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In the recent Baksan Experiment on Sterile Transitions (BEST), a suppressed rate of neutrino absorption

on a gallium target was observed, consistent with earlier results from neutrino source calibrations of the

SAGE and GALLEX/GNO solar neutrino experiments. The BEST Collaboration, utilizing a 3.4 MCi 51Cr

neutrino source, found observed-to-expected counting rates at two very short baselines of R = 0.791 ± 0.05

and 0.766 ± 0.05, respectively. Among recent neutrino experiments, BEST is notable for the simplicity of both

its neutrino spectrum, line neutrinos from an electron-capture source whose intensity can be measured to a

estimated precision of 0.23%, and its absorption cross section, where the precisely known rate of electron capture

to the gallium ground state, 71Ge(e−, νe) 71Ga(g.s.), establishes a minimum value. However, the absorption

cross section uncertainty is a common systematic in the BEST, SAGE, and GALLEX/GNO neutrino source

experiments. Here we update that cross section, considering a variety of electroweak corrections and the role of

transitions to excited states, to establish both a central value and reasonable uncertainty, thereby enabling a more

accurate assessment of the statistical significance of the gallium anomalies. Results are given for 51Cr and 37Ar

sources. The revised neutrino capture rates are used in a reevaluation of the BEST and gallium anomalies.

DOI: 10.1103/PhysRevC.108.035502

I. INTRODUCTION: THE Ga NEUTRINO ANOMALY

The possibility of additional, very weakly interacting “ster-

ile” neutrinos, beyond the three light neutrinos of the standard

model, has been raised frequently in the literature [1–8].

They arise naturally in extensions of the standard model that

account for nonzero neutrino masses. Sterile neutrinos have

been discussed in connection with the LSND experiment,

the reactor neutrino anomaly, the SAGE and GALLEX/GNO

neutrino calibration experiments, and with efforts to recon-

cile oscillation parameters derived from experiments T2K and

NOvA [1,7,9].

In the radiochemical SAGE and GALLEX/GNO solar

neutrino experiments, a large mass of Ga (30–50 tons) was ex-

posed to the solar neutrino flux for a period of about a month,

during which neutrino capture occurs via 71Ga(νe, e−) 71Ge.

The produced atoms of radioactive 71Ge, τ1/2 = 11.43 ±
0.03 d, were then chemically extracted and counted as they

decay back to 71Ga via electron capture. These experiments

established capture rates that, in combination with those from

the chlorine and Kamioka experiments, indicated a pattern

of solar neutrino fluxes that could not be easily reconciled

with solar models, helping to motivate a new generation of

solar neutrino detectors: Super-Kamiokande [10], the Sud-

bury Neutrino Observatory [11], and Borexino [12,13]. This

led to the discovery of neutrino mass and oscillations and

the detection of an energy-dependent distortion of the solar

*Corresponding author: haxton@berkeley.edu

neutrino flux, reflecting the interplay between vacuum and

matter-enhanced oscillations [14,15].

While both gallium experiments utilized tracers to

demonstrate the reliability of the chemical extraction, direct

cross checks on their overall efficiencies for neutrino detection

were also performed. Intense 51Cr and 37Ar electron-capture

(EC) neutrino sources of known strength were placed at

the center of the Ga targets, and the additional production

of 71Ge was measured. Four such calibrations [16–19]

were performed, which when combined yield a ratio of the

observed to expected counting rates of R = 0.866 ± 0.054.

The discrepancy between this result and R = 1 is known as

the gallium anomaly.

The gallium anomaly and other short-baseline neutrino

discrepancies motivated the recent Baksan Experiment on

Sterile Transitions (BEST) [20,21]. BEST, employing an ex-

ceptionally intense 3.4 MCi 51Cr neutrino source, measured

the rate of neutrino reactions at two distances by dividing the

Ga target reactor into inner and outer volumes. This opened

up the possibility of detecting an oscillation signal. While

no distance dependence was seen, the counting rates were

again well below expectations, with R = 0.791 ± 0.05 and

0.766 ± 0.05 for the inner (shorter baseline) and outer vol-

umes, respectively.

A critical issue in the analysis of BEST and earlier

Ga neutrino source experiments is the cross section for
71Ga(νe, e−) 71Ge, as this is a common systematic in these

measurements. For 51Cr and 37Ar neutrino sources, the con-

tributing transitions from the 71Ga ground state are to the

ground state and first two excited states of 71Ge, as shown
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FIG. 1. Level diagram for 71Ga(νe, e−) 71Ga showing the states

that contribute to the absorption of 51Cr and 37Ar EC neutrinos.

in Fig. 1. The Ga anomaly cannot be attributed entirely to un-

certainties in the neutrino cross section, due to the dominance

of the strong 3
2

− → 1
2

−
transition to the 71Ge ground state, as

this transition strength is precisely determined by the known

EC rate of 71Ge. Even if only this contribution is included,

a ≈ 2σ discrepancy remains. In addition, two allowed

Gamow-Teller (GT) transitions to 71Ge excited states, the 5
2

−

and 3
2

−
levels at 175 and 500 keV, respectively, also contribute

to the total 51Cr neutrino absorption cross section. The contri-

butions of these transitions have generally been deduced from

surrogate probes of GT strength—forward-angle (p, n) or

(3He, t ) scattering—despite long-established concerns about

the reliability of these probes when applied to specific weak

transitions [22,23].

While one cannot attribute the Ga anomaly entirely to

nuclear physics, the central value and uncertainty of the cross

section can influence the statistical significance of the BEST

result, its possible interpretation in terms of new physics, and

its consistency with other tests of neutrino properties. The

purpose of this paper is to (1) reexamine the relationship

between the 71Ge(g.s.)(e−, νe) 71Ga(g.s.) electron capture rate

and the 71Ga(g.s.)(νe, e−) 71Ge(g.s.) cross section, in order to

deduce the best value and uncertainty of the latter; and (2)

reconsider the excited-state contributions in light of new data

testing the proportionality between (p, n) or (3He, t ) cross

sections and experimentally known weak rates. In (1), we ex-

amine (or reexamine) several ≈1% corrections that can impact

the proportionality between the g.s. ↔ g.s. inverse reactions.

In (2), our focus is on defining a reasonable uncertainty for

the excited state contribution, based on a critical examination

of the reliability of such surrogate interactions as probes of

specific weak GT transitions.

II. THE 71Ge ELECTRON CAPTURE RATE

One would like to derive from the known electron capture

rate for 71Ge the strength of the ground-state GT transition of

the inverse neutrino reaction cross section. In addition to the

half-life [24,25],

τ 1
2
[71Ge] = 11.43 ± 0.03 d, (1)

relevant experimental information includes the QEC value for

the decay [26], the difference in the atomic masses

QEC = M[71Ge] − M[71Ga]

= 232.443 ± 0.093 keV, (2)

and the PK , PL, and PM electron-capture probabilities and

associated atomic binding energies [27],

PK = 0.88, Ebind = 10.37 keV,

PL = 0.103, Ebind = 1.2 keV,

PM = 0.017, Ebind = 0.12 keV. (3)

The 71Ge → 71Ga electron capture rate can then be written

ω =
ln[2]

τ 1
2

=
G2

F cos2 θC

2π
|φ1s|2avg E2

ν,1s

[

2
(

1 + ε1s
o

)

(

1 +
PL + PM

PK

)]

g2
A

[

2 B
(ν,e)
GT (g.s.)

]

[1 + gv,b]EC [1 + εq]. (4)

The various terms appearing above are as follows:

(1) Q value. The neutrino energy Eν,1s for electron K cap-

ture. Neglecting a very small nuclear recoil correction,

it is given by the energy constraint

QEC = Eν,1s + 10.37keV

⇒ Eν,1s = 222.1 ± 0.1keV

(2) Branchings. The factor [2(1 + ε1s
o )(1 + PL+PM

PK
)] re-

lates the total capture rate to the rate for capture of

a single 1s electron, with the contributions of L and

M capture included through use of the experimentally

known branching ratios. This procedure requires the

introduction of a rearrangement (or overlap-exchange)

correction ε1s
0 to account for the imperfect overlap

of the state created by annihilating a 1s electron in

the 71Ge atomic ground state, with states appropriate

for the Coulomb field of 71Ga. That is, while the

instantaneous annihilation of the 1s electron in 71Ge

will lead dominantly to a virtual state that decays by

emitting K-capture Auger electrons and x rays, atomic

rearrangement generates small contributions from L

and M capture. Similar corrections would be needed

for other channels. That is, the total rate would be

035502-2



GALLIUM NEUTRINO ABSORPTION CROSS SECTION AND … PHYSICAL REVIEW C 108, 035502 (2023)

proportional to

∑

i

|φi|2avgE2
ν,i

(

1 + εi
o

)

= |φ1s|2avg E2
ν,1s

(

1 + ε1s
o

)

[

1 +
∑

i �=1s |φi|2avgE2
ν,i

(

1 + εi
o

)

|φ1s|2avgE2
ν,1s

(

1 + ε1s
o

)

]

= |φ1s|2avg E2
ν,1s

(

1 + ε1s
o

)

[

1 +
PL + PM

PK

]

(5)

where |φi|2avg is the K , L, or M atomic density at the

nucleus, Eν,i is the associated energy of the emitted

neutrino, and εi
o is the overlap and exchange correc-

tion needed in the ith channel [28–31]. Bahcall [30]

noted that such corrections to theory were needed to

reproduce precise experimental L/K capture ratios and

estimated their sizes. As he has emphasized, if the

theoretical expression on the left-hand side of Eq. (5)

is used, the inclusion of the εi would have little net

impact, as these factors diminish PK but enhance PL

and PM . Here, however, we make use of the experimen-

tally measured probabilities PK , PL, and PM to write the

total rate in terms of the 1s-capture rate, so inclusion

of overlap/exchange correction for the 1s channel is

needed.

The values for ε1s
o given by Bahcall [30,32–34] and

by Vatai [31] are −0.018 and −0.008, respectively.

Though the correction is small, there is a relatively

large fractional difference between the results. [In

contrast, their corrections for L (0.083 and 0.088,

respectively) and M (0.247 and 0.188, respectively)

capture are in better agreement, with fractional differ-

ences of 6% and 31%, respectively]. We adopt as a

nominal value the average and take twice the standard

deviation as the 95% confidence level (C.L.), yielding

ε1s
o = −0.013 ± 0.014 and

(

1 + ε1s
o

)

(

1 +
PL + PM

PK

)

= 1.122 ± 0.016.

(3) Weak couplings. We adopt Particle Data Group (PDG)

values for the Fermi constant, GF /(h̄c)3 = 1.1664 ×
10−5/GeV2, and Cabibbo angle, cos θC = 0.9743, and

the PERKEO III value [35] for the axial vector cou-

pling gA = 1.2764. (The PERKEO III experiment

employed a novel pulsed cold neutron source to greatly

reduce systematic uncertainties, yielding a result that

is both exceptionally precise and statistics dominated.

The PDG value for gA employs an error-bar inflation of

2.7 to account for the scatter among past experiments,

thereby eroding the impact of the new technique.)

Note, however, that the choice of weak couplings

and their uncertainties do not influence our results.

As all transition rates are taken from experiment, any

change in the weak couplings would be absorbed into

the fitted BGT value. Weak coupling uncertainties—

whether taken from the PDG or elsewhere—are too

small to influence the overall error budget of our cross

section calculations.

(4) Electron density at the nucleus. |φ1s|2avg is the 71Ge 1s

atomic density at the nucleus. The nuclear amplitudes

for the EC transitions of interest involve convolutions

of the GT operator—the space-like component of the

nuclear axial current—with leptonic wave functions,

〈 j f |
∫

dr φ∗
νe

(r)φ1s(r)

A
∑

i=1

σ(i)τ−(i)δ(r − ri )| ji〉

where we abbreviate the nuclear ground states of 71Ge

and 71Ga as | ji〉 and | j f 〉, respectively. As qνRN 
 1,

where RN is the nuclear radius and qν is the magnitude

of the neutrino’s three-momentum, one can approxi-

mate the neutrino plane wave within the nucleus by

φ∗
νe

(r) ≈ 1. (The leading correction to this approxima-

tion will be evaluated below.) Similarly, given that the

atomic wave function varies slowly over the nuclear

scale, φ1s(r) can be removed from the integral and

replaced by an average value. Most commonly |φ1s|avg

is computed by folding the electron probability density

with the normalized 71Ge proton charge distribution,

then integrating over the nuclear volume.

In his 1997 work [36], Bahcall used three rela-

tivistic, self-consistent Hartree-Fock calculations that

took into account the finite extent of the nucleus, the

Breit interaction, vacuum polarization, and self-energy

corrections, averaging the resulting wave functions

over the nuclear volume to obtain |φi|2avg for K , L,

and M capture. The calculations, performed by three

independent groups, agreed at the ±0.2% level. We

are not aware of any subsequent calculations that are

as complete. While [36] includes references to the

atomic methods employed by the three groups, the
71Ge results were provided as private communications

and are not described in separate publications. As

the relationship between the dimensionless numerical

quantity given in [36] and the density |φ1s|avg may not

be obvious to readers, we provide some of the needed

definitions here.

The dimensionless quantity evaluated in [36], given

by the quantity in square brackets below, is related to

the dimensionful quantities we define on the left below

by

∑

i

|φi|2avgE2
ν,i =

(mec2)5

(h̄c)3

1

4π

[

∑

i

g2
i Ẽ

2
ν,i

]

(6)

where Ẽν,i ≡ Eν,i/mec2. The factor of 1/4π appears

because Bahcall evaluated the s-wave radial density,

not the full density. As the square-bracketed quantity

depends on QEC, a small correction is needed because

QEC = 232.69 keV was used in [36], while the current

value is given by Eq. (2). Plugging in the numerical
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values from [36] one finds
[

∑

i

g2
i Ẽ

2
ν,i

]QEC=232.443keV

≈ 0.9978

[

∑

i

g2
i Ẽ

2
ν,i

]QEC=232.69keV

= 0.01440 (7)

We again group terms so that we can use experimental

EC ratios, finding from Eqs. (6) and (7)

(mec2)5

(h̄c)3

0.01440

4π

= |φ1s|2avgE2
ν,1s

[

1 +
1 + ε1s

o

1 + εL
o

PL

PK

+
1 + ε1s

o

1 + εM
o

PM

PK

]

= |φ1s|2avgE2
ν,1s

{

1.121, Bahcall,

1.123, Vatai,
(8)

where the overlap and exchange factors arise because,

following Eq. (5), canceling terms are implicitly in-

cluded in the probabilities PK , PL, and PM . We find the

the result depends only weakly on whether we take

these corrections from [30] or from [31]. Evaluating

this expression yields

(h̄c)3|φ1s|2avg = (7.21 ± 0.03) × 10−4 MeV3 (9)

The uncertainty is determined from the standard de-

viations of the three atomic calculations reported in

[36] and of the overlap and the exchange corrections of

Bahcall and Vatai. These are combined in quadrature,

then doubled to give the 95% C.L. range given in

Eq. (9). This procedure thus takes into account dif-

ferences apparent from the spread among competing

calculations, but not those that could arise if the calcu-

lations being compared employed common but flawed

assumptions.

One can recast this numerical result in terms of a

more familiar density, the Schrödinger density for an

electron bound to a point charge Z , evaluated at the

origin. One finds

(h̄c)3|φ1s|2avg = R
(Zαmec2)3

π

∣

∣

∣

∣

Z=32

, (10)

where Eq. (9) determines the numerical proportional-

ity factor, R = 1.333.

(5) BGT convention. In this paper, all BGT values are given

for the neutrino reaction direction, 71Ga(νe, e−) 71Ge.

For the g.s. → g.s. EC direction,

BEC
GT(g.s.)

=
1

2 ji + 1

∣

∣

∣

∣

∣

〈

j f =
3

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A
∑

1=1

σ(i)τ−(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ji =
1

2

〉∣

∣

∣

∣

∣

2

=
2

2 ji + 1

∣

∣

∣

∣

∣

〈

j f =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A
∑

1=1

σ(i)τ+(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ji =
3

2

〉∣

∣

∣

∣

∣

2

≡ 2 B
(ν,e)
GT (g.s.). (11)

Thus, BEC
GT(g.s.) is given as 2B

(ν,e)
GT (g.s.) in Eq. (4).

(6) Weak magnetism correction. [1 + εq] is the correction

to BGT arising from contributions beyond the allowed

approximation. Because of the very low momentum

transfer, these corrections are expected to be small and

dominated by the interference term between the GT

amplitude and weak magnetism. This interference gen-

erates a term linear in the three-momentum transfer.

We find a correction to the GT transition probability of

εq =
2Eν,1s

3mN gA

[

μT =1 +
〈

3
2

−∣
∣

∣

∣

∑A
i=1 �(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

〈

3
2

−∣
∣

∣

∣

∑A
i=1 σ(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

]

,

(12)

where mN is the nucleon mass and μT =1 ≈ 4.706

is the isovector magnetic moment. As the spin

contribution to weak magnetism is effectively

determined by the EC capture rate, only the orbital

contribution must be taken from theory.

While the large isovector magnetic moment makes

the weak magnetism correction relatively insensitive to

nuclear structure uncertainties, one still must estimate

the orbital contribution. We do this using the shell

model (SM), retaining all Slater determinants within

the 2p3/21 f5/22p1/21g9/2 model space, and employing

three effective interactions designed for this space,

GCN2850 [37], jj44b [38], and JUN45 [39].

We selected these interactions because of the

extensive literature comparing their predictions to

experiment, specifically, how well they reproduce

measured moments, transitions, and low-lying nu-

clear spectra. For example, in [39] comparisons are

made to experiment for binding energies, magnetic

and quadrupole moments, B(E2) values, and nuclear

spectra of a large set of 2p3/21 f5/22p1/21g9/2 nuclei,

including both 71Ga and 71Ge. In the paper presenting

the jj44b interaction [38], the properties and spec-

troscopy of odd isotopes of Ga (including 71Ga) were

used as test of its quality. Side-by-side comparisons of

JUN45 and jj44b predictions for spectra, quadrupole

moments, and B(E2) values for the even isotopes of

Ge are made in [40,41], and for the odd-isotopes of Ga

(including 71Ga) in [42]. The literature on GCN2850

predictions is somewhat more limited: the interaction

has been employed in studies of weak processes such

as ββ decay (76Ge) and WIMP scattering (73Ge). Rep-

resentative work includes [43–45].

The dimension of the SM space for 71Ge is about

1.5 × 108. The diagonalizations were performed with

the Lanczos-algorithm code BIGSTICK [46,47]. We

found

〈

3

2

−
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A
∑

i=1

�(i)τ−(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

2

−
〉

=

⎧

⎪

⎨

⎪

⎩

0.48, GCN2850,

0.69, jj44b,

0.005, JUN45,
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so that the ratio that enters in Eq. (12) is

〈

3
2

−∣
∣

∣

∣

∑A
i=1 �(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

〈

3
2

−∣
∣

∣

∣

∑A
i=1 σ(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

exp

=

⎧

⎨

⎩

−0.81, GCN2850,

−1.18, jj44b,

−0.01, JUN45,

where the magnitude of the GT matrix element is taken

from experiment, while the relative sign is the SM

prediction. From the average and standard deviation of

these theory results, we find

〈

3
2

−∣
∣

∣

∣

∑A
i=1 �(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

〈

3
2

−∣
∣

∣

∣

∑A
i=1 σ(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

exp

= −0.7 ± 1.2 (95% C.L.)

where the assigned uncertainty is again twice the stan-

dard deviation. Because the large isovector magnetic

moment dominates Eq. (12), the estimate of the forbid-

den corrections is relatively stable, despite substantial

differences in the SM estimates of the orbital angular

momentum matrix element. The end result

εq = (4.9 ± 1.5) × 10−4 (95% C.L.)

shows that the weak magnetism correction is negli-

gible. We have also evaluated this correction using

the full momentum dependence of the weak transi-

tion amplitude, doing a standard multipole expansion,

obtaining a result consistent with the above to the

precision shown.

(7) Radiative corrections. The factor [1 + gv,b]EC is the

EC radiative correction. Past work has either explicitly

[36] or implicitly assumed that radiative corrections

would affect the electron capture rate and the in-

verse neutrino capture cross section similarly, and

thus would be effectively included in calculations that

extract an effective GT matrix element from elec-

tron capture, then use that amplitude in computing

the inverse (νe, e−) reaction. Sirlin [48] has pointed

out that certain single-nucleon short-range contribu-

tions to radiative corrections are universal. But other

contributions, notably bremsstrahlung, affect electron

capture and neutrino reactions unequally, with the dif-

ferences dependent on the Q value of the reaction [49].

When we evaluate the corresponding corrections for

neutrino capture [1 + gv,b](ν,e), we will obtain a ratio

of radiative corrections that isolates the nonuniversal

contribution, which we will then evaluate.

Collecting all of the results from this section and utilizing

the 11.43 ± 0.03 d (1σ ) half-life of 71Ge we find

ω = (7.019 ± 0.037) × 10−7/s (95% C.L.)

= (8.122 ± 0.122) × 10−6 B
(ν,e)
GT (g.s.) [1 + gv,b]EC

and therefore

B
(ν,e)
GT (g.s.)[1 + gv,b]EC ≡ B̃

(ν,e)
GT (g.s.)

= 0.0864 ± 0.0013 (95% C.L.) (13)

where the various uncertainties noted above have been com-

bined in quadrature. The ground-state transition probability

is conservatively known to a precision of about 1.5%: the

primary motivation for the detailed discussion above was to

establish this uncertainty. Our recommended best value of

0.0864 is consistent with most past estimates of this quantity,

e.g., 0.087 [22], 0.0863 [36], and 0.0864 [50], though the

agreement is a bit fortuitous, arising because differences in

rate components cancel.

III. THE 71Ga(νe, e
−) 71Ge GROUND STATE CROSS

SECTION

The 71Ga(g.s.)(νe, e−) 71Ge(g.s.) neutrino capture cross

section can be written in terms of B̃
(ν,e)
GT (g.s.),

σg.s. =
G2

F cos2 θC

π
peEe F (Z f , Ee) g2

A B̃
(ν,e)
GT (g.s.)

[1 + gv,b](ν,e)

[1 + gv,b]EC

[1 + εq]. (14)

Nuclear recoil has been neglected as the target mass MT �
Ee. We evaluate the cross section for electron-capture neutri-

nos produced by 51Cr and 37Ar, for which the contributing

lines are listed in Table I.

The neutrino energies Eν and the corresponding branching

ratios are computed from the respective Q values in 51Cr

and 37Ar, 752.4 and 813.9 keV, the K-shell binding ener-

gies, 5.99 and 3.21 keV, the L-shell binding energies, 0.70

and 0.33 keV, the M-shell binding energies, 0.074 and 0.029

keV, the K/L/M branching ratios of 0.891/0.094/0.016 and

0.902/0.0866/0.011, and the 9.93% branching ratio for 51Cr

to decay to the first excited 5
2

−
state in 51V at 321.1 keV

The various terms in Eq. (14) are

(1) Kinematics. The energy and three-momentum magni-

tude of the outgoing electron are denoted Ee and pe,

respectively. For the neutrino reactions of interest off
71Ga,

Ee = Eν − QEC + me − 0.09 keV,

where QEC in given in Eq. (2). We follow Bahcall

[36] in including a very small 0.09 keV correction

for the energy lost to electronic rearrangement, as the

electron cloud adjusts to the nuclear charge change.

For transitions to the 5
2

−
(175 keV) and 3

2

−
(500 keV)

excited states in 71Ge, the nuclear excitation energies

would be added to QEC.
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TABLE I. Neutrino source parameters and various correction factors that enter into the calculation of the cross section σg.s.(νe + 71Ga →
e− + 71Ge) for 51Cr and 37Ar neutrino sources. We report the energy of the incoming neutrino, Eν , the corresponding neutrino branching ratio,

and the energy of the final-state electron, Ee. F (Z f , Ee) is the Coulomb factor of the electron, obtained by combining the various correction

factors F0, L0, U , and S (see text). Finally, εq governs the strength of the forbidden corrections to the GT amplitude, and [1 + gv,b](ν,e)/[1 +
gv,b]EC measures the difference in radiative corrections that enter into the calculation of the respective cross sections for neutrino capture and

the inverse process of electron capture.

Source Eν (MeV) Branching Ee (MeV) F0 L0 U S F (Z f , Ee) 1 + εq (95% C.L.)
[1+g

v,b](ν,e)

[1+g
v,b]EC

51Cr 0.7524 0.0140 1.031 2.791 1.0034 0.9986 0.9920 2.774 1.0034 ± 0.0010 0.995

0.7518 0.0842 1.030 2.791 1.0034 0.9986 0.9920 2.775 1.0034 ± 0.0010 0.995

0.7465 0.8025 1.025 2.795 1.0035 0.9986 0.9920 2.779 1.0034 ± 0.0010 0.995

0.4323 0.0015 0.711 3.335 1.0053 0.9985 0.9876 3.306 1.0017 ± 0.0005 0.997

0.4317 0.0092 0.710 3.338 1.0053 0.9985 0.9876 3.309 1.0017 ± 0.0005 0.997

0.4264 0.0886 0.705 3.360 1.0053 0.9985 0.9874 3.330 1.0017 ± 0.0005 0.997
37Ar 0.8138 0.0111 1.092 2.750 1.0031 0.9986 0.9925 2.734 1.0037 ± 0.0011 0.995

0.8135 0.0866 1.092 2.750 1.0031 0.9986 0.9925 2.734 1.0037 ± 0.0011 0.995

0.8107 0.9023 1.089 2.752 1.0031 0.9986 0.9925 2.736 1.0037 ± 0.0011 0.995

(2) Coulomb corrections. F (Z f , Ee) corrects the phase

space for the Coulomb distortion of the outgoing elec-

tron plane wave. Following [51], [52], and [53] this

correction is decomposed as follows:

F (Z f , Ee) = F0(Z f , Ee) L0(Z f , Ee)U (Z f , Ee) S(Z f , Ee)

with

F0(Z f , Ee) = 4(2peRN )2(γ−1)eπy |�(γ + iy)|2

[�(1 + 2γ )]2
,

γ ≡
√

1 − (αZ f )2, y ≡ αZ
Ee

pe

.

F0 is taken from the solution of the Dirac equation for

an electron of momentum pe in a point Coulomb po-

tential generated by a charge Z f , with Z f = 32 here.

This correction is kept finite by its evaluation at the

nuclear surface, often taken to be RN ≈ 1.2A1/3 fm

and interpreted as the edge of a nucleus of uniform

density. We fix the 71Ge rms charge radius to 4.05 fm,

the average of the charge radii for 70Ge and 72Ge, as

measured in electron scattering [54], then use the rela-

tionship for a nucleus of uniform density to determine

RN =
√

5

3

√

〈r2〉 = 5.23 fm ≈ 1.263A1/3 fm|A=71,

which we use in the evaluation. This initial estimate

then must be corrected:

(1) L0 accounts for most effects of the finite charge

distribution. For a nucleus with a uniform density

and thus a sharp surface at RN , the Dirac solution

can be continued to the origin by numerically in-

tegrating. We take L0 from the tables of Behrens

and Janecke [53], who performed the integration

for RN = 1.2A1/3 fm. We adjusted that result to

account for the difference between this estimate of

the rms charge radius and the experimental value

used here, using Eq. (16) of [52] (or Eq. (2) of

[55]).

(2) The factor U (Z f , Ee) represents the difference

between the Coulomb distortion computed for

a uniform charge distribution and that resulting

from the use of a more realistic Fermi distribu-

tion with an equivalent rms radius. We use the

parametrization of Wilkinson [51], also recently

discussed in [52] [see Eqs. (29) and (30)].

(3) S(Z f , Ee) is a correction for atomic screening

within the nuclear volume, which we take from

Rose [56]. A comparison of various prescriptions

for the atomic screening correction is presented

in [52] (see Fig. 5 in this reference), showing

generally good agreement, except for very low

Ee � 1.1me.

Table I gives the Coulomb factors F (Z f , Ee) and

the constituent corrections F0, L0, U , and S for
71Ga(νe, e−) 71Ge for 51Cr and 37Ar neutrino sources.

(3) Weak magnetism. [1 + εq] corrects for the omission

of forbidden contributions, dominated in this case by

the interference between the GT amplitude and weak

magnetism. After integrating over electron angles, the

correction linear in weak magnetism takes on a form

identical to Eq. (12),

εq =
2

3mN gA

(

Eν + Ee −
m2

e

Ee

)

×

⎡

⎣μT =1 +
〈

3
2

−∣
∣

∣

∣

∑A
i=1 �(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

〈

3
2

−∣
∣

∣

∣

∑A
i=1 σ(i)τ−(i)

∣

∣

∣

∣

1
2

−〉

exp

⎤

⎦,

(15)

apart from the kinematic factor. The resulting for-

bidden correction εq is shown in Table I. The 2σ

uncertainty reflects the differences among the three

SM estimates of the orbital matrix element, as dis-

cussed previously.

(4) Nonuniversal radiative correction. The ratio

[1 + gv,b](ν,e)

[1 + gv,b]EC
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accounts for the difference between the radiative cor-

rections [48] for neutrino absorption and those for

electron capture [contained in B̃GT(g.s.)]. While in a

given low-energy weak nuclear process the radiative

correction can be significant (a few percent [49]), it is

frequently assumed [36] that these corrections affect

inverse reactions (e−, νe) and (νe, e−) similarly, and

thus are implicitly included when the (νe, e−) nuclear

transition matrix elements are determined from known

electron-capture rates. Were this the case, the ratio

above would be 1. However, while this universality

assumption holds for charge-current reactions produc-

ing electrons/positrons only in the final or only in the

initial state, Kurylov et al. [49] have shown that it is not

preserved in the comparison between electron capture

and (νe, e−).

Kurylov et al. [49] evaluated the one-nucleon W γ -

loop and bremsstrahlung contributions to the radiative

corrections (Figs. 1(a) and 3 of [49]), finding that

the bremsstrahlung contribution breaks the universal-

ity due to its dependence on the Q value. While

the calculation treats the electron in (e−, νe) as a

free state, the results evaluated for Ee → me should

approximate those needed for the weakly bound

electrons of interest here. (The radiative corrections

describe short-range loops and radiation associated

with the strong Coulomb field near the nucleus. The

bound electron wave function varies over atomic

scales, not nuclear ones, providing justification for this

assumption. In [57], similar issues are discussed in

comparing muonium decay with free muon decay.)

The results shown in the last column of Table I were

derived using Eqs. (4), (5), (51), and (52) of [49]. The

difference in the one-nucleon/bremsstrahlung contri-

butions to electron capture [implicitly absorbed into

B̃GT(g.s.)] and neutrino reactions yields a correction

to the neutrino absorption cross section of ≈0.5%.

In addition to the effects discussed above, there are

nucleus-dependent radiative corrections: contributions

involving more than one nucleon (Fig. 1(b) of [49])

as well as the nuclear Green’s function corrections to

terms treated in leading order as one-nucleon contri-

butions. Such corrections for the axial current have not

yet been estimated and thus are not included here.

Cross sections. Combining all of the results above yields

σg.s. =

{

(5.39 ± 0.08) × 10−45 cm2, 51Cr,

(6.45 ± 0.10) × 10−45 cm2, 37Ar
(16)

at 95% C.L.

IV. EXCITED-STATE CONTRIBUTIONS

The excited-state contributions, which we will find in-

crease the total cross section by about 6%, can also be

extracted from experiment, specifically from forward-angle

(p, n) scattering. However, past work has either failed to em-

ploy an appropriate effective interaction, or failed to propagate

associated experimental and theoretical uncertainties, raising

questions about the reliability of the extracted GT strengths.

In this section we describe an improved extraction that yields

both the needed transition strengths and reasonable estimates

of their uncertainties.

Past work on excited-state contributions. The potential im-

portance of excited-state contributions was noted by Kuzmin

[58], when he proposed 71Ga as a solar neutrino detector in

1966. In fact, one of the motivations for the 51Cr and 37Ar

source experiments is that they populate the same excited

states—the 5/2− and 3/2− states at 175 and 500 keV—that

contribute to 7Be solar neutrino capture (see Fig. 1).

In his 1978 Ga cross section study, Bahcall [59] used

systematics to constrain the excited-state contributions, iden-

tifying transitions in neighboring nuclei that might be similar;

that is, naively of a 2p3/2 ↔ 1 f5/2 character. Bahcall identi-

fied nine 3/2− → 5/2− transitions of known strength with

log( f t ) values ranging from 5.9 to 7.5, and consequently

assigned log( f t ) � 6 to the transition to the 175 keV state in
71Ge. Similarly, he found eight 3/2− → 3/2− transitions with

log( f t ) values ranging from 5.0 to 5.8, assigning log( f t ) � 5

to the transitions to the 500 and 710 keV states. Using these

bounds, Bahcall argued that the excited-state contribution to

the 51Cr absorption cross section would be � 14.6%. But the

potential fallibility of such arguments was pointed out in [22],

as there are exceptions to these patterns in neighboring nuclei.

Alternatively, one might attempt a microscopic calculation

of the strengths of the excited-state transitions. Indeed, SM

calculations of the BGT values for exciting the 175 and 500

keV states were performed early on by Baltz et al. [60] and

by Mathews et al. [61]. But even today—as we will describe

later—this is a dubious undertaking due to the weakness of

these transitions. In the allowed approximation, the transition

probabilities are proportional to the BGT value,

BGT( jiαi → j f α f ) =
1

2 ji + 1
|MGT|2

=
1

2 ji + 1
|〈 j f α f |

∣

∣ÔJ=1
GT

∣

∣| jiαi〉|2

ÔJ=1
GT ≡

A
∑

j=1

σ( j)τ+( j), (17)

where σ is the Pauli spin matrix, τ+ is the isospin raising

operator, || denotes a matrix element reduced in angular mo-

mentum, and jiαi and j f α f denote the quantum numbers

of the initial and final states, respectively, with the angular

momentum j made explicit. From the known EC rate for 71Ge

and from the lower bounds Bahcall used for the transitions to

the 175 and 500 keV levels, one finds

BGT(71Ga g.s. → 71Ge 175 keV) � 0.004,

BGT(71Ga g.s. → 71Ge 500 keV) � 0.04, (18)

values smaller than the ground-state BGT value of Eq. (13).

As the total BGT strength, summed over all final states, is

given approximately by the Ikeda sum rule 3(N − Z ) = 27

[62], we see that the transitions to the 5/2− and 3/2− states

exhaust less than ≈0.01% and 0.1% of the sum-rule strength,

respectively. Consequently, one expects calculations to be

sensitive to wave-function details, including the interactions
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used, the adopted SM spaces, etc. A weak transition typi-

cally indicates substantial interferences among the individual

amplitudes in the transition density matrix. Indeed, early at-

tempts to estimate the needed excited-state contributions to

the cross section, using the SM [60,61], schematic effective

interactions, and truncated model spaces, yielded results that

varied by orders of magnitude, depending on the specific

simplifications adopted.

Here we make use of the full power of the modern

SM—carefully tuned interactions like those discussed in the

previous section, and the ability to treat all Slater determi-

nants in the 2p3/21 f5/22p1/21g9/2 shell—but only to estimate

corrections that typically alter results at the level of � 10%.

Apart from these corrections, the needed weak GT strengths

are extracted from experiment.

Charge-exchange reactions. The possibility that excited-

state GT strength could be measured through surrogate

reactions, (p, n) or (3He, t ), generated significant interest

in the solar neutrino community. The approximate propor-

tionality between medium-energy forward-angle (p, n) cross

sections and nuclear BGT profiles is well established [63].

This method was applied to the 71Ga transitions of interest

by Krofcheck et al. [64]. From (p, n) measurements at 120

and 200 MeV they deduced

B
(p,n)

GT (71Ga g.s. → 71Ge 175 keV) � 0.005,

B
(p,n)
GT (71Ga g.s. → 71Ge 500 keV) = 0.011 ± 0.002,

(19)

results qualitatively consistent with Bahcall’s expectations

based on systematics. However, the use of this method in

the case of weak transitions can be problematic, as described

in [22,23]. Here we extend these previous analyses with the

goal of better quantifying the excited-state contributions to the

neutrino absorption cross section.

The same transitions were studied using (3He, t ) at

420 MeV [65]. This method can achieve higher resolution,

but has been applied less frequently to the light nuclei we will

later use to test the reliability of charge-exchange mappings of

Gamow-Teller strength. The results are

B
(p,n)
GT (71Ga g.s. → 71Ge 175 keV) = 0.0034 ± 0.0026,

B
(p,n)
GT (71Ga g.s. → 71Ge 500 keV) = 0.0176 ± 0.0014.

(20)

As the tension between Eqs. (19) and (20) for the transition

to the 3
2

−
state exceeds 3σ , we will treat the two data sets

separately, rather than combining them.

Effective operators. The work in [22,23] exploited the

empirical observation [66] that the effective operator for

forward-angle (p, n) scattering includes a subdominant

contribution from a tensor operator ÔJ=1
T ,

M (p,n) ≡ MGT + δMT, MT ≡ 〈 j f α f |
∣

∣ÔJ=1
T

∣

∣| jiαi〉,

ÔJ=1
T =

√
8π

A
∑

j=1

[Y2(� j ) ⊗ σ( j)]J=1τ+( j), (21)

where δ ≈ 0.1, so that

B
(p,n)
GT =

1

2 ji + 1
|〈 j f α f ||M (p,n)|| jiαi〉|2. (22)

The need for the tensor correction in forward-angle scatter-

ing, where the momentum transfer is minimal and thus the

interactions can occur at long range, should not be a surprise:

the central part of the one-pion-exchange potential generates

a target response proportional to MGT while the tensor part

generates MT. In cases where MGT is weak but MT is strong,

M (p,n) will be an unreliable probe of BGT strengths. An ex-

ample where this would be the case is an �-forbidden M1

transition, where the dominant amplitude links orbitals with

the quantum numbers [n, �, j + 1
2
] and [n − 1, � + 2, j = � +

3
2
]. Such transitions are often found at low energy in nu-

clear spectra, as a consequence of an approximate pseudospin

symmetry [67]. A candidate �-forbidden transition [22] is
71Ga(3/2−) → 71Ge(5/2−), which would be described in the

naive SM as 1 f5/2 (n hole) → 2p3/2 (p particle). State-of-the-

art SM studies performed here and in another recent study [68]

show that the transition density matrix does have an important

�-forbidden component.
Estimating the size of the tensor contribution. The analysis

in [22] estimated δ by examining GT transitions in 1p- and
2s1d-shell nuclei, but did not evaluate the experimental and
theoretical errors in the determination, nor how they would
propagate into an estimate of δ and consequently the 71Ga
excited-state cross section. Given the BEST anomaly, it is now
important to do so. The data examined in [22] were sensibly
chosen, involving mirror transitions where β decay and (p, n)
transition strengths were both available from experiment, in-
cluding transitions near closed shells where levels are well
separated and thus their SM wave functions less sensitive
to small changes in effective interactions. However, we have
made some changes in the data set, reflecting new information
that has become available. We also assess theoretical uncer-
tainties by employing several available effective interactions
in computing MT: to relate M (p,n) and MGT, |MT| and the sign
of MT/MGT must be computed.

The data we use in determining δ are given in Table II

(compare to Table 1 of [22]) and consist primarily of isospin

mirror transitions where both (p, n) and β-decay strengths

are known. Eight of these cases are taken from the compi-

lation of B
(p,n)
GT of [66]. To convert the proportionality between

(p, n) scattering and β decay into an equivalence, a nor-

malization must be introduced. Often this is done by using,

for each target nucleus, a strong β decay transition, which

can still be problematic if there are corrections due to ÔJ=1
T

that affect normalizing transitions in differential ways. The

study of [66] instead computed normalizing cross sections in

the distorted-wave impulse approximation, employing a phe-

nomenological interaction fitted to a large body of data. This

then avoids the issue of nucleus-by-nucleus normalization

systematics.

Here we make two modifications in the compiled B
(p,n)
GT

values. The first is a reduction by a factor of (1.251/1.276)2

to account for the current value of gA. The second addresses

the absence of experimental errors on the compiled [66] BGT

values. In previous work a value for δ was obtained by a
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TABLE II. Weak transitions and their beta decay and (p, n) amplitudes deduced from experiment. The sign of MGT has been taken as

positive. MT and its sign relative to MGT have been taken from theory, except for the case of the sign of 32S (see text).

Reactiona log( f t )b (2Ji + 1)BGT
B

(p,n)
GT

BGT
MGT M (p,n) MT

c MT

M (p,n)

13C( 1

2

−
) ↔ 13N( 1

2

−
) 3.6648(5) 0.404 ± 0.002 1.85 ± 0.22 0.636 ± 0.002 0.87 ± 0.05 2.8 ± 0.3 3.2

14C(0+)
14O(0+)

}

→ 14N(1+ 3.95 MeV) 3.131(17) 2.79 ± 0.11 0.97 ± 0.12 1.67 ± 0.03 1.65 ± 0.10 0.086 ± 0.009 0.052

15N( 1

2

−
) ↔ 15O( 1

2

−
) 3.6377(8) 0.509 ± 0.003 2.04 ± 0.24 0.713 ± 0.002 1.02 ± 0.06 3.3 ± 0.3 3.2

17O( 5

2

+
) ↔ 17F( 5

2

+
) 3.3562(5) 6.280 ± 0.011 0.91 ± 0.11 2.506 ± 0.002 2.39 ± 0.14 1.7 ± 0.2 0.69

18O(0+) ↔ 18F(1+) 3.5700(19) 3.045 ± 0.013 1.12 ± 0.13 1.745 ± 0.003 1.84 ± 0.11 −0.04 ± 0.03 −0.02
18O(0+)
18Ne(0+)

}

→ 18F(1+ 1.70 MeV) 4.470(15) 0.128 ± 0.004 1.33 ± 0.17 0.358 ± 0.006 0.41 ± 0.025 0.8 ± 0.3 2

19F( 1

2

+
) ↔ 19Ne( 1

2

+
) 3.2329(24) 3.184 ± 0.024 1.29 ± 0.15 1.784 ± 0.007 2.02 ± 0.12 0.08 ± 0.03 0.04

19F( 1

2

+
) ↔ 19Ne( 3

2

+
1.55 MeV) 5.71(5) 0.0294 ± 0.0034 2.65 ± 0.41 0.172 ± 0.010 0.279 ± 0.014 1.41 ± 0.04 5.06

26Mg(0+)
26Si(0+)

}

→ 26Al(1+ 1.06 MeV) 3.550(11) 1.063 ± 0.027 1.03 ± 0.13 1.031 ± 0.013 1.05 ± 0.06 1.20 ± 0.08 1.14

32S(0+) ↔ 32Cl(1+) 6.74(18) 0.0021 ± 0.0009 6.9+7.3
−4.1 0.046 ± 0.010 0.116 ± 0.043 0.99 ± 0.05 8.6

39K( 3

2

+
) ↔ 39Ca( 3

2

+
) 3.6326(10) 1.060 ± 0.008 1.41 ± 0.17 1.030 ± 0.004 1.22 ± 0.07 3.1 ± 0.3 2.5

aTransitions are between ground states unless otherwise specified.
bTaken from the ENSDF compilations.
c2s1d-shell uncertainties (excluding 39K → 39Ca) correspond to the 1σ spread of matrix elements computed from the USDA, USDB [75], and

Brown-Wildenthal [74] interactions. All other MT uncertainties are assumed to be 10%.

simple fit, which weights all data points equally and precludes

a realistic estimate of the uncertainty for the derived δ. As

discussed below, we now include several new transitions in

our analysis where uncertainties are available. For the transi-

tions we retain from the tabulation of [66], we have estimated

uncertainties using [69], which [66] references for experi-

mental details. The uncertainties tabulated there include the

efficiency determination ( ±8%), beam normalization (±5%),

neutron attenuation (±5%), counting statistics (±3%), and

background subtractions (±5%). Combining these in quadra-

ture yields an estimated ±12% uncertainty, which we adopt

for all of the stronger transitions in Table II. (Reference [69]

also includes a correction for target water absorption, but

that correction addresses an issue specific to one target.) The

uncertainty inherent in (p, n) mappings of BGT strength has

been frequently discussed, with most estimates in range of

10—20% [70]. Our choice of 12% is consistent with this

range.

Two additional transitions used in [22,23], 32S(0+) ↔
32Cl(1+) and 39K( 3

2

+
) ↔ 39Cl( 1

2

+
), are candidate

�-forbidden M1 transitions sensitive to the tensor amplitude.

One expects both to be dominated by the transition density

2s1/2 ↔ 1d3/2. The 39K M (p,n) given in [22] was extracted

from raw (p, n) cross sections as an order-of-magnitude

estimate: there is no experimentally extracted B
(p,n)
GT value. No

meaningful error can be assigned to this very weak transition,

so it is not included here. The 32S transition was reconsidered

in [71], where a large uncertainty was assigned, which we

adopt for our analysis. The impact of this transition on the

current analysis is greatly diminished by the size of that

uncertainty.

We also include two 2s1d-shell transitions not consid-

ered in earlier analyses, one a recent result for 26Mg(0+) →
26Al(1+, 1.70 MeV), obtained from (3He, t ). While this result

was normalized to the 26Al ground state β decay rate, the

unusually weak tensor contribution we predict for the normal-

izing transition (� 1%) allows us to accept this result. The

second is 19F( 1
2

+
) → 19Ne( 3

2

+
, 1.55 MeV), a transition that

is strongly �-forbidden, according to the shell model, and thus

potentially quite sensitive to ÔJ=1
T .

The data displayed in Table II include β decay log( f t )

values taken from the ENSDF data files [72], from which we

determine MGT and its uncertainty, and calculations of MT;

one needs both the magnitude and sign of this quantity relative

to MGT. In nine of the tabulated cases the shell-model calcu-

lations we perform (see below) yield a positive relative sign,

and thus a positive δ to account for the observed enhancement

in |M (p,n)|/|MGT|. There are two exceptions: The three shell

model calculations we performed for 18O(0+) → 18F(1+) all

predict a negative MT, but with a magnitude so small that it has

no impact on our study. For 19F( 1
2

+
) → 19Ne( 3

2

+
, 1.55 MeV),

the shell model calculations disagree on the sign, and all

underestimate the already quite suppressed MGT derived from

experiment. We have assumed constructive interference as this

is indicated by experiment and is consistent with the calcula-

tion that best reproduces the known value of |MGT| (the USDA

shell model result described below).

Our shell-model calculations of MT were performed with

the Cohen and Kurath [73] interaction in the 1p shell and the

Brown-Wildenthal [74] and USDA/USDB [75] interactions

in the 2s1d shell. The availability of three 2s1d interactions

that each do well in reproducing 2s1d spectroscopy provides

an opportunity to assess theory uncertainties. The 2s1d-shell

values in the table are the means and standard deviations of the

three calculations. There is excellent consistency, typically at

the level of 10%. Even by eye, there is clearly a strong correla-

tion between the cases in Table II where |MT|/|MGT| is large

and those where the experimental ratio |B(p,n)
GT |/|BGT| is sig-
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nificantly above 1. In the four cases where the |B(p,n)
GT |/|BGT|

exceeds 1.4, |MT|/|MGT| ranges from 2.5 to 8.6.

Extracting MGT from (p, n) cross sections. We use these

results to test whether the inclusion of the tensor operator in

Eq. (21) improves the agreement between M (p,n) and MGT.

Evaluating the χ2 per degree of freedom with and without MT

yields

1

11

A
∑

i=1

[MGT(i) − M (p,n)(i)]2

σ (i)2
≈ 9.4,

1

10

A
∑

i=1

(MGT(i) + δMT(i) − M (p,n)(i))2

σ (i)2
≈ 1.0, (23)

where δ = 0.076, and σ (i) is generated by combining un-

certainties for M (p,n) and MGT in quadrature. While a simple

proportionality between BGT strength and (p, n) scattering for

individual states is not supported by the data, the propor-

tionality is restored with the introduction of MT to a level

consistent with the statistical fluctuations of the data. The

variation around the minimum to achieve a unit change in the

total χ2 yields the estimate δ = 0.076 ± 0.008 at 1σ .

The analysis can also be done by examining each target

separately: this approach has advantages in understanding the

relationship of the current work to that of [22,23]. For each

target i we determine a probability distribution for δ(i) from

the relation MGT(i) + δ(i)MT(i) − M (p,n)(i) = 0, treating the

errors on MGT(i), MT(i), and M (p,n)(i) as Gaussian with the

uncertainties listed in Table II. The convolution was done by

discretizing the probability distributions in bins, and indepen-

dently by Monte Carlo, and the results cross-checked to verify

their numerical accuracy. The theory errors on MT (see Ta-

ble II) were computed from the standard deviations of the SM

results in the cases where multiple effective interactions were

explored; in the five cases where only a single shell-model

calculation was done, we assigned an uncertainty of 10%, a

value typical of the other cases. (In the simple χ2 fit described

previously, we used the best values for the MT, neglecting the

uncertainties.)

The resulting probability distributions for the δ(i), while

not exactly Gaussian, turn out to be nearly so in all cases.

The equivalent Gaussian means and standard deviations are

given in Table III. These results can then be combined to

form the overall uncertainty-weighted mean and standard de-

viation, δ = 0.074 ± 0.008 (1σ ), a result nearly identical to

that obtained more simply from the χ2. This is our final result

for δ.

In this fit, the result is dominated by four transitions,

from 13C, 15N, 39K, and 19F to the excited state, which are

four of the five cases where MT exceeds MGT by factors �
2.5. If only these four transitions are retained, one obtains

δ = 0.078 ± 0.009. The other seven constraints have a min-

imal effect, shifting the mean by ≈5% and improving the

precision by only ≈6%. This reflects the fact that in comput-

ing the weighted mean and uncertainty, the contributions of

these seven are diluted by their low weights, wi = 1/σ 2
i , for

the σi of Table III. Thus it is somewhat fortuitous that earlier

work [22,23] in which central values were fit, thereby weight-

TABLE III. The Gaussian means δ̄i and standard deviations σi for

the distributions δi obtained from each of the reactions. The weighted

combination of these results yields δ = 0.074 ± 0.008 (1σ ).

Reaction δ̄i σi

13C( 1

2

−
) ↔ 13N( 1

2

−
) 0.082 0.020

14C(0+)
14O(0+)

}

→ 14N(1+ 3.95 MeV) −0.24 1.21

15N( 1

2

−
) ↔ 15O( 1

2

−
) 0.093 0.021

17O( 5

2

+
) ↔ 17F( 5

2

+
) −0.070 0.085

18O(0+) ↔ 18F(1+) −1.59 2.48
18O(0+)
18Ne(0+)

}

→ 18F(1+ 1.70 MeV) 0.063 0.040

19F( 1

2

+
) ↔ 19Ne( 1

2

+
) 2.69 1.80

19F( 1

2

+
) ↔ 19Ne( 3

2

+
1.55 MeV) 0.076 0.012

26Mg(0+)
26Si(0+)

}

→ 26Al(1+ 1.06 MeV) 0.015 0.051

32S(0+) ↔ 32Cl(1+) 0.070 0.045
39K( 3

2

+
) ↔ 39Ca( 3

2

+
) 0.061 0.023

ing each target equally, gave results consistent with the range

determined here. (The results from [22,23] are δ = 0.096 and

0.069 for the 1p and 2s1d shells, respectively.)

These results and their relevance to the 71Ga(νe, e−) 71Ge

cross section are apparent from Fig. 2. The agreement between

the (p, n) amplitude |M (p,n)| and |MGT|, which is excellent for

transitions with strong BGT values, systematically deteriorates

as BGT is reduced. But this deterioration is corrected by the in-

clusion of MT. The shaded region at small BGT is that relevant

for the two 71Ga excited-state transitions: based on the trends

apparent from the figure, the interpretation of (p, n) data for

these transitions would not be reliable unless the effects of MT

are treated.

From Fig. 2 one sees that a fixed δ brings the (p, n) results

into accord with known Gamow-Teller strengths throughout

the 1p and 2s1d shells. The absence of any evident depen-

dence on mass number justifies the use of the same δ in

our 71Ga cross section work. It would be helpful to verify

this assumption by extending the results of Fig. 2 into the

2p3/21 f5/22p1/21g9/2 shell. Obstacles to doing this success-

fully include the absence of an experimental compilation for

heavier nuclei analogous to that of [66], fewer opportunities

to exploit isospin mirror transitions (which play a major role

in the analysis presented here), and the theory challenge of

evaluating the tensor amplitudes in systems with higher level

densities and consequently more delicate level mixing.

V. RECOMMENDED EXCITED-STATE BGT VALUES

With δ = 0.074 ± 0.008 (1σ ) determined, we can now

extract from (p, n) measurements best values and estimated

uncertainties for MGT for the two excited-state contributions

to 71Ga(νe, e−) 71Ge, using

M (p,n) = MGT + δMT.

This requires us to compute the magnitude and relative sign

of MT. The theory task is more challenging than that of the

previous section because the effective interactions available
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FIG. 2. In blue: correspondence between the (p, n) amplitude |M (p,n)| and the β-decay amplitude |MGT| is excellent when BGT is strong,

but deteriorates for weaker BGT. In red: when the effects of MT are included in the relationship between MGT from M (p,n), such discrepancies

disappear. The two excited states that contribute to the BEST cross section have weak transition strengths that would place them in the shaded

region, where large tensor contributions would be anticipated.

for the relevant shell-model space, 2p3/21 f5/22p1/21g9/2, are

known to be less successful in their spectroscopic predictions.

These nuclear physics uncertainties should be reflected in the

range of the predicted MT.

As was done in the 2s1d shell, calculations were per-

formed with three well-tested interactions, GCN2850 [37],

jj44b [38], and JUN45 [39], including all m-scheme Slater

determinants that can be formed in the valence space (≈108

basis states). The results are shown in Table IV. There is

reasonable agreement among these calculations on magni-

tudes and signs, and, as before, we combine the results to

obtain best values and 1σ ranges. The combined results are

TABLE IV. 71Ga SM transitions matrix elements evaluated for each of three interactions. For transitions to the two excited states in 71Ge,

the predicted values and 1σ ranges for MT are used in the extraction of |MGT| from forward-angle (p, n) measurements. We include the SM

values for MGT, denoted MSM
GT , to illustrate that SM GT transition strengths vary considerably for weak transitions, even when highly tuned

effective interactions are employed. For this reason MGT is extracted from experiment, not from theory. Theory is used only in estimating MT,

a correction in the (p, n) analysis that generically enters at the level of ≈8%. This strategy dilutes the impact of nuclear structure uncertainties.

Transition Interaction MSM
GT MT MT

3

2

− → 1

2

−
(g.s.) JUN45 0.791 −0.516

GCN2850 0.361 −0.320 −0.37 ± 0.13

jj44b 0.290 −0.283
3

2

− → 5

2

−
(175 keV) JUN45 0.145 −0.764

GCN2850 0.159 −0.410 −0.50 ± 0.24

jj44b 0.264 −0.311
3

2

− → 3

2

−
(500 keV) JUN45 0.096 0.062

GCN2850 0.196 −0.178 −0.088 ± 0.13

jj44b 0.505 −0.148
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denoted MGT and MT. The results for MT—its magnitude

and sign relative to MGT—are needed in the analysis below.

An immediate cross-check on the nuclear structure comes

from the known BGT value derived from the 71Ge electron

capture rate, BGT = 0.0864 ± 0.0013 (2σ ), from which one

finds MGT = 0.588 ± 0.002 (1σ ), in good agreement with the

shell-model result, MGT = 0.48 ± 0.27 (1σ ). After we extract

the MGT’s from the (p, n) results, we will be able to make

similar comparisons for the excited states. Note that the shell

model indicates largely destructive interference between the

MGT and MT amplitudes for the three transitions of interest.

Analysis for Krofcheck et al. The forward-angle (p, n) scat-

tering results of Krofcheck et al. [64] for exciting the 71Ge

ground-state ( 1
2

−
), 175 keV ( 5

2

−
), and 500 keV ( 3

2

−
) lev-

els yield B
(p,n)
GT = 0.089 ± 0.007, <0.005, and 0.011 ± 0.002,

respectively. These results were normalized to the analog tran-

sition using an energy-dependent coefficient relating B
(p,n)
GT to

cross sections. As we are concerned with states in a narrow

energy band, we can avoid any issues with this choice by

forming the ratios

B
(p,n)
GT

(

5
2

−)

B
(p,n)
GT (g.s.)

≡
∣

∣MGT

(

5
2

−)+ δMT

(

5
2

−)∣
∣

2

∣

∣MGT(g.s.) + δMT(g.s.)
∣

∣

2

< 0.06 (68% C.L.), (24)

B
(p,n)
GT

(

3
2

−)

B
(p,n)
GT (g.s.)

≡
∣

∣MGT

(

3
2

−)+ δMT

(

3
2

−)∣
∣

2

∣

∣MGT(g.s.) + δMT(g.s.)
∣

∣

2

= 0.124 ± 0.024 (68% C.L.). (25)

We first consider the transition to the 3
2

−
state. Because the

electron capture MGT is so precisely known, we use the central

value in the analysis below. We insert the values for the two

tensor matrix elements MT and δ, including their uncertainties.

We take the (dominant) sign of MT relative to MGT from

theory. We assume all distributions are normal (Gaussian),

described by the specified standard deviations, then compute

the associated distribution for the needed BGT ratio, which we

find is also well represented by a normal distribution. This

yields

BGT

(

3
2

−)

BGT(g.s.)
≡
∣

∣MGT

(

3
2

−)∣
∣

2

|MGT(g.s.)|2
= 0.121 ± 0.026 (68% C.L.).

(26)

The tensor corrections have little impact, shifting the numera-

tor and denominator similarly, by 3.2% and 4.7% respectively,

with these shifts largely canceling when the ratio is formed.

The central value obtained for |MGT( 3
2

−
)| ≈ 0.20 is consis-

tent with the shell-model range in Table IV, 0.27 ± 0.21.

In our shell-model calculations the density matrices for the

transition to the 175 keV 5
2

−
state are dominated by the the

�-forbidden amplitude 2p3/2 → 1 f5/2, which reaches single-

particle strength in the case of the JUN45 calculation. This

is the reason for the strength of MT and the weakness of

MGT in the shell-model studies of Table IV, and consequently

MT/MGT ≈ −2.6. The destructive interference allows for a

larger |MGT| than would be the case if the tensor contributions

to (p, n) scattering were ignored. As was done for the 500 keV

state, we take into account the uncertainties on the various

quantities by integrating over the probability distributions of

each input variable, taking the ranges of the MT from the

results of Table IV. In this calculation we interpret the experi-

mental bound given in the first of Eqs. (25) as a measurement

of 0 with a one-sided normal distribution described by σ =
0.06. We find

∣

∣

∣

∣

MGT

(

5

2

−)∣
∣

∣

∣

�

{

0.18, 68% C.L.,

0.24, 95% C.L.,

BGT

(

5
2

−)

BGT(g.s.)
�

{

0.089, 68% C.L.,

0.160, 95% C.L.
(27)

Analysis for Frekers et al.. We repeat the analysis for the

Frekers et al. [65] data, as the use of the same effective oper-

ator for (3He, t ) has support from both theory and experiment

[76], while noting that a separate derivation of δ based on data

like those of Table II has not been done for this reaction. We

again form the ratios

B
(3He,t )
GT

(

5
2

−)

B
(3He,t )
GT (g.s.)

≡
∣

∣MGT

(

5
2

−)+ δMT

(

5
2

−)∣
∣

2

∣

∣MGT(g.s.) + δMT(g.s.)
∣

∣

2

= 0.040 ± 0.031 (68% C.L.),

B
(3He,t )
GT

(

3
2

−)

B
(3He,t )
GT (g.s.)

≡
∣

∣MGT

(

3
2

−)+ δMT

(

3
2

−)∣
∣

2

|MGT(g.s.) + δMT(g.s.)|2

= 0.207 ± 0.019 (68% C.L.). (28)

The calculation for the 500 keV 3
2

−
excited state state

proceeds as before, taking into account the values and un-

certainties for the two tensor matrix elements MT and δ, and

taking the relative signs of the MT from theory. This yields

BGT

(

3
2

−)

BGT(g.s.)
= 0.198 ± 0.024 (68% C.L.). (29)

Thus the effects of MT are modest, for the reasons mentioned

above. The central value MGT( 3
2

−
) ≈ 0.26 is consistent with

the theory range of Table IV, 0.27 ± 0.21.

A similar analysis for the Frekers result for the transition

to the 175 keV state yields

0.11

0.065

}

�

∣

∣

∣

∣

MGT

(

5

2

−)∣
∣

∣

∣

�

{

19, 68% C.L.,

0.23, 95% C.L.,

BGT

(

5
2

−)

BGT(g.s.)
= 0.071 ± 0.036 (68% C.L.). (30)

The central value for |MGT( 5
2

−
)| ≈ 0.15 is consistent with the

shell-model range, 0.19 ± 0.07.
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VI. TOTAL CROSS SECTIONS

The total neutrino cross sections for 51Cr and 37Ar can be

expressed in the form [22]

σ = σg.s.

⎡

⎢

⎣
1 + ξ

(

5

2

−) BGT

(

5
2

−
)

BGT(g.s.)
+ ξ

(

3

2

−) BGT

(

3
2

−)

BGT(g.s.)

⎤

⎥

⎦
,

(31)

where the phase-space coefficients, computed from the results

of Table I, are

51Cr : ξ
(

5
2

−) = 0.669, ξ
(

3
2

−) = 0.220,

37Ar : ξ
(

5
2

−) = 0.696, ξ
(

3
2

−) = 0.264. (32)

(For earlier calculations of these coefficients see [22,36].)

Combining the excited-state BGT ratios derived from the

data of Krofcheck et al. [64], Eqs. (26) and (27), with the

ground-state result of Eq. (16) yields

σ (51Cr) =

{

5.69+0.28
−0.06, 68% C.L.

5.69+0.51
−0.15, 95% C.L.

}

× 10−45 cm2,

σ (37Ar) =

{

6.85+0.35
−0.08, 68% C.L.

6.85+0.63
−0.20, 95% C.L.

}

× 10−45 cm2. (33)

The probability distributions for the cross sections were com-

puted numerically by folding the ground-state and excited-

state probabilities. The central values correspond to the most

probable cross section and the ranges contain the 68% and

95% fractions of the most probable results. The excited-state

contributions increase the cross sections by ≈5.6% and 6.2%

for 51Cr and 37Ar, respectively.

Repeating this calculation using the excited-state BGT ra-

tios derived from the data of Frekers et al. [65], Eqs. (29) and

(30), yields

σ (51Cr) =

{

5.85+0.18
−0.10, 68% C.L.

5.85+0.34
−0.20, 95% C.L.

}

× 10−45 cm2,

σ (37Ar) =

{

7.02+0.19
−0.14, 68% C.L.

7.02+0.38
−0.26, 95% C.L.

}

× 10−45 cm2. (34)

The excited-state contributions increase the cross sections by

≈8.3% and 8.8% for 51Cr and 37Ar sources, respectively.

The results of Eqs. (34) and (35) agree at 1σ , but in our

view should not be combined because they depend on input

strengths for the transition to the 3
2

−
state that differ by signif-

icantly more.

The numerically evaluated cross section distributions can

be accurately described as split-normal probability distribu-

tions

P(σ ) ≈
√

2

π

1

σ1 + σ2

[θ (σ̄ − σ )e−(σ−σ̄ )2/2σ 2
1

+ θ (σ − σ̄ )e−(σ−σ̄ )2/2σ 2
2 ], (35)

where σ is dimensionless, in units of 10−45 cm2. The best fits

are obtained by tuning the parameters given above to optimize

FIG. 3. Shaded region: numerically generated probability dis-

tribution for the 51Cr cross section with excited-state contributions

extracted from forward-angle (p, n) cross sections of [64] (see text).

Dashed line: the analytic split-normal fit to these data.

the overall fit. Figure 3, for the case of a 51Cr source and

Krofcheck et al. [64] excited state contributions, illustrates the

quality of the fit. These split-normal distributions will enable

users to adapt our results for any desired confidence level.

Table V gives the numerical values for the fit parameters.

Comparisons to past work. In Table VI we compare our

cross section result to those obtained by other authors in

past years. We briefly comment on the different approaches

taken, summarizing a more complete discussion that appears

in [78].

(1) Bahcall (1997) [36]. This work included, in its esti-

mate of σg.s., overlap and exchange atomic effects, and

used the then prevailing value of QEC = 232.69 ± 0.15

keV. Excited state BGT values were taken from the

(p, n) values of [64].

(2) Haxton (1998) [23]. This work pointed out the need to

include the tensor interaction when using (p, n) data,

and estimated MT from a truncated SM calculation, as

spaces of dimension ≈108 could not be treated at the

time. Because this limited the included correlations,

the SM value for MT was taken as an upper bound,

TABLE V. The split normal parametrization of our cross section

results.

Source Excited states σ̄ σ1 σ2

51Cr [64] 5.66 0.0854 0.242
51Cr [65] 5.84 0.115 0.164
37Ar [64] 6.82 0.108 0.302
37Ar [65] 6.98 0.135 0.201
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TABLE VI. A summary of the published neutrino reaction cross

section estimates for 71Ga(νe, e−) 71Ge in units of 10−45 cm2. All

results are given at 68% C.L.

Author Year σ (51Cr) σ (37Ar)

Bahcall [36] 1997 5.81+0.21
−0.16 7.00+0.49

−0.21

Haxton [23] 1998 6.39 ± 0.68

Barinov et al. [77] 2018 5.91 ± 0.11 7.14 ± 0.15

Kostensalo et al. [68] 2019 5.67 ± 0.06 6.80 ± 0.08

Semenov [50] 2020 5.94 ± 0.12 7.17 ± 0.15

Present work 2023 5.69+0.28
−0.06 6.85+0.35

−0.08

yielding a large uncertainty on the extracted excited-

state contributions.

(3) Barinov et al. (2018) [77]. This work used weak cou-

plings updated to 2018 and a value for QEC = 233.5 ±
1.2 keV obtained from a Penning trap measurement

of the mass difference that was later superseded by

the more accurate trapping result of [26]. The excited-

state GT strengths were extracted from the (p, n) data,

without tensor corrections.

(4) Kostensalo et al. (2019) [68]. The cross section is taken

from SM calculations using the JUN45 interaction,

which among the interactions studied here predicts

the smallest excited-state GT strengths. From [36] on-

ward investigators have concluded that cross section

estimates must be taken from experiment, with theory

employed only for corrections (as has been done here):

SM wave functions are soft projections (at best) of the

true wave function, so lack many of the correlations

important in evaluating the interfering amplitudes of-

ten responsible for weak transitions.

The JUN45 BGT values for 71Ga(ν, e) 71Ge to the
3
2

−
and 5

2

−
excited states are 2.3 × 10−3 and 5.2 ×

10−3, respectively. We can test the predictive power

of JUN45 using transitions of similar but known

strengths in closely related nuclei. The BGT values for
71As(EC)71Ge to the 3

2

−
and 5

2

−
states of interest are

known: 71As differs from 71Ga only by the conversion

of a neutron pair to a proton pair. There are similar test-

ing opportunities using 69Ge(EC)69Ga, which involves

parent and daughter nuclei differing from 71Ga and
71Ge only by the removal of a neutron pair. The results

are given in Table VII and show large discrepancies

between predicted and measured BGT values, in two

TABLE VII. Tests of JUN45 against neighboring transitions

where log( f t ) values are known from experiment.

Transition log( f t ) B
exp

GT BJUN45
GT

71As(EC) 71Ge( 5

2

−
, 175 keV) 5.85 5.3 × 10−3 6.9 × 10−3

71As(EC) 71Ge( 3

2

−
, 500 keV) 7.19 2.4 × 10−4 1.8 × 10−5

69Ge(EC) 69Ga( 3

2

−
, g.s.) 6.49 1.2 × 10−3 3.4 × 10−5

69Ge(EC) 69Ga( 5

2

−
, 574 keV) 6.24 2.2 × 10−3 4.6 × 10−3

cases exceeding an order of magnitude. That is, the

table is not encouraging.

(5) Semenov (2020) [50]. This work follows [36] quite

closely, treating the excited states as was done there,

but utilizing updated weak couplings and and the mod-

ern QEC value of [26].

In previous work, the determinations of σgs have neglected

a series of ≈0.5% effects that we have addressed here, in-

cluding Coulomb corrections computed from realistic nuclear

densities consistent with the measured rms charge radius,

weak magnetism corrections, and the difference in the ra-

diative correction from bremsstrahlung to the EC and (ν, e)

reactions. Here we have addressed such corrections.

Most past work has also taken excited-state contributions

directly from forward-angle (p, n) reactions, assuming that

a procedure calibrated for strong BGT transitions and gross

BGT profiles could be applied to individual weak transitions.

However, one expects the typical correction due to MT to be

more important when the dominant amplitude with which it

interferes, MGT, is suppressed. This physics, apparent from

Fig. 2, has been treated here with as much statistical rigor

as possible, propagating input experimental and theoretical

errors through to the extracted excited-state cross sections,

to quantify their likelihoods. This procedure is limited by the

need to quantify the uncertainty on the correction MT, which

must be taken from nuclear models. It is helpful that in the

situation of most concern—a weak MGT interfering with a

strong MT, thereby compensating in part for the small value of

δ—theory is needed only for the strong matrix element, as the

sum is constrained by experiment. The SM has a better track

record in such cases. We discussed a common example, an

�-forbidden M1 transition, where a weak MGT and a strong MT

would arise. Here we have used the variation among SM pre-

dictions of MT to define an uncertainty, with the understanding

that there could be additional hidden uncertainties, reflecting

common assumptions of the SM affecting all calculations.

VII. IMPACT ON THE BEST AND GALLIUM ANOMALIES

The BEST 71Ge production rates for the outer and inner

volumes, obtained from the yields in the K and L peaks with

a correction for the contribution of the M peak [20,21], are

Rout = 55.6 ± 2.7 (stat)+1.6
−1.5 (syst) atoms/d

= 55.6 ± 3.1 atoms/d,

Rin = 54.9 ± 2.5 (stat)+1.6
−1.5 (syst) atoms/d

= 54.9+3.0
−2.9 atoms/d, (36)

where the statistical and systematic errors have been com-

bined in quadrature to obtain a total error. From the neutrino

source activity of 3.414 ± 0.008 MCi and the cross section of

Bahcall [36] used in [21], one finds the predicted production

rates

R
expected
out = 72.6+2.6

−2.1 atoms/d,

R
expected

in = 69.4+2.5
−2.0 atoms/d, (37)
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(a) (b)

FIG. 4. The allowed regions for oscillations into a sterile state derived from the BEST inner and outer results, which becomes successively

wider as the confidence level is increased from 1σ , to 2σ , and then to 3σ . (a) The neutrino absorption cross section derived using the (p, n)

data of [64] to constrain excited-state contributions. (b) Results using the (3He, t ) data of [65]. The best-fit points are sin2 2θ = 0.41 and

�m2 = 6.1 eV2 and sin2 2θ = 0.45 and �m2 = 6.5 eV2, respectively (see text).

where again uncertainties have been combined in quadrature.

The ratios of the measured to predicted production rates are

Rout

R
expected
out

=
55.6 ± 3.1

72.6+2.6
−2.1

≈ 0.77 ± 0.05,

Rin

R
expected

in

=
54.9+3.0

−2.9

69.4+2.5
−2.0

≈ 0.79 ± 0.05, (38)

showing discrepancies of 4.7 and 4.2 standard deviations,

respectively. The ratio of the outer and inner rate ratios,

r =
Rout/R

expected
out

Rin/R
expected

in

=
0.77 ± 0.05

0.79 ± 0.05
≈ 0.97 ± 0.09, (39)

is consistent with unity, revealing no dependence on distance

from the source.

The Bahcall cross section used above employed the (p, n)

data of Krofcheck et al. [64] in estimating the excited-state

contribution to the 71Ga cross section. The analogous analysis

presented here, updating the ground-state contribution and

correcting for the tensor contribution to the (p, n) results of

[64], yields

R
expected
out = 71.1+3.5

−0.8 atoms/d,

R
expected

in = 68.0+3.3
−0.7 atoms/d. (40)

The ratios of the measured to predicted production rates are

Rout

R
expected
out

=
55.6 ± 3.1

71.1+3.5
−0.8

≈ 0.78 ± 0.05,

Rin

R
expected

in

=
54.9+3.0

−2.9

68.0+3.3
−0.7

≈ 0.81 ± 0.05. (41)

As the cross section derived here is slightly reduced from that

[36] used in the original BEST analysis [20,21], the deviation

of R from 1 is also slightly reduced.

We have also constrained the 71Ge excited-state contribu-

tion using the (3He, t ) data of Frekers et al. [65]. This yields

R
expected
out = 73.1+2.3

−1.3 atoms/d,

R
expected

in = 69.9+2.2
−1.2 atoms/d. (42)

The ratios of the measured to predicted production rates are

Rout

R
expected
out

=
55.6 ± 3.1

73.1+2.3
−1.3

≈ 0.76 ± 0.05,

Rin

R
expected

in

=
54.9+3.0

−2.9

69.9+2.2
−1.2

≈ 0.79 ± 0.05, (43)

reflecting the somewhat stronger transition to the 3
2

−
extracted

from the (3He, t ) data.

The combined result from all six Ga calibration experi-

ments [21] for the ratio of the measured to expected rates is

0.82 ± 0.03, using the cross section derived here, taking the

excited-state data from [64], and treating all measurements

as independent. However, as discussed in [78], when possible

correlations among the measurements are taken into account,

this is revised to 0.82 ± 0.05.

Although the cross section changes found here are modest,

we have updated the neutrino oscillation results of [20,21].

Figure 4 gives the exclusion contours corresponding to 1σ ,

2σ , and 3σ confidence levels, using only the BEST inner

and outer results. The cross sections used are those derived

here, with the excited-state contribution extracted from the

results of [64] (left panel) and [65] (right panel). The best-fit

points correspond to sin2 2θ = 0.41 and �m2 = 6.1 eV2 and

sin2 2θ = 0.45 and �m2 = 6.5 eV2, respectively. However,

the chi-square space is quite shallow and flat, so solutions

along a valley centered on the contours of Figs. 4 and 5

provide nearly equivalent fits.

Figure 5 gives the exclusion contours corresponding to

1σ , 2σ , and 3σ confidence levels, when the BEST inner and
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(a) (b)

FIG. 5. As in Fig. 4, but combining the results of the two GALLEX and two SAGE calibrations with those of BEST. The best-fit points are

sin2 2θ = 0.32 and �m2 = 1.25 eV2 (left) and sin2 2θ = 0.34 and �m2 = 1.25 eV2 (right).

outer results are combined with those of the two GALLEX

and two SAGE calibrations. The best-fit points correspond

to sin2 2θ = 0.32 and �m2 = 1.25 eV2 and sin2 2θ = 0.34

and �m2 = 1.25 eV2, respectively, for the indicated cross

sections. The shift in the best-fit results from those of Fig. 4

reflect the shallowness of the chi-square space.

VIII. SUMMARY AND CONCLUSIONS

The published BEST analysis employed an older
51Cr cross section from Bahcall [36], σ = [5.81+0.21

−0.16] ×
10−45 cm2 (1σ ). Due to the experiment’s surprising result,

there is good motivation for reexamining the neutrino capture

cross section on 71Ga, to determine both a more modern best

value for the cross section and its uncertainty. The latter is

particularly important in judging the significance of the BEST

result. The cross section is dominated by the transition to

the ground state of 71Ge. Since the work of [36], changes

impacting this cross section include a more accurate Q value

and updates in the value of gA and other weak parameters.

In addition, there are effects such as weak magnetism and

the lack of universality in radiative corrections that have not

previously been evaluated quantitatively. The first half of this

paper describes these and other corrections that typically each

enter at the 0.5% level. We have evaluated these effects in-

cluding their uncertainties, finding that they combine to yield

a ground-state cross section about 2.4% smaller than that of

Bahcall [36].

However, the more serious potential uncertainty is that

associated with the transitions to the 175 keV 5
2

−
and 500 keV

3
2

−
excited states in 71Ge. In [36] those cross sections were

taken from forward-angle (p, n) measurements by Krofcheck

et al. [64]. As was stressed in [22,23] and illustrated here

in Fig. 2, (p, n) scattering is not a reliable probe of weak

BGT strengths due to the presence of a subdominant spin-

tensor interaction in the effective operator for the scattering.

While normally a correction, the tensor operator can dominate

when the competing GT amplitude is weak. Haxton and Hata

stressed that 71Ga is a problematic case, as the transition to

the first excited state, 3
2

− → 5
2

−
(175 keV), is naturally as-

sociated with the �-forbidden amplitude 2p3/2 → 1 f5/2. This

observation was confirmed here in all three of the shell-model

calculations performed. For a pure �-forbidden transition, the

GT amplitude is zero, while the tensor amplitude would have

approximately unit strength [22].

The relationship between GT strength and (p, n) forward

scattering would be restored if one could quantitatively correct

for the presence of the tensor operator. This would be possible

if one could (1) reliably determine the coefficient δ of the

tensor correction (its size and uncertainty) and (2) develop

some means of determining the accuracy with which the ac-

companying nuclear matrix element of the tensor operator can

be determined. Despite previous work [22,23,66] determining

δ from experiment, the simple fits performed and the rather

uncritical selection of data left questions about the certainty

with which δ could be established.

In this paper we determine δ using only measurements

where experimental uncertainties have been assigned and

focusing on transitions involving relatively simple 1p- and

2s1d-shell nuclei where structure differences arising from the

choice of shell-model effective interaction are small. Where

possible, nuclear structure differences were quantified by ex-

ploring several effective interactions. An attractive aspect of

this approach is that an accurate evaluation of the tensor

matrix element is most important in those cases where it is

strong, and these are cases where the shell model should do

well. We see from Table II that, in the four 2s1d-shell cases

where the tensor matrix element is ≈1, the variation among

the calculations is typically 10%. Consequently, in transitions

where the GT amplitude is weak but the tensor amplitude

strong, one can use theory to estimate the latter (but not the

former) reliably, and thus subtract it; the 10% error enters

in the correction, not in end result. With a more quantitative

relationship between (p, n) measurements and GT amplitudes

thus restored, even relatively weak MGT can then be extracted

from the data.
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In determining δ, we found a very strong correlation

between cases where (p, n) and weak transition strengths dis-

agreed, and strong tensor matrix elements producing a ratio

of |MT/MGT| well above 1. Our study also underscores the

fact that the weakness of excited-state contributions to the
71Ga cross section place them in a category of transitions

where important tensor corrections arise. After folding in

uncertainties from both experiment and theory, we found that

δ = 0.074 ± 0.008 (1σ ). As shown in Fig. 2, when the tensor

correction is made with this value of δ, excellent agreement

between (p, n) cross sections and weak transition strengths

is restored, even for weak GT transitions. To the precision

that δ can be determined from the available data, there is no

statistical evidence for any variation with mass number: our

global fit and fits to individual transitions spanned a factor of

3 in mass number, from 13C to 39K.

As this value of δ works well for a range of 2s1d- and

1p-shell nuclei, the use of the same δ in the 2p1 f shell is

reasonable. This leaves the second issue mentioned above,

the need to evaluate uncertainties associated with theory es-

timates of the accompanying matrix element MT. While the

nuclear structure of 71Ga is more complex than that of the

1p- and 2s1d-shell nuclei used in our extraction of δ, the

three large-basis, full-space 2p3/21 f5/22p1/21g9/2 shell-model

calculations we performed were reasonably consistent in their

predictions of the magnitude of MT and sign relative to MGT.

Though the spread in MT is larger than found in our 1p- and

2s1d-shell calculations, this spread was incorporated into a

theory uncertainty that was then propagated through our anal-

ysis. With the correction for MT made, we then extracted the

needed excited state GT strengths from the (p, n) and (3He, t )

results of [64] and [65], respectively.

The analysis shows that MT and MGT interfere destructively

in both excited-state transitions, which increases the |MGT|
extracted from experiment. Consequently, the excited-state

contribution to the total 51Cr cross section is increased mod-

estly, to ≈6% and ≈8%, depending on whether the data from

[64] or [65] is used. The result we obtained from the data

of [64], [5.69+0.28
−0.06] × 10−45 cm2 (1σ ) can be compared to the

analogous result of Bahcall employed in the BEST analysis,

[5.81+0.21
−0.16] × 10−45 cm2 (1σ ). The results are in agreement

at 1σ , reflecting in part compensating changes in the present

analysis due to a weaker ground-state and stronger excited-

state contributions.

Several objections that one might have raised to the use of

an older cross section — including a more naïve use of the

(p, n) data, absence of radiative and weak-magnetism correc-

tions, and various changes in weak parameters and Coulomb

corrections — have been addressed and in combination have

been found to shift the recommended central value by only

2%. Most important, the analysis presented here has propa-

gated all identified errors — whether experimental or theoret-

ical — through to the end result. Thus the error bars reflect

all known uncertainties, to the precision currently possible.

Finally, taking into account uncertainties, the extracted values

of MGT are in agreement with the predictions of the shell

model. While we would certainly not advocate use of theory

in estimating such weak BGT strengths, nevertheless this con-

sistency is of some comfort, as the shell model is employed in

the evaluation of the correction terms proportional to MT.

Finally, we note that a 3% larger cross section is obtained if

we base the excited-state analysis on the (3He, t ) data of [65].

There would be some value in repeating both the (p,n) and

(3He, t ) measurements: while the impact on the cross section

is modest, the difference in the cross sections for exciting the
3
2

−
state exceeds expectations, given the assigned error bars.

The lower cross section derived here from the (p, n) data of

[64] slightly reduces the size of the BEST and Ga anomalies

(by ≈2%), but certainly does not remove them. We have

demonstrated this by repeating the sterile-neutrino oscillation

analysis of [20,21], finding small shifts in the confidence-level

contours and best-fit values for sin2 2θ and �m2. The very

well measured ground-state transition σgs establishes a floor

on the cross section just 8% below the value used in the BEST

and earlier Ga analyses. Even if this minimum theoretical

floor were to be used — the revised value found here is

[5.39 ± 0.04] × 10−45 cm2 (1σ ) — the existing discrepancies

would be reduced by about half, but not eliminated. Further-

more, we stress that use of such an extreme minimum cross

section would not be consistent with the present analysis, as

that value lies well beyond the 95% C.L. lower bound on the

total cross section derived here.
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