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Abstract. We give explicit presentations of the integral equivariant cohomology of the affine Grass-
mannians and flag varieties in type A, arising from their natural embeddings in the corresponding
infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained
by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by
Larson, for the integral cohomology of the moduli stack of vector bundles on PP'.

1 Introduction

The main aim of this note is to provide a simple presentation, in terms of genera-
tors and relations, of the torus-equivariant cohomology of the affine Grassmannian
and flag variety, Gr,, and Fl,. In particular, we obtain these rings as quotients of
polynomial rings, with the quotient map arising geometrically as the pullback via
embeddings in the Sato Grassmannian and flag variety, respectively.

Let A = Z[cy, ¢z, - - .| be the polynomial ring in countably many generators, with
¢; in degree 2i. Let py = pi(c) be the polynomial

g 1 0 0 0

2C2 C1 1 0 0

1.1) pe(c) = (-1 det]| 3¢; o 0
kek ke 0 o a

One can identify A with the ring of symmetric functions in some other set of variables,
making ¢, the complete homogeneous symmetric function, so that p; becomes the
power sum symmetric function via the Newton relations. But until Section 3 we
remain agnostic about the choice of such an identification.

Fixing n, consider the polynomials

(12) pk(c|y) :Pk(c) +Pk—1(c) 61()’1’-- ~)yn) + o
+p2(C) ek—2(y1,~ "’y") +P1(C) ek—l(yl’-' . >yn)
k

(1.3) = pi(e) ex—i(y1>-- > ¥n)
i=1
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2 D. Anderson

inA[y1,..., yn], wheree;(y1,. .., yn) is the elementary symmetric polynomial in the
indicated variables.

Let V be a complex vector space with basis e;, for i € Z, and let V¢, be the
subspace spanned by e; for i < 0. The torus T = (C*)" acts by scaling the basis vector
e; by the character y;(mod ), using representatives 1,..., n for residues mod n. Let
Gr? = Gr?(V) be the corresponding Sato Grassmannian parameterizing subspaces
of index d, with the induced action of T. The dth component of the affine Grass-
mannian embeds T-equivariantly in Gr?. (Definitions of these spaces are reviewed
in Section 2 below.) We write $4 ¢ V for the tautological bundle on Gr?, and recycle
the same notation for the tautological bundle on subvarieties, when the context is
clear.

The equivariant cohomology of the Sato Grassmannian is H3Gr? = A[yy,..., y,],
identifying ¢, with the Chern class CZ(VSO -54).

Theorem  The inclusion ’C\};j < Gr? induces a surjection H:Gr — H}’C\};i, whose
kernel is generated by py(c|y) for k > n, together with p,(c|y) + de,(y).

In particular, the map cy — c] (V<o — Sa) defines an isomorphism of H}(pt) =
Z[y1, .- Yn)-algebras

~ L —d
Ay, .. ya) /I8 S HE(Gr),

where I is the ideal generated by py(c|y) for k > n and p,(cly) + de, ().

All the generators of I9 are symmetric in the y variables. It follows that the GL,,-
equivariant cohomology has essentially the same presentation. Write H¢; (pt) =
Zle,...,e,), with ex in degree 2k, regarded as a subring of H;.(pt) by send-
ing ej to the elementary symmetric polynomial e (y). Define elements pi(cle) €
Ale, ..., e,] by the same formula (1.3), with e, = 0 for k > n.

Corollary A Let J% c Aley,...,e,] be the ideal generated by pi(cle) for k>n
and p,(cle) + de,. Then the map cy — CSL"(VS() - S,) defines an isomorphism of
Hg; (pt)-algebras

S |
A[ela- . ->en]/]g g HGL,,(Grn)‘

This follows from the theorem by an application of the general fact that Hi;; X ¢
H7X is the invariant ring for the natural 8, action on y variables (see, e.g., [AF,
Section 15.6]). _

A presentation for the equivariant cohomology of Fl, also follows from the
theorem. Let $, : - ¢ $_; ¢ $9 ¢ $; c --- be the tautological flag on Fl,.

Corollary B Evaluating ¢y — ckT(VSo ~8) and x; = ¢! (S:/Si_1), we have
HiFlLy = A[X1 o X Vi oo yn /T

where IE! is generated by py(c|y) for k > n along with e;(x) — e;(y) fori=1,...,n.
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Integral equivariant cohomology of affine Grassmannians 3

For GL,-equivariant cohomology, the presentation is similar:

HEL,,ﬁn = A[xl,...,xn,el,...,en]/]Fl

no

where JE! is generated by py(c|e) for k > n along with e;(x) — e; fori=1,...,n.

This can be deduced from the theorem by examining the action of the shift
morphism on cohomology (see Section 2).

A presentation for the non-equivariant cohomology ring H *’G\;(,), was given by Bott
[Bo], who used a natural coproduct structure to identify this ring with the infinite
symmetric power of the cohomology of projective space. Since H*P"~! = Z[£]/(&"),
this is easily seen to be equivalent to the result of setting the y variables to 0 in the
statement of the main theorem above. (One makes the indicated identifications with
symmetric functions in variables &, &, . . ., and Bott’s relations become p (&) = 0 for
k>n.)

Several authors have given different presentations of the equivariant cohomology
ring, sometimes with field coefficients, using localization or representation theory
[LS, Y, YZ]. In the context of the moduli stack of vector bundles on P!, Larson
described the integral cohomology ring as a subring of a polynomial ring with
rational coefficients [La]. In fact, Larson’s description is equivalent to the quotient
ring appearing in Corollary A; the precise translation is given in Section 6 below.

In this note, the main contributions are to provide a concise presentation of H }G;:
as a quotient of a polynomial ring, and to show how Bott’s method extends naturally
to the equivariant setting. We also describe a new basis of double monomial sym-
metric functions which are well-adapted to the presentation of H ;GEn. Apart from
some elementary calculations with symmetric functions, the only additional input
required is a well-known presentation of the equivariant cohomology of projective
space.

2 Infinite and affine flag varieties

We follow [A], which in turn is based on [LLS, PS] (see also [SS]). As in the
introduction, V is a complex vector space with basis e; for i € Z. For any interval
[a,b] in Z, we write V[, ;] for the subspace spanned by e; for i in [a, b]. We will
especially use subspaces Vc, (or V.,), spanned by e; for i < p (or i > g, respectively).

2.1 Definitions

The Sato Grassmannian Gr* is the set of subspaces E c V of index d. This means
(1) Veeyy € E c Vg for some (and hence all) m > 0, and (2) dimE/(V,oNE) -
dim V¢o/(V<o N E) = d. The Sato Grassmannian is naturally topologized as an ind-
variety.

The Sato flag variety is the subvariety Flc [Tz Gr? consisting of chains of
subspaces E, : - ¢ E_; ¢ Eg ¢ Ey C ---, with E; ¢ V belonging to Gr?. It is naturally a

pro-ind-variety, and comes with projection morphisms m4: F1 - Gr,
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4 D. Anderson

The shift automorphism sh: V — V, defined by e; — e;_1, induces an automorphism
of Fl, by sh(E. ) = sh(Eg1). For a fixed positive n, the affine flag variety is the fixed
locus of sh™:

Fl, = {E. € Fl| sh"(E.) = E.}.
The affine Grassmannian is the image of Fl,, under the projection map:
a;i = ﬂd(ﬁn) ={Ee Grd| sh”(E) c E}.

A torus Tz =[],z C* acts on V by scaling the coordinate e; by the character
y;. This induces actions on Fl and Gr?. We cyclically embed T = (C*)" in Tz, by
specializing characters y; = yji(mod n)> Using representatives1, ..., n for residues mod
n. So T c Ty is the fixed subgroup for the automorphism induced by sh”, and T

~ ——d
therefore acts on Fl,, and Gr,,.

The T-fixed points of FI (which are the same as the Tz-fixed points) are indexed
by the set Inj° consisting of all injections w: Z — Z such that

#{i<0|w(i) >0} =#{j>0|w(j) <0},

and both these cardinalities are finite.! The flag E corresponding to w € Inj® consists
of subspaces Ey spanned by e,,(;) for i < k, together with all e; for j < 0 not in the
image of w. The condition defining Inj® guarantees EY lies in Fl. (See [A, Section 6].)

The T-fixed points of Fl,, are indexed by the group of affine permutations. This
is the group 8, consisting of bijections w from Z to itself, such that w(i+n) =
w(i) +n forall i € Z, and such that 3./, w(i) = (). Among many other equivalent
descriptions, this is the subset of #-shift-invariant elements in Inj’:

Sy ={weIn® |w(i+n) =w(i)+nforalli}.

Similarly, GL, acts on V, extending the standard action on V}; ,; = C" by blocks,
$0 V=@ V[_,41,0] ® V[1,n] ® V[n+1,2¢] ® - This induces actions on the Sato and
affine flag varieties and Grassmannians.

Often we will omit the superscript when focusing on the degree d = 0 component,

writing Gr = Gr” and Gr, = E}Tz.
2.2 Chern classes and cohomology

We write c,(cd) =c] (Ve —$4) in H}Grd, and we use the same notation for the
pullbacks to other varieties. For d = 0, or when the index is understood, we omit the

superscript. We have canonical isomorphisms
HiGr? = Aly,...,yn] and HEFL= Al X1, %0 X1s - 5 Vs o> Vi s

where A = Z[ ¢y, ¢3,...] and x; = ¢[ ($;/9;_1) as before. (See [A, Section 3], but note
that our sign convention on x; is opposite the one used there.)

This implies #{i < d|w(i) >0} — #{j > d|w(j) < 0} = d for any integer d.
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Integral equivariant cohomology of affine Grassmannians 5

For each fixed point w € Inj’, there is a localization homomorphism H}Fl —
Z[y,...,Yn)> given by

l+)/w(])t

i<ow(i)>0 L+ Yw(i)t
7>0,w(j)<0

Xi = Yw(i) and Ck [tk]

Here, the operator [t¥] extracts the coefficient of ¢¥, and we always understand y,
aS Ya(mod n)- Since w € Inj°, the RHS is a finite product. The same formulas define

~ —~— ——d
localization homomorphisms for Gr, Fl,, and Gr,,. For Gr? and Gr,, with d # 0, we
use

1+ N
Cl(cd) N [tk] Yw(j)
i<dw(i)>0 LT Yw(iyt
j>d,w(j)<0

We do not logically require these localization homomorphisms, but they are useful
for checking that relations hold, and comparing them against other sources.
The shift morphism determines an automorphism y = sh* of A[x, y], by

)’1’—‘

y(xi) = xiv1, y(yi) = yis, and y(C(t))=C(t) T

where C(t) = Y50 cxt¥ is the generating series for c.

The inclusions Fl,, < Fl and ’C\}?: < Gr? determine pullback homomorphisms on
cohomology: we have maps

~ ——d

Alx;y] = HiFl > H3Fl, and A[y] = H3Gr? - H}Gr,,.
The main theorems assert that these homomorphisms are surjective, and specify
the kernels. One relation is immediately evident: since sh” fixes Fl, c Fl, we have
y"(c) =¢,s0

1—[1+)/,'t -1

i 1+ x;t

inH ;l::ln As promised in the introduction, this shows that Corollary B follows from
the Theorem.

(An_alternative argument uses the fact, not needed here, that the projection
Fl - Grn is topologically identified with the trivial fiber bundle Grn
FI(C") - Gr,.)

2.3 Coproduct

There is a co-commutative coproduct structure on A, where the map A - A® A is
givenby cx = ¢k ® 1+ cx_1 ® ¢1 + -+ + 1 ® k. This extends Z[ y]-linearly to a coprod-
uct on A[y] = H;Gr. As explained in [A, Section 8], this can be interpreted as an
(equivariant) cohomology pullback via the direct sum morphism Gr x Gr — Gr.
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6 D. Anderson

Likewise, there is a co-commutative coproduct structure on H%Gr,, coming
from a homotopy equivalence with the based loop group, Gr,, ~ QSU (1) (see [PS,
Section 8.6]). The homotopy equivalence is equivariant with respect to the compact
torus (S')" c T. So the group structure on QSU(n) determines a coproduct on
H{5. QS U(n) = H:Gr,. (This coproduct can also be realized algebraically, but the
construction is somewhat more involved than the direct sum map for Gr (see, e.g.,
[YZ])) _

The coproducts on H;Gr and H}Gr, are compatible, in the sense that the inclusion
Gr,, = Gr induces a pullback homomorphism of co-algebras (and in fact, of Hopf
algebras): the diagram

H7Gr ——— H}Gr®gz[,) H;Gr

| !

H;Gr, — H3;Gr, ®7[,) HiGr,
commutes.

3 Some algebra of symmetric functions

In this section, we introduce some polynomials which appear in the presentations
of equivariant cohomology rings, and establish some identities which imply isomor-
phisms among different such presentations. Most of this comes from basic facts about
symmetric functions, and can be found in standard sources (e.g., [Mac, Chapter I]).
We indicate proofs for facts not easily found there.

Recall A = Z[c1, cp,...] and A[y] = A[y1, - -5 Yn)-

3.1 Some identities in A[y]

We define elements kg € A[y1,..., yu] by

k-1 k—1\ .
(3.1 hk:Z( ; )}’Sck-i,

i=0

writing yo = y, to emphasize stability with respect to n.

Let H(t) = Ygso hit* and C(t) = Yoo ckt® be the generating series, with
ho = co =1. Then (3.1) is equivalent to H(t) = C (¢/(1— yot)). Both the i’s and the ¢s
are algebraically independent generators of A[y] as a Z[ y]-algebra.

We have the elements py € A = Z[ ¢y, ¢3,. . .] given by

(3.2) P(t) = Zpktk_l = 4 log C(t).
k=1 dt

We define new elements py € Z[hy, h,, .. .] by the analogous identity of generating
series:

https://doi.org/10.4153/50008439524000122 Published online by Cambridge University Press



Integral equivariant cohomology of affine Grassmannians 7

(3.3) P(t):= Y pxtt ! = 4 log H(t).
k=1 dt

(These formulas are equivalent to the Newton relations (1.I) (see, e.g., [Mac,
Section 2]).)

Let E(t) = TT17,(1+ y;t) be the generating series for the elementary symmetric
polynomials in yy,. .., y,, and let E(¢) = [T7-,(1+ (yi — yo)t) be the corresponding
series in variables y; — yo. S0 E(t) = E(t/(1- yot)) - (1= yot)™.

Finally, let
(3.4) pr(ely) = p + prarer(y) + - + prex-1(y)
and
(3.5) Pr(hly) =Pk + Pr-rer(y1 = Yos- o> yu = yo) + -

+ Prex-1(y1 = Yos - ¥n = Yo)-
Equivalently, the generating series for pi(c|y) and py(h|y) are given by
P(t) = P(t)-E(t) and  P(t) = P(1)-E(t),

respectively.

The polynomials py(c|y) are those appearing in the main theorem from the
introduction. The variations py(h|y) will be easier to interpret as relations in the
equivariant cohomology ring of the affine Grassmannian (in Section 4). We wish to
compare the ideals generated by py(c|y) and py (hly).

Lemma 3.1 For k > n, we have

_ k-1 k — )
(3.6) pr(hly) = ( in)yépk_i(r:Iy)
i=0
and
lk—n i
67) pelen) = 2 (") 90) Bisthly),
i=0

In particular, we have an equality

(pr(cln) = (Pe(nly)

k>n k>n

of ideals in A[y1,...,ya]-

Proof  The second statement follows from the first, the RHS of (3.6) involves only
pi(cly) for i > n, and likewise the RHS of (3.7) involves only p; (h|y) for i > n.
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8 D. Anderson

To prove (3.6), we expand the definitions and compute
P(t)=DP(t)-E(t)
= (S 108H(®) (110~ 30) - - yor)"
= (%logC(t/(l —yot))) ~E(t/(1 —yot)) (= yot)”

) a—IWP(”“‘M) B(t/(1- yot)) - (1= yot)”

= (1= o) P(t/(1- yot)).

Expanding the RHS, we obtain

m— n—m— -m-1 i m—1+i

> )t 1= 0ty = 3 peln(" )0
m21 m>1
i>0

Setting k = m + i, for k > n, the coefficient of th1ig

3N (i (AU R of () M o)

i=0

as desired. (The last equality uses the extended binomial coeflicient identity (7:") =
(-1)*("™*™").) The proof of (3.7) is analogous. [

3.2 Notation for symmetric functions in ¢

Let A®) =7Z[&,&,...]% be the ring of symmetric functions in countably many

variables &, &, .. ., each of degree 2. This is the inverse limit ofASQ =Z[&,..., &%
as r — oo (in the category of graded rings). It may be identified with the polynomial
ring Z[h1(&), hy (&), . . .], where hy (&) is the complete homogeneous symmetric func-
tion in &.

There is also a Z-linear basis for A®) consisting of the monomial symmetric
functions m) (&). Given a partition A = (A; 2 A, > --- > A, > 0), the function m, ()
is the symmetrization of the monomial Efl ngf — that is, the sum of all distinct
permutations of this monomial.

The power sum functions pi(&) = & + &K + ... also play an important role. They
generate A(®) as a Q-algebra, but not as a Z-algebra. The function pj (&) is expressed
in terms of the functions h (&) via the Newton relations, which can be written as the
determinant (1.1), substituting hy () for ¢4 in the matrix.

There is an isomorphism A[y] = Z[c, y] = A)[y] determined by evaluating the
generating series C(t) = ¥ cjt¥ as

1+y()t
(3.8) C(t) = Ul et
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Integral equivariant cohomology of affine Grassmannians 9

Under this identification, we have H(t) = [1;s; 1—1T’ so hy maps to hi(§), and it
follows that p; maps to the power sum function pi(&). In what follows, we will
sometimes use this identification without further comment.

3.3 Another equality of ideals

In Section 4, we require another algebraic lemma. First, we consider finitely many
variables &, ..., &,, and the symmetric polynomial ring ASE) cZ[&,.... &].

Lemma 3.2 Fixn >0, and consider the ideal (&],...,E") c Z[&,,..., & ]. Asideals
in A®), we have

(fln) ’ff) mASs) = (m)‘(f))/\lzn = (pk(f))kzn'

Proof  The firstequality holds because monomials &"'--- &% with some a; > nforma
Z-linear basis for (&}, ...,&") c Z[&,, ..., & ]. For the second equality, the inclusion
“2” is evident, because py = m ). It remains to see that m, lies in the ideal (Pi)kzn
whenever A; > n, and this is proved by induction on the number of parts of A. ]

Taking the inverse limit over r (in the category of graded rings), we obtain the
following:

Corollary 3.3 We have isomorphisms of graded rings
S,
lim (Z[&, ..., &1/(&-. . ) = AD ) (ma(9)), .,

= A(E)/(Pk(f))kz,,-
4 Proof of the main theorem

Given any variety X with basepoint py, Bott [Bo] considers a system of embeddings
XX = XX x {Po} o X><r+1.

Assume T acts on X, fixing p, so these embeddings are T-equivariant. The symmetric
group 8, acts on these products by permuting factors, and therefore on their (equiv-
ariant) cohomology rings. The inverse limit is written

(4.1) 8H7X :=lim (H;X”)S’.

We further assume H;.X is free over Z[y] = H;(pt), and has no odd cohomol-
ogy. Then H1X™" = H1 X ®z[,] -+ ®z[,] H1 X (r factors). In this case, given any T-

equivariant morphism f: X — Gr,,, there is a pullback homomorphism
H;Gr, - H}X ®7(,) -+ ®z(,] H1 X,

obtained by factoring through the r-fold coproduct on H3Gr,. Since the coproduct
is commutative, the image lies in the 8,-invariant part of the tensor product. Taking
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10 D. Anderson
the limit over r produces a homomorphism
f*:H3:Gr, - SH}X.

For X, we take projective space P(V}o,,_1]) & P"~!, with basepoint p correspond-
ing to the line C - &g © V}g,,_1], which is scaled by the character y; = y,. (Recall that
we treat indices of y; modulo n.)

Let H =P (Vjy,4-17) € P(Vjg,n-1]) = P"" be the hyperplane defined by ej =0,
and let & = [H] be its class in HZP"™. So & = ¢ (O(1)) + yo, where O(1) is the dual
of the tautological bundle on P"~!. The equivariant cohomology ring of P"~! has a
well-known presentation, which in our notation takes the form

(4.2) HiP" ™ = Z[y][E]/(§(E + 1= yo) (& + Yuor = 30))-

Written slightly differently, the defining relation is

(4.3) E" 48" et (1= Yoo s Yu— Yo) +

+&en1(y1= Y055 ¥n = y0) =0,
which one should compare with (3.5). Similarly, let H; c (IP"')*" be the hyperplane
defined by ej = 0 on the ith factor, and let {; = [H;] beits class in H;(P"~)*", which

has a presentation with one relation of the form (4.3) for each ;. Taking symmetric
invariants leads to the following calculation:

Lemma4.1 The ring SHP" ' is a free Z[ y]-algebra. Letting py.(&|y) be the polyno-
mials defined by (3.5), where py, = pi(&) = f{‘ + &K + .-, it has the presentation

SHiP"™" = AD[y)/(Pr(&ly)) s,

Proof  The homomorphism A9 [y] - SH:P" is the limit of homomorphisms

Z[&,. ... &% - (HT(IP”‘I)”)S' defined by &; — [H;]. The relations py(&]y) =0
hold in 8H;P""!, because they symmetrize relations of the form (4.3), so there
is a well-defined homomorphism modulo the ideal (px(&]y)) 4s,- Modulo the y-
variables, this reduces to the isomorphism described in Corollary 3.3. The assertion
follows by graded Nakayama. |

One embeds IP(V[o,,_17) in Gr by sending L ¢ Vg ,_1] to Voo @ L c V, and this
embedding factors through Gr,, all T-equivariantly. So we have homomorphisms

(4.4) A[y] = H;Gr - H;Gr, EiR SH;P" .
The map A[y] = H3Gr - H;IP""! sends the generating series

1+)/0t

O = (Vo =8) to ¢'(C-e-0(-1) = =22,

The map A[y] — SH;P" ! is determined by the evaluation (3.8).
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Integral equivariant cohomology of affine Grassmannians 11

Proposition 4.2 The homomorphism f*: HxGr, — SH:IP" is an isomorphism of
Z| y]-algebras. In particular, we have

H;Gr, = Alyl/(Pe(hly)) s,

Proof The affine Grassmannian has a T-invariant Schubert cell decomposition,
with finitely many cells in each dimension, so H3Gr,, is a free Z[ y]-module. It follows
that the non-equivariant cohomology is recovered by setting y-variables to 0: we have
an isomorphism (H%Gr,)/(y) = H*Gr,, and likewise (SH:P"1)/(y) = SH*P" ..
The induced map H*Gr, - SH*P""! was shown to be an isomorphism by Bott
[Bo, Proposition 8.1]. So the first statement of the proposition follows by another
application of graded Nakayama. The second statement is a combination of the first
with the presentation of SH;P"! from Lemma 4.1. |

The d = 0 case of the main theorem follows from Proposition 4.2 together with the
equality of ideals (fk (hly) ) pop = (pr(ely) ) 4s, established in Lemma 3.1.

For the general d case, we use the shift morphism sh?, which defines isomorphisms

GrY —— Gr

]

—d ~ —
Gr, —— Gr,.

These are equivariant with respect to the corresponding automorphism of T which
cyclically permutes coordinates. The action on cohomology rings is given by the
homomorphism y¢, as described in Section 2.2. The presentation of H:Gr, is
mapped to

H;GEy = ALY (7 pilely)

(d) (d)
1

where now A = Z[¢;"’,¢,"’,...], and the variables map by c,(cd) =c] (Vo —Sa). It

remains to express y? py(c|y) in terms of the polynomials pi (c(®|y).
Since (shd)*c,{(Vso -80) = ¢} (Vea — Sa), we have

y!(C()) = CO(8) - (L+ yut)(L+ yat),

where C(9)(t) = % k>0 c]((d)tk is the generating series. So, using notation from Sec-
tion 3, we have

y'P(t) = (y'P(1) - (y'E(1))

- (%logydC(t)) CE(1)

= %log(C(d)(t) ﬁ(1+J’it)) “E(t)

i=1

S PO (1) + Y yi(1+ )T 7)1 1),
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12 D. Anderson
where P(9)(£) = 311 pr(c(®|y)t5!. Extracting the coefficients of t7, we find

den(cb’) = p,,(c(d)|y) +d-en(y..eyn)

and

Y prlely) = pr(cPly)

for k > n, as claimed.

Remark 4.3  Consider the Z[ y]-algebra automorphism of A[ y] defined by sending

pr(c) to pi(c) - (—1)kpk(y), where pr(y) = y{‘ + oo +y,’§. Using [Mac, (2.11')], this
sends

pr(cly) = pr(ely) + kex(y).

So we have an isomorphism of Z[ y]-algebras A[ y]/I? = A[y]/I¢*".

5 Double monomial symmetric functions

The monomial symmetric functions m, (£), with A, < n, form a basis for SH;P"™*
over Z[ y] - so they also form a basis for H%Gr,. (This follows from the arguments
above, and it is also easy to see directly from the fact that I, £,.. ., £&"! forms a basis
for H;P"~! over Z[y].) It is useful to work with a deformation of this basis of A[y],
which extends a basis for the defining ideal of H:Gr,,.

For the general definition, we use variables a;, a5, . . . in degree 2. Given a sequence
a = (ay,...,a,) of positive integers, let n;(«a) be the number of occurrences of i in
a, and set n(a) := ny(a)!ny(a)!l---. (So n(a) is the number of permutations fixing
a.) For a partition A with r parts, so A = (A; > -+ > 1, > 0), we write « c A to mean
a; < A; foralli. Let

er-a(a)=ey_g(a,....ar-1)€r,—a (a,...,ax,-1),

where ey is the elementary symmetric polynomial.

Definition 5.1 The double monomial symmetric function is

e (Ela) = n(a)
/1(£| ) (lr)zc;xc)t Yl(A)

er-a(a) ma(§),

an element of AY[ay, a,...].

For a given «, the coefficient n(a)/n(1) need not be an integer, but in the sum
over all a, the coefficients are integers. In fact, m, (&]a) is the symmetrization of the

“monomial”
(5.1) (&a)* :ﬁfz‘(fﬂfﬂll)“'(fi‘*ah—l)
i=1
= Z e)t—(x(a) ga’
(1")cach
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ie., it is the sum of o((£|a)") over all distinct permutations o of A, where ¢ acts in
the usual way by permuting the & variables.
For instance, the functions corresponding to A with a single row are

mi(&la) =mr(&) +e(an, ..., ax1) me1 (&) + -+ ex1(ap, ..., ax_1) m(&).

Other examples are

ma(§la) = my (&) +2a1 mu (),

ma(§la) = mn (&) + army(§) + a12 mn(§),

ms1(€la) = m31 (&) + (a1 + az) my (&) + 2a1a; mu (&),
m3y(la) = m3z (&) +2(a1 + az) myx (&) + ay mz (§)

+ al(al + 2[12) myp; + 2[11202 mu(f).

From now on, we evaluate the a variables as a; = y; — y,, with the indices taken
mod 7 as usual. In the single-row case, this recovers the double power sum function
defined by (3.5) in Section 3 above: m (€|a) = pi(€&]y).

We use the isomorphism A(®[y] = A[y] from (3.8) to identify the functions
my (&ly) in A®)[y] with elements m, (c|y) in A[y], also called double monomial
functions.

Proposition 5.2 The double monomial functions m)(c|y) form a Z[ y]-linear basis
for Aly]. The my(c|y) with Ay 2 n form a Z y]-linear basis for the ideal I, ¢ A[y], the
kernel of the surjective homomorphism Al y] = H;Gr — H3Gr,.

The ideal here is I, = I2, in the notation of the main Theorem from the introduc-
tion. In particular, Proposition 5.2 implies that every class in H }@?n has a canonical
lift to a polynomial in A[ y], by taking an expansion in the monomial basis as a normal
form, using only those m, (c|y) with ; < n.

Proof  The first statement is proved by setting y = 0, since the monomial functions
m) form a basis for A. For the second statement, it suffices to check that each
m; (c|y) lies in the ideal. This follows from the characterization of m)(|a) as the
symmetrization of the monomial (£|a)” defined in (5.1). Indeed, after setting &; =
[H;]and a; = y; — yo,as in Section 4, each (£|a)* with A, > n lies in the ideal defining
H.(P"1)*", so the symmetrization lies in the defining ideal of SH;.IP" . [

Remark 5.3  Up to sign and reindexing variables, the single-row functions my (¢|a)
nearly agree with the functions #i(x|a) in [LS, Section 4.5]. To make the identifi-
cation, use an isomorphism of our A [a] with their A(x]a) which sends m; (&) —
mg[x — aso] and a; — —a;_;. Then the image of our my(&|a) is the result of setting
a; = 0 in 771 (x|a). In general, however, the double monomial functions defined here
differ from those of [LS], which are more analogous to power-sum functions. For
instance, the latter are a basis only over Q[a].

The m) (&|a) are closer to the double monomial functions m, (x|a) introduced
by Molev [M, Section 5], which are defined non-explicitly via Hopf algebra duality,
but do form a basis over Z[a]. They are not quite identical, as can be seen from the
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14 D. Anderson

table in [LS, Section 8.1], but in small examples the image of our m, (&|a) under the
substitution a; — —aj_; agrees with the result of setting a; = 0 in Molev’s function
my (x]a). It would be interesting to know if this pattern persists.

6 Moduli of vector bundles

——d
The affine Grassmannian Gr,, is homotopy-equivalent to the moduli stack parame-
terizing rank-n, degree d vector bundles on P! together with a trivialization at oo.
Forgetting the trivialization identifies the moduli stack of vector bundles on P! with

the quotient stack [GLn\E};i]. (See, e.g., [La] for constructions of the moduli stacks,
as well as further references, and [Z, Section 4] for a careful exposition of the relation
between moduli of bundles and affine Grassmannians.)

Larson gave an algebraic description of the Chow ring of the moduli stack BL, d
of rank n, degree d vector bundles on P!, as a certain subring of a polynomial ring
[La]. In our context, the Chow and singular cohomology rings are isomorphic, and
it follows from the above considerations that this ring must be isomorphic to the

equivariant cohomology ring H;; | G;Z Here we will show that Larson’s description is
equivalent to the presentation given above in Corollary A, using some basic identities
of symmetric functions.

Consider the polynomial ring Q[ey, . .., €n, q15 - - - » gn-1], with e; and g; in degree

——d
2i. Larson shows that H*B , = H, 1, Gr,, isisomorphic to the subring generated over
Ze,...,e,] by the coefficients of a series C(t) = Y40 Cx t¥, defined by

(6 l) ex f _d(el+62t+~-.+€nt”71)+(q1+q2t+...+qn71 tnfz) "
‘ P 1+31t+"'+ent" .

(To compare with Larson’s notation, our ¢; is her e;, our e; is her a;, and our g; is her

!
_ai+1')

Proposition 6.1  Theideal J¢ is the kernel of the Zi[ ey, . . ., e, ]-algebra homomorphism
Aler,....eq] > Qler,.-->en,q15- - > qn-1] which sends ci to ¢y. In particular, the
Zey,...,e,|-subalgebra of Q[e1,...,en,q1,-- -, qn-1] generated by the <y is isomor-

——d
phicto Aler,...,e,]/]% = Hg; Gr,.

Proof Consider a generating series

Q(t) = Z qktkil’

k>0

along with

62) () :exp(f —d(e1+e2t+..E.(1;)e,,tn—1)+Q(t) dt),

where E(t) = Y.}_, ext* as usual. The coefficients c; are algebraically independent,
so this formula defines an embedding Alei,...,e,] = Q[er, ..., €n> 1,92, - - -] The
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elements ¢ defined by (6.1) are the images of ¢ under the projection

Q[61,~--,€n,Q1,Q2,---] - Q[el,---,en,%,---,Qn—l]

which sets g to 0 for k > n. So it suffices to identify these g, with the generators
of ]g.
Rewriting the expression (6.2), we find

tQ(t) = tP(t) E(t) +d(E(t) - 1),

where the series P(t) = % log C(t) is determined by the Newton relations, in the form

given in (3.2). Extracting the coefficient of t*, we see qx = px(cle) + d ey forall k > 1.
In particular, g, = p,(cle) + d e,,, and g = pr(cle) for k > n. [ ]
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