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Yield prediction of citrus provides critical information before harvest to growers and allied industry to predict the
resources required for workers, storage, and transportation of the harvest. In this study, three machine learning
(ML) based models were developed for tree-level citrus yield prediction: (i) Model-1 utilized UAV imagery; (ii)
Model-2 utilized UAV imagery and ground-based fruit detection and counts from images taken from one side of
the tree; and (iii) Model-3 utilized UAV imagery and ground-based fruit detection and counts from images taken
from two sides of the tree. The UAV images were used as input to a novel cloud-based technology, Agroview, to
get the tree health, height, and canopy area information. The multispectral bands and the tree structural pa-
rameters were the input for Model-1. Two images per tree were captured from the ground using an RGB camera
(one from each side) and were used for fruit count using an object detection algorithm, YOLOv3. Harvest data
was collected manually per tree (fruit count and weight). Four ML algorithms - gradient boosting regression
(GBR), random forest regression (RFR), linear regression (LR), and partial least squares regression (PLSR) were
used to generate the models. Model-2 (MAPE of 23.45%) performed similarly to Model-3 (MAPE of 25.72%) and
significantly better than Model-1 (MAPE of 35.59%). Model-2 was selected as the best model because of its low

MAPE value in predicting yield at the tree level, and data collection simplicity (compared to Model-3).

1. Introduction

The citrus industry in Florida contributes billions of dollars to its
economy every year through citrus fruit production, citrus juice
manufacturing, and fresh citrus marketing [15]. Yield prediction is
critical in defining adequate management strategies and logistics related
to the workforce, storage, packaging, and transportation [5] associated
with citrus production. The most widely adopted method for gathering
information about yield and fruit size is actual harvesting, weighing, and
sorting either by human workforce or commercial grading machines [1,
4,71. A major drawback of using actual harvest data for yield mapping is
the aggregation of the fruit count over spatial areas or times based on the
varying spatial and/or temporal aspects of the harvesting processes and
techniques [34]. In Florida, a common method for yield prediction of
citrus orchards before harvest involves sampling a fixed number of trees
(containing immature fruit) from a block, counting the total number of
fruits in those trees, and using it to extrapolate for the whole block
considering the fruit drops for that season. Fruit drop is nature’s way to
prevent overproducing. However, it could also be due to stress
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experienced by the trees because of the scarcity of water, lack of nitro-
gen in the soil, disease stress (e.g., Huanglongbing), or dry windy
weather [8]. This manual yield prediction method is highly error-prone
because of the errors involved in extrapolation, random sampling of
trees, and the use of a standard fruit drop index or percentage issued by
the Florida state (e.g., fruit loss adjustment standard).

Advances in technology and the availability of low-cost UAVs and
sensing systems over the past fifteen years have opened up new avenues
for researchers to utilize machine vision systems (e.g., spectral and
thermal imaging) for high-throughput phenotyping and yield estimation
in specialty crops. Maimaitijiang et al., [23] found that instead of using
single sensors for determining features, a combination of canopy spec-
tral information and thermal information from multiple sensors resulted
in better soybean biochemical parameter estimations. Researchers have
also shown that combining thermal canopy information with spectral
and structural information improved yield prediction under different
weather conditions and development stages of spring barley [31].
Different vegetation indices derived from satellite imagery have been
used by researchers to develop a yield prediction model for corn. They
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were compared with machine learning (ML) techniques such as support
vector machines (SVM) and multiple regression (MR). It was determined
that random forest regression was the most accurate approach for pre-
dicting the in-field variability [19]. Kayad et al. [19] also concluded that
the ML models produced more robust results than the vegetation indices
approach when applied to cornfields. Costa et al. [14] also developed
ML based models for predicting grain yield and related traits in wheat
with high accuracy by utilizing hyperspectral imaging. Deep learning
(DL) has gained much popularity in the past decade with applications in
data fusion [26], remote sensing for multi-modal multi-temporal data
fusion [9], and countless other applications [13,27,28]. However, the
application of DL for yield prediction has been relatively recent. Kuwata
& Shibasaki [22] developed deep neural networks (DNNs) to estimate
county-level corn yield for the entire area of the United States. It was
determined that neural network-trained estimation methods performed
feature extraction better than an existing ML algorithm. Wang et al. [36]
utilized DL techniques to predict soybean crop yields in Argentina and
subsequently used the pre-trained model to predict Brazil soybean har-
vests using transfer learning. DNNs when applied on a dataset contain-
ing the genotype and yield performance of maize hybrids planted
between 2008-2016 to predict the yield for 2017 resulted in high pre-
diction accuracy (12% RMSE as compared to the average yield) [20].

In-field machine vision and tree spectral index correlation deter-
mined from satellite imagery can also estimate the preharvest fruit load
index of mango orchards [6]. Using big-data mining methodologies for
yield prediction has gained popularity for crops such as sugarcane.
Everingham et al., [18] used the random forest regression method to
explain annual variation in regional sugarcane yields using seasonal
climate prediction indices, observed rainfall, minimum and maximum
temperatures and radiation as input to the classifier model. Despite the
increased use of machine vision in agriculture for yield mapping, re-
searchers stress the need for a robust algorithm with a correction factor
based on tree health, tree species, canopy size, and tree vigor [34]. A
combination of a correction factor based on the ratio of the human count
of fruits in images of two sides of sample trees and a hand harvest count
of all fruits, and fruit detection using a customized object detection
algorithm-YOLO, has also been employed by researchers to estimate
yield in mangoes [21]. However, using a single correction factor based
on a small number of sample trees resulted in a high total fruit estima-
tion error (17%) in some cases. Sarron et al. [33] utilized tree structure
estimates and load index as input variables for tree production estima-
tions and obtained a good correlation (R? greater than 0.77) when
evaluated with measured production on 60 trees. Diennevan et al. [17]
used UAV RGB image-based models to predict yield of coffee trees using
ML algorithms. The UAV data along with the actual yield values were
used to determine the most important features and months for yield
prediction.

Airborne hyperspectral imagery has been used to estimate canopy
features used as input variables for developing yield prediction models
for citrus [38,39]. Ye et al. [38] combined two-band vegetation index
(TBVI) and canopy size to obtain a model that explained 76.38% of the
yield variability among individual citrus trees. But the high dimen-
sionality of the hyperspectral data added to the cost and complexity of
the process, limiting the use of the model. Ye et al. [39] also showed that
using partial least squares (PLS) models to predict yield based on canopy
features was a better alternative to using vegetation indices based on the
spectral bands (red, green, blue, and near infrared-NIR). Zaman et al.
[40] found a significant correlation (R?) between ultrasonically-sensed
tree sizes and fruit yield. They attributed the lower correlation be-
tween actual and predicted yield (R? = 0.42) to poor flowering and fruit
drop which do not affect the canopy volume. Machine learning tech-
niques have been implemented in combination with a regression tree
model to classify orchards and identify the variables affecting the pro-
duction by each tree to predict citrus orchard production [16]. Diaz et al.
(2017) found that tree age was the most informative variable affecting
tree production followed by between and within rows distance. Fruit
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count estimation has been done using RGB, NIR, and depth images for
immature citrus fruits using machine vision techniques such as circular
object detection and classification [12]. Wang et al. [36] detected and
counted immature citrus fruits on images based on local binary patterns
(LBP) feature using illumination-normalized images. Zhang et al. [41]
developed an image segmentation technique to detect and count citrus
fruit on images and compare this technique with human vision-based
counting obtaining a R? of 0.98 and a detection accuracy of 91.8%.
However, these studies focused only on the image processing side of fruit
detection and counting, without providing any actual yield prediction
numbers for individual trees and blocks. To our knowledge, no other
work has combined UAV and ground-based imaging to generate accu-
rate yield prediction models (and not just fruit counts from images), at a
tree level, utilizing machine learning for citrus.

This study developed three ML-based models for citrus yield pre-
diction (at a tree level): (i) Model-1 utilized UAV imagery; (ii) Model-2
utilized UAV imagery, ground-based fruit detection and counts from
images taken from one side of the tree; and (iii) Model-3 utilized UAV
imagery, ground-based fruit detection and counts from images taken
from two sides of the tree. Four ML algorithms were used to generate the
models: gradient boosting regression (GBR), random forest regression
(RFR), linear regression (LR), and partial least squares regression
(PLSR). By comparing and evaluating these three models, the best model
was selected, which can predict individual tree yield (and yield at a
block level) with minimum error and reduce the yield estimation errors
associated with the manual sampling and estimation method, which is
the currently used method in Florida citrus industry.

2. Materials and methods
2.1. Experimental design

In this study, three yield prediction models, each using different data
structures, were generated and compared. The first model (Model-1)
was based on spectral data collected from UAV multispectral imaging.
The multispectral and RGB data captured from a UAV were then pro-
cessed and stitched in Pix4d (Pix4D, Lausanne, Switzerland) to create an
orthomosaic uploaded to a novel cloud-based technology, Agroview [2,
3], to generate individual tree structural information like tree height,
canopy area, and tree health/stress data. For the second and third yield
prediction models (Model-2 and Model-3), a hand-held camera (Canon
EOS 5D, Tokyo, Japan) was used to take images of the trees from the east
and west side of the rows. A deep learning-based object detection al-
gorithm, YOLO version 3 [30], was used on these images to detect and
count fruit, which was used in addition to the UAV and tree structural
data as input parameters for the machine learning algorithms to
generate Model-2 and Model-3. Model-2 used fruit count from images
captured from one side of the tree, while Model-3 used fruit count from
images taken from both sides (front and back of tree) of the tree. The
yield prediction, at a tree level, from all three models were compared to
the actual harvest count of 48 trees (collected in the first quarter of
2020, a week after the spectral and image data collection). The accuracy
of the yield estimation per tree was evaluated for all three models using
the mean absolute percentage error (MAPE) and the best machine
learning algorithm was selected. Fig. 1 presents the workflow of this
study.

2.2. Study site

An area on a citrus farm (Lat 26° 27°47” N, Long 81°26°35” W)
within the University of Florida’s Southwest Florida Research and Ed-
ucation Center premises was chosen as the study site. The selected block
had more than 100 trees (Hamlin, Citrus Sinensis), mostly healthy, with
varying canopy area and fruit density, and 48 trees out of these 100 were
chosen for this study. All data (e.g., UAV, ground-taken images for object
detection, and harvest counts) were collected in the third and fourth
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Fig. 1. Workflow of the study.

week of March 2020.
2.3. UAV imagery acquisition

A DJI Phantom 4 Pro+ (Shenzen, China) drone was flown at 122 m
(400 ft) for image acquisition in the third week of March 2020 around
noon time, when the intensity of sunlight was moderate. An RGB camera
(Phantom 4 Pro-+ camera, DJI, WA) attached to the Phantom Pro+ and a
multispectral camera (RedEdge-M, Micasense, WA, USA) were used to
obtain the required data. For the RGB camera, a front overlap of 80%
and a side overlap of 70% were set on the Pix4DMapper app. For the
multispectral camera, an overlap of 80% was set for both front and side
overlap.

2.4. UAV data processing

Data processing was done using the Pix4DMapper software (Pix4D S.
A., Prilly, Switzerland). The collected UAV images were stitched
together to get the aerial maps for each of the following bands: red (R),
green (G), blue (B), red edge, and near-infrared (NIR). The tree height,
tree health, and canopy area were extracted from the stitched images
using Agroview [3]. Agroview is a cloud and Al-based application used
for surveying and assessing agricultural fields by processing, analyzing,
and visualizing the data cost-effectively collected from UAVs. For
example, Agroview was used as a high-throughput phenotyping tool for

the evaluation of citrus rootstock varieties in large-scale experiments
[2]. Agroview is able to estimate the tree height and canopy area with an
accuracy of 95.53% and 86.12%, respectively [3].

2.5. Ground fruit detection and count

Two images were taken per tree, from west and east views (Fig. 3),
using a Canon EOS 5D (Tokyo, Japan) camera, in the third week of
March 2020. The images were taken between 12 PM — 2 PM and between
5 PM - 6 PM to prevent direct glare from the sun. The intensity of sun-
light was higher for the images taken at noon than those taken at 5 PM.
The front side images were taken standing in the center of the block
between two rows of trees (3.8 m from the center of the trees), while the
backside images were taken from the adjacent block of trees (5.4 m from
the center of the trees of the current block). These images were sepa-
rated into training and testing blocks (80/20 split). A labeling software
called LabelMe [32] was used for annotation of the citrus fruits in the
images. Post-annotation, the images were used for training the ML
models. A weight file, trained previously on immature citrus fruits, was
used for training [37]. The state-of-the-art object detection algorithm —
YOLO (version 3) was used for fruit detection (e.g., Fig. 4). The fruit
detection using YOLO v3 was carried out for both sides of the tree. This
number (fruit counts per tree) was used as an input parameter for the
yield prediction models Model-2 and Model-3. All the 48 trees were
manually harvested and the fruit count for each tree was recorded.
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Fig. 2. UAV image of the study site with the blue border showing the experi-
mental trees.

2.6. Machine learning implementation and models

2.6.1. k-fold cross-validation

The k-fold cross-validation is a popular data resampling method
implemented on machine learning models to get a less biased model
estimation. In k-fold cross-validation, a given data sample is split into ‘k’
number of groups. This allows each sample to be in the hold-out set 1
time and to be used to train the model k-1 times [11]. k=5 and k=10 are
the most commonly chosen values for k-fold cross-validation, and the
former was selected for our model.

2.6.2. Regression models

The gradient boosting regression (GBR), random forest regression
(RFR), linear regression (LR), and partial least squares regression (PLSR)
methods were used to generate yield prediction models for the dataset.
The GBR produces a predictive model from an ensemble of weak pre-
dictive models [35]. It involves three elements: a loss function that is
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optimized, a weak learner which is generally a decision tree constructed
in a ‘greedy’ manner, and finally, an additive model, which uses a
gradient descent procedure to minimize the losses when adding trees
[10]. Not only does GBR provide great predictive accuracy, but it also
works well without any data pre-processing and missing data. The RFR is
a robust algorithm involving an ensemble of decision trees constructed
randomly. Each tree makes its prediction, averaged out to produce a
single result [25]. The LR is one of the simplest and most popular
regression models used in statistical modeling. Its popularity stems from
the fact that it can be used satisfactorily for small sample sizes and the
results obtained from linear regression are easy to interpret. Linear
regression captures the dependencies between the inputs and outputs
through an estimated linear function defined by the predicted weights
[29]. The PLSR is used to model a response variable when many pre-
dictor variables are involved. It is handy when the predictors are highly
collinear or when the number of predictors exceeds the number of ob-
servations. In such cases, it is better than the ordinary least-squares
method, which either fails or generates coefficients with high standard
errors [24].

A script including all four algorithms was run using ‘harvest count’ as
the objective function (the value that the ML algorithm is trying to es-
timate). Model-1 used multispectral data and tree structural data as its
input parameters. Model-2 used fruit count from one side of the tree and
Model-3 used fruit count from both sides of the tree in addition to the
input parameters of Model-1 (Table 1).

2.6.3. Evaluation metrics

The performance of the object (fruit) detection algorithm YOLO v3
was evaluated using precision, recall, and F1 score. Precision and recall
are calculated using True Positives (TP), False Positives (FP), and False
Negatives (FN). For the detection of citrus fruits on images, FN repre-
sents the number of times the algorithm missed detecting a fruit in a
particular image, FP represents the number of times the algorithm
detected non-fruit as fruits, and TP is the number of times the algorithm
correctly detected a fruit.

True Positive

Precision = — — (€]
True Positive + False Positive

Recall — 7'"}.’ue Positive . @
TruePositive + FalseNegative

Precision  Recall
F1 =2% — 3
seore ¥ Precision + Recall ®
The mean absolute percentage error was used as an evaluation
metric for the ML yield prediction models. It is a commonly used key
performance index (KPI). Essentially, it gives an average of the per-
centage error. It is given by Eq. 4.

1 Y-Y
MAPE = — E‘—Y ‘ )

where, Y= actual value of the target parameter (in this case, it is the
actual harvest count of the tree), Y= value of the target parameter
estimated from the ML algorithms, n= sample size, (| |) = absolute
value, and ) = summation operator.

3. Results
3.1. Accuracy of the fruit detection model

For the fruit detection on images, YOLO v3 gave a high overall
precision of 0.96, indicating that the algorithm is highly accurate when
it detects an object as citrus fruit. An overall recall of 0.83 and an
average F1 score of 0.88 suggests that the trained detection model is
quite robust (Table 2).
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A Front Side Image

A Back Side Image

b)

Fig. 4. a) Original ground-based RGB image taken using a Canon camera. b) Fruit detection using YOLO applied on the same image.

Table 1
Description of the objective function and input data for each model
Model-1 Model-2 Model-3
Objective Harvest count Harvest count Harvest count
function

Multispectral data Multispectral data ~ Multispectral data
Tree structural Tree structural Tree structural
data data data

1-sided fruit count  2-sided fruit count

Input parameters

Table 2
Precision, recall, and F1 score of the object detection algorithm for the tree
images.

Row-1 Row-2 Overall
Precision 0.96 0.96 0.96
Recall 0.80 0.86 0.83
F1 score 0.87 0.90 0.88

3.2. Machine Learning models applied for yield estimation

The three models developed in this study were compared using the
average MAPE for each of the four ML algorithms used. Boxplots were
created for each model. Table 3 presents the complete dataset for 48
trees. The first column shows the yield per tree which is the number of
fruits harvested from each tree. The columns 2-6 show the multispectral
data of each tree obtained from UAYV flights. Columns 7- 9 show the tree
structural parameters (tree height and canopy area) along with a health
index (acquired by Agroview). The machine vision count columns pre-
sent the fruit count from the front side and both sides of the tree. The
yield estimated by Model-1, Model-2, and Model-3 for each of the trees is
presented in columns 12-14.

Model-1

Model-1, where the UAV-based data (spectral data and tree struc-
tural parameters) were the only inputs to the ML algorithms, was eval-
uated using average MAPE. The average MAPE for each algorithm for
each k-fold validation is presented in Table 4.

For Model-1, the average MAPE for all the ML algorithms was above
35%. The LR gave the best yield estimate (MAPE of 35.59 %; Table 4)



Table 3

Complete dataset with UAV data, machine vision-based fruit count, yield estimate, missing fruit, and absolute percentage error of all three models.

Harvest Multispectral Data Tree Structural Machine Vision Count Yield Estimate Missing fruit Absolute Percentage Error
Count Parameters

Blue Green  Red REdge NIR Height  Area Health  1-side 2-side Model- Model- Model- Model- Model- Model- Model- Model- Model-

Count Count 1 2 3 1 2 3 1 2 3

228 35.23 61.74 36.44 99.44 135.19 8.3 153.8 0.9 72 155 316.92 275.93 272.11 -89 -48 -44 39 21.02 19.35
204 4279 69.07 4335 100.64 12852 8.2 116.2  0.92 57 123 208.68 163.48 156.45 -5 41 48 2.29 19.86 23.31
195 42.65 7269 4279 103.67 131.76 83 121.3  0.89 60 163 219.67 172.28 213.78 -25 23 -19 12.65 11.65 9.63
160 43.7 74.54 47.05 102.18 126.05 9.2 116.2 0.94 111 222 294.56 314.53 307.25 -135 -155 -147 84.1 96.58 92.03
61 47.33 81.33 47.88 1147 138.18 9.5 86.8 0.86 36 84 76.32 41.06 47.88 -15 20 13 25.11 32.69 21.51
442 3434 66.85 37.22 101.77 119.85 9.3 171 0.93 122 258 424.82 430.59 429.14 17 11 13 3.89 2.58 291
412 34.38 69.19 37.88 101.88 119.17 9.8 148.2 0.91 100 243 342.02 313.88 348.33 70 98 64 16.99 23.82 15.45
362 3541 69.87 37.85 104.2 126.57 8.7 126.6  0.93 115 235 261.46 312.97 308.62 101 49 53 27.77 13.54 14.75
190 3449 65.27 36.12 9535 118.43 8.4 131.9 0.92 61 169 261.62 201.45 238.66 72 -11 -49 37.69 6.03 25.61
387 3478 69.02 36.26 10515 116.82 9.1 121.3 09 128 225 193.24 302.76 263.99 194 84 123 50.07 21.77 31.79
87 36.88 75.42 35.34 113.04 139.68 10.2 101.1 0.93 41 139 253.92 171.47 213.71 -167 -84 -127 191.86 97.09 145.64
286 33.24 66.31 35.81 10528 127.49 8.2 116.2 0.9 82 176 208.16 211.76 211.58 78 74 74 27.22 25.96 26.02
176 3419 67.37 36.26 106.66 131.45 8.8 121.3 09 86 192 227.12 237.72 245.65 -51 -62 -70 29.05 35.07 39.57
216 32.15 63.77 34.64 99.8 117.69 11.3 91.5 0.91 86 194 114.44 146.99 165.99 102 69 50 47.02 31.95 23.15
126 31.14 6224 33.95 10421 130.05 10.4 106.1  0.92 56 119 225.65 162.34 149.72 -100 -36 -24 79.09 28.84 18.83
303 29.87 58.33 31.83 98.22 124.78 8.2 142.7  0.92 102 231 266.57 307.21 317.63 36 -4 -15 12.02 1.39 4.83
92 33.2 69.63 3593 101.71 132.86 11.9 101.1 0.9 69 167 204.22 157.8 177.69 -112 -66 -86 121.98 71.52 93.14
195 30.59 61.78 35.08 94.71 124.74 10.5 101.1 0.91 100 202 200.13 203.34 197.9 -5 -8 -3 2.63 4.28 1.49
170 31.8 64.62  34.2 101.77  141.12 126 96.3 0.9 74 146 170.39 169.19 150.85 0 1 19 0.23 0.48 11.26
190 3462 69.46 3805 107.69 125.84 11.5 91.5 0.91 91 168 190.07 187.77 162.76 0 2 27 0.04 1.17 14.34
250 30.5 64.21 33.19 96.61 132.92 9 126.6 0.87 105 194 238.85 261.35 230.1 11 -11 20 4.46 4.54 7.96
124 33.39 7179 37.78 1141 132.14 8.3 91.5 0.88 72 148 173.3 169.43 170.85 -49 -45 -47 39.76 36.64 37.78
288 46.04 67.33  50.08 99.65 127.61 8.6 131.9 0.92 98 219 294.08 287.91 308.06 -6 0 -20 2.11 0.03 6.97
280 53.43 76.29 59.82 109.8 131.78 8.2 111.1 091 69 124 207.47 165.35 162.96 73 115 117 25.9 40.95 41.8
262 4292 73,55 4457 10845 147.68 8.7 116.2 094 78 167 223.86 235.09 237.96 38 27 24 14.56 10.27 9.18
439 41.59 76.73  43.56 108.88 144.32 10.5 142.7 0091 106 227 289.23 314.23 331.69 150 125 107 34.12 28.42 24.44
44 41.25 6355 4216 889 114.66 8.7 82.2 0.89 34 68 83.47 34.91 6.09 -39 9 38 89.7 20.66 86.16
336 33.42 61.35 34.59 93.15 122.6 10.6 142.7 0.95 88 194 326.21 302.84 302.54 10 33 33 291 9.87 9.96
320 36.5 70.29 38.78 105.11 126.36 9.8 142.7  0.89 110 205 323.25 324.49 304.34 -3 -4 16 1.02 1.4 4.89
274 51.34 75.06 54.82 100.46 115.09 11.5 1427 0.88 126 225 359.8 369.24 337.43 -86 -95 -63 31.31 34.76 23.15
368 45.22 73.2 46.52 102.7 129.46 11.8 153.8 0.89 135 250 374.19 419.06 391.65 -6 -51 -24 1.68 13.88 6.43
211 36.47 68.61 37.41 10771 141.71 8.1 106.1  0.92 66 135 169.65 183.41 174.86 41 28 36 19.6 13.08 17.13
268 46.22 70.15 48 95.64 110.13 8.8 131.9 0.93 99 193 286.97 301.07 283.75 -19 -33 -16 7.08 12.34 5.88
409 3451 67.87 353 108 135.76  10.1 131.9 0.93 122 252 251.8 361.24 350.97 157 48 58 38.44 11.68 14.19
286 31.19 71.44 3395 121.48 146.07 8.7 121.3  0.94 103 208 341.21 369.25 359.75 -55 -83 -74 19.3 29.11 25.79
321 37.03 69.51 4214 974 111.53 8.2 111.1  0.86 150 353 161.54 284.03 372.27 159 37 -51 49.68 11.52 15.97
120 4425 7449 4799 101.79 126.86 8.1 73.2 0.86 89 159 66.16 109.76 80.27 54 10 40 44.87 8.53 33.11
200 34.8 71.15  39.39 1137 13513 8.2 137.2  0.89 86 170 318.44 294.6 286.03 -118 -95 -86 59.22 47.3 43.01
147 31.7 65.22  34.03 105.17 136.12 8.1 126.6  0.89 48 117 257.96 175.21 177.84 -111 -28 -31 75.48 19.19 20.98
340 31.42 67.34 3385 107.45 14253 88 121.3  0.84 118 227 148.75 255 239.37 191 85 101 56.25 25 29.6
214 32.6 62.48 35.24 91.24 119.34 9.4 121.3 0.91 102 231 237.29 245.69 265.65 -23 -32 -52 10.88 14.81 24.14
212 3199 69.75 35.01 104.82 130.96 13.2 1266 0.9 85 166 319.09 270.76 253.21 -107 -59 -41 50.51 27.72 19.44
190 3195 67.92 3549 96.3 116.61 8.1 148.2 0.84 75 156 320.48 234.32 225.33 -130 -44 -35 68.67 23.33 18.59
148 3293 71.79 36.24 107.85 137.41 8.1 1111 0.87 49 130 178.12 129.17 145.03 -30 19 3 20.35 12.72 2.01
266 35.03 73.63 37.79 1104 140.7 8.1 148.2  0.92 113 181 365.54 392.28 323.16 -100 -126 -57 37.42 47.47 21.49
308 3236 70.04 3611 107.82 141.13 11.3 121.3 091 80 187 282.66 240.4 257.94 25 68 50 8.23 21.95 16.25
324 34.07 7468 37.46 103.27 156.4 8.2 121.3 093 80 228 185.46 241.7 295.8 139 82 28 42.76 25.4 8.7
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Table 4
Mean average percentage error of each machine learning algorithm for Model-1.
The bold numbers represent the lowest MAPE.
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Table 5
Mean average percentage error of each machine learning algorithm for Model-2.
The bold number represents the lowest MAPE.

Yield estimate MAPE (%)

Yield estimate MAPE (%)

ML Algorithm k=1 k=2 k=3 k=4 k=5 Average MAPE ML Algorithm k=1 k=2 k=3 k= k=5 Average MAPE
PLSR 46.81 30.57 24.11 50.08 27.62  35.84 PLSR 18.44  25.98 2412  35.76 1297  23.45
RFR 86.53  35.72 26.48  29.10 29.51 41.47 RFR 54.97  28.23 23.96  30.48 18.79  31.29
LR 31.70  33.72 28.88  50.13 33.51 35.59 LR 19.16  31.12 29.69  35.02 16.26  26.25
GBR 72.28 34.22 22.70 46.36 35.55 41.12 GBR 60.01 29.34 22.16 29.40 17.67 31.72

out of all the ML algorithms, while the RFR gave the worst estimate
(MAPE of 41.47%; Table 4). Even though LR gave the lowest MAPE, the
MAPE of the PLS algorithm (MAPE of 35.84%; Table 4) was not far off.
This means that depending on the data, either of these algorithms could
have given good prediction results.

The box and whisker plot (Fig. 5) shows the error range in the yield
estimate for each ML algorithm. The GBR is top skewed and had the
lowest variability in predicting yield, with a median of 25.03% and an
interquartile range of 28%. The interquartile range was chosen as a
measure of the spread of data instead of standard deviation because the
small dataset did not display a normal distribution. The LR algorithm
had considerable variability, as seen from the boxplot (Fig. 5), with an
interquartile range of 38.79%.

Model-2

For Model-2, UAV data from Model-1 (spectral data and tree struc-
tural parameters) and the fruit count from images taken from the front
side of the trees were given as the input to the ML algorithms. The model
was evaluated using the average MAPE to determine the best algorithm.
The average MAPE for each algorithm for each k-fold validation is
presented in Table 5.

For Model-2, the best yield estimate was obtained using the PLSR
algorithm (MAPE of 23.45%; Table 5), while the GBR gave the worst
estimate (MAPE of 31.72%; Table 5). Adding the fruit count from the
object detection algorithm as an input parameter to Model-1 resulted in
better yield estimates in Model-2, with the average MAPE of the best
algorithm improving by 34.11% (35.59% to 23.45%).

The box and whisker plot for Model-2 (Fig. 6) shows the error range
in the yield estimate for each ML algorithm. A comparison of the box-
plots of Model-1 and Model-2 shows the improvement in yield estima-
tion in terms of the reduction in the spread of the estimates. The PLSR
had the lowest variability in predicting yield, with a median of 20.66%
and an interquartile range of 18.08%. The RFR algorithm had the
highest variability, with an interquartile range of 24.29%.

Model-3

For Model-3, UAV data from Model-1 (spectral data and the tree
structural parameters) and the fruit count from images taken from both
sides of the trees were given as the input to the ML algorithms. Like the
previous models, evaluation was done using average MAPE to determine
the best algorithm. The average MAPE for each algorithm for each of the
k-fold validation for Model-3 is presented in Table 6. For Model-3, like
Model-2, the PLSR algorithm gave the best results (MAPE of 25.72%;
Table 6), while the RFR performed the worst in terms of prediction ac-
curacy (MAPE of 37.78%; Table 6).

The box and whisker plot for Model-3 (Fig. 7) shows the error range
in the yield estimate for each ML algorithm. A comparison of all the
boxplots reveal that Model-2 and Model-3 perform better than Model-1
in terms of the reduction in spread of yield estimates. For Model-3, the
LR algorithm had the lowest variability in predicting yield, with a me-
dian of 30.31%, and an interquartile range of 15.11%. The RFR algo-
rithm had the highest variability with an interquartile range of 28.27%.

Model Comparison

Even though Model-3 included the fruit count from images taken
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Table 6
Mean average percentage error of each machine learning algorithm for Model-3.
The bold number represents the lowest MAPE.

Yield estimate MAPE (%)

ML Algorithm k=1 k=2 k=3 k=4 k=5 Average MAPE

PLSR 26.99 25.42 23.36 40.26 12.55 25.72
RFR 65.90 28.65 34.01 39.39 20.93 37.78
LR 31.54 27.58 30.12 45.77 16.55 30.31
GBR 70.06 29.43 25.21 28.16 13.98 33.37

from both sides of the tree in the object detection algorithm as an input
parameter as opposed to just the one-sided image in Model-2, it was
found that the best ML algorithm of Model-3 has a higher MAPE
(25.72%) as compared to the best ML algorithm of Model-2 (23.45%).

All the algorithms, when applied on Model-2, gave a MAPE less than
32%, while for Model-3, except for PLS, all other algorithms gave a
MAPE of more than 30% indicating the fact that Model-2 gave the
overall lowest error in yield prediction. The two best-performing algo-
rithms for both these models, PLS and LR, had a lower variability in the
case of Model-3 as compared to Model-2, while the two worst-
performing models, GBR and RFR, had much greater variability in
Model-3, as indicated by their boxplots (Figs. 6 and 7).

The lower MAPE of Model-2 and Model-3 shows that they are more
accurate than Model-1 in terms of yield prediction (at the tree level).
Tests for statistical significance performed on these three models using
paired t-tests suggested a significant difference between Model-1 and
Model-2 (p-value = 0.0013), Model-1 and Model-3 (p-value = 0.0010),
but no significant difference between Model-2 and Model-3 (p-value =
0.29).

4. Discussion
4.1. Accuracy of the fruit detection model

The fruit detection using YOLO v3 gave a high precision of 0.96, a

recall of 0.83, and an average F1 score of 0.88, suggesting a good fruit
detection model. Since the object detection model involved transfer
learning using a weight file previously trained on immature citrus fruits,
the detection accuracy was high. This could be further improved with
more images of mature citrus fruits taken from multiple farms at
different times of the day. However, these models still would not be able
to accurately detect all the fruits because of the occlusion of the fruits by
leaves and branches. The algorithm uses multiple parameters such as
color, contour, texture, and other features for detection. Many variables
such as the camera specifications, time of the image taken, and shadows
affect the quality of the image and overall detection. However, the main
objective of this model is not to count all fruits in a tree, rather than to
get an estimate of fruit count to be used for the yield prediction models
presented in this study.

4.2. Machine learning models applied for yield estimation

Model-1

All the yield prediction algorithms had multiple outliers, with an
error estimate for some outliers of over 100%. Closer inspection of the
data revealed that those outliers belonged to smaller trees with less than
100 fruits (fruit counts of 61, 87, 92, and 44). These trees had a height
comparable to the larger trees and a canopy area proportional to their
harvest output. This variability in tree size and fruit load could be
because of the different rootstock varieties used in this field. However,
the spectral values were similar in range to that of a larger tree (trees
with medium (100< fruit count <350) or large harvest numbers
(>350)). This indicates that yield estimation based only on the spectral
data is unreliable for smaller trees (fruit count less than 100). Hence, a
model that includes fruit counts as an input parameter could theoreti-
cally provide a better yield estimation than Model-1. For trees with
larger harvest outputs, Model-1 performed better than Model-2 in only 2
out of 7 (28.5%) cases (Table 8). The relatively poor performance of
Model-1 compared to Model-2 and Model-3 could be because of the
effect of the weather conditions, the intensity of sunlight, and the var-
iations in brightness during the process of UAV image acquisition which



V. Vijayakumar et al.

Smart Agricultural Technology 3 (2023) 100077

MAPE of ML Algorithms for Model-3

100
80 - T
S _
i
o 60 1
o
B8
S — -
O 40 -
)
o
3
= 20 A
o)
3
< 1
0 - — — —l
_20 T

GBR LR

RFR PLS

Machine Learning Algorithms

Fig. 7. Boxplot of MAPE for Model-3.

could have affected the multispectral values.

Model-2

The yield estimate for each ML algorithm used in Model-2 was better
(Fig. 6) than in Model-1. Overall, the yield estimate for almost all the
trees improved as the variability in yield estimate decreased and the
median value for all the algorithms was reduced to less than 23%. There
was also a remarkable drop in the mean value of the yield estimate for all
the algorithms, with every ML algorithm giving under 32% average
MAPE.

For trees with a yield per tree (harvest) count of fewer than 100
fruits, Model-2 gave a far better yield prediction than Model-1 in almost
every case (Table 7). Compared to Model-1, Model-2 showed a reduction
in error of at least 40% in three out of four cases (75%) of smaller trees
(Table 7). Model-2 also had the best root mean square error (RMSE)
(54.64) of the predictions for smaller trees as compared to Model-1
(102.77) and Model-3 (79.07). For trees with higher fruit load
(greater than 350 fruits per tree), Model-2 still performed better in 5 out
of 7 cases (71.4%) (Table 8). This showed that including fruit count,
even from a single side of the tree, in the model improved the yield
estimation for both the smaller and larger trees.

Model-3

Model-3 performed better than Model-1 and similar or worse than
Model-2 for all four algorithms. This could be because of the double
counting of fruits when using the fruit count of images from both sides of
a tree. Double counting results in overestimating fruits (higher “2-side
count” in Table 1), especially when the tree leaf density is low. For

Table 7
Absolute percentage error (APE) of each Model for trees with a harvest count of
less than 100 fruits.

Absolute Percentage Error

Harvest Count Model-1 Model -2 Model-3
61 25.11 32.69 21.51
87 191.86 97.09 145.64
92 131.98 71.52 93.14
44 89.7 20.66 86.16

Table 8
Absolute percentage error (APE) of each Model for trees with a harvest count of
more than 350 fruits.

Harvest Count Absolute Percentage Error

Model-1 Model -2 Model-3

442 3.89 2.58 2.91

412 16.99 23.82 15.45
362 27.77 13.54 14.75
387 50.07 21.77 31.79
439 34.12 28.42 24.44
368 1.68 13.88 6.43

409 38.44 11.68 14.19

smaller trees, Model-3 performed better than Model-1 in all the cases, as
is evident from the lower APE values (Table 7). Even in the case of trees
with larger harvest output, Model-3 gave lower APE in 6 out of 7
(85.7%) cases as compared to Model-1 and in 3 out of 7 (42.8%) cases as
compared to Model-2 (Table 8). This shows that using the fruit count
from one side (Model-2) is a better alternative to using fruit count from
images taken from both sides of the tree.

Model Comparison

The comparison of models based on MAPE suggests the use of Model-
2 for a more accurate yield estimation at a tree level. Model-2 gave the
lowest MAPE (MAPE of 23.45%) compared to the other two models. The
statistical significance tests showed a significant difference between the
yield prediction errors of Model-1 and Model-2, and Model-1 and Model-
3. Between Model-2 and Model-3, even though the difference in MAPE
was around 2%, the difference was not statistically significant. This in-
dicates that using either of Model-2 and Model-3 would be a better
choice than Model-1. This conclusion works in favor of Model-2 being
used as a yield estimation model over Model-3, because Model-2 re-
quires less input data; Model-2 would be less taxing in terms of the time
and effort required to capture images from only one side of the tree. It
would also be more scalable when used in large commercial fields,
where a camera mounted on a farm vehicle could be used for capturing a
video of one side of the citrus trees while traversing through the rows.
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The captured video could then be used for extracting images for fruit
count from one side and subsequently serve as an input to Model-2.

The UAV imagery was important in extracting the spectral values
and the structural parameters (through Agroview) of trees. Model-2 and
Model-3 without any UAV data showed a higher variance in data (data
not presenting in this paper), suggesting that using both UAV and
ground-based data was more reliable than just using ground-based data.
Aerial data can be captured through a UAV much faster for a larger area
of the field. The bottleneck might arise while capturing ground data
through a camera mounted on a farm vehicle driving slowly between the
rows. This could be problematic if the rows of trees are too close and
there are spatial restrictions on driving a farm vehicle to capture the
entire canopy of the tree from one side.

At a block level (experimental area of 48 citrus trees), all three
models predicted yield with more than 99% accuracy. However, a large-
scale experiment, with a high number of trees, is needed to better
evaluate the performance of the models. In large-scale experiments (e.g.,
5,000 trees total), it is very difficult to collect yield data for each indi-
vidual tree, but the comparison of the model at a block (e.g., specific
area in a farm) level is possible. The performance of the models should
be also tested in different locations and during different dates before
harvest.

5. Conclusion

Existing yield prediction methods either use UAVs to predict yield
from canopy parameters and spectral imaging, or use ground images
only for fruit counting without estimating actual yield. This study
compares the yield prediction (at a tree level) from three different ML-
based models. The first model (Model-1) includes data collected from
UAV imagery. The second and third models utilize UAV imaging along
with fruit count derived from a deep learning algorithm applied to im-
ages taken from one side (Model-2) and both sides (Model-3) of the tree.
The average MAPE calculation revealed that the models that included
the fruit count performed better than the model that just used the UAV
data. Model-2, which used fruit count from only one side of the tree,
performed similarly with Model-3, which included fruit count from both
sides of the tree. Model-2 was selected as a desired model because of the
less input data required for yield prediction (compared to Model-3). In
general, the results demonstrate that the developed Model-2 could be
used to predict the fruit count in orange orchards in Florida.

The selected model, Model-2, gave a MAPE of 23.45%. Model-2 also
estimated the yield better for trees with the smallest and largest fruit
load (harvest count less than 100 and more than 350 fruits, respectively)
as compared to Model-1 and Model-3. These results support the devel-
opment of models using UAV multispectral imaging and fruit count via
image-based fruit detection (images taken from the ground). A model
including UAV collected spectral data and fruit count information would
help reduce the overall error in the traditional yield estimation process,
which is manual as of now in many citrus farms in Florida, and ulti-
mately reduce the financial losses of growers. Future works will involve
improving the detection accuracy of the fruit detection system by using
more advanced robust networks. These models would use images from
immature fruits for training and validation and perform prediction 4-6
months in advance of harvesting. Capturing tree images using UAVs
flown closer to one side of the trees could be used as an alternative to
ground-based image capture for regions where it is difficult to drive farm
vehicles in between rows. Future work will also include an evaluation of
the estimation performance and cost analysis of the object detection and
UAV based models in comparison with the existing manual methods of
fruit prediction.

Declaration of competing interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence

10

Smart Agricultural Technology 3 (2023) 100077

the work reported in this paper.
Acknowledgement

This material was made possible, in part, by a Cooperative Agree-
ment from the U.S. Department of Agriculture’s Animal and Plant Health
Inspection Service (APHIS) and Agricultural Marketing Service through
grant AM190100XXXXGO036. Its contents are solely the responsibility of
the authors and do not necessarily represent the official views of the
USDA.”

References

[1] Y.G. Ampatzidis, S.G. Vougioukas, Field experiments for evaluating the
incorporation of RFID and barcode registration and digital weighing technologies
in manual fruit harvesting, Comput. Electron. Agric. 66 (2) (2009) 166-172,
https://doi.org/10.1016/J.COMPAG.2009.01.008.

Y. Ampatzidis, V. Partel, UAV-based high throughput phenotyping in citrus
utilizing multispectral imaging and artificial intelligence, Remote Sensing 11 (4)
(2019), https://doi.org/10.3390/rs11040410.

Y. Ampatzidis, V. Partel, L. Costa, Agroview: Cloud-based application to process,
analyze and visualize UAV-collected data for precision agriculture applications
utilizing artificial intelligence, Comput. Electron. Agric. 174 (2020), 105457,
https://doi.org/10.1016/j.compag.2020.105457.

Y. Ampatzidis, L. Tan, R. Haley, M.D. Whiting, Cloud-based harvest management
information system for hand-harvested specialty crops, Comput. Electron. Agric.
122 (2016) 161-167, https://doi.org/10.1016/J.COMPAG.2016.01.032.

Y.G. Ampatzidis, S.G. Vougioukas, M.D. Whiting, Q. Zhang, Applying the machine
repair model to improve efficiency of harvesting fruit, Biosystems Eng. 120 (2014)
25-33, https://doi.org/10.1016/J.BIOSYSTEMSENG.2013.07.011.

Anderson, N. T., Underwood, - J P, Rahman, - M M, Robson, - A, & Walsh, - K B.
(2019). Estimation of fruit load in mango orchards: tree sampling considerations
and use of machine vision and satellite imagery. Precision Agriculture, 20, 823-839.
https://doi.org/10.1007/511119-018-9614-1.

O.E. Apolo-Apolo, J. Martinez-Guanter, G. Egea, P. Raja, M. Pérez-Ruiz, Deep
learning techniques for estimation of the yield and size of citrus fruits using a UAV,
Eur. J. Agron. 115 (2020), https://doi.org/10.1016/J.EJA.2020.126030.
Begeman, J., & Wright, G. (2009). Diagnosing Home Citrus Problems.

P. Benedetti, D. Ienco, R. Gaetano, K. Ose, R.G. Pensa, S. Dupuy, M 3 fusion: a deep
learning architecture for multiscale multimodal multitemporal satellite data fusion,
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 11 (12) (2018) 4939-4949,
https://doi.org/10.1109/JSTARS.2018.2876357.

J. Brownlee, A Gentle Introduction to the Gradient Boosting Algorithm for Machine
Learning, Mach. Learn> Mastery (2016) 1-21. https://machinelearningmastery.
com/gentle-introduction-gradient-boosting-algorithm-machine-learning/.

J. Brownlee, A gentle introduction to soar, An Invitation Cognit. Sci. (2019) 1,
https://doi.org/10.7551 /mitpress/3967.003.0009.

Choi, D., Lee, W. S., Schueller, J. K., Ehsani, R., & Roka, F. (2017). An ASABE
Meeting Presentation A performance comparison of RGB, NIR, and depth images in
immature citrus detection using deep learning algorithms for yield prediction. https://
doi.org/10.13031/aim.201700076.

L. Costa, Y. Ampatzidis, C. Rohla, N. Maness, B. Cheary, L. Zhang, Measuring pecan
nut growth utilizing machine vision and deep learning for the better understanding
of the fruit growth curve, Comput. Electron. Agric. 181 (2021), https://doi.org/
10.1016/J.COMPAG.2020.105964.

Costa, L., McBreen, J., Ampatzidis, Y., Guo, J., Reisi Gahrooei, M., & Ali Babar, M.
(1234). Using UAV-based hyperspectral imaging and functional regression to assist in
predicting grain yield and related traits in wheat under heat-related stress environments
for the purpose of stable yielding genotypes. https://doi.org/10.1007/s11119-021-
09852-5.

Court, C. D., Ferreira, J., & Cruz, J. (2018). ECONOMIC CONTRIBUTIONS of the
FLORIDA CITRUS INDUSTRY Sponsored project report to the Florida Department of
Citrus.

1. Diaz, S.M. Mazza, E.F. Combarro, L.I. Giménez, J.E. Gaiad, Machine learning
applied to the prediction of citrus production, Spanish J. Agricult. Res. 15 (2)
(2017), https://doi.org/10.5424/sjar/2017152-9090.

B. Diennevan, S. Barbosa, G. Aratjo, S. Ferraz, L. Costa, Y. Ampatzidis,

V. Vijayakumar, L. Mendes, D. Santos, UAV-based coffee yield prediction utilizing
feature selection and deep learning, Smart Agricult. Technol. 1 (2021), 100010,
https://doi.org/10.1016/J.ATECH.2021.100010.

Y. Everingham, J. Sexton, D. Skocaj, G. Inman-Bamber, Accurate prediction of
sugarcane yield using a random forest algorithm, Agron. Sustainable Dev. 36 (2)
(2016), https://doi.org/10.1007/s13593-016-0364-z.

A. Kayad, M. Sozzi, S. Gatto, F. Marinello, F. Pirotti, Monitoring within-field
variability of corn yield using sentinel-2 and machine learning techniques, Remote
Sensing (23) (2019) 11, https://doi.org/10.3390/1s11232873.

S. Khaki, L. Wang, S.V. Archontoulis, A CNN-RNN Framework for Crop Yield
Prediction, Front. Plant Sci. 10 (January) (2020) 1-14, https://doi.org/10.3389/
fpls.2019.01750.

A. Koirala, - K B Walsh, - Z Wang, - C Mccarthy, * A Koirala, Deep learning for real-
time fruit detection and orchard fruit load estimation: benchmarking of

[2]

[3]

[4]

[5]

[6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]


https://doi.org/10.1016/J.COMPAG.2009.01.008
https://doi.org/10.3390/rs11040410
https://doi.org/10.1016/j.compag.2020.105457
https://doi.org/10.1016/J.COMPAG.2016.01.032
https://doi.org/10.1016/J.BIOSYSTEMSENG.2013.07.011
https://doi.org/10.1016/J.EJA.2020.126030
https://doi.org/10.1109/JSTARS.2018.2876357
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://doi.org/10.7551/mitpress/3967.003.0009
https://doi.org/10.1016/J.COMPAG.2020.105964
https://doi.org/10.1016/J.COMPAG.2020.105964
https://doi.org/10.5424/sjar/2017152-9090
https://doi.org/10.1016/J.ATECH.2021.100010
https://doi.org/10.1007/s13593-016-0364-z
https://doi.org/10.3390/rs11232873
https://doi.org/10.3389/fpls.2019.01750
https://doi.org/10.3389/fpls.2019.01750

V. Vijayakumar et al.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

“MangoYOLO.”, Precis. Agricult. 20 (2019) 1107-1135, https://doi.org/10.1007/
511119-019-09642-0.

K. Kuwata, R. Shibasaki, Estimating corn yield in the United States with modis EVI
and machine learning methods, ISPRS Ann. Photogrammetry Remote Sensing Spatial
Inf. Sci. III-8 (2016) 131-136, https://doi.org/10.5194/isprsannals-iii-8-131-2016.
M. Maimaitijiang, A. Ghulam, P. Sidike, S. Hartling, M. Maimaitiyiming,

K. Peterson, E. Shavers, J. Fishman, J. Peterson, S. Kadam, J. Burken, F. Fritschi,
Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor
data fusion and extreme learning machine, ISPRS J. Photogramm. Remote Sens.
134 (2017) 43-58, https://doi.org/10.1016/J.ISPRSJPRS.2017.10.011.

Minitab Support. (2017). What is partial least squares regression?1. https://support.
minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/regression/s
upporting-topics/partial-least-squares-regression/what-is-partial-least-squares
-regression/.

Mwiti, D. (2020). Random Forest Regression when does it fail and why (pp. 1-9). https
://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal
Deep Learning.

Nunes, L., Ampatzidis, Y., Costa, L., & Wallau, M. (2021). Horse foraging behavior
detection using sound recognition techniques and artificial intelligence. Computers
and Electronics in Agriculture, 183. https://doi.org/10.1016/J.
COMPAG.2021.106080.

V. Partel, L. Costa, Y. Ampatzidis, Smart citrus tree sprayer using sensor fusion and
artificial intelligence Written for presentation at, in: the 2021 Annual International
Meeting ASABE Virtual and On Demand, 2021, https://doi.org/10.13031/
aim.202100525.

Python, R. (2020). Linear regression in python — real python. 1-21. https://realpyt
hon.com/linear-regression-in-python/.

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. htt
p://arxiv.org/abs/1804.02767.

P. Rischbeck, S. Elsayed, B. Mistele, G. Barmeier, K. Heil, U. Schmidhalter, Data
fusion of spectral, thermal and canopy height parameters for improved yield

11

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

Smart Agricultural Technology 3 (2023) 100077

prediction of drought stressed spring barley, Eur. J. Agron. 78 (2016) 44-59,
https://doi.org/10.1016/j.€ja.2016.04.013.

B. Russell, A. Torralba, W.T. Freeman, Labelme: the open annotation tool, Comput.
Sci. Artif. Intell. Lab. (2006) [Online]. Available: Http://Labelme. Csail. Mit. Edu.
http://labelme.csail.mit.edu/guidelines.html.

Sarron, J., Malézieux, E., Amet, C., Sané, B., & Faye, E. (2018). Remote sensing
mango yield mapping at the orchard scale based on tree structure and land cover
assessed by UAV. https://doi.org/10.3390/rs10121900.

J.K. Schueller, Opinion: opportunities and limitations of machine vision for yield
mapping, Front. Rob. Al 8 (2021), https://doi.org/10.3389/frobt.2021.627280.
Scikit-learn. (2020). Gradient Boosting regression. https://scikit-learn.org/stable/aut
o_examples/ensemble/plot_gradient_boosting_regression.html.

A.X. Wang, C. Tran, N. Desai, D. Lobell, S. Ermon, Deep transfer learning for crop
yield prediction with remote sensing data, in: Proceedings of the 1st ACM SIGCAS
Conference on Computing and Sustainable Societies, COMPASS 2018 18, 2018,
https://doi.org/10.1145/3209811.3212707.

C. Wang, - Won, S. Lee, Xiangjun Zou, D. Choi, Hao Gan, Justice, X Zou, Detection
and counting of immature green citrus fruit based on the Local Binary Patterns
(LBP) feature using illumination-normalized images, Precis. Agricult. 19 (2018)
1062-1083, https://doi.org/10.1007/s11119-018-9574-5.

ichi X. Ye, K. Sakai, S. Asada, A. Sasao, Application of narrow-band TBVI in
estimating fruit yield in citrus, Biosystems Eng. 99 (2) (2008) 179-189, https://
doi.org/10.1016/J.BIOSYSTEMSENG.2007.09.016.

X. Ye, K. Sakai, A. Sasao, S.I. Asada, Estimation of citrus yield from canopy spectral
features determined by airborne hyperspectral imagery, Int. J. Remote Sens. 30
(18) (2009) 4621-4642, https://doi.org/10.1080/01431160802632231.

Q.U. Zaman, A.W. Schumann, H.K. Hostler, Estimation of citrus fruit yield using
ultrasonically-sensed tree size, Appl. Eng. Agric. 22 (1) (2006) 39-44.

X. Zhang, A. Toudeshki, R. Ehsani, H. Li, W. Zhang, R. Ma, Yield estimation of
citrus fruit using rapid image processing in natural background, Smart Agricult.
Technol. 2 (2022), 100027, https://doi.org/10.1016/j.atech.2021.100027.


https://doi.org/10.1007/s11119-019-09642-0
https://doi.org/10.1007/s11119-019-09642-0
https://doi.org/10.5194/isprsannals-iii-8-131-2016
https://doi.org/10.1016/J.ISPRSJPRS.2017.10.011
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/regression/supporting-topics/partial-least-squares-regression/what-is-partial-least-squares-regression/
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/regression/supporting-topics/partial-least-squares-regression/what-is-partial-least-squares-regression/
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/regression/supporting-topics/partial-least-squares-regression/what-is-partial-least-squares-regression/
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/regression/supporting-topics/partial-least-squares-regression/what-is-partial-least-squares-regression/
https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why
https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why
https://doi.org/10.13031/aim.202100525
https://doi.org/10.13031/aim.202100525
https://realpython.com/linear-regression-in-python/
https://realpython.com/linear-regression-in-python/
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.1016/j.eja.2016.04.013
http://labelme.csail.mit.edu/guidelines.html
https://doi.org/10.3389/frobt.2021.627280
https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
https://doi.org/10.1145/3209811.3212707
https://doi.org/10.1007/s11119-018-9574-5
https://doi.org/10.1016/J.BIOSYSTEMSENG.2007.09.016
https://doi.org/10.1016/J.BIOSYSTEMSENG.2007.09.016
https://doi.org/10.1080/01431160802632231
http://refhub.elsevier.com/S2772-3755(22)00042-9/sbref0040
http://refhub.elsevier.com/S2772-3755(22)00042-9/sbref0040
https://doi.org/10.1016/j.atech.2021.100027

	Tree-level citrus yield prediction utilizing ground and aerial machine vision and machine learning
	1 Introduction
	2 Materials and methods
	2.1 Experimental design
	2.2 Study site
	2.3 UAV imagery acquisition
	2.4 UAV data processing
	2.5 Ground fruit detection and count
	2.6 Machine learning implementation and models
	2.6.1 k-fold cross-validation
	2.6.2 Regression models
	2.6.3 Evaluation metrics


	3 Results
	3.1 Accuracy of the fruit detection model
	3.2 Machine Learning models applied for yield estimation

	4 Discussion
	4.1 Accuracy of the fruit detection model
	4.2 Machine learning models applied for yield estimation

	5 Conclusion
	Declaration of competing interests
	Acknowledgement
	References


