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A B S T R A C T   

Yield prediction of citrus provides critical information before harvest to growers and allied industry to predict the 
resources required for workers, storage, and transportation of the harvest. In this study, three machine learning 
(ML) based models were developed for tree-level citrus yield prediction: (i) Model-1 utilized UAV imagery; (ii) 
Model-2 utilized UAV imagery and ground-based fruit detection and counts from images taken from one side of 
the tree; and (iii) Model-3 utilized UAV imagery and ground-based fruit detection and counts from images taken 
from two sides of the tree. The UAV images were used as input to a novel cloud-based technology, Agroview, to 
get the tree health, height, and canopy area information. The multispectral bands and the tree structural pa
rameters were the input for Model-1. Two images per tree were captured from the ground using an RGB camera 
(one from each side) and were used for fruit count using an object detection algorithm, YOLOv3. Harvest data 
was collected manually per tree (fruit count and weight). Four ML algorithms - gradient boosting regression 
(GBR), random forest regression (RFR), linear regression (LR), and partial least squares regression (PLSR) were 
used to generate the models. Model-2 (MAPE of 23.45%) performed similarly to Model-3 (MAPE of 25.72%) and 
significantly better than Model-1 (MAPE of 35.59%). Model-2 was selected as the best model because of its low 
MAPE value in predicting yield at the tree level, and data collection simplicity (compared to Model-3).   

1. Introduction 

The citrus industry in Florida contributes billions of dollars to its 
economy every year through citrus fruit production, citrus juice 
manufacturing, and fresh citrus marketing [15]. Yield prediction is 
critical in defining adequate management strategies and logistics related 
to the workforce, storage, packaging, and transportation [5] associated 
with citrus production. The most widely adopted method for gathering 
information about yield and fruit size is actual harvesting, weighing, and 
sorting either by human workforce or commercial grading machines [1, 
4,7]. A major drawback of using actual harvest data for yield mapping is 
the aggregation of the fruit count over spatial areas or times based on the 
varying spatial and/or temporal aspects of the harvesting processes and 
techniques [34]. In Florida, a common method for yield prediction of 
citrus orchards before harvest involves sampling a fixed number of trees 
(containing immature fruit) from a block, counting the total number of 
fruits in those trees, and using it to extrapolate for the whole block 
considering the fruit drops for that season. Fruit drop is nature’s way to 
prevent overproducing. However, it could also be due to stress 

experienced by the trees because of the scarcity of water, lack of nitro
gen in the soil, disease stress (e.g., Huanglongbing), or dry windy 
weather [8]. This manual yield prediction method is highly error-prone 
because of the errors involved in extrapolation, random sampling of 
trees, and the use of a standard fruit drop index or percentage issued by 
the Florida state (e.g., fruit loss adjustment standard). 

Advances in technology and the availability of low-cost UAVs and 
sensing systems over the past fifteen years have opened up new avenues 
for researchers to utilize machine vision systems (e.g., spectral and 
thermal imaging) for high-throughput phenotyping and yield estimation 
in specialty crops. Maimaitijiang et al., [23] found that instead of using 
single sensors for determining features, a combination of canopy spec
tral information and thermal information from multiple sensors resulted 
in better soybean biochemical parameter estimations. Researchers have 
also shown that combining thermal canopy information with spectral 
and structural information improved yield prediction under different 
weather conditions and development stages of spring barley [31]. 
Different vegetation indices derived from satellite imagery have been 
used by researchers to develop a yield prediction model for corn. They 
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were compared with machine learning (ML) techniques such as support 
vector machines (SVM) and multiple regression (MR). It was determined 
that random forest regression was the most accurate approach for pre
dicting the in-field variability [19]. Kayad et al. [19] also concluded that 
the ML models produced more robust results than the vegetation indices 
approach when applied to cornfields. Costa et al. [14] also developed 
ML based models for predicting grain yield and related traits in wheat 
with high accuracy by utilizing hyperspectral imaging. Deep learning 
(DL) has gained much popularity in the past decade with applications in 
data fusion [26], remote sensing for multi-modal multi-temporal data 
fusion [9], and countless other applications [13,27,28]. However, the 
application of DL for yield prediction has been relatively recent. Kuwata 
& Shibasaki [22] developed deep neural networks (DNNs) to estimate 
county-level corn yield for the entire area of the United States. It was 
determined that neural network-trained estimation methods performed 
feature extraction better than an existing ML algorithm. Wang et al. [36] 
utilized DL techniques to predict soybean crop yields in Argentina and 
subsequently used the pre-trained model to predict Brazil soybean har
vests using transfer learning. DNNs when applied on a dataset contain
ing the genotype and yield performance of maize hybrids planted 
between 2008-2016 to predict the yield for 2017 resulted in high pre
diction accuracy (12% RMSE as compared to the average yield) [20]. 

In-field machine vision and tree spectral index correlation deter
mined from satellite imagery can also estimate the preharvest fruit load 
index of mango orchards [6]. Using big-data mining methodologies for 
yield prediction has gained popularity for crops such as sugarcane. 
Everingham et al., [18] used the random forest regression method to 
explain annual variation in regional sugarcane yields using seasonal 
climate prediction indices, observed rainfall, minimum and maximum 
temperatures and radiation as input to the classifier model. Despite the 
increased use of machine vision in agriculture for yield mapping, re
searchers stress the need for a robust algorithm with a correction factor 
based on tree health, tree species, canopy size, and tree vigor [34]. A 
combination of a correction factor based on the ratio of the human count 
of fruits in images of two sides of sample trees and a hand harvest count 
of all fruits, and fruit detection using a customized object detection 
algorithm-YOLO, has also been employed by researchers to estimate 
yield in mangoes [21]. However, using a single correction factor based 
on a small number of sample trees resulted in a high total fruit estima
tion error (17%) in some cases. Sarron et al. [33] utilized tree structure 
estimates and load index as input variables for tree production estima
tions and obtained a good correlation (R2 greater than 0.77) when 
evaluated with measured production on 60 trees. Diennevan et al. [17] 
used UAV RGB image-based models to predict yield of coffee trees using 
ML algorithms. The UAV data along with the actual yield values were 
used to determine the most important features and months for yield 
prediction. 

Airborne hyperspectral imagery has been used to estimate canopy 
features used as input variables for developing yield prediction models 
for citrus [38,39]. Ye et al. [38] combined two-band vegetation index 
(TBVI) and canopy size to obtain a model that explained 76.38% of the 
yield variability among individual citrus trees. But the high dimen
sionality of the hyperspectral data added to the cost and complexity of 
the process, limiting the use of the model. Ye et al. [39] also showed that 
using partial least squares (PLS) models to predict yield based on canopy 
features was a better alternative to using vegetation indices based on the 
spectral bands (red, green, blue, and near infrared-NIR). Zaman et al. 
[40] found a significant correlation (R2) between ultrasonically-sensed 
tree sizes and fruit yield. They attributed the lower correlation be
tween actual and predicted yield (R2 = 0.42) to poor flowering and fruit 
drop which do not affect the canopy volume. Machine learning tech
niques have been implemented in combination with a regression tree 
model to classify orchards and identify the variables affecting the pro
duction by each tree to predict citrus orchard production [16]. Diaz et al. 
(2017) found that tree age was the most informative variable affecting 
tree production followed by between and within rows distance. Fruit 

count estimation has been done using RGB, NIR, and depth images for 
immature citrus fruits using machine vision techniques such as circular 
object detection and classification [12]. Wang et al. [36] detected and 
counted immature citrus fruits on images based on local binary patterns 
(LBP) feature using illumination-normalized images. Zhang et al. [41] 
developed an image segmentation technique to detect and count citrus 
fruit on images and compare this technique with human vision-based 
counting obtaining a R2 of 0.98 and a detection accuracy of 91.8%. 
However, these studies focused only on the image processing side of fruit 
detection and counting, without providing any actual yield prediction 
numbers for individual trees and blocks. To our knowledge, no other 
work has combined UAV and ground-based imaging to generate accu
rate yield prediction models (and not just fruit counts from images), at a 
tree level, utilizing machine learning for citrus. 

This study developed three ML-based models for citrus yield pre
diction (at a tree level): (i) Model-1 utilized UAV imagery; (ii) Model-2 
utilized UAV imagery, ground-based fruit detection and counts from 
images taken from one side of the tree; and (iii) Model-3 utilized UAV 
imagery, ground-based fruit detection and counts from images taken 
from two sides of the tree. Four ML algorithms were used to generate the 
models: gradient boosting regression (GBR), random forest regression 
(RFR), linear regression (LR), and partial least squares regression 
(PLSR). By comparing and evaluating these three models, the best model 
was selected, which can predict individual tree yield (and yield at a 
block level) with minimum error and reduce the yield estimation errors 
associated with the manual sampling and estimation method, which is 
the currently used method in Florida citrus industry. 

2. Materials and methods 

2.1. Experimental design 

In this study, three yield prediction models, each using different data 
structures, were generated and compared. The first model (Model-1) 
was based on spectral data collected from UAV multispectral imaging. 
The multispectral and RGB data captured from a UAV were then pro
cessed and stitched in Pix4d (Pix4D, Lausanne, Switzerland) to create an 
orthomosaic uploaded to a novel cloud-based technology, Agroview [2, 
3], to generate individual tree structural information like tree height, 
canopy area, and tree health/stress data. For the second and third yield 
prediction models (Model-2 and Model-3), a hand-held camera (Canon 
EOS 5D, Tokyo, Japan) was used to take images of the trees from the east 
and west side of the rows. A deep learning-based object detection al
gorithm, YOLO version 3 [30], was used on these images to detect and 
count fruit, which was used in addition to the UAV and tree structural 
data as input parameters for the machine learning algorithms to 
generate Model-2 and Model-3. Model-2 used fruit count from images 
captured from one side of the tree, while Model-3 used fruit count from 
images taken from both sides (front and back of tree) of the tree. The 
yield prediction, at a tree level, from all three models were compared to 
the actual harvest count of 48 trees (collected in the first quarter of 
2020, a week after the spectral and image data collection). The accuracy 
of the yield estimation per tree was evaluated for all three models using 
the mean absolute percentage error (MAPE) and the best machine 
learning algorithm was selected. Fig. 1 presents the workflow of this 
study. 

2.2. Study site 

An area on a citrus farm (Lat 26◦ 27’47” N, Long 81◦26’35” W) 
within the University of Florida’s Southwest Florida Research and Ed
ucation Center premises was chosen as the study site. The selected block 
had more than 100 trees (Hamlin, Citrus Sinensis), mostly healthy, with 
varying canopy area and fruit density, and 48 trees out of these 100 were 
chosen for this study. All data (e.g., UAV, ground-taken images for object 
detection, and harvest counts) were collected in the third and fourth 
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week of March 2020. 

2.3. UAV imagery acquisition 

A DJI Phantom 4 Pro+ (Shenzen, China) drone was flown at 122 m 
(400 ft) for image acquisition in the third week of March 2020 around 
noon time, when the intensity of sunlight was moderate. An RGB camera 
(Phantom 4 Pro+ camera, DJI, WA) attached to the Phantom Pro+ and a 
multispectral camera (RedEdge-M, Micasense, WA, USA) were used to 
obtain the required data. For the RGB camera, a front overlap of 80% 
and a side overlap of 70% were set on the Pix4DMapper app. For the 
multispectral camera, an overlap of 80% was set for both front and side 
overlap. 

2.4. UAV data processing 

Data processing was done using the Pix4DMapper software (Pix4D S. 
A., Prilly, Switzerland). The collected UAV images were stitched 
together to get the aerial maps for each of the following bands: red (R), 
green (G), blue (B), red edge, and near-infrared (NIR). The tree height, 
tree health, and canopy area were extracted from the stitched images 
using Agroview [3]. Agroview is a cloud and AI-based application used 
for surveying and assessing agricultural fields by processing, analyzing, 
and visualizing the data cost-effectively collected from UAVs. For 
example, Agroview was used as a high-throughput phenotyping tool for 

the evaluation of citrus rootstock varieties in large-scale experiments 
[2]. Agroview is able to estimate the tree height and canopy area with an 
accuracy of 95.53% and 86.12%, respectively [3]. 

2.5. Ground fruit detection and count 

Two images were taken per tree, from west and east views (Fig. 3), 
using a Canon EOS 5D (Tokyo, Japan) camera, in the third week of 
March 2020. The images were taken between 12 PM – 2 PM and between 
5 PM - 6 PM to prevent direct glare from the sun. The intensity of sun
light was higher for the images taken at noon than those taken at 5 PM. 
The front side images were taken standing in the center of the block 
between two rows of trees (3.8 m from the center of the trees), while the 
backside images were taken from the adjacent block of trees (5.4 m from 
the center of the trees of the current block). These images were sepa
rated into training and testing blocks (80/20 split). A labeling software 
called LabelMe [32] was used for annotation of the citrus fruits in the 
images. Post-annotation, the images were used for training the ML 
models. A weight file, trained previously on immature citrus fruits, was 
used for training [37]. The state-of-the-art object detection algorithm – 
YOLO (version 3) was used for fruit detection (e.g., Fig. 4). The fruit 
detection using YOLO v3 was carried out for both sides of the tree. This 
number (fruit counts per tree) was used as an input parameter for the 
yield prediction models Model-2 and Model-3. All the 48 trees were 
manually harvested and the fruit count for each tree was recorded. 

Fig. 1. Workflow of the study.  
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2.6. Machine learning implementation and models 

2.6.1. k-fold cross-validation 
The k-fold cross-validation is a popular data resampling method 

implemented on machine learning models to get a less biased model 
estimation. In k-fold cross-validation, a given data sample is split into ‘k’ 
number of groups. This allows each sample to be in the hold-out set 1 
time and to be used to train the model k-1 times [11]. k=5 and k=10 are 
the most commonly chosen values for k-fold cross-validation, and the 
former was selected for our model. 

2.6.2. Regression models 
The gradient boosting regression (GBR), random forest regression 

(RFR), linear regression (LR), and partial least squares regression (PLSR) 
methods were used to generate yield prediction models for the dataset. 
The GBR produces a predictive model from an ensemble of weak pre
dictive models [35]. It involves three elements: a loss function that is 

optimized, a weak learner which is generally a decision tree constructed 
in a ‘greedy’ manner, and finally, an additive model, which uses a 
gradient descent procedure to minimize the losses when adding trees 
[10]. Not only does GBR provide great predictive accuracy, but it also 
works well without any data pre-processing and missing data. The RFR is 
a robust algorithm involving an ensemble of decision trees constructed 
randomly. Each tree makes its prediction, averaged out to produce a 
single result [25]. The LR is one of the simplest and most popular 
regression models used in statistical modeling. Its popularity stems from 
the fact that it can be used satisfactorily for small sample sizes and the 
results obtained from linear regression are easy to interpret. Linear 
regression captures the dependencies between the inputs and outputs 
through an estimated linear function defined by the predicted weights 
[29]. The PLSR is used to model a response variable when many pre
dictor variables are involved. It is handy when the predictors are highly 
collinear or when the number of predictors exceeds the number of ob
servations. In such cases, it is better than the ordinary least-squares 
method, which either fails or generates coefficients with high standard 
errors [24]. 

A script including all four algorithms was run using ‘harvest count’ as 
the objective function (the value that the ML algorithm is trying to es
timate). Model-1 used multispectral data and tree structural data as its 
input parameters. Model-2 used fruit count from one side of the tree and 
Model-3 used fruit count from both sides of the tree in addition to the 
input parameters of Model-1 (Table 1). 

2.6.3. Evaluation metrics 
The performance of the object (fruit) detection algorithm YOLO v3 

was evaluated using precision, recall, and F1 score. Precision and recall 
are calculated using True Positives (TP), False Positives (FP), and False 
Negatives (FN). For the detection of citrus fruits on images, FN repre
sents the number of times the algorithm missed detecting a fruit in a 
particular image, FP represents the number of times the algorithm 
detected non-fruit as fruits, and TP is the number of times the algorithm 
correctly detected a fruit. 

Precision =
True Positive

True Positive + False Positive
(1)  

Recall =
True Positive

TruePositive + FalseNegative
(2)  

F1 score = 2 ∗
Precision ∗ Recall
Precision + Recall

(3) 

The mean absolute percentage error was used as an evaluation 
metric for the ML yield prediction models. It is a commonly used key 
performance index (KPI). Essentially, it gives an average of the per
centage error. It is given by Eq. 4. 

MAPE =
1
n

∑
⃒
⃒
⃒
⃒
Y − Ỹ

Y

⃒
⃒
⃒
⃒ (4)  

where, Y= actual value of the target parameter (in this case, it is the 
actual harvest count of the tree), Ỹ= value of the target parameter 
estimated from the ML algorithms, n= sample size, (| |) = absolute 
value, and 

∑
= summation operator. 

3. Results 

3.1. Accuracy of the fruit detection model 

For the fruit detection on images, YOLO v3 gave a high overall 
precision of 0.96, indicating that the algorithm is highly accurate when 
it detects an object as citrus fruit. An overall recall of 0.83 and an 
average F1 score of 0.88 suggests that the trained detection model is 
quite robust (Table 2). 

Fig. 2. UAV image of the study site with the blue border showing the experi
mental trees. 
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3.2. Machine Learning models applied for yield estimation 

The three models developed in this study were compared using the 
average MAPE for each of the four ML algorithms used. Boxplots were 
created for each model. Table 3 presents the complete dataset for 48 
trees. The first column shows the yield per tree which is the number of 
fruits harvested from each tree. The columns 2-6 show the multispectral 
data of each tree obtained from UAV flights. Columns 7- 9 show the tree 
structural parameters (tree height and canopy area) along with a health 
index (acquired by Agroview). The machine vision count columns pre
sent the fruit count from the front side and both sides of the tree. The 
yield estimated by Model-1, Model-2, and Model-3 for each of the trees is 
presented in columns 12-14. 

Model-1 
Model-1, where the UAV-based data (spectral data and tree struc

tural parameters) were the only inputs to the ML algorithms, was eval
uated using average MAPE. The average MAPE for each algorithm for 
each k-fold validation is presented in Table 4. 

For Model-1, the average MAPE for all the ML algorithms was above 
35%. The LR gave the best yield estimate (MAPE of 35.59 %; Table 4) 

Fig. 3. A citrus tree row with the arrows showing the side of the tree considered front and backside for capturing ground-based images.  

Fig. 4. a) Original ground-based RGB image taken using a Canon camera. b) Fruit detection using YOLO applied on the same image.  

Table 1 
Description of the objective function and input data for each model   

Model-1 Model-2 Model-3 

Objective 
function 

Harvest count Harvest count Harvest count 

Input parameters Multispectral data 
Tree structural 
data 

Multispectral data 
Tree structural 
data 
1-sided fruit count 

Multispectral data 
Tree structural 
data 
2-sided fruit count  

Table 2 
Precision, recall, and F1 score of the object detection algorithm for the tree 
images.   

Row-1 Row-2 Overall 

Precision 0.96 0.96 0.96 
Recall 0.80 0.86 0.83 
F1 score 0.87 0.90 0.88  
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Table 3 
Complete dataset with UAV data, machine vision-based fruit count, yield estimate, missing fruit, and absolute percentage error of all three models.  

Harvest 
Count 

Multispectral Data Tree Structural 
Parameters  

Machine Vision Count Yield Estimate Missing fruit Absolute Percentage Error 

Blue Green Red R Edge NIR Height Area Health 1-side 
Count 

2-side 
Count 

Model- 
1 

Model- 
2 

Model- 
3 

Model- 
1 

Model- 
2 

Model- 
3 

Model- 
1 

Model- 
2 

Model- 
3 

228 35.23 61.74 36.44 99.44 135.19 8.3 153.8 0.9 72 155 316.92 275.93 272.11 -89 -48 -44 39 21.02 19.35 
204 42.79 69.07 43.35 100.64 128.52 8.2 116.2 0.92 57 123 208.68 163.48 156.45 -5 41 48 2.29 19.86 23.31 
195 42.65 72.69 42.79 103.67 131.76 8.3 121.3 0.89 60 163 219.67 172.28 213.78 -25 23 -19 12.65 11.65 9.63 
160 43.7 74.54 47.05 102.18 126.05 9.2 116.2 0.94 111 222 294.56 314.53 307.25 -135 -155 -147 84.1 96.58 92.03 
61 47.33 81.33 47.88 114.7 138.18 9.5 86.8 0.86 36 84 76.32 41.06 47.88 -15 20 13 25.11 32.69 21.51 
442 34.34 66.85 37.22 101.77 119.85 9.3 171 0.93 122 258 424.82 430.59 429.14 17 11 13 3.89 2.58 2.91 
412 34.38 69.19 37.88 101.88 119.17 9.8 148.2 0.91 100 243 342.02 313.88 348.33 70 98 64 16.99 23.82 15.45 
362 35.41 69.87 37.85 104.2 126.57 8.7 126.6 0.93 115 235 261.46 312.97 308.62 101 49 53 27.77 13.54 14.75 
190 34.49 65.27 36.12 95.35 118.43 8.4 131.9 0.92 61 169 261.62 201.45 238.66 -72 -11 -49 37.69 6.03 25.61 
387 34.78 69.02 36.26 105.15 116.82 9.1 121.3 0.9 128 225 193.24 302.76 263.99 194 84 123 50.07 21.77 31.79 
87 36.88 75.42 35.34 113.04 139.68 10.2 101.1 0.93 41 139 253.92 171.47 213.71 -167 -84 -127 191.86 97.09 145.64 
286 33.24 66.31 35.81 105.28 127.49 8.2 116.2 0.9 82 176 208.16 211.76 211.58 78 74 74 27.22 25.96 26.02 
176 34.19 67.37 36.26 106.66 131.45 8.8 121.3 0.9 86 192 227.12 237.72 245.65 -51 -62 -70 29.05 35.07 39.57 
216 32.15 63.77 34.64 99.8 117.69 11.3 91.5 0.91 86 194 114.44 146.99 165.99 102 69 50 47.02 31.95 23.15 
126 31.14 62.24 33.95 104.21 130.05 10.4 106.1 0.92 56 119 225.65 162.34 149.72 -100 -36 -24 79.09 28.84 18.83 
303 29.87 58.33 31.83 98.22 124.78 8.2 142.7 0.92 102 231 266.57 307.21 317.63 36 -4 -15 12.02 1.39 4.83 
92 33.2 69.63 35.93 101.71 132.86 11.9 101.1 0.9 69 167 204.22 157.8 177.69 -112 -66 -86 121.98 71.52 93.14 
195 30.59 61.78 35.08 94.71 124.74 10.5 101.1 0.91 100 202 200.13 203.34 197.9 -5 -8 -3 2.63 4.28 1.49 
170 31.8 64.62 34.2 101.77 141.12 12.6 96.3 0.9 74 146 170.39 169.19 150.85 0 1 19 0.23 0.48 11.26 
190 34.62 69.46 38.05 107.69 125.84 11.5 91.5 0.91 91 168 190.07 187.77 162.76 0 2 27 0.04 1.17 14.34 
250 30.5 64.21 33.19 96.61 132.92 9 126.6 0.87 105 194 238.85 261.35 230.1 11 -11 20 4.46 4.54 7.96 
124 33.39 71.79 37.78 114.1 132.14 8.3 91.5 0.88 72 148 173.3 169.43 170.85 -49 -45 -47 39.76 36.64 37.78 
288 46.04 67.33 50.08 99.65 127.61 8.6 131.9 0.92 98 219 294.08 287.91 308.06 -6 0 -20 2.11 0.03 6.97 
280 53.43 76.29 59.82 109.8 131.78 8.2 111.1 0.91 69 124 207.47 165.35 162.96 73 115 117 25.9 40.95 41.8 
262 42.92 73.55 44.57 108.45 147.68 8.7 116.2 0.94 78 167 223.86 235.09 237.96 38 27 24 14.56 10.27 9.18 
439 41.59 76.73 43.56 108.88 144.32 10.5 142.7 0.91 106 227 289.23 314.23 331.69 150 125 107 34.12 28.42 24.44 
44 41.25 63.55 42.16 88.9 114.66 8.7 82.2 0.89 34 68 83.47 34.91 6.09 -39 9 38 89.7 20.66 86.16 
336 33.42 61.35 34.59 93.15 122.6 10.6 142.7 0.95 88 194 326.21 302.84 302.54 10 33 33 2.91 9.87 9.96 
320 36.5 70.29 38.78 105.11 126.36 9.8 142.7 0.89 110 205 323.25 324.49 304.34 -3 -4 16 1.02 1.4 4.89 
274 51.34 75.06 54.82 100.46 115.09 11.5 142.7 0.88 126 225 359.8 369.24 337.43 -86 -95 -63 31.31 34.76 23.15 
368 45.22 73.2 46.52 102.7 129.46 11.8 153.8 0.89 135 250 374.19 419.06 391.65 -6 -51 -24 1.68 13.88 6.43 
211 36.47 68.61 37.41 107.71 141.71 8.1 106.1 0.92 66 135 169.65 183.41 174.86 41 28 36 19.6 13.08 17.13 
268 46.22 70.15 48 95.64 110.13 8.8 131.9 0.93 99 193 286.97 301.07 283.75 -19 -33 -16 7.08 12.34 5.88 
409 34.51 67.87 35.3 108 135.76 10.1 131.9 0.93 122 252 251.8 361.24 350.97 157 48 58 38.44 11.68 14.19 
286 31.19 71.44 33.95 121.48 146.07 8.7 121.3 0.94 103 208 341.21 369.25 359.75 -55 -83 -74 19.3 29.11 25.79 
321 37.03 69.51 42.14 97.4 111.53 8.2 111.1 0.86 150 353 161.54 284.03 372.27 159 37 -51 49.68 11.52 15.97 
120 44.25 74.49 47.99 101.79 126.86 8.1 73.2 0.86 89 159 66.16 109.76 80.27 54 10 40 44.87 8.53 33.11 
200 34.8 71.15 39.39 113.7 135.13 8.2 137.2 0.89 86 170 318.44 294.6 286.03 -118 -95 -86 59.22 47.3 43.01 
147 31.7 65.22 34.03 105.17 136.12 8.1 126.6 0.89 48 117 257.96 175.21 177.84 -111 -28 -31 75.48 19.19 20.98 
340 31.42 67.34 33.85 107.45 142.53 8.8 121.3 0.84 118 227 148.75 255 239.37 191 85 101 56.25 25 29.6 
214 32.6 62.48 35.24 91.24 119.34 9.4 121.3 0.91 102 231 237.29 245.69 265.65 -23 -32 -52 10.88 14.81 24.14 
212 31.99 69.75 35.01 104.82 130.96 13.2 126.6 0.9 85 166 319.09 270.76 253.21 -107 -59 -41 50.51 27.72 19.44 
190 31.95 67.92 35.49 96.3 116.61 8.1 148.2 0.84 75 156 320.48 234.32 225.33 -130 -44 -35 68.67 23.33 18.59 
148 32.93 71.79 36.24 107.85 137.41 8.1 111.1 0.87 49 130 178.12 129.17 145.03 -30 19 3 20.35 12.72 2.01 
266 35.03 73.63 37.79 110.4 140.7 8.1 148.2 0.92 113 181 365.54 392.28 323.16 -100 -126 -57 37.42 47.47 21.49 
308 32.36 70.04 36.11 107.82 141.13 11.3 121.3 0.91 80 187 282.66 240.4 257.94 25 68 50 8.23 21.95 16.25 
324 34.07 74.68 37.46 103.27 156.4 8.2 121.3 0.93 80 228 185.46 241.7 295.8 139 82 28 42.76 25.4 8.7                                          
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out of all the ML algorithms, while the RFR gave the worst estimate 
(MAPE of 41.47%; Table 4). Even though LR gave the lowest MAPE, the 
MAPE of the PLS algorithm (MAPE of 35.84%; Table 4) was not far off. 
This means that depending on the data, either of these algorithms could 
have given good prediction results. 

The box and whisker plot (Fig. 5) shows the error range in the yield 
estimate for each ML algorithm. The GBR is top skewed and had the 
lowest variability in predicting yield, with a median of 25.03% and an 
interquartile range of 28%. The interquartile range was chosen as a 
measure of the spread of data instead of standard deviation because the 
small dataset did not display a normal distribution. The LR algorithm 
had considerable variability, as seen from the boxplot (Fig. 5), with an 
interquartile range of 38.79%. 

Model-2 
For Model-2, UAV data from Model-1 (spectral data and tree struc

tural parameters) and the fruit count from images taken from the front 
side of the trees were given as the input to the ML algorithms. The model 
was evaluated using the average MAPE to determine the best algorithm. 
The average MAPE for each algorithm for each k-fold validation is 
presented in Table 5. 

For Model-2, the best yield estimate was obtained using the PLSR 
algorithm (MAPE of 23.45%; Table 5), while the GBR gave the worst 
estimate (MAPE of 31.72%; Table 5). Adding the fruit count from the 
object detection algorithm as an input parameter to Model-1 resulted in 
better yield estimates in Model-2, with the average MAPE of the best 
algorithm improving by 34.11% (35.59% to 23.45%). 

The box and whisker plot for Model-2 (Fig. 6) shows the error range 
in the yield estimate for each ML algorithm. A comparison of the box
plots of Model-1 and Model-2 shows the improvement in yield estima
tion in terms of the reduction in the spread of the estimates. The PLSR 
had the lowest variability in predicting yield, with a median of 20.66% 
and an interquartile range of 18.08%. The RFR algorithm had the 
highest variability, with an interquartile range of 24.29%. 

Model-3 
For Model-3, UAV data from Model-1 (spectral data and the tree 

structural parameters) and the fruit count from images taken from both 
sides of the trees were given as the input to the ML algorithms. Like the 
previous models, evaluation was done using average MAPE to determine 
the best algorithm. The average MAPE for each algorithm for each of the 
k-fold validation for Model-3 is presented in Table 6. For Model-3, like 
Model-2, the PLSR algorithm gave the best results (MAPE of 25.72%; 
Table 6), while the RFR performed the worst in terms of prediction ac
curacy (MAPE of 37.78%; Table 6). 

The box and whisker plot for Model-3 (Fig. 7) shows the error range 
in the yield estimate for each ML algorithm. A comparison of all the 
boxplots reveal that Model-2 and Model-3 perform better than Model-1 
in terms of the reduction in spread of yield estimates. For Model-3, the 
LR algorithm had the lowest variability in predicting yield, with a me
dian of 30.31%, and an interquartile range of 15.11%. The RFR algo
rithm had the highest variability with an interquartile range of 28.27%. 

Model Comparison 
Even though Model-3 included the fruit count from images taken 

Table 4 
Mean average percentage error of each machine learning algorithm for Model-1. 
The bold numbers represent the lowest MAPE.   

Yield estimate MAPE (%) 
ML Algorithm k = 1 k = 2 k = 3 k = 4 k = 5 Average MAPE 

PLSR 46.81 30.57 24.11 50.08 27.62 35.84 
RFR 86.53 35.72 26.48 29.10 29.51 41.47 
LR 31.70 33.72 28.88 50.13 33.51 35.59 
GBR 72.28 34.22 22.70 46.36 35.55 41.12  

Fig. 5. Boxplot of MAPE for Model-1.  

Table 5 
Mean average percentage error of each machine learning algorithm for Model-2. 
The bold number represents the lowest MAPE.   

Yield estimate MAPE (%) 
ML Algorithm k = 1 k = 2 k = 3 k = 4 k = 5 Average MAPE 

PLSR 18.44 25.98 24.12 35.76 12.97 23.45 
RFR 54.97 28.23 23.96 30.48 18.79 31.29 
LR 19.16 31.12 29.69 35.02 16.26 26.25 
GBR 60.01 29.34 22.16 29.40 17.67 31.72  
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from both sides of the tree in the object detection algorithm as an input 
parameter as opposed to just the one-sided image in Model-2, it was 
found that the best ML algorithm of Model-3 has a higher MAPE 
(25.72%) as compared to the best ML algorithm of Model-2 (23.45%). 

All the algorithms, when applied on Model-2, gave a MAPE less than 
32%, while for Model-3, except for PLS, all other algorithms gave a 
MAPE of more than 30% indicating the fact that Model-2 gave the 
overall lowest error in yield prediction. The two best-performing algo
rithms for both these models, PLS and LR, had a lower variability in the 
case of Model-3 as compared to Model-2, while the two worst- 
performing models, GBR and RFR, had much greater variability in 
Model-3, as indicated by their boxplots (Figs. 6 and 7). 

The lower MAPE of Model-2 and Model-3 shows that they are more 
accurate than Model-1 in terms of yield prediction (at the tree level). 
Tests for statistical significance performed on these three models using 
paired t-tests suggested a significant difference between Model-1 and 
Model-2 (p-value = 0.0013), Model-1 and Model-3 (p-value = 0.0010), 
but no significant difference between Model-2 and Model-3 (p-value =
0.29). 

4. Discussion 

4.1. Accuracy of the fruit detection model 

The fruit detection using YOLO v3 gave a high precision of 0.96, a 

recall of 0.83, and an average F1 score of 0.88, suggesting a good fruit 
detection model. Since the object detection model involved transfer 
learning using a weight file previously trained on immature citrus fruits, 
the detection accuracy was high. This could be further improved with 
more images of mature citrus fruits taken from multiple farms at 
different times of the day. However, these models still would not be able 
to accurately detect all the fruits because of the occlusion of the fruits by 
leaves and branches. The algorithm uses multiple parameters such as 
color, contour, texture, and other features for detection. Many variables 
such as the camera specifications, time of the image taken, and shadows 
affect the quality of the image and overall detection. However, the main 
objective of this model is not to count all fruits in a tree, rather than to 
get an estimate of fruit count to be used for the yield prediction models 
presented in this study. 

4.2. Machine learning models applied for yield estimation 

Model-1 
All the yield prediction algorithms had multiple outliers, with an 

error estimate for some outliers of over 100%. Closer inspection of the 
data revealed that those outliers belonged to smaller trees with less than 
100 fruits (fruit counts of 61, 87, 92, and 44). These trees had a height 
comparable to the larger trees and a canopy area proportional to their 
harvest output. This variability in tree size and fruit load could be 
because of the different rootstock varieties used in this field. However, 
the spectral values were similar in range to that of a larger tree (trees 
with medium (100< fruit count <350) or large harvest numbers 
(>350)). This indicates that yield estimation based only on the spectral 
data is unreliable for smaller trees (fruit count less than 100). Hence, a 
model that includes fruit counts as an input parameter could theoreti
cally provide a better yield estimation than Model-1. For trees with 
larger harvest outputs, Model-1 performed better than Model-2 in only 2 
out of 7 (28.5%) cases (Table 8). The relatively poor performance of 
Model-1 compared to Model-2 and Model-3 could be because of the 
effect of the weather conditions, the intensity of sunlight, and the var
iations in brightness during the process of UAV image acquisition which 

Fig. 6. Boxplot of MAPE for Model-2.  

Table 6 
Mean average percentage error of each machine learning algorithm for Model-3. 
The bold number represents the lowest MAPE.   

Yield estimate MAPE (%) 
ML Algorithm k = 1 k = 2 k = 3 k = 4 k = 5 Average MAPE 

PLSR 26.99 25.42 23.36 40.26 12.55 25.72 
RFR 65.90 28.65 34.01 39.39 20.93 37.78 
LR 31.54 27.58 30.12 45.77 16.55 30.31 
GBR 70.06 29.43 25.21 28.16 13.98 33.37  
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could have affected the multispectral values. 
Model-2 
The yield estimate for each ML algorithm used in Model-2 was better 

(Fig. 6) than in Model-1. Overall, the yield estimate for almost all the 
trees improved as the variability in yield estimate decreased and the 
median value for all the algorithms was reduced to less than 23%. There 
was also a remarkable drop in the mean value of the yield estimate for all 
the algorithms, with every ML algorithm giving under 32% average 
MAPE. 

For trees with a yield per tree (harvest) count of fewer than 100 
fruits, Model-2 gave a far better yield prediction than Model-1 in almost 
every case (Table 7). Compared to Model-1, Model-2 showed a reduction 
in error of at least 40% in three out of four cases (75%) of smaller trees 
(Table 7). Model-2 also had the best root mean square error (RMSE) 
(54.64) of the predictions for smaller trees as compared to Model-1 
(102.77) and Model-3 (79.07). For trees with higher fruit load 
(greater than 350 fruits per tree), Model-2 still performed better in 5 out 
of 7 cases (71.4%) (Table 8). This showed that including fruit count, 
even from a single side of the tree, in the model improved the yield 
estimation for both the smaller and larger trees. 

Model-3 
Model-3 performed better than Model-1 and similar or worse than 

Model-2 for all four algorithms. This could be because of the double 
counting of fruits when using the fruit count of images from both sides of 
a tree. Double counting results in overestimating fruits (higher “2-side 
count” in Table 1), especially when the tree leaf density is low. For 

smaller trees, Model-3 performed better than Model-1 in all the cases, as 
is evident from the lower APE values (Table 7). Even in the case of trees 
with larger harvest output, Model-3 gave lower APE in 6 out of 7 
(85.7%) cases as compared to Model-1 and in 3 out of 7 (42.8%) cases as 
compared to Model-2 (Table 8). This shows that using the fruit count 
from one side (Model-2) is a better alternative to using fruit count from 
images taken from both sides of the tree. 

Model Comparison 
The comparison of models based on MAPE suggests the use of Model- 

2 for a more accurate yield estimation at a tree level. Model-2 gave the 
lowest MAPE (MAPE of 23.45%) compared to the other two models. The 
statistical significance tests showed a significant difference between the 
yield prediction errors of Model-1 and Model-2, and Model-1 and Model- 
3. Between Model-2 and Model-3, even though the difference in MAPE 
was around 2%, the difference was not statistically significant. This in
dicates that using either of Model-2 and Model-3 would be a better 
choice than Model-1. This conclusion works in favor of Model-2 being 
used as a yield estimation model over Model-3, because Model-2 re
quires less input data; Model-2 would be less taxing in terms of the time 
and effort required to capture images from only one side of the tree. It 
would also be more scalable when used in large commercial fields, 
where a camera mounted on a farm vehicle could be used for capturing a 
video of one side of the citrus trees while traversing through the rows. 

Fig. 7. Boxplot of MAPE for Model-3.  

Table 7 
Absolute percentage error (APE) of each Model for trees with a harvest count of 
less than 100 fruits.   

Harvest Count 
Absolute Percentage Error 
Model-1 Model -2 Model-3 

61 25.11 32.69 21.51 
87 191.86 97.09 145.64 
92 131.98 71.52 93.14 
44 89.7 20.66 86.16  

Table 8 
Absolute percentage error (APE) of each Model for trees with a harvest count of 
more than 350 fruits.  

Harvest Count Absolute Percentage Error 
Model-1 Model -2 Model-3 

442 3.89 2.58 2.91 
412 16.99 23.82 15.45 
362 27.77 13.54 14.75 
387 50.07 21.77 31.79 
439 34.12 28.42 24.44 
368 1.68 13.88 6.43 
409 38.44 11.68 14.19  
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The captured video could then be used for extracting images for fruit 
count from one side and subsequently serve as an input to Model-2. 

The UAV imagery was important in extracting the spectral values 
and the structural parameters (through Agroview) of trees. Model-2 and 
Model-3 without any UAV data showed a higher variance in data (data 
not presenting in this paper), suggesting that using both UAV and 
ground-based data was more reliable than just using ground-based data. 
Aerial data can be captured through a UAV much faster for a larger area 
of the field. The bottleneck might arise while capturing ground data 
through a camera mounted on a farm vehicle driving slowly between the 
rows. This could be problematic if the rows of trees are too close and 
there are spatial restrictions on driving a farm vehicle to capture the 
entire canopy of the tree from one side. 

At a block level (experimental area of 48 citrus trees), all three 
models predicted yield with more than 99% accuracy. However, a large- 
scale experiment, with a high number of trees, is needed to better 
evaluate the performance of the models. In large-scale experiments (e.g., 
5,000 trees total), it is very difficult to collect yield data for each indi
vidual tree, but the comparison of the model at a block (e.g., specific 
area in a farm) level is possible. The performance of the models should 
be also tested in different locations and during different dates before 
harvest. 

5. Conclusion 

Existing yield prediction methods either use UAVs to predict yield 
from canopy parameters and spectral imaging, or use ground images 
only for fruit counting without estimating actual yield. This study 
compares the yield prediction (at a tree level) from three different ML- 
based models. The first model (Model-1) includes data collected from 
UAV imagery. The second and third models utilize UAV imaging along 
with fruit count derived from a deep learning algorithm applied to im
ages taken from one side (Model-2) and both sides (Model-3) of the tree. 
The average MAPE calculation revealed that the models that included 
the fruit count performed better than the model that just used the UAV 
data. Model-2, which used fruit count from only one side of the tree, 
performed similarly with Model-3, which included fruit count from both 
sides of the tree. Model-2 was selected as a desired model because of the 
less input data required for yield prediction (compared to Model-3). In 
general, the results demonstrate that the developed Model-2 could be 
used to predict the fruit count in orange orchards in Florida. 

The selected model, Model-2, gave a MAPE of 23.45%. Model-2 also 
estimated the yield better for trees with the smallest and largest fruit 
load (harvest count less than 100 and more than 350 fruits, respectively) 
as compared to Model-1 and Model-3. These results support the devel
opment of models using UAV multispectral imaging and fruit count via 
image-based fruit detection (images taken from the ground). A model 
including UAV collected spectral data and fruit count information would 
help reduce the overall error in the traditional yield estimation process, 
which is manual as of now in many citrus farms in Florida, and ulti
mately reduce the financial losses of growers. Future works will involve 
improving the detection accuracy of the fruit detection system by using 
more advanced robust networks. These models would use images from 
immature fruits for training and validation and perform prediction 4-6 
months in advance of harvesting. Capturing tree images using UAVs 
flown closer to one side of the trees could be used as an alternative to 
ground-based image capture for regions where it is difficult to drive farm 
vehicles in between rows. Future work will also include an evaluation of 
the estimation performance and cost analysis of the object detection and 
UAV based models in comparison with the existing manual methods of 
fruit prediction. 
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