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Abstract

Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in
mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play
critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the
present study aimed to develop and validate thermodynamically constrained integrated computational models of
mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models
incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the
mitochondria of these tissues. Intrinsic model parameters such as Michaelis-Menten constants were fixed at previously
estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated
separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data
measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH,-linked
metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were
not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and
substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter
fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and
pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and
FADH,-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP
synthesis in the heart and kidney cortex and OM mitochondria.
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Introduction

Heart and kidney are the most metabolically active organs with
the highest mitochondrial contents, metabolic rates, and oxy-
gen consumptions in the human body.* They carry out distinct
metabolic functions essential for the survival of the organism.
Consequently, metabolic dysfunctions in these organs can lead
to an array of cardiovascular and renal diseases, including salt-
sensitive (SS) hypertension.®** Considering the relatively large
energy demand in these organs and their dependency of energy
production upon mitochondrial respiration and bioenergetics,
it is very important to systematically characterize mitochon-
drial respiration and bioenergetics in these organs and identify
potential differences and underlying mechanisms.! Such infor-
mation is highly essential for computational modeling, needed
for a mechanistic and quantitative understanding of the role of
mitochondrial respiration and bioenergetics in the pathogenesis
of metabolic diseases.

Both the heart and kidney derive nearly 95% of their
energy adenosine triphosphate (ATP) form mitochondrial oxida-
tive phosphorylation (OxPhos).!:3:8 The primary substrate for
energy production in the heart is free fatty acids.®*>'7 On the
other hand, both free fatty acids and ketone bodies are primarily
utilized for energy production in the proximal tubules (PT) of the
kidney cortex, whereas glucose is primarily utilized for energy
production in the medullary thick ascending limbs (mTAL) of the
kidney outer medulla (OM).2:3:6:14.18,19 For a given tissue, alter-
ation in the primary substrate(s) can result in changes in the
kinetics and efficiencies of mitochondrial energy production.?°
Mechanistic and quantitative characterization of how different
substrates regulate mitochondrial respiration and bioenergetics
in the selected tissues is an important step toward understand-
ing how changes in the kinetics and efficiencies of mitochon-
drial energy production may contribute to tissue/organ dysfunc-
tions and disease processes.!

Significant differences have been found in mitochondrial
enzyme activities, substrate utilization, respiration, and bioen-
ergetics between the heart and kidney cortex and OM under
physiological and pathological conditions.?-¢:10.1* Using 3D opti-
cal fluorescence cryoimaging technique, Salehpour et al.?! found
that kidney OM, but not kidney cortex, exhibits a decreased
NADH/FAD redox ratio in the Dahl SS hypertensive rat fed a
high salt diet. The same study also indicated that kidney cor-
tex and OM must be treated as 2 distinct tissues and that
their mitochondrial respiration and bioenergetics be studied

separately. In a recent study,® we have found that different
metabolic substrates produce significantly different respiratory
and bioenergetic responses in isolated mitochondria from the
normal Sprague-Dawley (SD) rat heart and kidney cortex and
OM, which signify substrate-dependent distinct kinetics and
efficiency of OxPhos for ATP production in these tissues. Data
from that study have enabled the development and validation of
integrated computational models of mitochondrial respiration
and bioenergetics to elucidate the distinct emergent metabolic
system properties of mitochondria in these tissues, which is the
focus of the present study.

Tissue-specific changes in mitochondrial respiration, bioen-
ergetics, redox states, and substrate utilization have been
observed in the progression of both cardiac and renal dis-
eases.>©810,15717,21,22 Although impaired mitochondrial sub-
strate and energy metabolism has been directly linked to the
deterioration of heart and kidney functions, the exact substrate-
dependent network of transporters and enzymes responsible for
the metabolic dysfunctions remains unclear. Moreover, a sys-
tematic tissue-specific and substrate-dependent characteriza-
tion is lacking, which is required for a mechanistic and quan-
titative understanding of the relationships between altered sub-
strate oxidation, altered mitochondrial metabolism, and the
progression of cardiac and renal diseases.

Integrated computational modeling provides a mechanistic
and quantitative framework for characterizing in-silico changes
within a given metabolic network to better understand com-
plex interactions and regulations resulting from mitochondrial
metabolic alterations under physiological and pathological con-
ditions.?>?> Computational models of mitochondrial respiration
and bioenergetics have been developed for different levels of bio-
logical complexity by various groups (eg, see ref. 43¢ and the
“Discussion” section for an extensive review of existing models
and their relevance). Those models have enabled modelers to
zoom in and out of a given network of processes and quanti-
tatively understand mitochondrial metabolic responses at lev-
els ranging from single proteins (enzymes and transporters)
to a network of interacting proteins. Although several models
of mitochondrial electron transport chain (ETC), tricarboxylic
acid (TCA) cycle, and metabolite and cation transporters reg-
ulating OxPhos and ATP synthesis have been developed, inte-
grated models comparing mitochondrial respiratory and bioen-
ergetic responses to different metabolic substrates in differ-
ent tissues/organs such as the heart vs. kidney are lacking. As
such, none of the existing models can describe tissue-specific
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Figure 1. Schematics of the proposed isolated mitochondria model. The model consists of 3 regions (buffer, inter-membrane space (IMS), and matrix). The model
includes metabolite and phosphate transporters, H* leak, TCA cycle enzymes, ETC complexes, and ATP synthase. Mitochondrial complex II is lumped as part of
the TCA cycle shown as SDH-CII. The transporters and enzymes are shown in blue circles, and the metabolite in the TCA cycle are shown in white circles. All the
metabolites except CytC are assumed to be freely permeable across mitochondria outer membrane. The metabolites are transported between the mitochondrial matrix
and IMS regions by different transports, including uniporters, co-transporters, and antitransporters. The model regulations including dicarboxylate carrier for SUC.
influx (DCCS) inhibition by MALy,, dicarboxylate carrier for MALy, efflux (DCCM) inhibition by SUCy,, IDH inhibition by NADH, SDH-CII inhibition by OXAn,, and SDH-CII

stimulation by MALy,.

and substrate-dependent responses of mitochondrial respira-
tion and bioenergetics observed in our recent experimental
study.? In addition, although there are several such models for
the heart and skeletal muscle mitochondria,?*%7:29-3¢ there is a
scarcity of such models for the kidney mitochondria.

Efforts toward this end were made recently by Edwards et
al.¥’ by modifying a previously developed cardiac mitochon-
drial respiration and bioenergetics model®> by adjusting several
model parameters relevant to kidney anatomy and physiology.
Although their modified model can simulate kidney mitochon-
drial oxygen consumption (respiration) and ATP generation in
the rat PT cells, model simulations were not fitted to any experi-
mental data nor the mitochondrial respiratory and bioenergetic
responses to different metabolic substrates were studied. Pre-
viously, we have developed a thermodynamically constrained
integrated computational model of rat lung tissue mitochon-
drial respiration and bioenergetics, which was parameterized
and validated using in-house and published data using differ-
ent metabolic substrates,?® and hence providing the foundation
for the present computational modeling work.

Starting with our recent rat lung tissue mitochondrial
model,?® in the present study, we have developed and validated
3 parallel computational models to study in-silico respiration and

bioenergetics of mitochondria isolated from normal SD rat heart
and kidney cortex and OM. These models account for the kinet-
ics of mitochondrial metabolites and phosphates transporters,
adenine nucleotide translocase (ANT) for ATP/ADP exchange,
proton (H') leak, TCA cycle reactions, ETC reactions and OxPhos,
and tissue-specific regulations of NADH- and FADH,-linked
metabolic pathways (Figure 1). The models were parameter-
ized based on a systematic and well-controlled dataset obtained
recently in our laboratory,! enabling us to study in-silico mito-
chondrial respiration and bioenergetics in the presence of
NADH-linked metabolic substrates including pyruvate + malate,
glutamate + malate, and alpha-ketoglutarate + malate, and
FADH,-linked metabolic substrate succinate in the absence or
presence of rotenone (complex I inhibitor) in these tissues. To
the best of our knowledge, the present models represent the first
data-driven attempts to characterize in-silico the respiratory and
bioenergetic responses of the heart and kidney cortex and OM
mitochondria to both NADH- and FADH,-linked metabolic sub-
strates. These models serve as valuable tools for identifying new
therapeutic targets and modifying mitochondrial substrate and
energy metabolism that affects the development of metabolic
disorders in metabolically active organs such as the heart and
kidney.
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Table 1. General Model Parameter Values

Parameter

Value Source

Buffer volume (V)

Mitochondria matrix volume (Vp,)

Mitochondria IMS volume (Vips)

Total cytochrome c concentration (CytCred + CytCox)
Total pyridine nucleotide concentration (NAD + NADH)
Total ubiquinone concentration (UQ + UQH,)

Total adenine nucleotide content (ATP and ADP)

Total coenzyme A content (SCoA + ACoA + CoA)

lor2mlL Experimental condition

1 nL/mg mitochondria protein 28, 31-35
Assume to be 10% of Vp, 28, 31-35
1 mm 28, 31-35
3mmMm 28, 31-35, 80, 81
1.5 mm 28, 31-35
10 mm 28, 31-35
1mm 28, 31, 35, 80, 81

Materials and Methods
Experimental Data

The mitochondrial models were parametrized by fitting the
model solutions to mitochondrial oxygen consumption rate
(OCR or Jo, flux; respiration) data acquired using the exper-
imental protocol of Figure S1A and validated by predicting
the mitochondrial OCR and membrane potential (AV¥,,) data
acquired using the experimental protocol of Figure S1B. Mito-
chondria were isolated from normal SD rat heart and kid-
ney cortex and OM tissues by differential centrifugation. The
mitochondrial OCR were measured via an Oxygraph-2k (02k)
respirometer (Oroboros Instrument, Innsbruck, Austria) at 37°C,
and AV, were measured via a Photon Technology Interna-
tional (PTI) spectrofluorometer (Horiba Scientific Inc.) using the
cationic fluorescent dye rhodamine-123 (R123) at 37°C and cal-
ibrated, as detailed in Tomar et al.! In Figure S1A experimen-
tal protocol (used for fitting), 0.05 mg/mL of heart mitochon-
dria or 0.2 mg/mL of kidney cortex or OM mitochondria were
added to the O2k chamber. Then, one of the following sub-
strate combinations: pyruvate + malate (PYR + MAL or PM;
5:2.5 mmM), glutamate + malate (GLU + MAL or GM; 5:2.5 mm),
alpha-ketoglutarate + malate (AKG + MAL or AM; 5:2.5 mm), and
succinate in the absence or presence of rotenone (SUC + ROT;
10 mMm + 0.5 pum) was added followed by the sequential addi-
tion of increasing ADP concentrations of 25, 50, 75, 100, 150, and
250 pMm. In Figure S1B experimental protocol (used for model
validation), 0.1 mg/mL of heart mitochondria or 0.2 mg/mL
of kidney cortex or OM mitochondria were added to the 02k
chamber. Then, one of the following substrate combinations:
PM (5:2.5 mMm), GM (5:2.5 mm), AM (5:2.5 mm), and SUC + ROT
(10 mm =+ 0.5 pm) was added followed by the addition of 200 pum
ADP to the heart mitochondria and 100 pm ADP to the kidney
cortex and OM mitochondria.

Computational Model

The present computational models of mitochondrial respira-
tion and bioenergetics for the heart and kidney cortex and OM
were developed starting with our previously developed ther-
modynamically constrained mechanistic modeling framework
and computational model of isolated lung tissue mitochondrial
respiration and bioenergetics.?® The lung tissue mitochondrial
model was modified by adding multiple regulation mechanisms
specific to the heart and kidney mitochondrial respiration and
bioenergetics (eg, see the “Modeling SUC-pathway mediated reg-
ulations” section) based on our recently published experimen-
tal data.! As shown in Figure 1, each of the 3 proposed mod-
els consists of 3 different regions: extra-mitochondrial buffer
region, mitochondria matrix region, and intermembrane space
(IMS) region. In addition, each model includes the kinetics of 24

reaction and transport fluxes and the dynamics of 37 state vari-
ables (36 metabolite concentrations and mitochondrial mem-
brane potential). The outer mitochondrial membrane (OMM) has
porins, and hence, it is assumed to be freely permeable to most
of the metabolites, except cytochrome c, which has a relatively
high molecular weight. In addition, cytochrome c is assumed to
existin the IMS along the inner mitochondrial membrane (IMM).
The model does not account for the dynamics of cations (eg, H',
K+, Na*, Mg?*, and Ca?*). Rather, cations are assumed to be fixed
at their stipulated values in the different regions of the model,
based on the well-controlled experimental conditions of Tomar
et al.! The relative volumes of different regions of the model
are determined based on the amount of mitochondrial protein
used in an experiment, which are provided in Table 1, along with
the levels of conserved metabolite pools within the mitochon-
drial matrix. The details of the model state variables, enzymatic
reactions and transporters, flux expressions and the associated
kinetic parameters, and mass balance-based ordinary differen-
tial equations (ODEs) and the associated initial conditions for the
state variables are provided in Supplementary Material S1.

Mitochondrial TCA Cycle and ETC Reactions

The model accounts for 9 TCA cycle reaction fluxes responsi-
ble for metabolite oxidation and NADH and/or FADH, genera-
tion, which subsequently provide electrons for the ETC reactions
responsible for OxPhos and ultimately ATP production. A gen-
eral form of multisubstrate multiproduct enzymatic reaction is
described as:

151 + a5y + ... + ansSns = B1P1+ B2 P2 + ... + Brp Py, (1)

where S; is the i" substrate; P; is the j® product; Ns and Np
are the number of substrates and products, respectively; «; and
B; are the stoichiometry coefficients corresponding to the sub-
strate S; and product Pj, respectively. The corresponding reac-
tion flux (Jrxn) is described by the following general Michaelis-
Menten equation, which is based on a generalized random-
ordered rapid-equilibrium kinetic mechanism?8:

Np 3
Vinax Ng @ n):1CP] !
I—[Ns Kg‘l (Hi:l CS; K'eq
Jrxn = ) , 2

N. Cyi N, Cp.li
s

s |1+ KT an:1 1+ P
]

Fj

where V4 is the maximum forward reaction rate; Cs; and Cp;
are the concentrations of the substrate S; and product P;, respec-
tively; and Ks; and Kp; are the binding constants corresponding
to the substrate S; and product Pj, respectively; K'¢, is the appar-
ent equilibrium constant of the reaction at specified thermo-
dynamic conditions (ie, temperature, ionic strength, and pH),
which is the ratio of the forward and reverse rate constants of


https://academic.oup.com/function/advance-article/doi/10.1093/function/zqad038/7231080#supplementary-data
https://academic.oup.com/function/advance-article/doi/10.1093/function/zqad038/7231080#supplementary-data
https://academic.oup.com/function/advance-article/doi/10.1093/function/zqad038/7231080#supplementary-data
https://academic.oup.com/function/advance-article/doi/10.1093/function/zqad038/7231080#supplementary-data
https://academic.oup.com/function/advance-article/doi/10.1093/function/zqad038/7231080#supplementary-data

the reaction and is equal to the mass action ratio at equilib-
rium. The corresponding equilibrium constant at pH =7, K’Sq, is
related to the transformed Gibb’s free energy A,G” of the reac-
tion at pH = 7, and is defined as:

o 1_[?121 CPJ,eZ) _ —AYG/O
Keq ~ TNs o — €XP RT ’ (3)
Hi:l CS,eq

K'¢q for a proton producing and consuming reaction at a
specified pH can be calculated using eqns (4) and (5), respec-
tively:

Ky = K2 x 107HEHT) _ g=8G™/RT o ni(pHn=?), (4)

Kl = K;‘; « 10MH=PHr) _ o~A,G°/RT 10"H (7~ pHn) )
where R is the ideal gas constant (8.314 J/mole/Kelvin), T is the
absolute temperature (310.15 Kelvin), nH is the number of pro-
tons produced or consumed in the reaction, and pHp, is the mito-
chondrial matrix pH = 7.6. The flux expressions and the asso-
ciated kinetic parameter values for individual enzymatic reac-
tions in the integrated mitochondrial model are defined in the
Supplementary Material S2.

Mitochondrial Metabolite Transporters

The model accounts for 10 metabolites and phosphates trans-
porters responsible for the transport of TCA cycle metabo-
lites, adenine nucleotides, and inorganic phosphate between the
IMS [assumed to be equilibrated with the extra-mitochondrial
(buffer) region] and mitochondrial matrix. We used the follow-
ing general equations to describe the fluxes of different types
of transporters including uniporters (eqn 7), symporters or co-
transporters (eqn 9), and antiporters or exchangers (eqn 11)
involving neutral compounds. For transport of charged com-
pounds (eg, ATP/ADP exchange) and pumps (eg, ETC complexes),
the effect of mitochondrial membrane potential is appropriately
incorporated into the equations (see Supplementary Material S
3).

Uniporter : A, = A, (6)
CAE — CAm CAE CAm
omp = Tonay (222 =Cam) [(q | St | Cam) 7
}e mUP maxf( KAe )/( +KAE+KAm> ()
Symporter : A, + B, = Ap+ B, ®)
; o (M)
e<m,SP max f K neKpe
Cae , CBe  Cam , Com , CaCse CAmCBm)
14 ey ZBey Am —Bm AmoBm )
/< K Kge Kam Kpm KaKpe KamKpm
©)
Antiporter : A, + By = An + Be, (10)
g (CaComCmCae
e<>m AP = Imax f KAeKBm
CAE CBe CAm CBm CAeCBm CAmCBe)
14 fe g ZBey Am, Bm An-Be ),
/< Ka  Kpe Kam Kpm KaKpm KamKse
(12)

where e and m subscripts are for the extra-mitochondrial region
and mitochondrial matrix, respectively; A and B are the differ-
ent species being transported between the extra-mitochondrial
region and mitochondrial matrix; K’s are the Michaelis—-Menten
or binding constants of the species for the transporters at the
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external (e) or internal (m) side; Tpay's are the maximal forward
transport rates. Species are assumed to be rapidly equilibrating
between the extra-mitochondrial and IMS regions, and therefore
their concentrations are assumed to be equal in these 2 regions.

Model Governing ODEs

The model includes 37 state variables in different regions repre-
senting TCA cycle metabolites, adenine nucleotides, inorganic
phosphate, redox variables, oxygen, and membrane potential.
The dynamics of the state variables in a region is governed by
ODEs-based mass balance of the state variables in that region:

dCp;
Vin at L = Xk:ﬂm,k,)’}m.k,j + Xk:}eemk,j, (12)
Vi d;tJ = Xk:ﬁi.k,j}m.)‘, (13)
dC, ;
Vet == 2 Jeome), (14)
X

where subscripts m, i, and e denote the mitochondrial matrix,
IMS, and extra-mitochondrial (buffer) regions; Cy j is the con-
centration of j* species in the region x; Vy is the volume of the
region x; fx 1 j is the stoichiometric coefficient of j* species in k™
reaction in the region x (positive or negative depending on the
species is a reactant or a product); Jx j is the k™ reaction flux
involving j™ species in the region x; and Jeomk.j is the k™ trans-
porter flux involving j™ species between the regions e and m.
Detailed mass balance equations and the associated initial con-
ditions for metabolites are included in the Supplementary Mat
erial S4.

Modeling SUC-Pathway Mediated Regulations

To describe potential differences between mitochondrial
metabolism in the heart and kidney cortex and OM, we
added specific regulations to several metabolic enzyme and
metabolite transporter models. These regulations helped us to
uncover the hidden differences in underlying mechanisms of
substrate-dependent mitochondrial respiration and bioenerget-
ics between the heart and kidney cortex and OM mitochondria,
as observed by Tomar et al.

The dicarboxylate carrier (DCC; gene name SLC25A10) trans-
ports both malate (MAL) and succinate (SUC) in exchange for
inorganic phosphate (Pi) across the IMM, as studied extensively
by Palmieri and coworkers.3*3 Accordingly, both MAL and SUC
compete for the binding and transport by the DCC, and hence,
one can inhibit the transport of the other. Different kinetic mod-
els of this transporter have been developed by Bazil et al.3! and
Zhang et al.?® accounting for the competitive binding and inhi-
bition by each other during their transport via the DCC. We have
distinguished the transport of MAL and SUC by the DCC as DCCM
and DCCS, respectively, having similar kinetic mechanisms (ie,
inhibition of the transport of cytosolic MAL by mitochondrial
SUC and inhibition of the transport of cytosolic SUC by mito-
chondrial MAL). However, the regulation of these 2 transport
processes (DCCM and DCCS) and the associated kinetic parame-
ters have not been evaluated and compared in different tissues,
for example, heart and kidney. Given the different respiratory
responses of isolated mitochondria from the heart and kidney
cortex and OM to SUC substrate,! we hypothesized that SUC and
MAL transport and their oxidations must be differentially regu-
lated in the heart and kidney cortex and OM.

Similarly, it is well-known that oxaloacetate (OXA) is a
potent inhibitor and malate (MAL) is a potent activator of the
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succinate dehydrogenase (SDH) reaction.** In addition, in sev-
eral recent studies including that of Fink and coworkers,*-46
the inhibitory role of OXA on SUC-driven mitochondrial respira-
tion/OxPhos has been firmly established. However, the differen-
tial SUC-driven respiration/OxPhos inhibition by OXA and acti-
vation by MAL in the mitochondria from different tissues such
as the heart and kidney cortex and OM have not been well estab-
lished or compared. Hence, given different respiratory responses
of isolated mitochondrial from the heart and kidney cortex and
OM to SUC substrate,! we hypothesized that SUC oxidation by
SDH/complex Il must be differentially regulated in the heart and
kidney cortex and OM by OXA and MAL.

Therefore, to simulate the observed differences in mito-
chondrial metabolic responses between SUC vs. SUC + ROT in
the 3 tissues,’ we modified SUC-dependent transporters and
enzymes in the mitochondria including DCCS, DCCM, and SDH,
as described below.

The SUC-Pi antiporter (DCCS) flux expression in eqn (15) was
modified to account for the inhibitory effect of mitochondrial
MAL on the DCCS transporter by scaling the intrinsic SUC bind-
ing constant for DCCS, Ksyc, as follows:

CsuceCrim=CsucmCprie
"sucKpi

Tmaxf,DCCS(

Jpces = ( (15)

Kpi K’suc Kpi K'sucKpi K'sucKpi

C
Ksyc = Ksuc (1 + KMALm) , (16)
MAL

where Cyarm is the MAL concentration in the mitochondrial
matrix; Kyar is the regulatory MAL binding constant for DCCS
to compete for SUC binding; K. is the apparent SUC binding
constant accounting for the inhibitory effect of MAL accumula-
tion in the mitochondrial matrix on DCCS (MAL is assumed to
inhibit the influx of SUC into the mitochondrial matrix). Hence,
an increase in MAL concentration in the mitochondrial matrix
inhibits SUC binding to DCCS, which in turn inhibits SUC influx
into the mitochondrial matrix.

Similarly, we modified the MAL-Pi antiporter (DCCM) flux
expression in eqn (17) to account for the inhibitory effect of
mitochondrial SUC on the DCCM transporter by modifying the
intrinsic MAL binding constant for DCCM, Kwyar, as follows:

1+%+m+m+cﬂ+m+m>

CmaLeCpim=CumaLmCpie
K'maLKpi

Tmax f.0ccm (

Jpcem = .
CuaLe Cpie CumaLm Cpim CmaLeCpim CumaLmCpie
(L o+ G e+ o+ o+ o)
(17)
C
Kira = Kma (1 + —SUC'"> : (18)
Ksuc

where Csycm is the SUC concentration in the mitochondrial
matrix region; Ksyc is the regulatory SUC binding constant for
DCCM to compete for MAL binding; K},,, is the apparent MAL
binding constant after the inhibitory effect of SUC accumulation
in the mitochondrial matrix on DCCM accounted for. Hence, as
the SUC concentration in the mitochondrial matrix increases,
MAL binding to DCCM is inhibited and therefore MAL outflux to
the buffer region is inhibited (reverse mode of DCCM). The pos-
tulated mechanism of DCCM inhibition by SUC is via its compe-
tition with MAL for binding to DCCM.

To account for the inhibitory effect of OXA and stimulatory
effect of MAL on the SDH reaction flux, we modified the intrinsic
SUC binding constant for the SDH enzyme, Ksyc, as follows:

Vinaxf.sDH
KéycmKuam

1+ %uc"\ + CFUMM) (1+ Cuam | CUQHZM)’

Sucm Krumm Kuaqm Kuquam

CrummCuqHa
(CSUCmCUQm— <L -UQHam '")
¢q,SDH

(19)

Jspa = (

" ’ C
e (1 ), e
K! K 14 Coxan 21
suc — suc + KOXA 5 ( )

where Coxam is the OXA concentration in the mitochondrial
matrix; Koxa is the regulatory OXA binding constant for SDH;
Cumarm is the MAL concentration in the mitochondrial matrix;
Kumar is the regulatory MAL binding constant for SDH; K¢, is
the apparent SUC binding constant after the inhibitory effect
of OXA accumulation in the mitochondrial matrix on SDH is
accounted for; K¢, is the apparent SUC binding constant after
the stimulatory effect of MAL accumulation in the mitochon-
drial matrix on SDH is accounted for. As a result of SUC addi-
tion, OXA is produced at a high rate and accumulates in the
mitochondrial matrix, which then inhibits SDH by reducing SUC
binding affinity (ie, increasing SUC binding constant) for SDH.
This results in an increase in SUC concentration in the mito-
chondrial matrix, which in turn inhibits DCCM stalling out-
flux of MAL. Inhibition of DCCM leads to MAL accumulation
in the mitochondrial matrix, which in turn stimulates SDH
by increasing SUC binding affinity (ie, decreasing SUC binding
constant). Accumulation of MAL in the mitochondrial matrix
also inhibits DCCS stalling SUC influx. As a result of these
regulations, SUC concentration in the mitochondrial matrix is
reduced, which leads to reversing DCCM inhibition, increasing
MAL outflux, and decreasing MAL concentration in the mito-
chondrial matrix. Reduced MAL concentration in the mitochon-
drial matrix also reverses DCCS inhibition and enhances SUC
influx.

Parameter Estimation

Intrinsic model parameters such as Michaelis-Menten constants
(Km’s) characterizing the binding of metabolites (reactants and
products) to the enzymes and transporters are set to values
from our previous studies based on isolated enzymes and trans-
porters kinetics.?8:31:3> The assumption is that differences in the
Km values between different tissues are negligible. The tissue-
specific unknown extrinsic model parameters such as maxi-
mum reaction velocities (Vmax’s and Tmax’s) of different enzy-
matic and transporter reactions were estimated as described
below.

The extrinsic model parameters Viax's and Tmax's are tissue-
specific, because of differential expressions of enzymes and
transporters and their catalytic activities and regulations in dif-
ferent tissues to perform distinct metabolic functions. There-
fore, these parameters were estimated separately for each
tissue based on tissue-specific experimental data, including
mitochondrial O, consumption rate (peak OCR or Jo, flux)
with different metabolic substrates at different respiratory
states by ADP. This was achieved by minimizing the objec-
tive function defined below using the optimization functions
“ga” (genetic algorithm) and/or “fmincon” (constrained mini-
mization algorithm) in MATLAB (Mathworks Inc.). The objec-
tive function E(P) is defined as the normalized sum of squared
errors (SSE) between model simulations and experimental
data:

where X;; and x;; are the model solutions (peak OCR or Jo,
flux as functions of added ADP concentration, which depend
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Table 2. Estimated values of tissue-specific Viax and Tmax parameters (unit: nmol/min/mg mitochondrial protein at 37°C) and computed nor-

malized sensitivity coefficients.

Normal Normal Normal
Estimated Values Sensitivity Parameter Values Sensitivity Parameter Values Sensitivity

Parameters (Heart) Coefficient (Cortex) Coefficient (oMm) Coefficient
Vinaxf, PDH 1.016 x 10° —0.0016 0.575 x 10° —0.0022 0.237 x 10° —0.0004
Vinasy, crts 0.447 x 10° ~0.0120 0.399 x 10° ~0.0813 0.147 x 10° —0.0855
Vinaxf, 1coH 0.240 x 10° —0.0041 0.318 x 10° —0.0081 0.143 x 10° —0.0045
Vinaxf, AKGDH 0.276 x 10° 0.0772 0.0006 x 10° —0.0660 0.0004 x 10° 0.0844
Vinasf, scas 0.488 x 10° 0.0132 0.320 x 10° 0.0248 0.173 x 10° ~0.0116
Vinaxf, NDK 0.332 x 10° 0.0019 0.344 x 10° 0.0179 0.183 x 10° —0.0083
Vinaxf, FH 0.361 x 10° 0.0006 0.333 x 10° —0.0083 0.163 x 10° 0.0004
Vinaxf, MDH 0.454 x 10° 0.0052 0.214 x 10° —0.2065 0.110 x 10° —0.1238
Vinasf, Gor 0.251 x 10° 1.0255 0.086 x 10° ~0.1324 0.017 x 10° 0.2330
Vinaxf, c1 0.766 x 10° 0.0127 0.348 x 10° 0.0280 0.184 x 10° 0.0230
Vinas, cit 0.094 x 10° 0.3050 0.218 x 10° ~0.8870 0.002 x 10° — 25551
Vinaxf, cit 0.066 x 10° 1.2662 0.003 x 10° —3.6071 0.013 x 10° —1.5650
Vinaf, civ 0.021 x 10° —0.0524 0.001 x 10° ~0.1835 0.001 x 10° ~0.4017
Vinaxf, cv 0.241 x 10° 0.0463 0.004 x 10° —0.7256 0.011 x 10° 0.0109
Tomas, pYRH 0.875 x 10° ~0.0039 0.521 x 10° 0.0002 0.217 x 10° 0.0019
Timaxf, GLUH 0.377 x 10° —0.0012 0.317 x 10° 0.0076 0.169 x 10° —0.0007
Tomasf, DCCS 0.232 x 10° ~0.2309 0.039 x 10° 0.2168 0.192 x 10° ~0.0072
Tmaxf, bccm 0.654 x 10° —0.4548 0.031 x 10° —0.0527 0.160 x 10° —0.0089
Tomasf, TCC 0.826 x 10° ~0.0074 0.381 x 10° ~0.0022 0.195 x 10° 0.0010
Timaxf, OME 0.407 x 10° —0.0450 0.0003 x 10° —0.2027 0.226 x 10° —0.0005
Tonasf, caE 0.160 x 10° 0.0030 0.253 x 10° 0.0075 0.138 x 10° —0.0001
Timaxf, ANT 0.028 x 10° 4.1144 0.009 x 10° —2.0595 0.002 x 10° —1.5695
Tinaxf, pic 0.815 x 10° 0.3768 0.086 x 10° —0.1678 0.083 x 10° —0.1332
Timaxf, HLEAK 0.937 —0.1036 0.507 —0.6125 0.266 —0.2911

on the parameter values P) and the corresponding experimen-
tal data at the i™ data point in the j™ data set, respectively;
N; is the number of data points in a given data set (ADP vari-
ation); and M is the number of data sets (different substrates)
used for the parameter estimation. The estimated Vpyax and
Tmax Values for the heart and kidney cortex and OM mitochon-
dria are presented in Table 2 and in Figure S2 of the Supple
mentary Material S5. The general model parameters includ-
ing temperature, buffer volume, mitochondrial matrix volume,
and IMS volume were fixed at 37°C, 2 mL (respirometry) or
1 mL (spectrofluorometry), 1 xL/mg protein, and 0.1 uL/mg pro-
tein, respectively, based on experimental setup and literature
(Table 1).

Parameter Sensitivity Analysis and Correlation
Coefficient Matrix

Model parameter sensitivity analysis was performed in 2 ways
after parameter estimation. First, the variation in E/E, as a func-
tion of Pj/Pjo was characterized for each parameter P; in the
range 0.5Pjo < P; < 1.5P;0, where Pj, is the estimated opti-
mal value of P; and Ey is the corresponding optimal value of E.
Second, the normalized sensitivity coefficients for the optimal
parameter estimates were calculated using the following equa-
tion:

S — m( dE ) _ Pjo (E (Pjo+ APjo) — E (Pjo— APJ;O)>

Pjo

77 Eo Eo 2APj o

dP;

_E (Pjo +0.01Pj o) — E (Pj0 — 0.01Pj ) (23)
- 0.02E, ’
A central difference method with 1% change in P; o is used to

accurately compute the normalized parameter sensitivity coeffi-

cients. A relatively high sensitivity value indicates that changing
a given parameter value would result in a significant change in
the model simulations and the SSE objective function (E). The
sensitivity analysis results for the heart and kidney cortex and
OM mitochondria are presented in Table 2 and Figures S3 and S4
in the Supplementary Material S5.

The correlation coefficients (CC;;) between the model param-
eters that best fit the model solutions to the experimental data
were obtained from eqn 24:

HM;;
where Np is the number of model parameters and HM is the
inverse of the product of the Jacobian matrix (JM) of the model
solution and its transpose (JM’). The model solution for mito-
chondrial OCR (Jo; flux) as a function of added ADP concen-

trations for 5 different substrates was fitted to corresponding
experimental data. Thus,

ccij = fori,j=1,.... Np, (24)

HM =in(J M x ] M), (25)
where
IM = <3J02.i) _ Jo,i (Pjo+ APjo) —Jo,i (Pjo — APjo)
" aPj )p,, 2APjo

_ }Oz.i (Pj_o + 0.01P)"o) — JOz.i (Pjvg — 0.0le.o)
n O.OZP)'.O ’

(26)

A high correlation coefficient between 2 estimated model
parameter values indicates their dependency on each other,
suggesting the nonidentifiability and nonestimability of the 2
model parameters. The correlation coefficient matrices for the
heart and kidney cortex and OM mitochondria are presented in
Figure S5 in the Supplementary Material S5.
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Figure 2. Model simulations and fittings to the OCR experimental data of isolated mitochondria from the heart and kidney cortex and OM mitochondria in response to
sequential and incremental ADP additions. Comparison of the time courses of mitochondrial OCR representative data (A-C) with the corresponding model simulations
(D-F) in the heart, kidney cortex, and kidney OM in response to sequential ADP additions of 25, 50, 75, 100, 150, and 250 puM. Model fitting to the peaks of the OCR data
after each ADP addition (G-I). Five different substrate combinations are used including PM (5:2.5 mm), AM (5:2.5 mm), GM (5:2.5 mwm), SUC (10 mm), and SUC + ROT (10
mM + 0.5 uM). The representative data are shown with dashes, the OCR peaks data are shown with symbols, and the model simulations are shown with solid lines.
Model simulations for SUC and SUC + ROT overlap in the kidney cortex and OM mitochondria (pink and cyan lines).

Results

The computational models of the heart and kidney cortex and
OM mitochondrial respiration and bioenergetics were devel-
oped and parameterized by individually fitting them to the OCR
data obtained from isolated mitochondria oxidizing 5 differ-
ent metabolic substrate combinations, followed by sequential
additions of increasing ADP concentrations. These parameter-
ized models were then validated by predicting the OCR and
AW, data in the presence of the same 5 substrate combina-
tions followed by single dose of ADP addition. Using these val-
idated models, key mitochondrial bioenergetic state variables
and emergent metabolic system properties, such as NADH ratio,
UQH, ratio, CytCred ratio, AV, and respiratory control index
(RCI; state 3 OCR/state 2 OCR) were predicted under physiologi-
cal and pathological conditions. In particular, the mitochondrial
proton leak (UCP2) activity was increased to simulate a patholog-
ical condition induced by mitochondrial uncoupling of OxPhos

in each of the 3 tissues, and to predict alterations of emergent
metabolic system properties. The validated models were also
used to develop hypotheses that may explain the differences
observed in the oxidation of SUC vs. SUC + ROT in the 3 tissues.
The heart mitochondria showed relatively large differences in
metabolite concentrations and metabolic fluxes in the presence
of SUC vs. SUC + ROT while the differences were relatively small
in the kidney OM mitochondria and non in the kidney cortex
mitochondria.

Model Fittings and Parametrization Using
Mitochondrial Respiration Data With Sequential and
Incremental ADP Additions

Figure 2A-C depict the time courses of measured OCR (Jo, flux)
in isolated mitochondria from the SD rat heart and kidney cor-
tex and OM, as reported from our laboratory by Tomar et al.,’
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based on the experimental protocol described in Figure S1A. In
this protocol, increasing concentrations of ADP were sequen-
tially added to isolated mitochondria in the presence of 5 differ-
ent substrate combinations. Across substrates, the heart mito-
chondria had significantly higher OCRs than the kidney cor-
tex and OM mitochondria, and the kidney cortex mitochondria
had significantly higher OCRs than the kidney OM mitochon-
dria. Furthermore, there were distinct differences in the OCR
profiles for different substrates in each tissue and between tis-
sues. For instance, the dynamics of OCR while utilizing SUC vs.
SUC + ROT were distinctly different in the heart mitochondria
but were similar in the kidney cortex and OM mitochondria.
Additionally, for all 5 substrate combinations and for all 3 tis-
sues studied, the state 3 OCR increased with increasing ADP con-
centrations, reaching maximal values at saturating ADP concen-
trations. These maximal OCR values also differed significantly
between different substrates and different tissues. All descrip-
tions of significance are based on the statistical analyses in the
studies of Tomar et al.?

The mitochondrial models were tailored to capture the dis-
tinctive features of the OCR data for various substrates. To
achieve this, for each tissue, the solution of the corresponding
model equation (ie, Joz or Jov flux) was concurrently fitted to the
average of state 2 OCR data after each substrate addition and the
peaks of state 3 OCR data after each ADP addition for each sub-
strate (Figure 2G-I). By using the values of the model parameters
estimated from the OCR data in Figure 2G-I, the models were
then able to simulate the time courses of OCR data in Figure 2A-
C with corresponding state 3 durations in the heart and kidney
cortex and OM mitochondria as well as the substrate-dependent
differences in the 3 tissues (Figure 2D-F). In line with the exper-
imental findings, the model simulations of OCR were lowest for
GM and SUC in the heart mitochondria and GM and AM in the
kidney cortex and OM mitochondria, and highest while oxidiz-
ing SUC + ROT in the heart mitochondria, SUC &+ ROT in the kid-
ney cortex mitochondria, and SUC + ROT and PM in the kidney
OM mitochondria. Thus, in all 3 tissues, GM had the lowest res-
piration while SUC + ROT had the highest respiration. Moreover,
the model was able to predict the distinct responses to the addi-
tion of ADP between PM and SUC(+ROT) in the kidney cortex and
OM mitochondria, as shown in Figure 2E, F, H, L.

Based on the optimal estimates of the extrinsic model
parameter values (Table 2 and Figure S2), it was observed that
the Vinax and Tmax values for the heart mitochondria were con-
sistently higher than those for the kidney cortex (>2 times) and
OM mitochondria (>4 times), which is consistent with the differ-
ences in the measured OCRs in these tissues. This suggests that
differential expressions of the enzymes and transporters and
their catalytic activities and regulations in different tissues are
required for distinct metabolic functions. For a specific tissue,
the estimated Vmax and Tmax values were also widely variable
among themselves, indicating differential expressions, activi-
ties, and regulations in the tissue to optimally perform their
individual functions. Interestingly, except for complex I (CI), for
other membrane potential (A¥y)-dependent transporters and
pumps (eg, CIII-CV, ATP/ADP exchange, and H* leak), the esti-
mates of Vimax’s and Tmax's were small, indicating that the high
activity of CI was a consequence of its high abundance. Fur-
thermore, the activity of AKGDH was found to be several orders
of magnitude lower in the kidney cortex and OM mitochon-
dria than the heart mitochondria, consistent with the observed
lower OCR with the AKG substrate in the kidney cortex and OM
mitochondria than the heart mitochondria. These results sug-
gest that the activities of various enzymes and transporters are
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critical determinants of mitochondrial respiration and bioener-
getics in different tissues.

The parameter sensitivity analyses (Figures S3-S4) and the
computed parameter correlation coefficient matrices (Figure S5
A-C) revealed that most of the Vimax and Tmax parameters were
robustly estimated for the heart and kidney cortex and OM mito-
chondrial models. As depicted in Figure S3, most of the normal-
ized sensitivity coefficients for the SSE objective function, E(P),
computed using the optimal parameter estimates Py (eqn 23),
were small and on the same order of magnitude for all 3 tis-
sues. This was further verified in the parameter sensitivity plots
in Figure S4 in which E/E, did not vary appreciably from one in
the neighborhood of P;/P; o = 1 for most parameters (P;) and for
all 3 tissues. Small changes in some parameters (P;/P; ), such as
the activities of the ETC complexes and phosphate transporters,
resulted in prominent changes in E/E, showing high sensitiv-
ity of the model solutions for the measured variable (Joy) to
those parameters. Both Figures S3 and S4 show that in the heart
model, the SSE objective function, E(P), was highly sensitive to
the activities of DCCS, DCCM, ANT GOT (glutamate-oxaloacetate
transaminase), CII, and CIII, while in the kidney cortex and OM
models, the SSE objective function was most sensitive to the
activities of ANT, H* leak, CII, CIII, and CV. This is conceivable as
these transporters and enzymes are directly associated with the
measured variables (Jo;) and perturbations (ie, substrate trans-
port and ATP/ADP exchange). There were also several parame-
ters for which the model solutions (Jo,) Were not very sensitive
to large changes in the parameter values (0.5 Pjo < P; < 1.5 P} o),
suggesting that any values for those parameters within the spec-
ified range provide as good a fit to the data as the optimal fit.

The correlation coefficient matrices in Figure SSA-C show the
direction and amplitude of correlations between every 2 param-
eters in each of the 3 models. Usually, a small correlation coef-
ficient (eg, |CC| < 0.8) between 2 parameters indicates a weak
dependency between those parameters, and a high confidence
in the estimability of those parameters. This was noted for many
pairs of parameters in all 3 models. On the other hand, relatively
high correlation coefficients (ie, |CC| > 0.8) were also obtained
between few of the parameters. For example, in the heart mito-
chondrial model, the highest correlation coefficients (ie, |CC|
> 0.9) were obtained between H* leak and CII, CIII, and CIV
activities, and between malate dehydrogenase (MDH) and cit-
rate synthase (CITS) activities. Similarly, high correlation coeffi-
cients were obtained between few of the estimated parameters
in the other 2 models. For example, in the kidney OM mitochon-
drial model, the activity of tricarboxylic carrier (TCC) was highly
correlated with the activities of pyruvate dehydrogenase (PDH)
and pyruvate-H" cotransporter (PYRH). In addition, the activity
of PYRH was negatively correlated with the activity of isocitrate
dehydrogenase (IDH) and positively correlated with the activi-
ties of PDH and glutamate-aspartate exchanger (GAE); the activ-
ity of GAE was negatively correlated with the activities of IDH
and glutamate-H" cotransporter (GLUH); the activity of CII was
negatively correlated with the activity of CIIL

Model Validation and Corroboration of Mitochondrial
Respiration and Membrane Potential With the Addition
of a Single Dose of ADP

The parameterized models were validated by predicting the OCR
and AV, dynamics and comparing them with the correspond-
ing experimental data® collected from isolated heart and kid-
ney cortex and OM mitochondria (Figure 3). Those datasets were
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Figure 3. Model validation through comparison of model simulations with mitochondrial OCR and A¥,, experimental data from the heart and kidney cortex and OM.
Comparison of model simulations of mitochondrial OCR time courses (A-C) in the presence of 5 different substrate combinations with addition of 200 um ADP to the
heart mitochondria and 100 um ADP to the kidney cortex and OM mitochondria with the corresponding representative OCR experimental data (D-F). Comparison of
model simulation of AW, time courses (G-I) in the presence of 5 different substrate combinations with addition of 200 um ADP to the heart mitochondria and 100 um
ADP to the kidney cortex and OM mitochondria with the corresponding representative AW, experimental data (J-L). The 5 different substrate combinations include PM
(5:2.5 mm), AM (5:2.5 mm), GM (5:2.5 mm), SUC (10 mm), and SUC + ROT (10 mM + 0.5 um). The representative data are shown with dashes and the model simulations
are shown with solid lines. For clarity, the model simulations and experimental data are shown from the time of substrate addition. Model simulations for SUC and
SUC + ROT overlap in the kidney cortex and OM mitochondria (pink and cyan lines).

not used for the parameterization of the models. As described
in Figure S1B, the heart mitochondria were stimulated with
200 uMm ADP and the kidney cortex and OM mitochondria were
stimulated with 100 um ADP. All were energized in the pres-
ence of 5 different substrate combinations. The representative
experimental data (Figure 3D-F) showed that SUC + ROT had
the highest and GM had the lowest OCR in all tissues, consistent

with results from the sequential ADP addition protocol (Figure
2A-C). In the heart mitochondria, PM and SUC + ROT had the
highest OCR, and in the kidney cortex and OM mitochondria,
SUC and SUC + ROT had the highest OCR (Figure 3D-F). Our mod-
els were able to predict the similar time courses of OCR with
matching state 3 durations for different substrates in the 3 tis-
sues (Figure 3A-C). The absolute OCRs were slightly higher after
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a single ADP addition compared to ADP addition of the same
dose in the sequential ADP addition protocol. As per the model
simulations of AWy, in the heart mitochondria, SUC and GM had
the lowest AWy, while PM and AM had the highest AW, (Figure
3J-L). In the kidney cortex and OM mitochondria, GM had the
lowest AW, and SUC + ROT had the highest AWy, (Figure 3J-L).
Our models were able to predict the similar time courses of AW,
with matching state 3 durations in addition to closely predicting
the substrate-dependent differences in AW, dynamics between
the 3 tissues (Figure 3G-I). Despite noticeable differences in the
OCR dynamics during state 3 respiration, SUC vs. SUC + ROT had
the similar AWy, dynamics from all 3 tissues.

Model Predictions of Mitochondrial Bioenergetics Under
Sequential and Incremental ADP Additions
(Physiological Perturbations)

The validated models were used to simulate the time courses
of different metabolic fluxes (Figure S6A-F) and metabolite con-
centrations (Figure S7A-F) in isolated heart and kidney cortex
and OM mitochondria with sequential and incremental addi-
tions of ADP in the presence of 5 different metabolic substrate
combinations. These predictions show how different substrate
combinations differentially activated NADH and FADH,-linked
metabolic pathways including metabolite and phosphate trans-
porters, TCA cycle, ETC, and OxPhos in the mitochondria of the
3 tissues leading to different metabolic fluxes and metabolite
concentrations regulating redox states, AWy, and O, consump-
tion during proton leak-mediated respiration (state 2) and ADP
concentration-dependent respiration (state 3) and ATP synthesis
characterizing OxPhos.

The dynamic simulation results from Figures S6 and S7 were
used to derive key bioenergetic state variables and physiologi-
cal emergent metabolic system properties including NADH ratio,
UQH, ratio, CytCred ratio, AV, and RCI (state 3 Jo,/state 2 Joo)
as functions of added ADP concentrations in isolated heart and
kidney cortex and OM mitochondria (Figure 4). The redox ratio is
defined as the ratio of the concentration of a reduced metabolite
to the total (reduced + oxidized) concentration of that metabo-
lite [eg, NADH ratio is defined as Cnapu/(Cnap + Cnapn)]. These
results provide a quantitative and mechanistic understanding
of how mitochondrial redox and bioenergetic states are differ-
entially regulated in response to sequential and incremental
ADP additions in the presence of different substrate combina-
tions, leading to differential OCR and ATP synthesis in a partic-
ular tissue. These results show that the redox and bioenergetic
states vary distinctly in response to ADP in a tissue-specific and
substrate-dependent manner.

The simulation results in Figure 4 showed that the NADH
ratio decreased in response to ADP for all substrates in all
3 tissues, while the UQH, and CytCred ratios increased with
NADH-linked substrates and decreased with FADH,-linked sub-
strates. Although the redox responses were similar across all
3 tissues, the absolute values and relative changes in these
ratios varied. The most prominent differences in the redox ratios
between tissues occurred in the presence of AM or SUC, where
the redox changes were similar to those with PM in the heart
mitochondria and to those with GM in the kidney cortex and
OM mitochondria. Interestingly, the NAD pool became drasti-
cally oxidized in response to ADP in the presence of SUC for
both the heart and kidney OM mitochondria while it remained
reduced in the mitochondria of the kidney cortex. Similarly, the
changes in UQH; and CytCred ratios were similar in the kidney
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cortex and OM mitochondria but different in the heart mito-
chondria. These distinct redox responses can be attributed to
variations in metabolic fluxes in the 3 tissues, as predicted in
Figure S6.

The simulation results from Figure 4A to C showed that the
NADH ratio varied among the 3 tissues in the presence of dif-
ferent substrates. In the presence of SUC + ROT, the NADH ratio
was ~100% in all 3 tissues due to inhibition of CI. In the pres-
ence of PM, it was >70%, and in the presence of GM, it was <10%
in response to ADP in all 3 tissues. In the presence of AM, the
NADH ratio was ~90% in the heart mitochondria but only ~10%
in the kidney cortex and OM mitochondria in response to ADP.
Furthermore, in the presence of SUC, after addition of only 75
uMm ADP, the NAD pool was fully oxidized (ie, NADH ratio was 0%)
in the heart mitochondria, ~10% oxidized in the kidney cortex
mitochondria, and ~90% oxidized in the kidney OM mitochon-
dria. These distinct NADH redox states are attributed to differen-
tial activities (maximum velocities) of the NADH producing TCA
cycle enzymes in different tissues (Table 2 and Figure S2) and
differential activation of the TCA cycle enzymes with different
substrate combinations at saturated concentrations.

Model simulations showed that the UQ pool was less reduced
in response to ADP compared to the NAD pool in all 3 tissues. In
the heart mitochondria, the UQ pool was reduced to ~5%, ~18%,
and ~25% in response to ADP in the presence of GM, PM, and
AM, respectively (Figure 4D). The increase in UQ pool reduction
at saturated ADP was less than 10% for NADH-linked substrates.
In the presence of SUC and SUC + ROT, the UQ pool was oxidized
by more than 30%, decreasing from ~40% (at state 2) to ~10%
and ~1% (at saturated ADP), respectively (Figure 4D). In the kid-
ney cortex mitochondria, the UQ pool was reduced to ~25% in
the presence of GM and AM, ~50% in the presence of PM, and
~70% in the presence of SUC + ROT in response to ADP (Figure
4E). In the kidney OM mitochondria, the UQ pool was reduced to
~20% for PM, ~10% for AM, ~5% for GM, and ~5% for SUC + ROT
in response to ADP. In the kidney cortex mitochondria, the UQ
pool was more reduced compared to the heart and kidney OM
mitochondria (Figure 4D-F). The changes in UQH, oxidation in
SUC vs. SUC + ROT in response to ADP were the same in the
kidney cortex and OM mitochondria despite their differences in
the heart mitochondria (Figure 4D-F). The UQ pool in response to
ADP in the presence of SUC was oxidized to ~1%, ~70%, and ~5%
in the heart, cortex, and OM mitochondria, respectively (Figure
4D-F).

Model simulations predicted that the CytC pool was less
reduced compared to the NAD and UQ pools in response to ADP
in all 3 tissues. In the heart mitochondria, the CytC pool was
reduced to ~10% for PM and AM, ~5% for GM and SUC + ROT, and
~1% for SUC in response to ADP (Figure 4G). In the kidney cortex
mitochondria, the CytC pool was reduced to ~15% for PM and
SUC + ROT and ~10% for GM and AM in response to ADP (Figure
4H). In the kidney OM mitochondria, the CytC pool was reduced
to ~15% for PM, ~10% for AM, and ~8% for GM and SUC # ROT
in response to ADP (Figure 4I). In all 3 tissues, the CytC pool
changed between 5% and 20% (Figure 4G-I). These distinct UQ
and CytC redox states are attributed to differential activities of
the ETC complexes in different tissues (Table 2 and Figure S2)
and differential activation of the ETC complexes with different
substrate combinations at saturated concentrations.

In all 3 tissues, AV, decreased after addition of ADP due
to OxPhos and pumping of H* from IMS to the mitochon-
drial matrix (Figure 4J-L). In the heart mitochondria, AV, was
~170 mV for AM, ~165 mV for PM, ~145 mV for GM and
SUC + ROT, and ~130 mV for SUC in state 3 (Figure 4J). In the
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Figure 4. Model predictions of redox ratios, AW, and RCI in response to sequential and increasing ADP additions to the heart and kidney cortex and OM mitochondria.
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(10 mm + 0.5 pM) in response to increasing ADP additions of 25, 50, 75, 100, 150, and 250 uMm in the heart, kidney cortex, and kidney OM mitochondria. Some model
simulations for SUC and SUC + ROT overlap in the kidney cortex and OM mitochondria (pink and cyan lines).

kidney cortex mitochondria, AV, was ~160 mV for PM and
SUC + ROT and ~140 mV for AM and GM (Figure 4K). In the kid-
ney OM mitochondria, AWy, was ~170 mV for PM and ~140 mV
for AM, GM, and SUC =+ ROT (Figure 4L). These distinct AV, are
attributed to differential activities of the ETC complexes in dif-
ferent tissues (Table 2 and Figure S2) in the presence of differ-
ent substrate combinations at saturated concentrations, leading
to differential redox states and proton pumping, as predicted in
Figures S6 and S7.

Model simulations predicted that the RCI values (state 3
Joo/state 2 Jo,) were highest in the heart mitochondria compared
to the kidney cortex and OM mitochondria, which had similar
RCIs (Figure 4M-O). In the heart mitochondria, the RCI values
were ~11 for PM, ~9 for AM, ~7 for GM, ~3 for SUC + ROT, and
~2 for SUC at saturated ADP (Figure 4M). In the kidney cortex
mitochondria, the corresponding RCI values were ~6 for PM, ~5
for AM and GM, and ~3 for SUC + ROT (Figure 4N), while in
the kidney OM mitochondria, the RCI values were ~5 for PM,
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AM, and GM, and ~2 for SUC =+ ROT (Figure 40). These model-
predicted RCI values are consistent with our recent experimen-
tal study® and signify how OxPhos has differential efficiency for
ATP production for different metabolic substrates in different
tissues.

Model Predictions of Mitochondrial Bioenergetics Under
Pathological Conditions of Increased Proton Leak (UCP
Activity) and Mitochondrial Uncoupling

The validated models were also used to simulate alterations of
key bioenergetic state variables and emergent metabolic sys-
tem properties in response to increased H* leak (UCP2) activity,
which can uncouple OxPhos and lead to a pathological condition
inisolated heart and kidney cortex and OM mitochondria (Figure
5). The key model predictions included NADH ratio, UQH, ratio,
CytCred ratio, AWy, and RCI (state 3 ]o,/state 2 Jo,). The patholog-
ical condition was simulated by increasing the maximal H* leak
activity parameter (Tmax) from 100% to 900%, where 100% Tmax
represents the normal physiological condition as represented
in Figures 2-4, and 200% to 900% Tmax represent the progressive
pathological condition of increased H* leak and uncoupling of
OxPhos. Mitochondrial respiratory and bioenergetic responses
to a single dose of ADP (200 um for the heart mitochondria
and 100 uM for the kidney cortex and OM mitochondria) were
simulated in the presence of different substrates as in Figure 3
(experimental protocol of Figure S1B). For all 3 tissues, model
simulations predicted that in the presence of NADH-linked
substrates, the state 2 NADH ratio, UQH, ratio, and CytCred
ratio following substrate addition did not change appreciably
despite relatively large changes in the presence of FADH,-linked
substrates.

In state 2, the NAD pool was majorly oxidized in the pres-
ence of SUC in the heart and kidney OM mitochondria despite
minor oxidation in the kidney cortex mitochondria (Figure 5A-
C). In the presence of SUC + ROT, the state 2 NAD pool was only
slightly oxidized in the heart and kidney cortex mitochondria,
despite major oxidation in the kidney OM mitochondria (Figure
S5A-C). In state 2, the UQ and CytC pools were majorly oxidized
in the presence of SUC despite their minor oxidation in the pres-
ence of SUC + ROT in the heart mitochondria (Figure 5D and G).
In the kidney cortex and OM mitochondria, the state 2 UQ and
CytC pools were slightly oxidized in the presence of SUC with or
without ROT (Figure 5E-F, H-I).

The state 2 reduction of AWV, with increased H* leak activ-
ity was minor in the presence of NADH-linked substrates and
SUC + ROT in all 3 tissues, consistent with minor changes in the
redox ratios (Figure 5J-L). However, the state 2 AWV, was appre-
ciably reduced (120 mV) with increased H' leak activity in the
presence of SUC in the heart mitochondria despite minor reduc-
tion in the kidney cortex and OM mitochondria (Figure 5J-L).

In the control condition (100% Tmax for H* leak), the RCI val-
ues were highest in the heart mitochondria followed by the kid-
ney cortex and OM mitochondria. In addition, the RCI values
were appreciably higher for NADH-linked substrates compared
to FADH,-linked substrates. These results are consistent with
our recent experimental study.? In all 3 tissues, the RCI val-
ues progressively decreased with increased H* leak activity in
the presence of both NADH-linked and FADH,-linked substrates,
albeit appreciable decrease in the heart and kidney cortex mito-
chondria compared to the kidney OM mitochondria. The reduc-
tion in the RCI values in the presence of SUC + ROT was minor
in all 3 tissues (Figure 5SM-O).
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Model Predictions of Differential Tissue-Specific
Mitochondrial Bioenergetics Responses to SUC vs.
SUC + ROT

To explore the mechanisms underlying the differential oxidation
of SUC vs. SUC + ROT in the 3 tissues, model simulations were
conducted and analyzed as shown in Figures 6 and 7. These sim-
ulations reveal major differences in the FADH,-linked ETC reac-
tions, TCA cycle enzymes, and metabolite transporters in the
heart mitochondria, but not in the kidney cortical or OM mito-
chondria (Figures 6, 7, S6B, D, F, and S7B, D, F).

In the heart mitochondria, the comparison of SUC vs.
SUC + ROT profiles showed appreciable differences in AWy,
dynamics and in the dynamics of metabolites involved in the
FADHj,-linked pathway including SUCy,, MALy,, OXAp,, and Pip
(Figure 6). However, in the kidney cortex and OM mitochon-
dria, all metabolites and AWy, dynamics were similar except for
OXAm. The heart and kidney cortex and OM mitochondria did
not produce OXA in the presence of SUC + ROT due to fully
reduced NAD pool (ie, NADH ratio is ~100%). In the heart and
kidney cortex and OM mitochondria before substrate addition,
OXA is produced by GOT reaction of indigenous AKG and ASP in
the mitochondrial matrix (Figures S6 and S7). In the heart and
kidney OM mitochondria, the concentration of OXA is relatively
higher after SUC and ADP additions compared to that before SUC
addition due to highly oxidized NAD pool, which suppresses the
initial OXA concentration (Figure 6G, I). In contrast, in the kid-
ney cortex mitochondria, after additions of SUC and ADP, NADH
is only minimally oxidized to NAD* at CI, compared to that in
the heart and kidney OM mitochondria. Therefore, despite of the
high MAL availability, OXA production is limited by reduced NAD
pool, and hence OXA concentration after SUC addition is smaller
than OXA concentration before SUC addition. In the presence
of SUC, the OXA concentration was ~10* times higher in the
heart mitochondria than in the kidney OM mitochondria and
was negligible in the kidney cortex mitochondria (Figure 6G-I).
The MAL produced after each ADP addition is accumulated in
the mitochondrial matrix for all tissues, but this MAL accumu-
lation was greater in the heart mitochondria than in the kid-
ney cortex mitochondria, which in turn was higher than that in
the kidney OM mitochondria (Figure 6D-F). In the heart mito-
chondria, AV, was lower in the presence of SUC compared to
SUC + ROT. However, AW, in the presence of SUC with or with-
out ROT were similar in the kidney cortex and OM mitochondria
(Figure 6N, O).

The model analysis revealed appreciable differences in
metabolic fluxes related to the FADH, pathway, including ETC
SDH/CII and CIV complexes and DCCM, DCCS, and phosphate
carrier (PiC) transporters, in the heart mitochondria between
SUC vs. SUC + ROT, but not in the kidney cortex and OM mito-
chondria (Figure 7). In the heart mitochondria oxidizing SUC,
the influx rate of SUC. and efflux rate of MAL,, to and from
the mitochondrial matrix were reduced after the second dose of
ADP (75 pm), indicting inhibition of SUC, influx and MALy, efflux
(Figure 7A, D). In addition, the rate of SUC oxidation by SDH was
decreased, which was due to inhibition of SDH by OXAn, (Figure
7G). Our model also predicts reduction in the rate of Pi influx
to the mitochondrial matrix by PiC in response to high concen-
tration of Pip, and decreased O, reduction rate by CIV (Figure
7], M). These responses were not evident in simulations of the
heart mitochondria oxidizing SUC + ROT. In addition, the model-
predicted responses of the kidney cortex and OM mitochondria
were identical for SUC and SUC + ROT (Figure 7, the middle and
right columns).
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Figure 5. Model predictions of redox ratios, A¥y,, and RCI in response to increasing H* leak in the heart and kidney cortex and OM mitochondria. Model predictions
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RCI in the presence of 5 different substrate combinations including PM (5:2.5 mm), AM (5:2.5 mm), GM (5:2.5 mm), SUC (10 mwm), and SUC + ROT (10 mM + 0.5 pum) in
response to increasing H* leak from 100% (control) to 900% at fixed ADP of 200 M in the heart and ADP of 100 uM in the kidney cortex, and OM mitochondria. Some
model simulations for SUC and SUC + ROT overlap in the kidney cortex and OM mitochondria (pink and cyan lines).

Discussion

Different substrates differentially generate the reducing equiv-
alents NADH and FADHj, via the TCA cycle, which feed electrons

There is ample evidence that the kinetics and efficiency of 5 the ETC that drive OxPhos and ATP synthesis. However, the
mitochondrial O; consumption (respiration) for ATP pr.o.ductllozr; precise contributions of these substrates have not been system-
depend on the choice of metabolic substrates being utilized.” atically and quantitatively characterized in mitochondria of the
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cyan lines).

heart or the kidney, the 2 major energy consuming organs in our
body.’ The present modeling study aimed to fill this knowledge
gap, given the critical role that mitochondrial respiratory and
bioenergetic dysfunctions play in these organs in the context of
cardiovascular and renal diseases such as hypertension.®* The
pathogenesis of a cardiac disease contributes to the pathogene-
sis of a renal disease and vice versa due to the interconnections
among processes driving cardiovascular and renal diseases.*’>!

In our recent experimental study,’ we reported appreciable
differences in substrate-dependent respiration and bioenerget-
ics between isolated mitochondria from normal SD rat heart and
kidney cortex and OM. Specifically, heart mitochondria showed
predominantly higher respiratory rates (OCR) and membrane
potential (AWy,) for both NADH- and FADH,-linked substrates
compared to the kidney cortex and OM mitochondria. Addition-
ally, OxPhos efficiency in the heart mitochondria was higher
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lines).

for NADH-linked substrates and lower for FADH,-linked sub-
strates compared to the kidney cortex and OM mitochondria.
We also observed major differences in mitochondrial respira-
tion and ROS production in the presence of SUC with and with-
out ROT (complex I inhibitor) in the heart, whereas only minor
differences were observed in the kidney OM and no differences
were observed in the kidney cortex.! When SUC is used as sub-
strate, heart mitochondria produce excess ROS under states 2
and 4 via reverse electron transfer (RET) at complex I (CI) and
excess oxaloacetate (OXA) in state 3 via TCA cycle, which sub-
sequently inhibits SDH reaction and alters respiration, OxPhos,

and ROS production.t#>:46.52 Inhibition of CI by ROT stalls the
RET-mediated ROS production and improves mitochondrial res-
piration and OxPhos.! However, why that is not the case for kid-
ney cortex and OM mitochondria is not well known. To inves-
tigate these diverse kinetic data and begin to elucidate differ-
ences in underlying mechanisms, we developed computational
models of mitochondrial respiration and bioenergetics. These
models and resulting simulations provided a deeper quantita-
tive understanding of the mechanisms responsible for the dif-
ferential responses of substrate-dependent mitochondrial respi-
ration and bioenergetics in the heart and kidney cortex and OM.
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Previous Computational Mitochondrial Models and
Their Limitations

Other groups have also developed models of mitochondrial
respiration and bioenergetics at different levels of complexity,
depending on the questions being addressed. As such, mod-
els have improved over the years to incorporate our expanding
knowledge of mitochondrial function and dysfunction in health
and diseases. Korzeniewski and colleagues® developed one of
the first mitochondrial OxPhos models which included simple
mass action kinetics for complexes I, III, IV, and V, proton leak,
inorganic PiC, and ANT for ATP/ADP exchange in skeletal mus-
cle. Subsequently, they conducted a series of theoretical stud-
ies to understand various potential regulation mechanisms of
OxPhos and ATP production in skeletal muscle during differ-
ent types of exercises (eg, see>*%). Saito et al.>” expanded upon
the model developed by Korzeniewski and colleagues®? by inte-
grating the kinetics of TCA cycle reactions and cation trans-
porters. They then used this model to investigate how Ca?* ions
regulate respiration and OxPhos in isolated cardiac mitochon-
dria, specifically in the presence of glutamate and malate sub-
strates. They also used the model to understand the mecha-
nisms that maintain cardiac levels of energy metabolites con-
stant during changes in workload in vivo. Cortassa et al.?6:%’
developed a detailed integrated model of cardiac mitochondrial
energy metabolism and Ca?* dynamics that included the mech-
anistic enzymatic kinetics of TCA cycle, ETC and OxPhos, and
Ca?* handling, with a goal of understanding different regulation
mechanisms of OxPhos and ATP synthesis in the heart during
excitation-contraction coupling.

Beard et al.% developed a thermodynamically constrained
mitochondrial OxPhos model including complexes I, III, IV, and
V, proton leak, potassium transport, PiC, and ANT using sim-
ple mass action kinetics but accounting for Gibb’s free energy
of reactions. Heiske et al.*® then developed a hybrid OxPhos
model based on Beard’s® and Korzeniewski’s®® models using
Michaelis-Menten kinetics instead of mass action kinetics for
reactions and transporters. Dash and coworkers3?3* further
extended Beard’s OxPhos model®® and developed integrated
models of cardiac mitochondria that accounted for mitochon-
drial Na* and Ca?* transports and Ca?t sequestration. Bazil
et al.*® recently modified Beard’s OxPhos model®*® to develop a
hybrid model of isolated rat heart mitochondria that included
the kinetics of ETC and OxPhos, PiC, ANT, H* leak, and K*
transport to study regulation of mitochondrial OxPhos and ROS
production under physiological conditions with imposed work-
loads. However, these models did not include TCA cycle reac-
tions. In separate studies, Wu et al.?® integrated Beard’s OxPhos
model® with the kinetics of TCA cycle reactions (including
SDH/complex II) using data from rat heart and skeletal mus-
cle mitochondria, and studied the effects of NADH-linked sub-
strates including pyruvate, malate, and glutamate on mitochon-
drial respiration and bioenergetics. However, their model® did
not consider the effects of other NADH-linked substrates such
as alpha-ketoglutarate and FADH,-linked substrate such as suc-
cinate. Wu et al.®%-6? later extended their model® to study regu-
lations of phosphate and energetic metabolites during ischemia
and exercise in the heart and skeletal muscle in vivo. Bazil et
al.?! later extended Wu et al. model® to include cation handling
from Dash and Beard3* and study the regulation of mitochon-
drial bioenergetics and volume dynamics.

Despite numerous computational studies on heart mito-
chondria, existing models have limited applicability in describ-
ing mitochondrial respiration and bioenergetics of other organs
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such as kidneys. Edwards et al.¥’ recently modified Wu et al.
model® to study oxygen consumption and ATP production of
kidney proximal tubular (PT) cells. However, their model can-
not account for the differential mitochondrial respiration and
bioenergetics between the kidney cortex and OM and their dis-
tinct responses to different metabolic substrates?!. It is known
that different segments of nephron (eg, PT and mTAL) and
different regions of kidney (eg, cortex and OM) have varying
mitochondrial contents, energy requirements, metabolic rates,
and oxygen consumptions. Our present computational model-
ing focuses on the PT and mTAL segments and cortex and OM
regions of the kidney, which are metabolically active segments
and regions involved in reabsorption of filtered sodium and rep-
resent an important step forward in the field.

Important Aspects of the Current Computational
Mitochondrial Models: Relevance to Tissue/Organ
Bioenergetic Functions

The present models of mitochondrial respiration and bioener-
getics in the heart and kidney cortex and OM were developed
based on the lung tissue mitochondrial respiration and bioen-
ergetics model that we previously developed.?® To account for
potential differences in mitochondrial bioenergetics between
these organs, we incorporated tissue-specific and substrate-
dependent regulations of enzymatic and transporter reac-
tions into the model. The intrinsic model parameters such as
Michaelis—-Menten constants (Kn,’s) characterizing the binding
of metabolites to enzymes and transporters were kept constant
and set to the same values as in our previous model?® for all
enzymatic reactions and metabolite transporters unless other-
wise mentioned. The extrinsic model parameters such as maxi-
mal reaction and transporter velocities (Vimax’s and Tmax's) were
estimated to account for possible differences in tissue-specific
enzyme and transporter activities.

The present models of mitochondrial respiration and bioen-
ergetics were parameterized and validated (Figures 2 and 3)
using a diverse set of experimental data recently published
by our laboratory.’ The models were parameterized separately
for each tissue by fitting the model solutions for Jo, or Jav
fluxes to the OCR data obtained using 5 different metabolic sub-
strate combinations with sequential and incremental ADP addi-
tions to the isolated heart and kidney cortex and OM mito-
chondria (Figure 2). The substrate combinations included those
which activate both NADH and FADH,-linked metabolic path-
ways. For a given tissue, the ability of the corresponding model
simulations to fit well all the substrate-dependent experimen-
tal data suggests that the model accounts for the dominant
processes that affect mitochondrial respiration and bioenerget-
ics for the different substrate combinations studied. The opti-
mal estimates of the tissue-specific Vimax and Tmax parameters
are given in Table 2 and Figure S2. The quality control mea-
sures performed on the optimal parameter estimates (ie, param-
eter sensitivity analyses and correlation coefficient matrices;
Figures S3-S5) suggest robustness and high confidence in the
estimated values of most of the model parameters.

As postulated, the estimated Vmax and Tmax values were
largely different from each other in a specific tissue, indicating
differential expressions, activities, and regulations of different
enzymes and transporters in that tissue to optimally perform
the individual metabolic functions. In addition, the estimated
Vmax and Tmax values were several folds higher in heart mito-
chondria than in kidney cortex mitochondria, and several folds
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higher in kidney cortex mitochondria than in kidney OM mito-
chondria, consistent with the measured OCR data.! These find-
ings are also consistent with the general notion that differen-
tial expressions of enzymes and transporters and their catalytic
activities and regulations in different tissues (viz., heart and kid-
ney cortex and OM) are required for those tissues to optimally
perform their distinct metabolic functions.

The present models were further validated and strength-
ened by their abilities to predict isolated heart and kidney cor-
tex and OM mitochondrial OCR and AWV, responses to the same
5 metabolic substrate combinations activating both NADH and
FADH,-linked pathways followed by stimulation of single dose of
ADP addition,! which were not used for the estimation of tissue-
specific Vimax and Tmax parameters (Figure 3). Fairly good corre-
spondence between model simulations and experimental data
signifies robust model validation and corroboration.

The present models not only adequately captured the tissue-
specific and substrate-dependent experimental data on mito-
chondrial respiration and AW, (Figures 2 and 3), but also allowed
for prediction of emergent metabolic system properties such
as mitochondrial redox states, enzyme and transporter fluxes,
metabolite concentrations, respiratory control index (RCI = state
3 OCR/state 2 OCR), and AWV, under diverse physiological and
pathological perturbations (Figures 4, 5, S6, and S7). This enabled
prediction of changes in various metabolic fluxes and metabo-
lite concentrations that are difficult to measure experimentally,
which helped in elucidating the underlying mechanisms corre-
lating observed changes of mitochondrial respiration and bioen-
ergetics in the heart and kidney cortex and OM. Overall, the
validated models and their predictions of emergent metabolic
system properties further our understanding of mitochondrial
metabolism, OxPhos, and bioenergetics in the heart and kidney
cortex and OM under physiological and pathological conditions.

Interestingly, the model simulations predicted that the heart
and kidney cortex and OM mitochondrial redox states and
bioenergetics are not very prone to mild increases in proton leak
in the presence of NADH-linked substrates (Figure 5). The same
was also predicted to be the case in the kidney cortex mitochon-
dria in the presence of FADH,-linked substrates (SUC + ROT).
However, the heart and kidney OM mitochondria were predicted
to be very sensitive to mild increases in proton leak in the pres-
ence of the FADH,-linked substrate SUC, resulting in appre-
ciable changes in their emergent metabolic system properties.
These results indicate that mitochondrial SUC accumulation
combined with increased uncoupling of OxPhos is detrimen-
tal to the bioenergetic function of the heart and kidney OM
mitochondria due to considerable changes in their emergent
metabolic system properties, including redox states.

Additionally, the model simulations revealed that the low
respiratory responses of GM in all 3 tissues could be attributed
to high concentrations of ASP in the mitochondrial matrix.
The simulations demonstrated that these higher concentra-
tions caused the electrogenic GLU/ASP exchanger (GAE) to uti-
lize ASPy, in exchange for GLUe, and the GLUH cotransporter to
work in the opposite direction resulting in extrusion of H*, and
GLUy, from the mitochondrial matrix (Figures S6 and S7). Con-
sequently, GLU. influx was limited only to the GAE antiporter
rather than the GLUH cotransporter. Additionally, the model pre-
dictions showed that the activity of AKGDH was several orders of
magnitude lower in kidney cortex and OM mitochondria than in
heart mitochondria (Table 2 and Figure S2). These findings pro-
vide valuable insights into the differences in mitochondrial res-
piration and bioenergetics among different tissues, which could
have significant implications in our understanding of various

pathological states associated with metabolic dysfunctions of
the heart and kidney:.

The model simulations not only revealed major differ-
ences in mitochondrial respiratory and bioenergetics responses
among different tissues, but also provided insights into the likely
mechanisms underlying differences in metabolic fluxes and
metabolite concentrations associated with SUC vs. SUC + ROT
oxidation in the heart mitochondria vs. kidney cortex and OM
mitochondria (Figures 6 and 7). Specifically, the high concentra-
tion of SUC in the heart mitochondria was predicted to inhibit
the DCCM resulting in MAL,, accumulation, which then lead to
more OXAp, production and SDH inhibition by OXA, (Figure 8B).
Excess MAL,, accumulation also inhibited the DCCS reducing
the influx of SUC. to the mitochondrial matrix and reversing
OXAp and MALy, accumulation (Figure 8B). This mechanism was
found highly prominentin the heart mitochondria and not in the
kidney cortex or OM mitochondria, due to the lower affinity of
MALp, binding to DCCS in the kidney cortex and OM mitochon-
dria.

Model Predictions of the Differences in NADH-linked
Pathway Fluxes and Metabolite Profiles Among the
Heart and Kidney Cortex and OM Mitochondria

In the presence of NADH-linked substrates (ie, during FET), the
NAD pool is majorly reduced followed by reduced UQ pool and
CytC pool leading to OxPhos and ATP production (Figure 8A). For
NADH-linked substrates, the mitochondrial OCR, ATP synthe-
sis rate, and other intermediate metabolic fluxes were highest
in the presence of PM and lowest in the presence of GM in all
3 tissues studied. This is consistent with the estimated higher
Vmax values for PDH and lower Vy,,x values for GOT shown in
Figure S2. Interestingly, metabolic fluxes in the presence of AM
were as high as those in the presence of PM in the heart mito-
chondria but as low as those in the presence of GM in the kid-
ney cortex and OM mitochondria as demonstrated in Figures 2
and S6-S7. This can be explained by the higher value of Viax
for AKGDH in the heart mitochondria compared to the kidney
cortex and OM mitochondria (Figure S2).

Moreover, mitochondria utilizing GM yielded the lowest OCR
in all 3 tissues (Figure 2), and the model predicts that this can be
attributed to the limitations of GLU influx via the GAE antiporter
and GLUH cotransporter, as well as limitations of oxidations by
GOT and AKGDH (Figures S6 and S7). GLU transport is limited to
the electrogenic GAE antiporter rather than the GLUH cotrans-
porter due to high ASP concentrations which are produced
when mitochondria are energized with GLU. This phenomenon
has been reported in previous studies,®> which demonstrated
that GAE antiporter plays a vital role in controlling mitochon-
drial respiration. Other studies have suggested that reduction
of the GLUH cotransporter activity for GLU transport could be
explained by a decrease in matrix pH.%> Our model predictions
support this idea, as evidence by the reduced AW¥,, during state 3
respiration in the presence of GM compared to other substrates
as shown in Figures 3 and 4. In addition, the model predicts a
considerably oxidized NAD pool (ie, low NADH) in mitochondria
utilizing GM for all 3 tissues.

Considering all things together regarding GM substrate, our
model analyses and supporting data indicate that protons are
transferred to the mitochondrial matrix via GAE. The addition
of ADP and mitochondrial ATP synthesis leads to an imbalance
of the proton gradient across the IMM, resulting in the GLUH
cotransporter working in the opposite direction and extruding
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Figure 8. Schematics of the NADH vs. FADH, pathway differences and regulations between the heart and kidney cortex and OM mitochondria. The diagram includes
metabolites, transporters, and TCA cycle enzymes involved in (A) forward electron transfer (FET) through NADH pathway for the heart and kidney cortex and OM
mitochondria in brown and (B) reverse electron transfer (RET) through FADH, pathway for the kidney cortex and OM mitochondria in yellow and heart mitochondria

in green. The black arrows show the control addition or production of metabolites, the red arrows show considerably high increase in concentration of metabolites,
and blue arrows show decrease in concentration of metabolites. The solid blue stars show that ATP is produced, and the solid blue multiplication sign show that ATP
is not produced. The blue striped stars show that an enzyme or transporter is stimulated, and the black striped stars show that an enzyme or transporter is activated.

protons, which reduces the proton gradient along with GLU. This
negative transport of protons and GLU is negligible in all tissues,
as shown in Figure S6.

Model Predictions of the Differences in FADH,-linked
Pathway Fluxes and Metabolite Profiles Among the
Heart and Kidney Cortex and OM Mitochondria

Alterations in SDH activity associated with pathological condi-
tions can significantly affect mitochondrial OxPhos and ROS pro-
duction by affecting SUC oxidation, as reported by previous stud-
ies.52:64.65 In the heart, increased oxidation of SUC (via SDH) and
the associated elevation in mitochondrial membrane potential
(AWm) have also been shown to drive mitochondrial ROS produc-
tion.>? In addition, we have recently shown that there are signif-
icant differences in mitochondrial respiration and ROS produc-
tion between the heart and kidney cortex and OM in the pres-
ence of SUC + ROT.! In the present study, computational model-
ing was used to develop hypotheses that may explain the differ-
ences observed in the oxidation of SUC vs. SUC + ROT in these
3 tissues (Figure 8B).

In contrast to the heart, in the kidney cortex and OM,
the mitochondrial OCR dynamics during the sequential and
incremental ADP additions were similar when utilizing SUC or
SUC + ROT (Figure 2). These differences appear to be explained
by excess OXA production and accumulation in the heart mito-
chondria compared to the kidney cortex and OM mitochondria
in the presence of SUC which inhibits SDH and electron trans-
fer to the ETC resulting in changes in the OCR and ATP synthe-
sis rate (Figure 8B), consistent with previous differential results
in different tissues .*>46:66 As shown in Figures 6 and 7, the

model also predicts oscillating OXA dynamics in the heart and
kidney OM mitochondria with sequential and incremental ADP
additions in the presence of SUC, during which ascending and
descending of OXA concentrations are synchronized with sim-
ilar oscillations in the SDH flux and OCR. It was observed that
in the presence of SUC, the DCCS flux was positive (SUC enter-
ing mitochondria and Pi exiting) while DCCM flux was nega-
tive (MAL exiting mitochondria and Pi entering). The model sug-
gests that with SUC influx to the mitochondrial matrix and SDH
inhibition by OXA accumulation, there is an accumulation of
SUC, which inhibits DCCM slowing the outflow of MAL. This
results in accumulation of MAL in the mitochondrial matrix
which inhibits DCCS reducing SUC influx and stimulates SDH
increasing SUC oxidation. This results in reduction in SUC con-
centration in the mitochondrial matrix which reverses DCCM
inhibition and increases MAL outflux. This leads to a reduction
of OXA in the mitochondrial matrix which reverses the SDH inhi-
bition. Thus, reversing SDH inhibition and stimulating SDH facil-
itates the transfer of electrons to the ETC and increases the OCR.
This mechanism results in synchronized oscillating dynamics in
OXA concentration, ATP synthesis, SDH flux, and OCR. Our stud-
ies found that this phenomenon is considerably less prominent
in the kidney cortex and OM mitochondria.

Interestingly, in the heart mitochondria, the concentrations
of accumulated FUM and MAL with sequential and incremental
ADP additions in the presence of the FADH,-linked substrates
SUC + ROT were predicted to be several folds higher than those
in the presence of NADH-linked substrates. However, in the kid-
ney cortex and OM mitochondria, the concentrations of accumu-
lated FUM and MAL with the same sequential and incremental
ADP additions in the presence of the FADH,-linked substrates
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SUC + ROT were predicted to be considerably lower than those
in the presence of NADH-linked substrates (Figure S7). Moreover,
the dynamics of DCCM flux in the heart mitochondria were pre-
dicted to be considerably different from that in the kidney cor-
tex and OM mitochondria with sequential and incremental ADP
additions (Figures 7 and S6). These findings are consistent with
our proposed hypothesis that the inhibitory binding constants
of MAL and SUC for the DCCS and DCCM transporters are differ-
entbetween the heart and kidney cortex and OM (Figure 8B). SUC
has the highest binding affinity for DCCM in the heart mitochon-
dria, resulting in more potent inhibition of DCCM by SUC and
accumulation of MAL. In contrast, the binding affinity of MAL
for DCCS in the heart mitochondria is the lowest, resulting in
less potent inhibition of DCCS by MAL and more influx of SUC.
This in turn leads to more MALy, being required to inhibit DCCS
to slow the SUC influx. In the kidney cortex and OM mitochon-
dria, SUC binding affinity for DCCM is lower, inhibiting DCCM
to a lesser extent and allowing for more efflux of MALy,. Also,
the higher binding affinity of MAL for DCCS inhibits DCCS to a
greater extent and stalls the influx of SUC.

Model Predictions of the Differences in Redox Ratios
and Bioenergetics Among the Heart and Kidney Cortex
and OM Mitochondria in Physiological Conditions

The model predicts that when NADH-linked substrates are
added to the mitochondria leading to H* leak state respiration
(state 2), the NAD pool is reduced due to NADH production via
the dehydrogenase enzymes in the TCA cycle. However, in mito-
chondria stimulated by ADP (state 3), the NAD pool is oxidized
by complex I due to OxPhos. It is worth noting that, among
the NADH-linked substrates, GM shows the lowest reduced NAD
pool in the heart mitochondria, and GM and AM produce the
lowest reduced NAD pool in the kidney cortex and OM mitochon-
dria. Additionally, the UQ pool and CytC pool are reduced in the
H* leak state and further reduced by complexes I and III during
OxPhos (Figures 4 and S7).

Similarly, the model predicts that when the FADH,-linked
substrate SUC is added to the mitochondria, the NAD pool is
fully reduced by complex I via RET in the H* leak state, while
the UQ pool and CytC pool are only partially reduced by com-
plexes II and III, respectively. During OxPhos state (state 3), the
NAD pool, UQ pool, and CytC pool are all oxidized. Inhibition
of complex I by ROT blocks NADH oxidation and therefore the
NADH ratio remains at its initial value. In the OxPhos state, the
UQ pool and CytC pool are oxidized in manner similar to SUC
(Figures 4 and S7).

Our model analyses suggest that when SUC is present in
response to ADP addition (state 3), the NAD pool is 100% oxi-
dized via FET by complex Iin the heart mitochondria, only ~20%
in the kidney cortex mitochondria, and >90% in the kidney OM
mitochondria. Moreover, we found that RET exists in the heart
mitochondria to a greater extent than the kidney OM mitochon-
dria while the kidney cortex mitochondria exhibit intermediate
levels of RET (Figure S7). Additionally, during OxPhos (state 3) in
the presence of SUC, the UQ and CytC pools are the same in the
kidney cortex and OM mitochondria, indicating that RET is not a
dominant mechanism in these mitochondria compared to heart
mitochondria (Figure S7).

Mitochondrial RCI (state 3 OCR/state 2 OCR) was higher in
the presence of NADH-linked substrates compared to FADH,-
linked substrates (Figure 4M-0). This indicates greater efficiency

of mitochondrial OxPhos for ATP production via the NADH path-
way. Among NADH-linked substrates, PM had the highest AY,,
and GM had the lowest AW, in all respiratory states, similar
to the OCR trend (Figure 4J-L). The AW, in the presence of
SUC + ROT was determined to be ~150 mV in the 3 tissues dur-
ing OxPhos, and with SUC alone in the kidney cortex and OM.
In contrast, the heart mitochondria in the presence of SUC, AW,
was found to be as low as ~130 mV during OxPhos with enhance-
ment of the proton motive force thereby contributing to the RET.

Model Predictions of the Differences in Mitochondrial
Redox Ratios and Bioenergetics in the Heart and Kidney
Cortex and OM in Pathological Conditions

Multiple studies have found that the development and progres-
sion of heart®” and kidney®® failure is associated with mitochon-
drial uncoupling of OxPhos, which diminishes the production of
ATP, enhances oxidative stress, and facilitates organ failure. The
pathological condition of mitochondrial OxPhos uncoupling was
simulated by increasing the proton leak (UCP2 activity) in the
model and predicted tissue-specific and substrate-dependent
changes in the mitochondrial emergent metabolic system prop-
erties (Figure 5). Interestingly, it was found that the redox ratios
including NADH ratio, UQH, ratio, and CytCred ratio did not
change appreciably in the presence of NADH-linked substrates
despite their considerable changes in the presence of FADH,-
linked substrates in the 3 tissues. This indicates that in the pres-
ence of NADH-linked substrates with increased influx of pro-
tons into the mitochondrial matrix, the ETC complexes I, III, and
IV compensate by pumping protons across the IMM at a higher
capacity resulting in minimal changes in AW, in these 3 tis-
sues. However, the RCI values were considerably reduced after
tripling (3x) the proton leak in the presence of all substrates in
all 3 tissues, demonstrating that increasing proton leak consid-
erably affects mitochondrial respiration at state 2 rather than
state 3. The redox ratios obtained at state 2, as shown in Figure
5, did not change with increase in the proton leak. Therefore,
we concluded that the reductions in the RCI values were due to
increased respiration at state 2. These model predictions provide
important mechanistic insights explaining such observations as
found in diabetic rats, which have increased mitochondrial UCP2
expression in the renal PT cells with mitochondrial uncoupling
and increased O, consumption, which appears to lead to pro-
gressive kidney damage.%®

Similarly, mechanistic insights from the model predict that
with greater oxidation of SUC by the heart, the resulting reduc-
tion of the proton motive force would reduce ATP synthesis and
contribute to bioenergetic dysfunctions.*>#¢:52 Specifically, the
model predicted that oxidation of SUC in the heart mitochon-
dria with 3x increased proton leak led to considerable decreases
in the redox ratios, indicating that the redox pools are oxidized.
The excess OXA production by MDH inhibits SDH, which blocks
electron flow upstream in the ETC. Consequently, complexes III
and IV cannot pump protons across the IMM resulting in reduc-
tion of AW,. However, when complex I is blocked by ROT elec-
trons can move upstream ETC to complexes III and IV, pumping
protons across IMM and resulting in a balanced H* concentra-
tions across the IMM with minimal changes in AW, Addition-
ally, since NAD pool is fully reduced, NAD™ is not available for
MDH to produce OXA, which does not inhibit SDH. In the kid-
ney cortex and OM, the redox ratios and AWV, did not change in
the presence of SUC with or without ROT, indicating that SDH
is not inhibited by OXA. Therefore, electrons can flow upstream
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of the ETC and complexes III and IV can pump protons across
the IMM keeping H* concentrations balanced across the IMM.
Hence, the role of mitochondrial proton leak in metabolism and
OxPhos alteration is more prominent in the heart than kidney
cortex and OM particularly in the presence of SUC, supported by
previous findings.°

Overall Summary, Model Limitations, and
Future Directions

In this study, we developed computational models of how
the mitochondria of the heart and kidney cortex and outer
medullary cells produce energy. We used kinetic data from
our previous studies to build these models. The models were
calibrated by comparing their results to the measurements of
oxygen consumption in isolated mitochondria. We tested the
models by predicting how mitochondria would function when
exposed to different combinations of energy sources. The val-
idated models were then used to make predictions about how
mitochondria behave in normal and stressed (eg, disease) con-
ditions. We looked at various aspects of mitochondrial function,
such as biochemical reactions, substrate transporters, and the
levels of different molecules. By using these methods, we gained
insights into why mitochondrial in the heart and kidney cortex
and outer medulla behave differently when they oxidize differ-
ent energy sources.

Consistent with the experimental data, the models devel-
oped in this study allowed us to simulate how the mitochondria
in the heart and kidney cortex and outer medullary cells respond
to different food substances and different conditions. It was
found that the responses of the mitochondria were consider-
ably different depending on the type of tissue and energy source
they were using. Interestingly, the heart mitochondria energized
with succinate without rotenone (a complex I inhibitor) failed to
produce a robust state 3 response after we added a high con-
centration of ADP. However, the mitochondria of the kidney cor-
tex and outer medulla showed similar responses to succinate
with or without rotenone, suggesting that a different regula-
tory mechanism is at play in these tissues. Our model simula-
tions also revealed that oxaloacetate, an intermediate of the cit-
ric acid cycle, which inhibits the oxidation of succinate, accu-
mulated more quickly in the heart mitochondria comparing to
the kidney cortex and outer medullary mitochondria. Overall,
these models helped to elucidate how different combinations
of energy sources affect the way mitochondria produce ATP, the
energy currency of cells, in the heart and kidney cortex and outer
medulla.

As with all models, the 3 models have limitations. One major
limitations of the current models is the exclusion of the regu-
latory roles of ROS, such as O,*~ and H,0,, on mitochondrial
bioenergetics. It was assumed in the models that cation con-
centrations were constant as was the case in all the experimen-
tal data?® utilized in the present study. The extra-mitochondrial
buffer was maintained at a physiological pH of 7.15 and had
negligible concentrations of Ca?* due to the presence of 1 mm
EGTA (a Ca?* chelator). In addition, the concentrations of K*
and Na™' in the buffer were kept at physiological levels of 140
and 10 mw, respectively. The experiments with isolated mito-
chondria were performed in the absence of Mg?*. The pH of the
mitochondrial matrix was fixed at a physiological level of 7.55
to maintain an appropriate pH gradient and proton motive force
across the mitochondrial inner membrane. Similarly, ROS con-
centrations were assumed to be within the physiological levels,
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meaning they were negligibly small and had no impact on mito-
chondrial respiration and bioenergetics.

In future versions of the model, the dynamics of pH, K*, Na*,
Ca?*, and Mg?* ions will be included?®?7:31-34.57 to understand
the differential regulatory roles of cations (eg, Ca%") on mito-
chondrial respiration and bioenergetics in various metabolically
active tissues, as we have shown recently in another experimen-
tal study.”® The kinetics of ROS production via the ETC’*7? and
ROS scavenging via the glutathione and thioredoxin systems’>7¢
will also be included to model mitochondrial ROS homeosta-
sis”’”7® and better understand alternations in mitochondrial res-
piration and bioenergetics during the progression of cardiac and
renal diseases such as SS hypertension.
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