example, at t = 10, we only have access to the image streams until

t = 10 (τ = 10). As time passes, we will have access to more images, which will potentially

help improve the prediction performance since more information becomes available. Hence,

each image stream is truncated by only keeping images observed in the time interval [0,τ].

Therefore, the input tensors are 40×20×τ . The lifetime Ti is associated to each of the input

tensors Xi. Note that the sample size of the original data is very small and contains only four

21

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

(g) t = 7 (h) t = 8 (i) t = 9

Figure 6: Illustration of a sequence of thermal images captured by an infrared camera.

actual tests due to the high cost of running degradation experiments. Therefore, we followed

the resampling strategy of (Fang et al., 2019) to produce a dataset with a larger sample

size (dataset A). Figure 7a illustrates the relationship between the first principal component

score of the images and the failure time when τ = 10. Data does not show the existence of

outliers with respect to this specific extracted feature. However, this does not necessarily

mean that the original data does not contain outliers. In real applications, we usually

do not know if outliers exist in the data. Therefore, it is crucial to have a model which

preserves its performance when trained with data that may or may not contain outliers.

We used dataset A to evaluate the performance of the method when no information about

the existence of outliers was available. Furthermore, to evaluate the performance of our

method under the scenario that outliers certainly exist, we performed a slightly different

resampling strategy from (Fang et al., 2019) to produce outliers by changing the frequency

of the resampling in 5 % of image streams from the original streams (dataset B). That is, we

distort the temporal pattern of an image stream to create outliers. More details about this

resampling strategy are provided in the Supplementary Materials. Figure 7b demonstrates

the relationship between the first principal component score of the images and the failure

time with additional outliers shown in red circles.

We evaluate the performance of the proposed method, both with and without additional

22

(a) (b)

Figure 7: Illustration of extracted feature from (a) thermal image sequences with no outliers

and (b) from thermal image sequences with outliers.

outliers. We aim to show the effect of the existence of outliers on the performance of

the proposed method. Since the data contains outliers, we evaluate the performance of

the proposed method in terms of median absolute error (MAE) calculated as MAE =

mediani(|yi − ŷi|), where yi is the actual value and ŷi is the predicted value. In the case

study, the test set contains outliers, unlike in the simulation studies. Therefore, choosing a

performance measure that is robust to outliers is important.

To evaluate the performance of RSoT and SoT, we first perform Multilinear Principal

Component Analysis (MPCA) on the image streams for enhanced computation by following

(Fang et al., 2019). The MPCA exploits the high spatial correlation structure in the

thermal images to reduce the input tensor dimensions. Proposition 1 in (Fang et al., 2019)

shows that original high-dimensional tensors and their low-dimensional projections result in

similar output predictions. After this step, we obtain image streams of size 2× 2× τ . The

dimensions are chosen such that around 95 % of the variance in the image stream tensors

is explained. We compare the proposed method to the SoT and RLR. As RLR fails to

provide estimations due to the high dimensionality of the data (n < p), we first perform

Principal Component Analysis (PCA) on the vectorized image streams. First, we obtain

the principal component scores such that 95 % variance is explained. Then, we evaluate

the performance of RLR on this data of extracted scores, denoted as PCA-RLR1. In the

second case, we select the number of the principal component scores as 2 × 2 × τ = 4τ .

Thus, in this case, the input data for RLR has the same size as the input data for RSoT

and SoT. Then, we evaluate the performance of RLR on this input data, denoted as PCA-

23

RLR2. We divide 70 % of the data for training and 30 % for testing. We perform the

comparison at different values of τ , τ = {4, 6, 8, . . . , 24}. The larger the τ is, the more

information is available for predicting the failure time. For the RSoT method, we select

α from the set {0.125, 0.0884, 0.0625, 0.0442, 0.0312, 0.0221, 0.0156, 0.0110, 0.0078, 0.0055}

(i.e., 4
2k/2

, k = 10, . . . , 19) by using cross-validation as explained in Section 4.3. Our

cross-validation performance measure is truncated RMSE, calculated based on 90 % of the

instances of the least squared errors. We also test ESL-LASSO on this dataset. Although

we carefully tune the hyperparameters which control the robustness and regularization, it

performs very poorly compared to RSoT and the other benchmarks. Therefore, we do not

report the results for ESL-LASSO.

One challenge in this case study is that failure times do not follow the Gaussian

distribution. Fang et al. (2019) show that log-normal distribution is one of the distributions

that perform well for this data. Since they are generalized models, RSoT and SoT can

handle log-normal distribution. However, RLR can only handle Gaussian distribution. To

make the comparison fair for all the benchmarks, we transform the failure times using

log transformation and then test PCA-RLR1 and PCA-RLR2. Note that we report the

performance measures on a log scale. Figure 8a illustrates the performance of each method

in terms of MAE when there are no additional outlier streams. As it is depicted, the

RSoT outperforms the PCA-RLR1 and PCA-RLR2 for all τ values. Furthermore, RSoT

performs very similarly to the SoT. Also, the larger the value of τ , the more accurate the

estimations become. Moreover, Figure 8b shows the performance of each method when few

outlier streams are added additionally. In this setting, RSoT outperforms all the benchmark.

These results show that RSoT provides superior performance when there are outliers and

does not lose the power of SoT when there are no outliers. The superior performance of

RSoT is because it captures the spatio-temporal correlation structures in the image streams,

and it is robust to the outlier instances. Therefore, it is advantageous to use RSoT as in

most real-life cases, it is unknown whether outliers exist in a dataset.

Figures 9a and 9b depict the prediction errors of RSoT with a 95 % confidence interval

both when there is no outlier and when there are outliers, respectively. Both figures show

that as image streams contain more images, i.e., as τ gets larger, the prediction errors

decrease as expected because more information can be used to predict the failure time of

24

(a) (b)

Figure 8: Performance comparison of all the methods (a) without outlier and (b) with

outliers (b). RSoT outperforms the benchmarks and has the same power as SoT when there

are no outliers.

the machines. Furthermore, as τ gets larger, the prediction error intervals decrease since

using more images diminishes the uncertainty.

(a) (b)

Figure 9: Prediction errors of RSoT with 95 % confidence interval when (a) there are no

outliers and (b) when there are outliers

8 Discussion

In the paper, although we only show the theoretical results for the normal distribution in

the paper, our proposed methodologies with Lq-likelihood function work for the generalized

tensor regression model. In particular, we have conducted simulations and case studies

to show our method also yields adequate performance for non-Gaussian distribution. We

only conduct theoretical analysis for Gaussian distribution because, under the Gaussian

assumption, our general robust estimator will reduce to the classical M-estimator with a

25

special exponential square loss ρα(.). This will allow us to apply theoretical results of

general robust M-estimators to obtain our asymptotic results. This is also why one can

see similarities between our results and (Zhou et al., 2013) since both estimators (Lq under

Gaussian and log-likelihood) belong to the family of M-estimators. Unfortunately, it is

still very challenging to derive the theoretical asymptotic properties for the generalized

tensor regression model with the Lq-likelihood function, as the results from the family of M-

estimators do not apply when the underlying distribution is not Gaussian. As far as we know,

the only asymptotic results for the maximum Lq-likelihood estimator were derived in (Ferrari

and Yang, 2010). However, that paper only focuses on the robust point estimation problem

when data are i.i.d. with the exponential family. For our generalized tensor regression

model, under the low-rank assumption where B0 = [[U01,U02, · · · ,U0m]] , the parameters

U0i are not the parameters of any exponential family distributions. Moreover, when the

input tensors Xi are fixed, the observed data y1, y2, · · · , yn are not i.i.d, which means the

elements 1−(fθi (yi))
α

α in our objective function are not i.i.d. Therefore, extending such results

in (Ferrari and Yang, 2010) to our generalized tensor regression model remains a very

challenging task and new techniques may be developed to solve the problem. Studying

these challenges is an important future direction for us to pursue.

The major contribution of our paper is to propose a new framework for generalized

tensor regression using the general Lq-likelihood to achieve robustness. In many cases,

it is not known whether the data contains outliers, and using robust algorithms allows

for achieving models with strong prediction performance. To complete the framework, we

introduced algorithms to estimate the robust estimator, derived some theoretical properties

of our estimator, provided guidelines on the selection of tuning parameters, and performed

multiple simulations and case studies to illustrate the superior performance of our proposed

method.

We use CP decomposition in the proposed tensor regression model. CP decomposition

has also commonly been used in tensor regression, and its effectiveness has been shown in

(Zhou et al., 2013; Fang et al., 2019). The main advantage of CP decomposition over Tucker

decomposition is that it has a fewer tuning parameters. More specifically, CP decomposition

requires selecting a single rank. Since our proposed method contains other tuning parameters

other than rank (e.g., α), the CP decomposition has been selected to reduce the model tuning

26

efforts. However, we agree that Tucker decomposition would be an alternative decomposition

technique which has been shown to work well in high-dimensional settings, which can also

be a future direction for us.

Furthermore, Newton’s search method is not an integral part of the proposed method.

The search method used in parameter estimation can be determined by the user depending

on the resources they have. Particularly, in the proposed method, the complexity to

calculate the gradient is O(N(R2Id + RΠm
i=1Ii)), whereas the complexity to calculate

the Hessian matrix is O(N(R2Id + RΠm
i=1Ii + I2d)). Thus, the computational complexity

of parameter estimation with Newton’s search method is O(
∑R

r=1

∑m
d=1 n

(r)
d (N(R2Id +

RΠm
i=1Ii + I2d) +

1
3I

3
d)), where n(r)d is the number of iterations to update u

(r)
d and when

Cholesky decomposition is used for inverse calculation of the Hessian matrix. For larger-

scale problems where the inverse calculation of the Hessian matrix is too costly, the proposed

framework can easily be adjusted to use other optimization techniques, such as quasi-

Newton, and first- and zero-order techniques.

9 Conclusion

This paper proposes a robust estimation approach to the generalized linear scalar-on-tensor

regression model, which is widely used to capture high-dimensional structured data such as

images and profiles. To achieve robustness, Lq-likelihood loss is used and the corresponding

robust estimator is computed through an alternating least squares algorithm with a second-

order search method. A large number of model parameters may result in overfitting, which

is handled by introducing a low-rank constraint on the tensor of parameters. The efficacy

of the proposed approach is evaluated using simulation and case studies. The simulation

results under both Gaussian and Poisson distribution assumptions indicate that considering

the robustness in the tensor model creates superior performance in comparison to the

benchmarks that are either not robust or may not capture the structure of the data. The

case study evaluates the performance of the method in predicting the failure time of a

rotary machine given thermal images. Many future directions can be considered, including

the existence of outliers and missing values within the input data.

27

10 Data Availability

To request access to the data used in the case study, one may contact the corresponding

author of (Gebraeel et al., 2009), who owns the data.

Acknowledgements

This work has been partially supported by the National Science Foundation (NSF) award

2212878. Dr. Zhang’s research is supported in part by NSF grant ECCS-2236565. We

would like to thank Dr. Gebraeel for providing us with the case study data.

References
Barber, R. F., M. Reimherr, and T. Schill (2017). The function-on-scalar lasso with

applications to longitudinal gwas. Electronic Journal of Statistics 11 (1), 1351–1389.

Beaton, A. E. and J. W. Tukey (1974). The fitting of power series, meaning polynomials,
illustrated on band-spectroscopic data. Technometrics 16 (2), 147–185.

Chang, L., S. Roberts, and A. Welsh (2018). Robust lasso regression using tukey’s biweight
criterion. Technometrics 60 (1), 36–47.

Chen, H., G. Raskutti, and M. Yuan (2019). Non-convex projected gradient descent for
generalized low-rank tensor regression. The Journal of Machine Learning Research 20 (1),
172–208.

Chen, Y., J. Goldsmith, and R. T. Ogden (2016). Variable selection in function-on-scalar
regression. Stat 5 (1), 88–101.

Dennis Jr, J. E. and R. E. Welsch (1978). Techniques for nonlinear least squares and robust
regression. Communications in Statistics-Simulation and Computation 7 (4), 345–359.

Fan, Z. and M. Reimherr (2017). High-dimensional adaptive function-on-scalar regression.
Econometrics and Statistics 1, 167–183.

Fang, X., K. Paynabar, and N. Gebraeel (2019). Image-based prognostics using penalized
tensor regression. Technometrics 61 (3), 369–384.

Ferrari, D. and Y. Yang (2010). Maximum Lq-likelihood estimation. The Annals of
Statistics 38 (2), 753 – 783.

Gahrooei, M. R., H. Yan, K. Paynabar, and J. Shi (2021). Multiple tensor-on-tensor
regression: An approach for modeling processes with heterogeneous sources of data.
Technometrics 63 (2), 147–159.

Gebraeel, N., A. Elwany, and J. Pan (2009). Residual life predictions in the absence of prior
degradation knowledge. IEEE Transactions on Reliability 58 (1), 106–117.

28

Guhaniyogi, R., S. Qamar, and D. B. Dunson (2017). Bayesian tensor regression. The
Journal of Machine Learning Research 18 (1), 2733–2763.

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical
Statistics 35 (1), 73–101.

Kalogridis, I. and S. Van Aelst (2019). Robust functional regression based on principal
components. Journal of Multivariate Analysis 173, 393–415.

Kanning, M., I. Kühling, D. Trautz, and T. Jarmer (2018). High-resolution UAV-
based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield
prediction. Remote Sensing 10 (12), 2000.

Kowal, D. R. and D. C. Bourgeois (2020). Bayesian function-on-scalars regression for high-
dimensional data. Journal of Computational and Graphical Statistics 29 (3), 629–638.

Lambert-Lacroix, S. and L. Zwald (2011). Robust regression through the huber’s criterion
and adaptive lasso penalty. Electronic Journal of Statistics 5, 1015–1053.

Li, B., X. Xu, L. Zhang, J. Han, C. Bian, G. Li, J. Liu, and L. Jin (2020). Above-
ground biomass estimation and yield prediction in potato by using UAV-based RGB
and hyperspectral imaging. ISPRS Journal of Photogrammetry and Remote Sensing 162,
161–172.

Li, G., H. Peng, and L. Zhu (2011). Nonconcave penalized m-estimation with a diverging
number of parameters. Statistica Sinica 21, 391–419.

Li, N., N. Gebraeel, Y. Lei, X. Fang, X. Cai, and T. Yan (2021). Remaining useful life
prediction based on a multi-sensor data fusion model. Reliability Engineering & System
Safety 208, 107249.

Li, X., D. Xu, H. Zhou, and L. Li (2018). Tucker tensor regression and neuroimaging
analysis. Statistics in Biosciences 10 (3), 520–545.

Maronna, R. A. and V. J. Yohai (2013). Robust functional linear regression based on splines.
Computational Statistics & Data Analysis 65, 46–55.

Ogden, R. T., C. E. Miller, K. Takezawa, and S. Ninomiya (2002). Functional regression
in crop lodging assessment with digital images. Journal of Agricultural, Biological, and
Environmental Statistics 7 (3), 389–402.

Wang, X., Y. Jiang, M. Huang, and H. Zhang (2013). Robust variable selection with
exponential squared loss. Journal of the American Statistical Association 108 (502), 632–
643.

Wang, Y., H. Wang, D. Srinivasan, and Q. Hu (2019). Robust functional regression for wind
speed forecasting based on sparse bayesian learning. Renewable Energy 132, 43–60.

Yan, H., K. Paynabar, and M. Pacella (2019). Structured point cloud data analysis via
regularized tensor regression for process modeling and optimization. Technometrics 61 (3),
385–395.

29

Zhang, A. R., Y. Luo, G. Raskutti, and M. Yuan (2020). Islet: Fast and optimal low-
rank tensor regression via importance sketching. SIAM Journal on Mathematics of Data
Science 2 (2), 444–479.

Zhou, H., L. Li, and H. Zhu (2013). Tensor regression with applications in neuroimaging
data analysis. Journal of the American Statistical Association 108 (502), 540–552.

30

	Introduction
	Tensor Notation and Multilinear Algebra
	Review of Generalized Scalar-on-Tensor Regression
	Robust Generalized Scalar-on-Tensor Regression
	Robust Estimation via Lq-likelihood
	Robust Sparse Estimation through Adaptive Lasso
	Selection of Tuning Parameters

	Asymptotic Analysis Under Gaussian Assumption
	Performance Evaluation Using Simulation
	Simulation I: Gaussian Distribution
	Simulation II: Poisson Distribution
	Simulation III: Gaussian Distribution with Sparsity

	Case Study
	Discussion
	Conclusion
	Data Availability

