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The Mu2e and COMET u — e collaborations plan to advance branching ratio sensitivities by four
orders of magnitude, further constraining new sources of charged lepton flavor violation (CLFV).
We formulate a non-relativistic nucleon-level effective theory for this process, in order to clarify
what can and cannot be learned about CLFV operator coefficients from elastic u — e conversion.
Utilizing state-of-the-art shell model wave functions, we derive bounds on operator coefficients
from existing u — e conversion results, and estimate the improvement in these bounds that will
be possible if Mu2e and COMET reach their design goals. In the conversion process, we employ
a treatment of the lepton Coulomb physics that is very accurate, yet yields transparent results and
preserves connections to standard-model processes like 8 decay and u capture. The formulation
provides a bridge between the nuclear physics needed in form factor evaluations and the particle

physics needed to relate low-energy constraints from y — e conversion to UV sources of CLFV.
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Nucleon-level Effective Theory of u — e Conversion

1. Introduction

Experimental searches for processes which violate charged lepton flavor conservation are
among the most sensitive probes of beyond Standard Model (BSM) physics. In this work, we focus
on u — e conversion, the process in which a muon captured into the Coulomb field of an atomic
nucleus converts into a mono-energetic outgoing electron. The relevant experimental quantity is
the branching ratio

wu +(A,Z2) - e +(A,2))
wp +(A,Z) 5 vy +A(Z-1,N+1))’

B(u +(A,Z) - e +(A,Z)) = (1)
where the denominator is the rate for standard muon capture. Depending on the nature of the
underlying CLFV operators, the current upper limit B(u — ¢) < 7 x 10~'3 [3] constrains BSM
physics up to energy scales ~ 10° TeV. The next generation experiments, Mu2e [4, 5] at Fermilab
and the COherent Muon to Electron Transition (COMET) experiment [6] at Japan Proton Research
Complex (J-PARC), aim to improve upon the existing branching ratio limit by as much as four
orders of magnitude, potentially probing as high as 10* TeV. Both experiments have chosen 2’ Al as
the nuclear target, but an ensemble of measurements on various nuclear targets is a high priority
beyond the initial experimental runs.

The remarkable sensitivities achieved in ¢ — e conversion experiments are made possible by
the kinematics: assuming that the nucleus remains in the ground state, electrons emitted through the
CLFV conversion process will have an energy at the very endpoint of the spectrum of background
electrons originating from standard model ¢ — e + 2v decays. Close to the endpoint energy, the
standard model muon decays are suppressed by a factor (Eendpoint — E ) leading to extremely low
backgrounds in the region of interest. However, the restriction of the nucleus to the ground state,
which we refer to as elastic u — e conversion, limits the set of CLFV operators which can be
probed due to the approximate parity and time-reversal symmetries of the nuclear ground state.

As the nature of potentially observable CLFV is yet unknown, one would like to consider
the most general description of the © — e conversion process in the form of an effective theory
with unknown parameters, or low-energy constants (LECs), that can be constrained by experiment.
Recently, an effective theory description of elastic u — e conversion was formulated in terms of
non-relativistic single-nucleon currents interacting with the leptons [1, 2]. This effective theory
factorizes the CLFV physics — which is independent of the target nucleus — from the nuclear
physics, allowing one to directly access the “nuclear dials" which can be tuned through clever
target selection to extract all of the information about the underlying CLFV physics that is available
in the low-energy, highly-exclusive process of elastic u — e conversion. Here, we summarize
the recent development of the nucleon-level effective theory of 4 — e conversion including the
approximations necessary to achieve a simple, factorized expression for the CLFV decay rate.

2. Treatment of lepton wave functions

Highly-accurate numerical wave functions for the bound muon and outgoing electron can be
obtained by solving the Dirac equation in the nuclear Coulomb field. The effect of the finite nuclear
size is accounted for by considering a nuclear charge density p,(r) that has been fit to electron
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scattering data [7]. Many previous studies (e.g. [8-12]) of u — e conversion have restricted
attention to the case of coherent conversion in which the relevant nuclear operators sum coherently
over all A nucleons in the nucleus leading to a naive enhancement of A relative to non-coherent
operators. The simple form of the coherent operators implies that their nuclear matrix elements
depend only on the isoscalar nuclear density, a measured quantity. In the coherent case, it is therefore
justified to use the highly-accurate numerical lepton wave functions. This leads to a “top-down"
approach in which a candidate CLFV model (or class of models) is considered which generates at
leading order a coherent response. The u — e branching ratio can be computed with quantified
uncertainties and therefore used to exclude regions of parameter space within the models under
consideration.

On the other hand, to pursue the “bottom-up" approach of considering the most general theory
of u — e conversion is cumbersome if one wants to retain the numerical lepton wave functions and
requires the calculation of nuclear response functions which typically do not have well understood
uncertainties. In order to achieve a relatively simple theory which factorizes the CLFV physics
from the nuclear physics we introduce approximate forms for the muon and electron wave functions.

The captured muon quickly decays to the 1s orbital of the nuclear Coulomb field. For the
light nuclei (¢Z < 1) that we consider here, the bound muon is highly non-relativistic, and we

neglect entirely the lower component of the wave function. In the nucleus 2’ Al, the muonic Bohr

0 ~ rms
H N

which the electron wave function varies, which is given by the first zero of the Bessel function

radius a 19.7 fm is large compared to both the nuclear size r\;"* ~ 3.1 fm and the scale over

Jo(gr), re = g ~ ml,, ~ 5.9 fm. Therefore it is a suitable approximation to replace the complicated
numerical solution by a constant value. In the limit of a point-like nucleus, the appropriate constant
would be the value of the muon wave function evaluated at the origin. Furthermore, for a point-like
nucleus the Schrodinger solution for the muon wave function reduces to a known analytic form

which, evaluated at the origin yields

3/2

; 2
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where y is the muon reduced mass. With this limit in mind, we choose to parameterize the constant

approximation for the muon wave function in terms of an effective point-like nuclear charge Zg
seen by the muon

$7N(F = 0) =

1[4mwﬂ”2_1 [ dr 2N (r)jo(gr) €2 4

Var | 1 T Vax  [drr2pn(r) jolgr)

where pn (r) is the nuclear density and G(r) is the upper component of the muon’s radial Dirac
wave function. We find Z.g = 11.309 and 16.656 for Al and Ti, respectively. Fig. 1 compares
the constant approximation of the muon wave function in the target nuclei >’ Al and *®Ti to the
Dirac solutions obtained from the extended nuclear charge densities. The constant approximation
is chosen to exactly reproduce the isoscalar monopole operator which contributes to coherent
u — e conversion but will introduce some error when used to compute matrix elements of different
multipole operators as the radial weighting will differ from the monopole density. We estimate that
the muon approximations induce an overall error in the decay rate ~ 1% in Al and ~ 4% in Ti,
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Figure 1: Muon 1s bound state wave functions for 27 Al (left) and *3Ti (right) including the Dirac xk = —1
upper G (r) (orange) and lower F (r) (green), and Schrodinger (blue dashed) solutions for the extended nuclear
charge distribution, and the Schrodinger solution of a point-like nuclear charge (red); also shown are the
volume-weighted charge distributions 72p(r) jo(gr) and r?p(r)j2(gr) (shaded). The overall normalization
(but not the relative normalization) of the two densities is arbitrary. As the muon wave function varies slowly
over the nucleus, it is appropriate to use an average value: the black dotted line is the constant approximation
obtained via Eq. 3.

which is typically less than the uncertainty associated with the evaluation of the nuclear response
functions.

The outgoing electron receives nearly all of the muon rest mass energy as kinetic energy and
is therefore ultra-relativistic. Although nearly a Dirac plane wave, the electron wave function is
distorted by the Coulomb interaction with the nuclear charge. The effect of Coulomb attraction can
be accounted for while retaining a simple plane wave form by introducing an effective momentum
gefr [13, 14] for the electron so that its wave function can be written as

E,

U(q,s) PLUL N
2m,

a-qAé:s q

€x ) qﬁeiaeff'}‘ 4)

The effective momentum g.g is equated to the physical momentum minus the (negative) average
Coulomb potential energy over the nuclear charge density. In particular, we find g.g = 110.81 MeV
and 112.43 MeV for 2’ Al and *3Ti, respectively. The resulting effective momentum approximation
for the electron wave function in various partial waves for the nucleus 2’ Al is shown in Fig. 2. The
quality of the effective momentum approximation for Ti is similar to that of Al

3. Nucleon-level effective theory

When the approximate lepton wave functions are coupled to non-relativistic single-nucleon
currents, the resulting theory may be expressed entirely in terms of operators acting between Pauli
spinors. All of the operators in the theory can then be constructed from the identity operators for the
leptons and nucleons — respectively, 17, and 1, — and the following four Hermitian vector operators:
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Figure 2: The Dirac Coulomb solutions G (r) and F(r) for the highly relativistic outgoing electron produced
in u — e conversion in 2’ Al (green line) are compared to the free solution (orange) and to the free solution
evaluated with e (blue dashed), for low partial waves (k = —1,—2). The nuclear charge distribution
is shown by the shading (arbitrary normalization). The agreement between the Coulomb and plane wave
solutions evaluated with g.g is quite good, particularly over the relevant region where the nuclear density is
concentrated.

where g is the direction of the outgoing electron and vx = (p; + p )/ (2my) is the average nucleon
velocity. Working to first order in vy, we identify 16 independent scalar operators that can be
formed from the six building block operators

O=1p 1y

OézlLl.qA'T}N

O3=1.iG-[Vn X N]

Oy=0p - 0N Os =01 - (igxvn) O¢=i4-0Lif -GN

O;=1pL VN 0N Og =0 VN Og =0 - (igXTnN) ©)
Ow=1riG -GN On=ig-orly On =0 [Vxdn]

Oy =01 (igx [y X0n]) Ou=iG-0LVn-0n O15=iG-01iG-[Vn XIN]
O).=ig F1iG Ty

Normalized to the scale of the weak interaction, the effective Lagrangian can expressed in terms of
dimensionless LECs ¢] as

16
Lot = V2Gp Z Z ¢lO;it", @)
7=0,1 i=1

where G is the Fermi constant and, allowing for different couplings to protons and neutrons, we
have introduced isoscalar 1° = 1 and isovector ¢! = 73 operators.

Constructed in terms of contact interactions between leptonic and one-body nuclear currents,
the nucleon-level ET does not explicitly include pions or other mesons, hadronic resonances, or
two-body and higher nuclear currents. In the absence of these additional degrees of freedom, the ¢;s
are independent of the target nucleus in which the theory is embedded. On the other hand, including
for example pion exchange will introduce form factors f(g/m ) which depend on the nuclear target
through the momentum-transfer. As the form factors are evaluated at fixed three-momentum transfer
g and the magnitude of the three-momentum transfer does not depend strongly on the nuclear target
— g varies from 104.98 MeV for Al to 104.28 MeV for Ti — we expect that one may absorb the form
factor into the corresponding LECs while introducing only a marginal target-dependence.
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Similarly, the single-nucleon effective theory is still valid when higher-body nuclear interactions
contribute. It has been demonstrated that the next-to-leading order (NLO) two-nucleon contribution
to scalar-mediated coherent u — e conversion can be described by an effective single-nucleon
operator, obtained by averaging the two-nucleon operator over a degenerate Fermi gas model of
the target nucleus [10, 15]. We expect that a generic two-nucleon operator can be reduced to an
effective single-nucleon operator as

—_

6

0 — fFoi", (8)
7=0,1 i=1

4

where the effective couplings f;” depend on the nuclear density of the target. In direct analogy
with the treatment of propagator effects, the impact of two-nucleon operators can thus be absorbed
into the LECs of the single-nucleon effective theory, introducing a dependence of the LECs on the
nuclear target which we anticipate will be weak as long as the higher-body terms enter at higher
orders.

The LECs of the nucleon-level effective theory can be matched to the LECs of effective theories
at higher energy scales such as chiral perturbation theory, which can in turn be matched to standard
model effective theories involving quark degrees of freedom. In this way, constraints obtained on
the c¢[s can be translated into constraints on the parameters in candidate UV theories of CLFV.
Given the close correspondence between the nucleon-level effective theory of 4 — e conversion
and nucleon-level effective theories of WIMP dark matter scattering with nuclei [16, 17], many of
the required matching relationships have already been derived [18-23].

4. Expression for the decay rate

The 16 CLFV operators that form the basis of the nucleon-level effective theory contain two
nuclear charges, 1y and V - 0w, and three nuclear currents, vy, oy and ¥y X 0, which upon
multipole projection with respect to the momentum transfer ¢ give rise to 11 independent single-
nucleon response functions shown in Table 1. Of the eleven single-nucleon response operators,
only six possess multipoles which are simultaneously even under both parity and time-reversal and
therefore contribute to elastic u — e conversion. The notation M/, Q, etc. is standard in the
study of semi-leptonic weak interactions, and complete expressions may be found, for example, in
[17,24].

The CLFV u — e decay rate can then be expressed as

G2 qzﬂr 7 — , o , I ,
w= LSl OF Y Y R Wi (qen) + R WET (qen) + RETWET ()|
Mt 7=0,1 7/=0,1
2
q ~ ’ ’ ~ ’ ’ ~ ’ ’
+ =S| RETWEE (qer) + Ry WET (qem) + RET W™ (qe) |

N
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o | REE W (e + REEWEE <qeﬁ>]}
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Charge/Current  Projection Operator EvenJ] OddJ LECs Probed
1N Charge Mjm E-E O-0 cy,cq1

‘7N . 5’]\] Charge QJM O-E E-O Cc7,C14

VN Longitudinal A’J’M E-O O-E  c¢,c8,C16
" Transverse magnetic Ayym 0-0 E-E c¢s5,c3

" Transverse electric A’J M E-O O-E c¢s,c3

on Longitudinal DI 0-0 E-E  c4,c6,C10
" Transverse magnetic XM E-O O-E «c¢4,c9

" Transverse electric Z} M 0-0 E-E c¢4,c9

VN X ON Longitudinal 7, E-E 0-0 «c3,c12,C15
" Transverse magnetic Dy O-E E-O c2,c13

Transverse electric E-E O-0 c¢p,c13

T/
(I)JM

Table 1: The eleven single-nucleon response functions, the charges/currents and multipole projections from
which they arise, their transformation properties under parity and time-reversal for even J and odd J, and
the LECs of the effective theory which they probe. Highlighted in blue are the multipole operators which
contribute to elastic u4 — e conversion.

where M7 is the mass of the target nucleus and the decay rate has been factorized into a sum of
products of dimensionless CLFV response functions

PTT _ ~TxT'% | ~T ~T'% PTT _ (AT _ RT\(RT'* _ =x7'x ST ~T'%

Ry =cjerr +éf el Rz” = (¢; —¢o)eyg ée ") + ¢yl

PTT _ T xT'* | T AT'* pTT _ T xT* ~T _ AT ST/ T %

Ry’ =¢,647 + 656 Ry =63637 + (012 C15) (CIZ s ) (10)
Ry = epefy + 1ty Ry = egeg +eey

pTT ST RT'% _ (AT _ 3T \AT'* pPTT _ ST AT'% 4 3T 3T/

Ry =Re [e5eT™ = (ef, - ¢f9ef’| Rig =Relcler* +egeg™],

and dimensionless nuclear response functions W(T)T/ (gefr). In addition to the six independent nuclear
responses, we find two interference terms arising, respectively, from the mixing of charge (M)
with longitudinal (®’/) multipoles, and transverse electric (X’) with transverse-magnetic (Ay)
multipoles.

The factorized form of the effective theory dictates how much information about CLFV op-
erators is probed in elastic 4 — e conversion experiments. Specifically, by varying the nuclear
target one can hope to constrain the values of the CLFV response functions R%7'; it is not possible,
however, to parse out the values of the LECs of individual CLFV operators ¢;. Of the 16 LECs in
the effective theory four of them ¢, €7, €14 and ¢16 do not appear in Eq. 10 and therefore are not
probed in elastic 4 — e conversion due to the parity and time-reversal constraints imposed by the
nuclear ground state. These operators can contribute if one considers the case where the nucleus is
allowed to transition to an excited state.

5. Limits on LECs

To make contact with experiments, the decay rate obtained in Eq. 9 is converted to a branching
ratio by normalizing by the rate of standard muon capture in the target nucleus [25]. For a given
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Target (Branching Ratio)
Al (10717) Ti (6.1 x 10713 [26])
Coupling 7=0 T=1 =0 T=1

¢1,C11 10,000 TeV 2,000 TeV 900 TeV 200 TeV

¢3,C1s 2,000 TeV 600 TeV 100 TeV 90 TeV

¢y 2,000 TeV 2,000 TeV 60 TeV 60 TeV

s, Cy 900 TeV 700 TeV 30 TeV 30 TeV

€6, €10 2,000 TeV 2,000 TeV 60 TeV 60 TeV

G 2,000 TeV 1,000 TeV 50 TeV 40 TeV

C12 2,000 TeV 700 TeV 100 TeV 90 TeV

13 200 TeV 500 TeV 30 TeV 10 TeV

Table 2: Approximate scale A7 of new physics probed by each LEC for a given nuclear target and branching
ratio limit.

target, the lepton approximation parameters g.g¢ and Z.g are computed, and the nuclear response
functions Wy (g.g) are evaluated, for example, using the nuclear shell model, allowing us to express
the branching ratio in terms of the only unknown parameters, the ¢;s. We may then assess the
sensitivity of the branching ratio to each operator in the theory by turning on a single LEC at a
time and determining the largest value of the LEC consistent with the known branching ratio limit;
that is, we can determine y; such that |¢]| < y[ in order that the branching ratio not exceed the
specified limit. More physically, if we assume that the dimensionless LEC under consideration is
natural at the scale associated with CLFV physics, we can translate the limit y; into an approximate
scale probed by the given operator

1/2

N L
V2Gpy?

4

)

Table 2 shows the approximate scale A probed by each LEC for an existing branching ratio limit
in Ti and for the branching ratio limit goal of the Mu2e and COMET experiments in Al. To
evaluate the nuclear response functions, we performed nuclear shell model calculations using the
configuration-interaction code BIGSTICK [27, 28] and the USDB 2s1d [29] and KB3G 2p1 f [30]
interactions for Al and Ti, respectively. Harmonic oscillator parameters b = 1.84 fm for Al and
b =1.99 fm for Ti were employed. Further details of the nucleon-level effective theory as well as
calculations for additional target nuclei may be found in [2].
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