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Integral equivariant cohomology of affine
Grassmannians

David Anderson

Abstract. We give explicit presentations of the integral equivariant cohomology of the aone Grass-

mannians and nag varieties in type A, arising from their natural embeddings in the corresponding

inonite (Sato) Grassmannian and nag variety.|ese presentations are compared with results obtained

by Lam and Shimozono, for rational equivariant cohomology of the aone Grassmannian, and by

Larson, for the integral cohomology of the moduli stack of vector bundles onP
1 .

1 Introduction

|e main aim of this note is to provide a simple presentation, in terms of genera-
tors and relations, of the torus-equivariant cohomology of the aone Grassmannian
and nag variety, G̃rn and F̃ln . In particular, we obtain these rings as quotients of
polynomial rings, with the quotient map arising geometrically as the pullback via
embeddings in the Sato Grassmannian and nag variety, respectively.

Let Λ = Z[c1 , c2 , . . .] be the polynomial ring in countably many generators, with
c i in degree 2i. Let pk = pk(c) be the polynomial

pk(c) = (−1)k−1 det
»¼¼¼¼¼½

c1 1 0 0 0
2c2 c1 1 0 0
3c3 c2 ⋱ ⋱ 0î î ⋱ ⋱ 1
kck ck−1 ï c2 c1

¿ÀÀÀÀÀÁ
.(1.1)

One can identify Λwith the ring of symmetric functions in some other set of variables,
making ck the complete homogeneous symmetric function, so that pk becomes the
power sum symmetric function via the Newton relations. But until Section 3 we
remain agnostic about the choice of such an identiocation.

Fixing n, consider the polynomials

pk(c∣y) = pk(c) + pk−1(c) e1(y1 , . . . , yn) +ï(1.2)

+ p2(c) ek−2(y1 , . . . , yn) + p1(c) ek−1(y1 , . . . , yn)
= k∑

i=1

p i(c) ek−i(y1 , . . . , yn)(1.3)
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2 D. Anderson

in Λ[y1 , . . . , yn], where e i(y1 , . . . , yn) is the elementary symmetric polynomial in the
indicated variables.

Let V be a complex vector space with basis ei , for i ∈ Z, and let V≤0 be the
subspace spanned by ei for i ≤ 0.|e torus T = (C∗)n acts by scaling the basis vector
ei by the character y i(mod n), using representatives 1, . . . , n for residues mod n. Let

Grd = Grd(V) be the corresponding Sato Grassmannian parameterizing subspaces
of index d, with the induced action of T . |e dth component of the aone Grass-
mannian embeds T-equivariantly in Grd . (Deonitions of these spaces are reviewed
in Section 2 below.) We write Sd ⊂ V for the tautological bundle on Grd , and recycle
the same notation for the tautological bundle on subvarieties, when the context is
clear.

|e equivariant cohomology of the Sato Grassmannian isH∗TGr
d = Λ[y1 , . . . , yn],

identifying ck with the Chern class cTk (V≤0 − Sd).
|eorem |e inclusion G̃r

d

n ↪ Grd induces a surjection H∗TGr
d ↠ H∗TG̃r

d

n , whose
kernel is generated by pk(c∣y) for k > n, together with pn(c∣y) + den(y).

In particular, the map ck ↦ cTk (V≤0 − Sd) deones an isomorphism of H∗T(pt) =
Z[y1 , . . . , yn]-algebras

Λ[y1 , . . . , yn]/Idn ∼�→ H∗T(G̃rdn),
where Idn is the ideal generated by pk(c∣y) for k > n and pn(c∣y) + den(y).

All the generators of Idn are symmetric in the y variables. It follows that the GLn-
equivariant cohomology has essentially the same presentation. Write H∗GLn

(pt) =
Z[e1 , . . . , en], with ek in degree 2k, regarded as a subring of H∗T(pt) by send-
ing ek to the elementary symmetric polynomial ek(y). Deone elements pk(c∣e) ∈
Λ[e1 , . . . , en] by the same formula (1.3), with ek = 0 for k > n.

Corollary A Let Jdn ⊂ Λ[e1 , . . . , en] be the ideal generated by pk(c∣e) for k > n
and pn(c∣e) + den . |en the map ck ↦ cGLn

k (V≤0 − Sd) deones an isomorphism of
H∗GLn

(pt)-algebras
Λ[e1 , . . . , en]/Jdn ∼�→ H∗GLn

(G̃rdn).
|is follows from the theorem by an application of the general fact that H∗GLn

X ⊂
H∗TX is the invariant ring for the natural Sn action on y variables (see, e.g., [AF,
Section 15.6]).

A presentation for the equivariant cohomology of F̃ln also follows from the
theorem. Let S● ∶ ï ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ ï be the tautological nag on F̃ln .

Corollary B Evaluating ck ↦ cTk (V≤0 − S0) and x i ↦ cT1 (Si/Si−1), we have
H∗T F̃ln = Λ[x1 , . . . , xn , y1 , . . . , yn]/IFln ,

where IFln is generated by pk(c∣y) for k ≥ n along with e i(x) − e i(y) for i = 1, . . . , n.
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Integral equivariant cohomology of aone Grassmannians 3

For GLn-equivariant cohomology, the presentation is similar:

H∗GLn
F̃ln = Λ[x1 , . . . , xn , e1 , . . . , en]/JFln ,

where JFln is generated by pk(c∣e) for k ≥ n along with e i(x) − e i for i = 1, . . . , n.

|is can be deduced from the theorem by examining the action of the shiv
morphism on cohomology (see Section 2).

A presentation for the non-equivariant cohomology ringH∗G̃r
0

n was given by Bott
[Bo], who used a natural coproduct structure to identify this ring with the inonite
symmetric power of the cohomology of projective space. SinceH∗Pn−1 ≅ Z[ξ]/(ξn),
this is easily seen to be equivalent to the result of setting the y variables to 0 in the
statement of the main theorem above. (One makes the indicated identiocations with
symmetric functions in variables ξ1 , ξ2 , . . ., and Bott’s relations become pk(ξ) = 0 for
k ≥ n.)

Several authors have given diferent presentations of the equivariant cohomology
ring, sometimes with oeld coeocients, using localization or representation theory
[LS, Y, YZ]. In the context of the moduli stack of vector bundles on P1, Larson
described the integral cohomology ring as a subring of a polynomial ring with
rational coeocients [La]. In fact, Larson’s description is equivalent to the quotient
ring appearing in Corollary A; the precise translation is given in Section 6 below.

In this note, themain contributions are to provide a concise presentation ofH∗TG̃r
d

n

as a quotient of a polynomial ring, and to show how Bott’s method extends naturally
to the equivariant setting. We also describe a new basis of double monomial sym-
metric functions which are well-adapted to the presentation of H∗TG̃rn . Apart from
some elementary calculations with symmetric functions, the only additional input
required is a well-known presentation of the equivariant cohomology of projective
space.

2 Infinite and affine flag varieties

We follow [A], which in turn is based on [LLS, PS] (see also [SS]). As in the
introduction, V is a complex vector space with basis ei for i ∈ Z. For any interval[a, b] in Z, we write V[a ,b] for the subspace spanned by ei for i in [a, b]. We will
especially use subspaces V≤p (or V>q), spanned by ei for i ≤ p (or i > q, respectively).

2.1 Definitions

|e Sato Grassmannian Grd is the set of subspaces E ⊂ V of index d. |is means
(1) V≤−m ⊂ E ⊂ V≤m for some (and hence all) m ≫ 0, and (2) dim E/(V≤0 ∩ E) −
dimV≤0/(V≤0 ∩ E) = d. |e Sato Grassmannian is naturally topologized as an ind-
variety.

|e Sato nag variety is the subvariety Fl ⊂ ∏d∈ZGrd consisting of chains of
subspaces E● ∶ ï ⊂ E−1 ⊂ E0 ⊂ E1 ⊂ ï, with Ed ⊂ V belonging to Grd . It is naturally a
pro-ind-variety, and comes with projection morphisms πd ∶Fl → Grd.
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4 D. Anderson

|e shiv automorphism sh∶V → V , deoned by ei ↦ ei−1, induces an automorphism
of Fl, by sh(E●)k = sh(Ek+1). For a oxed positive n, the aone nag variety is the oxed
locus of shn :

F̃ln = {E● ∈ Fl ∣ shn(E●) = E●}.
|e aone Grassmannian is the image of F̃ln under the projection map:

G̃r
d

n = πd(F̃ln) = {E ∈ Grd ∣ shn(E) ⊂ E}.
A torus TZ = ∏i∈ZC∗ acts on V by scaling the coordinate ei by the character

y i . |is induces actions on Fl and Grd . We cyclically embed T = (C∗)n in TZ, by
specializing characters y i ↦ y i(mod n), using representatives 1, . . . , n for residuesmod
n. So T ⊂ TZ is the oxed subgroup for the automorphism induced by shn , and T

therefore acts on F̃ln and G̃r
d

n .
|e T-oxed points of Fl (which are the same as the TZ-oxed points) are indexed

by the set Inj0 consisting of all injections w∶Z → Z such that

#{i ≤ 0 ∣w(i) > 0} = #{ j > 0 ∣w( j) ≤ 0},
and both these cardinalities are onite.1 |e nag Ew

● corresponding tow ∈ Inj0 consists
of subspaces Ek spanned by ew(i) for i ≤ k, together with all e j for j ≤ 0 not in the

image of w. |e condition deoning Inj0 guarantees Ew
● lies in Fl. (See [A, Section 6].)

|e T-oxed points of F̃ln are indexed by the group of aone permutations. |is
is the group S̃n consisting of bijections w from Z to itself, such that w(i + n) =
w(i) + n for all i ∈ Z, and such that∑n

i=1 w(i) = (n
2
). Among many other equivalent

descriptions, this is the subset of n-shiv-invariant elements in Inj0:

S̃n = {w ∈ Inj0 ∣w(i + n) = w(i) + n for all i}.
Similarly, GLn acts on V, extending the standard action on V[1,n] ≅ Cn by blocks,

so V = ï⊕ V[−n+1,0] ⊕ V[1,n] ⊕ V[n+1,2n] ⊕ï. |is induces actions on the Sato and
aone nag varieties and Grassmannians.

Oven we will omit the superscript when focusing on the degree d = 0 component,

writing Gr = Gr0 and G̃rn = G̃r
0

n .

2.2 Chern classes and cohomology

We write c
(d)
k = cTk (V≤0 − Sd) in H∗TGr

d , and we use the same notation for the
pullbacks to other varieties. For d = 0, or when the index is understood, we omit the
superscript. We have canonical isomorphisms

H∗TGr
d = Λ[y1 , . . . , yn] and H∗TFl = Λ[. . . , x−1 , x0 , x1 , . . . ; y1 , . . . , yn],

where Λ = Z[c1 , c2 , . . .] and x i = cT1 (Si/Si−1) as before. (See [A, Section 3], but note
that our sign convention on x i is opposite the one used there.)

1|is implies #{i ≤ d ∣w(i) > 0} − #{ j > d ∣w( j) ≤ 0} = d for any integer d.
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Integral equivariant cohomology of aone Grassmannians 5

For each oxed point w ∈ Inj0, there is a localization homomorphism H∗TFl →
Z[y1 , . . . , yn], given by

x i ↦ yw(i) and ck ↦ [tk]
»¼¼¼½

∏
i≤0,w(i)>0

j>0,w( j)≤0

1 + yw( j)t

1 + yw(i)t

¿ÀÀÀÁ
.

Here, the operator [tk] extracts the coeocient of tk , and we always understand ya
as ya(mod n). Since w ∈ Inj0, the RHS is a onite product. |e same formulas deone

localization homomorphisms for Gr, F̃ln , and G̃rn . For Gr
d and G̃r

d

n with d ≠ 0, we
use

c
(d)
k ↦ [tk]

»¼¼¼½
∏

i≤d ,w(i)>0

j>d ,w( j)≤0

1 + yw( j)t

1 + yw(i)t

¿ÀÀÀÁ
.

We do not logically require these localization homomorphisms, but they are useful
for checking that relations hold, and comparing them against other sources.

|e shiv morphism determines an automorphism γ = sh∗ of Λ[x , y], by
γ(x i) = x i+1 , γ(y i) = y i+1 , and γ(C(t)) = C(t) ⋅ 1 + y1 t

1 + x1 t
,

where C(t) = ∑k≥0 ck t
k is the generating series for c.

|e inclusions F̃ln ↪ Fl and G̃r
d

n ↪ Grd determine pullback homomorphisms on
cohomology: we have maps

Λ[x; y] = H∗TFl → H∗T F̃ln and Λ[y] = H∗TGr
d → H∗TG̃r

d

n .

|e main theorems assert that these homomorphisms are surjective, and specify
the kernels. One relation is immediately evident: since shn oxes F̃ln ⊂ Fl, we have
γn(c) = c, so

n∏
i=1

1 + y i t

1 + x i t
= 1

in H∗T F̃ln . As promised in the introduction, this shows that Corollary B follows from
the|eorem.

(An alternative argument uses the fact, not needed here, that the projection
F̃ln → G̃rn is topologically identioed with the trivial ober bundle G̃rn ×
Fl(Cn) → G̃rn .)

2.3 Coproduct

|ere is a co-commutative coproduct structure on Λ, where the map Λ → Λ ⊗ Λ is
given by ck ↦ ck ⊗ 1 + ck−1 ⊗ c1 +ï+ 1⊗ ck .|is extendsZ[y]-linearly to a coprod-
uct on Λ[y] = H∗TGr. As explained in [A, Section 8], this can be interpreted as an
(equivariant) cohomology pullback via the direct sum morphism Gr ×Gr → Gr.
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6 D. Anderson

Likewise, there is a co-commutative coproduct structure on H∗TG̃rn , coming
from a homotopy equivalence with the based loop group, G̃rn ∼ ΩSU(n) (see [PS,
Section 8.6]). |e homotopy equivalence is equivariant with respect to the compact
torus (S1)n ⊂ T . So the group structure on ΩSU(n) determines a coproduct on
H∗(S 1)nΩSU(n) = H∗TG̃rn . (|is coproduct can also be realized algebraically, but the

construction is somewhat more involved than the direct sum map for Gr (see, e.g.,
[YZ]).)

|e coproducts onH∗TGr andH
∗
TG̃rn are compatible, in the sense that the inclusion

G̃rn ↪ Gr induces a pullback homomorphism of co-algebras (and in fact, of Hopf
algebras): the diagram

H∗TGr H∗TGr⊗Z[y] H
∗
TGr

H∗TG̃rn H∗TG̃rn ⊗Z[y] H
∗
TG̃rn

commutes.

3 Some algebra of symmetric functions

In this section, we introduce some polynomials which appear in the presentations
of equivariant cohomology rings, and establish some identities which imply isomor-
phisms among diferent such presentations. Most of this comes from basic facts about
symmetric functions, and can be found in standard sources (e.g., [Mac, Chapter I]).
We indicate proofs for facts not easily found there.

Recall Λ = Z[c1 , c2 , . . .] and Λ[y] = Λ[y1 , . . . , yn].
3.1 Some identities in Λ[y]

We deone elements hk ∈ Λ[y1 , . . . , yn] by

hk = k−1∑
i=0

(k − 1

i
)y i0 ck−i ,(3.1)

writing y0 = yn to emphasize stability with respect to n.
Let H(t) = ∑k≥0 hk t

k and C(t) = ∑k≥0 ck t
k be the generating series, with

h0 = c0 = 1. |en (3.1) is equivalent to H(t) = C (t/(1 − y0 t)). Both the h’s and the c’s
are algebraically independent generators of Λ[y] as a Z[y]-algebra.

We have the elements pk ∈ Λ = Z[c1 , c2 , . . .] given by

P(t) ∶= ∑
k≥1

pk t
k−1 = d

dt
logC(t).(3.2)

We deone new elements p̃k ∈ Z[h1 , h2 , . . .] by the analogous identity of generating
series:
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Integral equivariant cohomology of aone Grassmannians 7

P̃(t) ∶= ∑
k≥1

p̃k t
k−1 = d

dt
logH(t).(3.3)

(|ese formulas are equivalent to the Newton relations (1.1) (see, e.g., [Mac,
Section 2]).)

Let E(t) = ∏n
i=1(1 + y i t) be the generating series for the elementary symmetric

polynomials in y1 , . . . , yn , and let Ẽ(t) = ∏n
i=1(1 + (y i − y0)t) be the corresponding

series in variables y i − y0. So Ẽ(t) = E(t/(1 − y0 t)) ⋅ (1 − y0 t)n .
Finally, let

pk(c∣y) = pk + pk−1e1(y) +ï + p1ek−1(y)(3.4)

and

p̃k(h∣y) = p̃k + p̃k−1e1(y1 − y0 , . . . , yn − y0) +ï(3.5)

+ p̃1ek−1(y1 − y0 , . . . , yn − y0).
Equivalently, the generating series for pk(c∣y) and p̃k(h∣y) are given by

P(t) = P(t) ⋅ E(t) and P̃(t) = P̃(t) ⋅ Ẽ(t),
respectively.

|e polynomials pk(c∣y) are those appearing in the main theorem from the
introduction. |e variations p̃k(h∣y) will be easier to interpret as relations in the
equivariant cohomology ring of the aone Grassmannian (in Section 4). We wish to
compare the ideals generated by pk(c∣y) and p̃k(h∣y).
Lemma 3.1 For k ≥ n, we have

p̃k(h∣y) = k−1∑
i=0

(k − n

i
)y i0pk−i(c∣y)(3.6)

and

pk(c∣y) = k−1∑
i=0

(k − n

i
)(−y0)i p̃k−i(h∣y).(3.7)

In particular, we have an equality

(pk(c∣y))
k≥n

= (p̃k(h∣y))
k≥n

of ideals in Λ[y1 , . . . , yn].
Proof |e second statement follows from the orst, the RHS of (3.6) involves only
p i(c∣y) for i ≥ n, and likewise the RHS of (3.7) involves only p̃ i(h∣y) for i ≥ n.
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8 D. Anderson

To prove (3.6), we expand the deonitions and compute

P̃(t) = P̃(t) ⋅ Ẽ(t)
= ( d

dt
logH(t)) ⋅ E(t/(1 − y0 t)) ⋅ (1 − y0 t)n

= ( d

dt
logC(t/(1 − y0 t))) ⋅ E(t/(1 − y0 t)) ⋅ (1 − y0 t)n

= 1

(1 − y0 t)2 P(t/(1 − y0 t)) ⋅ E(t/(1 − y0 t)) ⋅ (1 − y0 t)n
= (1 − y0 t)n−2P(t/(1 − y0 t)).

Expanding the RHS, we obtain

∑
m≥1

pm(c∣y)tm−1(1 − y0 t)n−m−1 = ∑
m≥1
i≥0

pm(c∣y)(n −m − 1

i
)(−y0)i tm−1+i .

Setting k = m + i, for k ≥ n, the coeocient of tk−1 is

k−1∑
i=0

(n − k + i − 1

i
)(−y0)i pk−i(c∣y) = k−1∑

i=0

(k − n

i
)y i0pk−i(c∣y),

as desired. (|e last equality uses the extended binomial coeocient identity (−m
i
) =

(−1)i(m+i−1
i

).) |e proof of (3.7) is analogous. ∎
3.2 Notation for symmetric functions in ξ

Let Λ(ξ) = Z[ξ1 , ξ2 , . . .]S∞ be the ring of symmetric functions in countably many

variables ξ1 , ξ2 , . . ., each of degree 2.|is is the inverse limit of Λ
(ξ)
r = Z[ξ1 , . . . , ξr]Sr

as r → ∞ (in the category of graded rings). It may be identioed with the polynomial
ring Z[h1(ξ), h2(ξ), . . .], where hk(ξ) is the complete homogeneous symmetric func-
tion in ξ.

|ere is also a Z-linear basis for Λ(ξ) consisting of the monomial symmetric
functions mλ(ξ). Given a partition λ = (λ1 ≥ λ2 ≥ ï ≥ λr ≥ 0), the function mλ(ξ)
is the symmetrization of the monomial ξλ11 ξλ22 ïξλrr – that is, the sum of all distinct
permutations of this monomial.

|e power sum functions pk(ξ) = ξk1 + ξk2 +ï also play an important role. |ey
generate Λ(ξ) as aQ-algebra, but not as aZ-algebra.|e function pk(ξ) is expressed
in terms of the functions hk(ξ) via the Newton relations, which can be written as the
determinant (1.1), substituting hk(ξ) for ck in the matrix.

|ere is an isomorphism Λ[y] = Z[c, y] ∼�→ Λ(ξ)[y] determined by evaluating the
generating series C(t) = ∑ ck t

k as

C(t) = ∏
i≥1

1 + y0 t

1 − ξ i t + y0 t
.(3.8)
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Integral equivariant cohomology of aone Grassmannians 9

Under this identiocation, we have H(t) = ∏i≥1
1

1−ξ i t
, so hk maps to hk(ξ), and it

follows that p̃k maps to the power sum function pk(ξ). In what follows, we will
sometimes use this identiocation without further comment.

3.3 Another equality of ideals

In Section 4, we require another algebraic lemma. First, we consider onitely many

variables ξ1 , . . . , ξr , and the symmetric polynomial ring Λ
(ξ)
r ⊂ Z[ξ1 , . . . , ξr].

Lemma 3.2 Fix n > 0, and consider the ideal (ξn1 , . . . , ξnr ) ⊂ Z[ξ1 , . . . , ξr]. As ideals
in Λ(ξ), we have

(ξn1 , . . . , ξnr ) ∩ Λ
(ξ)
r = (mλ(ξ))λ1≥n = (pk(ξ))k≥n .

Proof |eorst equality holds becausemonomials ξa11 ïξarr with some a i ≥ n form a
Z-linear basis for (ξn1 , . . . , ξnr ) ⊂ Z[ξ1 , . . . , ξr]. For the second equality, the inclusion
<⊇= is evident, because pk = m(k). It remains to see that mλ lies in the ideal (pk)k≥n
whenever λ1 ≥ n, and this is proved by induction on the number of parts of λ. ∎

Taking the inverse limit over r (in the category of graded rings), we obtain the
following:

Corollary 3.3 We have isomorphisms of graded rings

lim←�
r

(Z[ξ1 , . . . , ξr]/(ξn1 , . . . , ξnr ))Sr = Λ(ξ)/(mλ(ξ))λ1≥n
= Λ(ξ)/(pk(ξ))k≥n .

4 Proof of the main theorem

Given any variety X with basepoint p0, Bott [Bo] considers a system of embeddings

X×r = X×r × {p0} ↪ X×r+1 .

Assume T acts onX, oxing p0, so these embeddings are T-equivariant.|e symmetric
group Sr acts on these products by permuting factors, and therefore on their (equiv-
ariant) cohomology rings. |e inverse limit is written

SH∗TX ∶= lim←�
r

(H∗TX×r)Sr
.(4.1)

We further assume H∗TX is free over Z[y] = H∗T(pt), and has no odd cohomol-
ogy. |en H∗TX

×r = H∗TX ⊗Z[y] ï⊗Z[y] H
∗
TX (r factors). In this case, given any T-

equivariant morphism f ∶X → G̃rn , there is a pullback homomorphism

H∗TG̃rn → H∗TX ⊗Z[y] ï⊗Z[y] H
∗
TX ,

obtained by factoring through the r-fold coproduct on H∗TG̃rn . Since the coproduct
is commutative, the image lies in the Sr-invariant part of the tensor product. Taking
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10 D. Anderson

the limit over r produces a homomorphism

f ∗∶H∗TG̃rn → SH∗TX .

ForX, we take projective spaceP(V[0,n−1]) ≅ Pn−1, with basepoint p0 correspond-
ing to the line C ⋅ e0 ⊂ V[0,n−1], which is scaled by the character y0 = yn . (Recall that
we treat indices of y i modulo n.)

Let H = P(V[1,n−1]) ⊂ P(V[0,n−1]) = Pn−1 be the hyperplane deoned by e∗0 = 0,

and let ξ = [H] be its class in H2
TP

n−1. So ξ = cT1 (O(1)) + y0, where O(1) is the dual
of the tautological bundle on Pn−1. |e equivariant cohomology ring of Pn−1 has a
well-known presentation, which in our notation takes the form

H∗TP
n−1 = Z[y][ξ]/(ξ(ξ + y1 − y0)ï(ξ + yn−1 − y0)).(4.2)

Written slightly diferently, the deoning relation is

ξn + ξn−1 e1(y1 − y0 , . . . , yn − y0) +ï(4.3)

+ξ en−1(y1 − y0 , . . . , yn − y0) = 0,

which one should compare with (3.5). Similarly, let H i ⊂ (Pn−1)×r be the hyperplane
deoned by e∗0 = 0 on the ith factor, and let ξ i = [H i] be its class inH∗T(Pn−1)×r , which
has a presentation with one relation of the form (4.3) for each ξ i . Taking symmetric
invariants leads to the following calculation:

Lemma 4.1 |e ring SH∗TP
n−1 is a freeZ[y]-algebra. Letting p̃k(ξ∣y) be the polyno-

mials deoned by (3.5), where p̃k = pk(ξ) = ξk1 + ξk2 +ï, it has the presentation

SH∗TP
n−1 = Λ(ξ)[y]/(p̃k(ξ∣y))k≥n .

Proof |e homomorphism Λ(ξ)[y] → SH∗TP
n−1 is the limit of homomorphisms

Z[ξ1 , . . . , ξr]Sr → (HT(Pn−1)×r)Sr
deoned by ξ i ↦ [H i]. |e relations p̃k(ξ∣y) = 0

hold in SH∗TP
n−1, because they symmetrize relations of the form (4.3), so there

is a well-deoned homomorphism modulo the ideal (p̃k(ξ∣y))k≥n . Modulo the y-
variables, this reduces to the isomorphism described in Corollary 3.3. |e assertion
follows by graded Nakayama. ∎

One embeds P(V[0,n−1]) in Gr by sending L ⊂ V[0,n−1] to V<0 ⊕ L ⊂ V , and this

embedding factors through G̃rn , all T-equivariantly. So we have homomorphisms

Λ[y] = H∗TGr → H∗TG̃rn
f ∗�→ SH∗TP

n−1 .(4.4)

|e map Λ[y] = H∗TGr → H∗TP
n−1 sends the generating series

C(t) = cT(V≤0 − S) to cT(C ⋅ e0 −O(−1)) = 1 + y0 t

1 − ξt + y0 t
.

|e map Λ[y] → SH∗TP
n−1 is determined by the evaluation (3.8).
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Proposition 4.2 |e homomorphism f ∗∶H∗TG̃rn → SH∗TP
n−1 is an isomorphism of

Z[y]-algebras. In particular, we have

H∗TG̃rn = Λ[y]/(p̃k(h∣y))k≥n .
Proof |e aone Grassmannian has a T-invariant Schubert cell decomposition,
with onitelymany cells in each dimension, soH∗TG̃rn is a freeZ[y]-module. It follows
that the non-equivariant cohomology is recovered by setting y-variables to 0: we have
an isomorphism (H∗TG̃rn)/(y) ≅ H∗G̃rn , and likewise (SH∗TPn−1)/(y) ≅ SH∗Pn−1.
|e induced map H∗G̃rn → SH∗Pn−1 was shown to be an isomorphism by Bott
[Bo, Proposition 8.1]. So the orst statement of the proposition follows by another
application of graded Nakayama. |e second statement is a combination of the orst
with the presentation of SH∗TP

n−1 from Lemma 4.1. ∎
|e d = 0 case of the main theorem follows from Proposition 4.2 together with the

equality of ideals (p̃k(h∣y))k≥n = (pk(c∣y))k≥n established in Lemma 3.1.

For the general d case, we use the shivmorphism shd , which deones isomorphisms

Grd Gr

G̃r
d

n G̃rn .

∼

∼

|ese are equivariant with respect to the corresponding automorphism of T which
cyclically permutes coordinates. |e action on cohomology rings is given by the
homomorphism γd , as described in Section 2.2. |e presentation of H∗TG̃rn is
mapped to

H∗TG̃r
d

n = Λ[y]/(γd pk(c∣y))k≥n ,
where now Λ = Z[c(d)1 , c

(d)
2 , . . .], and the variables map by c

(d)
k = cTk (V≤0 − Sd). It

remains to express γd pk(c∣y) in terms of the polynomials pk(c(d)∣y).
Since (shd)∗cTk (V≤0 − S0) = cTk (V≤d − Sd), we have

γd(C(t)) = C(d)(t) ⋅ (1 + y1 t)ï(1 + yd t),
where C(d)(t) = ∑k≥0 c

(d)
k tk is the generating series. So, using notation from Sec-

tion 3, we have

γdP(t) = (γdP(t)) ⋅ (γdE(t))
= ( d

dt
log γdC(t)) ⋅ E(t)

= d

dt
log(C(d)(t) d∏

i=1

(1 + y i t)) ⋅ E(t)
= P(d)(t) ⋅ E(t) + d∑

i=1

y i(1 + y1 t)ï ̂(1 + y i t)ï(1 + yn t),
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where P(d)(t) = ∑k≥1 pk(c(d)∣y)tk−1. Extracting the coeocients of tk−1, we ond

γd pn(c∣y) = pn(c(d)∣y) + d ⋅ en(y1 , . . . , yn)
and

γd pk(c∣y) = pk(c(d)∣y)
for k > n, as claimed.

Remark 4.3 Consider theZ[y]-algebra automorphism of Λ[y] deoned by sending
pk(c) to pk(c) − (−1)k pk(y), where pk(y) = yk1 +ï+ ykn . Using [Mac, (2.11’)], this
sends

pk(c∣y) ↦ pk(c∣y) + k ek(y).
So we have an isomorphism of Z[y]-algebras Λ[y]/Idn ∼�→ Λ[y]/Id+nn .

5 Double monomial symmetric functions

|e monomial symmetric functions mλ(ξ), with λ1 < n, form a basis for SH∗TP
n−1

over Z[y] – so they also form a basis for H∗TG̃rn . (|is follows from the arguments
above, and it is also easy to see directly from the fact that 1, ξ, . . . , ξn−1 forms a basis
for H∗TP

n−1 over Z[y].) It is useful to work with a deformation of this basis of Λ[y],
which extends a basis for the deoning ideal of H∗TG̃rn .

For the general deonition, we use variables a1 , a2 , . . . in degree 2. Given a sequence
α = (α1 , . . . , αr) of positive integers, let n i(α) be the number of occurrences of i in
α, and set n(α) ∶= n1(α)!n2(α)!ï. (So n(α) is the number of permutations oxing
α.) For a partition λ with r parts, so λ = (λ1 ≥ ï ≥ λr > 0), we write α ⊂ λ to mean
α i ≤ λ i for all i. Let

eλ−α(a) = eλ1−α1
(a1 , . . . , aλ1−1)ïeλr−αr

(a1 , . . . , aλr−1),
where ek is the elementary symmetric polynomial.

Deonition 5.1 |e double monomial symmetric function is

mλ(ξ∣a) = ∑
(1r)⊂α⊂λ

n(α)
n(λ) eλ−α(a)mα(ξ),

an element of Λ(ξ)[a1 , a2 , . . .].
For a given α, the coeocient n(α)/n(λ) need not be an integer, but in the sum

over all α, the coeocients are integers. In fact, mλ(ξ∣a) is the symmetrization of the
<monomial=

(ξ∣a)λ = r∏
i=1

ξ i(ξ i + a1)ï(ξ i + aλ i−1)(5.1)

= ∑
(1r)⊂α⊂λ

eλ−α(a) ξα ,
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i.e., it is the sum of σ((ξ∣a)λ) over all distinct permutations σ of λ, where σ acts in
the usual way by permuting the ξ variables.

For instance, the functions corresponding to λ with a single row are

mk(ξ∣a) = mk(ξ) + e1(a1 , . . . , ak−1)mk−1(ξ) +ï + ek−1(a1 , . . . , ak−1)m1(ξ).
Other examples are

m21(ξ∣a) = m21(ξ) + 2a1 m11(ξ),
m22(ξ∣a) = m22(ξ) + a1 m21(ξ) + a21 m11(ξ),
m31(ξ∣a) = m31(ξ) + (a1 + a2)m21(ξ) + 2a1a2 m11(ξ),
m32(ξ∣a) = m32(ξ) + 2(a1 + a2)m22(ξ) + a1 m31(ξ)

+ a1(a1 + 2a2)m21 + 2a21 a2 m11(ξ).
From now on, we evaluate the a variables as a i = y i − y0, with the indices taken

mod n as usual. In the single-row case, this recovers the double power sum function
deoned by (3.5) in Section 3 above: mk(ξ∣a) = p̃k(ξ∣y).

We use the isomorphism Λ(ξ)[y] ≅ Λ[y] from (3.8) to identify the functions
mλ(ξ∣y) in Λ(ξ)[y] with elements mλ(c∣y) in Λ[y], also called double monomial
functions.

Proposition 5.2 |e double monomial functions mλ(c∣y) form a Z[y]-linear basis
for Λ[y]. |e mλ(c∣y)with λ1 ≥ n form aZ[y]-linear basis for the ideal In ⊂ Λ[y], the
kernel of the surjective homomorphism Λ[y] = H∗TGr → H∗TG̃rn .

|e ideal here is In = I0n , in the notation of the main |eorem from the introduc-
tion. In particular, Proposition 5.2 implies that every class in H∗TG̃rn has a canonical
liv to a polynomial in Λ[y], by taking an expansion in themonomial basis as a normal
form, using only those mλ(c∣y) with λ1 < n.

Proof |e orst statement is proved by setting y = 0, since the monomial functions
mλ form a basis for Λ. For the second statement, it suoces to check that each
mλ(c∣y) lies in the ideal. |is follows from the characterization of mλ(ξ∣a) as the
symmetrization of the monomial (ξ∣a)λ deoned in (5.1). Indeed, aver setting ξ i =[H i] and a i = y i − y0, as in Section 4, each (ξ∣a)λ with λ1 ≥ n lies in the ideal deoning
H∗T(Pn−1)×r , so the symmetrization lies in the deoning ideal of SH∗TP

n−1. ∎
Remark 5.3 Up to sign and reindexing variables, the single-row functionsmk(ξ∣a)
nearly agree with the functions m̃k(x∣∣a) in [LS, Section 4.5]. To make the identio-
cation, use an isomorphism of our Λ(ξ)[a] with their Λ(x∣∣a) which sends mk(ξ) ↦
mk[x − a>0] and a i ↦ −a1−i . |en the image of our mk(ξ∣a) is the result of setting
a1 = 0 in m̃k(x∣∣a). In general, however, the double monomial functions deoned here
difer from those of [LS], which are more analogous to power-sum functions. For
instance, the latter are a basis only overQ[a].

|e mλ(ξ∣a) are closer to the double monomial functions mλ(x∣∣a) introduced
by Molev [M, Section 5], which are deoned non-explicitly via Hopf algebra duality,
but do form a basis over Z[a]. |ey are not quite identical, as can be seen from the
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table in [LS, Section 8.1], but in small examples the image of our mλ(ξ∣a) under the
substitution a i ↦ −a1−i agrees with the result of setting a1 = 0 in Molev’s function
mλ(x∣∣a). It would be interesting to know if this pattern persists.

6 Moduli of vector bundles

|e aone Grassmannian G̃r
d

n is homotopy-equivalent to the moduli stack parame-
terizing rank-n, degree d vector bundles on P1 together with a trivialization at ∞.
Forgetting the trivialization identioes the moduli stack of vector bundles on P1 with

the quotient stack [GLn/G̃rdn]. (See, e.g., [La] for constructions of the moduli stacks,
as well as further references, and [Z, Section 4] for a careful exposition of the relation
between moduli of bundles and aone Grassmannians.)

Larson gave an algebraic description of the Chow ring of the moduli stack B
†
n ,d

of rank n, degree d vector bundles on P1, as a certain subring of a polynomial ring
[La]. In our context, the Chow and singular cohomology rings are isomorphic, and
it follows from the above considerations that this ring must be isomorphic to the

equivariant cohomology ringH∗GLn
G̃r

d

n . Here we will show that Larson’s description is
equivalent to the presentation given above in Corollary A, using some basic identities
of symmetric functions.

Consider the polynomial ringQ[e1 , . . . , en , q1 , . . . , qn−1], with e i and q i in degree

2i. Larson shows thatH∗B†
n ,d = H∗GLn

G̃r
d

n is isomorphic to the subring generated over

Z[e1 , . . . , en] by the coeocients of a series C(t) = ∑k≥0 ck t
k , deoned by

exp(∫ −d(e1 + e2 t +ï+ en t
n−1) + (q1 + q2 t +ï+ qn−1 t

n−2)
1 + e1 t +ï+ en tn

dt) .(6.1)

(To compare with Larson’s notation, our c i is her e i , our e i is her a i , and our q i is her−a′i+1.)
Proposition 6.1 |e ideal Jdn is the kernel of theZ[e1 , . . . , en]-algebra homomorphism
Λ[e1 , . . . , en] → Q[e1 , . . . , en , q1 , . . . , qn−1] which sends ck to ck . In particular, the
Z[e1 , . . . , en]-subalgebra of Q[e1 , . . . , en , q1 , . . . , qn−1] generated by the ck is isomor-

phic to Λ[e1 , . . . , en]/Jdn ≅ H∗GLn
G̃r

d

n .

Proof Consider a generating series

Q(t) = ∑
k>0

qk t
k−1 ,

along with

C(t) = exp(∫ −d(e1 + e2 t +ï+ en t
n−1) + Q(t)

E(t) dt) ,(6.2)

where E(t) = ∑n
k=0 ek t

k as usual. |e coeocients ck are algebraically independent,
so this formula deones an embedding Λ[e1 , . . . , en] ↪ Q[e1 , . . . , en , q1 , q2 , . . .]. |e
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elements ck deoned by (6.1) are the images of ck under the projection

Q[e1 , . . . , en , q1 , q2 , . . .] → Q[e1 , . . . , en , q1 , . . . , qn−1]
which sets qk to 0 for k ≥ n. So it suoces to identify these qk with the generators
of Jdn .

Rewriting the expression (6.2), we ond

t Q(t) = t P(t)E(t) + d(E(t) − 1),
where the series P(t) = d

dt
logC(t) is determined by theNewton relations, in the form

given in (3.2). Extracting the coeocient of tk , we see qk = pk(c∣e) + d ek for all k ≥ 1.
In particular, qn = pn(c∣e) + d en , and qk = pk(c∣e) for k > n. ∎
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