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Abstract We construct projective varieties in mixed characteristic whose
singularities model, in generic cases, those of tamely potentially crystalline
Galois deformation rings for unramified extensions of Qp with small reg-
ular Hodge–Tate weights. We establish several significant facts about their
geometry including a unibranch property at special points and a representa-
tion theoretic description of the irreducible components of their special fibers.
We derive from these geometric results a number of local and global con-
sequences: the Breuil–Mézard conjecture in arbitrary dimension for tamely
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1278 D. Le et al.

potentially crystalline deformation rings with small Hodge–Tate weights (with
appropriate genericity conditions), the weight part of Serre’s conjecture for
U (n) as formulated by Herzig (for global Galois representations which sat-
isfy the Taylor–Wiles hypotheses and are sufficiently generic at p), and an
unconditional formulation of the weight part of Serre’s conjecture for wildly
ramified representations.
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1 Introduction

In this paper, we construct and study local models for stacks of étale
(ϕ, �)-modules which correspond to tamely potentially crystalline Galois rep-
resentations (of the absolute Galois group of an unramified extension of Qp)
with small regular Hodge–Tate weights under suitable genericity conditions
(see §1.3).As a consequence,we deduce a refinement of a conjecture ofBreuil–
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Mézard due to Emerton–Gee in this context and a conjecture of Herzig about
the weight part of Serre’s conjecture for definite unitary groups under gener-
icity hypotheses.

1.1 Motivation

Over the last few decades, starting with the work of Wiles and Taylor–Wiles
[81,84], there has been tremendous progress on themodularity of globalGalois
representations, leading to spectacular consequences such as Fermat’s Last
Theorem and the Sato–Tate conjecture. Early modularity results such as those
in [81] require stringent p-adic Hodge theoretic hypotheses to guarantee for-
mal smoothness of patched global deformation rings. In the early 2000s, Kisin
made the crucial observation that all the singularities of the patched deforma-
tion ring come from bad places, shifting the focus to local deformation rings,
especially those at places dividing the residue characteristic of the coeffi-
cient field. He then analyzed the singularities of (two-dimensional) potentially
Barsotti–Tate local deformation rings through comparison to local models
appearing in the theory of integral models of Shimura varieties, leading to
very strong modularity lifting theorems in this setting, cf. [51]. Furthermore,
Kisin constructed potentially semistable deformation rings in great generality
and established their basic properties. However, the finer structure of these
rings remain mysterious, and they appear to be intrinsically difficult objects
in general. Indeed, the Breuil–Mézard conjecture predicts a lower bound for
the complexity of the singularities in terms of modular representation theory
of finite groups of Lie type.

In a recent advance, Emerton and Gee [22] have constructed p-adic formal
stacks which interpolate these semistable deformation rings (these deforma-
tion rings are versal rings for the stacks), thereby “globalizing” the above
deformation theory and opening up more geometric ways to study it. In this
paper, we construct and analyze local models for a subset of these stacks—
those parametrizing generic tamely potentially crystalline representationswith
small Hodge–Tate weights. A common feature of our work and Kisin’s work
is that these local models are closed subvarieties of certain Pappas–Zhu local
models. However, unlike Kisin’s situation, this inclusion is proper when the
Hodge–Tate cocharacter is non-minuscule.

1.2 Main results

All our main results hold under suitable genericity hypotheses, whose dis-
cussion we postpone to §1.3 to avoid unnecessary distractions. Fix a positive
integer n, a rational prime p, a finite unramified extension K/Qp with residue
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field k, and a (sufficiently large) finite extension F of Fp. For a Hodge–Tate
cocharacter λ and an inertial type τ , let X λ,τ denote the p-adic formal stack
over W (F) corresponding to n-dimensional potentially crystalline representa-
tions of the absolute Galois group G K of K with Hodge–Tate weights λ and
Galois type τ . We let M(λ)/W (F) be the Pappas–Zhu local model correspond-
ing to the cocharacter λ and the standard Iwahori subgroup (see §1.4 below
for the definition and further details). Our first main theorem establishes a
connection between X λ,τ and M(λ):

Theorem 1.2.1 (Theorem 7.3.2) Let λ be a regular Hodge–Tate cocharacter,
and let τ be a sufficiently generic (depending on λ) tame inertial type. The
p-adic completion of an explicit irreducible subvariety of M(λ) (depending
on τ ) is a smooth modification of X λ,τ .

Theorem 1.2.1 gives explicit presentations of potentially crystalline defor-
mation rings, which we expect to have applications to local-global compati-
bility in the mod p and p-adic Langlands programs. See [6,20,26,55,60] for
applications when n = 2 and 3.

Remark 1.2.2 The genericity condition implies n〈λ, α〉 < p for any root α so
that λ is necessarily “small” with respect to p and in particular is well within
the Fontaine–Laffaille range. Thus, for any generic representation to exist, we
will need p to be at least O(n2). See §1.3 for more details.

One can think of this result as the modular/affine analogue of the work of
Breuil–Hellmann–Schraen [7]: whereas [7] finds local models for moduli of
trianguline representations in terms of Steinberg varieties (and thus related
to the geometry of flag varieties), our models are found inside the (mixed
characteristic) affine flag variety.

With λ and τ as above, our methods also determine the irreducible compo-
nents of the underlying reduced stackX λ,τ

red and construct localmodels for them.
NowX λ,τ

red is a maximal dimensional substack of the underlying reduced stack
of the stackXn of (ϕ, �)-modules of rank n, whose irreducible components Cσ
are parametrized by Serre weights σ (i.e. irreducible GLn(k)-representations
over F). If the highest weight of σ is sufficiently deep in its p-alcove, we thus
obtain a description of Cσ in terms of certain deformed affine Springer fibers.

The list of irreducible components of X λ,τ
red has a representation theoretic

interpretation which is a weak (topological) version of the Breuil–Mézard
conjecture. The usual Breuil–Mézard conjecture predicts that the special fiber
X λ,τ

F
has a complicatednon-reduced structure,whichweanalyze by combining

Theorem 1.2.1 with global methods. By taking versal rings, we deduce the
following theorem (see Theorem 1.5.3 below):
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Theorem 1.2.3 (Corollary 8.5.2) Fix a set 	 of regular Hodge–Tate cochar-
acters. The Breuil–Mézard conjecture holds for tamely potentially semistable
deformation rings of Hodge–Tate weights λ ∈ 	 of sufficiently generic
(depending on 	) representations ρ : G K → GLn(F).

Remark 1.2.4 Here and in the rest of the paper, we included all semistable
deformation rings to get an overdetermined system of Breuil–Mézard equa-
tions. However, our genericity hypotheses automatically imply that any
nonzero potentially semistable deformation ring that occurs is actually a poten-
tially crystalline deformation ring. In particular, we do not prove any results
about genuinely potentially semistable deformation rings.

Just as the trianguline local models [7] shed light on the constituents of
the locally analytic socle of completed cohomology of (unitary type) locally
symmetric spaces, the models in Theorem 1.2.1 shed light on the constituents
of the socle of mod p completed cohomology (the modular Serre weights). In
more traditional language, this is known as the weight part of Serre’s conjec-
ture, which seeks to classify congruences between mod p automorphic forms.
Our main result in this direction is the following theorem, which confirms the
unitary version of a conjecture of Herzig ([39, Conjecture 6.9], see also [33,
Conjecture 7.2.7, Theorem 10.2.11]).We refer the reader to §1.6 for undefined
notation.

Theorem 1.2.5 (Theorem9.1.6)Let F/F+ be a CM extension which is split at
all places above p and such that F+ is unramified at p. Assume that F+ �= Q.
Let G/F+ be a definite unitary group which splits over F. For each place
v | p in F+, fix a place ṽ of F lying above v. Let r : G F → GLn(F) be a
(G-)modular Galois representation such that r(G F(ζp)) is adequate and the

local components rv
def= r |G F̃v

are tame and sufficiently generic for all v | p.
Then the set of modular Serre weights W (r) is

{
⊗

v|p
σv | σv ∈ W ?(rv)

}

,

where W ?(rv) is the explicit set defined by [39].

1.3 The genericity condition

We expand on the terminology sufficiently generic, which we only use in
the introduction. Let K/Qp be a finite extension and write IK for the iner-
tia subgroup of G K . Suppose that ρ : G K → GLn(F) is tame. Then its
restriction ρ|IK to inertia is classified by the combinatorial data of a pair
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(s, μ) ∈ S
HomQp (K ,Qp)

n × (Zn)
HomQp (K ,Qp) up to an equivalence relation (see

Example 2.4.1 for details). Indeed, ρ|IK is a sum of characters which are nec-
essarily powers of Serre’s fundamental characters. Then, informally speaking,
s determines the niveau of these characters and μ determines the powers. For
example, if ρ is completely reducible, then we can take s to be trivial and μ
defined by

ρ|IK =
n
⊕

i=1

∏

j∈HomQp (K ,Qp)

j ◦ ωμ j,i
1 ,

where ω1 : IK → k× is the reduction of Serre’s fundamental character of
niveau 1. We say that ρ is sufficiently generic if, for an implicit nonzero poly-
nomial P ∈ Z[X1, . . . , Xn] independent of p, P(μ j ) �= 0 (mod p) for each
j ∈ HomQp(K ,Qp) (for some choice of (s, μ)). If ρ is not tame, then we say
that ρ is sufficiently generic if its semi-simplification ρss (which is tame) is.
The independence from p guarantees that many sufficiently generic ρ exist
for large enough primes p, and in fact the proportion of tame ρ|IK which are
sufficiently generic tends to 1 as p tends to ∞. For other objects that have
similar combinatorial descriptions like tame inertial types τ (cf. §2.4) or Serre
weights σ , one has an analogous notion of sufficiently generic, which we will
freely use for the remainder of the introduction.

There are two sources of genericity in our methods.
(1) A combinatorial genericity which requires that μ j is sufficiently deep in

the base alcove of the standard apartment of GLn . The role of this condition
is to guarantee
• that various representation theoretic objects (e.g. decompositions of
mod p reductions of Deligne–Lusztig representations) behave accord-
ing to a “generic” pattern; and

• that the relevant Kisin varieties are trivial.
Some form of this condition is unavoidable for our theorems to be true, as
the Galois deformation rings are known to exhibit less uniform behavior
in its absence, see [13, Théorème 2].
This sort of condition also appears in [33,39] and in our previous work [56,
59,60] and corresponds to a polynomial of the form P =∏n

i=1
∏M

m=0(Xi−
Xi+1 − m) for some positive M where Xn+1 is understood to be X1. In
these cases, we make the relevant M explicit. In particular, we will always
have M ≥ 〈λ, α〉 for all roots α, which gives the inequality in Remark
1.2.2.

(2) A geometric genericity, whose role is to guarantee:
• that we can apply Elkik’s approximation theorem to the local models;
and
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• that our local models have the desired geometric properties.
The first item leads to a condition similar to the combinatorial genericity
condition above, i.e. it is guaranteed by a choice of polynomial of the
form P =∏n

i=1
∏M

m=0(Xi − Xi+1−m) for some positive M independent
of p (which arises from the singularity of local models, and hence is less
explicit).
On the other hand, to guarantee the second item, our approach is to deduce
geometric properties of the local models by specialization from some uni-
versal cases. Since the propertieswe are interested in (e.g. being unibranch)
are not preserved under arbitrary base change but only preserved under
“generic” base change, we need to ensure that μ j avoids a closed locus in
An

Z
which is independent of p (see §3). This produces a computable, but

hard to make explicit, polynomial P .
The geometric genericity condition is mainly an artifact of our proof of
Theorem 1.5.5. While the second source for the geometric genericity con-
dition appears to impose more severe restrictions, we conjecture that that
it is in fact unnecessary: in other words, we expect that our main result
(Theorem 1.5.5) hold with just a combinatorial genericity condition, but
with the caveat that the bounds depend on the singularity of (universal)
local models.
We verified this conjecture in several cases, where we write η for the
Hodge–Tate cocharacter corresponding to (n − 1, n − 2, . . . , 1, 0) in all
embedding K ↪→ Qp:
• When n = 2, 	 = {η}, where we can take M = 2 (this follows from
Theorems 5.3.3 and 7.2.3, noting that the “monodromy condition” is
vacuous in this case).

• When n = 3, 	 = {η}, where we can take M = 4, cf. [58].
• When n = 3, 	 = {λ} where λ corresponds to (3, 1, 0) in all
embeddding K ↪→ Qp, but restricting to a specific open locus in the
appropriate potentially crystalline stack, where we can take M = 10,
cf. “Appendix B”.

• When n is arbitrary, 	 = {η}, restricting to specific open loci in the
appropriate potentially crystalline stack, where we can take M to be a
linear function in n, cf. [57,61].

Unfortunately, beyond these cases, directly verifying the conjecturewithout
extra geometric observations seems prohibitively computationally expen-
sive with current computer algebra systems.

In the introduction, while we omit the implicit polynomial P , we will describe
exactly what it depends on (aside from n). Note that the particular P may be
different in different statements, and its precise nature will be spelled out in
the body of the paper.
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1.4 Local models for potentially crystalline stacks

The possibility of studying singularities of potentially semistable deforma-
tion rings by means of group theoretic local models was first suggested
by Kisin in [51]. Using his theory of Breuil–Kisin modules, he resolved
potentially Barsotti–Tate deformation rings (which correspond to minuscule
Hodge–Tate cocharacters) by formal schemes which are certain completions
of Pappas–Rapoport local models. To generalize this picture to non-minuscule
cocharacters, one encounters the essential difficulty that not all Breuil–Kisin
modules give rise to crystalline representations; indeed, only those obeying
the p-adic analogue of Griffiths transversality do. Thus, while local models
for the moduli of Breuil–Kisin modules exist quite generally in the form of
Pappas–Zhu models, one needs to cut them down suitably to obtain models
related to Galois deformation rings. In this section we will explain the con-
struction of the subvariety in Theorem 1.2.1 above, which achieves this in
certain situations.

Let E be a finite extension of Qp with ring of integers O, uniformizer
� , and residue field F. Let LG be the ind-group scheme given by LG(R) =
GLn(R((v + p))) for any O-algebra R, the loop group. Consider the positive
loop group scheme L+G over O sending an O-algebra R to the subgroup of
GLn(R[[v + p]]) consisting of matrices that are upper triangular mod v. The
quotient L+G\LG is represented by an ind-proper O-ind-scheme GrG . This
is a mixed characteristic version of the degeneration of affine Grassmannians
introduced by Gaitsgory. Indeed its generic fiber GrG,E is isomorphic to an
affine Grassmannian, while the special fiber GrG,F is isomorphic to the affine
flag variety Fl (for the standard Iwahori I).

For λ ∈ Zn , let S◦E (λ) denote the L+GE -orbit of (v + p)λ in GrG,E . The
Pappas–Zhu local model M(≤ λ) is the Zariski closure of S◦E (λ) in GrG ,
cf. [69].

Let a ∈ On . We now consider the condition

v
d A

dv
A−1 + ADiag(a)A−1 ∈

(

1

v + p

)

Lie L+G (�)

for A ∈ LG(R). This is an approximation to the monodromy condition com-
ing from p-adic Hodge theory. This condition clearly descends to a closed
condition on GrG .

Definition 1.4.1 The local model M(λ,∇a) is the Zariski closure in M(≤ λ)
of the locus of (�) in S◦E (λ).

Note that condition (�) is preserved under the right action by the constant
diagonal torus T . Thus, M(λ,∇a) inherits an action of T compatible with the
T -action on M(≤ λ).
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The local models M(λ,∇a) turn out to behave very differently from the
Pappas–Zhu models M(≤ λ):
• The generic fiber of M(λ,∇a) is smooth; it is isomorphic to a partial flag
variety (see Proposition 4.1.1). In contrast, the generic fiber of M(≤ λ) is
not smooth unless λ is minuscule (cf. [41]).

• A deep theorem of Zhu implies that the special fiber of M(≤ λ) is reduced,
and thus M(≤ λ) is normal. In contrast, it will follow from the connection
between M(λ,∇a) and Galois deformation theory that its special fiber
fails to be reduced, and M(λ,∇a) fails to be normal in general. In fact, this
failure is quite severe: one can get lower bounds for the non-reducedness
in terms of affine Kazhdan–Lusztig multiplicities.

In other words, while ourmodels have nice generic fibers, they are nevertheless
complicated degenerations of partial flag varieties.

Using the standard stratifications on GrG , it is not difficult to analyze the
underlying reduced subscheme of M(λ,∇a), in particular one sees that it is
irreducible, and there is a combinatorial parametrization of the irreducible
components of the special fiber. However, in order to establish the connection
of ourmodels toGalois deformation theory,we have to understand the behavior
of M(λ,∇a) under completion. The essential difficulty is that an irreducible
variety may break up into formal branches in some complicated way after
completions: its singularities may not be unibranch. One important sufficient
condition to guarantee this unibranch property is normality, and to the best of
our knowledge, we are not aware of any other useful general criteria. Worse
still, it turns out that M(λ,∇a) fails to be unibranch in general! (See “Appendix
B” for an explicit example.)

Miraculously, we manage to show that (for generic values of a) M(λ,∇a)

is unibranch at special points:

Theorem 1.4.2 (Theorem 3.7.1) There exists a nonzero polynomial P ∈
Z[X1, . . . , Xn] such that if P(a) �= 0 mod � , then for any T -fixed point
x ∈ M(λ,∇a)(Fp), the completed local ring O∧M(λ,∇a),x

is a domain (i.e.,
M(λ,∇a) is unibranch at its T -fixed points).

This is the deepest geometric fact that we prove about M(λ,∇a), and its proof
lies at the technical heart of the paper. A key observation (Proposition 3.4.4) is
that the theorem holds (under a mild assumption on the characteristic) for the
equal characteristic analogues of M(λ,∇a) where p is replaced by a variable
t . In this context, there is more symmetry: there is an extraGm-action given by
“loop rotation” which scales t . Thanks to this, the T -fixed points are all cone
points, in the sense that they are the fixed point of an attracting torus action, and
one observes that cone points are unibranch. Unfortunately, we can not mimic
this argument in the original mixed characteristic setting, as it doesn’t make
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sense to “scale” the prime p. Instead,we resort to a soft spreadingout argument,
by contemplating the universal case where p and a are formal variables. The
fact that being unibranch can be phrased in terms of the normalizationmap, and
normalization commutes with generic base change, allows us to transfer the
unibranch property from equal characteristic to mixed characteristic. It is here
that the universal polynomial P appears: its vanishing locus is the obstruction
to certain properties being preserved under base change. The actual argument
is a bit more involved than this outline, since we do not base change to spectra
of fields, but rather spectra of DVRs.

Having proven the important geometric properties of M(λ,∇a), we now turn
to its connection to Galois theory. Let K/Qp be a finite unramified extension,
and let J be the set of embeddings HomQp(K ,Qp). In [22], Emerton–Gee
constructed the moduli stack Xn over Spf O of rank n (ϕ, �)-modules. By
its construction, Xn interpolates framed deformation rings in the sense that
the set Xn(Fp) is in bijection with the set of continuous representations ρ :
G K → GLn(Fp), and framed deformation rings of such ρ are versal rings
(in the sense of [24, Definition 2.2.9]) for Xn . Furthermore, for a collection
λ ∈ (Zn)J and a rank n inertial type τ defined over O (cf. §2.4 for their
definition), they construct a O-flat p-adic formal algebraic substack X λ,τ

which is characterized by the property that its points over any finite flat O-
algebra correspond to potentially crystalline representations ρ of type (λ, τ )
(i.e. the Hodge–Tate weights of ρ are given by λ and WD(ρ) induces the
inertial type τ ).

Now, to any tame inertial type τ for IK , one can associate a collection
aτ = (aτ, j ) j∈J , where aτ, j ∈ On records the inertial weights of τ (see §7.3).
Set λ = (λ j ) j∈J ∈ (Zn)J . Define

MJ (λ,∇aτ ) =
∏

j∈J
M(λ j ,∇aτ, j ),

where, for each j ∈ J , the local models M(λ j ,∇aτ, j ) are those appearing in
Definition 1.4.1. Our main result is the following:

Theorem 1.4.3 (Theorem 7.3.2) If τ is sufficiently generic (depending on λ),
then there exist Zariski open covers

⋃

z̃
X≤λ,τ
reg (̃z) and

⋃

z̃
Ureg(̃z,≤ λ,∇aτ )

∧p

of
⋃

λ′≤λ
λ′reg. dom.

X λ′,τ and
⋃

λ′≤λ
λ′reg. dom.

M(λ′,∇aτ )
∧p respectively such that for each z̃,
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there exists a local model diagram

˜X≤λ,τ
reg (̃z)

X≤λ,τ
reg (̃z) Ureg(̃z,≤ λ,∇aτ )

∧p

(1.1)

where both arrows are torsors for the torus TJ with respect to different TJ -
actions and the superscript ∧p stands for taking p-adic completion.

Remark 1.4.4 (1) In the above statement, when we talk about the scheme-
theoretic union of two closed formal algebraic substacks Y,Z of a formal
algebraic stackX , we mean to take the scheme-theoretic image of the map
Y � Z → X ([22, Definition A.16]).

(2) The right arrow in the local model diagram is highly non-canonical, as
it is produced by a Hensel-type lifting argument (in the form of Elkik’s
approximation theorem [27]). However, the entire diagram is canonical in
characteristic p.

(3) When λ = η
def= (n − 1, n − 2, . . . , 1, 0) j∈J ∈ (Zn)J , one has

⋃

λ′≤λ
λ′reg. dom.

X λ′,τ = X η,τ . Since potentially crystalline deformation rings of

type (η, τ ) are versal rings to X η,τ , we see that they appear (up to smooth
modifications) as the completion of local rings of M(η,∇aτ ) at closed
points.

We now give a slightly simplified outline of the proof of Theorem 1.4.3. The
starting point is the theory of Breuil–Kisinmodules: The potentially crystalline
stacks we consider are closed substacks of the moduli stack of Breuil–Kisin
modules Y≤λ,τ with tame descent data of type (λ, τ ), which is known to
have the Pappas–Zhu model M(≤ λ) as a local model. More specifically, the
natural open affine cover of GrG = ⋃

z̃ U (̃z) by translates of the “big open
cell” induces an open cover of M(≤ λ). We develop a theory of canonical
bases of Breuil–Kisin modules to show that this open cover induces an open
cover of Y≤λ,τ . Thus we get the analogue of the above local model diagram
for Y≤λ,τ and induced open affine covers on every object in sight. These are
the open covers featured in Theorem 1.4.3.

At this point, we get two closed substack of Y≤λ,τ (̃z): the substack
X≤λ,τ (̃z) and the substack X≤λ,τ,�(̃z) induced by the p-adic completion of
⋃

λ′≤λ M(λ′,∇aτ ) along the local model diagram for Y≤λ,τ . They are gen-
uinely different substacks, because condition (�) is only an approximation to
the condition cutting out X≤λ,τ inside Y≤λ,τ . However, the two substacks are
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p-adically close, and using the smoothness of the generic fiber of M(λ,∇a),
one can produce a non-canonical embedding X≤λ,τ (̃z) ↪→ X≤λ,τ,�(̃z). Since
both stacks turn out to have the same dimension, the maximal dimensional part
X≤λ,τ
reg (̃z) ofX≤λ,τ (̃z) embeds into the maximal dimension part ofX≤λ,τ,�(̃z).

Now, using the results of [56] (which ultimately uses Taylor–Wiles patching,
and hence automorphic forms), one obtains a lower bound on the number of
irreducible components (of the spectrum of the structure sheaf) of the former,
while Theorem 1.4.2 gives the same upper bound for the number of irre-
ducible components (of the spectrum of the structure sheaf) of the latter. Thus
the two maximal dimension parts are (non-canonically) isomorphic to each
other, which concludes the proof.

Theorem 1.4.3 allows us to study local properties of the potentially crys-
talline stacks X≤λ,τ via the local models, which gives crucial geometric
information about potentially crystalline deformation rings needed for our
applications below, cf. Theorem 1.5.5. In characteristic p, one can do even
better: the local model diagrams produced by Theorem 1.4.3 glue together,
and thus one can even study global properties of the underlying reduced stacks
X λ,τ
red (which live in characteristic p) via the reduced special fiber M(λ,∇aτ )

of M(λ,∇aτ ). To state our result, we recall [22] that Xn,red is equidimen-
sional, and its irreducible components are in bijection with the irreducible
F-representations of GLn(k) (which we refer to as Serre weights). We write
Cσ for the irreducible component of Xn,red corresponding to a Serre weight
σ . Given λ ∈ (Zn)J regular and dominant, let V (λ − η) be the irreducible
ResK/QpGLn-representation with highest weight λ − η (recall that η is such
that η j = (n−1, n−2, . . . , 1, 0) for all j ∈ J ). We also denote the restriction
of V (λ−η) to GLn(OK ) by V (λ−η). As in §1.3, a tame type τ corresponds to
an equivalence class of pairs (s, μ). Then we let σ(τ) be the Deligne–Lusztig
representation Rs(μ)where s defines a rational torus andμ defines a character
(see §2.3). For a representation V over E of a compact group, let V be the
semisimplification of the reduction of any invariant O-lattice in V . Then we
prove:

Theorem 1.4.5 (Theorem 7.4.2) Let λ be regular dominant and let τ be a
sufficiently generic tame inertial type. Then:

(1) X λ,τ
red = ∪σCσ , where the union runs over all Serre weights σ ∈

JH(σ (τ )⊗E V (λ− η)).
(2) There is a natural bijection between the irreducible components of

M(λ,∇aτ ) and the Jordan–Hölder factors of σ(τ)⊗E V (λ− η).
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(3) For each σ ∈ JH(σ (τ )⊗E V (λ− η)), we have a mod p local model
diagram:

˜Cσ

Cσ M(λ,∇aτ )σ

(1.2)

where M(λ,∇aτ )σ is the irreducible component of M(λ,∇aτ ) labelled by
σ (denoted by Cσ in Theorem 7.4.2) and both arrows are torsors for the
torus TJ with respect to different TJ -actions.

Remark 1.4.6 (1) Our proof of Theorem 1.4.5 does not go through Theorem
1.4.3. Because of that it holds under much milder genericity conditions
compared to our other theorems: we only need an explicit combinatorial
genericity condition (see §1.3).

(2) It follows essentially from the definitions that M(λ,∇aτ )σ is an irreducible
component of a deformed affine Springer fiber in the sense of [32]. In par-
ticular, Cσ is equisingular to an irreducible component of a deformed affine
Springer fiber. We expect that this connection will be a powerful tool to
investigate the internal structure of irreducible components of theEmerton–
Gee stack. As a sample application, we deduce Herzig’s formulation of the
weight part of Serre’s conjecture (Theorem 1.6.1) from the count of torus-
fixed points in the irreducible components of affine Springer fibers obtained
by Boixeda Alvarez [1] (see §1.6 for more details).

Theorem 1.4.5 follows from analyzing the effect of condition (�) on the
reduced special fiber of M(≤ λ), which was determined by Pappas–Zhu [69].
Namely, [69] shows that it is the reduced union of the affine Schubert cells
S◦

F
(w̃) for w̃ running over the λ-admissible set Adm(λ), which is defined

in terms of combinatorics of the affine Weyl group. A simple computation
shows that (�) cuts out an affine subspace of the affine space S◦

F
(w̃), whose

dimension is easily computed. This provides a combinatorial parametrization
of the irreducible components of M(λ,∇aτ ) in terms of a subset of Adm(λ),
which beautifullymatcheswith the parametrization of JH(σ (τ )⊗E V (λ− η))
given by Jantzen’s generic decomposition pattern. Finally, one has to show that
M(λ,∇aτ )σ ⊂ M(λ,∇aτ ) corresponds to Cσ in the local model diagram, and
we achieve this by identifying the Breuil–Kisin modules attached to a generic
point of M(λ,∇aτ )σ .

1.5 The Breuil–Mézard conjecture

Let K/Qp be a finite extension with ring of integers OK and residue field k.
Write G K for the absolute Galois group of K . (Note that this is a more general
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setup than in the previous section for now.) The Breuil–Mézard conjecture
quantifies the complexity of the special fibers of potentially semistable Galois
deformation rings in terms of GLn(OK )-representations with mod p coeffi-
cients. These special fibers are especially mysterious because outside of very
special cases they do not have knownmoduli interpretations. We now describe
the “geometric” version of the conjecture as formulated by [23].

Let τ be an inertial Weil–Deligne type for K (see Definition 2.5.1) and

let λ ∈ (Zn)
HomQp (K ,Qp) be a collection of regular Hodge–Tate weights. For

a continuous Galois representation ρ : G K → GLn(F), there is a unique
reduced quotient Rλ,τρ of the framedO-deformation ring R�

ρ whoseQp-points

correspond to lifts ρ : G K → GLn(Qp) which are potentially semistable of
type (λ, τ ) (i.e. theHodge–Tateweights ofρ are givenbyλ andWD(ρ) induces
the inertial Weil–Deligne type τ ). The dimensions of these rings are indepen-
dent of (λ, τ ), and one can associate to each pair (λ, τ ) the cycle Z(Rλ,τρ /�)

in Spec R�
ρ /� , which counts the irreducible components of Spec Rλ,τρ /�

with appropriate multiplicities.
The Breuil–Mézard conjecture describes the cycle Z(Rλ,τρ /�) in represen-

tation theoretic terms as λ and τ vary. For V a virtual GLn(OK )-representation
over E expressed as the difference V1 − V2 of two genuine representations,
we let V be the virtual GLn(OK )-representation V 1 − V 2 over F, where for
i = 1, 2, V i denotes the semisimplification of the reduction modulo� of any
GLn(OK )-stable O-lattice in Vi . This is independent of the choice of V1 and
V2 and O-lattices therein.

Conjecture 1.5.1 There exist cycles Zσ (ρ) in Spec R�
ρ /� for each irre-

ducible GLn(OK )-representation σ over F such that for all τ and all regular
λ,

Z(Rλ,τρ /�) =
∑

σ

[r(τ )⊗E V (λ− η) : σ ]Zσ (ρ),

where r(τ ) is a virtual representation ofGLn(OK ) over E defined in [74, § 4.2]
using an inertial local Langlands correspondence, V (λ− η) is the restriction
to GLn(OK ) of the irreducible algebraic representation of ResK/QpGLn with

highest weight λ − η, and [r(τ )⊗E V (λ− η) : σ ] denotes the (possibly
negative) multiplicity of σ in r(τ )⊗E V (λ− η).
Remark 1.5.2 (1) The symbol τ is used in [74] to denote what is called in

loc. cit. an inertial type, which is distinct from, but equivalent to, the notion
of aWeil–Deligne inertial type (see [77]).We ignore this distinction above.

(2) If the monodromy operator of τ is 0, then we say that τ is an inertial type.
Then r(τ ) is a genuine GLn(OK )-representation associated to τ via the
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inertial localLanglands correspondence anddenotedσ(τ).Asmentioned in
§1.4, when τ is tame and generic, σ(τ) is a Deligne–Lusztig representation
with a simple description (Proposition 2.5.5).

(3) The equations in the Conjecture 1.5.1 massively overdetermine the cycles
Zσ (ρ). In fact, the cycles are uniquely determined by any collection of
(λ, τ ) such that r(τ )⊗E V (λ− η) span the Grothendieck group of finite
dimensional GLn(OK )-representations over F.

Combining the Taylor–Wiles patching method and the p-adic local Lang-
lands correspondence for GL2(Qp) of [18], Kisin established the conjecture
in a wide range of cases when n = 2 and K = Qp in [50]. (When n = 2
and K = Qp, the conjecture is now known in all cases by [43,66,70,79,80].)
While the Taylor–Wiles patching method is available in some generality, the
p-adic Langlands correspondence is not known for n > 2 or n = 2 and
K �= Qp. Absent a general p-adic Langlands correspondence, one can still try
to establish this conjecture for classes of pairs (λ, τ ). For example, [34] prove
Conjecture 1.5.1 when n = 2, λ = η, and the monodromy operator of τ is 0.
In §8.5, we prove this conjecture when K/Qp is unramified for sufficiently
generic ρ and pairs (λ, τ ) where λ ranges over a finite set and τ ranges over
tame inertial Weil–Deligne types.

Theorem 1.5.3 (Corollary 8.5.2) Assume K/Qp is unramified and let	 be a
finite set of collections of regular Hodge–Tate weights. If ρ : G K → GLn(F)

is sufficiently generic (depending on 	), then there exist cycles Zσ (ρ) in
Spec R�

ρ /� for each irreducible GLn(OK )-representation σ over F such
that

Z(Rλ,τρ /�) =
∑

σ

[r(τ )⊗E V (λ− η) : σ ]Zσ (ρ)

for all λ ∈ 	 and tame inertial Weil–Deligne types τ .

Remark 1.5.4 (1) If 	 contains η, then the cycles Zσ (ρ) are unique since the
set of r(τ ) for tame τ span the Grothendieck group of finite-dimensional
GLn(OK )-representation over F. If 	 contains η and at least one other
Hodge–Tateweight, then the set of classes [r(τ )⊗E V (λ− η)] is spanning
and linearly dependent in the Grothendieck group of finite-dimensional
GLn(OK )-representation over F, so Theorem 1.5.3 produces many non-
trivial linear relations among Z(Rλ,τρ /�).

(2) In contrast to [34,50], we restrict to cases where τ is tame. However, this
result is new even for n = 2 if K �= Qp. Indeed, in contrast to [34],	may
contain non-minuscule weights (which are necessarily “small” relative to
p; see Remark 1.2.2).
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(3) For a suitable globalization of ρ (as defined in [23, § 5.1.1]) and a choice
of global setup, the cycles Zσ (ρ) are expected to be the support cycle of
any patched module M∞(σ ) associated to the Serre weight σ , thereby con-
necting the theorem directly to modularity and the weight part of Serre’s
conjecture. When ρ is tame, our proof establishes this expectation—see
the discussion around Theorem 1.5.5. In particular, for tame ρ, this com-
patibility with patching functors gives a global characterization of Zσ (ρ).

Our starting point to attack Theorem 1.5.3 is the Taylor–Wiles method, fol-
lowing the approach of [34,50]. The Taylor–Wiles method provides a large
supply of exact functors M∞ from GLn(OK )-representations overO to maxi-
mal Cohen–Macaulay modules of generic rank at most one over (power series
over) framed local deformation rings with p-adic Hodge-theoretic conditions.
Given GLn(OK )-stableO-lattices σ(τ)◦, V (λ−η)◦ in σ(τ), V (λ−η) respec-
tively, it is a folklore expectation (affirmed under mild assumptions by [30])
that the Fontaine–Mazur conjecture implies that M∞(σ (τ )◦⊗OV (λ−η)◦) has
full support on Spec Rλ,τρ . If this were true, the exactness of M∞ would imply
Conjecture 1.5.1 holds with Zσ (ρ) taken to be the support cycle of M∞(σ ).
Unfortunately, little seems to be known about Supp M∞(σ (τ )◦⊗O V (λ−η)◦)
beyond the GL2(Qp) case, and we are unable to make this work for all ρ (even
for generic tame τ ).

To prove Theorem 1.5.3, our first step is to establish it when ρ is tame, where
we can show that indeed Supp M∞(σ (τ )◦ ⊗O V (λ− η)◦) = Spec Rλ,τρ . The
key input is the following theorem, which follows from the corresponding
result for the local models (Theorems 1.4.2, 1.4.3):

Theorem 1.5.5 (Theorem 7.3.2) Assume K/Qp is unramified. Let λ ∈
(Zn)

HomQp (K ,Qp) be a collection of regular Hodge–Tate weights, τ be a tame
inertial type for K , and ρ : G K → GLn(F) be an n-dimensional represen-
tation. If τ is sufficiently generic and ρ is tame then Rλ,τρ is a domain (or
zero).

Remark 1.5.6 (1) Theorem1.5.5 does not hold in generalwithout the tameness
assumption, for example when λ corresponds to (3, 1, 0) in all embeddding
K ↪→ Qp, for every generic τ there is some wild ρ where it fails, see
Corollary B.0.5 and Corollary B.0.4. This is the reason for the tameness
assumption here and in the global applications in §1.6. However, the the-
orem does hold for possibly wild ρ in several situations such as: n = 2,
n = 3 and λ = η (see [26, Theorem 7.2.1], [58, Corollary 3.3.3]), or when
n is arbitrary and ρ has specific shapes relative to τ .

(2) If Rλ,τρ �= 0, then sufficient genericity of τ implies that of ρ and vice
versa (generally with different choices of universal polynomial). Because
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of this, the conclusion of Theorem 1.5.5 also holds if we let ρ be tame and
sufficiently generic but impose no hypothesis on τ [57, Theorem 4.0.1].

Theorem 1.5.5 immediately implies Theorem 1.5.3 for tame ρ: The results of
[56] imply that if τ is sufficiently generic, M∞(σ (τ )◦⊗OV (λ−η)◦) is nonzero
if and only if Rλ,τρ is nonzero. Since the support of M∞(σ (τ )◦ ⊗O V (λ−η)◦)
must be a union of irreducible components and Rλ,τρ is a domain, the support
is everything.

Having proven Theorem 1.5.3 for tame ρ, the second step is to spread the
result to all ρ. This is achieved through the use of the Emerton–Gee stack
Xn . For regular λ, the special fiber of the substack X λ,τ is supported on a
union of irreducible components of Xn,red. Thus we can associate to it a top-
dimensional cycle Zλ,τ on Xn,red by recording the irreducible components of
X λ,τ
red weighted by their multiplicities. In [22], Emerton and Gee formulate a

Breuil–Mézard conjecture on the stack Xn:

Conjecture 1.5.7 (Conjecture 8.2.2 [22])For each Serre weightσ , there exists
an effective top-dimensional cycle Zσ on Xn,red such that for all regular λ and
inertial types τ , we have

Zλ,τ =
∑

σ

[σ(τ)⊗E V (λ− η) : σ ]Zσ .

We first remark that the potentially crystalline case of Conjecture 1.5.1
is a consequence of Conjecture 1.5.7 by completing at ρ and pulling back
the cycles. While it has been understood by experts that the Breuil–Mézard
conjecture should behave well as ρ varies, the Emerton–Gee stack makes it
possible to study the conjecture by interpolation. We refer to the conjectural
cycles Zσ as Breuil–Mézard cycles. As in Conjecture 1.5.1, the system of
equations in Conjecture 1.5.7 for varying λ and τ over-determines the Breuil–
Mézard cycles.

Remark 1.5.8 Caraiani–Emerton–Gee–Savitt [15] recently provedConjecture
1.5.7 in the potentially Barsotti–Tate case (i.e. in parallel weight (1, 0)) when
n = 2 for any extension K/Qp. The proof uses both the weight part of Serre’s
conjecture for GL2 proved by Gee–Liu–Savitt [35,36] and the Breuil–Mézard
conjecture for potentially Barsotti–Tate representations established by Gee–
Kisin [34].

By interpolating from Theorem 1.5.3 for tame ρ, we establish a portion of
Conjecture 1.5.7.

Theorem 1.5.9 (Corollary 8.4.12) Assume K/Qp is unramified. Fix a finite

subset	 ⊂ (Zn)
HomQp (K ,Qp) of regular dominant weights. There exists a top-

dimensional effective cycle Zσ on Xn,red for each Serre weight σ such that for
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all λ ∈ 	 and all sufficiently generic (depending on	) tame inertial types τ ,

Zλ,τ =
∑

σ

[σ(τ)⊗E V (λ− η) : σ ]Zσ .

Remark 1.5.10 (1) In contrast to Theorem 1.5.3, the set of σ(τ)⊗E V (λ− η)
appearing in Theorem 1.5.9 does not span the Grothendieck group of
GLn(OK )-representations, and so it is not immediately apparent that the
cycles Zσ are uniquely determined. However, though neither stated in nor
implied by the theorem, the Zσ we construct satisfy a compatibility with
patching functors after localizing at tame ρ as in Remark 1.5.4(3). It is
this compatibility that characterizes the Zσ (see also Remark 8.6.4 for an
algorithm to compute it without choosing patching functors).
Furthermore, if we assume an extension of Theorem 1.5.9 to a sufficiently
large spanning set, then the cycles from this extension must agree with the
Zσ we construct for sufficiently generic σ , cf. Theorem 8.4.10. With this
understanding, we can freely invoke the cycles Zσ for sufficiently generic
σ in our discussion.

(2) Even though the equations in the theorem on their own do not suffice to
determine all the Zσ that occurs in them, they do determine a subset of
Zσ for which σ is sufficiently generic, cf. Proposition 8.6.5 and Remark
8.6.6.

We now explain the idea of the proof of Theorem 1.5.9. We first note
that one can invert the equations in Conjecture 1.5.7, and get a candi-
date for the cycle Zσ : any expression of σ in the Grothendieck group of
GLn(OK )-representations as a linear combination of reductions of GLn(OK )-
representations gives a candidate as a linear combination of theZλ,τ . But there
is no a priori reason for these candidates to satisfy all the required cycle equa-
tions. However, for tame ρ, the compatibility ofZσ (ρ)with patching functors,
cf. Remark 1.5.4(3), shows that the candidate cycle Zσ recovers the already
constructed Zσ (ρ). This implies the equations hold after completion at tame
ρ, and we conclude because there are enough tame ρ to detect equality of
cycles in Xn .

At this point, the proof of Theorem 1.5.3 is almost complete. The subtlety
is that Theorem 1.5.9 only controls the cycles Zλ,τ for τ sufficiently generic.
To deal with this, we invoke a result of [56], which shows that a sufficiently
generic (depending on λ) ρ lies in Zλ,τ only if τ is sufficiently generic. This
allows us to check the equations in Theorem 1.5.3 not covered by Theorem
1.5.9, by showing that they reduce to 0 = 0.

Remark 1.5.11 We can certainly write Zσ = ∑

σ ′ bσ ′,σCσ ′ , and it is natu-
ral to ask what the coefficients bσ ′,σ are. We prove that bσ,σ = 1, and that
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bσ ′,σ �= 0 implies a restrictive relation between σ and σ ′, namely that σ covers
σ ′ (Definition 2.3.10). When n = 2, 3, we have Zσ = Cσ (with mild generic-
ity assumptions). In §8.6.1, we describe an inductive algorithm for computing
Zσ if one knows the cycles Zη,τ for enough τ . In turn, the cycles Zη,τ can be
computed using the local model MJ (η,∇aτ ), introduced in §1.4 above, which
is an “explicit” algebraic variety. This algorithm can in theory be implemented
on a computer. We have performed computer experiments when n = 4, which
indicate thatZσ is not always irreducible. We remark that in the analogous sit-
uation of [7], the locally analytic Breuil–Mézard cycles are also not irreducible
in general, beginning with n = 8.

1.6 The weight part of Serre’s conjecture

Serre’s conjecture [73] predicts that any odd irreducible two-dimensional mod
p Galois representation arises from amodular form, andmoreover predicts the
minimal level and weight of such a form. There has been substantial progress
in formulating and proving generalizations of this conjecture in higher rank.
While generalizations of the notion ofminimal level are rather straightforward,
generalizations of the weight part of Serre’s conjecture are far from it. Herzig
[39] introduced a representation theoretic generalization in the generic tame
case, which we now discuss in the context of definite unitary groups.

Let F be an imaginary CM number field unramified at p. Let F+ be the
maximal totally real subfield. Assume F+ �= Q and that all primes of F+
above p split in F . Let G be a unitary group over F+ which splits over F
and is isomorphic to U (n) at each infinite place. Let K p ⊂ G(A∞,pF+ ) be a
compact open subgroup, and let S(K p,F) be the space of F-valued locally
constant functions on G(F+)\G(A∞F+)/K p. Then S(K p,F) has an action of
a spherical Hecke algebra T (away from p and finitely many other places).
If m ⊂ T is a maximal ideal such that S(K p,F)m is nonzero, then there is a
unique semisimpleGalois representation r : G F → GLn(F) up to conjugation
which matches m via the Satake isomorphism. We say that r is automorphic.

Fix places ṽ of F lying over v for each place v | p of F+ which together
give an isomorphism G(OF+ ⊗Z Zp) ∼= GLn(OF+ ⊗Z Zp). A global Serre
weight is an irreducible smooth F-representation V of GLn(OF+ ⊗Z Zp). Any
such representation has the form⊗v|pVv with Vv an irreducible representation
of GLn(kv) where kv is the residue field of F+ at v. We say r is modular of
(global Serre) weight V if HomGLn(OF+⊗ZZp)(V, S(K p,F)m) is nonzero.

In 2009, Herzig ([39]) conjectured (in the context of locally symmetric
spaces for GLn) what the set W (r) of modular weights should be when r
is tame at places above p, generalizing conjectures of Serre and Buzzard–
Diamond–Jarvis ([3,73]). These conjectures are collectively referred to as the
weight part of Serre’s conjecture. For the reader’s convenience, we restate
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Theorem 1.2.5, our main result towards (the analog for definite unitary groups
of) Herzig’s conjecture.

Theorem 1.6.1 (Theorem 9.1.6) Suppose that

• r : G F → GLn(F) is automorphic;
• r(G F(ζp)) is adequate; and that

• for each v | p, rv
def= r |Gal(F ṽ/F̃v)

is tame and sufficiently generic (and in
particular that p � 2n).

Then

r is modular of weight ⊗v|p Vv ⇐⇒ Vv ∈ W ?(rv) for all v | p,

where W ?(rv) is the explicit collection of Serre weights defined by [39].

When n = 3, the theorem with an explicit combinatorial genericity condi-
tion was proven in [60]. For general n, the forward direction, known as weight
elimination, was proven in [56], againwith an explicit combinatorial genericity
condition. The reverse direction is a statement about mod p modularity, and is
much harder. Its content is essentially the construction of all possible congru-
ences between mod p automorphic forms. One difficulty is that, in contrast to
when n ≤ 2, Serre weights typically do not admit characteristic zero lifts and
so the set W (r) cannot be interpreted in terms of the existence of automorphic
lifts of prescribed types. As a result, W (r) does not have an apparent Galois
theoretic meaning, while at the same time its complexity grows rapidly with
n.

The tameness hypothesis in Theorem9.1.6 is natural because the restrictions
to inertia of tame Galois representations can be parametrized combinatorially,
and this parametrization plays a central role inHerzig’s recipe. On the contrary,
a combinatorial parametrization of all Galois representations is not possible, as
is reflected by the geometry of the Emerton–Gee stack. Thus one cannot expect
explicit formulas for W (r), rather, it should depend on the position of the local
Galois representations in their moduli. At the same time, the non-liftability
of Serre weights to characteristic zero makes it difficult to pin down such a
geometric recipe in terms of p-adic Hodge theory. For these reasons, there
has been no unconditional formulation of the weight part of Serre’s conjecture
in the wildly ramified case when n > 2. However, as observed in [33], the
Breuil–Mezárd conjecture can be used to resolve the above difficulties. We
make the following definition.

• Assume Conjecture 1.5.1 holds. Define WBM(ρ) to be the set of σ such
that Zσ (ρ) �= 0.

The set WBM(ρ) has some relation to characteristic zero: as one can always lift
Serre weights virtually, we can as before invert the equations in Conjectures
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1.5.1 and 1.5.7, and understand Zσ (ρ) in terms of characteristic zero p-adic
Hodge theoretic conditions.

On the other hand, as little is known about the geometry of the cycleZσ (ρ),
it is helpful to also define the following set of weights.

• We say that σ is a geometric Serre weight of ρ if ρ lies on Cσ . We let W g(ρ)

be the set of geometric Serre weights of ρ.

Observe that both W g(ρ) and WBM(ρ) are geometric in nature, and are also
defined for wildly ramified representations.

Unlike W g(ρ) and W ?(ρ), for WBM(ρ) to be meaningful, one requires
the knowledge of Conjecture 1.5.1 at least for sufficiently many (λ, τ ) to pin
downZσ (ρ)uniquely. In particular, our result on theBreuil–Mézard conjecture
(Theorem 1.5.3) allows us to formulate the following unconditional version
of a conjecture of Gee–Herzig–Savitt [33, Conjecture 3.2.7]:

Conjecture 1.6.2 Suppose that r : G F → GLn(F) is automorphic. Let V =
⊗v|pVv be a global Serre weight. Assume that for each v | p, rv is sufficiently
generic, then

r is modular of weight V ⇐⇒ Vv ∈ WBM(rv) for all v | p.

Remark 1.6.3 (1) For ρ sufficiently generic, one sees that WBM(ρ) consists
of exactly the (neccessarily sufficiently generic) σ such that ρ lies in the
support of the cycle Zσ . In other words, the discrepancy between W g(ρ)

and WBM(ρ) is exactly the discrepancy between the irreducible component
Cσ of Xn and the Breuil–Mezárd cycle Zσ .

(2) For sufficiently genericρ, one hasW g(ρ) ⊂ WBM(ρ) ⊂ W ?(ρss). The first
inclusion is because Cσ belongs to the support of Zσ , and we expect this
inclusion to be strict in general (cf. Remark 1.5.11). The second inclusion
follows from [56], and is always strict when ρ is wildly ramified (this is
explored in [57]).

We now discuss the proof of Theorem 1.6.1. We apply Taylor–Wiles patch-
ing in our given global context. The modularity of a global Serre weight V
is equivalent to the non-vanishing of the associated patched module M∞(V ).
Recall that W (r) denotes the set of modular global Serre weights and we
assumed that each rv is tame and sufficiently generic. At this point, Theo-
rem 1.5.3 (or rather, the compatibility with patching functors, see Remark
1.5.4) immediately implies Conjecture 1.6.2 for our tame r . However, this is
not sufficient for Theorem 1.6.1, because of the very mysterious nature of
the Breuil–Mézard cycles which makes it difficult to show that WBM(rv) =
W ?(rv). Instead, we observe that by the chain of inclusions

⊗v|pW g(rv) ⊂ W (r) ⊂ ⊗v|pW ?(rv),
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it suffices to show W g(rv) = W ?(rv). This is more accessible, since W g(rv)
is expressed in terms of Cσ , which has a transparent geometric meaning, while
W ?(rv) is combinatorially explicit.UsingTheorem1.4.5,we relate the relevant
components Cσ to irreducible components Cσ of a deformed affine Springer
fiber and tame localGalois representations to torus fixed points in the affineflag
variety. Showing that W g(rv) = W ?(rv) turns out to be equivalent to showing
that the set of torus fixed points of Cσ achieves the obvious upper bound.
Fortunately, Boixeda Alvarez [1] proved the analogous fact for irreducible
components of affine Springer fibers, and a simple spreading out argument
allows us to transfer his result back to our deformed affine Springer fibers.

Finally, we remark that, in contrast to [59, Theorem 7.8] and [60, Theo-
rem 5.3.1] for example, we make no assumptions on the ramification of r
outside of p in Theorem 1.6.1. This is possible because our results on the
geometric formulations, rather than the original numerical formulation, of
the Breuil–Mézard conjecture allow for more robust arguments in the Taylor–
Wilesmethod. (In fact, for this reason our arguments are slightlymore involved
thanwhat we describe above.) In the literature, the Taylor–Wiles patching con-
struction typically takes place after applying solvable base change theorems.
While this is convenient for the purposes of modularity lifting theorems, in the
interest of reducing the hypotheses on our results on the weight part of Serre’s
conjecture, we describe in the “Appendix A” the modifications necessary to
apply the Taylor–Wiles method at arbitrary sufficiently small level.

1.7 Outline of the paper

We give a brief overview of the various sections of this paper.
A reader primarily interested in the geometry of the local model and its

relationship to the Emerton–Gee stack can read §3 (or perhaps just Theorem
3.7.1), 4, 5, and 7, referring to §6 as desired. A reader primarily interested in
our main applications can read §8 and 9, referring to the main results of §7.
§2 is preliminary and can be referred to as needed.

§2 establishes various connections between extended affine Weyl groups
and representation theory used throughout the paper.

§3 is the technical heart of the paper.We introduce a universal version of the
local model (§3.3) and describe some of its basic properties. The unibranch
property at torus fixed points is established in §3.4 and the subsequent sections
§3.5, 3.6, 3.7 deal with the problem of spreading out such properties. The most
important result is Theorem 3.7.1 on the unibranch property used in the main
theorem on Galois deformations (Theorem 7.3.2).

§4 specializes the universal model to the mixed characteristic situation of
interest and then studies the special fiber. Themain result (Theorem 4.6.2) uses
reductions of Deligne–Lusztig representations to parametrize the irreducible
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components of the special fiber compatibly (§4.3) over varying parameters.
Finally, Theorem 4.7.6 is the main result on torus fixed points of irreducible
components used in the proof of the weight part of Serre’s conjecture.

§5 compares stacks of Breuil–Kisin modules and Pappas–Zhu local models
in preparation for §7. The main result (Theorem 5.3.3) is the local model
diagram for (Zariski covers) of the moduli stack of Breuil–Kisin modules with
tame descent data and a Pappas–Zhu local model via a theory of gauge bases
for Breuil–Kisin modules (see §5.2, particularly Proposition 5.2.7). We also
establish directly a connection in characteristic p to the moduli stack of étale
ϕ-modules in Proposition 5.4.7.

§6 is an interlude on patching functors. Here, global methods are used to
show the existence of local lifts of various types, which provides a key input
into component counts in §7.

§7 contains the main result (Theorem 7.3.2) on the relation between the
local models and Galois deformations used in the proof of both the Breuil–
Mézard conjecture and the weight part of Serre’s conjecture. The monodromy
condition, in particular its algebrization (Proposition 7.1.10), is studied in
§7.1. Theorem 7.2.3 compares Emerton–Gee stacks of potentially crystalline
representations with the moduli stacks of Breuil–Kisin modules with tame
descent data studied in §5. Finally, §7.3 is the culmination of the earlier sections
establishing the comparison between the tame potentially crystallineEmerton–
Gee stack and the local models of §4. Theorem 7.4.2 describes a sufficiently
generic portion of the reduced special fiber of the Emerton–Gee stack.

§8.1 introduces versions of the Breuil–Mézard conjectures, and §8.2
describes their relationship. §8.3 provides an axiomatic framework to prove
restricted versions of the Breuil–Mézard conjectures using patching functors,
which is then applied in §8.4 (see Theorem 8.4.10 and Corollary 8.5.2). In
§8.6, we describe basic properties of Breuil–Mézard cycles and an algorithm
to compute them.

Applications to the Serre weight conjecture (Theorem 9.1.6) for certain
definite unitary groups and modularity lifting are in §9.1 and 9.2, respectively.
§1 describes routinemodifications to the Taylor–Wilesmethod needed to patch
at arbitrary level.

1.8 Notation

We fix once and for all a separable closure K of every field K and let G K
def=

Gal(K/K ). If K is defined as a subfield of an algebraically closed field, then
we set K to be this field. If K is a nonarchimedean local field, we let IK ⊂ G K
denote the inertial subgroup and WK ⊂ G K denote the Weil group. We fix a
prime p ∈ Z>0. Let E ⊂ Qp be a subfield which is finite-dimensional over
Qp. We write O to denote its ring of integers, fix an uniformizer � ∈ O

123



Local models for Galois deformation rings and applications 1301

and let F denote the residue field of E . We will assume throughout that E is
sufficiently large.

1.8.1 Reductive groups

Let G denote a split connected reductive group (over some ring) together with
a Borel B, a maximal split torus T ⊂ B, and Z ⊂ T the center of G. Let
d = dim G − dim B. When G is a product of copies of GLn , we will take
B to be upper triangular Borel and T the diagonal torus. Let �+ ⊂ � (resp.
�∨,+ ⊂ �∨) denote the subset of positive roots (resp. positive coroots) in
the set of roots (resp. coroots) for (G, B, T ). Let � (resp. �∨) be the set of
simple roots (resp. coroots). Let X∗(T ) be the group of characters of T and
	R ⊂ X∗(T ) denote the root lattice for G.

For a free Z-module M of finite rank (e.g. M = X∗(T )), the duality pairing
between M and its Z-linear dual M∗ will be denoted by 〈 , 〉. If A is any ring,
the pairing 〈 , 〉 extends by A-linearity to a pairing between M ⊗Z A and
M∗ ⊗Z A.
We say that a weight λ ∈ X∗(T ) is dominant (resp. regular dominant)

if 0 ≤ 〈λ, α∨〉 (resp. 0 < 〈λ, α∨〉) for all α ∈ �. For λ ∈ X∗(T ), set
hλ

def= max
α∈�{〈λ, α

∨〉}. Set X0(T ) to be the subgroup consisting of characters

λ ∈ X∗(T ) such that 〈λ, α∨〉 = 0 for all α ∈ �.
Let W (G) denote the Weyl group of (G, T ). Let w0 denote the longest

element of W (G). We sometimes write W for W (G) when there is no chance
for confusion. Let Wa (resp. ˜W ) denote the affine Weyl group and extended
affine Weyl group

Wa = 	R � W (G), ˜W = X∗(T )� W (G)

for G. We use tν ∈ ˜W to denote the image of ν ∈ X∗(T ).
The Weyl groups W (G), ˜W , and Wa act naturally on X∗(T ) and on

X∗(T )⊗Z A by extension of scalars for any ring A. Given λ ∈ X∗(T ), wewrite
Conv(λ) for the convex hull of the subset

{

w(λ) | w ∈ W (G)
} ⊂ X∗(T ).

We write G∨ = G∨
/Z for the split connected reductive group over Z defined

by the root datum (X∗(T ), X∗(T ),�∨,�). This defines a maximal split torus
T∨ ⊆ G∨ such that we have canonical identifications X∗(T∨) ∼= X∗(T ) and
X∗(T∨) ∼= X∗(T ).
For (α, k) ∈ �×Z, we have the root hyperplane Hα,k

def= {λ : 〈λ, α∨〉 = k}.
An alcove is a connected component of X∗(T ) ⊗Z R \ (⋃(α,n) Hα,n

)

. We
say that an alcove A is restricted if 0 < 〈λ, α∨〉 < 1 for all α ∈ � and λ ∈ A.
We let A0 denote the (dominant) base alcove, i.e. the set of λ ∈ X∗(T )⊗Z R

such that 0 < 〈λ, α∨〉 < 1 for all α ∈ �+. Let A denote the set of alcoves.
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Recall that ˜W acts transitively on the set of alcoves, and ˜W ∼= ˜Wa �� where
� is the stabilizer of A0. We define

˜W+ def= {w̃ ∈ ˜W : w̃(A0) is dominant}.
and

˜W+
1

def= {w̃ ∈ ˜W+ : w̃(A0) is restricted}.
We fix an element η ∈ X∗(T ) such that 〈η, α∨〉 = 1 for all positive simple
roots α and let w̃h be w0t−η ∈ ˜W+

1 .
When G = GLn , we fix an isomorphism X∗(T ) ∼= Zn in the standard

way, where the standard i th basis element εi = (0, . . . , 1, . . . , 0) (with the
1 in the i th position) of the right-hand side corresponds to extracting the i th
diagonal entry of a diagonal matrix. Dually we get a standard isomorphism
X∗(T ) ∼= Zn , and let (ε∨1 , . . . , ε∨n ) denote the dual basis.
Suppose that G is a split connected reductive group over Zp. Let Op be a

finite étaleZp-algebra, which is necessarily isomorphic to a product
∏

v∈Sp
Ov

where Sp is a finite set and Ov is the ring of integers of a finite unramified
extension F+v of Qp. For example, we will take Op to be the ring of integers
in an unramified extension of Qp or OF+ ⊗Z Zp where F+ is a number
field in which p is unramified and OF+ is its ring of integers. Let G0 =
ResOp/Zp(G/Op)with Borel subgroup B0 = ResOp/Zp(B/Op), maximal torus
T0 = ResOp/Zp(T/Op), and Z0 = ResOp/Zp(Z/Op). Assume that O contains

the image of any ring homomorphism Op → Zp. Let J be HomZp(Op,O).
Then G

def= (G0)/O is naturally identified with the split reductive group GJ
/O.

We similarly define B, T , and Z . Corresponding to (G, B, T ), we have the
set of positive roots�+ ⊂ � and the set of positive coroots�∨,+ ⊂ �∨. The
notations 	R , W , W a , ˜W , ˜W

+
, ˜W

+
1 , � should be clear as should the natural

isomorphisms X∗(T ) = X∗(T )J and the like. When G = GLn , then we fix
η ∈ X∗(T ) to be the product of the elements (n − 1, n − 2, . . . , 0) ∈ Zn .

The absolute Frobenius automorphism onOp/p lifts canonically to an auto-
morphism ϕ of Op. We define an automorphism π of the identified groups
X∗(T ) and X∗(T∨) by the formula π(λ)σ = λσ◦ϕ−1 for all λ ∈ X∗(T ) and
σ : Op → O. We assume that, in this case, the element η ∈ X∗(T ) we fixed
is π -invariant. We similarly define an automorphism π of W and ˜W .

1.8.2 Galois theory

Let Op and G/O be as in 1.8.1. Let F+p be Op[1/p]. Then F+p is isomorphic
to the (finite) product

∏

v∈Sp

F+v where, as above, F+v = Ov[1/p] is a finite

unramified extension of Qp for each v ∈ Sp. Let
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G∨
/Z

def=
∏

F+p →E

G∨
/Z

be the dual group of G so that the Langlands dual group of G0 is L G/Z

def=
G∨ � Gal(E/Qp) where Gal(E/Qp) acts on the set of homomorphisms
F+p → E by post-composition. For a topological O-algebra A, an L-
homomorphism over A is a continuous homomorphism WQp → L G(A) with
openkernelwhose projection toGal(E/Qp) is the natural one.An L-parameter
over A is a G∨(A)-conjugacy class of L-homomorphisms. An isomorphism

F+v
∼→ Qp for each v ∈ Sp determines an embedding G F+v ↪→ GQp and the

restriction of this isomorphism to F+v ↪→ E gives a projection G∨ → G∨.
Fixing isomorphisms for each v ∈ Sp, we get a bijection from the set of
L-homomorphisms over A to the set of collections of continuous representa-
tions WF+v → G∨(A) indexed by Sp. This induces a bijection from the set of
L-parameters to the set of collections of G∨(A)-conjugacy classes of repre-
sentations WF+v → G∨(A) with open kernel indexed by Sp. Moreover, this
latter bijection does not depend on the choices of isomorphisms. Finally, if A is
finite, this latter set is equivalent to the set of collections of G∨(A)-conjugacy
classes of continuous representations G F+v → G∨(A) indexed by Sp.

An inertial L-homomorphism over A is a continuous homomorphism
IQp → G∨(A) with open kernel which admits an extension to an L-
homomorphism over A. An inertial L-parameter over A is a G∨(A)-conjugacy
class of inertial L-homomorphisms. If K is a finite extension of Qp, then
an inertial A-type (for K ) is a G∨(A)-conjugacy class of homomorphisms
IK → G∨(A) with open kernels which admit extensions to homomorphisms
WK → G∨(A). We refer to an inertial E-type as just an inertial type. We say
that an inertial L-parameter over A (resp. inertial A-type) is tame if a homo-
morphism (equivalently all homomorphisms) in the conjugacy class factors
through the tame quotient of the inertial subgroup. There is a similar bijec-
tion between (tame) inertial L-parameters over A and collections of (tame)
inertial A-types IF+v → G(A) indexed by Sp (not depending on choices of
isomorphisms between algebraic closures).

We now specialize to the case that F+p is a field K and G = GLn . Let K/Qp
be an unramified extension of degree f with ring of integers OK and residue
field k. Let W (k) be ring of Witt vectors of k, which is also the ring of integers
of K . We denote the arithmetic Frobenius automorphism on W (k) by ϕ; it acts
as raising to pth power on the residue field.

Recall that we fixed a separable closure K of K . We choose π ∈ K such
that π p f−1 = −p and define ωK : G K → O×K to be the character defined by
g(π) = ωK (g)π . Since any choice of π differs by a p f − 1st root of unity
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on which G K acts trivially, ωK is independent of the choice of π . Given a
embedding σ : K ↪→ E , let ωK ,σ : G K → O× be the character σ ◦ ωK .
If we let K ur ⊂ K be the maximal unramified subfield, then for any subfield
K ′ ⊂ K ur which is of finite degree over Qp, IK ′ is canonically identified
with G K ur . Thus, IK ′ is identified with IK , and we also denote by ωK and
ωK ,σ the restriction of these characters to IK ′ . For any integer r ≥ 1, we let
Qpr denote the unramified degree r extension of Qp in Qp, which we assume
is in E (enlarging E if necessary). We write ωr for ωQpr ,ι where ι denotes

the inclusion Qpr ⊂ E as subfields of Qp. We use the overline notation
ωK , ωK ,σ , ωr , etc. to denote the mod � reduction of ωK , ωK ,σ , ωr , etc.
When considering n-dimensional representations of G K , we will assume that
E contains the image of any morphism K ′ → Qp where K ′ ⊂ K un is the
subfield of degree r over K where r is the order of some element of Sn . Fix
an embedding σ0 : K ↪→ E . Then we define σ j = σ0 ◦ ϕ− j . This identifies
J = Hom(k,F) = HomQp(K , E) with Z/ f Z.

For K as above, we fix once and for all a sequence p
def= (pm)m∈N where

pm ∈ K satisfy p p
m+1 = pm and p0 = −p. We let K∞

def= ⋃

m∈N

K (pm) and

G K∞
def= Gal(K/K∞).

Let ε denote the p-adic cyclotomic character. If W is a de Rham represen-
tation of G K over E , then for each κ ∈ HomQp(K , E), we write HTκ(W ) for
the multiset of Hodge–Tate weights labelled by embedding κ normalized so
that the p-adic cyclotomic character ε has Hodge–Tate weight {1} for every κ .
For μ = (μ j ) ∈ X∗(T ), we say that an n-dimensional representation W has
Hodge–Tate weights μ if

HTσ j (W ) = {μ1, j , μ2, j , . . . , μn, j }.

Our convention is the opposite of that of [14,22], but agrees with that of
[33]. We will always use the covariant functors attached to W , for example
DdR(W ) = (W ⊗Qp BdR)

G K , and similarly we have Dpst(W ) and Dpcris(W ).
Note that under our convention, the jumps in the Hodge filtration of DdR(W )

occur at theoppositesof theHodge–Tateweights.We say that ann-dimensional
potentially semistable representation ρ : G K → GLn(E) has type (μ, τ) if
ρ has Hodge–Tate weights μ and the Weil-Deligne representation WD(ρ)
restricted to IK is isomorphic to the inertial type τ . Note that this differs from
the conventions of [33] via a shift by η. The condition on inertial type is also
equivalent toDpcris(ρ) = Dpst(ρ) being isomorphic to τ as IK -representations.

Let ArtK : K× → W ab
K denote the Artin map normalized so that uni-

formizers map to geometric Frobenius elements. For τ an inertial type, we use
σ(τ) to denote the finite dimensional smooth irreducible Qp-representation

123



Local models for Galois deformation rings and applications 1305

of GLn(OK ) associated to τ by the “inertial local Langlands correspondence”
(see §2.4). In fact, in all situations that arise, σ(τ) will be defined over E .

1.8.3 Miscellaneous

For any ring S, we define Mn(S) to be the set of n × n matrix with entries in
S. If M ∈ Mn(S) and A ∈ GLn(S) we write

Ad(A)(M)
def= A M A−1. (1.3)

If α = εi − ε j is a root of GLn , we also call the (i, j)th entry of a matrix
X ∈ Mn(S) the αth entry. We will make use of both notations Xi j and Xα for
this entry.

Let � be a group. If V is a finite length �-representation, we let JH(V )
be the (finite) set of Jordan–Hölder factors of V . If V ◦ is a finite O-module
with a �-action, we write V

◦
for the �-representation V ◦ ⊗O F over F. If �

is a compact topological group and V is a virtual representation of � which
is the difference V1 − V2 of two genuine continuous finite-dimensional �-
representations over E , let V be the virtual representation V 1 − V 2 where V i
is the semisimplification of V

◦
i and V ◦i is any �-stable O-lattice in Vi (and V

depends only on V and not on any other choices). Of course, V is a genuine
representation if V is.

If X is an ind-scheme defined overO, wewrite X E
def= X×Spec OSpec E and

XF
def= X ×Spec O Spec F to denote its generic and special fiber, respectively.

Similarly, if R is any O-algebra, we write RF to denote R ⊗O F

If P is a statement, the symbol δP ∈ {0, 1} takes value 1 if P is true, and 0
if P is false.

2 Preliminaries

2.1 Extended affine Weyl groups

2.1.1 Admissible sets, regular elements, and admissible pairs

Recall that G is a split reductive groupwith split maximal torus T and Borel B.

Let V
def= X∗(T )⊗R ∼= X∗(T∨)⊗R denote the apartment of (G, T ) on which

˜W acts. Let C0 denote the dominant Weyl chamber in V . For any w ∈ W (G),
let Cw = w(C0). In particular, Cw0 is the anti-dominant Weyl chamber.

Recall from §1.8 the set A of alcoves of V . We let ↑ denote the upper
arrow ordering on alcoves as defined in [47, § II.6.5]. Since Wa acts simply
transitively on the set of alcoves, ↑ induces an upper arrow ordering on Wa
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which we again denote by ↑. The dominant base alcove A0 defines a Bruhat
order on Wa which we denote by ≤. If � is the stabilizer of the base alcove,
then ˜W = Wa � � and so ˜W inherits a Bruhat and upper arrow order in the
standard way: For w̃1, w̃2 ∈ Wa and δ ∈ �, w̃1δ ≤ w̃2δ (resp. w̃1δ ↑ w̃2δ)
if and only if w̃1 ≤ w̃2 (resp. w̃1 ↑ w̃2), and elements in different right Wa-
cosets are incomparable. We write X ↑ Y (resp. X ≤ Y ) between sets X and
Y if x ↑ y (resp. x ≤ y) for all x ∈ X and y ∈ Y . For w̃ ∈ ˜W , let

˜W≤w̃
def= {̃s ∈ ˜W | s̃ ≤ w̃}.

We write � for the Coxeter length function on Wa , which we extend to ˜W by

letting �(w̃δ)
def= �(w̃) for any w̃ ∈ Wa , δ ∈ �.

Definition 2.1.1 Let m ≥ 1, w̃1, . . . , w̃m ∈ ˜W and set w̃
def= ∏m

i=1 w̃i . We say
∏m

i=1 w̃i is a reduced expression for w̃ if �(w̃) =∑m
i=1 �(w̃i ).

We now recall the definition of the admissible set as introduced by Kottwitz
and Rapoport:

Definition 2.1.2 Let λ ∈ X∗(T ). Define

Adm(λ)
def=
⋃

w∈W

˜W≤tw(λ) .

Recall from §1.8 the hyperplanes Hα,n = {x ∈ V | 〈x, α∨〉 = n} and the
notation �+ (resp. �−) for the set of positive (resp. negative) roots. We use
the notation α > 0 (resp. α < 0) for a positive (resp. negative) root. For
α ∈ �, define the half-hyperplanes H+

α,n = {x ∈ V | 〈x, α∨〉 > n} and
H−
α,n = {x ∈ V | 〈x, α∨〉 < n}. Define the mth α-strip to be

H (m,m+1)
α = {x ∈ V | m < 〈x, α∨〉 < m + 1}.

Define the critical strips to be strips H (0,1)
α where α ∈ �+.

Definition 2.1.3 An alcove A ∈ A is regular if A does not lie in any critical
strips. For any w̃ ∈ ˜W , we say w̃ is regular if w̃(A0) is regular. Define

Admreg(λ) = {w̃ ∈ Adm(λ) | w̃ is regular}.
From [56, Lemma 4.1.9] we have:
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Lemma 2.1.4 Suppose that w̃1 and w̃2 ∈ ˜W+. Then w̃−12 w0w̃1 is a reduced
expression.

Proposition 2.1.5 If w̃ ∈ ˜W is regular, then there exist w̃1 and w̃2 ∈ ˜W+
1 and

a dominant weight ν ∈ X∗(T ) such that w̃ = w̃−12 w0tνw̃1. Moreover, w̃1, w̃2,
and ν as above are unique up to X0(T ).

Conversely, if w̃1 and w̃2 are elements of ˜W+, then w̃−12 w0w̃1 is regular.

Proof Suppose that w̃ ∈ ˜W is regular and w2w̃(A0) lies in the anti-dominant
Weyl chamber for w2 ∈ W . Let η2 ∈ X∗(T ) be such that w̃2 = tη2w2 ∈ ˜W+

1 .
Note that η2 is unique up to X0(T ). Let x be in A0. From the assumption we
deduce that w̃(x) and x do not lie in the same α-strip for any root α. (Note that
A0 only lies inside critical strips.) Equivalently, w̃2w̃(x) and w̃2(x) do not lie
in the same α-strip for any root α. In particular:

�〈w̃2w̃(x), α
∨〉� �= �〈w̃2(x), α

∨〉� = 0 (2.1)

for all simple roots α, using that w̃2 ∈ ˜W+
1 to obtain the last equality.

Now let α be a simple root. Then, 〈w2w̃(x), α∨〉 < 0 by assumption. More-
over, 〈η2, α∨〉 ≤ 1 since η2 is 1-restricted (a lift of a multiplicity free sum of
fundamental weights). We conclude that 〈w̃2w̃(x), α∨〉 < 1. From (2.1), we
deduce that 〈w̃2w̃(x), α∨〉 < 0. Since α is an arbitrary simple root, w̃2w̃(x)
lies in the anti-dominant Weyl chamber. Thus, w0w̃2w̃ ∈ ˜W+. We conclude
that w0w̃2w̃ = tνw̃1 for some dominant ν ∈ X∗(T ) and w̃1 ∈ ˜W+

1 . Again, ν
and w̃1 are determined up to X0(T ).

For the converse, let w̃1 and w̃2 be elements of ˜W+. Let x ∈ A0. Showing
that w̃−12 w0w̃1 is regular is equivalent to showing that w0w̃1(x) and w̃2(x) do
not lie in the sameα-strip for any rootα. This is clear from the fact thatw0w̃1(x)
lies in the anti-dominantWeyl chamber while w̃2(x) lies in the dominantWeyl
chamber. ��
Proposition 2.1.6 Suppose that w̃1 and w̃2 are elements in ˜W+. Let λ ∈
X∗(T ) be a dominant weight. The following are equivalent.

(1) w̃1 ↑ tλw̃
−1
h w̃2;

(2) w̃2 ↑ w̃ht−λw̃1;
(3) w̃−12 w0w̃1 ≤ t

w−11 (λ+η), t(w0w2)−1(λ+η) where w1, w2 ∈ W are the images

of w̃1 and w̃2 in W ; and
(4) w̃−12 w0w̃1 is in Adm(λ+ η).
Proof It is clear that (1) is equivalent to (2) by [56, Proposition 4.1.2] and [47,
II.6.5(4)]. We first show that (1) implies (3). Let ω ∈ X∗(T ) be a dominant
weight (unique up to X0(T )) such that t−ωw̃2 ∈ ˜W+

1 . Then t−w0(ω)w̃1 ∈ ˜W+,
t−w0(ω)w̃1 ↑ tλw̃

−1
h (t−ωw̃2), and w̃

−1
2 w0w̃1 = (t−ωw̃2)

−1w0(t−w0(ω)w̃1).
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Without loss of generality, we can assume that w̃2 is an element of ˜W+
1 .

Then w̃−1h w̃2 ∈ ˜W+. Then Wang’s theorem [83, Theorem 4.3] (see also [56,
Theorem 4.1.1]) implies that w̃1 ≤ tλw̃

−1
h w̃2. Using that w̃

−1
2 w0(tλw̃

−1
h w̃2) is

a reduced expression by Lemma 2.1.4, we have that

w̃−12 w0w̃1 ≤ w̃−12 w0tλw̃
−1
h w̃2 = t

w−12 w0(λ+η).

The inequality w̃−12 w0w̃1 ≤ t
w−11 (η)

follows from (2) using the same argument.
Item (3) immediately implies (4). We now show that (4) implies (1).

As before, we can and do change w̃1 and w̃2 so that w̃2 ∈ ˜W+
1 with-

out affecting the product w̃−12 w0w̃1 or the veracity of the relation in (1).
By writing w̃2 = tη2w2 (where η2 is dominant), it is easy to see that
w̃−12 w0w̃1(A0) = w−12 t−η2w0w̃1(A0) lies in theWeyl chamber (w0w2)

−1(C0)
since t−η2w0w̃1(A0) lies inw0(C0). We conclude from [40, Corollary 4.4] and
the (λ+ η)-admissibility of w̃−12 w0w̃1 that

w̃−12 w0w̃1 ≤ t(w0w2)−1(λ+η) = w̃−12 w0(tλw̃
−1
h w̃2).

Noting that w̃−1h w̃2 ∈ ˜W+ since w̃2 ∈ ˜W+
1 , the above factorizations are

reduced by Lemma 2.1.4. We conclude that w̃1 ≤ tλw̃
−1
h w̃2, which implies

that w̃1 ↑ tλw̃
−1
h w̃2 by Wang’s theorem [83, Theorem 4.3].

For a dominant weight λ ∈ X∗(T ), define the collection of admissible pairs

AP(λ+ η) def=
{

(w̃1, w̃2) ∈ (˜W+
1 × ˜W+)/X0(T )

∣

∣

∣ w̃1 ↑ tλw̃
−1
h w̃2

}

, (2.2)

where X0(T ) is embedded diagonally in the natural way.

Corollary 2.1.7 Let λ ∈ X∗(T ) be a dominant weight. Then the map

AP(λ+ η) ∼−→ Admreg(λ+ η).
(w̃1, w̃2) �−→ w̃−12 w0w̃1

is a bijection.

Proof We first show that the image of the map lies in Admreg(λ+ η). Assume
(w̃1, w̃2) ∈ ˜W+

1 × ˜W+ is such that w̃1 ↑ tλw̃
−1
h w̃2. Note that this condition is

stable under the diagonal action of X0(T ) by [47, II.6.5(4)]. Then w̃−12 w0w̃1 ∈
Adm(λ+ η) by Proposition 2.1.6(4), and is regular by Proposition 2.1.5.

To show surjectivity, write w̃ = w̃−12 w0tνw̃1 ∈ Admreg(λ + η) as in
the statement of Proposition 2.1.5. By Proposition 2.1.6(1) we have tνw̃1 ↑
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tλw̃
−1
h w̃2, which is equivalent to w̃1 ↑ tλw̃

−1
h t−w0(ν)w̃2 by [47, II.6.5(4)].

Since t−w0(ν)w̃2 ∈ ˜W+, (w̃1, t−w0(ν)w̃2) ∈ AP(λ+ η) and has image w̃.
The uniqueness of the decomposition up to translation by X0(T ) from

Proposition 2.1.5 shows injectivity. ��
Remark 2.1.8 The same proof also shows that there is a bijection

{

(w̃1, w̃2) ∈ (˜W+ × ˜W+
1 )/X0(T )

∣

∣

∣ w̃1 ↑ tλw̃
−1
h w̃2

} ∼−→ Admreg(λ+ η)
(w̃1, w̃2) �−→ w̃−12 w0w̃1,

though this plays a lesser role in what follows.

2.1.2 Genericity

Let (˜W∨,≤) be the following partially ordered group: ˜W∨ is identified with
˜W as a group, and ≤ is induced from the Bruhat order on ˜W defined by the
antidominant base alcove.

Definition 2.1.9 We define a bijection w̃ �→ w̃∗ between ˜W and ˜W∨ as fol-
lows: for w̃ = tνw ∈ ˜W , with w ∈ W and ν ∈ X∗(T ) = X∗(T∨), then
w̃∗ def= w−1tν ∈ ˜W∨.

[56, Lemma 2.1.3] shows that (−)∗ : ˜W → ˜W∨ is an isomorphism of
partially ordered groups.

We now introduce various notions of genericity which will be used through-
out the paper.

Definition 2.1.10 Let λ ∈ X∗(T ) be a weight and let m be an integer.

(1) We say that λ is m-deep in a (η-shifted) p-alcove C if

nα p + m < 〈λ+ η, α∨〉 < (nα + 1)p − m,

where C is the p-alcove defined by the above inequalities with m = 0.

We now assume that m ≥ 0.

(1) If m ≥ 0, we say λ is m-deep if λ is m-deep in some p-alcove C . Equiva-
lently, m < |〈λ+ η, α∨〉 + pk| for all α ∈ �+ and k ∈ Z.

(2) For w̃ = wtν in either ˜W or ˜W∨, we say that w̃ is m-generic if ν − η is
m-deep.

(3) For w̃ = wtν in either ˜W or ˜W∨, we say that w̃ is m-small if hν ≤ m, i.e.,
〈ν, α∨〉 ≤ m for all α ∈ �.
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(4) Let P = P(X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a polynomial and let R
be a commutative ring. We say that a tuple a ∈ Rn is P-generic if P(a)
(mod p) ∈ R/p is in (R/p)×. For a finite set J , we say that a ∈ (Rn)J
is P-generic if a j is P-generic for all j ∈ J . If G = GLJ

n , we say that
λ ∈ X∗(T ) is P-generic if it is under the standard identification of X∗(T )
with (Zn)J .

Remark 2.1.11 (1) Wenote that depth is preserved by the (p-)dot action, small-
ness is preserved by the standard W -action, but P-genericity is typically
not preserved by either of these.

(2) Suppose that G = GLJ
n . If we let Pm(X1, . . . , Xn) be

∏n
i=1
∏m

j=1(Xi −
Xi+1− j) where Xn+1 is understood to be X1, then λ− η ∈ C0 is m-deep
if and only if λ is Pm-generic.

We record some elementary properties of smallness and genericity.

Proposition 2.1.12 Let w̃, z̃ be elements in ˜W (resp. in ˜W∨) and let ν ∈
X∗(T ).

(1) the element tν is m-generic (resp. m-small) if and only if ts(ν) is m-generic
(resp. m-small) for all s ∈ W (G);

(2) if w̃ is m-small and z̃ is m′-small, then w̃z̃ is (m + m′)-small;
(3) the element w̃ is m-small if and only if w̃−1 is m-small if and only if w̃∗ is

m-small; and
(4) if z̃ is m′-generic and w̃ is m-small with m ≤ m′, then z̃w̃ is (m′ − m)-

generic.

2.2 Serre weights

We recall some notation in 1.8. Let G/Zp be a split connected reductive group
with extended affine Weyl group ˜W . Let Op be a finite étale Zp-algebra. Let
G0 be ResOp/Zp(G/Op) and G be the split group (G0)/O. Note that the Bruhat
order on ˜W ∼= ˜WJ is the product partial order induced from the Bruhat order
on ˜W (hence, the partial order ≤ on ˜WJ is taken componentwise).

For a dominant character λ ∈ X∗(T ), we define W (λ)/O to be the G-

module IndG
Bw0λ. Then W (λ)/E is the unique up to isomorphism irreducible

G/E -module of highest weight λ. Let V (λ) be the (irreducible) restriction

of W (λ)/E (E) to G0(Zp). The socle L(λ) of the G/F-module W (λ)/F
def=

W (λ)/O ⊗O F is the unique up to isomorphism irreducible G/F-module of
highest weight λ. For any character λ ∈ X∗(T ), we can extend the above
definition by letting W (λ)/O be the virtual G-module

∑

i

(−1)i Ri IndG
Bw0λ. (2.3)
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We similarly define the virtual modules V (λ) and W (λ)/F.
Let G be the group G0(Fp) ∼= G/Op(Op/p). A Serre weight (of G) is an

irreducible F-representation of G. An irreducible G-representation over F is
necessarily absolutely irreducible and every irreducible G-representation over

Fp is defined over F. Each Serre weight is the restriction F(λ)
def= L(λ)|G for

some λ ∈ X1(T ) where

X1(T )
def= {λ ∈ X∗(T ), 0 ≤ 〈λ, α∨〉 ≤ p − 1 for all α ∈ �}

is the set of p-restricted dominant weights. The map λ �→ F(λ) gives a
bijection from X1(T )/(p − π)X0(T ) to the set of isomorphism classes of
Serre weights of G (see [33, Lemma 9.2.4]). For m ≥ 0, we say that a Serre
weight F(λ) is m-deep if λ is m-deep. We say that λ ∈ X1(T ) is regular
p-restricted or F(λ) is regular if 〈λ, α∨〉 < p − 1 for all α ∈ �.
For λ ∈ X∗(T ), let W (λ) be the restriction of W (λ)/F(F) to G, which is

a genuine representation if λ is dominant. Then F(λ) is an G-submodule of
W (λ) for λ ∈ X1(T ).

For the combinatorics of Serre weights it is convenient to introduce the
notion of p-alcoves and the dot action on them. A p-alcove is a connected
component of the complement X∗(T ) ⊗Z R \ (⋃(α,pn)(Hα,pn − η)

)

. We
say that a p-alcove C is dominant (resp. p-restricted) if 0 < 〈λ + η, α∨〉
(resp. if 0 < 〈λ + η, α∨〉 < p) for all α ∈ � and λ ∈ C . We let C0 denote
the dominant base p-alcove, i.e. the alcove characterized by λ ∈ C0 if and
only if 0 < 〈λ+ η, α∨〉 < p for all α ∈ �+. We define the (p-)dot action of
˜W on X∗(T ) ⊗Z R by w̃ · λ def= w(λ + η + pν) − η for w̃ = wtν ∈ ˜W and
λ ∈ X∗(T ) ⊗Z R. In particular, ˜W acts transitively via the dot action on the
set of p-alcoves, and � is the stabilizer of C0 for the dot action. We have

˜W
+ = {w̃ ∈ ˜W : w̃ · C0 is dominant}

and

˜W
+
1 = {w̃ ∈ ˜W+ : w̃ · C0 is p − restricted}.

Lemma 2.2.1 If

• μ ∈ X∗(T ) is a dominant weight which is not m-deep,
• h ∈ Z such that 〈μ, α∨〉 ≤ h for all α ∈ �, and
• σ ∈ JH(W (μ)),

then σ is not (m + � h
p−1�)-deep.

Proof Suppose thatμ is as in the statement of the lemma.By [47, II.6.13Propo-
sition], if σ ∈ JH(W (μ)), then either
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• σ ∈ JH(W (w̃ · μ)) for w̃ ∈ Wa with w̃ · μ �= μ dominant and w̃ · μ ↑ μ;
or

• σ ∈ JH(L(μ)|G).
We now replace this second condition. Suppose that σ ∈ JH(L(μ)|G). If
μ = μ0 + pμ1 for μ0, μ1 dominant and μ0 p-restricted, then L(μ) ∼=
L(μ0)⊗ L(pμ1) by the Steinberg tensor product theorem [47, II.3.17]. Since
L(pμ1)|G ∼= L

(

π(μ1)
)|G, we have that σ ∈ JH

(

W (μ0) ⊗ W (π(μ1))
)

.
[47, II.5.8 Lemma] implies that σ ∈ JH

(

W (μ − pμ1 + π(ν))
)

for some
ν ∈ Conv(μ1) (recall that W (μ− pμ1 + π(ν)) is a priori a virtual represen-
tation). By [47, II.5.5 Corollary (b)], σ ∈ JH

(

W (w · (μ− pμ1 + π(ν)))
)

for
some w ∈ W such that w · (μ − pμ1 + π(ν)) is dominant. By the follow-
ing lemma (where we take λ, ν, and κ to be μ − pμ1 + η, π(ν) and π(μ1),
respectively), replacing ν by

π−1
(

w · (μ− pμ1 + π(ν))− (μ− pμ1)
)

,

we can assume without loss of generality that μ − pμ1 + π(ν) ∈ X∗(T ) is
dominant.

Lemma 2.2.2 Suppose λ ∈ X∗(T ) is dominant, ν ∈ Conv(κ) andw such that
w(λ+ ν) is dominant. Then w(λ+ ν)− λ ∈ Conv(κ).

Proof There is a sequence of positive roots α1, · · · , αk such that w =
sαk · · · sα1 , and setting sα j · · · sα1(λ + ν) = λ + ν j we have λ + ν j is on
the positive side of the α j -wall while λ + ν j−1 is on the negative side of the
α j -wall. Thuswe getλ+ν j = λ+ν j−1+mα j withm = −〈λ+ν j−1, α∨j 〉 ≥ 0.
Now

〈ν j−1, α∨j 〉 ≤ 〈λ+ ν j−1, α∨j 〉 < 0

hence 0 < m ≤ −〈λ+ν j−1, α∨j 〉 ≤ −〈ν j−1, α∨j 〉. This shows that ν j = ν j−1+
mα j lies in the segment between ν j−1 and sα j ν j−1 = ν j−1 − 〈ν j−1, α∨j 〉α j ,
hence ν j ∈ Conv(κ) by induction. ��

Returning to the proof of Lemma 2.2.1, the upshot is that if σ ∈ JH(W (μ)),
then either

• σ ∈ JH(W (w̃ · μ)) for w̃ ∈ Wa with w̃ · μ �= μ dominant and w̃ · μ ↑ μ;
• σ ∈ JH

(

W (μ − pμ1 + π(ν))
)

where μ1 is nonzero, μ1, μ − pμ1, μ −
pμ1 + π(ν) ∈ X∗(T ) are dominant, and ν ∈ Conv(μ1); or

• μ is p-restricted and σ = F(μ).

In this way, either σ = F(μ) or we can replaceμwith a “smaller” weight. For
convenience, for λ ∈ X∗(T ) and ν ∈ Conv(λ), we let tλ,ν be the operator on
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X∗(T ) which translates by−pλ+ π(ν). Iterating the above weight reduction
process, we see that if σ ∈ JH(W (μ)), then σ = F(λ) for λ ∈ X∗(T ) of the
form

tμM ,νM w̃M · (tμM−1,νM−1w̃M−1 · (· · · tμ1,ν1w̃1 · μ) · · · ) (2.4)

where μi ∈ X∗(T ) is dominant and nonzero and w̃i ∈ W a is nontrivial for all
i and the weight at each step is dominant. Indeed, since each iteration strictly
reduces the value of 〈−, (η − w0(η))

∨〉 which must be positive, the iterative
process must end (with an upper bound on the number of steps depending on
μ). Then (2.4) can be rewritten as λ = w̃ ·μ+π(ν) for some w̃ ∈ ˜W and ν ∈
Conv(μsum) where μsum =∑M

i=1 μi . We claim that 〈ν, α∨〉 ≤ � h
p−1� for any

α ∈ �. Since the p-dot action preserves depth, λ would not be (m + � h
p−1�)-

deep.
To prove our claim, consider tμM ,νM · · · tμ1,ν1μ = μ − pμsum + π(ν′) for

some ν′ ∈ Conv(μsum). Observe that λ ↑ μ− pμsum + π(ν′). Then

〈pμsum − π(ν′), α∨〉 ≤ 〈μ− λ, α∨〉 ≤ h

for any highest root α. Choosing α ∈ �+ a highest root so that hμsum =
〈μsum, α

∨〉, we have

(p − 1)hμsum ≤ 〈pμsum − π(ν′), α∨〉 ≤ h.

We conclude that hμsum ≤ � h
p−1�, and the claim follows. ��

We will call an element of X∗(Z) an algebraic central character and an
element of X∗(Z)/(p−π)X∗(Z) a central character. Note that the character
group Hom(Z0(Fp),F

×) is naturally identified with X∗(Z)/(p − π)X∗(Z).
An algebraic central character determines a central character by the natural
reduction map. The central character (a character of Z0(Fp)) of a Serre weight
F(λ) is λ|Z ∈ X∗(Z)/(p−π)X∗(Z) which does not depend on the choice of
element in λ+ (p − π)X0(T ) and gives the action of Z0(Fp) on F(λ). Note
that there is a natural identification of X∗(Z) with ˜W/W a , which we will use
often.

Let ω− η ∈ C0 ∩ X∗(T ) and w̃1 ∈ ˜W+
1 . Then π

−1(w̃1) · (ω− η) ∈ X1(T )
and we define

F(w̃1,ω)
def= F(π−1(w̃1) · (ω − η)). (2.5)

We consider the equivalence relation (w̃1, ω) ∼ (tνw̃1, ω − ν) for all ν ∈
X0(T ) and note that the map (w̃1, ω) �→ F(w̃1,ω) sends equivalent pairs to the
same Serre weight. We say that the equivalence class of (w̃1, ω) is a lowest
alcove presentation of F(w̃1,ω). (Note that the notion of lowest alcove presen-
tation depends on the choice of η in §1.8.1.) We often will choose a pair in
the equivalence class of a lowest alcove presentation of a Serre weight, though
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nothing we do will depend on this choice. From a lowest alcove presentation
(w̃1, ω) of a Serre weight, we obtain an algebraic central character

˜W/W a
∼= X∗(Z) (2.6)

tω−ηw̃1W a/W a �→ ζ, (2.7)

which does not depend on the choice of representative in the equivalence
class of (w̃1, ω). Then we say that the lowest alcove presentation (w̃1, ω) of
F(w̃1,ω) is compatible with ζ ∈ X∗(Z). The following lemma shows that ζ is
an algebraic lift of the central character of the Serre weight.

Lemma 2.2.3 Let (w̃1, ω) be a lowest alcove presentation of a Serre weight σ .
Let ζ be the algebraic central character associated to (w̃1, ω) by (2.6). Then
the class of ζ in (mod (p − π)X∗(Z)) = Hom(Z0(Fp),F) is the central
character of σ as a G-representation.

Proof This follows from the description of σ as a the restriction to G of the
irreducible algebraic highest weight module with highest weight π−1(w̃1) ·
(ω − η). ��
We say that two lowest alcove presentations of Serre weights are compatible
(with each other) if they are compatible with the same element of X∗(Z). As
the p-dot action preserves depth, F(w̃1,ω) is m-deep if and only if ω − η is
m-deep (Definition 2.1.10(1)) in alcove C0, i.e. if m < 〈ω, α∨〉 < p − m for
all α ∈ �+.
Lemma 2.2.4 If a Serre weight σ is 0-deep, then the map (w̃1, ω) �→
w̃1tωW a/W a ∈ ˜W/W a

∼= X∗(Z) gives a bijection between lowest alcove
presentations of σ and algebraic central characters lifting the central charac-
ter of σ .

Proof If (w̃1, ω) is a lowest alcove presentation for σ , then the set of lowest
alcove presentations of σ is

{(w̃1π(δ
−1), δ · (ω − η)+ η) : δ ∈ �}

(where we write one pair in each equivalence class). If (w̃1, ω) maps to ζ ∈
X∗(Z), then the lowest alcove presentation (w̃1π(δ

−1), δ · (ω− η)+ η)maps
to ζ + (p−π)ζδ where ζδ ∈ X∗(Z) is the image of δ under the isomorphisms
� ∼= ˜W/W a

∼= X∗(Z). ��

2.3 Deligne–Lusztig representations and their mod p reductions

Let (s, μ) ∈ W × X∗(T ) be a good pair ([56, §2.2]). Using [33, Proposi-
tion 9.2.1 and 9.2.2], we can attach to (s, μ) a Deligne–Lusztig representation
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Rs(μ) of G defined over E . We say that (s, μ− η) is a lowest alcove presen-
tation of Rs(μ) if μ − η ∈ C0. (Again, this notion depends on the choice of
η.)

Definition 2.3.1 Letm ≥ 0 and let R be aDeligne–Lusztig representation.We
say that R is m-generic if there exists a lowest alcove presentation (s, μ−η) ∈
W ×C0 for R such that μ−η is m-deep (Definition 2.1.10(2)). We call such a
presentation an m-generic lowest alcove presentation. If R has a fixed lowest

alcove presentation (s, μ−η), define w̃(R) def= tμs ∈ ˜W andw(R)
def= s ∈ W .

Note that μ − η being m-deep is equivalent to w̃(R) being m-generic in the
sense of Definition 2.1.10(3).

Note that (s, μ) ∈ W×X∗(T ) is good ifμ−η is (0-deep) in alcoveC0 by [56,
Lemma 2.2.3]. By [19, Theorem 6.8], we see that a 1-generic Deligne–Lusztig
representation is irreducible.

Let λ ∈ X∗(T ) be a character. We say that a lowest alcove presenta-
tion (s, μ − η) of a Deligne–Lusztig representation is λ-compatible with
an algebraic central character ζ ∈ X∗(Z) if the image of the element
tλtμsW a/W a ∈ ˜W/W a

∼= X∗(Z) corresponds to ζ . Instead of saying 0-
compatible, we just say compatible. If (s, μ−η) is a lowest alcove presentation
of R compatible with ζ , then ζ mod (p−π)X∗(Z) corresponds to the central
character of R. We say that lowest alcove presentations of a Deligne–Lusztig
representations are compatible if they are compatible with the same algebraic
central character.We say that lowest alcovepresentations (s, μ−η) and (w̃1, ω)

of a Deligne–Lusztig representation R and a Serre weight σ are λ-compatible
if (s, μ− η) and (w̃1, ω) are λ-compatible and compatible, respectively, with
some ζ ∈ X∗(Z).

Lemma 2.3.2 If R is a 1-generic Deligne–Lusztig representation, the map
(s, μ − η) �→ tμsW a/W a ∈ ˜W/W a

∼= X∗(Z) gives a bijection between
lowest alcove presentations of R and algebraic central characters lifting the
reduction of the central character of R.

Proof If (s, μ − η) is a 1-generic lowest alcove presentation for R, then by
[56, Proposition 2.2.15] the set of lowest alcove presentations for R is

{(wsπ(w)−1, w(μ+ pν − sπ(ν))− η) : wtν ∈ �}.

Note that each of w(μ+ pν− sπ(ν))− η is 0-deep in C0. Since the image of
tw(μ+pν−sπ(ν))wsπ(w)−1 in X∗(Z) isμ+ pν−sπ(ν)|Z = μ|Z+(p−π)ν|Z ,
it suffices to note that the image ofwtν under the isomorphism� ∼= ˜W/W a

∼=
X∗(Z) is ν|Z . ��
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Lemma 2.3.3 If R is a Deligne–Lusztig representation, then R ∼= Rs(μ) for
some (s, μ) ∈ W × X∗(T ) such that μ is dominant and 〈μ, α∨〉 ≤ p + 2 for
all α ∈ �. In particular, μ− η is (−3)-deep in C0.

Proof Suppose that R = Rs(μ) for (s, μ) ∈ W × X∗(T ). Then R =
Rs(μ+ pν − sπ(ν)) for any ν ∈ X∗(T ). Since X∗(T )(W (A0)) = ˜W (A0) =
X∗(T )⊗Z R where A0 denotes the closure of the base alcove A0, there exists
ν ∈ X∗(T ) such that hμ+pν ≤ p. Then h pν ≤ hμ + hμ−pν ≤ hμ + p so

that hν ≤ �hμ
p � + 1 and therefore hμ+pν−sπ(ν) ≤ p + hν ≤ p + �hμ

p � + 1.
Repeatedly replacing μ with μ + pν − sπ(ν) as above, we eventually have
that hμ ≤ p + 2. Finally, we replace (s, μ) with (wsπ(w)−1, w(μ)) where
w ∈ W is such that w(μ) is dominant. ��
Lemma 2.3.4 Let λ ∈ X∗(T ) be a dominant weight such that hλ+η < p− 3.
If R is a Deligne–Lusztig representation such that JH(R⊗W (λ)) contains an
m-deep Serre weight, then there exists a pair (s, μ) ∈ W × X∗(T ) such that
R = Rs(μ) and μ− η is (m − hλ+2η)-deep in C0.

Proof Let R = Rs(μ) for some (s, μ) as in Lemma 2.3.3 and that σ is a Serre
weight in JH(R⊗W (λ)). We assume that that μ− η is not (m− hλ+2η)-deep
in C0 and will show that σ is not m-deep. Note that μ− η is (−3)-deep in C0
so that in particular m ≥ hλ+2η − 2. By [39, § A.3.4], σ ∈ JH(W (π−1(w̃1) ·
(w̃(R)w̃−12 (η) − η)) ⊗ W (λ)) for some w̃1, w̃2 ∈ ˜W+

1 (in fact, necessarily

w̃2 ∈ w̃1W a) where w̃(R)
def= tμs. Then by the proof of Lemma 2.2.1, σ ∈

JH(W (ν)) for ν ∈ (wπ−1(w̃1))·(w̃(R)w̃−12 (η)−η)+Conv(λ) forw ∈ W with
(wπ−1(w̃1)) · (w̃(R)w̃−12 (η)−η) dominant and ν dominant. In particular, the
depth assumption onμ implies that ν is not (m−hη)-deep. Furthermore, since
μ−η is (−3)-deep inC0, (wπ

−1(w̃1)) ·(w̃(R)w̃−12 (η)−η) is (−3−hη)-deep
in a p-restricted alcove. In particular, for all α ∈ � (we can assume that α is a
highest root by dominance), 〈(wπ−1(w̃1))·(w̃(R)w̃−12 (η)−η), α∨〉 ≤ phη+2
so that 〈ν, α∨〉 ≤ phη+ hλ+ 2. The result now follows from Lemma 2.2.1. ��
Remark 2.3.5 If G is a product of copies of GLn , one can show that μ−η can
be taken to be (−1)-deep. One can then assume instead that hλ+η < p − 1 in
Lemma 2.3.4.

For λ ∈ X∗(T ) dominant, recall from §2.2 that W (λ)/F denotes the dual
Weyl module of highest weight λ for the split algebraic group G/F and that
W (λ) is the restriction of W (λ)/F (F) to G ⊆ G(F).

If R is λ-compatible with ζ ∈ X∗(Z), then ζ mod (p − π)X∗(Z) gives
the central character of R ⊗ W (λ)

def= R ⊗F W (λ). The set JH(R ⊗ W (λ))

has the following combinatorial description in terms of ˜W . We also use ↑ to
denote the ordering on X∗(T ) defined in [47, II.6.4].

From (the proof of) [56, Proposition 4.1.3] we have:
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Proposition 2.3.6 Let R be a Deligne–Lusztig representation with a 2hη-
generic lowest alcove presentation (s, μ − η). Let λ ∈ X1(T ). Then F(λ) ∈
JH(R) if and only if there exists w̃ = wtν ∈ ˜W+

such that w̃·(μ−sπ(ν)−η) ↑
w̃h · λ and w̃ · C0 ↑ w̃h · C0.

We have the following parametrization of Jordan–Hölder factors of R ⊗
W (λ) in terms of admissible pairs from §2.1.1.

Proposition 2.3.7 Let λ ∈ X∗(T ) be a dominant weight and let m ≥
max{2hη, hλ+η} be an integer. Let R be a Deligne–Lusztig representation
together with an m-generic lowest alcove presentation, with corresponding
element w̃(R) ∈ ˜W (cf. Definition 2.3.1).

Then the map

AP(λ+ η)→ JH(R ⊗W (λ))

(w̃1, w̃2) �→ F
(w̃1,w̃(R)w̃

−1
2 (0)) (2.8)

is a bijection. Moreover, these Jordan–Hölder factors are (m − hλ+η)-deep
and the lowest alcove presentations (w̃1, w̃(R)w̃

−1
2 (0)) of these Serre weights

are λ-compatible with the lowest alcove presentation of R.

Proof Since w̃1t
w̃(R)w̃−12 (0)−ηW a/W a = w̃1w̃(R)w̃

−1
2 t−ηW a/W a = tλw̃(R)

W a/W a , the lowest alcove presentations (w̃1, w̃(R)w̃
−1
2 (0)) of Serre weights

are λ-compatible with the given lowest alcove presentation of R. If (w̃1, w̃2) ∈
AP(λ + η), then w̃2 ↑ t−w0(λ)w̃hw̃1, so that 〈w̃−12 (0), α∨〉 ≤ hλ+η for all
α ∈ �. This implies that F

(w̃1,w̃(R)w̃
−1
2 (0)) is (m − hλ+η)-deep. Lemma 2.2.4

finally implies that (2.8) is injective.
We next show the image of (2.8) is JH(R ⊗ W (λ)). By the translation

principle and Proposition 2.3.6, every element of JH(R⊗W (λ)) is of the form

F(π−1(w̃1) · (w̃(R)((w̃′2)−1(0)+ ω)− η)) (2.9)

for some w̃1 ∈ ˜W+
1 and w̃′2 ∈ ˜W+

such that w̃1 ↑ w̃−1h w̃′2 and some ω ∈
Conv(λ). Let w̃2 = wt−ω−(w̃′2)−1(0) be the unique element in W t−ω−(w̃′2)−1(0)∩
˜W
+
. Since ω ∈ Conv(λ) implies that tw(−ω) ↑ t−w0(λ) and w̃

′
2 ∈ ˜W+

implies
that wt−(w̃′2)−1(0) ↑ w′2t−(w̃′2)−1(0) = w̃′2 (where w′2 ∈ W is the image of w̃′2),
we see that w̃2 = tw(−ω)wt−(w̃′2)−1(0) ↑ t−w0(λ)w̃

′
2, which is equivalent to the

inequality w̃−1h w̃′2 ↑ tλw̃
−1
h w̃2 by [56, Proposition 4.1.2]. This implies the

desired inequality w̃1 ↑ tλw̃
−1
h w̃2.

For the converse, suppose that w̃1 ↑ tλw̃
−1
h w̃2. Equivalently, by [56, Propo-

sition 4.1.2] and Wang’s theorem ([56, Theorem 4.1.1]), we have w̃2 ≤
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t−w0(λ)(w̃hw̃1). Since the latter factorization is reduced, we have w̃2 = x̃ ỹ
where x̃ ≤ t−w0(λ) and ỹ ≤ w̃hw̃1. Then by [52], x̃ is −w0(λ)-permissible,
and in particular, x̃(0) ∈ Conv(−w0(λ)). Taking w̃′2 ∈ W ỹ∩˜W+

, we conclude
that w̃2 = wt−ωw̃′2 for some ω ∈ Conv(λ) and w̃′2 ∈ ˜W+ with w̃′2 ↑ w̃hw̃1

(equivalently w̃1 ↑ w̃−1h w̃′2). Then F(π−1(w̃1) · (w̃(R)w̃−12 (0)− η)) has the
form of (2.9). ��

We use Proposition 2.3.7 to give another description of JH(R ⊗W (λ)).

Proposition 2.3.8 Let λ ∈ X∗(T ) be dominant and suppose that (w̃1, ω) and
(s, μ − η) are λ-compatible lowest alcove presentations of a Serre weight
σ and a Deligne–Lusztig representation, respectively. Suppose further that
(s, μ− η) is max{2hη, hλ+η}-generic. Then σ ∈ JH(R⊗W (λ)) if and only if

tω˜W≤w0w̃1
⊂ tμsAdm(λ+ η). (2.10)

Proof As usual we let w̃(R)
def= tμs. Let w̃2 ∈ ˜W+

be the unique element such
that t−ωw̃(R) ∈ W w̃2. Note that ω = w̃(R)w̃−12 (0). By Proposition 2.3.7
and Proposition 2.1.6, it suffices to show that w̃−12 w0w̃1 ∈ Adm(λ + η) is
equivalent to (2.10). If w̃−12 w0w̃1 ∈ Adm(λ+ η), then

tω˜W≤w0w̃1
⊂ w̃(R)w̃−12

˜W≤w0w̃1
⊂ w̃(R)Adm(λ+ η),

where the first inclusion follows from the fact that ˜W≤w0w̃1
is W -stable under

left multiplication.
For the backwards direction, assume (2.10). Then in particular,

w̃(R)w̃−12 w0w̃1 ∈ tωW w̃1 ⊂ w̃(R)Adm(λ+ η).
��

2.3.1 The covering order

Having discussed the reductions of Deligne–Lusztig representations, we now
use these results to define a partial ordering on Serre weights that arises natu-
rally in §8.

For a max{2hη, hλ+η}-generic Deligne–Lusztig representation R, let
JHout(R ⊗ W (λ)) be the subset of JH(R ⊗ W (λ)) corresponding by (2.8)
to elements of AP(λ + η) of the form (w̃1, w̃ht−λw̃1). We begin with the
following lemma.

Lemma 2.3.9 Suppose that F(w̃′,ω′) ∈ JHout(R). Fix the compatible lowest
alcove presentation of R with corresponding element w̃(R) as in Definition
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2.3.1. If (w̃, ω) is a compatible lowest alcove presentation of a weight F(w̃,ω) ∈
JH(R), then (choosing any representatives of the equivalence class of lowest
alcove presentations)

w̃ ↑ tw′w(R)−1(ω′−ω)w̃′,

where w′ denotes the image of w̃′ in W .

Proof We introduce the following notation for this proof. If s̃ ∈ ˜W , then let
s̃+ denote the unique element in W s̃ ∩ ˜W+

. Since F(w̃′,ω′) ∈ JHout(R), we
have that ω′ = w̃(R)(w̃hw̃

′)−1(0) so that

w̃hw̃
′ = w0w

′t−w̃(R)−1(ω′).

Since F(w̃,ω) ∈ JH(R), we have that ω = w̃(R)w̃−12 (0) for some w̃ ↑ w̃−1h w̃2
by (2.8). Then w̃2 is (t−w̃(R)−1(ω))+, so that (t−w̃(R)−1(ω))+ ↑ w̃hw̃ by [56,
Proposition 4.1.2]. Let ν be w(R)−1(ω′ − ω). On the other hand,

tw0w′(ν)w̃hw̃
′ = w0w

′tν−w̃(R)−1(ω′)
= w0w

′t−w̃(R)−1(ω)
↑ (t−w̃(R)−1(ω))+.

We conclude that tw0w′(ν)w̃hw̃
′ ↑ w̃hw̃, or equivalently, w̃ ↑ tw′(ν)w̃′. ��

Definition 2.3.10 Let σ0 be a 3hη-deep Serre weights. If

σ ∈
⋂

R 2hη−generic,
σ0∈JH(R)

JH(R),

where R runs over 2hη-generic Deligne–Lusztig representations, then we say
that σ0 covers σ . In other words, σ0 cover σ if every 2hη-generic Deligne–
Lusztig representation containing σ0 also contains σ .

Remark 2.3.11 Note that covering is a partial ordering on 3hη-deep Serre
weights.

The following alternate criteria for covering are sometimes useful.

Proposition 2.3.12 Suppose that (w̃, ω) and (w̃′, ω′) are (representatives for)
compatible lowest alcove presentations of Serre weights andω−η is 3hη-deep.
The following are equivalent:

(1) F(w̃,ω) covers F(w̃′,ω′);
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(2) w̃′ ↑ tW (ω−ω′)w̃ (in particular �(w̃′) ≤ �(w̃), with equality if and only if
(w̃, ω) ∼ (w̃′, ω′)); and

(3) tω′˜W≤w0w̃′ ⊂ tω˜W≤w0w̃
; and

(4) F(w̃′,ω′) is a Jordan–Hölder factor of

⊕

w̃1∈˜W+
w̃1↑w̃ L(π−1(w̃1) · (ω − η))|G.

Proof We first show that (1) implies (2). Let ν0 be (w̃hw̃)
−1(0). Consider the

set X of x̃ ∈ ˜W such that ω = x̃(ν0). We claim that x̃ is 2hη-generic. Indeed,

since w̃hw̃ ∈ ˜W
+
1 , we have 〈ν0, α∨〉 ≤ hη for all α ∈ �. Then the claim

follows from the fact that ω − η is 3hη-deep and x̃(0) = ω − x(ν0) (where
x ∈ W is the image of x̃).

From the above paragraph, the map taking the set of 2hη-generic Deligne–
Lusztig representations R with a lowest alcove presentation compatible with
(w̃, ω) to ˜W sending R to w̃(R) induces a bijection between those R with
F(w̃,ω) ∈ JHout(R) and X . Moreover, the map X → W , induced by the
natural quotient map ˜W → W , is a bijection. If F(w̃,ω) covers F(w̃′,ω′), then
Lemma 2.3.9 implies that w̃′ ↑ tW (ω−ω′)w̃. We now show the parenthetical.
Fix s ∈ W so that s(ω′ −ω) is dominant. We have that ts(ω′−ω)w̃′ ↑ w̃ so that
ts(ω′−ω)w̃′ ≤ w̃ by Wang’s theorem. Since ts(ω′−ω)w̃′ is a reduced expression
(counting galleries),

�(w̃′) ≤ �(ts(ω′−ω))+ �(w̃′) = �(ts(ω′−ω)w̃′) ≤ �(w̃).

If this is an equality, then ω′ − ω ∈ X0(T ) and w̃−1w̃′ ∈ �. Compatibility of
lowest alcove presentations implies that (w̃, ω) ∼ (w̃′, ω′).

We next show that (2) implies (3). Assuming (2), [47, II.6.5(5)] shows that
for any s̃′ ↑ w̃′ with s̃′ ∈ ˜W+

,

W s̃′ ↑ s̃′ ↑ tW (ω−ω′)w̃,

so that

W tω′−ωW s̃′ ↑ w̃.

Then Wang’s theorem implies that tω′−ωW s̃′ ≤ w0w̃. As any element of
˜W≤w0w̃′ is in W s̃′ for some s̃′ as above, the result follows.
That (3) implies (1) follows from Proposition 2.3.8. Finally, we show the

equivalence of (2) and (4). Using the Steinberg tensor product theorem and
the translation principle [60, Lemma 4.2.4(1)], if we write w̃1 ∈ ˜W+

as tνw̃′1
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with w̃′1 ∈ ˜W+
1 , then

L(π−1(w̃1) · (ω − η))|G ∼=
⊕

ν′∈L(ν)

F⊕m(ν,ν′)
(w̃′1,ω+ν′), (2.11)

wherem(ν, ν′) is themultiplicity of the ν′-weight space in L(ν). Consideration
of the chain of inequalities tWν′w̃′1 ↑ w̃1 ↑ w̃ shows that (4) implies (2).
Conversely, if tW (ω′−ω)w̃′ ↑ w̃, then F(w̃′,ω′) ∈ JH(L(π−1(w̃1) · (ω − η))|G)
where w̃1 = ts(ω′−ω)w̃′ and s(ω′ −ω) is the dominant weight in theWeyl orbit
of ω′ − ω. ��
Remark 2.3.13 (1) The equivalence of (1) and (4) in Proposition 2.3.12 shows

that if μ ↑ λ, then F(λ) covers F(μ). The converse does not hold: for
GL4, w̃1 could be in t(1,0,0,0)� if w̃ ∈ w̃h�. Then ν = (1, 0, 0, 0) so that
ω′ − ω would be nonzero and the Serre weights on the right hand side of
(2.11) are not in the ˜Wa p-dot orbit of π(w̃)−1 · (ω − η).

(2) By the same equivalence and the linkage principle [47, II.6.13], if σ ∈
JH(W (w̃ · (ω− η))), then F(w̃,ω) covers σ . The converse does not hold for
GL4 (see [46] or [38, Proposition 9.3]).

2.4 Tame inertial L-parameters

Recall the fundamental characters ωd : IQp → O× defined in §1.8.2. For
(w,μ) ∈ W × X∗(T ), we let τ(w,μ) be the tame inertial L-parameter over
E given by

(
d−1
∑

i=0
(F∗ ◦ w−1)i (μ)

)

(ωd) : IQp → T∨(E),

where we view μ here as an element of X∗(T∨), F∗ is defined to be the
endomorphism pπ−1 on X∗(T∨), and d ≥ 1 is an integer such that (F∗ ◦
w−1)d = pd . (The tame inertial L-parameter does not depend on the choice
of d.) Let τ(w,μ) be the inertial L-parameter over F obtained by reduction
modulo� . All tame inertial L-parameters over E and F arise in this way.

Example 2.4.1 Suppose that F+p is the field K and G is GLn . As explained in
§1.8.2, to the tame inertial L-parameter τ(s, μ+ η), there is a corresponding
tame inertial type for K which we also denote by τ(s, μ+ η). Fix an isomor-
phism ι : K

∼→ Qp. This gives a homomorphism IK → GLn(E), which we
will make explicit. The isomorphism ι gives an injection G K ↪→ GQp . Let d

be a positive integer. Then induced composition IK
ι→ IQp

ωd→ O× is ωKd ,σ
′
0
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where Kd is the subfield of K generated by the pd − 1st roots of unity and
σ ′0 : Kd → E denotes the restriction of ι (taking E sufficiently large). We
denote ωKd ,σ

′
0
by ωd as well.

Let σ0 : K → E denote the restriction of ι to K . As in §1.8.2, we let σ j
be σ0 ◦ ϕ− j for j ∈ Z/ f Z, identifying J with Z/ f Z. If s = (s0, . . . , s f−1),
then set sτ = s0s1 · · · s f−1 ∈ W . Then (F∗ ◦ s−1) f = (F∗) f ◦ (s−1τ , . . .) =
p f (s−1τ , . . .) where the unspecified components are conjugates of sτ so that

(F∗◦s−1) f r = p f r where r is the order of sτ . Letα j
def= p− j

(

(F∗◦s−1) j (μ+
η)
)

0
∈ X∗(T ) for 0 ≤ j ≤ f − 1, so that α j = s−1f−1s−1f−2 . . . s

−1
f− j (μ f− j +

η f− j ) (and α0 = μ0 + η0). We also define a(0) def=
(

∑ f−1
j=0 (F∗ ◦ s−1) j (μ+

η)
)

0
= ∑ f−1

j=0 p jα j ∈ X∗(T ). (Note that the conventions here are different
from [56,59] as explained in detail in Remark 5.1.7.)

We have

(

f r−1
∑

i=0
(F∗ ◦ s−1)i (μ+ η)

)

0
=
(

r−1
∑

k=0

f−1
∑

j=0
(F∗ ◦ s−1) f k(F∗ ◦ s−1) j (μ+ η)

)

0

=
r−1
∑

k=0

f−1
∑

j=0
p f ks−k

τ p jα j

=
r−1
∑

k=0
p f ks−k

τ a(0).

We conclude that τ(s, μ + η) is
∑r−1

k=0 p f ks−k
τ a(0)(ω f r ). More concretely,

setting χi
def= ω

∑

0≤k≤r−1 a
(0)

sk
τ (i)

p f k

f r for 1 ≤ i ≤ n, we have

τ(s, μ+ η) ∼=
⊕

1≤i≤n

χi . (2.12)

This inertial type depends only on the inertial L-parameter τ(s, μ + η) and
not on the choice of isomorphism K → Qp.

Base change −⊗O E and −⊗O F induce bijections between tame inertial
L-parameters overO, E , andF (the inverse to−⊗OF is the Teichmüller lift). If
τ is a tame inertial L-parameter overO or E , we let τ denote the corresponding
tame inertial L-parameter over F. We say that (s, μ) ∈ W × X∗(T ) is a lowest
alcove presentation of a tame inertial L-parameter τ (resp. τ ) over E (resp. F)
if μ ∈ C0 and τ ∼= τ(s, μ+ η) (resp. τ ∼= τ(s, μ+ η)). When F+p = K and
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G is GLn we say that (s, μ) is a lowest alcove presentation of a tame inertial
type τ (resp. τ ) for K over E (resp. F) if (s, μ) is a lowest alcove presentation
of the tame inertial L-parameter corresponding to it.

Let λ ∈ X∗(T ) be a character. We say that a lowest alcove presentation
(s, μ) of a tame inertial L-parameter is λ-compatible with ζ ∈ X∗(Z) if
the image of tλtμ+ηsW a/W a ∈ ˜W/W a

∼= X∗(Z) corresponds to ζ . (This
notion of compatibility depends on the choice of η.) When λ = 0 we just say
compatible instead of 0-compatible.

We say that a lowest alcove presentation (s, μ) of a tame inertial L-
parameter over F is compatible with ζ ∈ X∗(Z) if the image of tμsW a ∈
˜W/W a

∼= X∗(Z) is ζ . We say that lowest alcove presentations of a tame
inertial L-parameter over F and a Serre weight are compatible if these lowest
alcove presentations are both compatible with a single element of X∗(Z). We
say that lowest alcove presentations of a tame inertial L-parameter over F and
a tame inertial L-parameter (over E) are λ-compatible if the lowest alcove
presentations of the tame inertial L-parameters over F and E are compati-
ble and λ-compatible, respectively, with a single element of X∗(Z). We will
sometimes say compatible to mean 0-compatible.

Remark 2.4.2 Note that if (s, μ) is a lowest alcove presentation for a tame
inertial L-parameter τ compatible with ζ ∈ X∗(Z), then as a lowest alcove
presentation of the tame inertial L-parameter τ over F obtained by reduction,
(s, μ) is compatible with ζ − η|Z ∈ X∗(Z). This confusing choice is made
because ζ gives the central character of σ(τ) (Proposition 2.5.5) while ζ −η|Z
gives the central character of elements of W ?(τ ), whose definition (Definition
2.6.1) involves η.

Let det be the natural quotient map G∨ → G∨/G∨,der ∼= Z∨. If (s, μ)
is a lowest alcove presentation of a tame inertial L-parameter τ (resp. τ )
compatiblewith ζ , then, thinking of ζ as an element of X∗(Z∨), ζ◦ω1 = det ◦τ
(resp. (ζ − η|Z ) ◦ ω1 = det ◦τ ).
Definition 2.4.3 Let τ be a tame inertial L-parameter over E . If F+p = K ,
then we also denote by τ the corresponding inertial type for K . The following
adjectives also apply to inertial (F-)types for K .

(1) We say that τ (resp. τ ) is regular if τ (resp. τ ) is G∨-conjugate to a homo-
morphism IQp → T∨(E) (resp. IQp → T∨(F)) such that the composition
with α∨ : T∨(E) → E× (resp. α∨ : T∨(F) → F×) is nontrivial for any
coroot α∨.

(2) We say that τ (resp. τ ) is m-generic for an integer m ≥ 0 if there exists a
lowest alcove presentation (s, μ) for τ (resp. τ )whereμ ism-deep in alcove
C0. We call such a presentation an m-generic lowest alcove presentation.
If τ (resp. τ ) has a fixed lowest alcove presentation (s, μ), then we let w̃(τ )
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(resp. w̃(τ )) be tμ+ηs. Again, note that μ is m-deep if and only if w̃(τ )
(resp. w̃(τ )) is m-generic in the sense of Definition 2.1.10(2).
Note that 1-generic implies regular (see [60, Remark 2.2.4]), and that a
lowest alcove presentation for τ (resp. τ ) exists exactly when τ (resp. τ ) is
0-generic.

[33, Proposition 9.2.1] defines an injective map Vφ from the set of tame
inertial L-parameters over F to isomorphism classes of G-representations
over E (taking E sufficiently large) which takes τ(w,μ) to Rw(μ). Note that
τ(s, μ+η) is m-generic if and only if Rs(μ+η) is m-generic. As Vφ respects
the notion of lowest alcove presentation, the argument of Lemma 2.3.2 gives
the following lemma.

Lemma 2.4.4 If τ is a 1-generic tame inertial L-parameter, then (s, μ) �→
tμ+ηsW a/W a ∈ ˜W/W a

∼= X∗(Z) gives a bijection between lowest alcove
presentations of τ and algebraic central characters ζ |Z ∈ X∗(Z) such that,
thinking of ζ as an element of X∗(Z∨), ζ ◦ ω1 = det ◦τ .

If τ is a 1-generic tame inertial L-parameter over F, then (s, μ) �→
tμsW a/W a ∈ ˜W/W a

∼= X∗(Z) gives a bijection between lowest alcove
presentations of τ and algebraic central characters ζ ∈ X∗(Z) such that,
thinking of ζ as an element of X∗(Z∨), (ζ − η|Z ) ◦ ω1 = det ◦τ .

Proposition 2.4.5 Let w̃ = tνw ∈ ˜W , ω ∈ X∗(T ), and let κ = π−1(w̃) ·
(ω − η). Then the tame inertial L-parameter τ(1, κ) is isomorphic to
τ(π−1(w)−1w,ω + π−1(w)−1(ν − η)).
Proof This follows from the paragraph containing [33, (10.1.11)]. Indeed, in
the notation of loc. cit.,

(π−1(ν),π−1(w))(π−1(w)−1w,ω + π−1(w)−1(ν − η))
= (1, π−1(w)(ω)+ pπ−1(ν)− η) = (1, π−1(w̃) · (ω − η)).

��

2.5 Inertial local Langlands for GLn

We recall some results towards inertial local Langlands correspondence for
GLn , before making this explicit in the tame case using the previous two sub-
sections. In this section, K is an �-adic field (� a rational prime not necessarily
equal to p).

Definition 2.5.1 A Weil–Deligne inertial L-homomorphism τ is a pair
(ρτ , Nτ ) where ρτ : IQp → G∨(E) is a homomorphism with open ker-
nel, Nτ is a nilpotent element of Lie G∨(E), and there exists an ρ : WQp →
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L G(E) such that the projection to Gal(E/Qp) is the natural map, ρ|IQp
= ρτ ,

and ρ(g)Nρ(g)−1 = ‖g‖N , where ‖ · ‖ : WQp � WQp/IQp

∼→ pZ sends an
arithmetic Frobenius element to p. A Weil–Deligne inertial L-parameter is a
G∨(E)-conjugacy class of Weil–Deligne inertial L-homomorphisms.

We can similarly define a Weil–Deligne inertial type τ (for K ) to be a
conjugacy class of pairs (ρτ , Nτ ) where ρτ : IK → G∨(E) is a homomor-
phism with open kernel, Nτ is a nilpotent element of Lie G∨(E), and there
exists ρ : WK → G∨(E) such that (ρ, Nτ ) is a Weil–Deligne representation,
i.e. ρ(g)Nτ ρ(g)−1 = ‖g‖Nτ , where ‖ · ‖ : WQp � WQp/IQp

∼→ p f Z sends
an arithmetic Frobenius element to p f .

We say that a Weil–Deligne inertial L-parameter or type is tame if ρτ
above factors through the tame inertial quotient. Finally, there is a natural
bijection between Weil–Deligne inertial L-parameters τ and collections of
Weil–Deligne inertial types (τv)v∈Sp preserving tameness.

If (ρ, N ) is a Weil–Deligne representation for K , we denote by (ρ, N )|IK

the Weil–Deligne inertial type (ρ|IK , N ).

Remark 2.5.2 We abuse notation by denoting both inertial L-parameters
and Weil–Deligne inertial L-parameters by τ (and similarly for inertial
types). However, there is a natural inclusion from the set of (tame) inertial
L-parameters (resp. inertial types) to the set of (tame) Weil–Deligne L-
parameters (resp.Weil–Deligne inertial types) sending an inertial L-parameter
τ (resp. inertial type) to the Weil–Deligne inertial L-parameter (resp. Weil–
Deligne inertial type) with ρτ = τ and Nτ = 0. Through this inclusion, we
will think of the set of (tame) inertial L-parameters (resp. inertial types) as a
subset of the set of (tame) Weil–Deligne inertial L-parameters (resp. inertial
types).

There is also a surjective map in the other direction from the set of (tame)
Weil–Deligne L-parameters (resp. Weil–Deligne inertial types) to the set of
(tame) inertial L-parameters (resp. inertial types), for which the above inclu-
sion is a section, given by forgetting the nilpotent element.

We now specialize our discussion to the case G = GLn . Recall that the
Jordan normal form of a nilpotent element N of gln = Mn(E) gives a par-
tition PN of n by recording the sizes of Jordan blocks, which is a complete
conjugation invariant of nilpotent elements of Mn(E). Viewing a partition as
a decreasing function P : Z>0 → Z≥0 with finite support (P is a partition of
∑

i∈Z>0
P(i)), wewrite P1  P2 if

∑k
i=1 P1(i) ≤∑k

i=1 P2(i) for all k ∈ Z>0.
Then  defines a partial ordering on the set of partitions. We write N1  N2
for two nilpotent elements of Mn(E) if PN1  PN2 . Then  defines a partial
ordering on the set of conjugacy classes of nilpotent elements of Mn(E). Note
that with this partial ordering, 0 is the minimal element.
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For an irreducible inertial type τ0, let Nτ (τ0) be the restriction of Nτ to the
τ0-isotypic part of Vτ (which it preserves).

Definition 2.5.3 We write τ  τ ′ for two Weil–Deligne inertial types if ρτ
and ρ′τ are isomorphic and N (τ0)  N ′(τ0) for all irreducible inertial types τ0.
(In particular, the trivial representation is the Steinberg representation.) This
defines a partial ordering on the set ofWeil–Deligne inertial types. Thinking of
a Weil–Deligne inertial L-parameter as a collection of Weil–Deligne inertial
types,we say that τ  τ ′ for twoWeil–Deligne inertial L-parameters if τv  τ ′v
for each v ∈ Sp.

If π is an irreducible admissible representation of GLn(K ) over E , then we
let recK (π) be the Weil–Deligne representation over E in [42, Theorem A].

Theorem 2.5.4 Let G = GLn. Let τ be a Weil–Deligne inertial type for K .
Then there is a smooth irreducibleGLn(OK )-representation σ(τ) over E such
that for an irreducible admissible representation π of GLn(K ),

(1) if π |GLn(OK ) contains σ(τ) then recK (π)|IK  τ ;
(2) if recK (π)|IK = τ , then π |GLn(OK ) contains σ(τ) with multiplicity one;

and
(3) if recK (π)|IK  τ and π is generic, then π |GLn(OK ) contains σ(τ) and the

multiplicity is one if furthermore τ is maximal with respect to  .

Proof This combines [74, Theorem 3.7] and [68, Theorem 1.2].

Note that we make no claim of uniqueness for σ(τ). In what follows, σ(τ)
will denote either a particular choice that we have made or any choice that
satisfies the properties in Theorem 2.5.4.

If τ is a Weil–Deligne inertial L-parameter corresponding to the collec-
tion of Weil–Deligne inertial types (τv)v∈Sp , we let σ(τ) be the G0(Zp)-
representation ⊗v∈Spσ(τv).

We now make particular choices of σ(τ) when τ above is tame.

Proposition 2.5.5 Suppose that G = GLn and (s, μ) ∈ W × X∗(T ). We can
choose σ(τ) in Theorem 2.5.4 for tame Weil–Deligne inertial L-parameters τ
such that {σ(τ) | τ = (τ (s, μ), Nτ )} is the set of all irreducible constituents
of Rs(μ) (where we view Rs(μ) as a GLn(Op)-representation by inflation).

Proof We immediately reduce to the casewhereOp is a domain, sayOK . Then
this follows from the construction of σ(τ) in [76, § 6] as we now explain. We
first specify the Bushnell–Kutzko type (J, λ) for the Bernstein component
corresponding to τ(s, μ). Let σ0 be an embedding Fp f ↪→ F, and let r be the
order of sτ as in Example 2.4.1 (though r does not depend on the choice of
σ0). Fix an embedding σ ′0 : Fp f r ↪→ F extending σ0, and let τ also denote
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the corresponding tame inertial type for K (see Example 2.4.1, though again
τ depends only on σ0, but not σ ′0).

We first suppose that τ(s, μ) is cuspidal, so that in particular, the order of
the automorphism (π−1s−1) of X∗(T ) is f n, and we take r above to be n.
Then recall that we can choose gs ∈ N (T )(Fp) such that g−1s F(gs) = s, and

we let T s
def= gs T = gs T g−1s . By [21, Proposition 13.7(ii)], the map

(

f n−1
∑

i=0
(s ◦ F)i (ν)

)

◦ σ ′0 : F×p f n → g−1s (T F
s ) (2.13)

is surjective for ν ∈ X∗(T ) with νi = 0 if i �= 0 and ν0 = (1, 0, . . . , 0) (since
the (s ◦F)-orbit of ν generates X∗(T )). As the domain and codomain of (2.13)
have the same cardinality, this map is an isomorphism.

Then Rs(μ) = (−1)n−1Rθ
T F

s
where θ is the character F×

p f n
∼= T F

s

g−1s (·)→
g−1s (T F

s ) ⊂ T (F)
μ→ F×. Thus, θ = (

∑ f n−1
i=0 (F∗ ◦ s−1)i (μ)) ◦ ν ◦ σ ′0.

Since τ(s, μ) ∼= ⊕n−1
k=0θ p f k ◦ ArtK ′ by Example 2.4.1 where K ′ ⊂ K un is

the subfield of degree n over K , the result in this case follows from [25,
Proposition 2.4.1(i)]. (Note that in this case, τ ′  τ , τ  τ ′ and τ ′ = τ

are all equivalent for τ ′ a Weil–Deligne inertial type. The multiplicity one
statement comes from the fact that, in the notation of loc. cit., c-IndGLn(F)

F×GLn(OF )
τ

is irreducible.) In this case, (GLn(OK ), Rs(μ)) is a Bushnell–Kutzko type for
the Bernstein component corresponding to the inertial type τ(s, μ).

The general case follows from the fact that if M ⊂ GLn is a Levi subgroup

and (JM , λ) with JM
def= M(K ) ∩ GLn(OK ) is a Bushnell–Kutzko type for

a Bernstein component for M corresponding to the inertial equivalence class
[L , σ ] of some supercuspidal pair (L , σ ), then (J, λ) is a Bushnell–Kutzko
type for the Bernstein component for G corresponding to [L , σ ], where J
is a minimal parahoric subgroup of GLn(OK ) containing JM , and J acts on
λ through the natural quotient map J � JM . Indeed, (J, λ) is a G-cover of
(JM , λ) in the sense of [8,Definition 8.1], and so (J, λ) is the desiredBushnell–
Kutzko type (see [9]). Then if λ = Rs(μ) (as an M(Fp f )-representation),

then IndGLn(OK )
J λ is Rs(μ) (as a G-representation) by [21, 11.5]. By con-

struction, {σ(τ) | τ = (τ (s, μ), Nτ )} is the set of irreducible constituents of
IndGLn(OK )

J λ ∼= Rs(μ). ��

123



1328 D. Le et al.

2.6 Herzig’s conjecture on modular Serre weights

Recall that w̃h
def= w0t−η ∈ ˜W . For a regular Serre weight σ = F(λ), letR(σ )

be the Serre weight F(w̃h · λ), which does not depend on the choice of λ. The
mapR defines a bijection from the set of regular Serre weights to itself (since
R2 is a twist by a character). Note however that R (like w̃h) depends on the
choice of η.

Definition 2.6.1 For a tame inertial L-parameter τ over F, we define W ?(τ )

to be the setR(JH(σ([τ ]))).
Proposition 2.6.2 Let m ≥ 2hη be an integer. Let τ be a tame inertial L-
parameter over F, together with an m-generic lowest alcove presentation with
corresponding element w̃(τ ) ∈ ˜W . The map

(w̃, w̃2) �→ F
(w̃,w̃(τ )w̃−12 (0)) (2.14)

defines a bijection between

• pairs (w̃, w̃2) with w̃ ∈ ˜W+
1 and w̃2 ∈ ˜W+

, up to the diagonal X0(T )-
action, such that w̃2 ↑ w̃; and

• elements of W ?(τ ).

Moreover, these Jordan–Hölder factors are (m − hη)-deep and the lowest
alcove presentations (w̃, w̃(τ )w̃−12 (0)) of these Serre weights are compatible
with the fixed lowest alcove presentation of τ (see §2.4).

Proof That the map is a bijection follows from the definition of W ?(τ ) and
Proposition 2.3.7. If w̃2 ↑ w̃ and w̃ ∈ ˜W

+
1 , 〈w̃−12 (0), α∨〉 ≤ hη for all

α ∈ �, which implies that F(π−1(w̃) · (w̃(τ )w̃−12 (0) − η) is (m − hη)-
deep. The lowest alcove presentation (w̃, w̃(τ )w̃−12 (0)) is compatible with the
image of w̃t

w̃(τ )w̃−12 (0)W a/W a = w̃w̃(τ )w̃−12 W a/W a = w̃(τ )W a/W a which
is compatible with the lowest alcove presentation of τ (for the latter equality
note that w̃ ≡ w̃2 modulo W a). ��
Definition 2.6.3 We let Wobv(τ ) be the subset of W ?(τ ) corresponding via
(2.14) to pairs of the form (w̃, w̃). Note that a Serre weight in Wobv(τ ) is
determined by the image w of w̃ in W . We say that this is the obvious weight
of τ corresponding to w.

2.6.1 Breuil–Mézard intersections

Let ρ and τ be tame inertial L-parameters over F and E , respectively. Suppose
that we can fix λ-compatible lowest alcove presentations of ρ and τ (with
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corresponding elements w̃(ρ) and w̃(τ )), for some dominant λ ∈ X∗(T ).
Then let w̃(ρ, τ ) be w̃(τ )−1w̃(ρ).

Proposition 2.6.4 Let λ ∈ X∗(T ) be a dominant weight. Let ρ and τ be tame
inertial L-parameters over F and E, respectively. Suppose that we can fix
λ-compatible 2hη-generic and max{2hη, hλ+η}-generic lowest alcove presen-
tations of ρ and τ , respectively, and let w̃(ρ) and w̃(τ ) be the corresponding
elements of ˜W . Then (w̃, ω) is a compatible lowest alcove presentation for a
Serre weight σ ∈ W ?(ρ) ∩ JH(σ (τ )) if and only if there are w̃1, w̃2 ∈ ˜W+
such that w̃1 ↑ w̃ ↑ tλw̃

−1
h w̃2 and ω = w̃(ρ)w̃−11 (0) = w̃(τ )w̃−12 (0).

The equality w̃(ρ)w̃−11 (0) = w̃(τ )w̃−12 (0) holds if and only if w̃(ρ, τ ) =
w̃−12 ww̃1 for some w ∈ W .

Proof The first claim follows fromPropositions 2.3.7 and 2.6.2. For the second
claim, the equality w̃(ρ)w̃−11 (0) = w̃(τ )w̃−12 (0) implies that w̃(ρ, τ )w̃−11 ∈
w̃−12 W . ��
Corollary 2.6.5 Let λ ∈ X∗(T ) be a dominant weight. Let ρ and τ be tame
inertial L-parameters over F and E, respectively. Suppose that we can fix
λ-compatible 2hη-generic and max{2hη, hλ+η}-generic lowest alcove presen-
tations of ρ and τ , respectively, and that w̃(ρ, τ ) = ts−1(λ+η) for some s ∈ W .
Then the intersection W ?(ρ)∩ JH(σ (τ )⊗W (λ)) contains exactly one weight
which is the obvious weight in Wobv(ρ) corresponding to s.

Proof Suppose that (w̃, ω) is a lowest alcove presentation of σ ∈ W ?(ρ) ∩
JH(σ (τ ) ⊗ W (λ)) which is compatible with that of ρ (equivalently it is
λ-compatible with that of τ ). Proposition 2.6.4 implies that ts−1(λ+η) =
w̃(ρ, τ ) = w̃−12 s′w̃1 for some s′ ∈ W , and some w̃1, w̃2 ∈ ˜W+

with w̃1 ↑ w̃
and w̃ ↑ tλw̃

−1
h w̃2. These inequalities imply that

ts−1(λ+η) = w̃−12 s′w̃1 ≤ (t−w0(λ)w̃hw̃)
−1w0w̃ = tw−1(λ+η),

where w ∈ W is the image of w̃. This implies that s = w and that w̃ = w̃2.
Then σ is the obvious weight corresponding to s. ��
Proposition 2.6.6 Let λ ∈ X∗(T ) be a dominant weight. Let ρ be a 2hη-
generic tame inertial L-parameter over F and let τ be a max{2hη, hλ+η}-
generic tame inertial L-parameter. Assume we can fix λ-compatible lowest
alcove presentations for ρ and τ such that w̃(ρ, τ ) ∈ Adm(λ + η). Then
Wobv(ρ) ∩ JH(σ (τ )⊗W (λ)) is nonempty.

Proof Since w̃(ρ, τ ) ∈ Adm(λ+η), there exists aw ∈ W such that w̃(ρ, τ ) ≤
tw−1(λ+η) = (t−w0(λ)w̃hw̃)

−1w0w̃ where w̃ ∈ ˜W+
1 has image w ∈ W . Since
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this is a reduced factorization by Lemma 2.1.4, w̃(ρ, τ ) = w̃−12 w′w̃1 for some
w̃1 ≤ w̃, w̃2 ≤ t−w0(λ)w̃hw̃ and w′ ∈ W . By changing w′ and using [56,
Lemma 4.3.4], we can assume without loss of generality that w̃1 and w̃2 are
elements of ˜W

+
. By Wang’s theorem ([56, Theorem 4.1.1]), w̃1 ↑ w̃ and

w̃2 ↑ t−w0(λ)w̃hw̃, or equivalently by [56, Proposition 4.1.2], w̃ ↑ tλw̃
−1
h w̃2.

Let ω ∈ X∗(T ) be the unique (dominant) weight up to X0(T ) such that
t−ωw̃1 ∈ ˜W

+
1 . Let w̃3 be the unique element in W t−w′(ω)w̃2 ∩ ˜W+

. Then
tw0(ω)w̃3 ↑ w̃2 just as in the proof of [56, Proposition 4.4.1] so that t−ωw̃1 ↑
tλw̃

−1
h t−w0(ω)w̃2 ↑ tλw̃

−1
h w̃3. Replacing w̃1 by t−ωw̃1 and w̃2 by w̃3 and

changing w′, we have that w̃(ρ, τ ) = w̃−12 w′w̃1 with w̃1 ↑ tλw̃
−1
h w̃2 and

w̃1 ∈ ˜W+
1 .

We claim that F
(w̃1,w̃(ρ)w̃

−1
1 (0)) ∈ Wobv(ρ) is in JH(σ (τ )⊗W (λ)). Indeed,

w̃(ρ)w̃−11 (0) = w̃(τ )w̃(ρ, τ )w̃−11 (0) = w̃(τ )w̃−12 (0).

The claim now follows from Proposition 2.3.7. ��
Lemma 2.6.7 Let τ be a tame inertial L-parameter over F. Suppose there
exists a 3hη-generic lowest alcove presentation for it and let w̃(τ ) be the
corresponding element of ˜W. Let R be the Deligne–Lusztig representation with
theη-compatible lowest alcove presentation such that w̃(R) = w̃(τ )t−η−w0(η).
Then W ?(τ ) ⊂ JH(R ⊗W (η)).

Proof Suppose that σ ∈ W ?(τ ) so that σ has lowest alcove presentation
(w̃, ω) with ω = w̃(τ )w̃−12 (0) for some w̃2 ↑ w̃ by Proposition 2.6.2.
Then ω = w̃(R)(t−η−w0(η)w̃2)

−1(0) (note that −η − w0(η) ∈ X0(T )). By
Proposition 2.3.7, to show that σ ∈ JH(R ⊗ W (η)), it suffices to show that
w̃ ↑ tηw̃

−1
h t−η−w0(η)w̃2 = t−w0(η)w̃

−1
h w̃2. Since w̃

−1
h w̃ ↑ w̃−1h w̃2, it suffices

to show that w̃ ↑ t−w0(η)w̃
−1
h w̃, or equivalently that w0w̃

−1
h w̃ = tw0(η)w̃ ↑

w̃−1h w̃ ∈ ˜W+
. This follows from [47, II 6.5(5)].

3 The universal local model

In this section, we construct and study the universal version of our local mod-
els. This will allow us to show that various properties hold generically for the
mixed characteristic local models studied in Sect. 4. Unless otherwise speci-
fied, all algebraic groups will be over Z. Let X = A1

Z
= Spec Z[v]. For any

commutative ring R, we identify the R-points X (R) with R in the usual way:
an algebra map Z[v] → R corresponds to the image t ∈ R of the coordinate
variable v. (We will eventually consider, in sections §4, §5 and §7, Noetherian
p-adically complete O-algebras R, and take t to be −p in this case.) We also
let X0 = A1

Z
\ {0} = Spec Z[v, v−1].
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Local models for Galois deformation rings and applications 1331

3.1 Loop groups

Let G be the Bruhat-Tits group for GLn over A1
Z
as in [69, 4.b.1], which is a

dilatation of the Chevalley group GLn/A1
Z
along a subgroup concentrated in

the fiber t = 0. Concretely, for any Z[v]-algebra R such that v gets sent to
t ∈ R, the functor of points of G(R) is given by

R �→
{

(A0, . . . An−1) ∈
(

GLn(R)
)n
∣

∣

∣

∣

Diag(1, . . . , t, . . . 1) Ai−1 = Ai Diag(1, . . . , t, . . . 1) for all i,
where t is in the i − th entry of the diagonal matrix.

}

In the special case that t is regular in R, the above data reduces to just the data
of a pair (t, A0) such that A0 mod t is upper triangular. It is known that G is
a smooth affine group scheme with connected fibers (see [69, Corollary 3.2]
and [64, § 1.2, Theorem]).

We also get the positive loop group L+G and the loop group LG whose
functors of points on a Z[v]-algebra R (sending v to t ∈ R) are given by

R �→ G(R[[v − t]])

and

R �→ G(R((v − t))),

respectively (where R[[v− t]] denotes the (v− t)-adic completion of R[v], and
R((v − t))

def= R[[v − t]][ 1
v−t ]). Here the values of the functor G are computed

using the maps Z[v] → R[[v− t]] and Z[v] → R((v− t)) sending v to v. It is
known that L+G is represented by a(n infinite type) scheme and LG is an ind-
group scheme ([69, § 5.b.1]). We have a canonical map T → L+G, sending
h ∈ T (R) to the “constant” diagonal matrices (h, · · · , h) ∈ GLn(R[[v− t]])n .
We have a well-defined determinant map of X -ind-schemes det : LG →
L(Gm)/X .

Remark 3.1.1 When R is Noetherian, v is regular in R[[v− t]] and R((v− t)),
thus we get the simpler description

L+G(R) = {A ∈ GLn(R[[v − t]]), A is upper triangular modulo v},
LG(R) = {A ∈ GLn(R((v − t))), A is upper triangular modulo v}.

In particular, LG(R) is a subgroup of GLn(R((v − t))) for Noetherian R. In
what follows we will restrict all our functors to locally Noetherian schemes,
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1332 D. Le et al.

and hence we will do our manipulations using these simpler descriptions. We
leave it as an exercise to the reader to formulate the right definitions for possibly
non-Noetherian input rings.

For an integer d, let LGdet=d be the subfunctor of LG given by

LGdet=d(R) = {g ∈ LG(R)| det(g) ∈ (v − t)d
(

R[[v − t]])× ⊂ (R((v − t))
)×}

,

which is stable under the left translation action by L+G.
We also define L+M to be the functor given by

L+M(R) = {g ∈ Mn(R[[v − t]]), g is upper triangular modulo v},
so the subfunctor L+M ∩ LG is stable under the left and right translation
action by L+G.

By [69, § 5.b], the fpqc quotient sheaf (over the site of affineZ[v]-schemes)
L+G\LG is representable by an ind-projective ind-scheme GrG,X , which also
has a moduli interpretation in terms of G-torsors. For any ring R, we have an
injection L+G(R)\LG(R) ↪→ GrG,X (R).

By construction, GrG,X ×X X0 is the affineGrassmannian for the split group
GLn over X0, while GrG,X ×X {0} is the affine flag variety for the standard
Iwahori group scheme I over Z[[v]].

For each integer d, we let Grdet=d
G,X be the fpqc quotient subsheaf

L+G\LGdet=d ⊂ L+G\LG.
For each h ≥ 0, we let LGdet=d,≤h be the subfunctor of LGdet=d given by

LGdet=d,≤h(R
) =

{

A ∈ LGdet=d(R)
∣

∣

∣ A ∈ 1

(v − t)h
L+M(R)

}

.

Then LGdet=d,≤h is L+G-stable, and the fpqc quotient subsheaf Grdet=d,≤h
G,X =

L+G\LGdet=d,≤h of GrG,X is representable by a projective scheme over X =
A1

Z
(see the argument of [86, Lemma 1.1.5]). We clearly have Grdet=d

G,X =
lim−→

h

Grdet=d,≤h
G,X .

3.2 Affine charts

Given integers d, h ≥ 0 we define and describe affine open charts U (̃z)det,≤h

for Grdet=d,≤h
G,X , for z̃ ∈ ˜W∨ (see Proposition 3.2.8 and Corollary 3.2.10).

Definition 3.2.1 We define the negative loop group L−−G to be the subgroup
of LG whose values on Noetherian Z[v]-algebra R (sending v to t) is given by
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Local models for Galois deformation rings and applications 1333

L−−G(R)

=
⎧

⎨

⎩

A ∈ GLn

(

R
[ 1

v − t

]) ∣

∣

∣

A is unipotent lower triangular mod 1
v−t R

[

1
v−t

]

and upper triangular mod v
v−t R

[

1
v−t

]

⎫

⎬

⎭

(where R
[

1
v−t

]

denotes the ring of polynomials in 1
v−t with coefficients in R;

it is a subring of R((v − t))).

Note that the groups L+G, L−−G and LG are formally smooth over X = A1
Z
.

Lemma 3.2.2 The multiplication map

L+G ×X L−−G → LG

is a monomorphism. In particular, the induced map L−−G → GrG,X is a
monomorphism.

Proof Suppose we have a Noetherian Z[v]-algebra R, sending v to t ∈ R.
Let g1, g′1 ∈ L+G(R) and g2, g′2 ∈ L−−G(R) such that g1g2 = g′1g′2. Then
g = (g′1)−1g1 = g′2(g2)−1 ∈ GLn(R((v − t))) satisfies:

• The entries of g above the diagonal belong to R[[v− t]] ∩ 1
v−t R[ 1

v−t ] = 0.

• The entries of g below the diagonal belong to vR[[v− t]]∩ v
v−t R[ 1

v−t ] = 0,
since v is regular in R((v − t)).

• The diagonal entries of g belong to R[[v− t]]∩(1+ 1
v−t R[ 1

v−t ]), and hence
are equal to 1.

We conclude that g = 1, hence g1 = g′1, g2 = g′2.
For the last statement, we observe that the natural map L+G(R)\LG(R) ↪→

GrG,X (R) is an injection for any Z[v]-algebra R. ��
We now define various Lie algebras that will appear in §4.2, §4.3, §5.2

Let R � S be a surjection of Z[v]-algebra (sending v to t ∈ R), such that
J = ker(R � S) is a square-zero ideal. Define the S-modules

Lie L−−G(J ) =
{

M ∈ Mn

(

J
[ 1

v − t

])

,
M is nilpotent lower triangular mod 1

v−t ,

and is upper triangular mod v
v−t

}

,

Lie LG(J ) = {M ∈ Mn(J ((v − t))),M is upper triangular mod v} ,

Lie L+G(J ) = {M ∈ Mn(J [[v − t]]),M is upper triangular mod v} .

We observe that the map M �→ 1 + M gives a canonical isomorphism
Lie LG(J ) ∼= ker(LG(R) � LG(S)). This gives an action of LG(R) on
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1334 D. Le et al.

LieG(J ) by conjugation, which factors through LG(S), where we interpret
matrix multiplication using the S = R/J -module structure on J = J/J 2.
The same discussion also applies to L−−G and L+G.
Lemma 3.2.3 Assume that we have a square-zero extension R � S of
Z[v]-algebras, with kernel J . Then inside Lie LG(J ), we have a direct sum
decomposition

Lie LG(J ) = Lie L−−G(J )⊕ Lie L+G(J ).

Proof This follows from the direct sum decompositions

J ((v − t)) = J [[v − t]] ⊕ 1

v − t
J
[ 1

v − t

]

,

v J ((v − t)) = v J [[v − t]] ⊕ v

v − t
J
[ 1

v − t

]

.

��
Definition 3.2.4 Let f : F → G be a morphism of functors on Noetherian
rings. We say that f is formally étale at x if for every commutative diagram

Spec k x F

f

Spec A G

with A an Artinian ring with residue field k, there is a unique dotted arrow that
makes the diagram commute.

Remark 3.2.5 (1) The above notion of formally étale is slightlyweaker than the
definition in [75, Tag 049S], since we only consider the lifting problems
for thickenings of Artinian affine schemes as opposed to general affine
schemes. However, for representable functors F , G such that G is locally
Noetherian and f is locally of finite type [75, Tag 02HY] shows that f
being formally étale in the sense of Definition 3.2.4 implies f is étale (and
hence also formally étale) in the sense of [75, Tag 049S].

(2) It is clear that being formally étale in the above sense is preserved by
composition and arbitrary base change.

Lemma 3.2.6 The multiplication map

L+G ×X L−−G → LG

is formally étale. Hence, the same is true for the natural map L−−G → GrG,X .
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Proof We consider the commutative diagram:

Spec k x L+G ×X L−−G

Spec A LG

where (A,mA) is anArtinian local ringwith residue field A/mA = k. Compos-
ing with the projection LG → X makes A naturally a Z[v]-algebra, sending v
to t lifting t ∈ k. The top horizontal arrow corresponds to a pair g1 ∈ L+G(k),
g2 ∈ L−−G(k). The bottom horizontal arrow correspond to g ∈ LG(A) lifting
g = g1g2.

We need to show that the dotted arrow exists and is unique. We assume
mA �= 0, otherwise there is nothing to prove. The uniqueness follows from the
fact that the right vertical map is a monomorphism, by Lemma 3.2.2.

We now show the existence of the dotted arrow, that is we need to show
that g admits a decomposition g = g1g2 with g1 ∈ L+G(A), g2 ∈ L−−G(A).
By inducting on the length of A, we may assume that we have the desired
decomposition for g mod ε, where 0 �= ε ∈ mA is annihilated by mA.
We have the square-zero extension A � A/ε. Since L+G and L−−G are
formally smooth, we can find g′1 ∈ L+G(A), g′2 ∈ L−−G(A) such that
(g′1)−1g(g′2)−1 ∈ ker(LG(A)→ LG(A/ε)) = 1+εX . By Lemma 3.2.3 (not-
ing that ker(LG(A)→ LG(A/ε)) is canonically isomorphic to Lie(LG)(kε)),
we can decompose εX = εX1 + εX2 such that (1+ εX1) ∈ ker(L+G(A)→
L+G(A/ε)), (1 + εX2) ∈ ker(L−−G(A) → L−−G(A/ε)). This yields the
desired decomposition

g = (g′1(1+ εX1)
)(

(1+ εX2)g
′
2

)

.

��
Let z̃ = wtν ∈ ˜W∨ as defined in §2.1.2.We defineU (̃z) to be the subfunctor

of LG whose value on a Noetherian Z[v]-algebra R (sending v to t ∈ R) is
given by

U (̃z)(R) =
{

A ∈ GLn(R((v − t)))

∣

∣

∣

∣

A(v − t)−νw−1 ∈ GLn(R[ 1
v−t ]) is unipotent lower triangular mod 1

v−t
and A(v − t)−ν ∈ GLn(R[ 1

v−t ]) is upper triangular mod v
v−t

}

.
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1336 D. Le et al.

Lemma 3.2.7 Left multiplication by L−−G in LG preserves U (̃z), and makes
U (̃z) an L−−G-torsor. The natural map U (̃z) → GrG,X is a formally étale
monomorphism.

Proof The first claim follows immediately from the definitions. For the second
claim, note that for any Noetherian Z[v]-algebra R, either U (̃z)(R) = ∅, or
it is a left coset of L−−G(R) in LG(R). The fact that U (̃z) → GrG,X is a
monomorphism then follows from Lemma 3.2.2.

To show that U (̃z)→ GrG,X is formally étale, we first note that U (̃z) is for-
mally smooth over X . Indeed the condition that A ∈ GLn(R((v−t))) belongs to
U (̃z)(R) is that each entry Ai j of A has the form (v− t)d( 1

v−t )
δ( v
v−t )

δ′R[ 1
v−t ],

where d ∈ Z, δ, δ′ ∈ {0, 1} are determined by i, j and z̃, and hence it is clear
that the map U (̃z)(R) → U (̃z)(S) is surjective for any square-zero nilpotent
thickening R � S. This togetherwith Lemma 3.2.6 shows thatU (̃z)→ GrG,X
is formally étale. ��

For h ≥ 0, we define U (̃z)det,≤h to be the intersection U (̃z) ∩ LGdet=d,≤h ,
where d = ||ν|| :=∑i νi if ν = (νi )i ∈ X∗(T∨) = Zn . We have the following
explicit description:

Proposition 3.2.8 For a Noetherian Z[v]-algebra R, U (̃z)det,≤h(R) is the set
of n × n matrices A with Laurent polynomial entries Ai j ∈ R[v − t, 1

v−t ]
satisfying the following degree bound and determinant condition:

• For 1 ≤ i, j ≤ n,

Ai j = vδi> j

( ν j−δi> j−δi<w( j)
∑

k=−h

ci j,k(v − t)k
)

,

and cw( j) j,ν j−δw( j)> j = 1.
• det A = det(w)(v − t)||ν||.

Proof The first item follows from unraveling the definition. For the second
item, the condition given in the definition is det A ∈ R[[v − t]]×(v − t)||ν||.
However, a priori det A ∈ det(w)(v − t)||ν||(1+ 1

v−t R[ 1
v−t ]), hence the deter-

minant condition is equivalent to det A = det(w)(v − t)||ν||. ��
Thus U (̃z)det,≤h is representable by an affine scheme of finite type over Z,
namely the spectrum of the quotient of the polynomial ring generated by the
coefficients ci j,k modulo the relations given by the determinant condition. Note
thatU (̃z)det,≤h = ∅ unless h is sufficiently large, namely when h+ν j−δi> j−
δi<w( j) ≥ 0 for all i, j .
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Definition 3.2.9 When U (̃z)det,≤h �= ∅, there is a section Spec Z ↪→
U (̃z)det,≤h ×X {0} given by the element z̃ = wvν ∈ U (̃z)det,≤h(R) ⊂
GLn(R((v))), for any Noetherian Z[v] algebra R sending v to 0. We will abu-
sively denote this section and the corresponding Z-point of GrG,X ×X {0} by
z̃.

Corollary 3.2.10 The natural map

ι : U (̃z)det,≤h → Grdet=||ν||,≤h
G,X

is an open immersion.

Proof We observe that U (̃z)det,≤h = U (̃z)×GrG,X Grdet=||ν||,≤h
G,X Hence Lemma

3.2.7 shows that ι is a formally étale monomorphism. By Remark 3.2.5, ιmust
then be an étale monomorphism, and hence is an open immersion by [75, Tag
025G]. ��

3.3 Universal local models

Let LG∇ be the subfunctor of LG ×Z An whose value on a Noetherian Z[v]-
algebra R (sending v to t ∈ R) is given by

LG∇(R) def=
{

(g, a)| g ∈ LG(R), a ∈ Rn and

v
dg

dv
g−1 + gDiag(a)g−1 ∈ 1

v − t
L+M(R)

} (3.1)

(where the symbol dg
dv means we differentiate entry-wise).

Lemma 3.3.1 The functor LG∇ is stable by left multiplication by L+G∇ .

Proof Let R be a Noetherian Z[v]-algebra, sending v to t ∈ R, and let h ∈
L+G∇(R), LG∇(R). The Leibnitz rule gives

v
d(hg)

dv
(hg)−1 + hgDiag(a)(hg)−1

= vd(h)

dv
h−1 + h

(

v
dg

dv
g−1 + gDiag(a)g−1

)

and the right hand side is manifestly an element in 1
v−t L+M(R) since

1
v−t L+M(R) is stable by conjugation by h, and that d(h)

dv ∈ L+M(R). ��
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Thus, LG∇ defines a closed sub-ind-scheme Gr∇G,X
def= L+G\LG∇ ⊂

GrG,X ×ZAn which is ind-proper over X ×Z An .
For λ ∈ X∗(T∨), we have a section sλ : X → GrG,X induced by the element

(v − t)λ ∈ LG(R) for a Z[v]-algebra R sending v to t ∈ R.

Remark 3.3.2 For H ∼= An−1 ⊂ An a hyperplanewhere one of the coordinates
is 0, we have a natural isomorphism

LG∇ ∼= (LG∇ ∩ (LG ×Z H))×Z A1.

For example, if H = {a ∈ An | an = 0}, we have an isomorphism given by

(g, a) �→ (g, a − (an, · · · , an), an).

Because this observation, we could have always worked under the assump-
tion that an = 0 throughout the entire paper. This minor simplification is
useful when implementing computer algebra computations, see for example
“Appendix B”

We define the global Schubert variety SX (λ) to be the minimal irreducible
closed subscheme ofGrG,X which contains sλ and is stable under the rightmul-
tiplication action of L+G (cf. [85,Definition 3.1]).Wewill alsowriteSX0(λ) =
SX (λ)×X X0. The maps SX (λ)→ X , SX0(λ)→ X0 are proper. Note that as
in [85, Lemma 3.6], we have an isomorphism GrG,X ×X X0 ∼= GrGLn ×Z X0,
under which SX0 corresponds to the constant family of the Schubert variety of
GrGLn for the coweight λ over X0. This description makes it clear that for any
geometric point x of X0, the fiber SX (λ) ×X x ⊂ GrG,X ×X x ∼= GrGLn is
the usual Schubert variety for the coweight λ in GrGLn . In particular, we have
SX0(λ) = SX0(w(λ)) for w ∈ W . We also have the open Schubert variety
S◦X (λ) = SX (λ) \⋃λ′∈Conv(λ),λ′ /∈Wλ SX (λ

′). Over X0, S◦
X0(λ) correspond to

the constant family of the open Schubert variety for the coweight λ in GrGLn .
Given λ ∈ X∗(T∨), we have the stabilizer group scheme of sλ whose values

on a Z[v]-algebra R is given by

L+Gλ(R) = L+G(R) ∩ Ad
(

(v − t)−λ
)(

L+G(R)).

Let Pλ be the parabolic subgroup of GLn determined by the condition that the
αth entry vanishes for all roots α such that 〈λ, α∨〉 < 0. Then there is a natural
map (L+Gλ\L+G)X0 → Pλ\GLn×Z X0 given by g �→ g mod (v− t), which
makes L+Gλ\L+G into an iterated affine space bundle over the partial flag
variety Pλ\GLn ×Z X0 (see the discussion after [86, Corollary 2.1.11] or [65,
§ 2]).
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Local models for Galois deformation rings and applications 1339

Then for sufficiently large h, we have a monomorphism L+Gλ\L+G ↪→
Grdet=||λ||,≤h

G,X given by the orbit map g �→ sλg, and SX (λ) is the scheme-
theoretic image of this map. The orbit map induces an isomorphism
(L+Gλ\L+G) ×X X0 ∼= S◦

X0(λ). This gives us a map πλ : S◦
X0(λ) →

(Pλ\GLn)×Z X0.

Definition 3.3.3 We define the naive universal local model to be

Mnv
X (≤ λ,∇) def= Gr∇G,X ∩(SX (λ)×Z An).

We will also setMnv
X0(≤ λ,∇) =Mnv

X (≤ λ,∇)×X X0. It is a proper scheme
over X0 ×Z An .

For any z̃ ∈ ˜W∨ and h sufficiently large, we have

(U (̃z)det,≤h ×Z An) ∩Mnv
X (≤ λ,∇) =

(U (̃z)×Z An) ∩Mnv
X (≤ λ,∇)

is an (possibly empty) open subscheme of Mnv
X (≤ λ,∇), and denote this by

Unv(̃z,≤ λ,∇).
The followingLemmadescribes the part ofMnv

X0(≤ λ,∇) in the open global
Schubert variety S◦

X0(λ), away from small positive characteristics:

Proposition 3.3.4 Let λ be dominant and recall hλ = maxα∨{〈λ, α∨〉}.
The map πλ induces an isomorphism πλ :

(Mnv
X0(≤ λ,∇) ∩ (S◦X0(λ) ×Z

An)
)[ 1

hλ! ]
∼→ (Pλ\GLn)×Z X0 ×Z An[ 1

hλ! ].
Proof We first note that we have an open cover of Pλ\GLn by affine spaces
given by Nλwwhere Nλ is the unipotent radical of the opposite parabolic to Pλ,
andw runs over W . This pulls back to an open cover S◦(λ)X0 =⋃w∈W

˜Nλw,
where ˜Nλ is the affine scheme over X0 whose points on a Z[v, v−1] algebra
R consists of the set of matrices (v − t)λNw where N ∈ GLn(R[[v − t]]) is a
matrix such that

• The diagonal entries of N are 1.
• For a root α such that 〈−λ, α∨〉 ≤ 0, the entry Nα = 0.

• For a root α such that 〈−λ, α∨〉 > 0, the entry Nα =∑〈−λ,α∨〉−1
j=0 Xα, j (v−

t) j with Xα, j ∈ R.

Note that this describes an affine space over X0, whose coordinates are given
by the coefficients Xα, j of the entries of N . Under these coordinates, the map
πλ is the map (v − t)λNw �→ (N mod (v − t))w.

It suffices to show that πλ : Gr∇G,X0 ∩
(

˜Nλw ×Z An[ 1
hλ! ]
)

→ Nλw ×Z

X0 ×Z An[ 1
hλ! ] induces an isomorphism for each w ∈ W . Fix an R-point x

of X0 ×Z An corresponding to t ∈ R× and a ∈ Rn . The set of R points of
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Gr∇G,X0 ∩
(

˜Nλw ×Z An[ 1
hλ! ]
)

above x is the set of matrices (v − t)λNw with

N ∈ GLn(R[[v − t]]) as above such that

v
d

dv

(

(v − t)λNw
)

(

(v − t)λNw
)−1

+Ad
(

(v − t)λNw
)

(Diag(a)) ∈ 1

v − t
L+M(R), (3.2)

which is equivalent to

v

v − t
λ+ Ad

(

(v − t)λ
)

(

(

v
d

dv
N
)

N−1)

+Ad
(

(v − t)λ
)

(Ad(N )(Ad(w)(Diag(a)))) ∈ 1

v − t
L+M(R).

This is in turn equivalent to (noting that v ∈ R[[v − t]]× since t ∈ R×)

(

v
d

dv
N + [N ,Ad(w)(Diag(a))]

)

N−1

∈ 1

v − t
Ad
(

(v − t)−λ
)

(Mn(R[[v − t]])).

Note that the only entries in the above matrix that can be non-zero are the αth
entries where 〈−λ, α∨〉 > 0 (which in particular implies α < 0), and for such
α the above condition is that the αth entry is divisible by (v − t)〈−λ,α∨〉−1.
Now, for 〈−λ, α∨〉 > 0, the αth entry of the above matrix has the form

(

v
d

dv
− 〈Ad(w)(Diag(a)), α∨〉

)

Nα + · · ·

where the terms in · · · involves only Nβ where α < β < 0. On the other hand,

since Nα =∑〈−λ,α∨〉−1
i=0 Xα,i (v − t)i , we have:

(

v
d

dv
− 〈Ad(w)(Diag(a)), α∨〉

)

Nα

=
〈−λ,α∨〉−2
∑

i=0
t (i + 1)Xα,i+1(v − t)i

+
〈−λ,α∨〉−1
∑

i=0
(i − 〈Ad(w)(Diag(a)), α∨〉)Xα,i (v − t)i .
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Since i + 1, t ∈ R× for all 0 ≤ i < hλ − 1, Eq. (3.2) solves each Xα,i for
i > 0 uniquely in terms of Xα′,0 for α ≤ α′ < 0. As πλ is exactly obtained by
extracting Xα,0 for all α such that 〈−λ, α∨〉 > 0, we are done. ��
We thus have a description of the underlying reduced scheme ofMnv

X0(≤ λ,∇)
away from small positive characteristics:

Corollary 3.3.5 Let λ and hλ be as in Lemma 3.3.4, then the underlying
reduced subscheme of Mnv

X0(≤ λ,∇)[ 1
hλ! ] is isomorphic to

∐

λ′≤λ,λ′∈X+∗ (T∨)

(Pλ′\GLn)×Z X0 ×Z An[ 1

hλ! ].

Proof By Proposition 3.3.4, Mnv
X0(≤ λ,∇) ∩ (S◦(λ)X0 ×Z An[ 1

hλ! ]) is iso-
morphic to (Pλ\GLn) ×Z X0 ×Z An[ 1

hλ! ], and hence is proper over X0 ×Z

An[ 1
hλ! ]. Thus the inclusion Mnv

X0(≤ λ,∇) ∩ (S◦(λ)X0 ×Z An[ 1
hλ! ]) ↪→

Mnv
X0(≤ λ,∇)[ 1

hλ! ] is a proper open immersion, hence is the inclusion of a
connected component. The complement of this component has the same sup-

port as Gr∇G,X0 ∩
(

(SX0(λ) \ S◦X0(λ)) ×Z An[ 1h! ]
)

. Since SX0(λ) \ S◦X0(λ) =
⋃

λ<λ,λ′∈X+∗ (T∨) SX0(λ′) set theoretically and hλ′ ≤ hλ, we can repeat the
above argument for λ′ < λ to conclude. ��
In particular, Mnv

X0(≤ λ,∇) ∩ (S◦X0(λ) ×Z An) is a connected component of
Mnv

X0(≤ λ,∇).
We can now make the following definition:

Definition 3.3.6 Let λ ∈ X∗(T∨) be dominant. The universal local model
MX (λ,∇) is the closure ofMnv

X0(≤ λ,∇)∩(S◦X0(λ)×Z An) inMnv
X (≤ λ,∇)

(equivalently, in GrG,X ×ZAn).

We note that the difference between MX (λ,∇) and Mnv
X (≤ λ,∇) is that the

monodromy condition is imposed, respectively, before and after taking Zariski
closures of S◦

X0(λ)×Z An in GrG,X ×ZAn .
We will now show that the conclusion of Corollary 3.3.5 actually holds

without taking reduced subscheme, at the expense of removing some more
small positive characteristics.

We have an action of the torus T∨×Z X on the X -scheme GrG,X induced by
the right multiplication action of T∨ on LG. This action evidently preserves
SX (λ) and Gr∇G,X . Thus we get an induced T∨ action on Mnv

X (≤ λ,∇).
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Lemma 3.3.7 The T∨-fixed point scheme of SX0(λ) is supported on the union
of the sections sλ′ as λ′ runs over the elements of Conv(λ).

Proof This statement can be checked at the level of geometric fibers over X0,
where the conclusion is well-known, see for instance the discussion just before
[86, Example 2.1.12].

Proposition 3.3.8 Let λ be dominant. Then Mnv
X0(≤ λ,∇)[ 1

(2hλ)! ] is smooth

over X0 ×Z An[ 1
(2hλ)! ].

Proof To ease notation, in this proof we will abbreviate Y = Mnv
X0(≤ λ,∇)

[ 1
(2hλ)! ], S = X0 ×Z An[ 1

(2hλ)! ] and pr for the natural projection map Y → S.
As pr is a finite type map between finite type Z-schemes, the locus of points
where pr is smooth is open in the domain. The non-smooth locus is thus proper
over S, and is furthermore T∨-stable. If it is non-empty, it must have a non-zero
geometric fiber over X0 ×Z An[ 1

(2hλ)! ]. Such a fiber will be a proper variety
over a field with an action of a torus, and hence must contain a torus-fixed
closed point, which must occur in the support of sμ for some μ ∈ Conv(λ).

Thus, we only need to show that pr is smooth at any closed point
x : Spec k → Y lying in the support of sμ. Let s = pr(x) ∈ S. We will
show smoothness by bounding the dimension of the tangent space dim Tx Y ≤
dimx Y and the dimension of the relative tangent space dim Tx Y/S ≤ dimx Ys .
Indeed, granting this, we deduce that the completion ̂OY,x is generated over
̂OS,s by dimx Ys elements. Using that S is regular at s and comparing dimen-
sions, we then conclude that ̂OY,x is a power series ring over ̂OS,s in dimx Ys
variables.

We may without loss of generality enlarge k and assume that k is alge-
braically closed. The point s corresponds to the data of a tuple (t, a) ∈ k××kn

and the point x corresponds to the data of s and the element (v − t)μ ∈
GLn(k((v− t))). By Corollary 3.3.5, the point x is on the connected component
ofY occurring insideS◦

X0(μ)×ZAn , and hence dimx Y = dim Pμ\GLn+n+1.
Let UX0(tμ)

def= U(tμ) ×X X0. Set U
def= ((UX0(tμ) ∩ SX0(λ)

)×Z An
) ∩

Gr∇G,X0 , which is an open neighborhood of x in Y . We observe that UX0(tμ)∩
SX0(λ) occurs inside the closed subscheme of Z

def= Grdet=0,≤hλ
G,X sμ ∩UX0(tμ)

of UX0(tμ) ⊂ GrG,X0 , since for an element g ∈ UX0(tμ)(R) to occur in
SX0(λ)(R), a necessary condition is that det g ∈ R[[v− t]]×(v− t)||λ|| and that
||λ|| = ||μ||, and that each entry of g(v−t)−μ belongs to (v−t)λmin−μmax R[[v−
t]], where λmin = min0≤i≤n−1 λi and μmax = max0≤i≤n−1 μi , and λmin −
μmax ≥ minα∨{〈λ, α∨〉} = −hλ.

Thus we conclude that Tx Ys is a subspace of the tangent space of
(

Gr∇G,X0 ∩
(

Z ×Z An
)

)

s
at x . This latter space has the following explicit
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description (using definition of UX (tμ) before Lemma 3.2.7): It is the space of
matrices (1+ εX)(v − t)μ with X ∈ Mn(k((v − t))) such that

• For each i the diagonal entry Xii =∑hλ
j=1 Xii, j (v − t)− j with Xii, j ∈ k.

• For each root α, the αth entry Xα = vδα<0∑hλ
j=1 Xα, j (v − t)− j .

• X is subject to the condition that

v
d

dv

(

(1+ εX)(v − t)μ
)

(v − t)−μ(1+ εX)−1

+Ad
(

1+ εX
)(

Ad
(

(v − t)μ
)

(Diag(a))
) ∈ 1

v − t
L+M(k[ε]/ε2).

The last condition is equivalent to

εv
d

dv
X − ε v

v − t
[μ, X ] − ε[Diag(a), X ] ∈ 1

v − t
L+M(k[ε]/ε2).

Hence, we have

• For each 1 ≤ i ≤ n,

hλ
∑

j=1
−t j Xii, j (v − t)−( j+1) +

hλ
∑

j=1
− j Xii, j (v − t)− j ∈ 1

v − t
k[[v − t]].

This is equivalent to t j Xii, j = −( j + 1)Xii, j+1 for all j ≥ 1 (with the
convention that X j j,hλ+1 = 0). Since hλ! and t are invertible in k, we
conclude that Xii, j = 0 for all j .

• For any root α,

hλ
∑

j=1
−t j Xα, j (v − t)−( j+1)

+
hλ
∑

j=1
− j Xα, j (v − t)− j −

hλ
∑

j=1
t〈μ, α∨〉Xα, j (v − t)−( j+1)

−
hλ
∑

j=1
(〈μ+ a, α∨〉 − δα<0)Xα, j (v − t)− j ∈ 1

v − t
k[[v − t]].

This is equivalent to

t ( j + 〈μ, α∨〉)Xα, j = −( j + 1− δα<0 + 〈μ+ a, α∨〉)Xα, j+1
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for j ≥ 1 (with the convention that Xα,hλ+1 = 0).
If 〈μ, α∨〉 ≥ 0, since t and (2hλ)! are invertible in k and 〈μ, α∨〉 ≤ hλ,
t ( j + 〈μ, α∨〉) is invertible for all 1 ≤ j ≤ hλ, and hence the above
recursion forces Xα, j = 0 for all j .
If 〈μ, α∨〉 < 0, t ( j + 〈μ, α∨〉) is invertible in k unless j = −〈μ, α∨〉.
Thus the above recursion shows that Xα, j = 0 for j > −〈μ, α∨〉, that
Xα, j for 1 ≤ j < −〈μ, α∨〉 is a multiple of Xα,−〈μ,α∨〉 by a particular
constant, and there are no restrictions on Xα,−〈μ,α∨〉.

The upshot of the above discussion is that dim Tx Ys ≤ #{α|〈μ, α∨〉 < 0} =
dimZ Pμ\GLn . Putting everything together, we have

dim Tx Y ≤ dimx Ys + dims S ≤ dimZ Pμ\GLn + 1+ n + 1 = dimx Y,

which is what we want. ��
We record the following proposition which is an adaptation of Elkik’s approx-
imation theorem to our situation, which will only be used in the proof of
Theorem 7.3.2. Roughly, it allows us to lift mod tm-points of Unv(̃z,≤ λ,∇)
once m is sufficiently large.

Proposition 3.3.9 Fixλ, z̃. Choose a finite presentation of the mapUnv(̃z,≤ λ,
∇)[ 1

(2hλ)! ] → X ×Z An. Then there exists integers N and r (depending on the
chosen finite presentation) such that the following hold:

Let A be a ring and t ∈ A such that A is t-adically complete and t-torsion-
free, and let g : Spec A → X ×Z An be a map sending v to t . Then for any
integer m ≥ N, and any commutative diagram

Spec A/tm f Unv
X (̃z,≤ λ,∇)

[

1
(2hλ)!

]

Spec A
g

X ×Z An

(3.3)

we can find a map ˜f : Spec A → Unv(̃z,≤ λ,∇)
[

1
(2hλ)!

]

which agrees with

f modulo tm−r making the following diagram commute:

Spec A
˜f Unv(̃z,≤ λ,∇)

[

1
(2hλ)!

]

Spec A
g

X ×Z An
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Proof We will apply [27, Lemme 1]. Let Spec B be the base change of
Unv(̃z,≤ λ,∇)[ 1

(2hλ)! ] along g. Let Spec S = X×ZAn . Let our chosen presen-

tation be Unv(̃z,≤ λ,∇)[ 1
(2hλ)! ] = Spec S[X1, . . . , Xk]/J . Let H be the ideal

of S[X1, . . . , Xk] defined in [27, p. 555], so the image of H in S[X1, · · · Xk]/J
is supported on the singular locus of themapUnv(̃z,≤ λ,∇)[ 1

(2hλ)! ] → X×An .
Hence, by Proposition 3.3.8, there exists an integer r such that vr ∈ H + J .
We now base change the situation to A, and let B = A[X1, · · · Xk]/J , let HB
be the base change of H , and apply [27, Lemme 1] to B and A to produce the
integer N > 2r (note that the k in loc. cit. is 0 in our situation because we
assumed A is t-torsion free). We check that this choice of N and r works.

Let m ≥ N > 2r be as in the statement of the Proposition. The f induces
a tuple a = (a1, · · · ak) ∈ Ak such that J (a) ⊂ tm A. On the other hand we
know tr ∈ HB(a) + J (a) ⊂ HB(a) + tm A, and hence tr ∈ HB(a) because
A is t-adically complete and m > r . Thus [27, Lemme 1] implies we can find
a tuple ã ∈ Ak lifting a modulo tm−r such that J (̃a) = 0. But this is exactly
the data of the map Spec A → Spec B that we want. ��

3.4 Equal characteristic and unibranch points

Throughout this section we fix λ ∈ X∗(T∨) dominant, a field k and a point
s ∈ An(k) corresponding to a tuple a ∈ kn . We will assume that (2hλ)! is
invertible in k.

We have the base change Mnv(≤ λ,∇a)
def= Mnv

X (≤ λ,∇) ×An s, and
define M(λ,∇a) to be the Zariski closure of

(MX (λ,∇) ×An s
) ×Xk X0

k
∼=

(Pλ\GLn)X0
k
in Mnv(≤ λ,∇a). In particular, the natural map M(λ,∇a) →

Xk = A1
k is flat.

Remark 3.4.1 There is a natural map M(λ,∇a)→MX (λ,∇)×An s which
is an isomorphism over X0

k , and identifiesM(λ,∇a) as the Zariski closure of
MX0(λ,∇) ×An s in MX (λ,∇) ×An s. It is unclear whether it is always an
isomorphism, but we will see in Proposition 3.5.2 that it is an isomorphism
for generic choices of a.

We recall the following definition (cf. [75, Tag 06DT]):

Definition 3.4.2 A point y ∈ Y of a scheme is called unibranch if the nor-
malization of the local ring (OY,y)red is local.

If Y is an integral scheme, we will write Y nm → Y for the normalization of
Y .

Remark 3.4.3 (1) ([75, Tag 0C3B]) If Y has a finite number of irreducible
components and the normalization map Y nm → Y is finite (e.g. when Y is
excellent), then the following are equivalent:
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(i) y is unibranch;
(ii) the (set-theoretic) fiber above y of the normalization is a single point;

and
(iii) the fiber above y of the normalization is connected.

(2) ([75, Tag 0C2E]) When Y is Noetherian and excellent, Y is unibranch at
y if and only if Y is analytically irreducible at y, i.e. the completed local
ring O∧Y,y is a domain.

We now fix z̃ = wtν ∈ ˜W∨. Recall we have a subfunctor U (̃z) of LG
defined before Lemma 3.2.7 which defines an open subfunctor of GrG,X . We
let U (̃z, λ,∇a) = U (̃z) ×GrG,X M(λ,∇a), which is a Zariski open (possible
empty) subscheme of M(λ,∇a).

Recall (Definition 3.2.9) that for each z̃ = wtν ∈ ˜W∨, we have an associated
Z-point of U (̃z)×X {0} ⊂ GrG,X ×X {0} given by wvν ∈ GLn(Z((v))) which
we denote by z̃. For any field k, let z̃k denote the base change to k.

The following is the main result of this section:

Proposition 3.4.4 Assume that z̃k ∈M(λ,∇a)(k). Then for any integer e >
0, the base change M(λ,∇a)×Xk ,v �→ve Xk is unibranch at z̃k . Furthermore,
the preimage of U (̃z) in (M(λ,∇a)×Xk ,v �→ve Xk)

nm ×X {0} is connected.

TheProposition implies the following crucial Corollary,which underlies the
unibranch property (at special points) of the local models we will be interested
in (cf. Theorem 3.7.1):

Corollary 3.4.5 Let e > 0 be an integer and U ⊂ An. Let MU
def=

MX (λ,∇) ×An U → X × U, MU,e
def= MU ×X,v �→ve X and let ˜MU,e be

the normalization of MU,e in MU,e ×X X0. Assume that MU → X × U
and ˜MU,e → X × U are flat. Suppose we have a geometric point x of
(MU ) ×X {0}(k) which lies in a section z̃ ∈ ˜W∨, with image 0 × s ∈
(X × U )(k). The the preimage of x in ˜MU,e is supported at a single point.
Furthermore, the preimage of U (̃z) in ˜MU,e ×X×U ({0} × s) is connected.

Proof The point x gives rise to a point s ∈ U (k) ⊂ An(k) corresponding to a
tuple a ∈ kn . The flatness hypotheses imply that the natural mapM(λ,∇a)→
MU ×U s is an isomorphism, that MU,e ×U s = M(λ,∇a) ×Xk ,v �→ve Xk ,
and that ˜MU,e ×U s →MU,e ×U s is a finite birational map. It follows that
˜MU,e ×U s is surjected on by the normalization of M(λ,∇a)×Xk ,v �→ve Xk ,
and we conclude by Proposition 3.4.4 and Remark 3.4.3(1). ��

The rest of this section is devoted to the proof of Proposition 3.4.4. We first
recall some torus actions on GrG,X . Let T∨,ext = T∨ ×Gm . We let T∨,ext act
on X = A1 by letting T∨ act trivially, and the Gm factor act via scaling the
coordinate v.
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Given r ∈ R× we have a canonical isomorphism R((v−t))
∼→ R((v−r t)) of

R-algebras given by the change of variable v �→ r−1v. This induces an action
Gm ×Z LG → LG of Gm on LG (over Z) which is equivariant with respect to
the scaling action of Gm on A1. It commutes with the right-translation action
of T∨ on LG, and thus we obtain an T∨,ext action on LG which is equivariant
for the map LG → A1. It is clear that this action preserves the subgroup L+G,
and thus we get an action of T∨,ext on GrG,X which is equivariant for the action
T∨,ext on A1. This action preserves SX (λ).

Lemma 3.4.6 Let z̃ = wtν ∈ ˜W∨. Define an action T∨ × Gm × LG → LG
of T∨,ext on LG given by the formula

(D, r)A(v)
def= Ad(w)(D−1)A(r−1v)rνD,

where D ∈ T∨(R) is a diagonal matrix, r ∈ R×, A(v) ∈ GLn(R((v − t)))
and A(r−1(v)) ∈ GLn(R((v − r t))) is obtained from A(v) by the change of
variable v �→ r−1v. Then this action preserves U (̃z), U (̃z)det,≤h (for any h),
and the natural map U (̃z) ↪→ GrG,X is T∨,ext-equivariant.

Proof We have

Ad(w)(D−1)A(r−1v)rνD(v − r t)−νw−1

= Ad(w)(D−1)A(r−1v)rνD(v − r t)−νw−1

= Ad(w)(D−1)A(r−1v)(r−1v − t)νw−1 Ad(w)(D)

and

Ad(w)(D−1)A(r−1v)rνD(v − r t)−ν

= Ad(w)(D−1)A(r−1v)(r−1v − t)νD.

The result now follows from the definitions since the first condition defining
U (̃z)det,≤h is stable under T∨-conjugation and the second under both right and
left multiplication by T∨, and the change of variable v �→ r−1v induces an
isomorphism R[ 1

v−t ] ∼= R[ 1
v−r t ] which sends v

v−t to
v

v−r t . ��
Lemma 3.4.7 There exists a one-parameter subgroup Gm → T∨,ext such
that for any h, the induced action via Lemma 3.4.6 on U (̃z)det,≤h satisfies the
following properties:

• It is contracting, i.e. it extends to an action A1× U (̃z)det,≤h → U (̃z)det,≤h

of the multiplicative monoid A1.
• If U (̃z)det,≤h is non-empty, the fixed-point subscheme of the action is given

by the section z̃ : Spec Z ↪→ U (̃z)det,≤h ×X {0}
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Proof We choose μ ∈ X∗(T∨) regular dominant, and choose an integer
N > hμ = maxα∨{〈μ, α∨〉}. We claim that the one parameter subgroup
r �→ (Ad(w−1)(rμ), r N ) does the job. It suffices to verify the statement
for Noetherian Z[v]-algebras. For a Noetherian Z[v]-algebra R (sending v
to t ∈ R), recall the explicit description of UX (̃z)det,≤h(R) from Propo-
sition 3.2.8. Using that description and Lemma 3.4.6, we see that for any
A ∈ UX (̃z)det,≤h(R),
the action of an element r ∈ R× sends A to A′ where A′ is given by

A′i j = rμi (r−Nv)δi> j

( ν j−δi> j−δi<w( j)
∑

k=−h

ci j,k(r
−Nv − t)k

)

r Nν j r−μw( j)

= vδi> j

( ν j−δi> j−δi<w( j)
∑

k=−h

r N (ν j−δi> j−k)+μi−μw( j)ci j,k(v − r N t)k
)

.

If k < ν j − δi> j , then N (ν j − δi> j − k) + μi − μw( j) > 0 since N > hμ.
If k = ν j − δi> j , then necessarily δi<w( j) = 0. We have two subcases: If
i = w( j), then N (ν j − δi> j − k)+μi −μw( j) = 0 and ci j,k = 1. Otherwise,
i > w( j), and N (ν j − δi> j − k) + μi − μw( j) = μi − μw( j) > 0, since
μ was chosen to be regular dominant. Thus we see that the coordinates ci j,k
(for i �= w( j) are homogenous for our Gm-action with positive weight, hence
the Gm-action extends to an action of A1, and that the fixed point scheme
UX (̃z)det,≤h is exactly given by the section z̃. ��
Lemma 3.4.8 Let k be an algebraically closed field and let M be an irre-
ducible variety over k, Suppose there is an action of the multiplicative monoid
A1

k on M over k with a unique fixed point x ∈ X (k). Then M is unibranch at
x. In particular, the completed local ring O∧M,x of M at x is a domain.

Proof Let π : Mnm → M be the normalization map, so π is finite. Since
A1

k × Mnm is normal, the action of A1
k on M extends to an action of A1

k on
Mnm, by the universal property of the normalization. In particular, we get an
induced action of Gm on Mnm.

We claim that the fixed-point scheme Mnm,Gm has underlying reduced
scheme (Mnm,Gm )red = (π−1(x))red. Since π((Mnm,Gm )red) ⊂ (MGm )red =
x , we have (Mnm,Gm )red ⊂ (π−1(x))red. On the other hand, π−1(x) is a finite
scheme with a Gm-action, hence (π−1(x))red consists of Gm-fixed points, so
(π−1(x))red ⊂ (Mnm,Gm )red.

Now the action map A1
k ×Mnm → Mnm induces a surjective map Mnm →

Mnm,Gm , given by m �→ 0 · m. Since Mnm is irreducible, we conclude that
(π−1(x))red = x̃ is a single point. Hence, M is unibranch at x by Remark
3.4.3(1). The last assertion follows from Remark 3.4.3(2). ��
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Proof Proposition 3.4.4 When e = 1, we can directly apply Lemma 3.4.8 to
U (̃z, λ,∇a), with the Gm-action obtained from Lemma 3.4.6 via base change.
Note that U (̃z, λ,∇a) is irreducible since M(λ,∇a) is by Corollary 3.3.5.
Furthermore, this contracting Gm lifts to a contracting Gm-action on the nor-
malization U (̃z, λ,∇a)

nm . Now the fiber of this normalization above 0 ∈ Xk
has a contracting Gm-action with a unique fixed point (namely, the pre-image
of z̃k), and hence is connected.

For general e > 0, by composing the previous action with the eth power
map Gm → Gm , we can construct a contracting Gm-action on U (̃z, λ,∇a)

which is equivariant for the eth power of the scaling action on Xk . This allows
us to define a Gm-action on U (̃z, λ,∇a)×Xk ,v �→ve Xk which is contracting to
z̃k . We can now repeat the same argument as above. ��

3.5 Spreading out normality

We now return to the universal setting. Recall that X = A1 = Spec Z[v], with
a chosen coordinate v. We thus get a zero section 0 : Spec Z → X given
by v �→ 0, and X0 = Spec Z[v, 1

v
]. We will abusively think of v as a global

function on any X -scheme. We study the following setup:

Setup 3.5.1 We have an integral finite type Z-scheme S, and a finitely pre-
sented map M → X × S. We assume that the generic point of S has
characteristic 0. We also assume the following properties:

• The base changed family M0 = M ×X X0 → X0 × S over X0 is smooth.
• M is the Zariski closure of M0. In particular v ∈ O(M) is a regular element.
• M is normal.

Given this setup, we will denote M0 = M ×X×S,0 S, the fiber of M above the
zero section 0 : Spec Z → X .

We want to understand the base change of this situation to a complete
discrete valuation ring R, via a map f : Spec R → X × S which induces a
map Z[v] → R sending v to a uniformizer of R. In general, the base change

MR
def= M ×X×S, f Spec R may neither be flat over Spec R, nor be normal.

However, the following Proposition will guarantee that both properties will
hold for “generic” choices of f :

Proposition 3.5.2 In Setup 3.5.1, there exists a non-empty open subscheme
U ⊂ S such that if R is a complete discrete valuation ring and f : Spec R →
X × S factor through X × U,and such that v is sent to a uniformizer of R,
then the base change MR → Spec R is flat, and MR is normal.

Remark 3.5.3 The hypothesis that v is sent to a uniformizer of R is necessary.
For example, let M = Spec Z[x, v]/(x2− v)→ Spec Z[v], S = Spec Z, and
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let f : O→ Spec Z[v] be the map sending v to� 2 where� uniformizes R.
Then the base change MR = Spec R[x]/(x2 −� 2) is not normal.

Lemma 3.5.4 Let B be an A[v]-algebra. Assume that v is a regular element
in B, B[ 1

v
] is flat over A[v, 1

v
], and B/v is flat over A[v]/v = A. Then B is

flat over A[v].
Proof Let x ∈ Spec B, and let y be the image of x in Spec A[v]. We need to
show Bx is flat over A[v]y . If x ∈ Spec B[ 1

v
], this is part of our hypothesis.

If x ∈ Spec B/v, our hypotheses imply Bx/v is flat over A[v]y/v, and that

Tor
A[v]y
1 (A[v]y/v, Bx ) = 0. We conclude by the local criteria of flatness ([75,

Lemma 10.98.10, Tag 00MD]). ��
Lemma 3.5.5 Assume Setup 3.5.1. Then there is a non-empty open subscheme
U ⊂ S such that the base change M ×X×S (X ×U )→ X ×U is flat.

Proof We already observed that the coordinate v ∈ O(X) is regular in M . Let
M0 be the S-scheme M ×X {0}. Since S is integral, by generic flatness ([75,
Tag 0529]), there is a non-empty open U ⊂ S such that M0 ×S U is flat over
U . On the other hand M0 → X0 × S is smooth, hence flat. We conclude by
Lemma 3.5.4. ��
Remark 3.5.6 The above proof actually shows that Lemma 3.5.5 holds under
much less restrictive conditions than Setup 3.5.1: In fact one only needs a
finitely presented map M → X × S such that S is integral, v is regular in M
and M0 → X0 × S is flat.

Lemma 3.5.7 Assume Setup 3.5.1, and furthermore assume that M → X× S
is flat. Then there is a non-empty open subscheme U ⊂ S such that the map
M0 ×S U → S has geometrically S1 fibers.

Proof Our hypotheses imply that the fiber over the generic point of S of the
composition M → X × S → S is geometrically normal. By [37, Propo-
sition 9.9.4], there exists a non-empty open subscheme U ⊂ S such that
M ×S U → S has geometrically normal fibers. Hence for each geometric
point u of U , M ×S u is normal, and in particular S2. Since the fiber M0×S u
is the zero subscheme of a regular element v ∈ O(M ×S u), it is S1. ��
Lemma 3.5.8 Assume Setup 3.5.1, and furthermore that M → X × S is flat.
Then there is a non-empty étale S-scheme U → S such that for any discrete
valuation ring R and a map f : Spec R → U which sends v to a uniformizer
of R, the base change MR = M ×X×S, f (X ×U ) is R1.

Proof It suffices to treat the case M is affine. As in the proof of Lemma 3.5.7,
by shrinking S, we may assume M → X × S has geometrically normal fibers.
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Let η = Spec κ be the generic point of S. Then there exists a finite
(and necessarily separable) extension κ ′ of κ such that all irreducible com-

ponents (with the reduced scheme structure) of (M0)κ ′
def= M0 ×S Spec κ ′

are geometrically integral. The map (M0)κ ′ → Spec κ ′ extends to a map

(M0)V
def= (M0) ×S V → V where V → S is an irreducible affine étale

S-scheme. By [75, Tag 0553], we may replace V by an open subset so that for
any irreducible component Z of (M0)V , the map Z → V has geometrically
integral fibers. This implies implies that for any discrete valuation ring R and
a map f : Spec R → X × V sending v to a uniformizer � of R, all the
irreducible components of the special fiber of the base change MR → Spec R
are obtained by base change from the irreducible components of (M0)V . (This
is because the base change of Z → X × V to Spec R will have geometrically
integral fibers over Spec R/� . It is here that we use the assumption that v is
sent to a uniformizer of R.)

We now denote Spec B = M ×X×S (X × V ). Then B is normal, and
(M0)V = Spec B/vB. Let P be the finite set of minimal primes of B/vB,
which we also view as the height 1 primes of B containing v.

Let p ∈ P , and we fix a finite set {yp,i }I of generators for p. Since B is
regular in codimension 1, the localizations Bp is a discrete valuation ring.
Hence there is an element xp ∈ p ⊂ B which generates p/p2 ⊗B Bp as a
Bp-module. This implies that the module p/(xp+ p2) as a module over B/p is
supported on a proper closed subset of Spec B/p. Thus there is fp ∈ B with
fp /∈ p, and ap,i ∈ B for each i ∈ I such that

fp yp,i ≡ ap,i xp mod p2. (3.4)

We remark that these relations persists on any base change of B. Now consider
the subscheme V ( fp) = Spec B/( fp + p) ↪→ Spec B/p→ V . The locus of
points in V where the fiber of V ( fp) has the same dimension as the fiber of
Spec B/p is constructible, and does not contain the generic point of V . Hence
there is an affine Zariski open Vp ⊂ V over which the fiber of V ( fp) has
dimension strictly less than the dimension of the fiber of Spec (B/p).

We finally claim that U = ⋂

P Vp satisfies the conclusion of the lemma.
Indeed, let R be a discrete valuation ring and f : Spec R → X × V sending
v to a uniformizer � of R. Let MR = Spec B ′. We already observed that the
minimal primes of B ′/v = B ′/� are pB ′/v for p ∈ P . But now equation
(3.4) holds in B ′, and furthermore our arrangement guarantees that fp /∈ pB ′.
This implies pB ′p is generated by xp, hence B ′p is a discrete valuation ring. ��
Proof of Proposition 3.5.2 We first pick a Zariski open U1 ⊂ S for which
conclusion of Lemma 3.5.5 holds. We then pick a Zariski open U2 ⊂ U1 for
which the conclusion of Lemma 3.5.7 holds. We let U3 → U2 be the étale
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map for which the conclusion of Lemma 3.5.8 holds. Thus the base change
M×X×S U3 → U3 satisfies the conclusions of Lemmas 3.5.5, 3.5.7, 3.5.8. We
let U be the image of U3 in S, then U is an open subscheme of S. We claim
that this choice of U satisfies the conclusion of the Proposition.

Indeed, let R be a complete discrete valuation ring and f : Spec R → U
be a map that such that v is sent to a uniformizer of R. Since R is complete,
we can lift f to a map Spec R → U3, which we will abusively call f again.
Then the base change MR = M is a base change of M ×X×S U3 → X ×U3
along f : Spec R → U3. Hence MR → Spec R is flat and is R1 at the generic
points of its special fiber. Since the generic fiber of MR is smooth (being a
base change of M0 → X0× S), MR is R1. Furthermore, since the special fiber
of MR is S1 and MR is flat over Spec R, MR is S2. Thus MR is normal. ��

3.6 Sections

Proposition 3.6.1 Let M → X × S be a flat finite type map of finite type
Z-schemes, and S is irreducible with characteristic 0 generic point. Suppose
we have a section s : S → M0. Then there exists a non-empty Zariski open
subscheme U ⊂ S and a closed subscheme Z ↪→ M ×X×S (X ×U ) such that

• Z → X ×U is flat and quasi-finite.
• Z contains the section s|U : U → (M0)×S U

(recall from §3.5 that M0 is the fiber of M along the zero section 0 : SpecZ →
X).

Proof Let Spec κ → S be the generic point of S, and consider the base change
Mκ → Xκ = A1

κ . The section s induces a κ-point sκ of (M0)κ . Since Mκ →
Xκ is flat, it is generizing, andwe can find a point x of Mκ lying over the generic
point of Xκ whose closure contain sκ . The closure of x in Mκ is an irreducible
curve in Mκ which dominates Xκ , and is hence is flat and quasi-finite over
Xκ . Now, x ⊂ Mκ extends to a closed subscheme Z ⊂ M ×X×S (X × V ) for
some non-empty Zariski open V ⊂ S. Note that Z contains the generic point
of the section s, hence also contains s|V : V → (M0)×S V .

Now there is a non-empty Zariski open W ⊂ X × V containing Xκ , over
which the map Z → X × V is flat and quasi-finite. Then the image of (X ×
V )\W in V is constructible and does not contain the generic point of V , hence
its complement contains a non-empty Zariski open U ⊂ V ⊂ S. Replacing Z
by Z ∩ (X ×U ), U and Z satisfy the desired properties. ��
Corollary 3.6.2 Let M → X × S, s : S → M0 as in Proposition 3.6.1.
Then there is an integer e and a non-empty Zariski open U ⊂ S depending on
M, S, s with the following property: for any complete discrete valuation ring
R and a map f : Spec R → X × U sending v to an element with positive
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valuation in R, there exist a finite DV R extension R′ of R of degree ≤ e, and
an R′-point of MR lifting the point induced by s in the special fiber of MR.

Proof We takeU and Z ⊂ M×X×S(X×U ) as in the conclusion of Proposition
3.6.1, and let e be the maximal degree of a fiber of Z → X×U . Then the base
change Z R → Spec R is flat, quasi-finite and contains the point induced by s.
Since R is complete, [75, Tag 04GE] shows that Z R must contain a connected
component C which is finite flat over R contains the closed point induced by
s. The normalization of C then breaks into a disjoint union of the spectrum
of finite complete DVR extensions of R, whose degrees are ≤ e. One of these
components will have its closed point mapping into s. ��

3.7 Products

Let J be a finite set. Let λ ∈ X∗(T∨)J = X∗(T )J be dominant. For j ∈ J ,
λ j ∈ X∗(T∨) will denote the j th component.

We define MX,J (λ,∇) = ∏

j∈J MX (λ j ,∇), where the product means
fiber product over X . We have MX,J (λ,∇) ⊂ (GrG,X ×An)J .

Let z̃ = (̃z j ) j∈J ∈ ˜W∨,J . As in Definition 3.2.9, we have constant sections
z̃ j : An → (GrG,X ×X {0})×An , and these compile into a section z̃ : (An)J →
((GrG,X ×X {0}) × An)J . We thus get an induced Z-point on each fiber of
((GrG,X ×X {0})× An)J → (An)J , which we abusively still call z̃.

The following Theorem is the main result of this section:

Theorem 3.7.1 Fix an integer e > 0. There exists a Zariski open U =
U ({λ j }, e, n) ⊂ An which depends only on e, n and the subset {λ j } ⊂
X∗(T∨), such that: For any complete discrete valuation ring R and any map
f : Spec R → X ×Z

∏

j∈J U such that v is sent to an element of valuation at
most e, the base change MX,J (λ,∇)R → Spec R is flat and unibranch at any
point of the special fiber of MX,J (λ,∇)R which lies in a section z̃. Further-
more, letting U (̃z, λ,∇)R = U (̃z) ∩ MX,J (λ,∇)R, the mR-adic completion
of O(U (̃z, λ,∇)R) is a domain.

Proof To simplify notation, in this proof we will set M j = MX (λ j ,∇),
and MJ = ∏

j∈J M j = MX,J (λ,∇). For s̃ ∈ W∨, we also abbreviate
U j (̃s) = M j ∩ U (̃s).

We first observe that (M j )0 = M j ×X {0} can only meet a section s̃ which
occurs in the subset {wtν ∈ ˜W∨| ν ∈ Conv(λ j )}. Note that the latter is a finite
set depending only on λ j .

Let η be the generic point of An . For each j ∈ J , let Fix j to be the set of
s̃ ∈ ˜W∨ such that the section s̃ meets (M j )0 ×An η.

We can now find a non-empty Zariski open S j ⊂ An depending only on λ j
such that
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• M j ×X×S (X × S j )→ X × S j is flat
• (M j ×X×S (X × S j ))0 contains the restriction of the sections (̃s)|S j for

s̃ ∈ Fix j , and is disjoint from any section s̃ /∈ Fix j .
• (2hλ j )! is invertible in S j .

Indeed the first item can be arranged by Remark 3.5.6, and the second item
can be arranged by the standard constructibility argument: indeed for any
s̃ ∈ {wtν ∈ ˜W∨| ν ∈ Conv(λ j )} \ Fix j , the image of s̃ ∩ (M j )0 under the
projection to S is a constructible set not containing η, hence its complement
must contain a non-empty open subset of S. We let S = ∩ j∈J S j , so S depends
only on the set {λ j }. For the rest of the proof we replace M j by its restriction
M j |S .
By construction, for each j ∈ J , M j → X × S is flat. Applying Corollary

3.6.2 to this family and the sections s̃ with s̃ ∈ Fix j , there is a Zariski open
V ⊂ S and an integer ẽ such that: For any complete discrete valuation ring
R and a map f : Spec R → X × S sending v to an element with positive
valuation of R, there is a finite extension R′/R of degree≤ ẽ such that (M j )R
has an R′-point for all j ∈ J . Since the data we used to apply Corollary 3.6.2
depended only on {λ j | j ∈ J }, so does V and ẽ.

Now for any integer 1 ≤ l ≤ e and j ∈ J , we let ˜M j,lẽ! be the normalization

of M j,lẽ!
def=M j×X×S,v �→vlẽ! (X×S). ByProposition 3.3.8, each ˜M j,k → X×S

satisfies Setup 3.5.1. We now let U ⊂ V ⊂ S be the Zariski open which
satisfies the conclusion of Proposition 3.5.2 for all the ˜M j,k , and furthermore
that e!̃e! is invertible in U . Clearly U depends only on {λ j | j ∈ J } and e.

We claim that the U thus constructed satisfies the conclusion of the theo-
rem. Let R be a complete DVR and f : Spec R → X ×Z

∏

j∈J U such that
v is sent to an element a with valuation l ∈ [1, e]. Since all our schemes are
excellent and Noetherian, being unibranch at a point is equivalent to being
analytically irreducible. Therefore, it suffices to establish the unibranch prop-
erty after making an unramified extension of R. Thus, we may and do assume
that R has separably closed residue field. Then for any integer m invertible in
the residue field of R, there is a unique extension of R of degree m, namely
the extension obtained by adjoining the mth root of any uniformizer of R. Let
R′ be the unique extension of R of degree ẽ!, so R′ contains all extensions of
degree ≤ ẽ of R. We may choose a uniformizer� of R′ so that� lẽ! = a. By
construction of V , for each j ∈ J and s̃ ∈ Fix j , (M j )R admits an R′-point
lifting the point s̃ in special fiber of (M j )R .
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Our choice of uniformizer� gives rise to a commutative diagram

˜M j,lẽ!

M j,lẽ! M j

X ×U v �→vlẽ!
X ×U

Spec R′
f ′

Spec R

f

(3.5)

Here the map f ′ is induced from f and the map Spec R′ → X sending v
to the uniformizer � of R′. We note that the base change of (M j )R to R′
is also the change of M j,lẽ! → X × U along f ′. The construction of U
implies that the base change (˜M j,lẽ!)R′ is normal, and hence is the normaliza-
tion of (M j,lẽ!)R′ = (M j )R′ . This implies that the preimage of any U j (̃s)R′
in (˜M j,lẽ!)R′ is its normalization. By Corollary 3.4.5 (which applies by the
construction of U ), for each s̃ occurring in the special fiber of (M j )R′ , its
pre-image in (˜M j,lẽ!)R′ is supported at a point. This implies that (M j )R′ is
unibranch at s̃, and hence the completed local ring O∧(M j )R′ ,̃z is a domain.
Furthermore, Corollary 3.4.5 also shows that the preimage of the special fiber
of U j (̃s)R′ in (˜M j,lẽ!)R′ is connected. By Lemma 3.7.2 below, the � -adic
completion O(U j (̃s))∧� is a domain.

We nowfinish the proof. Let z̃ ∈ ˜W∨,J such that z̃ occurs in the special fiber
of (MX,J )R . Then for each j ∈ J , the component z̃ j ∈ Fix j . The completed
local ring of (MX,J )R′ at z̃ is the completed tensor product over ̂

⊗

j,R′
O∧(M j )R′ ,̃z j

,

where the index j runs through the setJ . Now each factor c is a complete local
Noetherian domain, has an R′-point, and O∧(M j )R′ ,̃z j

[ 1
�
] is regular (since the

generic fiber of (M j )R is smooth). By [54, Proposition 2.2] (which was stated
for finite extensions of Zp, but the proof works for general complete DVRs),
the completed tensor product is also a domain. Since the completed local ring
of (MX,J )R at z̃ embeds into the completed local ring of (MX,J )R′ at z̃, the
former must also be a domain. Hence (MX,J )R is analytically irreducible at
z̃, and so is unibranch at z̃ by Remark 3.4.3(2).

Finally, we show the � -adic completion of O(U (̃z, λ,∇)R′) = ⊗R′ j
O(U j (z̃ j )R′) is a domain. To do this, instead of invoking [54, Proposition 2.2],
we use [10, Lemma A.1.1]: since each O(U j (z̃ j )R′)∧� [ 1� ] is a regular affi-
noid domain which admits a rational point over R′[ 1

�
], they are geometrically
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connected. Thus the completed tensor product ̂
⊗

jO(U j (z̃ j )R′)[ 1� ] is geo-
metrically connected. Since it is also regular, it is a domain. We conclude as
before. ��

Lemma 3.7.2 Let R be a complete DVR with uniformizer� . Let A be a finite
type flat R-algebra, and assume A[ 1

�
] is a regular domain. Furthermore,

assume that the special fiber Spec Anm/� of the normalization of Spec A is
connected. Then the � -adic completion A∧� of A is a domain.

Proof Since A is excellent, Anm is excellent and finite over A (by [75, Lemma
07QV], [75, Lemma 035S]), and we have an inclusion A∧� ⊂ Anm,∧� of

� -adic completions. It thus suffices to show that B
def= Anm,∧� is a domain.

Now our hypotheses implies that B is R-flat, excellent ([53, Main The-
orem 2]), normal ([75, Lemma 0C22]), and B[ 1

�
] is regular ([75, Lemma

033A]). Thus if B is not a domain, Spec B[ 1
�
] must be disconnected, and

hence there is a non-trivial idempotent e ∈ B[ 1
�
]. But B is normal, hence

e ∈ B. Furthermore, e /∈ � B, since if e ∈ � B, then e = e2 implies e is
infinitely divisible by � in B, and hence is 0 since B is � -adically com-
plete and separated. Similarly, (e − 1) /∈ � B. Thus the image of e in B/�
is a non-trivial idempotent, contradicting our hypothesis that Spec B/� is
connected. ��

4 Local models in mixed characteristic

In this section, we will specialize the universal models from §3 to a mixed
characteristic DVR. We introduce naive models which may not be flat but
are defined by an explicit condition. The main result is Theorem 4.6.2 which
labels the top-dimensional irreducible components of the special fiber by Serre
weights. In fact, this label is “intrinsic” to the component in the sense that com-
ponents with same label which appear in different models can be canonically
identified inside (a suitable subvariety of) the affine flag variety (see Theorem
4.3.10). Finally, we study the T∨-fixed points on these components and match
this with Herzig’s conjecture (Definition 2.6.1) in Theorem 4.7.6.

Recall thatO is a finite flat localZp-algebrawith fraction field E and residue
field F. When we decorate an object that occurs in §3 with a subscript O, it
means the base change of that object to O via the map A1 → O sending t
to −p. In particular, we have the objects LGO, L+GO, L−−GO, L+MO, and
GrG,O = L+GO\LGO. Similarly, objects decorated with E or F denote the
further base change to E or F respectively. As before, the restrictions of these
functors to the category of Noetherian O-algebras have simple descriptions
setting t = −p.
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4.1 Mixed characteristic local model

For convenience of the reader,we recall someof the discussion from§3 special-
ized overO. As explained at the end of §3.1, since v is invertible in E[[v+ p]],
GrG,E is isomorphic to the affine Grassmannian of GLn over E . Similarly,

IF
def= L+GF is the usual Iwahori group scheme. (In §5.1, we introduce a

version of I over O but for now, we only need it over F.) Then

(GrG,O)F = Fl
def= IF \L(GLn)F

is the affine flag variety over F.
Let λ ∈ X∗(T∨) be a dominant cocharacter of T∨ ⊂ GLn . Define S◦E (λ) ⊆

GrGLn,E to be the open affine Schubert cell associated to (v+ p)λ ∈ GrGLn,E ,
SE (λ) ⊆ GrGLn,E its Zariski closure, and M(≤ λ) the Zariski closure of
SE (λ) in GrG,O. Then M(≤ λ) is the Pappas–Zhu local model defined in
[69] associated to the group GLn , the conjugacy class of λ, and the Iwahori
subgroup.

Let a ∈ On . Let R be a Noetherian O-algebra. Recall that

L+MO(R) = {M ∈ Matn(R[[v + p]]) | M is upper triangular mod v}.

Define the closed subfunctor LG∇a
O ⊆ LGO by the condition that

LG∇a
O (R)

def=
{

A ∈ LGO(R) | v
d A

dv
A−1

+ADiag(a)A−1 ∈ 1

v + p
L+MO(R)

}

. (4.1)

It is easy to see that L+GO(R) · LG∇a
O (R) ⊆ LG∇a

O (R) and hence we get a

closed subfunctor Gr∇a
G,O

def= L+GO\LG∇a
O ⊆ GrG,O (viewed as functors on

Noetherian O-algebras). Comparing with (3.1), Gr∇a
G,O is clearly the fiber of

the universal Gr∇G,X over the O-point (−p, a).

Proposition 4.1.1 Let a ∈ On. There is a natural isomorphism

S◦E (λ) ∩ Gr∇a
G,O

∼−→ (Pλ\GLn)E

where Pλ is the parabolic subgroup of GLn determined by the condition that
the αth entry vanishes for all roots α such that 〈λ, α∨〉 < 0. In particular,
S◦E (λ) ∩ Gr∇a

G,O is a closed, irreducible, projective and smooth subscheme of
SE (λ).
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Proof This is Proposition 3.3.4 base changed to E and taking the fiber over
a ∈ An(E). ��

We can now define the local model associated to λ and a.

Definition 4.1.2 Let a ∈ On . Define M(λ,∇a) to be the Zariski closure of
S◦E (λ)∩Gr∇a

G,O in M(≤ λ). It is a projective, flat,O-scheme of relative dimen-
sion dim(Pλ\GLn)E .

4.1.1 Naive local model

Definition 4.1.3 Let a ∈ On . Define

Mnv(≤ λ,∇a) = M(≤ λ) ∩ Gr∇a
G,O .

Remark 4.1.4 There is a natural inclusion of Mnv(≤ λ,∇a) into the base
change Mnv

X (≤ λ,∇) via the map Spec O → X × An given by (−p, a)
which is an isomorphism on the generic fibers over E . It is in fact the case
that this map is an isomorphism, though we will not need to know this: By
[62, Théorème 1.5], the global Schubert variety SX (λ) is flat over X , hence
the base change of SX (λ) along Spec Zp → X induced by t �→ −p is flat,
hence coincides with M(≤ λ). Imposing Eq. 4.1 yields the result.

Proposition 4.1.5 For any λ′ ∈ X∗(T∨) dominant with λ′ ≤ λ and a ∈ On,

M(λ′,∇a) ⊂ Mnv(≤ λ,∇a).

Proof Since S◦E (λ′) ⊂ SE (λ), S◦E (λ′)∇a ⊂ Mnv(≤ λ,∇a)E . This gives the
desired inclusion. ��

Notice in Proposition 4.1.5 that the generic fiber of Mnv(≤ λ,∇a) contains
the generic fibers of themodels M(λ′,∇a) for all λ′ ≤ λ. For later applications,
we will need an O-flat model with the same generic fiber. With that in mind,
we make the following definition

M(≤ λ,∇a)
def=
⋃

λ′≤λ
M(λ′,∇a), (4.2)

which is O-flat and projective and clearly satisfies M(≤ λ,∇a) ⊂ Mnv(≤ λ,
∇a).

Proposition 4.1.6 The above inclusion induces an equality

M(≤ λ,∇a)E = Mnv(≤ λ,∇a)E .
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Proof Since E is characteristic 0, by Corollary 3.3.5 and Proposition 3.3.8
Mnv(≤ λ,∇a)E

∼= ∐

λ′≤λ(Pλ′\GLn)E . In particular, the generic fiber is the
reduced disjoint union of the generic fibers of M(λ′,∇a) for λ′ ≤ λ. ��

4.2 Special fiber

In this section, we study the special fiber Mnv(≤ λ,∇a)F of Mnv(≤ λ,∇a)

which is a closed subscheme of the affine flag variety Fl = GrG,F. In particular,
we study the condition (4.1) overF. To ease notation,we let Fl∇a = Gr∇a

G,F ⊂ Fl
be the closed subscheme defined by the condition (4.1) restricted toF-algebras.
Note that when R is a Noetherian F-algebra, L+MO(R) appearing in (4.1) is
the same as Lie IF(R)

def= {M ∈ Matn(R[[v]]) | M is upper triangular mod v}.
Recall that by [69, Theorem 9.3] (which is a consequence of the coherence

conjecture proven in [85]) the special fiber M(≤ λ)F can be identified with

the reduced union of the affine Schubert cells S◦
F
(w̃)

def= IF\IFw̃IF for w̃ ∈
Adm∨(λ). The goal of this section is to describe S◦

F
(w̃)∩Fl∇a , thereby giving

a topological description of Mnv(≤ λ,∇a)F.

Remark 4.2.1 The special fibers of Mnv(≤ λ,∇a) and M(λ,∇a) are not
reduced in general (see Remark 8.1.4).

Definition 4.2.2 Let R be an F-algebra and a = (a1, . . . , an) ∈ Rn . For
any positive integer m, we say a is m-generic if for all i �= j , ai − a j /∈
{−m,−m + 1, . . . ,m − 1,m}, where −m,−m + 1, . . . are considered as
elements of Fp ↪→ F.

Remark 4.2.3 Let ν ∈ X∗(T ) ∼= Zn . If tν ∈ ˜W is m-generic in the sense
of Definition 2.1.10(2), then ν mod p ∈ (Fp)

n is m-generic in the sense of
Definition 4.2.2.

Let d
def= dim(B\GLn)F. Recall the α critical strip H (0,1)

α = {x ∈ V | 0 <
〈x, α∨〉 < 1} from §2.1.1. We now state the main result of this section.

Theorem 4.2.4 Let h be a positive integer. Let w̃ ∈ ˜W and a ∈ On. Assume
that w̃ is h-small (Definition 2.1.10(3)) and that a = a mod � ∈ Fn is h-
generic. Then the intersection S◦

F
(w̃∗) ∩ Fl∇a is an affine space of dimension

d − #{α ∈ �+ | w̃(A0) ⊂ H (0,1)
α }.

Lemma 4.2.5 Let λ ∈ X∗(T∨) = X∗(T ). Let hλ = maxα∨{〈λ, α∨〉}. If
w̃ ∈ Adm(λ), then w̃∗ ∈ Adm∨(λ) and w̃∗ is hλ-small.

Proof This follows directly from [56, Lemmas 2.1.4 and 2.1.5].
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Corollary 4.2.6 Let λ ∈ X∗(T∨) be a dominant cocharacter. Assume that
a = a mod � ∈ Fn is hλ-generic. Then there is a natural bijection

w̃ �→ (S◦
F
(w̃∗) ∩ Fl∇a)

between Admreg(λ) and the top-dimensional irreducible components of
Mnv(≤ λ,∇a)F.

Proof By [69, Theorem 9.3], M(≤ λ)F is the reduced union of S◦
F
(̃z) for

z̃ ∈ Adm∨(λ). Thus, (Mnv(≤ λ,∇a)F)red is the reduced union of S◦
F
(̃z)∩Fl∇a .

By [56, Lemma 2.1.4], any such z̃ is of the form w̃∗ for w̃ ∈ Adm(λ). By
Lemma 4.2.5, all z̃ ∈ Adm∨(λ) satisfy the hypotheses of Theorem 4.2.4.
Thus, S◦

F
(̃z)∩Fl∇a has maximal dimension d if and only if z̃ = w̃∗ where w̃ is

regular. Moreover, the assignment w̃ �→ (S◦
F
(w̃∗) ∩ Fl∇a) is injective: indeed

if (S◦
F
(̃z) ∩ Fl∇a) = (S◦

F
(̃z′) ∩ Fl∇a) then S◦

F
(̃z) ∩ Fl∇a and S◦

F
(̃z′) ∩ Fl∇a are

both open and nonempty in an irreducible scheme and so must intersect. In
particular, S◦

F
(̃z) and S◦

F
(̃z′) intersect so that z̃ = z̃′. ��

The remainder of the section is devoted to the proof of Theorem 4.2.4 by
studying the ∇a- condition (4.1) in terms of explicit coordinates for S◦

F
(w̃∗).

Let w̃ ∈ ˜W . The open affine Schubert cell S◦
F
(w̃∗) ⊂ Fl is an affine space of

dimension �(w̃∗). We now recall explicit coordinates for the affine space using
the open cell.

Recall that the roots � of G = GLn are canonically identified with the
coroots of G∨ and so we use the same notation for both. Thus, for any integer
m and any α ∈ �, we have an affine root group Uα,m of G∨. Concretely, if
α = αik with i �= k, then Uα,m is the unipotent group with ik-entry cvm for c
a constant and all other non-diagonal entries zero.

Specializing Definition 3.2.1 to F (hence t = 0), we have

L−−GF(R)
def=
{

g ∈ GLn

(

R
[1

v

]) ∣

∣

∣ g mod
1

v
is lower unipotent

}

.

In particular, Uα,m ⊂ L−−GF if and only if m ≤ −δα>0. (Recall from §1.8.3
that δP is 1 if P is true and 0 if P if false.)

We first record two easy lemmas.

Lemma 4.2.7 If w̃ = stν ∈ ˜W and we set z̃ = w̃∗ ∈ ˜W∨, then z̃−1U−α,mz̃ =
U−s(α),m+〈ν,α∨〉.

Now fix x ∈ A0.

Lemma 4.2.8 If w̃ ∈ ˜W and we set z̃ = w̃∗ ∈ ˜W∨, then U−α,m ⊂ z̃−1IF z̃ if
and only if 〈w̃(x), α∨〉 < m. Similarly, U−α,m ⊂ z̃−1L−−GF z̃ if and only if
m < 〈w̃(x), α∨〉.
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Proof Let w̃−1 be stν . By Lemma 4.2.7, U−α,m ⊂ z̃−1IF z̃ is equivalent
to U−s(α),m+〈ν,α∨〉 = z̃U−α,mz̃−1 ⊂ IF. This is equivalent to the fact
that m + 〈ν, α∨〉 > 〈x, s(α)∨〉 (note that $〈x, s(α)∨〉% = δs(α)>0), or that
m > 〈s−1(x)− ν, α∨〉 = 〈w̃(x), α∨〉. The proof of the second part is similar.

��
Definition 4.2.9 For any z̃ ∈ ˜W∨, define Nz̃

def= z̃−1L−−GF z̃ ∩ IF.

We can use Lemma 4.2.8 to characterize the affine roots which appear in
Nw̃.

Proposition 4.2.10 If w̃ ∈ ˜W and set z̃ = w̃∗ ∈ ˜W∨, then U−α,m ⊂ Nz̃ if
and only if

〈x, α∨〉 < m < 〈w̃(x), α∨〉. (4.3)

Proof This follows from the definition of Nz̃ and Lemma 4.2.8. ��
Let dα,w̃ be �〈w̃(x), α∨〉� − $〈x, α∨〉%. Note that $〈x, α∨〉% = δα>0.

Remark 4.2.11 If w̃ is m-small, then dα,w̃ ≤ m for any α ∈ �.
The following elementary corollary describes the entries of Nw̃ in terms of

“polynomials with degree bounds”.

Corollary 4.2.12 Let R be a Noetherian F-algebra and α ∈ �. Then
(Nw̃∗(R))−α = {vδα>0 fα,R} where fα,R ∈ R[v] has degree dα,w̃ (with the
convention that fα,R = 0 if dα,w̃ < 0.)

The significance of Nz̃ lies in the following standard description of the affine
Schubert cell over F.

Proposition 4.2.13 Let z̃ ∈ ˜W∨. The subgroup scheme Nz̃ is a finite-
dimensional affine unipotent group scheme over F. The natural map

z̃Nz̃ → S◦F(̃z)

is an isomorphism of affine spaces of dimension �(̃z).

Before giving the proof of Theorem 4.2.4, we collect a series of preliminary
results.

Definition 4.2.14 Define the support of Nw̃ (denoted Supp(Nw̃)) to be the set
of α ∈ � such that Uα,m ⊂ Nw̃ for some m.

Corollary 4.2.15 Let α ∈ � and w̃ ∈ ˜W . Then the following are equivalent:

(1) −α ∈ Supp(Nw̃∗);
(2) �〈w̃(x), α∨〉� ≥ $〈x, α∨〉%; and
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(3) 〈w̃(x), α∨〉 > 0 and w̃(x) and x lie in different α-strips.
In particular, −Supp(Nw̃∗) ⊂ w(�+) where w ∈ W is the unique element so
that w−1w̃ ∈ ˜W+ and #Supp(Nw̃∗) = #�+ − #{α ∈ �+ | w̃(A0) ⊂ H (0,1)

α }.
Proof The equivalence of (1) and (2) follows from Proposition 4.2.10. The
equivalence between (2) and (3) is clear.

If−α ∈ Supp(Nw̃∗), then by (3), 〈w̃(x), α∨〉 = 〈w−1w̃(x), w−1(α)∨〉 > 0.
Since w−1w̃ ∈ ˜W+, we have that w−1(α) ∈ �+ and that α ∈ w(�+).

For each α ∈ �+, (3) implies that exactly one of {α,−α} is in Supp(Nw̃∗)
unless w̃(A0) ⊂ H (0,1)

α . This gives the desired formula for #Supp(Nw̃∗). ��
Corollary 4.2.16 Letw be as in Corollary 4.2.15. Then Nw̃∗ ⊂ w(L+N )w−1
where N represents the subfunctor ofGLn of unipotent lower triangular matri-
ces and L+N represents the functor on F-algebras R �→ N (R[[v]]).
Proof of Theorem 4.2.4 Letw be as inCorollary 4.2.15 so that−Supp(Nw̃∗) ⊂
w(�+). Let C = w(C0) denote the Weyl chamber corresponding to w(�+).
We use ≤C to denote the partial order on w(�+) defined by the set of simple
rootsw(�) (i.e. α′ ≤C α if and only if α−α′ is a non-negative sum of elements
in w(�)).

For any α ∈ Supp(Nw̃∗), by standard results about unipotent groups,
(N−1

w̃∗ )−α = −vδα>0 fα +Gα(<C α) where Gα(<C α) is a linear combination
of terms of the form vδα1>0+...+δαk>0 fα1 fα2 . . . fαk where α = α1 + . . . + αk
and −αi ∈ Supp(Nw̃∗). Note that if α > 0, then at least one of the αi is also
positive and so vδα>0 divides Gα(<C α).

Consider the expression

L∇a (Nw̃∗)
def= v

d Nw̃∗

dv
N−1
w̃∗ + Nw̃∗Diag(a)N

−1
w̃∗ .

Let −α ∈ Supp(Nw̃∗).
Then,

(Nw̃∗Diag(a)N
−1
w̃∗ )−α = 〈a, α∨〉vδα>0 fα + Gα(<C α)+ F2,α(<C α) (4.4)

where F2,α(<C α) is a linear combinationof termsof the formvδα1>0 fα1Gα2(<C
α2) where α1 + α2 = α and −α1,−α2 ∈ Supp(Nw̃∗). (Recall from 1.8.1 that
〈a, α∨〉 denotes the difference ai − ak if α = εi − εk and a = (a1, . . . , an) ∈
Fn .) Note that if α > 0, then at least one of the α1, α2 is also positive and so
vδα>0 divides F2,α(<C α).

Let fα =∑dα,w̃
i=0 cα,ivi . Set

f ∗α
def= (v

d Nw̃∗

dv
)−α = vδα>0

dα,w̃
∑

i=0
(i + δα>0)cα,ivi .
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Since the diagonal terms of v d Nw̃∗
dv are zero, a direct computation shows that

(v
d Nw̃∗

dv
N−1
w̃∗ )−α = vδα>0

dα,w̃
∑

i=0
(i + δα>0)cα,ivi + F1,α(<C α), (4.5)

where F1,α(<C α) is a linear combination of terms of the form f ∗α1Gα2(<C α2)
where α1+α2 = α and−α1,−α2 ∈ Supp(Nw̃∗). By the same logic as above,
F1,α(<C α) is always divisible by vδα>0 .
Combining (4.4) and (4.5),

L∇a (Nw̃∗)−α = vδα>0
dα,w̃
∑

i=0
(i + δα>0 + 〈a, α∨〉)cα,ivi + Fα(<C α), (4.6)

where Fα(<C α) = ai Gα(<C α)+ F1,α(<C α)+ F2,α(<C α).
Finally, we consider the naive monodromy condition (4.1) on the family

w̃∗Nw̃∗ . By Leibniz rule, this is the condition that

w̃∗L∇a (Nw̃∗)(w̃∗)−1 + L∇a (w̃∗) ∈
1

v
Lie IF .

It is straightforward to check that L∇a (w̃∗) ∈ 1
v
Lie IF and so the condition

is equivalent to vL∇a (Nw̃∗) ∈ (w̃∗)−1 Lie IF w̃
∗. By Lemma 4.2.8, this is

equivalent to vdα,w̃+δα>0 = v�〈w̃(x),α∨〉� dividing L∇a (Nw̃∗)−α for all α ∈ �.
In other words, all terms but the top degree one in (4.6) must vanish for all
−α ∈ Supp(Nw̃∗).

ByRemark 4.2.11, dα,w̃ ≤ m for all−α ∈ Supp(Nw̃∗). Since a ism-generic,
i+δα>0+〈a, α∨〉 �= 0 for all α and all i < dα,w̃. The above condition on (4.6)
solves for cα,i for all i < dα,w̃ in terms of the coefficients of v−δα>0 Fα(<C α).
The coefficients of v−δα>0 Fα(<C α) are expressions in terms of coefficients
of fα′ for α′ <C α. There is no condition on cα,dα,w̃ for −α ∈ Supp(Nw̃).

Thus, if we take N∇a
w̃∗ ⊂ Nw̃∗ to be the subspace defined by these conditions,

then clearly N∇a
w̃∗ is an affine space of dimension #Supp(Nw̃∗)with coordinates

given by the cα,dα,w̃ for all −α ∈ Supp(Nw̃∗). Since w̃∗N∇a
w̃∗ is isomorphic to

S◦
F
(w̃∗) ∩ Fl∇a , this proves the theorem by the formula in Corollary 4.2.15. ��

4.3 Irreducible components in the special fiber

We next want to compare the irreducible components of the special fibers
Mnv(≤ λ,∇a)F for different pairs (λ, a). To do this, we introduce a common
space in which they all embed.

123



1364 D. Le et al.

Define Fl∇0 to be the fpqc-sheafification of the sub-presheaf on F-algebras
R

R �→
{

IF A ∈ IF(R)\LGLn(R) | (v d

dv
A)A−1 ∈ 1

v
Lie IF(R)

}

. (4.7)

This is a special case of Gr∇a
G,F where a = (0, 0, . . . , 0), hence the notation.

We have and action of ˜W∨ on˜Fl by right translation, induced by the standard
embedding ˜W∨ ⊂ LGLn(Z) (which sends an element w ∈ W to the n by n
matrix whose (i, j)th entries are δ j=w(i), and sends tμ to vμ).

Proposition 4.3.1 Let z̃ = s−1tμ ∈ ˜W∨ acting by right translation on Fl. Let
a ∈ Zn and assume that a ≡ s−1(μ) mod p. Then

M(≤ λ)F z̃ ∩ Fl∇0 = Mnv(≤ λ,∇a)F z̃.

Similarly, for any w̃∗ ∈ ˜W∨, we have

(

S◦F(w̃
∗)̃z
) ∩ Fl∇0 = (S◦F(w̃∗) ∩ Fl∇a

)

z̃.

In particular, right translation by z̃ induces a closed immersion

r̃z : Mnv(≤ λ,∇a)F ↪→ Fl∇0 .

Proof We show that the∇0-condition on M(≤ λ)F z̃ induces the∇a-condition
(4.1) which defines Mnv(≤ λ,∇a)F.

Let R be any Noetherian F-algebra and let A ∈ LGLn(R). We compute the
∇0-condition on the translate Ãz. Namely, IF ·( Ãz) ∈ Fl∇0 if and only if

(

v
d

dv
( Ãz)

)

z̃−1A−1 = v d

dv
(A)A−1 + ADiag(s−1(μ))A−1 ∈ 1

v
Lie IF(R)

using that v d
dv (v

μ) = Diag(μ)vμ. This is identical to the condition defining

Fl∇a = Gr∇a
G,F. ��

Since Mnv(≤ λ,∇a)F is topologically the union of S◦
F
(w̃∗) ∩ Fl∇a for w̃ ∈

Adm(λ), we consider certain translates of Schubert cells inside Fl arising from
the inclusion in Proposition 4.3.1.

Definition 4.3.2 Let s̃ ∈ ˜W and let w̃1, w̃2 ∈ ˜W+. We define:

(1) S◦
F
(w̃1, w̃2, s̃) ⊂ Fl to be the locally closed subvariety S◦

F
((w̃−12 w0w̃1)

∗)̃s∗
⊂ Fl;

(2) S◦
F
(w̃1, w̃2, s̃)∇0 def= S◦

F
(w̃1, w̃2, s̃) ∩ Fl∇0 ; and
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(3) S∇0
F
(w̃1, w̃2, s̃) to be the closure of S◦

F
(w̃1, w̃2, s̃)∇0 in Fl∇0 .

Remark 4.3.3 (1) hemotivation for considering elements of the form w̃−12 w0w̃1
is that regular elements are of this form by Proposition 2.1.5.

(2) The closure of S◦
F
(w̃1, w̃2, s̃)∇0 is usually strictly smaller than the closure of

S◦
F
(w̃1, w̃2, s̃) (which is a translate of an affine Schubert variety) intersected

with Fl∇0 (see §4.7).

Proposition 4.3.4 Let s̃ = tμs ∈ ˜W and let w̃1, w̃2 ∈ ˜W+. Let m be
a positive integer. Assume w̃−12 w0w̃1 is m-small and s̃ is m-generic. Then
S◦

F
(w̃1, w̃2, s̃)∇0 is isomorphic to an affine space of dimension d.

Proof By Proposition 4.3.1, S◦
F
(w̃1, w̃2, s̃)∇0 is isomorphic to S◦

F
(̃z) ∩ Fl∇a

where z̃ = (w̃−12 w0w̃1)
∗ for any a ∈ Zn such that a ≡ s−1(μ) mod p. As tμ

is m-generic we deduce by Remark 4.2.3 that s−1(μ)mod p is m-generic; the
result follows now from Theorem 4.2.4. ��

Proposition 4.3.4 defines a collection of irreducible closed subvarieties
S∇0

F
(w̃1, w̃2, s̃)ofFl∇0 of dimensiond, associated to certain triples (w̃1, w̃2, s̃).

As we will see, in many cases, we get the same subvariety for different triples
(w̃1, w̃2, s̃) and this is crucial in understanding how the special fibers of dif-
ferent M(≤ λ,∇a) interact.

Proposition 4.3.5 Let s̃ ∈ ˜W and let w̃1, w̃2 ∈ ˜W+. Assume that for each
i ∈ {1, 2} there exists a positive integer mi such that w̃i is mi -small. There is
a closed immersion

S◦F(w̃1, e, s̃w̃−12 )∇0 ⊂ S◦F(w̃1, w̃2, s̃)∇0 .

If s̃ is (m1 + m2)-generic, then the two sides are equal, hence

S∇0
F
(w̃1, e, s̃w̃−12 ) = S∇0

F
(w̃1, w̃2, s̃).

Proof Let z̃1 = w̃∗1 and z̃2 = w̃∗2. Then, we see that z̃1w0 z̃−12 is a reduced
expression in ˜W∨, by Lemma 2.1.4 and the proof of [56, Lemma 2.1.3] (which
says that the star operation preserves reduced expressions). By [45, Proposi-
tion 2.8], we have

IF z̃1w0 IF z̃−12 IF = IF z̃1w0 z̃−12 IF

which in particular implies that S◦
F
(w̃1, e, s̃w̃−12 )

def= S◦
F
(̃z1w0)̃z

−1
2 s̃∗ ⊂

S◦
F
(̃z1w0 z̃−12 )̃s∗ def= S◦

F
(w̃1, w̃2, s̃). This gives the desired inclusion.
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By Proposition 2.1.12, w̃−12 w0w̃1 is (m1+m2)-small and if s̃ is (m1+m2)-
generic, then s̃w̃−12 is m1-generic. Thus, if s̃ is (m1 + m2)-generic, then both
sides are affine spaces of the same dimension by Proposition 4.3.4 and so
inclusion implies equality. ��
Proposition 4.3.6 Let s̃ ∈ ˜W and w̃1 ∈ ˜W+

1 . Assume that s̃ is (n−1)-generic.
Then, for any w ∈ W ,

S∇0
F
(w̃1, e, s̃) = S∇0

F
(w̃1, e, s̃w−1).

We prove the Proposition after a couple of Lemmas.

Lemma 4.3.7 Let s̃, w, w̃1 be as in Proposition 4.3.6. Then,

S◦
F
(w̃1, e, s̃) = S◦

F
(w̃1, e, s̃w−1)

where closure is taken in Fl.

Proof Translating by (̃s∗)−1 inside FlF, it suffices to consider the case where

s̃ is the identity. Recall that S◦
F
(w̃1, e, e)

def= S◦
F
(w̃∗1w0)

def= IF\IF w̃
∗
1w0 IF.

It suffices to show that S◦
F
(w̃∗1w0) is W∨-stable under right multiplication.

As w̃∗1w′ is a reduced expression for all w′ ∈ W∨ (as follows from a gallery
argument and the fact that the ∗-involution is length preserving), by [45, Propo-
sition 2.8], S◦

F
(w̃∗1w0) contains IF\IF w̃

∗
1 IFw

′ IF for any w′ ∈ W∨. By the
Bruhat decomposition L+GLn = ∪w′∈W∨IFw

′ IF, so that S◦
F
(w̃∗1w0) is the

closure of IF\IF w̃
∗
1 L+GLn , which is evidently W∨-stable under right mul-

tiplication. The result follows.

Lemma 4.3.8 Let s̃, w̃1 be as in Proposition 4.3.6. If sα is a simple reflection
for α ∈ �, then

w̃∗1w0sα s̃∗ ∈ S∇0
F
(w̃1, e, s̃).

Proof Set z̃ = w̃∗1w0 and z̃′ = z̃sα . Since w0 is longest element in W∨
and sα is a simple reflection, we deduce from Lemma 2.1.4 that z̃′ ≤ z̃ and
�(̃z′) = �(̃z)− 1. Let Lα ⊂ GLn denote the minimal standard Levi subgroup
containing Uα,0 and U−α,0. Consider the family

Xα
def= IF\IF z̃′Lα ⊂ Fl .

We clearly have z̃ = z̃′sα ∈ Xα , and it is standard result that Xα ∼= P1
F
and

Xα ⊂ S◦
F
(̃z) (see, for example, [67, Proposition 8.8]).
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We show that Xα s̃∗ ⊆ Fl∇0 . This will imply that Xα s̃∗ ⊂ S∇0
F
(w̃1, e, s̃),

hence the statement. For any A ∈ Lα , the∇0-condition (4.7) on z̃′ Ãs∗ is given
by

v
d

dv
(̃z′)(̃z′)−1 + z̃′Av d

dv
(̃s∗)(̃s∗)−1A−1(̃z′)−1 ∈ 1

v
Lie IF (4.8)

since d A
dv = 0. If s̃∗ = s−1tμ then v d

dv (̃s
∗)(̃s∗)−1 = Diag(s−1(μ)).

Thus, Av d
dv (̃s

∗)(̃s∗)−1A−1 ∈ Lie Lα . Then (4.8) is satisfied if v Lie Lα ⊂
(̃z′)−1 Lie IF z̃′.

Since α ∈ � and w̃1 ∈ ˜W+
1 , 0 < 〈w̃1(x),−w0(α)

∨〉 < 1. This implies
that −1 < 〈̃z∗(x), α∨〉 < 0, so that 〈(̃z′)∗(x),±α∨〉 < 1. The inclusion
v Lie Lα ⊂ (̃z′)−1 Lie IF z̃′ now follows from Lemma 4.2.8. ��

Proof of Proposition 4.3.6 By induction on length of w in W , we can assume
w = sα , a simple reflection for α ∈ �.

Consider S∇0
F
(w̃1, e, s̃) ⊂ S◦

F
(w̃1, e, s̃), a closed subvariety. By Lemma

4.3.7, the intersection S∇0
F
(w̃1, e, s̃)∩S◦

F
(w̃1, e, s̃sα) is open in S∇0

F
(w̃1, e, s̃). If

the intersection is non-empty, then since S∇0
F
(w̃1, e, s̃) is irreducible by Propo-

sition 4.3.4 (as w̃1 ∈ ˜W+
1 implies that w̃1 is (n− 1)-small), the intersection is

open and dense and this proves the inclusion S∇0
F
(w̃1, e, s̃) ⊆ S∇0

F
(w̃1, e, s̃sα).

(Note that S∇0
F
(w̃1, e, s̃) ∩ S◦

F
(w̃1, e, s̃sα) ⊆ S∇0

F
(w̃1, e, s̃sα).) By symmetry,

this is enough to prove the proposition.
Lemma 4.3.8 shows that the intersection is non-empty since the point

w̃∗1w0sα s̃∗ ∈ S◦
F
(w̃1, e, s̃sα) lies in S∇0

F
(w̃1, e, s̃). This completes the proof. ��

Using Propositions 4.3.5 and 4.3.6, we are able to identify the closed sub-
varieties of the monodromy affine flag variety Fl∇0 which arise in this way.
Let Irrd(Fl∇0) denote the set of irreducible subvarieties of dimension d. We
‘label’ the subvarieties in following way:

Consider (w̃1, ω) ∈ ˜W+
1 × X∗(T ). Assume that tω is (n− 1)-generic (Def-

inition 2.1.10(2)). Define

C(w̃1,ω)
def= S∇0

F
(w̃1, e, s̃) ∈ Irrd(Fl

∇0) (4.9)

for any choice of s̃ ∈ ˜W such that s̃(0) = ω. By Proposition 4.3.6, this does
not depend on the choice of s̃. Note that it also only depends on (w̃1, ω) up to
equivalence relation (w̃1, ω) ∼ (tνw̃1, ω−ν) for ν ∈ X0(T ) from §2.2. Since
w̃1 is (n − 1)-small, C(w̃1,ω) is an irreducible closed subvariety of dimension
d.
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1368 D. Le et al.

Theorem 4.3.9 Let w̃1, w̃2, s̃ ∈ ˜W such that w̃1 ∈ ˜W+
1 and w̃2 ∈ ˜W+. Let

m ≥ 1. Assume that w̃2 is m-small and that s̃ is (m + n − 1)-generic. Then

S∇0
F
(w̃1, w̃2, s̃) = C

(w̃1 ,̃sw̃
−1
2 (0)).

Proof The assumption implies that t̃sw̃−12 (0) is (n − 1)-generic by Proposition

2.1.12, and so C
(w̃1 ,̃sw̃

−1
2 (0)) is well-defined and equal to S∇0

F
(w̃1, e, w̃−12 s̃) by

(4.9). By Proposition 4.3.5,

S∇0
F
(w̃1, w̃2, s̃) = S∇0

F
(w̃1, e, s̃w̃−12 ).

��
Let λ ∈ X∗(T∨) be a dominant cocharacter. We now assume that λ is

regular. Note then that λ− η is dominant where η is our choice of lift of half-
sum of positive roots. In Corollary 4.2.6, we identified the top-dimensional
irreducible components of Mnv(≤ λ,∇a)F (with a genericity condition on a).
We now combine this with Theorem 4.3.9 to identify those same components
in Irrd(Fl∇0). This will allow us to compare special fibers for various (λ, a).

Theorem 4.3.10 Let λ be dominant and regular. Let hλ = maxα∨{〈λ, α∨〉}
and let a ∈ On. Let s̃ = tμs be (hλ+n−1)-generic. Assume that a ≡ s−1(μ)
modulo� . There is a natural bijection betweenAP(λ) (defined in (2.2))and the
d-dimensional irreducible components of Mnv(≤ λ,∇a)F)̃s∗ ⊂ Fl∇0 , given by

(w̃1, w̃2) �→ C
(w̃1 ,̃sw̃

−1
2 (0)).

Proof By Corollary 2.1.7, there is a bijection between AP(λ) and Admreg(λ)

given by (w̃1, w̃2) �→ w̃−12 w0w̃1. By Corollary 4.2.6, there is a bijection

between regular elements w̃
def= w̃−12 w0w̃1 ∈ Admreg(λ) and Irrd(Mnv(≤ λ,

∇a)F) sending w̃ to

S◦
F
(w̃∗1w0(w̃

∗
2)
−1) ∩ Fl∇a .

By Proposition 4.3.1 and Theorem 4.3.9,

(S◦
F
(w̃∗1w0(w̃

∗
2)
−1) ∩ Fl∇a )̃s∗ = S∇0

F
(w̃1, w̃2, s̃) = C

(w̃1 ,̃sw̃
−1
2 (0))

(note that w̃2 is hλ-small). ��
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4.4 T∨-torsors

Let ˜Fl be the ind-scheme representing the fpqc-sheafification of the functor on
F-algebras given by R �→ I1,F(R)\LGLn(R), where

I1,F : R �→ {A ∈ GLn(R[[v]]), A is upper triangular unipotent modulo v}.

The natural quotient map� : ˜Fl→ Fl is a T∨
F
-torsor. We define ˜M(≤ λ)F via

the Cartesian diagram

˜M(≤ λ)F
�

˜Fl

�

M(≤ λ)F Fl .

In particular, ˜M(≤ λ)F → M(≤ λ)F is a T∨
F
-torsor. Similarly, for any

a ∈ On , we have T∨
F
-torsors ˜M(λ,∇a)F → M(λ,∇a)F, ˜Mnv(≤ λ,∇a)F →

Mnv(≤ λ,∇a)F, and ˜M(≤ λ,∇a)F → M(≤ λ,∇a)F defined by analogous
diagrams. We abusively use � to denote any of these induced maps.

Remark 4.4.1 Despite the notation ˜M(≤ λ)F, we will not define (and will not
need) an object ˜M(≤ λ) overO whose special fiber is ˜M(≤ λ)F. However, we
will construct ˜U (̃z,≤ λ) (cf. (5.9)) which are torus torsors over Zariski opens
that cover M(≤ λ). The same is true of the other objects defined above.

Given our choice of embedding ˜W∨ ⊂ LGLn(Z), ˜W∨ acts by right trans-
lation on ˜Fl (see the beginning of §4.3). Hence, we can lift the map r̃z from
Proposition 4.3.1 to a Cartesian diagram:

˜Mnv(≤ λ,∇a)F

�

r̃̃z
˜Fl
∇0

�

Mnv(≤ λ,∇a)F r̃z
Fl∇0

(4.10)

where ˜Fl
∇0 is the preimage of Fl∇0 in ˜Fl.

Finally, for any (w̃, ω) ∈ ˜W+
1 × X∗(T ) where tω is (n − 1)-generic, let

˜C(w̃,ω) ⊂ ˜Fl
∇0 denote the preimage of C(w̃,ω). It is a closed irreducible sub-

scheme of dimension n + d, i.e., ˜C(w̃,ω) ∈ Irrd+n(˜Fl
∇0
).
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4.5 Products

Let J be a finite set as in §1.8. We take products of all the constructions and
results of the previous sections; this will be essential for the connection to
Galois representations in §7.3. We briefly summarize the necessary notation.

For λ = (λ j ) j∈J ∈ X∗(T∨)J = X∗(T )J . Then

Adm(λ) =
∏

j∈J
Adm(λ j ) ⊂ ˜WJ , Admreg(λ) =

∏

j∈J
Admreg(λ j ).

We can then define a local model MJ (≤ λ) = ∏ j∈J M(≤ λ j )⊂GrJG,O a

projective scheme over O. Similarly, we define ˜MJ (≤ λ)F → MJ (≤ λ)F a
T∨,J

F
-torsor.

For any a ∈ (On)J , we define local models MJ (λ,∇a),MJ (≤ λ,∇a), and
Mnv

J (≤ λ,∇a) in the natural way. We have a closed immersion of the latter

inside Fl∇0
J

def= (Fl∇0)J as in Proposition 4.3.1.

We extend the construction in Sect. 4.4 to get the corresponding T∨,J
F

-
torsors ˜MJ (λ,∇a)F, ˜MJ (≤ λ,∇a)F and ˜Mnv

J (≤ λ,∇a)F over the special

fibers. For consistency in notation, we define ˜Fl
∇0
J

def= (˜Fl
∇0
)J .

We then have analog of Proposition 4.3.1 and (4.10):

Proposition 4.5.1 Let z̃ = s−1tμ ∈ ˜W∨,J acting by right translation on FlJ

and ˜Fl
J

component-wise. Let a ∈ (On)J . If, for each j ∈ J , a j ≡ s−1j (μ j )

mod � , then right translation by z̃ induces a Cartesian diagram

˜Mnv
J (≤ λ,∇a)F

r̃̃z

�

˜Fl
∇0
J

�

Mnv
J (≤ λ,∇a)F r̃z

Fl∇0
J

where the horizontal arrows are closed immersions and the vertical arrows
are smooth T∨,J

F
-torsors.

Let dJ
def= (#J )d = (#J ) dimF(B\GLn)F. Let ω = (ω j ) j∈J ∈ X∗(T )J

where each tω j is (n − 1)-generic. Let w̃ ∈ (˜W+
1 )

J . Define

C(w̃,ω)
def=
∏

j∈J
C(w̃ j ,ω j ) ⊂ Fl∇0

J and ˜C(w̃,ω)
def=
∏

j∈J
˜C(w̃ j ,ω j ) ⊂ ˜Fl∇0

J (4.11)
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irreducible closed subschemes of dimension dJ and n(#J )+ dJ respectively
by Proposition 4.3.4 and the results of §4.4.

4.6 Local models, Deligne–Lusztig representations and Serre weights

Wenowconnect up the localmodels to the representation theory results of §2.3.
Let J = Hom(k,F) and let ζ ∈ X∗(Z)J be an algebraic central character.
Let σ denote an (n−1)-deep Serre weight for G which admits a lowest alcove
presentation compatible with ζ (see §2.2) and fix a representative (w̃1, ω) ∈
(˜W+

1 )
J × X∗(T )J for this lowest alcove presentation.

Definition 4.6.1 For σ, (w̃1, ω) and ζ as above, define

Cζ
σ

def= C(w̃1,ω)

as defined in (4.9). Note that C(w̃1,ω) does not depend on the choice of the
representative (w̃1, ω) for the ζ -compatible lowest alcove presentation of σ
(see discussion after (4.9)).

Wecannowgive a representation theoretic parametrizationof the irreducible
components of the special fiber of the local models using Theorem 4.3.10.

Theorem 4.6.2 Let λ ∈ X∗(T )J be a regular dominant weight and set
hλ = max{〈λ, α∨〉 | α ∈ �}. Let R be a Deligne–Lusztig representation
with max{2n, hλ}-generic lowest alcove presentation (s, μ) which is (λ− η)-
compatible with ζ ∈ X∗(Z). Let a ∈ (On)J such that a ≡ s−1(μ+η)modulo
� . Then

IrrdJ

(

(

Mnv
J (≤ λ,∇a)

)

F
(s−1tμ+η)

)

= {Cζ
σ | σ ∈ JH

(

R ⊗W (λ− η))}.

Remark 4.6.3 (1) One can show that Mnv
J (≤ λ,∇a)F is equidimensional of

dimension dJ when λ is regular, using arguments similar to that of the
proof of Theorem 4.3.9. As we will not need this information, we will not
pursue this here.

(2) One can askwhether Theorem 4.6.2 holds for the flat closure MJ (≤ λ,∇a)

⊂ Mnv
J (≤ λ,∇a). This is true under stronger genericity hypotheses and can

be deduced from Theorem 7.4.2. Note that the proof Theorem 7.4.2 uses
global input in order to construct the desired lifts of generic points on the
components of the special fiber.

Proof We begin with the bijection

AP(λ)
∼−→ JH

(

R ⊗W (λ− η))
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1372 D. Le et al.

from Proposition 2.3.7. In particular, each σ ∈ JH
(

R⊗W (λ− η)) is (n− 1)-
deep and there exists a unique element (w̃1, w̃2) + X0(T )J ∈ AP(λ) such

that (w̃1, ω)
def= (w̃1, (tμ+ηs)w̃−12 (0)) is representative for a lowest alcove

presentation for σ compatible with ζ .
If we write w̃1 = (w̃1, j ) j∈J and ω = (ω j ) j∈J , then by Definitions 4.6.1

and (4.11),
Cζ
σ =

∏

j∈J
C(w̃1, j , ω j ). (4.12)

Wenowexamine the top-dimensional irreducible components of
(

Mnv
J (≤ λ,

∇a)
)

F
(s−1tμ+η). We have a product structure

IrrdJ

(

(

Mnv
J (≤ λ,∇a)

)

F
(s−1tμ+η)

)

=
∏

j∈J
Irrd

(

(

Mnv(≤ λ j ,∇a j )
)

F
(s−1j tμ j+η j )

)

.

Theorem 4.3.10 says that

AP(λ j )
∼−→ Irrd

(

(

Mnv(λ j ,∇a j )
)

F
(s−1j tμ j+η j )

)

such that the d-dimensional irreducible components are exactly the C(w̃1, j , ω j )

appearing in (4.12). ��

4.7 T∨-fixed points and Serre weights

In this section, we discuss results about the T∨,J -fixed points on the compo-
nents Cζσ from Definition 4.6.1 which will used in the proof of the weight part
of Serre’s conjecture in Sect. 9.1.

Assume σ is an (n − 1)-deep Serre weight with lowest alcove presentation
compatible with ζ . Fix a representative (w̃1, ω) ∈ (˜W+

1 )
J × X∗(T )J for this

lowest alcove presentation so that Cζ
σ = C(w̃1,ω).

Recall that the T∨-fixed point of Fl under the right translation action are in
bijection with ˜W∨ under the natural inclusion ˜W∨ ⊂ Fl. It is easy to check
directly from condition (4.7) that ˜W∨ ⊂ Fl∇0 . If we let T∨,J act on Fl∇0

J
component-wise, then clearly ˜W∨,J ⊂ Fl∇0

J are exactly the T∨,J -fixed points.
We will abuse notation and use z̃ ∈ ˜W∨,J to also denote the corresponding
point of Fl∇0

J . We also recall (cf. Sect. 3.4) that there is an action of T∨,ext =
T∨ ×Gm on Fl where T∨ acts on Fl by left translation and the Gm factor acts
by loop rotation v �→ r−1v.

We start with a criteria to detect the torus fixed point of a subvariety of Fl:
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Lemma 4.7.1 Let Y ⊂ Fl be a finite type irreducible closed subscheme which
is stable under the action of T∨,ext, and let z̃ ∈ FlT

∨
be a T∨-fixed point. Let

Y ◦ ⊂ Y be an open dense subscheme of Y . Then the following are equivalent:

(1) z̃ ⊂ Y .
(2) Y ∩ L−−GF z̃ �= ∅.
(3) Y ◦ ∩ L−−GF z̃ �= ∅.

Proof Specializing the Gm-action constructed in Lemma 3.4.7 and noting that
L−−GF z̃ is the specialization of U (̃z) in loc. cit. along the map Z[v] → F

sending v to 0, we find an one parameter subgroupGm ⊂ T∨,ext which induces
a contracting action on L−−GF z̃ with unique fixed point z̃. It is clear that the
first item implies the second item. Conversely, if the second item holds, then
the first itemholds, since z̃ is the limit of aGm-orbit of any point inY∩L−−GF z̃
and Y is closed and T∨,ext-stable.

Finally, since Y ∩L−−GF z̃ �= ∅ is an open subscheme of Y , it is either empty
or open and dense in Y . Thus the second and the third item are equivalent. ��
Proposition 4.7.2 The set of T∨,J -fixed points of C(w̃1,ω) contains {(tωww̃1)

∗ |
w ∈ WJ }
Proof Since C(w̃1,ω) = ∏

j∈J C(w̃1, j ,ω j ), this reduces immediately to
a statement about C(w̃1, j ,ω j ). By Theorem 4.3.9, C(w̃1, j ,ω j ) is equal to

S∇0
F
(w̃1, j , e, tω jww0) (see Definition 4.3.2((3))) which is easily seen to con-

tain the point (tω jww̃1, j )
∗. ��

As discussed in Remark 4.3.3((2)), S∇0
F
(w̃1, j , e, tω j ) can be much smaller

than SF((w0w̃1, j )
∗)tω j ∩Fl∇0 . Nevertheless under suitable genericity hypothe-

ses, they have the same T∨-fixed points.

Proposition 4.7.3 There exists a polynomial Pw̃1, j ∈ Z[X1, . . . , Xn] depend-
ing only on w̃1, j ∈ ˜W+

1 such that if Pw̃1, j (ω j ) �= 0 mod p for all j ∈ J ,
then the set of T∨,J -fixed points of C(w̃1,ω) is exactly {w̃∗tω | w̃ ≤ w0w̃1}.
Proof Fix j ∈ J . By Proposition 4.3.1, Y

def= C(w̃1, j ,ω j )t−ω j is the closure

of Y ◦ def= S◦
F
(w̃∗1, jw0) ∩ Fl∇ω j . One inclusion then follows from the standard

description of the T∨-fixed points of the closure of S◦
F
(w̃∗1, jw0) in terms of

the Bruhat order.
Fix w̃ ≤ w0w̃1, j . We need to show that z̃

def= w̃∗ belongs to Y if ω j mod p
avoids the zero locus of a universal polynomial depending only on w̃1, j . We
will deduce the result from the main result of [1], which describes the torus
fixed points of certain affine Springer fibers.

We consider the base change of the objects in Section 3.1 along the map
Z[v] → Z sending v to 0. In particular we get FlZ = GrG,X ×X Z and the
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ind-group schemes LGZ, L−−GZ, etc. Thus FlZ is the affine flag variety for
GLn over Z, and we have the open affine Schubert variety S◦

Z
(w̃∗1, jw0) ⊂ FlZ

which is isomorphic A�(w0w̃1, j ). We also have the subfunctor UZ(̃z) ⊂ FlZ by
base changing U (̃z), which coincides with L−−GZ z̃. The closed subfunctor of
LGZ ×Z A1 ×Z An which classifies triples (g, b, a) such that

b
vdg

dv
g−1 + gDiag(a)g−1 ∈ 1

v
L+M

induces a closed subscheme Y◦ of S◦
Z
(w̃∗1, jw0)×Z A1 ×Z An . Let π : Y◦ →

An+1 be the projection map. We observe

• Y ◦ is the base change of Y◦ along the map A1 ×Z An → F corresponding
to the tuple (1, ω j mod p) ∈ Fn+1.

• Let V ⊂ A1×ZAn be the open locus of tuples (b, a) such that b(i+δα>0)+
〈a, α∨〉) is invertible for all roots α and 0 ≤ i < dα,ww̃1, j . Then the proof of
Theorem 4.2.4 shows that the restriction π : Y◦|V → V is isomorphic to
the projection Ad ×Z V → V (recall from §4.2 that d = dim(B\GLn)F).

• The Gm-action on FlZ ×Z An+1 induced by the scaling action on An+1
and the trivial action on FlZ preserves Y◦.

• If k is a field and (0, a) is a k-point of V , then the reduced fiber of Y◦
above (0, a) is an open dense subset of an irreducible component of the
affine Springer fiber in Flk associated to the element va ∈ gln((v)). This is
exactly the affine Springer fiber studied in [1].

We now consider the intersection Z def= Y◦ ∩ UZ(̃z) ×Z An+1. Then by the
fourth item above and [1, Theorem 3.1], this intersection is non-empty. Thus
Z is a non-empty open subscheme of Y◦, hence its image π(Z) is open in
An+1. Since Z is also stable under the scaling Gm action, so is π(Z). Thus
there exists a non-zero homogenous polynomial ˜P ∈ Z[b, a1, · · · an] which
vanishes on the complement of π(Z)∩V . Note that Y◦, and hence ˜P depends
only on w̃1, j and z̃. Setting Pw̃1, j ,̃z(a1, · · · , an) = ˜P(1, a1, · · · an) �= 0, we
see that as long as Pw̃1, j ,̃z(ω j ) mod p �= 0, the fiber of Z at the tuple (1, ω j )

is non-empty. But this fiber is exactly Y ◦ ∩ L−−GF z̃, so Lemma 4.7.1 shows
that z̃ ∈ Y in this situation. The polynomial Pw̃1, j =

∏

z̃∗≤w0w̃1
Pw̃1, j ,̃z thus

satisfies the conclusion of the Proposition. ��
Remark 4.7.4 (1) In fact, whether Pw̃1, j (ω j ) �= 0 mod p for a j ∈ J with

Pw̃1, j as in the proof of Proposition 4.7.3 does not depend on the choice of
representative (w̃1, ω) for the lowest alcove presentation of F(w̃1,ω).

(2) If σ , σ ′ are two Serre weights for which Proposition 4.7.3 holds, then
Proposition 2.3.12 shows that σ covers σ ′ if and only if all the T∨,J -fixed
points of Cζ

σ ′ lie in Cζ
σ .
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We also record the following, which will be convenient for applications:

Proposition 4.7.5 C(w̃1,ω) is unibranch at each of its T∨,J -fixed points.

Proof Let z̃ ∈ C(w̃1,ω) is a fixed point. The result follows applying Lemma
3.4.8 to C(w̃1,ω) ∩ L−−GF z̃, using the (specialization of the) contracting Gm-
action constructed in 3.4.7. ��

We now connect back to the Herzig’s conjecture on modular Serre weights
§2.6.

Theorem 4.7.6 Suppose that (w̃1, ω) is a lowest alcove presentation of an
(n − 1)-deep Serre weight σ and (s, μ) is a 2(n − 1)-generic lowest alcove
presentation of a tame inertial L-parameter ρ over F. Suppose that both
lowest alcove presentations are compatible with ζ ∈ X∗(Z). Let w̃∗(ρ) =
(tμ+ηs)∗ = s−1tμ+η.

(1) If σ ∈ Wobv(ρ), then w̃∗(ρ) ∈ Cζ
σ .

(2) If w̃∗(ρ) ∈ Cζ
σ , then σ ∈ W ?(ρ).

(3) For each j ∈ J , let Pw̃1, j ∈ Z[X1, . . . , Xn] be as in Proposition 4.7.3. If

Pw̃1, j (ω j ) �= 0 mod p for all j ∈ J and σ ∈ W ?(ρ), then w̃∗(ρ) ∈ Cζ
σ .

Proof The set {w̃∗tω | w̃ ≤ w0w̃1} from Proposition 4.7.3 can also written
{(tωww̃2)

∗ | w ∈ WJ , w̃2 ∈ ˜W+,J , w̃2 ≤ w̃1} and taking w̃2 = w̃1 gives the
set from Proposition 4.7.2. Let (w̃1, w̃2) be the pair as in (2.14) which gives the
presentation for σ so that Cζ

σ = C
(w̃1,w̃(ρ)w̃

−1
2 (0)). Writing w̃(ρ)w̃−12 as tωw,

the first item follows from Proposition 4.7.2 and the third from Proposition
4.7.3.

For the second item, by the upper bound on T∨-fixed points of Cζ
σ , if

w̃∗(ρ) ∈ Cζ
σ then w̃(ρ) = tωw′w̃2 where w̃2 ≤ w̃1 as above. By Proposi-

tion 2.6.2, σ ∈ W ?(ρ) since w̃(ρ)w̃−12 (0) = ω. ��

5 Breuil–Kisin modules and Pappas–Zhu local models

5.1 Breuil–Kisin modules with tame descent

Throughout this sectionwe take G = GLn and consider the setting of §2.4. Let
τ : IQp → ̂T (E) be a tame inertial L-parameter over E , with an associated
tame inertial type τ : IK → GLn(E) for K as described in Example 2.4.1. We
fix throughout this section a 1-generic lowest alcove presentation (s, μ) for τ .
Let r be the order of sτ , and let K ′ be the subfield of K which is unramified
of degree r over K . Set J ′ = HomQp(K

′, E) and J = HomQp(K , E). Let

f ′ def= f r , e′ def= p f ′ − 1. We fix an isomorphism σ ′0 : K ′ ↪→ E which extends
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σ0 : K ↪→ E . The identifications J ′ ∼= Z/ f ′Z and J ∼= Z/ f Z (given by

σ j ′
def= σ ′0 ◦ ϕ− j ′ �→ j ′ and σ j

def= σ0 ◦ ϕ− j �→ j respectively) are such
that restriction of embeddings from K ′ to K induces the surjection J ′ � J
given by reducing modulo f in the above identifications. Write τ ′ for the tame
inertial type for K ′ obtained from τ via the identification IK ′ = IK induced
by the inclusion K ′ ⊆ K .

We fix an e′th root π ′ ∈ K of −p and set L ′ def= K ′(π ′). Let �′ def=
Gal(L ′/K ′) ⊂ �

def= Gal(L ′/K ). We set ωK ′(g) = g(π ′)
π ′ for g ∈ �′ and

note that ωK ′ does not depend on the choice of π ′. We can also think of ωK ′
as a character of IK ′ = IK valued in O×K ′ (the units in the ring of integers of
K ′). Composing with σ ′0, we get a character ωK ′,σ ′0 : �′ → O×. In notation

of Example 2.4.1, we have ωK ′,σ ′0 = ω f ′ and hence ωK ′,σ j ′ = ωp f ′− j ′
f ′ .

Let R be an O-algebra. Let SL ′
def= W (k′)[[u′]] and SL ′,R

def= (W (k′) ⊗Zp

R)[[u′]]. As usual, ϕ : SL ′,R → SL ′,R acts as Frobenius on W (k′), trivially
on R, and sends u′ to (u′)p.

We endow SL ′,R with an action of � as follows: for any g in �′, g(u′) =
g(π ′)
π ′ u′ = ωK ′(g)u′ and g acts trivially on the coefficients; if σ f ∈ Gal(L ′/K )

is the lift of p f -Frobenius on W (k′) which fixes π ′, then σ f is a generator for
Gal(K ′/K ), acting in natural way on W (k′) and trivially on both u′ and R. Set
v = (u′)e′ , and define

SR
def= (SL ′,R)

�=1 = (W (k)⊗Zp R)[[v]].

Set E(v)
def= v + p = (u′)e′ + p.

We will make use of the group scheme I defined overO, which is the base
change of L+G along the map A1 → Spec O sending t to 0. In other words,
for R a Noetherian O-algebra,

I(R) = {A ∈ GLn(R[[v]]) | A is upper triangular mod v}.
We also have the normal subgroup I1 of I defined by

I1(R) = {A ∈ GLn(R[[v]]) | A is unipotent upper triangular mod v}.
Note that I = T∨O � I1, where T∨O is viewed as the subgroup of I consisting
of constant diagonal matrices.

As in Sect. 4, when we decorate an object that occurs in Sect. 3 with a
subscriptO, it means we take the base change of that object toO via the map
A1 → O sending t to −p. In particular, we have the objects LGO, L+GO,
L−−GO, GrG,O = L+GO\LGO.
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In general the map v �→ v p does not extend to a homomorphism
R[[v + p]] → R[[v + p]]. However, when R is p-adically complete, we have
R[[v+ p]] = R[[v]], and so ϕ extends to R[[v+ p]]. Similarly, if p is nilpotent
in R then R((v + p)) = R((v)), and so ϕ extends to R((v + p)). Furthermore,
the group functors I and L+GO coincide on the category of p-adically com-
plete Noetherian O-algebras. Unless stated otherwise, R will be a p-adically
complete O-algebra for the remainder of the section.

For any positive integer h, let Y [0,h](R) be the groupoid of Breuil–Kisin
modules of rank n overSL ′,R and height in [0, h]:
Definition 5.1.1 Anobject ofY [0,h](R) is a pair (M, φM)whereM is a finitely
generated projectiveSL ′,R-module, which is locally free of rank n, and φM :
ϕ∗(M)→M is an injective SL ′,R-linear map whose cokernel is annihilated

by E(v)h = ((u′)p f ′−1 + p)h .

For any (M, φM) ∈ Y [0,h](R), we have a standard R[[u′]]-linear decomposi-
tion M ∼= ⊕ j ′∈J ′ M( j ′), induced by the maps W (k′) ⊗Zp R → R defined
by x ⊗ r �→ σ j ′(x)r for j ′ ∈ J ′. Note that for the corresponding R[[u′]]-
decomposition SL ′,R ∼= ⊕ j ′∈J ′R[[u′]], the action of �′ on u′ in embedding

j ′ is given by σ j ′ ◦ ωK ′ = ω
p f ′− j ′
f ′ . The Frobenius φM induces morphisms

φ
( j ′)
M : ϕ∗(M( j ′−1))→M( j ′).

Remark 5.1.2 There is choice of convention on whether the domain or target

of φ( j ′)
M should correspond to the σ j ′-embedding. We are changing the conven-

tion here from our previous works, namely [56,59,60]. The convention here
makes the connection to Hodge–Tate weights labelled by embedding and rep-
resentation theory more natural. The comparison with [56,59,60] is explained
in detail in Remark 5.1.7.

We let Y [0,h],τ (R) denote the groupoid of Breuil–Kisin modules of rank n,
height in [0, h] and descent data of type τ (cf. [17, § 3], [60, Definition 3.1.3]):
Definition 5.1.3 An object of Y [0,h],τ (R) is the datum of (M, φM) ∈
Y [0,h](R) together with a semilinear action of� onM which commutes with
φM, and such that, for each j ′ ∈ J ′,

M( j ′) mod u′ ∼= τ∨ ⊗O R

as�′-representations. In particular, the semilinear action of� induces an iso-
morphism ιM : (σ f )∗(M) ∼=M (see [59, § 6.1]) as elements of Y [0,h],τ ′(R).

We will often omit the additional data and just writeM ∈ Y [0,h],τ (R).
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Remark 5.1.4 (1) As explained in [59, § 6.1], the data of an extension of the
action of�′ to an action of� is equivalent to the choice of an isomorphism
ιM : (σ f )∗(M) ∼=M satisfying an appropriate cocycle condition. We will
use both points of view interchangeably.

(2) It is known ([15, Corollary 3.1.7], see also [17, Theorem 4.7]) that Y [0,h],τ
is a p-adic formal algebraic stack in the sense of [15, Definition A.2] and
therefore it is determined by its values on O/� a-algebras of finite type,
for a ≥ 1 (and hence, on p-adically complete Noetherian O-algebras).

(3) The appearance of τ∨ in the definition is due to the fact that we are using
the contravariant functors to Galois representations to be consistent with
[56,59]. In [59], we didn’t use the notation τ∨. Instead, we included it
in our description of descent data by having a minus sign in the equation
before Definition 2.1 of loc. cit. The notion of Kisin module with tame
descent data of type τ here is consistent with what appears in both [56,59].

Remark 5.1.5 Recall that we have fixed a lowest alcove presentation of the
tame inertial L-parameter τ . Definitions 5.1.6 and 5.1.9 below, as well as
the definition of matrix of partial Frobenius A( j)

M,β
depend on the choice of

presentation.

Definition 5.1.6 ([60, Definition 3.1.6]) LetM ∈ Y [0,h],τ (R). An eigenbasis

of M is a collection of (ordered) bases β( j ′) = ( f ( j ′)
1 , f ( j ′)

2 , . . . , f ( j ′)
n ) for

each M( j ′) for j ′ ∈ J ′ such that �′ acts on f ( j ′)
i via the character χ−1i from

(2.12) and which is compatible with the isomorphism ιM in the sense that
ιM((σ

f )∗(β( j ′))) = β( j ′+ f ) as unordered bases (with reordering given by
sτ ).

We now define the notion of matrix of partial Frobenius with respect to β for
an objectM ∈ Y [0,h],τ (R). LetM ∈ Y [0,h],τ (R) and let β be an eigenbasis for

M. DefineC ( j ′)
M,β

to be the matrix of φ( j ′)
M : ϕ∗(M( j ′−1))→M( j ′) with respect

to the bases ϕ∗(β( j ′−1)) and β( j ′). The height condition onM is equivalent to

C ( j ′)
M,β

∈ Matn(R[[u′]]) and E(v)h(C ( j ′)
M,β

)−1 ∈ Matn(R[[u′]]).
Because φ( j ′)

M commutes with descent datum, this implies a certain u′-
divisibility of the entries of C ( j ′)

M,β
. To “remove the descent datum,” we

first recall some data related to the tame inertial type τ . Let (s, μ) be a
lowest alcove presentation of τ . Recall from Example 2.4.1 that α j =
s−1f−1s−1f−2 . . . s

−1
f− j (μ f− j + η f− j ) for 1 ≤ j ≤ f − 1 and α0 = μ0 + η0, and

that sτ = s0s1 . . . s f−1 ∈ W . We have the corresponding data for τ ′ which is
the tame inertial type for K ′ obtained as the restriction to IK ′ of τ . Namely,
for any j ′ ∈ J ′, define

α′j+k f
def= s−k

τ (α j ) for 0 ≤ j ≤ f − 1, 0 ≤ k ≤ r − 1. (5.1)

123



Local models for Galois deformation rings and applications 1379

Next, for any j ′ ∈ J ′, define

a′ ( j ′) def=
f ′−1
∑

i=0
α′− j ′+i pi . (5.2)

Note that if χi are the characters appearing in τ as in (2.12), then χi = ωa′ (0)i
f ′ .

We define the orientation s′or ∈ WJ ′
of (α′j ′) j ′∈J ′ by

s′or, j+k f
def= sk+1

τ (s−1f−1s−1f−2 . . . s
−1
j+1) for 0 ≤ j ≤ f − 1, 0 ≤ k ≤ r − 1,

(5.3)
where the empty product is interpreted as the identity. It is an element of WJ ′

such that (s′or, j ′)
−1(a′ ( j ′)) is dominant, and there is a unique such element ifμ

is 0-generic. This follows from the definitions of s′or, j ′ , α
′
f ′−1− j ′ , noting that

a′ ( j ′) is dominated by p f ′−1α′f ′−1− j ′ .
Then

A( j ′)
M,β

def= Ad
(

(s′or, j ′)
−1(u′)−a′ ( j ′))

(C ( j ′)
M,β

) (5.4)

is the matrix of the j ′-th partial Frobenius of M with respect to β. (Note the
different meaning of the superscript ( j ′) when comparing with the notion of
matrix of partial Frobenii appearing in [60, § 3.6.1], [56, § 3.2], see Remark
5.1.7 below.)

Remark 5.1.7 In the discussion betweenDefinition 3.2.8 and Proposition 3.2.9
in [56], we find the definition of matrices A( j ′), attached to an eigenbasis β
forM ∈ Y [0,h],τ (R)where τ is a tame inertial type with a given lowest alcove
presentation (s, μ) in the sense of [56, Definition 2.2.5(4)]. These matrices
differ from those defined in equation (5.4) by a shift due to a change in con-
vention. We now explain in detail the differences between the conventions in
this paper, and those in [56,60].

Let τ be the tame inertial type with lowest alcove presentation (s, μ), which
we fixed at the beginning of this section. Then the lowest alcove presentation
of the tame inertial type in the sense of [56, Definition 2.2.5(4)], [60, Def-
inition 2.2.2(4)] is the element (s−, μ−) ∈ W (G)J × X∗(T )J defined by

s−, j
def= s f− j , μ−, j

def= μ f− j . Recall that in [56, § 3.2] we associate elements

sτ , s′or, j ′ , α′(s−,μ−), j+k f , and a′ ( j ′)
(s−,μ−) to (s−, μ−). The comparison between

the two conventions gives the following.

(1) The element sτ defined in Example 2.4.1 coincides with the element sτ
defined in [56, § 3.2];

(2) the element s′or, j ′ defined in (5.3) coincides with the element s′or, j ′ defined
in [56, (3.2)];
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(3) the elements α′j+k f , a
′ ( j ′) defined in (5.1), (5.2) respectively, coincide with

the elements α′(s−,μ−), j+k f , a
′ ( j ′)
(s−,μ−), defined in [56, § 3.2] and [56, (3.4)]

respectively;
(4) the characters χi defined in (2.12) coincide with the characters χi defined

in [56, (3.1)]; and
(5) for any 0 ≤ j ≤ f − 1, we have (s−)∗j t(μ−+η)∗j = s−1j+1tμ j+1+η j+1 where

the (·)∗ in the left hand side of the equality denotes the “star” opera-
tion defined in [56, Definition 2.1.2], [60, Definition 3.1.1] (in particular,
(s−)∗j = s−1−, f−1− j , (μ− + η)∗j = μ−, f−1− j + η f−1− j ).

Since the partial Frobenius φ( j ′)
M defined above is denoted as φ( j ′−1)

M in [56,

§3.2], [60] we easily deduce from items (1)–(5) that the matrix A( j ′)
M,β

defined

in (5.4) coincides with the matrix A( j ′−1) defined in [56, § 3.2] (see the dis-
cussion after Definition 3.2.8 in loc.cit.) with respect to the eigenbasis β and
(s−, μ−) as the fixed lowest alcove presentation (in the sense of [56, Defini-
tion 2.2.5(4)]).

Because τ is 1-generic, the condition that C ( j ′)
M,β

∈ Matn(R[[u′]]) is equiv-
alent to A( j ′)

M,β
∈ Matn(R[[v]]) and is upper triangular modulo v (equivalently

A( j ′)
M,β

∈ L+MO(R) if R is p-adically complete) (This follows as in [59,

Proposition 2.13], noticing by Remark 5.1.7 that C ( j ′)
M,β

would be denoted as

C ( j ′+1) in loc. cit.) Similarly, the height condition translates into the condi-

tion that E(v)h(A( j ′)
M,β

)−1 ∈ Matn(R[[v]]) and is upper triangular modulo v.

The fact that β is compatible with ιM : (σ f )∗(M) ∼= M implies that A( j ′)
M,β

only depends on j ′ mod f . Abusing notation, we occasionally write A( j)
M,β

for j ∈ J with the obvious meaning.
The following Proposition is a reformulation of [56, Proposition 3.2.9] and

describes how A( j ′)
M,β

behaves under change of eigenbasis.

Proposition 5.1.8 ([56, Proposition 3.2.9])LetM ∈ Y [0,h],τ (R) together with
two eigenbases β1 and β2 related by

β
( j ′)
2 D( j ′) = β( j ′)

1

with D( j ′) ∈ GLn(R[[u′]]) for j ′ ∈ J ′. Set I ( j ′) def= Ad
(

(s′or, j ′)
−1(u′)−a′ ( j ′))

(D( j ′)).
Then I ( j ′) ∈ I(R) depends only on j ′ mod f , and for all j ′ ∈ J ′,

A( j ′)
M,β2

= I ( j ′)A( j ′)
M,β1

(

Ad(s−1j vμ j+η j )
(

ϕ(I ( j ′−1))−1
))

,
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where j = j ′ mod f .

Furthermore, if (I ( j ′)) ∈ I(R)J ′
with I ( j ′) = I ( j ′+ f ), then Ad

(

(u′)a′ ( j ′)

s′or, j ′
)

(I ( j ′)) = D( j ′) ∈ GLn(R[[u′]]) and for any eigenbasis β, (β( j ′)

D( j ′)) j ′∈J ′ is again an eigenbasis.

Proof By Remark 5.1.7, we see that the matrix I ( j ′) defined above coincides
with the matrix I ( j ′) defined in the statement of [56, Proposition 3.2.9] (for
which we use the lowest alcove presentation (s−, μ−) in the sense of [56,
Definition 2.2.1(iv)] for τ ). From the conclusion of Remark 5.1.7, and its item
(5), we see that the statement of the Proposition is just the statement of [56,
Proposition 3.2.9] with j ′ taken to be j ′ − 1. ��
Definition 5.1.9 The shape of amod p Breuil–KisinmoduleM ∈ Y [0,h],τ (F′)
with respect to τ is the element z̃ = (̃z j ) ∈ ˜W∨,J such that for any eigenbasis

β and any j ∈ J , the matrix A( j)
M,β

lies in I(F′)̃z j I(F′). (This doesn’t depend
on the choice of eigenbasis by Proposition 5.1.8.)

We record a useful and elementary lemma for later computations:

Lemma 5.1.10 Assume that τ admits an m-generic lowest alcove presentation
(s, μ). Let R be an O-algebra.

(a) Let I ∈ I1(R). Then Ad(s−1j vμ j+η j )(ϕ(I )) ≡ 1 mod vm+1.
(b) If I ∈ GLn(R[[v]]), m ≥ 1, and I ≡ 1 mod vk , then Ad(s−1j vμ j+η j )

(ϕ(I )) ≡ 1 mod v(k−1)p+m+1.
(c) If Y ∈ Matn(R[[v]]) and is upper triangular mod v, then Ad(s−1j vμ j+η j )

(Y ) ∈ vm+1 Matn(R[[v]]).
(d) If Y ∈ vk Matn(R[[v]]), then Ad(s−1j vμ j+η j )(ϕ(Y )) ∈ v(k−1)p+m+1

Matn(R[[v]]).
Proof We provide a proof of item (a) and leave the rest to the reader. It suf-
fices to prove that Ad(vμ j+η j )(ϕ(I )) ≡ 1 mod vm+1. Recall (cf. Definition
2.1.10) that since (s, μ) is an m-generic lowest alcove presentation, for any
α ∈ �+,

m < 〈μ+ η, α∨〉 < p − m.

In particular, for such a μ to exist we need m + 1 < p.
The diagonal entries of Ad(vμ j+η j )(ϕ(I )) are the same as the diagonal

entries of ϕ(I ), which are congruent to 1 mod v p since I ∈ I1(R). For the
off-diagonal entries, let α be a positive root. The α-entry of Ad(vμ j+η j )(ϕ(I ))
is divisible by v〈μ+η,α∨〉. Similarly, the −α-entry of ϕ(I ) is divisible by v p

and so the −α entry of Ad(vμ j+η j )(ϕ(I )) is divisible by v p−〈μ+η,α∨〉. This
gives the desired divisibility. ��
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5.2 Gauge bases

The goal of this subsection is to discuss the notion of gauge basis, which
will provide a normal form for various families of Breuil–Kisin modules of
type τ , and which will be our main tool to analyze the structure of the p-
adic completion of the stack Y [0,h],τ in the next subsection. For τ sufficiently
generic relative to h, we will define the notion of a Breuil–Kisin module
admitting a z̃-gauge, for z̃ ∈ ˜W∨,J . This is an open condition in the moduli of
Breuil–Kisin modules, and thus is stable under small deformations. We then
show that such Breuil–Kisin modules admit a canonical basis adapted to z̃,
which is unique up to rescaling. An innovation compared to our previous work
[56,59] is thatwe do not just consider canonical bases associated to the shape of
a Breuil–Kisin module (which is an element of ˜W∨,J canonically attached to
each closed point of Y [0,h],τ ). The stratification by shape decomposes Y [0,h],τ
into a disjoint union of locally closed substack, and hence the property of
having constant shape is not preserved under small deformations. For this
reason, our approach here is better suited for the local study of Y [0,h],τ .

Recall that we have the twisted loop group LGO, the twisted positive loop
group L+GO and the space L+MO. Let a ≤ b be integers. We let L [a,b]GO
be the subfunctor of LGO whose value on a NoetherianO-algebra is given by
given by

L [a,b]GO(R) = {g ∈ LGO(R) | g ∈ (v + p)a L+MO(R) and
(v + p)bg−1 ∈ L+MO(R)}.

Clearly L [0,h]GO is preserved by left and right multiplication by L+GO, and
we define

Gr[a,b]G,O
def= L+GO\L [a,b]GO.

Let now L [a,b](GLn)F be the subfunctor of L(GLn)F defined on F-algebras R
by

L [a,b](GLn)F(R)
def= {A ∈ L(GLn)F(R) | v−a A, vb A−1 ∈ Matn(R[[v]])}.

(5.5)

The fpqc-sheafification of R �→ IF(R)\L [a,b](GLn)F(R) is a finite type closed
subscheme Fl[a,b] ⊂ Fl (consider the natural projection of Fl onto the affine
Grassmannian for GLn over F, and for the latter use [86, Lemma 1.1.5]).
Base changing to F, we get Gr[a,b]G,F = IF\L [a,b]GF ⊂ Fl[a,b] (where the

containment is strict).We also define˜Gr
[a,b]
G,F = I1,F\L [a,b]GF ⊂ ˜Fl[a,b], which

123



Local models for Galois deformation rings and applications 1383

is the pullback of the previous situation to ˜Fl (as in §4.4). We evidently have
(v + p)m Gr[a,b]G,O = Gr[a+m,b+m]

G,O .
We first give a presentation of the p-adic completion of the stack Y [0,h],τ

as a quotient stack. Given a pair (s, μ) ∈ WJ × X∗(T )J , we define the
(s, μ)-twisted ϕ-conjugation action of (L+GO)J on (LGO)J by

(I ( j)) j · (A( j)) j = I ( j)A( j)(Ad(s−1j vμ j+η j )
(

ϕ(I ( j−1))−1
))

.

Similarly, we define the (s, μ)-twisted conjugation action by the above for-
mula, but with the ϕ dropped. The following is essentially a reformulation of
Proposition 5.1.8:

Proposition 5.2.1 Let (s, μ) be a lowest alcove presentation of τ . Then
there is a canonical isomorphism of p-adic formal O-stacks Y [0,h],τ ∼=
[(L [0,h]GO)J /ϕ,(s,μ)(L+GO)J ]∧p , where the action is the (s, μ)-twisted ϕ-
conjugation action.

Proof Consider the groupoidY [0,h],τ,β parametrizing pairs (M, β)whereM ∈
Y [0,h],τ and β is an eigenbasis of M. There is a map Y [0,h],τ,β → (LGO)J
given by sending (M, β) to the collection of matrices of partial Frobenii
(A( j)

M,β
) j∈J . The condition that M ∈ Y [0,h],τ is equivalent to the condition

(A( j)
M,β

) ∈ (L [0,h]GO)J . For R a p-adically complete Noetherian O-algebra,

Proposition 5.1.8 shows that the set of eigenbases on a givenM ∈ Y [0,h],τ (R)
is a torsor for I(R)J = L+GO(R)J , and the action of (L+GO(R))J corre-
sponds to the (s, μ)-twisted ϕ-conjugation action on LGJ

O (R) under the above
map. Thus [(L [0,h]GO)J /(s,μ),ϕ(L+GO)J ]∧p is the substack of Y [0,h],τ con-
sisting of objects which fpqc-locally admits an eigenbasis. However, every
object M ∈ Y [0,h],τ (R) has this property: Zariski locally on R, we can find
a basis for M/u′M, which furthermore consists of eigenvectors for �′ and is
compatible with ιM modulo u′. Such a basis can be lifted to an eigenbasis of
M, since �′ has order prime to p. ��

The following Lemma shows that over F, the (s, μ)-twisted ϕ-conjugation
action can sometimes be “straightened” to a left translation action, at least on
the subgroup (I1)J .
Lemma 5.2.2 Let R be an F-algebra and (A( j)

1 ) j∈J , (A( j)
2 ) j∈J ∈ L [0,h]GLn

(R)J . Let z̃ = s−1tμ+η ∈ ˜W∨,J where μ is (h + 1)-deep in C0 and s ∈ WJ .
Then, there is a bijection between the following:

(1) Tuples (I ( j)) j∈J ∈ I1(R)J such A( j)
2 z̃ j = I ( j)A( j)

1 z̃ jϕ(I ( j−1))−1 for all
j ∈ J ;

(2) Tuples (X j ) j∈J ∈ I1(R)J such that A( j)
2 = X j A( j)

1 for all j ∈ J .

123



1384 D. Le et al.

Proof Throughout the proof, we will use that

Ad(̃z j )
(

ϕ(I ( j−1))−1
) ≡ 1 mod vh+2 (5.6)

for any I ( j−1) ∈ I1(R), by Lemma 5.1.10.
We give a map F from (1) to (2). Given the data in (1), we define

F((I ( j)) j∈J ) = (X j ) j∈J , where

X j
def= A( j)

2 (A( j)
1 )−1 = I ( j)A( j)

1

(

Ad(̃z j )
(

ϕ(I ( j−1))−1
))

(A( j)
1 )−1.

To check that (X j ) j∈J satisfies (2), we only need to check X j ∈ I1(R) for all
j ∈ J . By (5.6), we can write Ad(̃z j )

(

ϕ(I ( j−1))−1
) = 1+ vh+2Y j with Y j ∈

Matn
(R[[v]]). By the height condition on A( j)

1 , we deduce that

X j = I ( j)(1+ vh+2A( j)
1 Y j (A

( j)
1 )−1) ∈ I1(R)

as desired.
Next, we construct a map G from (2) to (1). Thus we are given X j ∈ I1(R)

such that A( j)
2 = X j A( j)

1 for all j ∈ J , and we need to construct a solution
I ( j) ∈ I1(R)J to the system of equations

X j A( j)
1

(

Ad(̃z j )
(

ϕ(I ( j−1))
))

(A( j)
1 )−1 = I ( j).

We construct such a solution as a limit of a convergent sequence in I1(R)
with the v-adic topology. Let J ( j)

0 = Id. For i ≥ 0, set

J ( j)
i+1 = X j A( j)

1

(

A( j)
1 Ad(̃z j )

(

ϕ(J ( j−1)
i )−1

)

)−1

We prove that
(

J ( j)
i

)

i converges in I1(R) in the v-adic topology. For i ≥ 1,
we have

J ( j)
i+1 − J ( j)

i = X j A( j)
1

(

Ad(̃z j )
(

ϕ(J ( j−1)
i − J ( j−1)

i−1 )
)

)

(A( j)
1 )−1.

Since J ( j)
1 = X j , by Lemma 5.1.10 we have Ad(̃z j )

(

ϕ(J ( j−1)
1 − J ( j−1)

0 )
) ∈

vh+2 Matn(R[[v]]) and hence A( j)
1 z̃ jϕ(J

( j−1)
1 − J ( j−1)

0 )̃z−1j (A
( j)
1 )−1 ∈ v2

Matn(R[[v]]) by the height condition. Therefore J ( j)
2 − J ( j)

1 ∈ v2 Matn(R[[v]]).
We conclude by induction on i that

J ( j)
i − J ( j)

i−1 ∈ v p(i−2)Matn(R[[v]])
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for i ≥ 3 and hence the sequence
(

J ( j)
i

)

i converges in I1(R) in the v-adic
topology.

We construct the map G by G((X j ) j∈J ) = (limi→∞ J ( j)
i ) j∈J . By con-

struction, the composition F ◦G is the identity, thus F is surjective. To finish
the proof, we just need to show that F is injective.

Suppose that F((I ( j)) j∈J ) = F((J ( j)) j∈J ) = (X j ) j∈J , then F((J ( j))−1
I ( j)) j∈J ) = (1) j∈J . Thus we may assume without loss of generality that
J ( j) = X j = 1.
We now have

I ( j) = A( j)
1

(

Ad(̃z j )(ϕ(I
( j−1))−1)

)(

A( j)
1

)−1

for all j , and we need to show that I ( j) = 1 for all j . By (5.6), we have
A( j)
1

(

Ad(̃z j )(ϕ(I ( j−1))−1)
)(

A( j)
)−1 ≡ 1 mod v2 for all j , thus I ( j) ≡ 1 mod

v2 for all j . Suppose that for all j ∈ J , I ( j) ≡ 1 mod vδ for some δ ≥ 2.
Then, by Lemma 5.1.10,

Ad(̃z j )(ϕ(I
( j−1))−1) ≡ 1 mod v p(δ−1)+h+2.

Hence I ( j) ≡ 1 mod v p(δ−1)+2. Since p(δ − 1) + 2 > δ, this shows that
I ( j) ≡ 1 modulo arbitrary high powers of v for all j . This shows I ( j) = 1 for
all j . ��
Corollary 5.2.3 Suppose (s, μ) is a lowest alcove presentation of τ such that
μ is (h+1)-deep in C0. Then forming matrices of partial Frobenii with respect
to an eigenbasis induces an isomorphism of F-stacks

π(s,μ) : Y [0,h],τ
F

∼= [(˜Gr[0,h]G,F )
J /(s,μ)T∨,JF

] ⊂ [(˜Fl[0,h])J /(s,μ)T∨,JF
],

where the action of the constant torus T∨,J
F

⊂ (L+GF)
J is the (s, μ)-twisted

conjugation action.

Proof This follows immediately fromProposition 5.2.1, Lemma 5.2.2, the fact
that ϕ acts trivially on T∨ and that I = T∨ � I1. ��
We construct an open cover for Y [0,h],τ using the above isomorphism. Recall
from before Lemma 3.2.7 that for any z̃ = (̃z j ) j∈J ∈ ˜W∨,J , we have a

subfunctor U (̃z) def= ∏ j∈J U (̃z j ) ⊂ LGJ . For any integers a ≤ b, we define

U [a,b](̃z) def= U (̃z)O ∩ (L [a,b]GO)J .

It follows from Lemma 3.2.7 that the projection map U [a,b](̃z)→ Gr[a,b],JG,O is

an open immersion, since Gr[a,b],JG,O is a finite typeO-scheme. HenceU (̃z)F →
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GrJG,F = FlJ is an open immersion with T∨,J
F

-stable image. Since FlJ is

ind-proper and all the T∨,J
F

-fixed points (for the right translation action) are
given by z̃ ⊂ ˜W∨,J , we conclude that (the images of) U (̃z)F form an open
cover of FlJ . We also set ˜U (̃z) = T∨,JU (̃z) ⊂ LGJ , and similarly define
˜U [a,b](̃z) = T∨,JO U [a,b](̃z). Then (the images of) the ˜U (̃z)F form an open

cover of ˜Fl
J
, in fact this is the pullback of the above open cover of FlJ to ˜Fl

J
.

We thus get the open cover U [a,b](̃z)F (resp. ˜U [a,b](̃z)F) of Gr[a,b],JG,F (resp.

˜Gr
[a,b],J
G,F ).

Definition 5.2.4 Let z̃ ∈ ˜W∨,J .

(1) Define Y [0,h],τ
F

(̃z) to be the open substack of Y [0,h],τ
F

which corresponds via

π(s,μ) to the open substack [˜U [0,h](̃z)F/(s,μ)T∨,JF
]of [Gr[0,h],JG,F /(s,μ)T

∨,J
F

].
(2) More generally, we define the p-adic formal stack Y [0,h],τ (̃z) as the open

substack of Y [0,h],τ induced by Y [0,h],τ
F

(̃z). For R a p-adically complete
Noetherian O-algebra, M ⊂ Y [0,h],τ (R) is said to admit a z̃-gauge if
M ∈ Y [0,h],τ (̃z)(R), or equivalently,M/�M ∈ Y [0,h],τ

F
(̃z)(R/� R).

Remark 5.2.5 Let F′ be a field extension of F. If M ∈ Y [0,h],τ (F′) has shape
z̃ (Definition 5.1.9), thenM admits a z̃-gauge.

Let R be a Noetherian F-algebra and M ∈ Y [0,h],τ
F

(R). Assume that M
admit an eigenbasis. Then the condition that M admits a z̃ = (̃z j ) j∈J -gauge
is equivalent to the condition that for any eigenbasis β, the matrix of partial
Frobenius A( j)

M,β
belongs toI(R)(U (̃z j )(R)) = T∨(R)(I1(R))(U (̃z j )(R)) for

all j ∈ J . Furthermore, in this case Proposition 5.2.2 shows that we can adjust
the eigenbasis β so that A( j)

M,β
∈ T∨(R)U (̃z j )(R). The proof of Proposition

5.2.2 and the fact that the multiplication map I(R) × U(w̃)(R) → LGO(R)
is an injection shows that an eigenbasis β ′ has this property if and only if
it is obtained from β by a change of basis given by {(t j ′) j ′∈J ′ ∈ T∨

F
(R) |

t j ′ = tk′ for j ′ ≡ k′ mod f } ∼= T∨,J
F

(R). Thus the set of eigenbases with

this property form a torsor for the group T∨,J
F

. This motivates the following
definition:

Definition 5.2.6 Let z̃ = (̃z j ) j∈J ∈ ˜W∨,J . Let R be a Noetherian p-adically
complete O-algebra, and assume M ∈ Y [0,h],τ (R) admits a z̃-gauge. An
eigenbasis β of M is called a z̃-gauge basis if the matrix of partial Frobenii
A( j)
M,β

∈ T∨(R)(U (̃z j )(R)) for all j ∈ J .

Proposition 5.2.7 Let (s, μ) be a lowest alcove presentation of τ where μ is
(h + 1)-deep in C0. Let R be a Noetherian p-adically complete O-algebra
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and M ∈ Y [0,h],τ (R). Assume that M admits both a z̃-gauge and an eigen-
basis. Then M admits a z̃-gauge basis β, which is uniquely determined up to
scaling by the group {(t j ′) j ′∈J ′ ∈ T∨,J ′

(R) | t j ′ = tk′ for j ′ ≡ k′ mod f } =
T∨,J (R).

Proof It suffices to prove the Proposition for R a Noetherian O/� a-algebra,
for any a ≥ 1. We already observed that the Proposition holds when a = 1.
Thus we have a z̃-gauge basis β of M/� a−1M ∈ Y [0,h],τ (R/� a−1). Let ˜β
be any eigenbasis of M lifting β. We also set RF = R/� , MF = M/�M
and βF = ˜β mod� .

We set ˜A j = A( j)
M,˜β

, A
( j) = A( j)

M/� a−1M,β
, A( j)

F
= A( j)

MF,βF
. We get

the square-zero extension R � R/� a−1 with kernel J = � a−1R. As in

§3.2, we have R/� a−1-modules Lie LGO(J ), Lie I(J ) def= Lie L+GO(J ),
Lie L−−GO(J ), which are in fact RF-modules. We also have the obvious vari-
ants Lie T∨(J ), Lie I1(J ). Note that Lie I(J ) = Lie T∨(J )⊕ Lie I1(J ). By
Proposition 5.1.8, given the choice of eigenbasis ˜β, the set of eigenbases β of
M lifting β is in bijection with the set of tuples (X j ′) j ′∈J ′ ∈ I(R)J ′

such that

• X j ′ depends only on the image of j ′ in J .

• X j ∈ ker(L+GO(R)→ L+GO(R/� a−1)), i.e. Y j
def= X j − 1 ∈ Lie I(J )

for all j ∈ J .

We thus need to analyze the set of tuples (X j ) j∈J as above such that

X j ˜A
( j)(Ad(s−1j vμ j+η j )

(

ϕ(X j−1)−1
)) ∈ T∨(R)(U (̃z j )(R)).

Note that U (̃z j )(R) = L−−GO(R)̃z j and similarly for R/� a−1. By con-

struction, we have A
( j) = D jU j z̃ j , where D j ∈ T∨(R/� a−1) and U j ∈

L−−GO(R/� a−1). Since T∨ and L−−GO are formally smooth, we can find
lifts ˜D j ∈ T∨(R) and ˜U j ∈ L−−GO(R) of D j and U j respectively. Thus,

˜A( j) = (1+ a j )˜D j˜U j z̃ j ,

where a j ∈ Lie LGO(J ).
We record the effect of (s, μ)-twisted ϕ-conjugation by (X j ) j∈J = (1 +

Y j ) j∈J . Namely, if we write,

X j ˜A
( j)(Ad(s−1j vμ j+η j )

(

ϕ(X j−1)−1
)) = (1+ a′j )˜D j˜U j z̃ j

then we find that

a′j = Y j + a j − Ad(A( j)
F

s−1j vμ j+η j )(ϕ(Y j−1))
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in Lie LGO(J ).
Since the set of elements in T∨(R)U (̃z)(R) lifting D jU j z̃ j are exactly

those of the form (1+a′j )˜D j˜U j z̃ j where a′j ∈ (Lie L−−GO(J )⊕Lie T∨(J )),
our job boils down to analyzing the set of solutions (Y j ) ∈ Lie L+GO(J )J to
the system of containments

Y j + a j − Ad(A( j)
F

s−1j vμ j+η j )(ϕ(Y j−1)) ∈ (Lie L−−G(J )⊕ Lie T∨(J )),
j ∈ J . (5.7)

Observe that the set of solutions to the system (5.7) is invariant under transla-
tion by Lie T∨(J )J : if Y j ∈ Lie T∨(J ) then Ad(A( j)

F
s−1j vμ j+η j )(ϕ(Y j−1)) =

Ad(D jU j )
(

Ad(s−1j )(Y j−1)
) ⊂ Ad(D jU j )

(

Lie T∨(J )
) ⊂ Lie L−−GO(J )⊕

Lie T∨(J ), where the last inclusion follows from the fact that T∨O · L−−GO is
a subgroup of LGO. Thus, to finish the induction, we only need to show that
the system (5.7) has a unique solution in Lie I1(J )J .

Now, it follows from Lemma 3.2.3 that Lie LGO(J ) = Lie L−−GO(J ) ⊕
Lie T∨(J )⊕Lie I1(J )where Lie I1(J ) = {M ∈ Mn(J [[v]]),M is unipotent
uppertriangularmodv} .Consider the map� : Lie I1(J )J → Lie LG(J )J
given by (Y j ) j∈J �→ (Y j−Ad(A( j)

F
s−1j vμ j+η j )(ϕ(Y j−1)). By Lemma 5.1.10,

Ad(s−1j vμ j+η j )(ϕ(Y j−1)) ≡ 0 mod vh+2 and so, by the height condition on
MF, we have:

Ad(A( j)
F

s−1j vμ j+η j )(ϕ(Y j−1)) ≡ 0 mod v2.

Thus the image of � is in Lie I1(J )J . Furthermore, if Y j ≡ 0 mod vk for
k ≥ 0, then

Ad(A( j)
M,β

s−1j vμ j+η j )(ϕ(Y j−1)) ≡ 0 mod vk+1

by Lemma 5.1.10. Hence, as an endomorphism of Lie I1(J )J ,� decomposes
as a sum of an automorphism and a topologically nilpotent endomorphism.
We conclude then that� itself is an automorphism. We thus conclude that the
system (5.7) has a unique solution in I1(J )J , namely�−1 of the the projection
of (−a j ) j∈J onto Lie I1(J )J . ��

5.3 Local models for moduli of Breuil–Kisin modules

In this section, we describe the local structure of the p-adic formal stack
Y [0,h],τ and its closed substack Y≤λ,τ .
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We have the following mixed characteristic generalization of Corollary
5.2.3:

Theorem 5.3.1 Let (s, μ) be a lowest alcove presentation of τ such that μ is
(h + 1)-deep in C0, and let z̃ ∈ ˜W∨,J . Then there is a local model diagram
(depending on (s, μ)) of p-adic formal O-stacks

˜U [0,h] (̃z)∧p

Y [0,h],τ (̃z) =
[

˜U [0,h] (̃z)/(s,μ)T∨,JO
]∧p

U [0,h] (̃z)∧p

Y [0,h],τ
(

Gr[0,h],JG,O
)∧p

T∨,JO T∨,JO

◦ ◦ (5.8)

where

• The left diagonal arrow corresponds to extracting a z̃-gauge basis and
taking its matrices of partial Frobenii.

• The diagonal arrows are torsors for the (p-adic completion of) T∨,JO for

two different T∨,JO -actions (and hence are smooth maps): The left diagonal
arrow correspond to quotiening by the (s, μ)-twisted conjugation action
while the right diagonal arrow correspond to quotiening by the left trans-
lation action.

• The vertical arrows are open immersion.

Proof The left side of the diagram follows from Proposition 5.2.7 and the
existence of an eigenbasis Zariski locally. The right side of the diagram is a
consequence of Lemmas 3.2.2, 3.2.7 and the fact that Gr[0,h]G,O is a finite type
O-scheme. ��

Warning 5.3.2 As z̃ varies in ˜W∨,J , the Y [0,h],τ (̃z) form a Zariski open cover
of Y [0,h],τ . Lemma 5.2.2 shows that over F, these local model diagram glue
together to give a local model diagram for Y [0,h],τ

F
, cf. Corollary 5.2.3. How-

ever, the local model diagrams do not glue together into a local model diagram
for Y [0,h],τ in general. The reason is that Lemma 5.2.2 fails over test rings R
where p �= 0, namely, the (s, μ)-twisted ϕ-conjugation is not equivalent to
the left translation relation by I1(R). For example, let R = O/� a, |J | = 1,
(s, μ) = (1, (k, 0)), and let

A =
(

1 0
0 v + p

)

, X =
(

1 1
0 1

)

.
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Then A and X AAd(vμ)
(

ϕ(X)−1
)

are in the same (s, μ)-twistedϕ-equivalence
class, but do not differ by a left translation by an element of I1(R). Indeed

X AAd(vμ)
(

ϕ(X)−1
)

A−1 =
(

1 − vk

v+p
0 1

)

does not belong to I1(R), since

vk

v + p
= vk−1(1+ · · · + (−1)a−1 pa−1

va−1 ) /∈ R[[v]].

We now impose bounded p-adic Hodge type conditions. Let λ ∈
X∗(T∨)J = X∗(T )J . We assume that λ is effective and has height ≤ h,
that is each component λ j ∈ X∗(T∨) satisfies λ j ∈ [0, h]n . (Note that if
hλ = max{〈λ, α∨〉 | α ∈ �} then up to changing λ by a central cocharacter
we can take h = hλ.) We now recall from [17, Theorem 5.3] the closed p-adic
formal substack Y≤λ,τ ⊂ Y [0,h],τ (denoted Y λ,τ in loc. cit.). It is characterized
by the following properties (cf. [17, Theorem 5.13]):
• Y≤λ,τ is flat over O, and has reduced versal rings (i.e. it is analytically
unramified in the sense of [28, Definition 8.22]).

• For any finite extension E ′ of E with ring of integers O′, an element
M ∈ Y [0,h],τ (O′) belongs to Y≤λ,τ (O′) if and only if M[1/p] has p-adic
Hodge type ≤ λ. This is a condition on the type of the induced grading on
M/E(v)M. Lemma 5.10 in [17] says that the grading on M/E(v)M is
the base change of a grading on the χ -isotypic piece for χ appearing in the
type τ . The type of this grading is directly related to the elementary divisors
of the matrices of partial Frobenii A( j)

M,β
(with respect to any eigenbasis).

Because of this, the p-adic Hodge type≤ λ condition translates to the con-
dition that A( j)

M,β
viewed as an element of GLn(E ′((v+ p))) has elementary

divisors bounded by (v + p)λ j . Note that this last condition is exactly the
condition imposed by the closed affine Schubert variety SE (λ) ⊂ GrJG,E .

We wish to identify the object that corresponds to Y≤λ,τ under the local model
diagram of Theorem 5.3.1. Recall the (finite type over O) closed subscheme
MJ (≤ λ) ↪→ L+GO\LGO = GrJG,O, which is the Zariski closure of the

(reduced) affine Schubert variety SE(λ) ⊂ GrJG,E inGrJG,O. For z̃ = (̃z j ) j∈J ∈
˜W∨,J , we set

U (̃z,≤ λ) :=
∏

j∈J
U (̃z j )O ∩ M(≤ λ j ),

˜U (̃z,≤ λ) :=
∏

j∈J
T∨O × (U (̃z j )O ∩ M(≤ λ j )) (5.9)
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where the intersections are understood to be taken inside GrG,O (which can
then be lifted to LGO since U (̃z j ) is canonically lifted to LG), and define
Y≤λ,τ (̃z) as the intersection Y≤λ,τ ∩ Y [0,h],τ (̃z) (taken inside Y [0,h],τ ). We
have the following:

Theorem 5.3.3 Let (s, μ) be a lowest alcove presentation of τ such that μ is
(h + 1)-deep in C0, and let z̃ ∈ ˜W∨,J . Assume λ = (λ j ) j∈J ∈ X∗(T∨)J
satisfies λ j ∈ [0, h]n. Then diagram (5.8) induces a local model diagram of
p-adic formal O-stacks

˜U (̃z,≤ λ)∧p ⊂ LGJ
O

Y≤λ,τ (̃z) =
[

˜U (̃z,≤ λ)/(s,μ)T∨,J
]∧p

U (̃z,≤ λ)∧p

Y≤λ,τ MJ (≤ λ)∧p

T∨,JO T∨,JO

◦ ◦

(5.10)
where the superscript ∧p stands for taking p-adic completion.

Proof We need to check Y≤λ,τ and MJ (≤ λ)∧p coincide after pulling back
to ˜U [0,h](̃z)∧p along diagram (5.8). Since both pull-backs are reduced andO-
flat, it suffices to check they have the same O′-points for O′ the integers in a
finite extension E ′ of E . But this is immediate, since the elementary divisor
condition on an element of GLn(E ′((v + p))) is preserved under both left and
right multiplication by GLn(E ′[[v + p]]). ��
Corollary 5.3.4 Assume the hypotheses of Theorem 5.3.3. Then Y≤λ,τ (̃z) �= ∅
if and only if z̃ ∈ Adm∨(λ).

Proof Y≤λ,τ (̃z) �= ∅ if and only if U (̃z,≤ λ)∧p �= ∅ if and only if
U (̃z,≤ λ)F �= ∅. On the other hand, by Theorem [69, Theorem 9.3],
MJ (≤ λ)F is the union of affine Schubert varieties S◦

F
(̃s)where s̃ ∈ Adm∨(λ).

Thus, the set of torus fixed points of MJ (≤ λ)F is Adm∨(λ). The result then
follows from Lemma 4.7.1. ��
Corollary 5.3.5 Assume the hypotheses of Theorem 5.3.3. Let F′/F be a finite
extension. Then M ∈ Y≤λ,τ (F′) if and only if the shape of M with respect to
τ lies in Adm∨(λ).
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5.4 Étale ϕ-modules

5.4.1 Background

Let OE,K (resp. OE,L ′) be the p-adic completion of (W (k)[[v]])[1/v]
(resp. of (W (k′)[[u′]])[1/u′]). It is endowed with a continuous Frobenius mor-
phism ϕ extending the Frobenius on W (k) (resp. on W (k′), and moreover
endowed with an action of �, cf. [59, § 6.1] for the explicit defini-
tion of this action) and such that ϕ(v) = v p (resp. ϕ(u′) = (u′)p).
Let R be a p-adically complete Noetherian O-algebra. We then have the
groupoid �-Modét,n

K (R) (resp. �-Modét,n
dd,L ′(R)) of étale (ϕ,OE,K̂⊗Zp R)-

modules (resp. étale (ϕ,OE,L ′̂⊗Zp R)-modules with descent data from L ′
to K ). Its objects are rank n projective modules M over OE,K̂⊗Zp R
(resp. OE,L ′̂⊗Zp R)), endowed with a Frobenius semilinear endomorphism
φM : M → M (resp. a Frobenius semilinear endomorphism φM : M →
M, and a semilinear action of � commuting with φM) inducing an iso-
morphism on the pull-back: id ⊗ϕ φM : ϕ∗(M)

∼−→ M. It is known that

�-Modét,n
K (R) and �-Modét,n

dd,L ′(R) form fppf stacks over Spf O (see [22,

§ 3.1], [24, § 5.2], [15, § 3.1] where they are denotedRn,Rdd
n,L ′ respectively).

We use �-Modét
K (R) (resp. �-Modét

dd,L ′(R)) to denote the category of étale
φ-modules over K (resp. over L ′ with descent) with coefficients in R and of
arbitrary finite rank.

GivenM ∈ Y [0,h],τ (R), the elementM⊗SL′,R (OE,L ′̂⊗Zp R) is naturally an

object�-Modét,n
dd,L ′(R) and we define an étale ϕ-moduleM ∈ �-Modét,n

K (R)
by

M def= (M⊗SL′,R (OE,L ′̂⊗Zp R))�=1

with the induced Frobenius. This construction defines a map of stacks ετ :
Y [0,h],τ → �-Modét,n

K . Note that ετ is independent of any presentation of τ .

Proposition 5.4.1 The map ετ is representable by algebraic spaces, proper,
and of finite presentation.

Proof First, the morphism Y [0,h],τ → �-Modét,n
dd,L ′ is representable by alge-

braic spaces, proper, and of finite presentation by Corollary 3.1.7(3) and
Proposition 3.3.5 of [15]. Finally, the map�-Modét,n

dd,L ′ to�-Modét,n
K defined

by taking�-invariants is an equivalence of stacks with quasi-inverse given by
M �→M⊗OE,K OE,L ′ . ��

For any (M, φM) ∈ �-Modét
K (R), we decompose M = ⊕ j∈JM( j) over

the embeddings σ j : W (k)→ O, with inducedmaps φ( j)
M :M( j−1) →M( j).
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The following proposition, a direct generalization of [60, Proposition 3.2.1],
records the effect of ετ in terms of eigenbases.

Proposition 5.4.2 Let M ∈ Y [0,h],τ (R) and set M = ετ (M). Let (s, μ) be
the fixed lowest alcove presentation of τ . If β is an eigenbasis of M, then there
exists a basis f (determined by β) for M such that the matrix of φ( j)

M with
respect to f is given by

A( j)
M,β

s−1j vμ j+η j .

Proof The statement is [60, Proposition 3.2.1] whose proof is generalized in
the proof of [56, Corollary 3.2.17]. For the convenience of the reader, we
reproduce the argument here. In particular, the proof below is obtained by a
simple relabeling from the proof of loc. cit., using Remark 5.1.7. We define a

basis ˜β ′ forM′ def= (M⊗SL′ OE,L ′)�
′=1 as follows: for each 0 ≤ j ′ ≤ f ′ −1,

define

˜β ′ ( j ′) def= β( j ′)
(

(u′)a′ ( j ′))
,

which is a basis forM′ ( j ′). This uses that the action on u′ of�′ in embedding

j ′ is through the character ωp f ′− j ′
f ′ . The matrix for φ( j ′)

M′ :M′ ( j ′−1) →M′ ( j ′)

with respect to ˜β ′ is given by

s′or, j ′ A
( j ′)
M,β

(s′or, j ′)
−1(u′

)pa′ ( j ′−1)−a′ ( j ′) = s′or, j ′ A
( j ′)
M,β

(s′or, j ′)
−1vα′

f ′− j ′

since pa′ ( j ′−1) − a′ ( j ′) = (p f ′ − 1)α′f ′− j ′ . Define ˜β by ˜β( j ′) def= ˜β ′ ( j ′)s′or, j ′
for all 0 ≤ j ′ ≤ f ′ − 1. Let j ′ = j + i f for 0 ≤ j ≤ f − 1. Then the matrix

for φ( j ′)
M′ with respect to ˜β is given by

A( j ′)
M,β

(s′or, j ′)
−1s′or, j ′−1v

(s′
or, j ′−1)

−1(α′
f ′− j ′ ) = A( j ′)

M,β
s−1j vμ j+η j .

Since (σ f )∗(˜β( j ′)) = ˜β( j ′− f ), this descends to a basis f of M def= ετ (M) =
(M′)σ f=1, with respect to which the matrix of φ( j)

M has the form described in
the statement of the Proposition. ��

The following Proposition, which is the global version of the triviality of
Kisin varieties, shows that ετ does not lose information in generic situations:

Proposition 5.4.3 Let h be a nonnegative integer and assume τ is (h + 1)-
generic. Then the proper map ετ : Y [0,h],τ → �-Modét,n

K is a monomorphism
of stacks over Spf O, and hence is a closed immersion.
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To prepare for the proof, we record the following Lemmas:

Lemma 5.4.4 Let R be an F-algebra, and let (A( j)
1 ) j∈J , (A( j)

2 ) j∈J ∈
L [0,h]GLn(R)J . Assume z̃ = s−1tμ+η ∈ ˜W∨,J such that μ is (h+ 1)-deep in

C0. Let (I ( j)) j∈J ∈ GLn(R((v)))J such that A( j)
2 z̃ j = I ( j)A( j)

1 z̃ jϕ(I ( j−1))−1
for all j ∈ J , then I ( j) ∈ IF(R) for all j ∈ J .

Proof We essentially repeat the argument in the proof of [59, Theorem 3.2]

for a general F-algebra R. For all j ∈ J , define k j ∈ Z so that I ( j),+ def=
vk j I ( j) ∈ Matn(R[[v]]) and I ( j),+ �≡ 0 modulo v. Rewriting the equation and
multiplying through by vh , we have

vh+k j−pk j−1 Ad(̃z j )
(

ϕ(I ( j−1),+)
) = vh

(

A( j)
2

)−1
I+, ( j)A( j)

1 ,

where the right side is in Matn(R[[v]]) by the height condition.
As I ( j),+ �≡ 0 modulo v, we deduce that

k j ≥ pk j−1 −max
α∈R

{〈μ j + η j , α
∨〉} − h > pk j−1 − p + m − h

≥ p(k j−1 − 1)+ 1 (5.11)

since μ is (h + 1)-deep in C0. We conclude that k j ′ ≤ 0 for all j ∈ J or,
equivalently, I ( j) ∈ Matn(R[[v]]) for all j ∈ J . By exchanging the roles of
A1 and A2, we conclude that I ( j) ∈ GLn(R[[v]]) for all j ∈ J .
We now prove that I ( j) ∈ I(R) for all j ∈ J . Let α be a negative root of

GLn . Assume (I ( j−1))
α
�≡ 0 mod v for some j ∈ J . Since

(

Ad
(

vμ j+η j
)

(ϕ(I ( j−1)))
)

α
= (ϕ(I ( j−1))

)

α
v〈μ j+η j ,α

∨〉,

Ad(̃z j )(ϕ(I ( j−1))) has a pole of order−〈μ j+η j , α
∨〉 > h. This is a contradic-

tion since vh Ad(̃z j )(ϕ(I ( j−1))) = vh
((

A( j)
2

)−1
I ( j)A( j)

1

)

is in Matn(R[[v]]).
��

The same argument also proves the following:

Lemma 5.4.5 Let R be an F-algebra and let J be an R-module. Let
(A( j)) j∈J ∈ L [0,h]GLn(R)J . Assume z̃ = s−1tμ+η ∈ ˜W∨,J such that μ
is (h + 1)-deep in C0. Let (Y j ) j∈J ∈ Matn(J ((v))). Assume that

Y j − Ad(A( j) z̃ j )ϕ(Y j−1) ∈ 1

vh
Matn(J [[v]]),

for all j ∈ J . Then Y j ∈ Lie IF(J ).
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Proof of Proposition 5.4.3 We need to show that for each p-adically com-
plete NoetherianO-algebra, ετ induces a fully faithful functor Y [0,h],τ (R)→
�-Modét,n

K (R). It suffices to treat the case where R is a Noetherian O/� a-
algebra. We choose a lowest alcove presentation (s, μ) of τ such that μ is
(h + 1)-deep in C0.

Suppose M1,M2 ∈ Y [0,h],τ (R), and let Mi = ετ (Mi ) for i = 1, 2.
We need to show ετ induces an isomorphism HomY [0,h],τ (R)(M1,M2) ∼=
Hom

�-Modét,n
K (R)

(M1,M2). Since this assertion is local in R, we may

assume that Mi admits eigenbases βi . Let A( j)
i = A( j)

Mi ,βi
. Proposition

5.4.2 using the bases f1, f2 constructed from β1, β2 shows that an element
Hom

�-Modét,n
K (R)

(M1,M2) is in bijection with the set of tuples (I ( j)) j∈J ∈
LGO(R)J such that

I ( j)A( j)
1 = A( j)

2 Ad(s−1j vμ j+η j )(ϕ(I ( j−1))), (5.12)

while HomY [0,h],τ (R)(M1,M2) is in bijection with the set of tuple (I ( j)) j∈J ∈
IF(R) satisfying the same relation by Proposition 5.1.8. In other words, we
need to show that any solution to (5.12) in LGO(R)J must automatically
belong to I(R)J . We will prove this assertion by induction on a.

The case a = 1 is treated by Lemma 5.4.4. Suppose our assertion is true
up to a − 1. We may assume that A( j)

1 ≡ A( j)
2 mod � a−1, and β1 ≡ β2

mod � a−1. Let A( j)
F

= A( j)
1 = A( j) mod � . We perform a Lie algebra

computation similar to the proof of Proposition 5.2.7. Set J = � a−1R. We
can write A( j)

2 = (1+a j )A
( j)
1 and I ( j) = 1+Y j , with a j , Y j ∈ Matn(J ((v))).

Equation 5.12 translates to

Y j = a j + Ad(A( j)
F

s−1j vμ j+η j )(ϕ(Y j−1)).

Since A( j)
i ∈ L [0,h]GLn(R), a j ∈ 1

vh Matn(J [[v]]). Lemma 5.4.5 thus shows

that Y j ∈ Lie I(J ), and thus I ( j) ∈ I(R). ��

5.4.2 Étale φ-modules and local models

Fix an (h + 1)-generic tame inertial type τ with a lowest alcove presentation
(s, μ) such that μ is (h + 1)-deep in C0. This gives rises to local model
diagrams (5.8) and (5.10) for Y [0,h],τ (̃z) and Y≤λ,τ (̃z). Over F, these diagrams
glue together into local model diagrams for Y [0,h],τ

F
and Y≤λ,τ

F
. On the other

hand, we have the canonical map ετ which does not depend on the presentation
(s, μ). It is therefore natural to express ετ in terms of the objects occurring
in the local model diagram. This will later be used in conjunction with the
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results of §4.3 to describe the irreducible components of the Emerton-Gee
stack which occur in Y≤λ,τ

F
in terms of the local model.

Let z̃ = (̃z j ) j∈J ∈ ˜W∨,J and a ≤ b integers, define a closed subscheme

˜Fl
[a,b]
J ,̃z =

∏

j∈J
(I1,F \(L [a,b]GLn)F z̃ j ) ⊂ ˜FlJ ,

where L [a,b]GLn is as in Definition 5.5. Clearly, ˜Fl
[a,b]
J ,̃z = ˜Fl

[a,b]
J z̃. There is

a natural map ι′̃z :
∏

j∈J (L [a,b]GLn)F z̃ j → �-Modét,n
K ,F, which for an F-

algebra R is given by sending (A( j) z̃ j ) j∈J ∈ ∏ j∈J L [a,b]GLn(R) z̃ j to the

free rank n étale ϕ-moduleM over R such that φ( j)
M is given by A( j) z̃ j in the

standard basis. Clearly ι′̃z factors through the quotient by the ϕ-conjugation
action

[∏

j∈J (L [a,b]GLn)F z̃ j/ϕ IF

]

.

Now assume that z̃ = σ−1tν+η ∈ ˜W∨,J where ν is (b − a + 1)-deep in
C0. Since right translation by z̃ intertwines the (σ, ν)-twisted ϕ-conjugation
action with the ϕ-conjugation action, Lemma 5.2.2 shows that ι′̃z descends to
a map ι̃z : ˜Fl[a,b]J ,̃z → �-Modét,n

K ,F. This further factors through the quotient
[

˜Fl
[a,b]
J ,̃z /T∨,J

F
-conj

]

where the action of T∨,J is given by (I1A( j) z̃ j ) j∈J �→
(D jI1A( j) z̃ j D−1j−1) j∈J for (D j ) j∈J ∈ T∨,J

F
. We will abbreviate this as the

shifted T∨,J
F

-conjugation action.

Proposition 5.4.6 Assume that z̃ = σ−1tν+η where ν is (b − a + 1)-deep in
C0. The map ι̃z induces a monomorphism of stacks

ι̃z :
[

˜Fl
[a,b]
J ,̃z /T∨,J

F
-conj

]

↪→ �-Modét,n
K ,F .

Proof Unraveling the definitions and twisting by v−a , the Proposition boils
down to the statement that if R is an F-algebra, (A( j)

1 z̃ j ) j∈J , (A( j)
2 z̃ j ) j∈J ∈

∏

j∈J L [0,b−a]GLn(R)̃z j are ϕ-conjugate by an element (I ( j)) j∈J ∈ GLn

(R((v)))J , then I ( j) ∈ IF(R) for all j ∈ J . This follows from Lemma 5.4.4.
��

The following Proposition, obtained by combining Propositions 5.4.6, 5.4.3
and Corollary 5.2.3, provides our desired description of ετ :

Proposition 5.4.7 Suppose we are given the following data:

• Integers a ≤ b, and h ≥ 0.
• An element z̃ = σ−1tν+η ∈ ˜W∨,J such that ν is (b − a + 1)-deep in C0.
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• A tame inertial type τ with lowest alcove presentation (s, μ) such that
μ is (h + 1)-deep in C0. Setting w̃∗(τ ) = s−1tμ+η, assume that
(

Gr[0,h],JG,F
)

w̃∗(τ ) ⊂ Fl[a,b]J ,̃z
• An element λ ∈ X∗(T∨)J such that λ j ∈ [0, h]n for all j ∈ J .

Then we have a commutative diagram

˜MJ (≤ λ)F ˜Gr
[0,h],J
G,F

rw̃∗(τ )

π(s,μ)

˜Fl
[a,b]
J ,̃z

[

˜Fl
[a,b]
J ,̃z /T∨,J

F
-conj

]

ι̃z

Y≤λ,τ
F

Y [0,h],τ
F

ετ
�-Modét,n

K ,F

(5.13)

Remark 5.4.8 In Proposition 5.4.7, there is a natural choice of a, b, z̃, namely,
a = 0, b = h and z̃ = s−1tμ+η = w̃∗(τ ). However, to compare multiple
types, it can be convenient to make other choices.

5.5 Semisimple Breuil–Kisin modules

Let G K∞ ⊂ G K denote the Galois group of K∞. Recall that K∞/K is
totally wildly ramified. When R is a complete Noetherian local O-algebra
with finite residue field, from the theory of fields of norms, we have an exact
anti-equivalence ( [31])

V∗K : �-Modét,n
K (R)→ Repn

R(G K∞)

M �→ HomR
(

(M⊗OE,K̂⊗Zp R(OEun,K̂⊗Zp R))ϕ=id, R
)

(where Repn
R(G K∞) denotes the groupoid of G K∞-representations on rank n

projective R-modules) and hence a functor T ∗dd : Y [0,h],τ (R)→ Repn
R(G K∞)

defined as the composite of ετ followed by V∗K . (We caution the reader that
the formula for V∗K in [59, § 2.3] was inaccurate.)

Since the subgroup G K∞ of G K projects surjectively to the tame quotient
of G K , the restriction map

Repn
F(G K )→ Repn

F(G K∞)

is fully faithful on the subcategory of tame representations of rank n. We will
often implicitly identify representations of G K∞ in the essential image (of the
tame representations) with their canonical extensions to G K . Note that this
essential image contains exactly representations of G K∞ which are trivial on
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G K∞ ∩ G K t , where K t is the maximal tamely ramified extension of K . Note
that semisimple representations of G K∞ are necessarily tame and hence extend
uniquely to G K .

Given an n-dimensional F-representation ρ of G K or G K∞ , we denote its
semisimplification by ρss. If ρ is tame, i.e. if ρ = ρss, then ρ|IK is a tame
inertial F-type for K (see §2.4).

Definition 5.5.1 Let ρ be an n-dimensional F-representation of G K or G K∞ .

(1) Given an integer m ≥ 0, we say that ρ is m-generic if the tame inertial
F-type ρss|IK is m-generic in the sense of Definition 2.4.3(2).

(2) Ifρ is tamewe say that (s, μ) ∈ W×X∗(T ) is a lowest alcove presentations
for ρ if (s, μ) is a lowest alcove presentation for the inertial F-type ρ|IK as
defined in the paragraph following Example 2.4.1. We then write w̃(ρ) for

the element w̃(ρ|IK ) = tμ+ηs defined in Definition 2.4.3(2) and w̃∗(ρ) def=
s−1tμ+η. A lowest alcove presentation is m-generic if w̃(ρ) is m-generic.

We can directly relate the lowest alcove presentation to a description of the
corresponding étale φ-module.

Proposition 5.5.2 Let z̃′ ∈ Fl[a,b]J ,̃z for a, b, z̃ as in Proposition 5.4.7. Let ρ be
an n-dimensional semisimple F-representation of either G K or G K∞ . Then ρ
admits a lowest alcove presentation (s, μ) such that w̃∗(ρ) = s−1tμ+η = z̃′
if and only if there exists D ∈ T∨,J (F) such that

V∗K (ι̃z(Dz̃′)) ∼= ρ|G K∞ .

Proof Let z̃′ = s−1tμ+η. Then μ is 1-deep in C0 by the hypotheses in Propo-
sition 5.4.7. The fact that for any such D, the restriction to IK of (the tame
G K -representation) V∗K (ι̃z(Dz̃′)) is τ(s, μ+ η) (and hence has lowest alcove
presentation (s, μ)) follows from a direct computation as in Proposition 3.1.2
of [56]. (Note that one needs to use Remark 5.1.7 to translate the conventions
of loc. cit. into conventions of this paper.)

To show the forward direction, one has to show that the choice of D accounts
for all possible extensions from IK to G K . This can be done by counting
isomorphism classes over F since by Proposition 5.4.7, ι̃z(Dz̃′) ∼= ι̃z(D ′̃z′) if
and only if Dz̃ and D ′̃z′ are T∨,J (F)-conjugate by shifted conjugation. ��
Remark 5.5.3 In Proposition 5.5.2, if ρ admits a 1-generic lowest alcove pre-
sentation with corresponding element w̃(ρ), then one can take z̃ = w̃∗(ρ) and
a = b = 0 to satisfy the hypotheses of Proposition 5.5.2.

Fix λ ∈ X∗(T )J dominant. Assume that λ j ∈ [0, h]n for h ≥ 0. Let τ be a
tame inertial type together with a (h + 1)-generic lowest alcove presentation.
We now recall notion of shape of ρ with respect to τ :
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Definition 5.5.4 Let ρ be n-dimensional F-representation of G K or G K∞ .
If there exists M ∈ Y [0,h],τ (F) such that T ∗dd(M) ∼= ρ|G K∞ , then define the
shape w̃∗(ρ, τ ) ∈ ˜W∨,J of ρ with respect to τ to be the shape ofM (Definition
5.1.9).

This is well-defined since ετ is a monomorphism (Proposition 5.4.7).

We also have the notion of a semisimple Breuil–Kisin module:

Definition 5.5.5 LetM ∈ Y [0,h],τ (F′) for any finite extension F′/F. ThenM
is semisimple of shape z̃ ∈ ˜W∨,J if M ∈ Y [0,h],τ (̃z) and for any choice of
z̃-gauge basis β, the image of (M, β) under the map ˜U [0,h](̃z)F → U [0,h](̃z)F
from (5.8) is the T∨,J -fixed point z̃ of Gr[0,h],JG,F . (In this case,M clearly has
shape z̃.)

Remark 5.5.6 Concretely, the condition of being semisimple of shape z̃ in
Definition 5.5.5 is that there exists an eigenbasis for M such that A( j)

M,β
∈

T∨(F)̃z j for all j ∈ J . By [56, Proposition 3.2.16], this is equivalent to the
definition given in Definition 3.2.14 of loc. cit.

Recall that for a fixed lowest presentation (s, μ) of τ , we define w̃∗(τ ) =
s−1tμ+η.
Proposition 5.5.7 Let τ be a tame inertial type with lowest alcove presenta-
tion (s, μ) where μ is (h + 1)-deep in C0. Let ρ : G K∞ → GLn(F) be a
semisimple representation. There exists a semisimple M ∈ Y [0,h],τ (F) such
that ρ ∼= T ∗dd(M) if and only if ρ admits a lowest alcove presentation such that

w̃∗(ρ)(w̃∗(τ ))−1 ∈ Gr[0,h],JG,F . In this case, M has shape w̃∗(ρ)(w̃∗(τ ))−1.

Furthermore, M ∈ Y≤λ,τ (F) if and only if w̃(ρ, τ ) = (w̃(τ ))−1w̃(ρ) ∈
Adm(λ).

Proof The forward direction follows from Proposition 5.5.2 and the diagram
in Proposition 5.4.7 with a = 0, b = h and z̃ = w̃∗(τ ). Namely, if M is
semisimple of shape z̃ ∈ Gr[0,h],JG,F , then ετ (M) ∼= ιw̃∗(τ )(Dz̃w̃∗(τ )) for some

D ∈ T∨,J (F). By Proposition 5.5.2, ρ = T ∗dd(M) is semisimple and has a
lowest alcove presentation (w, ν) such that w̃∗(ρ) = z̃w̃∗(τ ) as desired.

Similarly, if ρ admits a lowest alcove presentation such that z̃ =
w̃∗(ρ)(w̃∗(τ ))−1 ∈ Gr[0,h],JG,F , then w̃∗(ρ) ∈ ˜Fl

[0,h]
J ,w̃∗(τ ). Thus, by Proposi-

tion 5.5.2, there exists D ∈ T∨,J (F) such that ιw̃∗(τ )(Dw̃∗(ρ)) gives rise to
the étale ϕ-module corresponding to ρ|G K∞ . Then π(s,μ)(Dz̃) is the desired
semisimpleM since the diagram in Proposition 5.4.7 commutes.

The final statement follows from Corollary 5.3.5. ��
Corollary 5.5.8 Let ρ : G K → GLn(F) be a tame representation and τ be
as in Proposition 5.5.7. If Rλ,τρ is non-zero, then ρ has a λ-compatible lowest

alcove presentation such that w̃(ρ, τ ) = w̃(τ )−1w̃(ρ) ∈ Adm(λ).
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Proof By the same argument as in case (2) of Theorem [56, Theorem 3.2.20],
there exists a semisimpleM ∈ Y≤λ,τ (F) such that ρ|G K∞

∼= T ∗dd(M). The rest
follows from Proposition 5.5.7 noting that (w̃(τ ))−1w̃(ρ) ∈ Adm(λ) implies
that the lowest alcove presentation of ρ is λ-compatible (see §2.4). ��
Proposition 5.5.9 Let F′/F be a finite extension. If M ∈ Y≤λ,τ (F′) (resp.
Y [0,h],τ (F′)), then there exists a semisimple Breuil–Kisin module M′ ∈
Y≤λ,τ (F′) (resp. Y [0,h],τ (F′)) such that T ∗dd(M)ss ∼= T ∗dd(M

′).

Proof Let ρ = T ∗dd(M), and let M = M[1/u′] ∈ �-Modét,n
dd,L ′(F

′). Let
(ρi )0≤i≤d denote a decreasing filtration on ρ such that gri (ρ) := ρi/ρi+1
is semisimple for all i . Recall the exact anti-equivalence of categories V∗dd

between Modét
dd,L ′(F

′) and RepF′(G K∞) (see pg. 24 in [59] for example).
Using this equivalence, there is an increasing filtrationMi ⊂M such that

V∗dd(Mi/Mi−1) ∼= gri (ρ)

for all i . DefineMi =M∩Mi . By construction,Mi is a lattice inMi stable
under both φM and the action of �. Thus, Mi is a Breuil–Kisin module over
L ′ with descent datum to K and of rank dim(V∗dd(Mi )). We can inductively
construct a basis α adapted to the filtration (Mi )i and compatible with the
descent datum. That is, we inductively pick basesαi = (α( j)

i ) for eachMi such

that�′ acts by characters on individual basis elements and ι : (α( j)
i ) = α( j+ f )

i .
Let α = αd . Define the matrix C ( j) ∈ GLn(F

′((u′))) by the condition

φ
( j)
M (ϕ∗(α( j−1))) = α( j)C ( j).

By construction,C ( j) lies in a parabolic subgroup P(F′((u′))) ⊂ GLn(F
′((u′)))

corresponding to the filtration (Mi ). Let L denote the corresponding Levi
subgroupwhich contains the diagonal torus T . Choose a dominant cocharacter
ν such that L is the centralizer of ν.

We now construct a familyMx of free étale ϕ-module with descent data of
rank n overA1

F′ = SpecF′[x] as follows: we take a basis αx and let� act on αx

in the same way it acts on α, and let Frobenius act by C ( j)
x = ν(x)C ( j)ν(x)−1

(with respect to αx ). Note that the right-hand side belongs to GLn(F
′[[x]]((u′))),

and thatC ( j)
0 lies in the Levi subgroup L(F′((u′))). The familyMx gives a map

A1
F′ → �-Modét,n

dd,L ′ .
The family we constructed has the following properties:

• For each x ∈ F
×
, the matrices C ( j)

x define a Breuil–Kisin module with
descent dataMx ⊂Mx . Furthermore,Mx

∼=M as Breuil–Kisin modules
with descent data (via scaling the basis by ν(x)), and thusMx gives a point
of Y≤λ,τ (F).
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• V∗dd(M0) = ρss.
Since the map Y≤λ,τ → �-Modét,n

dd,L ′ is representable and proper (and in fact
is a closed immersion in the current situation), the locus of x whereMx comes
from a Breuil–Kisin module in Y≤λ,τ is closed. Since this locus contains all
elements ofF

×
, it must contain x = 0.We conclude that there is a Breuil–Kisin

module M′ ∈ Y≤λ,τ (F′) inside M0. In particular we have T ∗dd(M
′) ∼= ρss,

and Proposition 5.5.7 implies furthermore thatM′ is semisimple. ��
Corollary 5.5.10 Let F′ be a finite extension of F and let M ∈ Y [0,h],τ (F′).
Assume that τ is m-generic where m ≥ h + 1. Then T ∗dd(M)ss admits a
(m − h)-generic lowest alcove presentation (w, ν).

Proof By Proposition 5.5.9, we can reduce to the case where T ∗dd(M)

is semisimple. Choose a lowest alcove presentation (s, μ) of τ where μ
is m-deep in C0. By Proposition 5.5.7, M is semisimple of shape z̃ =
((s−1j tν j−μ jw j )

∗) j∈J where T ∗dd(M)|IK
∼= τ(w, ν + η). By the height con-

dition on M, it is clear that z̃ is h-small so |〈ν − μ, α∨〉| ≤ h for all α ∈ �.
Since μ is m-deep in C0, we conclude the ν at least (m − h)-deep in C0. ��

6 Global methods

6.1 Deformations of representations

Let CO be the category of Noetherian complete localO-algebras with residue
field F and local O-algebra homomorphisms. Let G/O be a split (possibly
disconnected) reductive group. Given a topological group �, a continuous
representation r : � → G(F), and (A,mA) ∈ CO, an A-valued lifting of r is
a continuous representation rA : �→ G(A) such that r ≡ rA (mod mA).

6.1.1 Deformations of local Galois representations

Let L be a nonarchimedean local field of characteristic zero. For a continuous
Galois representation ρ : GL → G(F), define the functor D�

ρ : CO → Sets

by letting Dρ(A) be the set of A-valued liftings of ρ. Then D�
ρ is represented

by a ring R�
ρ , the O-lifting ring of ρ.

Suppose now that G = GLn and that L is not a p-adic field. If τ is an
inertial type for L , then let Rτρ denote the reduced O-flat quotient of R�

ρ

whose E ′-points correspond to representations ρ : GL → GLn(E ′) with
WD(ρ)|IL

∼= τ ⊗E E ′ for any E ′ ⊂ Qp which is finite-dimensional over E .
Now suppose that L is a p-adic field. Let T and B be the diagonal maximal

torus and upper triangular Borel subgroup, respectively, in G = GLn . Let
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J def= HomQp(L , E), let λ ∈ X∗(T∨) ∼= X∗(T∨)J be a dominant cocharacter,

and let τ be aWeil–Deligne inertial type for L . Then let Rλ,τρ be the reducedO-

flat quotient of R�
ρ such that Spec Rλ,τρ is theZariski closure of E ′-pointswhich

correspond to potentially semistable representations ρ : GL → GLn(E ′) of
Hodge type λ with WD(ρ)|IL

∼= τ ⊗E E ′ for any subfield E ′ ⊂ Qp which is

of finite degree over E . Let Spec Rλ, τρ denote the reduced union ∪τ ′ τ Rλ,τ
′

ρ

(see Definition 2.5.3 for the relation ). We also write Rτρ (resp. R τρ ) for Rη,τρ
(resp. Rη, τρ ).

Remark 6.1.1 If the nilpotent element Nτ of τ is zero (i.e. τ is minimal with
respect to  ), then Rλ,τρ is a framed potentially crystalline deformation ring

defined in [49] and is a versal ring for X λ,τ at (the point corresponding to) ρ;
see §7.2. If τ is maximal with respect to  then Rλ, τρ is a framed potentially
semistable deformation ring defined in [49].

6.2 Patching axioms

Recall from §1.8.2 that Op is a finite étale Zp-algebra, which we write as
∏

v∈Sp

Ov where Sp is a finite set and for each v ∈ Sp,Ov is the ring of integers

in a finite unramified extension F+v of Qp. Let G/Z be a split reductive group.
We let G0 be ResOp/Zp(G/Op) and denote the Langlands dual group (defined
over Z) of G0 by L G. Recall from §1.8.2 that L G = G∨

/Z � Gal(E/Qp) and

that G∨
/Z
∼= G∨,J

/Z
where J = HomZp(Op,O).

We fix isomorphisms F+v → Qp for each v ∈ Sp. Then we recall that
an L-homomorphism WQp → L G(A) over a finite cardinality O-algebra A
is equivalent to a collection (G F+v → G∨(A))v∈Sp of continuous homomor-
phisms. Similarly, a Weil–Deligne inertial L-parameter τ is equivalent to a
collection (τv)v∈Sp of Weil–Deligne inertial types. We now take G to be GLn .
Let ρ be an L-homomorphism over Fwith corresponding collection (ρv)v∈Sp .

Let R∞ be Rρ̂⊗OR p where

Rρ
def= ̂

⊗

v∈Sp,O
R�
ρv

and R p is a (nonzero) complete local Noetherian equidimensional flat O-
algebra with residue field F (we suppress the dependence on R p below).
(Though we will not use it, Rρ ∼= R�

ρ′ for G = L G where ρ′ denotes the
unique extension orρ toGQp .) For aWeil–Deligne inertial L-parameter τ and a
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cocharacter λ ∈ X∗(T∨), let R∞(λ, τ ) (resp. R∞(λ, τ)) be R∞⊗Rρ Rλ+η,τρ

(resp. R∞ ⊗Rρ Rλ+η, τρ ) where

Rλ+η,τρ

def= ̂

⊗

v∈Sp,O
Rλv+ηv,τvρv

(resp. Rλ+η, τρ

def= ̂

⊗

v∈Sp,O
Rλv+ηv, τvρv

).

Let X∞, X∞(λ, τ ), and X∞(λ, τ) be Spec R∞, Spec R∞(λ, τ ), and
Spec R∞(λ, τ), respectively. Let Mod(X∞) be the category of coherent
sheaves over X∞, and let RepO(GLn(Op)) denote the category of topological
O[GLn(Op)]-modules which are finitely generated overO. Let σ(λ, τ ) be the
finitely generated E[GLn(Op)]-module V (λ)⊗ σ(τ).
Definition 6.2.1 A weak patching functor for ρ is defined to be a nonzero
covariant exact functor M∞ : RepO(GLn(Op)) → Mod(X∞) satisfying the
following: if σ ◦(λ, τ ) is an O-lattice in σ(λ, τ ) then

(1) M∞(σ ◦(λ, τ )) is a maximal Cohen–Macaulay sheaf on X∞(λ, τ); and
(2) for all σ ∈ JH(σ ◦(λ, τ )), M∞(σ ) is a maximal Cohen–Macaulay sheaf on

X∞(λ, τ) (or is 0).
Moreover, we distinguish the following kind of weak minimal patching func-
tors.

(I) A weak patching functor is minimal if R p is formally smooth over O
and whenever τ is an inertial L-parameter (so N = 0 as in Remark
2.5.2), M∞(σ ◦(λ, τ ))[p−1], which is locally free over (the regular scheme)
Spec R∞(λ, τ )[p−1], has rank at most one on each connected component.

(II) A weak patching functor is potentially diagonalizable if M∞(σ ◦(λ, τ )) is
nonzero whenever each ρv for v ∈ Sp has a potentially diagonalizable lift
of type (λv + ηv, τv) (in the sense of [10, §1.4]).

(III) If ρ is semisimple and 2n-generic, we say that a weak patching functor
M∞ is detectable if σ ∈ Wobv(ρ) implies that M∞(σ ) is nonzero.

(IV) LetS be a set of types (λ+η, τ)with τ an inertial L-parameter (so Nτ = 0).
Aminimal patching functor for ρ andS is aminimal weak patching functor
for ρ such that M∞(σ ◦(λ, τ ))[p−1] has rank one on Spec R∞(λ, τ )[p−1]
whenever (λ+ η, τ) ∈ S and σ ◦(λ, τ ) is as above.

Remark 6.2.2 We essentially consider two contexts: one global and one local.
Correspondingly, in practice, Sp will either be the set of p-adic places of a
number field or contain a single element. In the global context, ρ will arise
from restriction of a global characteristic p Galois representation. However,
in either context, all constructions of patching functors that we use will come
from (modifications of) the (global) Taylor–Wiles patching method.

When Sp is the set of p-adic places of a number field, then R p will be a
formally smooth algebra over a completed tensor product of local deformation
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rings at some places away from p. (The extra variables, sometimes called
auxiliary, are a byproduct of the global nature of the construction.)

When Sp contains a single element, we globalize the local Galois repre-
sentation ρ i.e. find a suitable number field F+ whose completion at a place
v is F+v and a Galois representation whose restriction to the decomposition
group at v is isomorphic to ρ. We then apply the Taylor–Wiles method to this
globalization to obtain a patching functor. In this case, R p will be a formally
smooth algebra over a completed tensor product of local deformation rings
at some places away from v (including all places that divide p except for v).
In this local context then, the notation R p may be misleading, for which we
apologize.

Proposition 6.2.3 Let ρ be as above, M∞ be any weak patching functor, and
σ be a Serre weight such that M∞(σ ) �= 0. If either ρssv is (6n − 2)-generic
for all v | p or σ is (2n − 1)-deep and ρssv is 4n-generic for all v | p, then
σ ∈ W ?(ρss), where ρss denotes the L-homomorphism over F corresponding
to the collection (ρssv )v∈Sp .

Proof Let σ be⊗v∈Spσv . Suppose first that ρ
ss
v is (6n−2)-generic for all v | p.

Then the axioms for M∞ imply that for each v0 ∈ Sp, M∞(− ⊗⊗v �=v0σv) :
F[GLn(kv0)] → Vect/F is an arithmetic cohomology functor in the sense of
[56, Definition 4.2.1]. Then [56, Corollary 4.2.4] implies that σv ∈ W ?(ρssv )

for each v ∈ Sp.
Now suppose that σ is (2n−1)-deep and ρssv is 4n-generic for all v | p. Let

λ ∈ X∗(T ) be such that F(λ) ∼= σ . Then τ def= τ(w, w̃h ·λ+η) is an n-generic
tame inertial type for allw ∈ W . Moreover, the proof of [56, Corollary 4.1.12]
(and [29, Lemma 5]) shows that there is a w ∈ W such that ρ does not have
a potentially crystalline lift of type (η, τ ) if σ /∈ W ?(ρss). By the axioms
of M∞, it would suffice to show that σ ∈ JH(σ (τ )). This follows from the
observation that if (s, μ − η) is an n-generic lowest alcove presentation of τ
then F(π−1(w̃) · (tμsw̃−1(η)−η)) ∈ JH(σ (τ )) (The fact that μ−η is n-deep
ensures that tμsw̃−1(η)− η is dominant and p-restricted for any w̃ ∈ ˜W+

1 .) ��
Proposition 6.2.4 (1) If p � 2n and ρ is an L-homomorphism over F, then a

weak potentially diagonalizable patching functor exists.
(2) If furthermore for each v ∈ Sp, ρv has a potentially diagonalizable lift of

type (ξv + ηv, τv) so that the potentially crystalline lifting ring Rξ+η,τρ is
formally smooth, then a weak minimal potentially diagonalizable patching
functor exists.

Proof We can assume that Op is a domain OK as the general case follows
by taking completed tensor products. By [22, Theorem 6.4.4], a (potentially)
crystalline potentially diagonalizable lift always exists, say of type (ξ + η, τ).
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Setting ξ and τ in [14, § 2] to be this ξ and τ , the construction in loc. cit. pro-
duces a finitely generated R∞[[GLn(OK )]]-module M∞. For σ a finite
O[[GLn(OK )]]-module, we define M∞(σ ) to be Homcont

O[[GLn(OK )]](M∞, σ∨)∨
where (−)∨ denotes the Pontrjagin dual. Then M∞(−) is a weak patching
functor by [14, Lemma 4.18(1)]. By construction, r in loc. cit. is potentially
diagonalizably automorphic, which implies that M∞ is potentially diagonal-
izable by the proof of [56, Theorem 4.3.8]. If Rξ+η,τρ is formally smooth, then
M∞ is minimal. ��
Remark 6.2.5 For our purposes, the hypothesis p � 2n is often implicitly
assumed since if p | 2n, then there are no n-generic tame inertial L-parameters.

Let K be a finite unramified extension of Qp with ring of integers OK ,
and we now let Op be OK . We assume for the remainder of this section that
p � 2n (otherwise there are no n-generic tame inertial L-parameters). Then an
L-homomorphism over F is equivalent to a representation ρ : G K → GLn(F)

which we also denote by ρ.

Proposition 6.2.6 If ρ : G K → GLn(F) is a semisimple continuous Galois
representation whose restriction ρ|IK corresponds to a 4n-generic tame iner-
tial L-parameter over F, then any weak potentially diagonalizable patching
functor for ρ is detectable. Moreover, a weak minimal detectable potentially
diagonalizable patching functor exists.

Proof Thefirst part follows from the proof of [56, Theorem4.3.8] using Propo-
sition 6.2.3 in place of Corollary 4.2.7 in loc. cit.. For each v ∈ Sp, ρv
is Fontaine–Laffaille and so ρv has a crystalline potentially diagonalizable
lift for some Fontaine–Laffaille Hodge–Tate weights and the correspond-
ing crystalline lifting ring is formally smooth ( [10, Lemma 1.4.3(2)], [16,
Lemma 2.4.1]). (Alternatively, one can use [56, Theorem 3.4.1].) Proposition
6.2.46.2.4 implies that a weak minimal potentially diagonalizable patching
functor exists, which is then necessarily detectable. ��
Proposition 6.2.7 Let ρ be a semisimple Galois continuous representation
whose restriction ρ|IK corresponds to a 4n-generic tame inertial L-parameter
over F. Let λ ∈ X∗(T∨) be dominant with λ j ∈ [0, h]n. Let τ be a tame
inertial type with a fixedmax{2n, h+n−1}-generic lowest alcove presentation
(cf. Definition 2.4.3(2))). Let σ ◦(λ, τ ) be an O-lattice in σ(λ, τ ). Let M∞ be
a weak detectable minimal patching functor for ρ (which exists by Proposition
6.2.6 if Op is a domain). Then the following are equivalent.

(1) M∞(σ ◦(λ, τ )) is nonzero;
(2) R∞(λ, τ ) is nonzero;
(3) Rλ+η,τρ is nonzero; and
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(4) there is a λ-compatible lowest alcove presentation of ρ and w̃(ρ, τ ) ∈
Adm(λ+ η).

Proof If M∞(σ ◦(λ, τ )), which is supported on X∞(λ, τ ), is nonzero, then
R∞(λ, τ ) must be nonzero. By definition, R∞(λ, τ ) is nonzero if and only if
Rλ+η,τρ is nonzero.

If Rλ+η,τρ is nonzero, then there is a λ-compatible lowest alcove pre-
sentation of ρ such that w̃(ρ, τ ) ∈ Adm(λ + η) by Corollary 5.5.8. If
w̃(ρ, τ ) ∈ Adm(λ+ η), then Wobv(ρ)∩ JH(σ ◦(λ, τ )) is nonempty by Propo-
sition 2.6.6. If σ is in this intersection then M∞(σ ) is nonzero, which implies
that M∞(σ ◦(λ, τ )) is nonzero by exactness of M∞. ��

We will also need a version of the above result for certain non-semisimple
ρ:

Lemma 6.2.8 Let κ ∈ X1(T ) be (n − 1)-deep. Suppose that ρ : G K →
GLn(F) is of the form

⎛

⎜

⎜

⎜

⎝

χ1 ∗ · · · ∗
0 χ2 · · · ∗
...

. . .
...

0 · · · 0 χn

⎞

⎟

⎟

⎟

⎠

,

where χ i |IK =
∏

j∈J ω
κ j,i+η j,i
K ,σ j

. Then ρ can be lifted to a representation ρ of
the form

⎛

⎜

⎜

⎜

⎝

χ1 ∗ · · · ∗
0 χ2 · · · ∗
...

. . .
...

0 · · · 0 χn

⎞

⎟

⎟

⎟

⎠

,

where χi |IK = εn−i ∏
j∈J ω

κ j,i
K ,σ j

. Any such lift is potentially crystalline of
type (η, τ (1, κ)).

Proof The depth hypothesis implies that χ i �= χ i ′ε for all 1 ≤ i < i ′ ≤ n, so
that H2(G K , χ iχ

−1
i ′ ) = 0 and there are no obstructions to finding an upper

triangular lift ρ of ρ with characters χi on the diagonal.
We now check that such a lift ρ is potentially crystalline of type (η, τ (1, κ)).

Since for each embedding j ∈ J , the j-labelled Hodge–Tate weights of
ρ increase along the diagonal, ρ is de Rham, by [4, Lemme 6.5]. Hence ρ is
potentially semistable.Clearly theHodge–Tateweight ofρ isη. NowDpst(ρ) is
a successive extension of Dpst(χi ) as IK -representations, and since Dpst(χi ) ∼=
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∏

j∈J ω
κ j,i
j as IK -representations,ρ has inertial type τ(1, κ). Finally, the depth

hypothesis on κ implies that Dpst(ρ)|IK is a direct sum of n distinct characters,
which forces the monodromy operator N on Dpst to be 0. Thus ρ is in fact
potentially crystalline of type (η, τ (1, κ)). ��
Proposition 6.2.9 Suppose that κ and ρ are as in Lemma 6.2.8. If ρ is
4n-generic and M∞ is a weak potentially diagonalizable patching func-
tor (which exists by Proposition 6.2.4), then M∞(F(κ)) �= 0. Moreover, if
F(κ) ∈ JH(σ (λ, τ )), then Rλ+η,τρ is nonzero.

Proof Since ρ is ordinary in Lemma 6.2.8, ρ is potentially diagonalizable
by [10, Lemma 1.4.3]. Then M∞(σ ◦(τ (1, κ))) is nonzero for any O-lattice
σ ◦(τ (1, κ)) in σ(τ(1, κ)).

Let (w̃, ω) be a lowest alcove presentation for F(κ) so that κ = π−1(w̃) ·
(ω − η). Since ρ is 4n-generic, (w̃, ω) is a 3n-generic lowest alcove presen-
tation. We let w̃ ∈ ˜W+

1 be tηww. Then writing τ(1, κ) ∼= τ(π−1(w)−1w,ω+
π−1(w)−1(ηw−η)) and ρss|IK

∼= τ(π−1(w)−1w,ω+π−1(w)−1(ηw)) using
Proposition 2.4.5 gives compatible lowest alcove presentations of τ(1, κ) and
ρ|IK . Since w̃(ρ, τ (1, κ)) = tw−1(η), W ?(ρss) ∩ JH(σ (τ (1, κ))) = {F(κ)} by
Corollary 2.6.5. For any σ ∈ JH(σ (τ (1, κ))) with σ � F(κ), σ /∈ W ?(ρss)

and σ is 2n-deep by Proposition 2.3.7, and so M∞(σ ) = 0 by Proposition
6.2.3. This implies that M∞(F(κ)) is nonzero. The final part then follows
from the axioms satisfied by M∞. ��

7 Monodromy, potentially crystalline stacks, and local models

Aswe saw earlier, Theorems 5.3.1 and 5.3.3 gives a Zariski local description of
the moduli of Breuil–Kisin module Y [0,h],τ in terms of certain affine opens of
global Schubert varieties. In this section, we give a similar description for the
potentially semistable stacks of type (λ, τ ). This will the main local ingredient
for the global applications.

7.1 The monodromy condition

We are in the setup of §5.1. We have fixed a tame inertial L-parameter τ :
IQp → ̂T (E) together with a 1-generic lowest alcove presentation (s, μ). To
the tame inertial L-parameter above, we associate a tame inertial type for K ,
denoted by τ : IK → GLn(E), as described in the Example 2.4.1. Let r be
the order of sτ . As in §5.1 we write K ′ for the unramified extension of K of
degree r , let k′ be its residue field and set f ′ = f r , e′ = p f ′ − 1. Finally,
recall that we have fixed an identification ofJ ′ = HomQp(K

′, E)withZ/ f ′Z
by the choice of the isomorphism ι : K

∼→ Qp.
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We begin by recalling some notations from [48]. Let Orig
K ′ =

(

lim←−n
W (k′)

[[u′, u′n
p ]]
)[ 1p ] denote the ring of rigid analytic functions on the open unit disc

over K ′. There is a natural injectivemapOrig
K ′ ↪→ (W (k′)⊗Qp)[[u′]] = K ′[[u′]],

which identifies Orig
K ′ as the subring consisting of power series

∑∞
n=0 an(u′)n

such that |an|p Rn → 0 for all R < 1. ClearlySL ′ ⊂ Orig
K ′ . Set

λ =
∞
∏

n=0
ϕn
(

E(u′)
p

)

∈ Orig
K ′ .

We define a derivation on Orig
K ′ by N∇

def= −u′λ d
d(u′) ; the Frobenius ϕ on SL ′

extends to a Frobenius ϕ on Orig
K ′ . If 	 is a finite flat O-algebra, we define

Orig
K ′,	

def= Orig
K ′ ⊗Zp 	. For any Kisin module M ∈ Y [0,h],τ (	), we define its

base change to Orig
K ′,	 asMrig def= M⊗SL′ O

rig
K ′ .

One has the following important result of Kisin:

Theorem 7.1.1 The module Mrig[1/λ] is equipped with a unique derivation
NMrig over N∇ such that

NMrigφMrig = E(u′)φMrig NMrig (7.1)

and NMrig mod u′ = 0. The module Mrig is stable under NMrig if and only if
T ∗dd(M)[1/p] is the restriction to G K∞ of a potentially crystalline represen-
tation of G K over 	[ 1p ], of inertial type τ for K and Hodge–Tate weights in
[0, h].
Proof This is essentially [48, Corollary 1.3.15]. The result in loc. cit. is
stated there without tame descent data, however, using the full faithfulness
of the restriction from crystalline GL ′-representations to GL ′∞-representations
(Corollary 2.1.14 in loc. cit.), we see the stability of Mrig under NMrig is
equivalent to V = T ∗dd(M)[1/p] extending to a potentially crystalline repre-
sentation of G K , which becomes crystalline over L ′. The fact that it has inertial
type τ follows from the fact that Dpst (V ) is isomorphic to ((M/u′M)[ 1p ])∨
as an IK -representation. ��
Definition 7.1.2 Let	 be a finite flatO-algebra.We say thatM ∈ Y [0,h],τ (	)
satisfies the monodromy condition if NMrig(Mrig) ⊂Mrig.

The significance of the monodromy condition is that by Theorem 7.1.1,
it captures the condition that the G K∞ representation attached to a Breuil–
Kisin module comes from potentially crystalline G K -representations, at least
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Local models for Galois deformation rings and applications 1409

on finite E-algebras. We would like to study this condition when one varies
the Breuil–Kisin module in a family, and understand it explicitly in terms of
the coordinate charts of Y [0,h],τ produced by Theorem 5.3.1.

Let R be a p-adically complete, topologically of finite type flat O-algebra.
We define Orig

R = lim←−n
R[[u′, u′n

p ]][ 1p ], which can be interpreted as the ring

of rigid analytic function on the open unit ball (Spf R)rig × D◦ over the rigid
analytic generic fiber of Spf R. There is a natural injectionOrig

R ↪→ R[ 1p ][[u′]]
whose image is stable under d

du′ , and we will always think of the former as a
subring of the latter via this injection. Note that for each m ≥ 0, we have map
Orig

R � (R[ 1p ])[u′]/ϕm(E(u′)), which we can roughly think of as “evaluation

at (−p)
1

e′ pm ” (in contrast, there is no such map for R[ 1p ][[u′]]). If F ∈ Orig
R ,

we write F |ϕm(E(u′))=0 to mean the image of F under this evaluation map.
Note that the condition F |ϕm(E(u′))=0 = 0 is a Zariski closed condition on

Spec R[ 1p ]. Finally, we note that the formation of Orig
R is a Zariski sheaf on

Spf R (and thus we are free to make Zariski localizations on Spf R in our
arguments below): Indeed, a Zariski open cover of Spf R induces an open
cover of the adic space (Spf R[[u′]])ad whose generic fiber over (Spf Zp)

ad is
(Spf R)rig × D◦, and these adic spaces are sheafy by [44, Theorem 2.2].

We also define the variantOrig
K ′,R = lim←−n

(W (k′)⊗Zp R)[[u′, u′n
p ]][ 1p ], which

is a subring of (K ′ ⊗Zp R)[[u′]]. Since R is an O-algebra, we have a decom-

position Orig
K ′,R =

∏

j∈J ′ Orig
R . The operators ϕ, N∇ continue to make sense

on Orig
K ′,R .

GivenM ∈ Y [0,h],τ (R), we defineMrig =M⊗SL′,R O
rig
K ′,R , which decom-

poses as Mrig = ⊕ j ′∈J ′Mrig,( j ′).

Proposition 7.1.3 Let R be a p-adically complete, topologically finite type
flat O-algebra, and M ∈ Y [0,h],τ (R).

(1) There exists a unique derivation NMrig : Mrig[ 1
λ
] → Mrig[ 1

λ
] over N∇

such that

NMrigφMrig = E(u′)φMrig NMrig (7.2)

and NMrig mod u′ = 0.

(2) Suppose M admits an eigenbasis β = (β( j ′)) j ′∈J ′ , and recall that C ( j ′)
M,β

∈
Matn(R[[u′]]) is the matrix of φM : M( j ′−1) → M( j ′). Define inductively

the sequence N ( j ′)
i ∈ Matn(R[ 1p ][[u′]]) for j ′ ∈ J ′ and i ≥ 0 as follows:

• N ( j ′)
0 = 0 for all j ′ ∈ J ′.
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• For each i ≥ 1, define

N ( j ′)
i

def= E(u′)C ( j ′)
M,β

ϕ(N ( j ′−1)
i−1 )C ( j ′)

M,β
)−1 − N∇(C ( j ′)

M,β
)(C ( j ′)

M,β
)−1.

Then for each j ′ ∈ J ′, the sequence N ( j ′)
i converges in Mat(R[1/p][[u′]])

to an element N ( j ′)∞ . Furthermore N ( j ′)∞ ∈ 1
λh−1 Matn(Orig

R ), and is the

matrix of NMrig :Mrig,( j ′) →Mrig,( j ′) with respect to β( j ′).

Proof To prove both parts, we canwork Zariski locally on R and hence assume
thatM admits a eigenbasis β. First, assume NMrig exist, then it is (W (k′)⊗R)-
linear so it preserves Mrig,( j ′). Let N ( j ′) be the matrix of NMrig with respect

to β( j ′). Let C ( j ′) := C ( j ′)
M,β

. We can thus write the commutation relation (7.2)
as

N ( j ′)C ( j ′) = E(u′)C ( j ′)ϕ
(

N ( j ′−1))− N∇
(

C ( j ′)). (7.3)

Then NMrig is unique since this system has at most one solution even in
Matn(R[ 1p ][[u′]])J

′
. Indeed, the difference X j ′ of any two solutionswill satisfy

(noting that C ( j ′) ∈ GLn(R[ 1p ][[u′]]))

X j ′ = E(u′)Ad
(

C ( j ′))(ϕ(X j ′))

and X j ′ mod u′ = 0. From this we deduce by induction that X j ′ is infinitely
divisible by u′ in Matn(R[ 1p ][[u′]]), hence must be 0.

Thus, we are left with showing the second part of the Proposition, since the

limiting N ( j ′)∞ constructed there will be a solution to the commutation relation
(7.3). We show by induction that

λh−1(N ( j ′)
i+1 − N ( j ′)

i

) ∈ (u′)pi

p1+(h−1)(i+1)
ϕi+1(λh)Mat(R[[u′]]). (7.4)

For the base case, we have

λh−1N ( j ′)
1 = λhu′ d

du′
(

C ( j ′))(C ( j ′))−1

= ϕ(λh)
u′

ph

d

du′
(

C ( j ′))E(u′)h
(

C ( j ′))−1 ∈ ϕ(λh)
u′

ph
Matn(R[[u′]]),
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since C ( j ′), E(u′)h(C ( j ′))−1 ∈ Matn(R[[u′]]) by the height condition. Now
suppose we already know (7.4) up to i − 1 ≥ 0. We have

λh−1 (N ( j ′)
i+1 − N ( j ′)

i

)

= E(u′)h
ph−1 C( j ′)ϕ

(

λh−1 (N ( j ′−1)
i − N ( j ′−1)

i−1
))

(

C( j ′))−1

belongs to

1

ph−1ϕ
((u′)pi−1

ϕi (λh)

p1+(h−1)i
)

Matn(R[[u′]])

= (u′)pi

p1+(h−1)(i+1)
ϕi+1(λh)Matn(R[[u′]]),

since we haveC ( j ′), E(u′)h
(

C ( j ′))−1 ∈ Matn(R[[u′]]) by the height condition.
This finishes the inductive step.

Property (7.4) shows the convergence of N ( j ′)
i in Matn(R[ 1p ][[u′]]), and the

limit necessarily is the unique solution of the system (7.3). It remains to show

N ( j ′)∞ ∈ 1
λh−1 Matn(Orig

R ). From (7.4), we just need to show an element in

R[ 1p ][[u′]] of the form

ψ =
∞
∑

i=0

(u′)pi

p1+(h−1)(i+1)
ϕi+1(λ) fi (u

′)

with fi (u′) ∈ R[[u′]] must belong to Orig
R . Equivalently, we need to show that

for each fixed m, ψ lies in the image of the homomorphism R[[x, y]][ 1p ] →
R[ 1p ][[u′]] sending x to u′ and y to (u′)m

p . However this is clear, since ϕi+1(λ) ∈
Zp[[ (u′)mp ]] and (u′)pi

p1+(h−1)(i+1) fi (u′) ∈ (u′)i R[[u′, (u′)mp ]] for i sufficiently large
relative to m. ��
Proposition 7.1.4 Let 	 be a finite flat O-algebra and let M ∈ Y [0,h],τ (	)
with a eigenbasis β. Let N ( j)

M,∞ be as in Proposition 7.1.3. Then Mrig satisfies
the monodromy condition if and only if for all 0 ≤ t ≤ h − 2 and j ′ ∈ J ′,
( d

du′ )
t |E(u′)=0(λh−1N ( j ′)∞ ) = 0.

Proof The forward direction is clear. For the reverse direction, we deduce from

the commutation relation (7.3) that ( d
du′ )

t |ϕm(E(u′))=0(λh−1N ( j ′)∞ ) = 0 for all

m ≥ 0. It follows that λh−1N ( j ′)∞ ∈ λh−1 Matn(Orig
	 ). ��
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Corollary 7.1.5 Let R be a p-adically complete topologically finite type flat
O-algebra, let M ∈ Y [0,h],τ (R). Assume M is free over SL ′,R. Let β be a

eigenbasis for M. Let N ( j)∞ be the matrix of NMrig with respect to β( j). Then

• The condition ( d
du′ )

t |E(u′)=0(λh−1N ( j ′)∞ ) = 0 for all 0 ≤ t ≤ h − 2 and
j ′ ∈ J ′ defines a Zariski closed subset Spec R[ 1p ]M,∇∞ ⊂ Spec R[ 1p ],
which is independent of the choice of the eigenbasis β.

• The formation of Spec R[ 1p ]M,∇∞ is compatible with arbitrary base change
on the pair (R,M) satisfying the above hypotheses.

Proof By Proposition 7.1.3, each entry of ( d
du′ )

t |E(u′)=0(λh−1N ( j ′)∞ ) is
an element of R[ 1p ][u′]/E(u′). The Zariski closedness is immediate. A

change of the choice of eigenbasis β changes N ( j ′)∞ to Ad(X ( j ′))(N ( j ′)∞ ) −
X ( j ′)λu′ d

du′ ((X
( j ′))−1) for X ( j ′) ∈ GLn(R[[u′]]), and an easy computation

shows the independence on the choice of eigenbasis. The last assertion is
immediate, as the generators for the ideal cutting out our condition are liter-
ally the same if we compute using compatible choice of eigenbases. ��
Proposition 7.1.6 Let R be a p-adically complete topologically finite type flat
O-algebra, let M ∈ Y [0,h],τ (R). There is a unique ideal IM,∇∞ such that

• R/IM,∇∞ is O-flat; and
• For any flat map R → S such that S is a p-adically complete topologically

finite type flat O-algebra and the base change MS of M to S is free, one
has Spec S[ 1p ]/IM,∇∞ = Spec S[ 1p ]MS,∇∞ .

Furthermore formation of IM,∇∞ is compatible with flat base change on the
pairs (R,M) as above.

Remark 7.1.7 The compatibility with base change means that for flat R →
S, we have IM,∇∞S = IMS,∇∞ . In general, we always have an inclusion
IM,∇∞S ⊂ IMS,∇∞ .

Proof The existence when M is free follows from Corollary 7.1.5, taking
the Zariski closure of Spec R[ 1p ]M,∇∞ in Spec R. The uniqueness then fol-
lows, since there is a Zariski cover of Spf R by p-adic affine formal schemes
topologically of finite type over O, over which M becomes free. Finally the
existence in general and the compatibility with flat base change follows from
the base change property in Corollary 7.1.5. ��

We now wish to analyze the ideal IM,∇∞ more closely, and in particular
find some approximation of it which is more algebraic in nature. To this end,
we let R be a p-adically complete topologically finite type O-flat algebra,
and fix a pair (M, β) where M ∈ Y [0,h],τ (R) and β is an eigenbasis for M.
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Local models for Galois deformation rings and applications 1413

Given this data we get the matrices of partial Frobenii A( j ′) = A( j ′)
M,β

and

C ( j ′) = C ( j ′)
M,β

for j ′ ∈ J ′, cf the discussion after Definition 5.1.6. On the

other hand, Proposition 7.1.3 constructs the matrices N ( j ′)∞ ∈ 1
λh−1 Matn(Orig

R )

given by the infinite series

N ( j ′)∞ = N ( j ′)
1 +

∞
∑

i=1

(

i−1
∏

k=0
ϕk(C ( j ′−k))

)

× ϕi (N ( j ′−i)
1 )

(

0
∏

k=i−1
ϕk(E(u′)(C ( j ′−k))−1

)

)

, (7.5)

where N ( j ′)
1 = λu′ d

du′ (C
( j ′))(C ( j ′))−1.

Thus we can write

phλh−1N ( j ′)∞ = ϕ(λ)hu′ d

du′
(C ( j ′))(v + p)h(C ( j ′))−1 +

∞
∑

i=1
X ( j ′)

i

where

X ( j ′)
i := ϕi+1(λ)h

pi(h−1)

(

i−1
∏

k=0
ϕk(C ( j ′−k))

)

× ϕi
(

u′ d

du′
C ( j ′−i)

)

(

0
∏

k=i

ϕk
(

(v + p)h(C ( j ′−k))−1
)

)

.

We can rewrite this in terms of the A( j ′) by “removing the descent data” as in
[59, Page 52]. We obtain (see (5.4)):

ph Ad
(

(s′or, j ′)
−1(u′)−a′ ( j ′))

(λh−1N ( j ′)∞ )

= −ϕ(λ)h PN (A
( j ′))+

∞
∑

i=1
ϕi+1(λ)h Z ( j ′)

i (7.6)

where (cf. [59, Lemma 5.4])

PN (A
( j ′))

def=
(

−e′v d

dv
A( j ′) − [Diag((s′or, j ′)

−1(a′ ( j ′))), A( j ′)]
)

× (v + p)h(A( j ′))−1 ∈ L+M(R) ⊂ Matn(R[[v + p]]),
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Z ( j ′)
i

def= Ad
(

(s′or, j ′)
−1(u′)−a′ ( j ′))

(

1

ϕi+1(λ)h
X ( j ′)

i

)

.

We make the following definition:

Definition 7.1.8 Let R, (M, β) be as above, giving rise to the matrices of
partial Frobenii A( j ′).Wedefine the ideal IM,β,∇1 ⊂ R to be the ideal generated
by the elements ( d

dv )
t (v−δk>l PN (A( j ′))kl)|v=−p for 0 ≤ t ≤ h − 2, j ′ ∈ J ′

and 1 ≤ k, l ≤ n.

Remark 7.1.9 When p > h−2, the condition that a series F =∑∞
m=0 am(v+

p)m belongs to (v + p)h−1R[[v + p]] is equivalent to the condition that
( d

dv )
t F |v=−p = 0 for 0 ≤ t ≤ h − 2. Thus in this case, we see that the

ideal IM,β,∇1 cuts out the locus in Spec R where

(

e′v d

dv
A( j ′) − A( j ′)Diag((s′or, j ′)

−1(a′ ( j ′)))

)

(A( j ′))−1 ∈ 1

(v + p)
L+M(R) (7.7)

for all j ′ ∈ J ′. Note that the condition (7.7) depends only on the image of j ′ in
J . Furthermore, for eachfixed embedding j ′ ∈ J , because e′ is invertible inO,
condition (7.7) is the same as condition (4.1) with a = −((s′or, j ′)

−1(a′ ( j ′))
)/

e′
(and hence is a specialization of condition (3.1)).

Proposition 7.1.10 Let τ be a tame inertial type with a lowest alcove presen-
tation (s, μ). Assume that μ is m-deep in C0. Let R be a p-adically complete
topologically finite type O-flat algebra. Let M ∈ Y [0,h],τ (R) and β an eigen-
basis of M. Then

IM,β,∇1 ⊂ (IM,∇∞, pm−2h+3).

Remark 7.1.11 This Proposition controls the discrepancy between the “true”
monodromy condition in Proposition 7.1.4 and its truncation (7.7). It is a
generalization of [59, Theorem 5.6], which asserts that the tail/error term of
the true monodromy condition is highly divisible by p.

Proof We continue to use the notations introduced above. It follows from that
definitions that we have the recursion

Z ( j ′)
i = 1

ph−1 A( j ′)Ad(s−1j ′ v
μ j ′+η j ′ )

(

ϕ(Z ( j ′−1)
i−1 )

)

(v + p)h
(

A( j ′))−1
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for i ≥ 1, and

Z ( j ′)
0 = Ad

(

(s′or, j ′)
−1(u′)−a′ ( j ′))

(

u′ d

du′
C ( j ′)

)

(v + p)h(A( j ′))−1

=
(

[

Diag
(

(s′or, j ′)
−1(a′ ( j ′))

)

, A( j ′)
]

+ e′v d

dv

(

A( j ′))
)

× (v + p)h(A( j ′))−1 ∈ 1

(v + p)
LM+(R).

An easy induction using the fact that m + 1 ≤ 〈μ + η, α∨〉 ≤ p − m − 1
shows that for i ≥ 1

Z ( j ′)
i ∈ 1

pi(h−1) v
1+m pi−1

p−1 Matn(R[[v + p]]). (7.8)

Now over Spec R/IM,∇∞[ 1p ], for all 0 ≤ t ≤ h − 2, we have by definition

(

d

du′

)t ∣
∣

∣

E(u′)=0(λ
h−1N ( j ′)∞ ) = 0

hence also

(

u′ d

du′

)t ∣
∣

∣

E(u′)=0(λ
h−1N ( j ′)∞ ) = 0

and since u′ is invertible in R[u′]/(IM,∇∞, E(u′))[ 1p ],
(

u′ d

du′

)t ∣
∣

∣

E(u′)=0

(

ph Ad
(

(s′or, j ′)
−1(u′)−a′ ( j ′))

(λh−1N ( j ′)∞ )
)

= 0.

Equation (7.6) thus shows

(

u′ d

du′

)t ∣
∣

∣

E(u′)=0

(

−ϕ(λ)h PN (A
( j ′))+

∞
∑

i=1
ϕi+1(λ)h Z ( j ′)

i

)

= 0.

Since the expression inside the derivative belongs to R[ 1p ][[v]] and u′ d
du′ =

e′v d
dv we get

(

v
d

dv

)t ∣
∣

∣

v=−p

(

−ϕ(λ)h PN (A
( j ′))+

∞
∑

i=1
ϕi+1(λ)h Z ( j ′)

i

)

= 0. (7.9)
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Now observe that

• (v d
dv

)t |v=−pϕ
k(λ) ∈ p p−1Zp for any t, k ≥ 1.

• If F ∈ vM Matn(R[[v + p]]) then (v d
dv

)t |v=−p ∈ pM R for any t ≥ 0.

Hence (7.8) and (7.9) imply the equation

(

v
d

dv

)t ∣
∣

∣

v=−p
PN (A

( j ′))+ O(pm+1−(h−1)) = 0 (7.10)

in R/IM,∇∞[ 1p ], where the symbol O(pM ) stands for an element in pM R.

Since the differential operator
(

v d
dv

)t − vt
( d

dv

)t is a Z-linear combination of

differential operators va
( d

dv

)b with a, b < t , (7.10) implies by induction

(

d

dv

)t ∣
∣

∣

v=−p
PN (A

( j ′))+ O(pm+1−(h−1)−t ) = 0

in R/IM,∇∞[ 1p ] for all 0 ≤ t ≤ h − 2. Now using the equation
( d

dv

)t
v =

t
( d

dv

)t−1 + ( d
dv

)t , we conclude that

(

d

dv

)t

|v=−pv
−δk>l PN (A

( j ′))kl + O(pm−(h−1)−t ) = 0

R/IM,∇∞[ 1p ] for 0 ≤ t ≤ h − 2, 1 ≤ k, l ≤ n. Since the left-hand side of the

above equation belong to R and R/IM,∇∞ is a subring of R/IM,∇∞[ 1p ], the
above equation implies

(

d

dv

)t

|v=−pv
−δk>l PN (A

( j ′))kl ∈ (IM,∇∞, pm−2h+3).

��

7.2 Tame potentially crystalline stacks

In [22], Emerton and Gee considered the formal stack Xn over Spf O
parametrizing (projective) étale (ϕ, �)-modules (see [22, Definition 3.2.1]
for the definition) and showed that Xn is a Noetherian formal algebraic
stack. For any complete local Noetherian O-algebra R with finite residue
field, the groupoid Xn(R) is equivalent to the groupoid of R-families of
G K -representations, i.e. rank n projective R-modules equipped with a con-
tinuous G K -action. We will write X K

n for Xn if we want to emphasize the
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dependence on the field K . Similarly, if Op is a finite étale Zp-algebra and

F+p
def= Op⊗Zp Qp which can be written in the form

∏

v∈Sp
F+v , then we write

X F+p
n for the product

∏

v∈Sp,Spf O
X F+v

n .

In this section, we will consider the case Op = OK , but the evident general-
izations follow by taking products.

Now let τ be a tame inertial type (for K ) and λ ∈ X∗(T∨)J dominant. Then
[22, Theorem 4.8.12] shows there is a unique closed formal substack X λ,τ of
Xn , which is characterized by the following properties:

• X λ,τ is O-flat.
• For any finite flatO-algebra	, the groupoidX λ,τ (	) is the subgroupoid of
Xn(	) consisting of G K -representations on rank n projective 	-modules
which (after inverting p) are potentially crystalline with Hodge–Tate
weight λ and inertial type τ .

Furthermore, X λ,τ is a p-adic formal algebraic stack topologically of finite
type over Spf O. For any h ≥ 0, we also have the closed substack X [0,h],τ ↪→
Xn , characterized by the same properties except in the second item, where
we demand the Hodge–Tate weights to belong to [0, h]. Then X [0,h],τ is the
scheme theoretic union of X λ,τ for λ = (λ j ) j∈J satisfying λ j ∈ [0, h]n .
Finally, we setX≤λ,τ ⊂ X [0,h],τ to be the scheme theoretic union ofX λ′,τ for
λ′ dominant and λ′ ≤ λ.

Recall from [28, Definition 8.22] that a p-adic formal algebraic stack Z
topologically of finite type over Spf O (which implies residual Jacobson) is
analytically unramified if for any smooth chart Spf A → Z , A is reduced. This
is is also equivalent to Z having reduced versal rings at all finite type points.
GivenZ , [28, Example 9.10] shows that it admits an associated reduced formal
algebraic substack Z ′ ↪→ Z . It is characterized as the maximal analytically
unramified closed substack of Z . For any smooth chart Spf A → Z , the
pullback of Z ′ is Spf Ared, where Ared is the maximal reduced quotient of A.

Warning 7.2.1 (1) In [22], the convention for Hodge–Tate weights is such that
the cyclotomic character has weight −1. This is opposite of our conven-
tion, where the cyclotomic character has weight 1. As a result, a point
in X λ,τ (Qp) gives rise to a p-adic Galois representation ρ such that
the covariant admissible module Dpst(ρ) is isomorphic to τ [ 1p ] as an IK -
representation (and N = 0), and the Hodge filtration has jumps described
by −w0λ. In other words, our X λ,τ would be X−w0(λ),τ in the notation of
[22].
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(2) We warn the reader that the notion of associated reduced formal algebraic
substack is different from the notion of underlying reduced algebraic stack:
For Z = Spf A, the former notion gives the formal scheme Spf Ared, while
the latter gives the scheme Spec (A/I )red, for I an ideal of definition for
the topology on A. In particular, the former notion is usually larger than
the latter.

We now record some basic properties of these stacks established in [22].

Theorem 7.2.2 Let ? ∈ {[0, h],≤ λ, λ}.
(1) The stack X ?,τ is a p-adic formal algebraic stack, flat and topologically

of finite type over Spf O. Furthermore, X ?,τ is analytically unramified.
(2) For any smooth map Spf R → X ?,τ from a topologically finite type affine

p-adic formal algebraic space, the ring R[ 1p ] is regular.

(3) Let ρ ∈ X ?,τ (F) corresponding to a mod p representation of G K . Then
the potentially crystalline deformation ring R?,τ

ρ is a versal ring to X ?,τ at
ρ.

(4) The stack X λ,τ is equidimensional of dimension

1+
∑

j∈J
dimZ Pλ j \GLn.

Proof The first half of part (1) follows from [23, Theorem 4.8.12]. Part (3) fol-
lows from [23, Proposition 4.8.10]. Part (4) follows from [23, Theorem4.8.14].
Finally, part (2) and the second half of part (1) follows from part (3) and [49,
Theorem 3.3.8]. ��

By [22, Proposition 3.7.2], there is a canonical map Xn → �-Modét,n
K ,

whichwhen evaluated on complete localNoetherianO-algebras A corresponds
to restricting G K -representations to G K∞-representations.

Let

K[0,h],τ = X [0,h],τ ×
�-Modét,n

K
Y [0,h],τ

be the pullback of ετ : Y [0,h],τ → �-Modét,n
K along X λ,τ → �-Modét,n

K .

Similarly, for λ ∈ X∗(T∨)J such that λ j ∈ [0, h]n , we have the pullbacks
Kλ,τ , K≤λ,τ .

Finally, we let Y [0,h],τ,∇∞ ↪→ Y [0,h],τ be the unique O-flat closed sub-
stack characterized by the following property: For any p-adically complete
topologically finite type flat O-algebra R and a map f : Spf R → Y [0,h],τ
corresponding to M ∈ Y [0,h],τ (R), f factors through Y [0,h],τ,∇∞ if and only
if the ideal IM,∇∞ ⊂ R constructed in Proposition 7.1.6 is 0. The existence of
such a substack follows from the general construction of [28, § 9], using the
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compatibility of IM,∇∞ with smooth base change established in Proposition
7.1.6. Similarly, we define the O-flat closed substack Y≤λ,τ,∇∞ ↪→ Y≤λ,τ by
imposing the same kind of condition.

The following result is the main result of this section, which summarizes
the relationship between the tame potentially crystalline stacks and the moduli
stack of Breuil–Kisin modules in generic situations:

Proposition 7.2.3 Let h ≥ 1, and τ be an (h + 2)-generic tame inertial type.
Let λ = (λ j ) j∈J ∈ X∗(T∨)J be dominant such that λ j ∈ [0, h]n, and let λ′
be dominant such that λ′ ≤ λ.

We then have the following diagram

Kλ′,τ

∼=

K≤λ,τ ∼=

∼=

Y≤λ,τ,∇∞ Y≤λ,τ

K[0,h],τ ∼=

∼=

Y [0,h],τ,∇∞ Y [0,h],τ

ετ

X λ′,τ X≤λ,τ X [0,h],τ �-Modét,n
K

Xn

(7.11)

such that:

• All rectangles and trapezoids except possibly for the top right rectangle
are Cartesian.

• The arrows decorated with the symbol ∼= are isomorphisms.
• All the hooked arrows are monomorphisms, and except for the rightmost

bottom horizontal arrow, are even closed immersions.

In particular, X [0,h],τ ∼= Y [0,h],τ,∇∞ , and if λ = (λ j ) j∈J ∈ X∗(T∨)J is
dominant such that λ j ∈ [0, h]n for all j ∈ J then X≤λ,τ ∼= Y≤λ,τ,∇∞ .

Remark 7.2.4 It’s not clear to us if the top right rectangle in diagram (7.11) is
Cartesian: it is Cartesian after inverting p, but taking Zariski closure does not
commute with base change in general.

The proof of Proposition 7.2.3 will occupy the rest of this section. To prepare
for the proof, we record some Lemmaswhich give criteria formaps of schemes
or stacks to be isomorphisms using information on special kinds of points.
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1420 D. Le et al.

Lemma 7.2.5 Let a ≥ 1 and let f : Y → Z be a map between finite type
O/� a-schemes. Assume that for any local Artinian ring A with finite residue
field, f induces a bijection Y (A) ∼= Z(A). Then f is an isomorphism.

Proof We note that for any finite typeO/� a-scheme, the set of closed points
is dense, and the residue field at the closed points are finite fields.

By [75, Tag 02HY], f is a smooth map. Since f is also quasi-finite, f is
étale. Thus the diagonal � f : Y → Y ×Z Y is an open immersion. Since � f
is surjective on closed points, it is an isomorphism, hence f is a monomor-
phism. Thus f is an étale monomorphism, hence is an open immersion by
[75, Tag 025F]. Finally f is also surjective on closed points, hence f is an
isomorphism. ��
Lemma 7.2.6 Let f : Y → Z be a monomorphism of p-adic formal algebraic
stacks topologically of finite type over Spf O. Assume thatZ is flat over Spf O.
Assume that either of the following holds:

(1) Z is analytically unramified, and for any finite flat O-algebra 	, f :
Y(	)→ Z(	) is essentially surjective.

(2) Z is analytically unramified, f is a closed immersion, and for any finite
extension E ′ of E with ring of integers O′, f : Y(O′) → Z(O′) is an
essentially surjective.

(3) f is a closed immersion, and for any finite flat O-algebra	, f : Y(	)→
Z(	) is essentially surjective.

Then f is an isomorphism.

Proof As the problem is local (in the smooth topology) inZ , we reduce to the
case Z = Spf B where B is a p-adically complete topologically of finite type
O-flat algebra. Then Y is a formal algebraic space (in fact, a formal scheme
by [75, Tag 0B89]).

Suppose that we are in the first case.We claim that for any local ArtinianO-
algebra A with finite residue field, f : Y(A)→ Z(A) is an equivalence. Since
we already have fully faithfulness (from f being a monomorphism), we only
need to show essential surjectivity. Suppose we have an element x ∈ Z(A),
which corresponds to a map B → A, which factors through B/mk → A for
some maximal ideal m of A and k ≥ 1. Now our hypotheses on Z imply that
B is reduced and Zp-flat. Furthermore, since B is p-adically complete and
B/p is Nagata, B is also Nagata [63] Hence [2, Lemma 4.1.2] implies that
B → B/mk factors through some continuous map B → 	where	 is a finite
flat O-algebra. Thus x can be lifted to a point x̃ ∈ Z(	) ∼= Y(	), hence x is
in the essential image of Y(A). But now for each a ≥ 1, Lemma 7.2.5 implies
that the base change (Y)O/� a → (Z)O/� a is an isomorphism, hence f itself
is an isomorphism.
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Suppose now that we are in the second case. Then Y = Spf B/J . Since
the residue fields at maximal ideals of B[ 1p ] are finite extensions of E , and

any map B[ 1p ] → E ′ where E ′ is a finite extension of E comes from a map

B → O′, our hypothesis implies that J [ 1p ] is in the intersection of all the

maximal ideals of B[ 1p ]. Since B[ 1p ] is Jacobson, J [ 1p ] = 0, and hence J = 0
since B is O-flat.

Finally, suppose that we are in the third case. Then Y = Spf B/J . For any
maximal ideal m of B[ 1p ] and any a ≥ 1, B[ 1p ]/ma is finite dimensional over

E , and the map B → B[ 1p ]/ma factors through some finite flat O-algebra 	

such that 	[ 1p ] = B[ 1p ]/ma . Our hypothesis implies that the map B → 	

factors through B/J . It follows that J [ 1p ] ⊂ ∩∞a=1ma , hence J [ 1p ]m = 0 Since

this is true for any maximal ideal m, we have J [ 1p ] = 0, and hence J = 0
since B is O-flat. ��

We can now deal with the vertical isomorphisms occurring in diagram
(7.11):

Proposition 7.2.7 Assume that τ is (h + 1)-generic. Then the natural map
K[0,h],τ → X [0,h],τ is an isomorphism.

Proof It follows fromProposition 5.4.3 that ourmap is a closed immersion. By
Lemma 7.2.6, we only need to check that for any finite extension E ′ of E with
ring of integers O′, the natural functor K[0,h],τ (O′)→ X [0,h],τ (O′) is essen-
tially surjective. Let V ∈ X [0,h],τ (O′) be an O′-lattice in a potentially crys-
talline representation over E ′ with Hodge–Tate weights in [0, h], and letM ∈
�-Modét,n

dd,L ′(O′)be the associated étaleϕ-modulewith descent data from L ′ to
K . By [48, Corollary (1.3.15), Proposition (2.1.5) and Lemma (2.1.15)], there
is a unique projectiveSL ′,O′-submoduleM ⊂Mwhich isφM-stable (projec-
tivity follows from [2, Remark 2.2.16(2)]), such thatM =M⊗SL′ OE,L ′ and
the cokernel of φM onM is killed by E(u′)h . The uniqueness implies thatM′
is stable under the semi-linear action of �′. As M/u′M[ 1p ] ∼= Dpst (V∨) ∼=
τ∨ ⊗O (K ′ ⊗Zp O′) as projective K ′ ⊗Zp O′-modules with � = I (L ′/K )-
action,we deduce thatM ∈ Y [0,h],τ (O′). ThusV ∈ X [0,h],τ (O′) is isomorphic
to the image of (V,M) ∈ K[0,h],τ (O′). ��

Remark 7.2.8 For a general finite flat O-algebra 	 which is not the ring of
integers of a finite extension of E and V ∈ X [0,h](	), the unique Breuil–Kisin
module M associated to V viewed as an O-lattice in potentially crystalline
representation over E is a priori only an SL ′,	-module. However, it follows
from the above Proposition that in this case, it is actuallySL ′,	-projective.
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We now analyze the bottom horizontal map of diagram (7.11). We recall
the following definition [59, Definition 3.8]. Recall that ε denotes the p-adic
cyclotomic character.

Definition 7.2.9 Let ρ : G K → GLm(Fp). We say ρ is cyclotomic free if
there is an unramified extension M/K of degree prime to p such that ρ|ssG M

is
a direct sum of characters, and

H0(G M , ρ|ssG M
⊗ ε−1) = 0.

The main feature about this notion that is relevant to us is the following

Lemma 7.2.10 (1) Suppose ρ is cyclotomic free. Then the natural inclusion
induces an isomorphism

H0(G K , ρ) ∼= H0(G K∞, ρ)

(2) If ρss|IK is 2-generic, then ad(ρ) is cyclotomic free.
(3) Suppose V , W are twoO[G K ]-modules of finite length. Assume there exists

a semisimple G K -representation ρ such that ad(ρ) is cyclotomic free, and
such that V ss, W ss are direct summands of a direct sum of finitely many
copies of ρ. Then the natural restriction map induces an isomorphism

HomG K (V,W ) ∼= HomG K∞ (V,W )

(4) Let W as in (3). Then any G K∞-submodule V ⊂ W is G K -stable.

Proof (1) This follows from (the proof of) [59, Lemma 3.11].
(2) This is [59, Proposition 3.9]. Note the proof in loc. cit. was written for

n = 3, but works in general. Also, 2-generic in the sense of this paper is
stronger than 2-generic in loc. cit. (see [56, Remark 2.2.8]).

(3) Since ad(ρ) = ρ ⊗ ρ∨ is cyclotomic free, the same is true for any finite
direct sum of ad(ρ). Now V ss, W ss are direct summands of a finite direct
sum of ρ, hence W ss ⊗ (V ss)∨ is a direct summand of a finite direct sum
of ad(ρ), and thus is cyclotomic free. Since (W ⊗ V∨)ss = W ss⊗ (V ss)∨,
W ⊗V∨ is also cyclotomic free. The result now follows from the first part.

(4) We first assume that V is irreducible. Then V extends uniquely to a G K -
module. By the previous part, theG K∞-equivariant inclusionmap V ↪→ W
is G K -equivariant, thus finishing the proof in this case.
For general V , we let V0 be non-zero irreducible G K∞-submodule of W .
Then the argument above shows that V0 is a G K -submodule of W . We
repeat the argument for V/V0 ↪→ W/V0 to conclude. ��

Proposition 7.2.11 Suppose τ is (h + 2)-generic. Then the composition
X [0,h],τ → Xn → �-Modét,n

K is a monomorphism.
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Proof It suffices to show that for any a ≥ 1 and A a finite typeO/� a-algebra,
the functor X [0,h],τ (A)→ �-Modét,n

K (A) is fully faithful.
Suppose first that A is local Artinian O-algebra with finite residue field

F′. Then Xn(A) is equivalent to the groupoid of G K -representation on pro-
jective A-modules of rank n, �-Modét,n

K (A) is equivalent to the groupoid of
G K∞-representation on projective A-modules of rank n. Suppose we have
two such G K -representations VA, WA. We need to show the restriction map
induces a bijection between the set of isomorphisms IsomG K (VA,WA) ∼=
IsomG K∞ (VA,WA).

We first observe that if either set is non-empty, then V ss
F′
∼= W ss

F′ : indeed,
the restriction map identifies the semisimple representations of G K and G K∞
over F′. We can thus assume that V ss

F′
∼= W ss

F′ , and denote this common rep-
resentation by ρ. But now V ss

F′ |G K∞ comes from an object of Y [0,h],τ (F′), so
Lemma 5.5.10 shows that ρ is 2-generic. Finally, since V ss

A and W ss
A are direct

summands of a finite direct sum of ρ, we conclude by Lemma 7.2.10.
Suppose now that A is a general finite type O/� a-algebra. Let x1, x2 ∈

X [0,h],τ (A) and let y1, y2 be their images in �-Modét,n
K (A). Let Y =

Isom(x1, x2) and Z = Isom(y1, y2) be the functor over Spec A which repre-
sents isomorphisms between x1, x2 and y1, y2. By [24, Proposition 5.4.8], Y ,
Z are representable by finite type A-schemes, and hence are finite typeO/� a-
schemes. The composition in the statement of the proposition induces a natural
map Y → Z . By the Artinian case above, for any local Artinian ring B with
finite residue field, the natural map Y (B)→ Z(B) is a bijection. Lemma 7.2.5
then shows that Y → Z is an isomorphism of A-schemes, hence in particular
Y (A) = Z(A), and hence the subsets of Y (A) and Z(A) which maps to the
identity via the structure maps Y → Spec A, Z → Spec A also coincide. But
these sets are exactly the Hom space between x1, x2 in X [0,h],τ (A) and the
Hom space between y1, y2 in �-Modét,n

K (A). ��
Finally, we deal with the middle and top horizontal maps of diagram (7.11).

Proposition 7.2.12 The natural map K[0,h],τ → Y [0,h],τ factors through the
substack Y [0,h],τ,∇∞ ⊂ Y [0,h],τ , and the natural map K≤λ,τ ↪→ K[0,h],τ →
Y [0,h],τ factors through Y≤λ,τ,∇∞ ⊂ Y [0,h],τ . The induced maps K[0,h],τ →
Y [0,h],τ,∇∞ and K≤λ,τ → Y≤λ,τ,∇∞ are isomorphisms.

Proof We first show that K[0,h],τ → Y [0,h],τ factors through Y [0,h],τ,∇∞ . To
do this, it suffices to show that for some smooth cover Spf R → K[0,h],τ , the
induced map Spf R → Y [0,h],τ factors through Y [0,h],τ,∇∞ . Since K[0,h],τ ∼=
X [0,h],τ isO-flat, analytically unramified and topologically of finite type over
Spf O, R is also O-flat, reduced and topologically of finite type over O. The
inducedmap Spf R → Y [0,h],τ corresponds to an objectM ∈ Y [0,h],τ (R), and
the existence of the desired factorization is equivalent to IM,∇∞ = 0. Now for
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any finite extension E ′/E with ring of integersO′, and any map x : R → O′,
the base change Mx of M along x is the Breuil–Kisin module associated to
an O′-lattice in a potentially crystalline representation with inertial type τ ,
and thus Mx satisfies the monodromy condition (cf. Definition 7.1.2). Thus
IMx ,∇∞ = 0 in O′ by Proposition 7.1.4, so IM,∇∞ ⊂ ker x . This shows that
IM,∇∞[ 1p ] lies in the intersection of all themaximal ideals of R[ 1p ]. Since R[ 1p ]
is reduced and Jacobson, this intersection is 0, and hence IM,∇∞ = 0 since R is
O-flat.Wenote that this argument actually shows that Spf R → Y [0,h],τ factors
through the associated reduced formal algebraic substack Z of Y [0,h],τ,∇∞ .

We have a sequence of monomorphisms K[0,h],τ ↪→ Z ↪→ Y [0,h],τ,∇∞ ,
since K[0,h],τ → Y [0,h],τ is a monomorphism, being the base change of the
monomorphismX [0,h],τ ↪→ �-Modét,n

K (see Proposition 7.2.11).Note that the
secondmonomorphism is a closed immersion.We now show that for any finite
flat O-algebra 	, the composition K[0,h],τ (	) → Z(	) → Y [0,h],τ (	) is
essentially surjective. Let x ∈ Y [0,h],τ,∇∞(	). Then x corresponds to an object
Mx ∈ Y [0,h],τ (	). Since x ∈ Y [0,h],τ,∇∞(	) and SL ′,	 is semilocal, Mx
satisfies the hypothesis of Proposition 7.1.4. Thus V = T ∗dd(Mx ) is a G K∞-
representation on a free	-module of rank n, and V [ 1p ] extends to a potentially
crystalline representation of G K over	[ 1p ]with Hodge–Tate weights in [0, h]
and inertial type τ . By Lemma 7.2.13 below, V ⊂ V [ 1p ] is actually G K -stable,

and hence x indeed comes an object V ∈ X [0,h],τ (	) = K[0,h],τ (	). The
upshot of this argument is that on the one hand, K[0,h],τ ∼= Z by the first
criterion of Lemma 7.2.6, and on the other hand Z ∼= Y [0,h],τ,∇∞ by the third
criterion of Lemma 7.2.6.

We have thus proved the result for K[0,h],τ . To show the result for K≤λ,τ ,
we use the following observations

• If V ∈ X [0,h],τ (O′) with associated Breuil–Kisin module M ∈
Y [0,h],τ (O′), then DdR(V∨) is identified with (ϕ∗M/E(u′)ϕ∗M)[ 1p ], cf.
[22, §4.7] (the appearance of the dual is because we use the contravari-
ant functor T ∗dd on Breuil–Kisin modules, in contrast to [22]). Thus the
jumps in the Hodge filtration of DdR(V∨) occur at the components of rela-
tive position of ϕ∗M with respect toM (which is given by the elementary
divisors of thematrices of partial Frobenii). This implies that V hasHodge–
Tate weights ≤ λ if and only if M ∈ Y≤λ,τ (O′), cf. the discussion above
Theorem 5.3.3.

• Let 	 is a finite flat O-algebra and and V ∈ X [0,h],τ (	) with associated
Breuil–Kisin module M ∈ Y [0,h],τ (	). Then M ∈ Y≤λ,τ (	) implies
V ∈ X≤λ,τ (	). This is due to the fact that theHodge filtration onDdR(V∨)
are given by projective 	[ 1p ] modules, hence one can check the Hodge–
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Tate weight ≤ λ condition by passing to 	red, which is dealt with by the
item above.

The first item shows the existence of the factorizationK≤λ,τ ↪→ Y≤λ,τ,∇∞ ↪→
Y≤λ,τ ↪→ Y [0,h],τ , and the second item allows us to carry out the above
argument to conclude K≤λ,τ ∼= Y≤λ,τ,∇∞ . ��
Lemma 7.2.13 Let τ be (h + 2)-generic. Let 	 be a finite flat O-algebra.
Suppose M ∈ Y [0,h],τ (	) and V = T ∗dd(M), a G K∞-representation on a
free	-module of rank n. Suppose V [ 1p ] extends to a G K -representation. Then

V ⊂ V [ 1p ] is G K -stable.

Proof It suffices to treat the case 	 local. Let F′ be the residue field of 	.
Note that the semisimplified reduction V ss

F′ extends uniquely to a semisimple
G K -representation ρ. By Lemma 5.5.10, ρ is 2-generic. We choose a	[G K ]-
stable O-lattice W in V [ 1p ] such that V ⊂ W . Then (W/�)ss is isomorphic
to a finite direct sum of ρ as G K -representations. Choose N large enough so
that pN W ⊂ V ⊂ W . Applying Lemma 7.2.10(4) to V/pN W ⊂ W/pN W ,
we conclude that V/pN W , and hence V is G K -stable. ��
Proof of Proposition 7.2.3 TheCartesian-ness of the rectangles and trapezoids
follows from the definitions. Proposition 7.2.7 shows that the vertical maps
labelledwith∼= are isomorphisms. Proposition 7.2.11 and the definitions shows
that all the hooked arrows are monomorphisms. Finally, Proposition 7.2.12
show that the maps K [0,h],τ ↪→ Y [0,h],τ and K≤λ,τ ↪→ Y≤λ,τ are closed
immersions with images as claimed. ��

7.3 Local models for potentially crystalline stacks

Throughout this section, we fix λ ∈ X∗(T∨)J regular dominant such that
λ j ∈ [0, h]n , and a tame inertial type τ with a lowest alcove presentation (s, μ).
By Proposition 7.2.3, if μ is (h+ 2)-deep in C0, we have X≤λ,τ ∼= Y≤λ,τ,∇∞ ,
which is obtained from the stack of Breuil–Kisin modules Y≤λ,τ by imposing
an explicit list of equations. On the other hand, Theorem 5.3.3 relates the local
structure of Y≤λ,τ to the p-adic completion of the local model MJ (≤ λ). Thus
we wish to analyze the effect of imposing the∇∞ equations on the local model
diagram of Theorem 5.3.3.

To our lowest alcove presentation (s, μ) of τ , we get the data a′ ( j ′) ∈ Zn

for any j ′ ∈ J ′, cf. equation (5.2). For each integer j ′ ∈ J ′, define

aτ, j ′
def= (s′or, j ′)

−1(a′ ( j ′))/(1− p f ′)

so aτ ∈ (On)J
′
. We caution that aτ depends on the choice of presentation

(s, μ), and not just on τ . A direct computation gives:
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Lemma 7.3.1 Let aτ ∈ (On)J
′

be as above. Then

aτ, j ≡ s−1j (μ j + η j ) mod �.

for any j ∈ {0, . . . , f − 1}.
Proof The proof is obtained by unraveling the definitions. First of all, we
notice that aτ, j ≡ (s′or, j )

−1(a′ ( j)) modulo� , hence:

aτ, j ≡ (s′or, j )
−1(α′− j ) modulo�

= (s′or, j )
−1(sτ )δ j>0(α f− j ) (7.12)

for 0 ≤ j ≤ f − 1, using (5.2) and (5.1) above (where we set α f
def= α0).

Recall from (5.3) that s′or,0 = s0, that s′or, j = sτ (s
−1
f−1 . . . s

−1
j+1) for 0 < j <

f − 1 and that s′or, f−1 = sτ . Thus the expression (7.12) equals s−10 (α0) for
j = 0, (s j+1 . . . s f−1)(α f− j ) for 0 < j < f − 1 and α1 if j = f − 1. As
α f− j = s−1f−1 . . . s

−1
j (μ j + η j ) for 0 < j ≤ f − 1 and α0 = μ0 + η0 (see

Example 2.4.1), the conclusion follows. ��
Recall from §4.1.1, §4.5 the projective O-scheme Mnv

J (≤ λ,∇aτ ) =
∏

j∈J
Mnv(≤ λ j ,∇aτ, j ). Here, for each j ∈ J , we defined Mnv(≤ λ j ,∇aτ, j ) as the

intersection M(λ) ∩ Gr
∇aτ, j
G,O inside GrG,O. In other words if R is a Noethe-

rian O-algebra and x ∈ M(λ j )(R) is represented by A ∈ LG(R), then
x ∈ Mnv(≤ λ j ,∇aτ, j ) if and only if

v
d

dv
(A)A−1 + ADiag(aτ, j )A

−1 ∈ 1

v + p
L+M(R).

We have dim Mnv
J (≤ λ,∇aτ ) ≤ 1+ #J dimE (B\GLn)E = 1+ #J n(n−1)

2
Recall from Definition 4.1.2 and §4.5 theO-flat subscheme MJ (λ,∇aτ ) ⊂

Mnv
J (≤ λ,∇aτ ). By Proposition 4.1.6, the scheme theoretic union of MJ (λ′,

∇aτ ) over λ
′ dominant and λ′ ≤ λ is the O-flat part of Mnv

J (≤ λ,∇aτ ). We
define MJ ,reg(≤ λ,∇aτ ) to be the scheme theoretic union of MJ (λ′,∇aτ )

over λ′ regular dominant and λ′ ≤ λ. Because dim MJ (λ′,∇aτ ) ≤ 1 +
#J dimE (B\GLn)E with equality if and only ifλ′ is regular, MJ ,reg(≤ λ,∇aτ )

is characterized as the maximal O-flat closed subscheme of MJ (≤ λ,∇aτ )

which is equidimensional of dimension

1+ #J dimE (B\GLn)E .

Let z̃ = (̃z j ) j∈J . Recall from (5.9) the open affine subschemeU (̃z,≤ λ) ↪→
MJ (≤ λ) and the trivial T∨,JO -torsor ˜U (̃z,≤ λ) = T∨,JO ×U (̃z,≤ λ). Inter-
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secting with these affine opens, we get the objects U (̃z, λ,∇aτ ), ˜U (̃z, λ,∇aτ ),
Ureg(̃z,≤ λ,∇aτ ) and ˜Ureg(̃z,≤ λ,∇aτ ).

Our main result is the following

Theorem 7.3.2 Let (s, μ) be a (h + 2)-lowest alcove presentation for τ and
consider the commutative diagram of p-adic formal algebraic stacks

˜Ureg (̃z,≤ λ,∇aτ )
∧p ˜Unv (̃z,≤ λ,∇aτ )

∧p Unv (̃z,≤ λ,∇aτ )
∧p Mnv

J (≤ λ,∇aτ )
∧p

˜X≤λ,τ
reg (̃z) ˜U (̃z,≤ λ,∇τ,∞) ˜U (̃z,≤ λ)∧p U (̃z,≤ λ)∧p MJ (≤ λ)∧p

X≤λ,τ
reg (̃z) Y≤λ,τ,∇∞ (̃z) Y≤λ,τ (̃z)

X≤λ,τ
reg Y≤λ,τ,∇∞ Y≤λ,τ

T∨,JO ◦
∼=

T∨,JO T∨,JO

T∨,JO

T∨,JO

◦

◦ ◦ ◦
(7.13)

where:

• The objects MJ (≤ λ),Mnv
J (≤ λ,∇aτ )are defined in §4.5; Y≤λ,τ , Y≤λ,τ (̃z),

U (̃z,≤ λ), and ˜U (̃z,≤ λ) are defined in §5.3,Y≤λ,τ,∇∞ is defined in §7.2
and finally ˜Ureg(̃z,≤ λ,∇aτ ) is defined in the paragraph above;

• X≤λ,τ
reg is the scheme theoretic union

⋃

λ′ X λ′,τ , where λ′ runs over all
regular dominant coweights ≤ λ.

• All solid rectangles are Cartesian. This defines any previously undefined
object in the diagram, namely ˜Unv(̃z,≤ λ,∇aτ )

∧p , U nv(̃z,≤ λ,∇aτ )
∧p ,

˜X≤λ,τ
reg (̃z), ˜U (̃z,≤ λ,∇τ,∞),X≤λ,τ

reg (̃z) and Y≤λ,τ,∇∞ (̃z). (Note that the first
two objects are p-adic completions of ˜U nv(̃z,≤ λ,∇aτ ), U nv(̃z,≤ λ,∇aτ ),
which are defined by the same pullbacks but without the p-adic completion.)

• All undecorated hooked arrows are closed immersions.
• All circled hooked arrows are open immersions.
• All arrows decorated with T∨,JO are T∨,JO -torsors.

Then:

(1) There exists an integer Nsing = N ({λ j } j∈J ) which depends only on the
subset {λ j } ⊂ Zn (and not on p) such that if μ is Nsing-deep in C0, then
the diagonal dotted arrow exists for all z̃ ∈ ˜W∨,J .

(2) There exists a polynomial P = P{λ j } j∈J ,e(X1, · · · , Xn) ∈ Z[X1, · · · , Xn]
depending only on the subset {λ j } ⊂ Zn and the ramification index e of O
(and not on p), such that if μ is P-generic, then
• The dotted arrows exist and the vertical dotted arrow is an isomorphism.
• For any λ′ ≤ λ regular dominant and any semisimple ρ ∈ Xn(Fp), the

versal rings to X λ′,τ at ρ are domains (or 0). In other words, X λ′,τ is
analytically irreducible at the Fp-points corresponding to semisimple
G K -representations.
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Warning 7.3.3 (1) Unlike ˜U nv(̃z,≤ λ,∇aτ ) which is a scheme, ˜U (̃z,≤ λ,
∇τ,∞) is only a p-adic formal scheme. This is because the equations
imposed by the ∇τ,∞ condition involve infinite series which only make
sense over p-adically complete test rings. This is why we need to put the
p-adic completion on some objects in the diagram.

(2) The way we will produce the dotted map is by invoking Proposition 3.3.9,
which appeals to Elkik’s approximation theorem, and hence produces non-
canonical liftings. We do not expect that there is a choice which makes
the triangle commute. Looking at explicit formulas, we suspect, but have
not tried to show, that the rigid generic fibers of ˜U (̃z,≤ λ,∇τ,∞) and
˜Unv(̃z,≤ λ,∇aτ )

∧p do not coincide as subspaces of the rigid generic fiber
of ˜U (̃z,≤ λ)∧p in general.
However, we will see that once the diagonal dotted arrow has been con-
structed, it will induce the vertical dotted arrow to make the top left
trapezoid commute.

Remark 7.3.4 Theorem 7.3.2 is stated for the stacksX≤λ,τ
reg parametrizing rep-

resentations of G K where K is a given unramified extension of Qp which
we fixed at the beginning of this section. More generally, if we have a finite
collection (F+v )v∈Sp of such, we have analogous objects X≤λ,τ

reg , Y≤λ,τ etc. by
taking products over Sp. Then the proof given below carries over verbatim and
shows that Theorem 7.3.2 continues to hold in this more general setting.

Lemma 7.3.5 Let λ′ ∈ X∗(T∨)J regular dominant such that λ′j ∈ [0, h′]n
for all j ∈ J and τ a tame inertial type together with a fixed (4n+h′)-generic
lowest alcove presentation. Then X λ′,τ (̃z) = X λ′,τ ∩ Y≤λ′,τ (̃z) is non-empty
if and only if z̃ ∈ Adm∨(λ′).

Proof For one direction, we consider the Breuil–Kisin module Mz̃ ∈
Y≤λ,τ (̃z)(F) which has matrices of partial Frobenii with respect to an eigen-
basis given by A( j) = z̃ j where z̃ ∈ Adm∨(λ′). Then ρ = T ∗dd(Mz̃) is a
semisimple representation of G K∞ , hence is also a semisimple representation
of G K . By Corollary 5.5.10, ρ is 4n-generic. Furthermore, by Proposition
5.5.7 based on [56, Corollary 3.2.17], ρ|IK admits a lowest alcove presenta-
tion (w, ν) which is (λ′ − η)-compatible such that w̃(ρ, τ ) ∈ Adm(λ′). Then
ρ satisfies the fourth item of Proposition 6.2.7 with λ = λ′ − η and hence
ρ admits a potentially crystalline lift with Hodge–Tate weight λ′ and inertial
type τ , and this produces a point of X λ′,τ (̃z). Conversely, if X λ′,τ (̃z) �= ∅,
then Y≤λ′,τ (̃z) �= ∅, hence z̃ ∈ Adm∨(λ′) by Corollary 5.3.5. ��
Proof of Theorem 7.3.2 (1) Suppose μ is M-deep in C0 where M ≥ 2h − 3.

From Theorem 5.3.3, ˜U (̃z,≤ λ)∧p = Spf R classifies objects in Y≤λ,τ
together with a z̃-gauge basis. Thus we get the universal such pair (M, β)

over R, and the matrix of partial Frobenii A( j) = A( j)
M,β

. We have
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˜U (̃z,≤ λ,∇τ,∞) = Spf R/IM,∇∞ , while, by Remark 7.1.9 and the def-
inition of aτ, j , ˜U nv(̃z,≤ λ,∇aτ )

∧p = Spf R/IM,β,∇1 is cut out by the
condition

v
d

dv
A( j)(A( j))−1 + A( j)Diag(aτ, j )(A

( j))−1 ∈ 1

v + p
L+M(R).

By Proposition 7.1.10, IM,β,∇1 ⊂ (IM,∇∞, pN ), where N = M − 2h + 3.
We also note that this implies that for each j ∈ J there is a diagram

Spec R/(IM,∇∞ , pN ) Spec R/(IM,β,∇1 , pN )
f j Unv

X (̃z j ,≤ λ j ,∇)

Spec R/IM,∇∞
(−p,aτ, j )

A1 × An

Note that R/IM,∇∞ is p-adically complete and p-torsion free. By Propo-
sition 3.3.9, there exists an integer N ′

sing depending only on the set {λ j }
such that if M ≥ 2max j∈J hλ j + N ′

sing , we can lift f j mod p to a map
˜f j : Spec R/IM,∇∞ → Unv

X (̃z j ,≤ λ j ,∇). Since T∨,J is smooth over
Z, we can also lift the composite Spec R/(IM,∇∞, p) → ˜U (̃z,≤ λ) =
T∨,JO ×U (̃z,≤ λ)→ T∨,JO to Spec R/IM,∇∞ → T∨,JO . Taking the prod-
uct of the lifts above produces a map

˜f : Spec R/IM,∇∞ → (
∏

j∈J
T∨ × Unv

X (̃z j ,≤ λ j ,∇))O,

where the base change is along the map Spec O → X × An,J given by
the tuple (−p, aτ ). By Remark 4.1.4, the fact that U nv(̃z,≤ λ,∇aτ ) =
Mnv

J (≤ λ,∇aτ ) ∩ U (̃z,≤ λ), and the fact that R/IM,∇∞ is O-flat and p-
adically complete, ˜f factors through U nv(̃z,≤ λ,∇aτ ), and further factors
through the p-adic completion, which produces the desired dotted arrow.
This map is a closed immersion of p-adic formal algebraic stacks, since it
is a closed immersion modulo p. This finishes the proof of the first part.

(2) We first claim that if the diagonal dotted arrow exists, then it induces
the vertical arrow so that the trapezoid commutes. Indeed by construc-
tion ˜Ureg(̃z,≤ λ,∇aτ )

∧p is the maximal closed p-adic formal subscheme
of ˜U nv(̃z,≤ λ,∇aτ )

∧p which is O-flat and equidimensional of dimension
1 + dimE (B\GLn)E#J + n#J . But Theorem 7.2.2 says that ˜X≤λ,τ

reg (̃z)
has both these properties, proving our claim.
We abbreviate Spf B = ˜Ureg(̃z,≤ λ,∇aτ )

∧p and Spf A = ˜X≤λ,τ
reg (̃z). Note
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that A and B are both O-flat, p-adically complete, reduced, equidimen-
sional of dimension1+#J n(n+1)

2 , and there is a surjection B � A provided
by the existence of the dotted vertical arrow.
We now apply Theorem 3.7.1 for each λ′ ≤ λ regular dominant. It implies
there exists a polynomial P ∈ Z[X1, · · · Xn] depending only on the rami-
fication index e ofO and the set {λ j } j∈J such that if P(aτ, j ) mod p �= 0
for all j ∈ J , then for each λ′ ≤ λ regular dominant:
• M(λ′,∇aτ ) is the base change ofMX,J (λ′,∇) via the map SpecO→

X × An,J given by (−p, aτ ).
• O(U (̃z, λ′,∇aτ )

∧p) is a domain. Hence the same is also true for
O(˜U (̃z, λ′,∇aτ )

∧p).
• U (̃z, λ′,∇aτ ) is unibranch (equivalently, analytically irreducible) at z̃.
In other words, any of its versal rings at z̃ is a domain.

(To arrange the first item,we useRemark 3.5.6 to themapMX,J (λ′,∇)→
X × An,J to guarantee that the base change of MX,J (λ′,∇) via the map
Spec O→ X × An,J given by (−p, aτ ) is O-flat for each λ′.)
Now if U (̃z, λ′,∇aτ ) �= ∅ then Y≤λ′,τ (̃z)F �= ∅. Hence by Corollary 5.3.5,
z̃ ∈ Adm∨(λ′). It follows from this and the first item above that the number
of minimal primes of B is at most

#{λ′ ≤ λ|λ′ regular dominant, z̃ ∈ Adm∨(λ′)}.

On the other hand, taking M ≥ max{4n+ h, 2h+ 3}, Lemma 7.3.5 shows
that the number of minimal primes of A is at least

#{λ′ ≤ λ|λ′ regular dominant, z̃ ∈ Adm∨(λ′)}.

This forces the kernel ker(B � A) to lie in the intersection of all the
minimal primes of B, and hence is 0. This shows that the surjection induces
an isomorphism B

∼→ A.
We now wish to show that given a semisimple G K representation ρ ∈
Xn(Fp) and λ′ ≤ λ regular dominant, any versal ring to X λ′,τ at ρ is an
integral domain or zero.
We may assume without loss of generality that ρ ∈ Xn(F). For any λ′ ≤ λ,
let nλ′ ≥ 0 be the number of minimal primes of any versal ring to X λ′,τ at
ρ.
First suppose ρ ∈ X≤λ′,τ (F). By Proposition 5.5.7, the image Mρ of ρ
in Y≤λ′,τ (F) is a semisimple Breuil–Kisin module of some shape z̃ by
the uniqueness of Mρ (Proposition 5.4.3). Hence, Mρ ∈ Y≤λ′,τ (̃z)(F),
and can be lifted to an element in T∨,J (F)̃z ⊂ ˜U (̃z,≤ λ′)(F). Thus we
can find a versal ring R to X≤λ′,τ

reg at ρ which is also a versal ring to
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Ureg(̃z,≤ λ′,∇aτ ) at z̃. Now it follows from the second item above that the
number of minimal primes of R is exactly #{λ′′ ≤ λ′ regular dominant|̃z ∈
Adm∨(λ′′)}. Since X≤λ′,τ

reg is the scheme theoretic union of X λ′′,τ over
λ′′ ≤ λ′ regular dominant (each of which is equidimensional of the same
dimension and no two share an irreducible component),we have thus shown
that

∑

λ′′≤λ′ regular dominant

nλ′′ = #{λ′′ ≤ λ′ regular dominant|̃z ∈ Adm∨(λ′′)}

(7.14)

On the other hand, if ρ /∈ X≤λ′,τ (F), then
∑

λ′′≤λ′ nλ′′ = 0, and #{λ′′ ≤
λ′ regular dominant|̃z ∈ Adm∨(λ′′)} = 0 by Lemma 7.3.5.
Thus Eq. (7.14) holds for all λ′ ≤ λ regular dominant. This implies by
induction on #{λ′′ ≤ λ′|λ′′ regular dominant} that nλ′ ∈ {0, 1} and that
nλ′ = 1 if and only if z̃ ∈ Adm∨(λ′). Thus any versal ring to X λ′,τ to ρ is
either the zero ring or a domain. ��

7.4 Structure of potentially crystalline stacks modulo p

In [22, Theorem 6.5.1], Emerton and Gee describe a parametrization of the
irreducible components of the underlying reduced stackXn,red of themoduli of
(ϕ, �)-modulesXn by Serre weights of GLn(OK ). Taking products, this gives
a parametrization of the irreducible components of the underlying reduced
stack

X F+p
n,red =

∏

v∈Sp,F

X F+v
n,red ⊂ X F+p

n
def=

∏

v∈Sp,Spf O
X F+v

n

by Serre weights of G. Let σ = F(κ) be a Serre weight of GLn(OK ) with
κ ∈ X1(T ) = X1(T )J . Then the component X σ

EG,n,red labelled by σ is
characterized as the reduced substack ofXn which is is the closure of the locus
of ρ ∈ Xn(Fp) such that ρ has the form

ρ ∼=

⎛

⎜

⎜

⎜

⎝

χ1 ∗ · · · ∗
0 χ2 · · · ∗
...

. . .
...

0 · · · 0 χn

⎞

⎟

⎟

⎟

⎠
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where

• ρ is maximally non-split niveau 1, i.e. it has a unique G K -stable complete
flag;

• χi |IK =
∏

j∈J ω
1−i−κ j,n+1−i
K ,σ j

;

• If χi+1χ−1i |IK = ε−1, then 〈κ j , ε
∨
n−i − ε∨n+1−i 〉 = p − 1 for all j ∈ J if

and only if χi+1χ−1i = ε−1, and the element Ext1(χi , χi+1) = H1(G K , ε)

determined by ρ is très ramifiée (and otherwise 〈κ j , ε
∨
n−i − ε∨n+1−i 〉 = 0

for all j ∈ J ).

We define Cσ def= X σ∨⊗detn−1
EG,n,red . Thus if σ = F(κ) is 1-deep and ρ is as above,

then

ρ ∼=

⎛

⎜

⎜

⎜

⎝

χ1 ∗ · · · ∗
0 χ2 · · · ∗
...

. . .
...

0 · · · 0 χn

⎞

⎟

⎟

⎟

⎠

, (7.15)

where χi |IK =
∏

j∈J ω
(κ j+η j )i
K ,σ j

, and admits a unique G K -stable flag.
We now analyze the Cσ in terms of local models, for sufficiently generic σ .

To do so, we recall the setup of Sect. 4.6. Thus, we fix ζ ∈ X∗(Z) an algebraic
central character, a regular dominant weight λ ∈ X∗(T ) such that λ j ∈ [0, h]n
for all j ∈ J , and a tame inertial type τ = τ(s, μ + η) with lowest alcove
presentation (s, μ) which is λ-compatible with ζ . Set w̃∗(τ ) = s−1tμ+η. We
assume that μ is (h + 2)-deep in C0. We also continue to use notations from
Sect. 7.3.

Recall the diagram from Proposition 5.4.7 specialized with a = 0, b = h
and z̃ = w̃∗(τ ).

˜MJ (≤ λ)F
rw̃∗(τ )

π(s,μ)

˜Fl
[0,h]
J ,w̃∗(τ )

Y≤λ,τ
F

[

˜Fl
[0,h]
J ,w̃∗(τ )/T∨,J

F
-conj

] ιw̃∗(τ )
�-Modét,n

K ,F

(7.16)

We have the potentially crystalline substack X≤λ,τ
F

↪→ Y≤λ,τ
F

by Proposi-

tion 7.2.3, and define ˜X≤λ,τ
F

to be its pullback along π(s,μ). This is compatible

with our earlier notation, since for any z̃ ∈ ˜W∨,J , ˜X≤λ,τ
F

∩ ˜U (̃z,≤ λ) =
˜X≤λ,τ (̃z)F.
When working over F, we have the following refinement of Theorem

7.3.2(1):
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Proposition 7.4.1 Assume μ is (2h − 2)-deep in C0. Then the closed immer-
sion ˜X≤λ,τ

F
↪→ ˜MJ (≤ λ)F factors through ˜Mnv

J (≤ λ,∇aτ )F.

Proof It suffices to check the factorization after intersecting with each affine
open ˜U (̃z,≤ λ)F. But this follows from Proposition 7.1.10, since μ is at least
2h − 2-deep in C0 (cf. the proof of Theorem 7.3.2(1)). ��

Wenowrecall the topdimensional irreducible components of ˜Mnv
J (≤ λ,∇aτ )

F constructed in Sects. 4.3 and 4.5 and identified in Theorem 4.6.2. Since λ
is regular, dim ˜Mnv

J (≤ λ,∇aτ )F = dJ = #J dimF(B\GLn)F. For each Serre
weight σ with a lowest alcove presentation (w̃, ω) compatible with ζ , we have
a closed dJ -dimensional subvarietyCζ

σ = C(w̃,ω) of (Fl∇0)J defined in (4.11).
Recall that

C(w̃,ω) =
∏

j∈J
S∇0

F
(w̃1, j , w̃2, j , s̃ j )

for any choices of w̃1, w̃2, s̃ such that

(w̃, ω) = (w̃1, s̃w̃−12 (0)),

cf. Theorem 4.3.9. Recall that S∇0
F
(w̃1, j , w̃2, j , s̃ j ) (Definition 4.3.2((3))) is the

closure of the intersection S◦
F
((w̃−12, jw0w̃1, j )

∗)̃s∗j ∩ Fl∇0 . Pulling back to ˜Fl,

we get the subvarieties ˜Cζ
σ ∈ ˜Fl.

Theorem 4.6.2 shows that the top dimensional irreducible components of
˜Mnv
J (≤ λ,∇aτ ) are exactly the translates ˜C

ζ
σ w̃

∗(τ )−1 ⊂ ˜Fl, where σ runs over
JH(W (λ− η)⊗ σ(τ)).

Our main result in this section is the following:

Theorem 7.4.2 Let λ ∈ X∗(T )J be regular dominant and let τ be a tame
inertial type with lowest alcove presentation (s, μ)which is (λ−η)-compatible
with ζ ∈ X∗(Z). Assume that μ is max{2(h + 1), 4n + h}-deep.

(1) X≤λ,τ
reg,red = X λ,τ

red = ∪σCσ , where the union runs over all Serre weights
σ ∈ JH(W (λ− η)⊗ σ(τ)).
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(2) For each σ ∈ JH(W (λ− η)⊗ σ(τ)), we have a local model diagram:

˜Cζ
σ

˜Cσ

∼=

˜X≤λ,τ
F

˜Mnv
J (≤ λ,∇aτ )F

˜MJ (≤ λ)F
rw̃∗(τ )

˜Fl
[0,h]
J ,w̃∗(τ )

Cσ X≤λ,τ
F

Y≤λ,τ
F

[

˜Fl
[0,h]
J ,w̃∗(τ )/T∨,J

F
-conj

]

�-Modét,n
K ,F

(7.17)

where
• ˜Cσ is defined so that all rectangles are Cartesian, and all vertical arrows

are T∨,J
F

-torsors.
• All hooked arrows are closed immersions.
• The bottom diagonal map is the canonical composition Cσ ↪→ Xn →
�-Modét,n

K ,F.

Remark 7.4.3 (1) The theorem shows that Cσ = [˜Cζ
σ /T∨,J

F
-conj] as subfunc-

tors of�-Modét,n
K ,F. Note that this depends only on ζ and not on the choice

of λ, s, and μ.
On the other hand, making the choices λ, s, μ computes Cσ as a quotient
[T∨,J

F
Cζ
σ w̃

∗(τ )−1/(s,μ)T∨,J ], where T∨,J
F

Cζ
σ w̃

∗(τ )−1 is an irreducible
component of a deformed affine Springer fiber in the sense of [32], i.e. the
reduced subvariety of ˜Fl

J
cut out by the condition

(v
d

dv
g)g−1 + Ad(g)

(

vs−1(μ+η)) ∈ Lie I

In particular, Cσ is equisingular to an irreducible component of a deformed
affine Springer fiber.

(2) As the proof shows, the isomorphism between ˜Cσ and ˜Cζ
σ holds as long

as there exists (λ, τ ) such that Cσ ⊂ X≤λ,τ and τ is 2(h + 1)-generic (in
particular, any irreducible component of the special fiber of X η,τ where τ
is 2n-generic). As long as σ is (3n − 1)-deep, this can always be arranged
(see the proof of Proposition 7.4.7).

(3) Under the weaker hypotheses thatμ is 2(h+1)-deep, one can still show the
upper bound on the components X λ,τ

red ⊂ X≤λ,τ
reg,red ⊂ ∪σCσ . In the proof,
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the bound 4n + h only appears when invoking weight elimination and
modularity of obvious weights from [56].

(4) Using the fact that Mnv
J (≤ λ,∇aτ )F is equidimensional (cf. Remark 4.6.3),

one can strengthen the first part of the Theorem to X≤λ,τ
red = ∪σCσ ; in

particular, X≤λ,τ
F

is equidimensional. This is because Lemma 7.4.4 below

shows that ˜X≤λ,τ
red exhausts all the top dimensional irreducible components

of Mnv
J (≤ λ,∇aτ )F, and has the same underlying reduced scheme.

(5) By taking products over a finite set Sp indexing finite unramified exten-
sions F+v of Qp, one obtains the evident generalization of this theorem for

X F+p ,λ,τ
F

.

The rest of this section is devoted to the proof of Theorem 7.4.2.

Lemma 7.4.4 Assume thatμ is (4n+h)-deep in C0. Let σ ∈ JH(W (λ−η)⊗
σ(τ)). Then Cσ ⊂ X λ,τ ⊂ X≤λ,τ .

Proof By Proposition 2.3.7 (noting the η-shift), σ is 4n-deep. Then for any ρ
of the form (7.15) for σ , ρ is 4n-generic. By Proposition 6.2.9, any such ρ of
lies in X λ,τ (F). Since such points are dense in Cσ , we are done. ��
Corollary 7.4.5 Assume that μ is max{2(h + 1), 4n + h}-deep in C0. Then
the dJ -dimensional irreducible components of X λ,τ

red and X≤λ,τ
red are exactly

the Cσ with σ ∈ JH(W (λ− η)⊗ σ(τ)).
Proof By Lemma 7.4.4, X λ,τ has at least #JH(W (λ − η) ⊗ σ(τ)) dJ -
dimensional irreducible components. On the other hand, Proposition 7.4.1
and Theorem 4.6.2 (using that μ is 2(h + 1)-deep which implies that τ is 2n-
generic) imply thatX≤λ,τ has at most #JH(W (λ−η)⊗σ(τ)) dJ -dimensional
irreducible components. We conclude that equality must be achieved at each
stage. ��
Lemma 7.4.6 Let σ be an (n − 1)-deep Serre weight with a lowest alcove
presentation (w̃, ω) compatible with ζ . Let κ = π−1(w̃) · (ω − η) so that
σ = F(κ). Then there is an open dense subset U ζ

σ ⊂ Cζ
σ with the following

property: For any point x ∈ ˜Cζ
σ lying over U ζ

σ with associated étale ϕ-module
Mx , V∗K (Mx ) has the form

⎛

⎜

⎜

⎜

⎝

χ1 ∗ · · · ∗
0 χ2 · · · ∗
...

. . .
...

0 · · · 0 χd

⎞

⎟

⎟

⎟

⎠

,

where the (canonical extension to G K of) character χi satisfies χi |IK =
∏

j∈J ω
(κ j+η j )i
K ,σ j

.
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Proof We write w̃ = tηww, thus κ j = w j−1(ω j ) + pηw j−1 − η j . The set of
triples (w̃1, w̃2, s̃) such that

w̃1 = w̃, w̃2 = w̃hw̃1, s̃w̃−12 (0) = ω (7.18)

is in bijection with WJ , since the first two condition determines w̃1, w̃2, and
the third condition uniquely specifies s̃ once the image of s̃ in WJ is fixed.
Thus we can choose the triple (w̃1, w̃2, s̃) such that the above conditions hold,
and furthermore writing s̃ = tνs, we have

w j s
−1
j w−1j−1 = 1 (7.19)

for all j ∈ J . Note that our choices give w̃−12 w0w̃1 = tw−1(η).

We now choose U ζ
σ to be the open affine

∏

j∈J

(

S◦F((w̃
−1
2, jw0w̃1, j )

∗)̃s∗j ∩ Fl∇0
)

⊂ Cζ
σ .

Let x ∈ ˜Cζ
σ (F) such that the image of x in FlJ is in U ζ

σ . By Proposition
4.2.13, Corollary 4.2.16 and the fact that wtw

−1η ∈ ˜W+
, we see that x can be

represented by a tuple of matrices (C ( j)) j = (D jv
w−1j (η j )w−1j N jw j s̃∗j ) j ∈

GLn(F((v)))
J where N j is unipotent lower triangular and D j ∈ T∨(F).

Writing s̃∗j = s−1j ν j , ϕ-conjugation by (w j ) yields

C ′( j) = w j C
( j)w−1j−1 = Ad(w j )(D j )Ad(v

η j )(N j )v
η jw j s

−1
j vν jw−1j−1

= B
′
jv
η j+w j−1ν j

where B
′
j is lower triangular with constant diagonal entries. Thus the étale

ϕ-module Mx associated to x has a filtration by rank 1 étale ϕ-module, and
Vx = V∗K (Mx ) has a G K∞-stable complete flag 0 = Fil0 ⊂ Fil1 ⊂ · · · ⊂
Filn = Vx with associated graded

gri Vx |IK
∼=
∏

j∈J
ω
(η j+w j−1ν j )i
K ,σ j

.

This follows from Proposition 3.1.2 [56] noting that in the conventions of
this paper as explained in Remark 5.1.7(5), τ(s∗, μ∗) would be replaced by
τ(s−1, μ) in the formula. Now the relations (7.18) gives

ν j + s jw
−1
j (η j − ηw j ) = ω
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and (7.19) then implies

ν j = ω j − w−1j−1(η j − ηw j )

and thus

η j + w j−1(ν j ) = w j−1(ω j )+ ηw j .

We conclude by observing that

∏

j∈J
ω
(κ j+η j )i
K ,σ j

=
∏

j∈J
ω
(w j−1(ω j )+pηw j−1 )i
K ,σ j

=
∏

j∈J
ω
(w j−1(ω j )+ηw j )i

K ,σ j
,

since ωp
K ,σ j

= ωK ,σ j−1 . ��

Proof of Theorem 7.4.2 The first part follows from Corollary 7.4.5 and the
fact that X≤λ,τ

reg,red and X λ,τ
red are equidimensional of dimension dJ .

We now prove the second part. Let σ ∈ JH(W (λ− η)⊗ σ(τ)) with lowest
alcove presentation (w̃, ω) and set κ = π−1(w̃) ·(ω−η). Then Cσ occurs as an
irreducible component of X≤λ,τ

red , and we have the pullback ˜Cσ as in diagram
(7.17). Now ˜Cσ is a top dimensional irreducible component of ˜Mnv

J (≤ λ,∇aτ ),

thus it must be of the form ˜Cζ

σ ′w̃
∗(τ )−1 for some σ ′ ∈ JH(W (λ− η)⊗ σ(τ)).

Let (w̃′, ω′) be the lowest alcove presentation of σ ′ compatible with ζ and
κ ′ = π−1(w̃′) · (ω′ − η).

We need to show that σ ′ = σ . To this end, let U ζ

σ ′ be the open subscheme

of Cζ

σ ′ constructed in Lemma 7.4.6. By the definition of Cσ , we can find a
dense set of points x ∈ ˜Cσ (F) such that the associated Galois representation
ρx has the form described in (7.15). We can thus find such a point x which
furthermore induces a point in U ζ

σ ′ . Since ad(ρ) is cyclotomic free as ρ is at
least 4n-generic, Lemma 7.2.10(4) implies that that any G K∞-stable filtration
on ρx |G K∞ is automatically G K -stable. We conclude that the filtration of ρx
coming from Lemma 7.4.6 and the filtration described in (7.15) coincide.
Comparing the associated graded thus shows that

∏

j∈J
ω
(κ j+η j )i
K ,σ j

=
∏

j∈J
ω
(κ ′j+η j )i

K ,σ j

for 1 ≤ i ≤ n. The equation above shows that κ − κ ′ ∈ (p− π)X∗(T ). Since
κ and κ ′ are both p-restricted, κ − κ ′ ∈ (p − π)X0(T ) which means that
σ ∼= σ ′. ��
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Proposition 7.4.7 Let σ be (3n − 1)-deep Serre weight with lowest alcove
presentation (w̃1, ω). Let ρ be a tame n-dimensional representation of G K
which is 2n-generic.

(1) If σ ∈ Wobv(ρ), then ρ ∈ Cσ .
(2) For each j ∈ J , let Pw̃1, j ∈ Z[X1, . . . , Xn] be as in Proposition 4.7.3. If

σ ∈ W ?(ρ) and Pw̃1, j (ω j ) �= 0 mod p for all j ∈ J , then ρ ∈ Cσ .
(3) If ρ ∈ Cσ , then σ ∈ W ?(ρ).

Proof First, we claim there exists a 2n-generic τ such that Cσ ⊂ X η,τ . Let
σ = F(κ). The component Cσ is characterized by the fact it contains all ρ

of the form (7.15) such that χi |IK =
∏

j∈J ω
(κ j+ηk)i
K ,σ j

. To show Cσ ⊂ X η,τ , it
suffices to show that all such ρ have potentially crystalline lifts of type (η, τ ).
By Lemma 6.2.8, this property holds for τ = τ(1, κ). Furthermore, if κ is
(3n − 1)-deep in its alcove, then by Proposition 2.4.5, τ(1, κ) is 2n-generic.

Thus, by Remark 7.4.3(3), there is a diagram as in (7.17) such that ˜Cσ is
isomorphic to ˜Cζ

σ . By Propositions 5.5.2 and 5.5.7, ρ ∈ Cσ if and only if ρ
admits a lowest alcove presentation such that w̃∗(ρ) ∈ ˜Cζ

σ .
Since w̃∗(ρ) ∈ ˜Cζ

σ exactly when w̃∗(ρ) ∈ Cζ
σ . Each item follows directly

from corresponding item in Theorem 4.7.6. ��
Remark 7.4.8 Proposition 7.4.7 likely holds for 2n-deep weights. However, it
requires more work to realize Cσ inside some X η,τ in that case.

8 The Breuil–Mézard conjecture

In this section,we let K/Qp be a finite extension and n > 0 an integer. LetJ be
HomQp(K , E). We let G0 be ResOK /Zp(GLn/OK ) so that G ∼= ∏J (GLn/O)
and G∨ ∼=∏J GLn .

8.1 The statement of the conjectures

In this section, we recall two conjectures which we call the geometric and
versal Breuil–Mézard conjectures.

Let Z[Xn,red] denote the free abelian group on the irreducible components
Cσ of Xn,red parametrized by Serre weights σ . We call elements of Z[Xn,red]
cycles and call Cσ ∈ Z[Xn,red] for a Serre weight σ an irreducible cycle. (One
might normally call these top-dimensional cycles among cycles of varying
dimension, but since we only consider top-dimensional cycles, we omit this
adjective.) A cycle is effective if its coefficients are nonnegative. We say that
Z1 ∈ Z[Xn,red] is greater than or equal to Z2 ∈ Z[Xn,red] (and write Z1 ≥ Z2)
if Z1− Z2 is effective. Let K (RepF(G)) be the Grothendieck group of finitely
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generated F[G]-modules, or equivalently the free abelian group generated by
Serre weights for G. If W is a finitely generatedF[G]-module, we write [W ] =
∑

σ [W : σ ][σ ] for its image in K (RepF(G)) where [W : σ ] denotes the
multiplicity of a Serre weight σ as a Jordan–Hölder factor of W . If V is a
finitely generated E[G]-module, then [V ◦] is independent of the G-stable O-
lattice V ◦ ⊂ V , and so denote this by [V ]. We then also denote [V ◦ : σ ] by
[V : σ ].

A type is a pair (λ+η, τ)where λ ∈ X∗(T∨) is a dominant weight and τ is a
Weil–Deligne inertial type for K .We say that a type is extremal if τ is maximal
or minimal with respect to  . Recall that given an extremal type (λ + η, τ),
X λ+η,τ denotes the potentially semistable or the potentially crystalline stack
of type (λ+ η, τ). Let Zλ,τ denote the cycle

∑

σ

μσ (X λ+η,τ
F

)Cσ

inZ[Xn,red]whereμσ (X λ+η,τ
F

) denotes themultiplicity of Cσ as an irreducible
component ofX λ+η,τ

F
in the sense of [75, Tag 0DR4]. We also denote by λ the

corresponding element in X∗(T ). For a set S of extremal types (λ+ η, τ), we
write

JH(σ (S)) def= ∪(λ+η,τ)∈SJH(σ (λ, τ )).

The following conjecture is based on a geometric version of (a generalization
of) a conjecture of Breuil–Mézard ( [11]).

Conjecture 8.1.1 (Geometric Breuil–Mézard conjecture) Let S be a set of
extremal types. Then for each σ ∈ JH(σ (S)), there exists an effective cycle
Zσ ∈ Z[Xn,red] such that for all (λ+ η, τ) ∈ S, we have

Zλ,τ =
∑

σ

[σ(λ, τ ) : σ ]Zσ .

Remark 8.1.2 Though it is not necessary for our purposes, we further expect
that Zσ in Conjecture 8.1.1 is greater than or equal to Cσ .

Recall from [33, § 3.3] that S is called a Breuil–Mézard system if the map

Z[S] → K (RepF(G))

(λ+ η, τ) �→ [σ(λ, τ )]

has finite cokernel.
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Remark 8.1.3 (1) If we take S to contain all extremal types (λ + η, τ), then
Conjecture 8.1.1 combines the potentially crystalline and semistable parts
of [22, Conjecture 8.2.2] with the additional assertion that the cycles Zσ
are effective.

(2) It is not hard to see that if a system of cycles Zσ in Conjecture 8.1.1
exists for a Breuil–Mézard system S, then it must be unique. Of course,
for general S, there may be more than one system of cycles Zσ for which
Conjecture 8.1.1 holds. We will show that the cycles Zσ can sometimes
also be characterized using minimal patching functors even when S is not
a Breuil–Mézard system (see Theorem 8.4.10).

Remark 8.1.4 If [σ(λ, τ ) : σ ] > 1 andZσ is nonzero for some Serreweight σ ,
then Conjecture 8.1.1 (with (λ+η, τ) ∈ S) would imply thatX λ+η,τ

F
is neces-

sarily non-reduced. It is known that when n ≥ 4 and τ is 2n-generic, JH(σ (τ ))
has Jordan–Hölder factors with higher multiplicity and so the samewill be true
for JH(σ (λ, τ )) for any λ. Under suitable genericity hypotheses, Proposition
7.4.1 and Conjecture 8.1.1 then imply that the local model MJ (≤ λ,∇aτ )will
also have non-reduced special fiber when σ(λ, τ ) has multiplicities.

Taking versal rings forXn (and takingHilbert–Samuelmultiplicities) recov-
ers the original Breuil–Mézard conjecture. Let ρ : G K → GLn(F) be a
continuous Galois representation. We also let ρ denote the corresponding F-
point of Xn . Fix a versal ring Rver

ρ for Xn at ρ. For example, we could take

the framed deformation ring R�
ρ . For a type (λ + η, τ), the fiber product

Spf Rver
ρ ×Xn X λ+η,τ is a closed formal subscheme of Spf Rver

ρ , which we

denote by Spf Rver,λ+η,τ
ρ . Then Rver,λ+η,τ

ρ is a versal ring for X λ+η,τ at ρ.
Similarly, the fiber product Spf Rver

ρ ×Xn Xn,red is a closed formal subscheme

of Spf Rver
ρ , whichwe denote bySpf Ralg

ρ . SinceXn,red is an algebraic stack, the

versal map Spf Ralg
ρ → Xn,red is effective ( [24, Definition 2.2.9]), i.e. arises

from a map

iρ : Spec Ralg
ρ → Xn,red.

The map iρ induces a map from the set of irreducible components of Spec Ralg
ρ

to the set of irreducible components Xn,red whose image is exactly the set of
irreducible components of Xn,red containing ρ (see

[75, Tag 0DRB]). We denote by Z[Spec Ralg
ρ ] the free abelian group gen-

erated by irreducible components of Spec Ralg
ρ . We use the terms cycle,

irreducible, and effective in this context as well. Thinking of Z[Xn,red] and
Z[Spec Ralg

ρ ] as spaces of functions on sets of irreducible components, pull-

back gives a map i∗ρ : Z[Xn,red] → Z[Spec Ralg
ρ ]. LetZλ,τ (ρ) denote the cycle
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i∗ρ(Zλ,τ ) ∈ Z[Spec Ralg
ρ ] which is the cycle corresponding to Spec Rver,λ+η,τ

ρ,F
using that taking formal fibers preserves multiplicities (see [75, Tag 0DRD]).
(We suppress in the notation Zλ,τ (ρ) the dependence on the choice of versal
ring.)

Conjecture 8.1.5 (Versal Breuil–Mézard conjecture) Let S be a set of
extremal types. For each σ ∈ JH(σ (S)), there exist effective cycles Zσ (ρ)
in Spec Ralg

ρ such that for all (λ+ η, τ) ∈ S, we have

Zλ,τ (ρ) =
∑

σ

[σ(λ, τ ) : σ ]Zσ (ρ).

Remark 8.1.6 (1) As stated, Conjecture 8.1.5 depends on the choice of a versal
ring. However, by choosing a common formally smooth covering of any
twoversal rings and using that a formally smooth covering of an equidimen-
sional scheme induces a bijection between sets of irreducible components
and preserves multiplicities of components, we see that Conjecture 8.1.5
for one choice of versal ring implies the same result for any other choice.

(2) Taking S to contain all minimal types (τ is minimal) and Rver
ρ to be the

frameddeformation ring R�
ρ recovers [23,Conjecture 4.2.1],with the added

assertion that Zσ (ρ) is effective.

8.1.1 Cycles from modules

If M is a finitely generated Rver,λ+η,τ
ρ,F

-module for some type (λ+ η, τ), then
we will let Z(M) be the cycle

∑

C
μC(M)C ∈ Z[Spec Ralg

ρ ],

where C ranges over irreducible components of Spec Rver,λ+η,τ
ρ,F , μC(M)

denotes length
Rver,λ+η,τ
ρ,F,pC

(MpC ), and pC ⊂ Rver,λ+η,τ
ρ,F

denotes the prime ideal

corresponding to C.

8.2 Relations between the two conjectures

Proposition 8.2.1 Let S be a set of extremal types. Then Conjecture 8.1.1 (for
S) implies Conjecture 8.1.5 (for S) for all ρ ∈ Xn(F).

Proof This follows from the fact that multiplicities of cycles do not change
upon passing to versal rings ([75, Tag 0DRD]). ��
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In fact, the converse of this statement is true (see Remark 8.2.4), but we will
need a variation of it. Let P ⊂ Xn(F) be a subset. Let

i∗P
def=
∏

x∈P
i∗x : Z[Xn,red] →

∏

x∈P
Z[Spec Ralg

x ].

For a set S of extremal types, let C(S) denote the set of irreducible compo-
nents of Xn,red which lie in the support of X λ+η,τ for some (λ + η, τ) ∈ S.
We say that P meets all components of S if any C ∈ C(S) intersects P .

Lemma 8.2.2 If P meets all components of a set S of extremal types, then
the restriction of i∗P to Z[C(S)], the Z-span of C(S), is injective. Moreover,
Z ∈ Z[C(S)] is effective if and only if i∗P(Z) is effective (i.e. i∗x (Z) is effective
for all x ∈ P).
Proof If C is in the support of Z , a nonzero element of theZ-span of C(S), then
C contains some x ∈ P . Then i∗x (Z) is nonzero by [75, Tag 0DRD]. Similarly,
if the coefficient of C is negative, then i∗x (Z) is not effective. ��
Proposition 8.2.3 LetS be a set of extremal types andP ⊂ Xn(F) be a subset.
Assume the following:

(1) P ⊂ Xn(F) meets all components of S; and
(2) Conjecture 8.1.5 holds for S and all x ∈ P with cycles Zσ (x) for each

σ ∈ JH(σ (S)) and x ∈ P .

Then for each σ ∈ JH(σ (S)), there is at most one cycle Zσ in Z[Xn,red]
such that the support of Zσ is contained in the support of Zλ,τ for some
(λ+ η, τ) ∈ S and for each x ∈ P , i∗x (Zσ ) = Zσ (x). If all such cycles exist,
then they satisfy the conclusion of Conjecture 8.1.1.

Proof The uniqueness of the cycles Zσ follows from Lemma 8.2.2.
We next show that the cyclesZσ are effective. Indeed, if an irreducible cycle

C in Zσ has a negative coefficient, then there is a point x ∈ P with x ∈ C
since P meets all components of S. Then i∗x (Zσ ) is not effective by [75, Tag
0DRD], which is a contradiction.

From the existence of the cycles, the equality Zλ,τ =∑σ [σ(λ, τ ) : σ ]Zσ
follows again from Lemma 8.2.2. ��
Remark 8.2.4 We recall a strong form of the converse of Proposition 8.2.1
from [22, § 8.3]. Let S be a set of extremal types. The set P = {xC}C , where
C ranges over irreducible components of ∪(λ+η,τ)∈SX λ+η,τ

F
and xC ∈ C is a

smooth point of Xn,red, meets all components of S. Moreover, one can define
Zσ as in [22, § 8.3], so that this collection satisfies the hypothesis of Proposition
8.2.3. In fact, i∗P induces an isomorphism on (top-dimensional) cycles. We
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conclude that the following strong form of the converse of Proposition 8.2.1
holds: if Conjecture 8.1.5 holds at all points inP , then Conjecture 8.1.1 holds.

It is natural to ask if a strong form of the converse holds for any set P
which meets all components of S. In general, it is not as easy to construct
the collection of cycles Zσ satisfying the properties in Proposition 8.2.3. In
§8.3 we show how to use a minimal patching functor to construct Zσ so that
Conjecture 8.1.1 holds for a subset of S. In §8.4, we will take P to be the set
of semisimple ρ.

8.3 Patching functors and Breuil–Mézard cycles

In this section, we provide an axiomatic framework to show how patching
functors (§6.2) can be used to deduce versions of Conjectures 8.1.1 and 8.1.5.
The idea is to define the cycles Zσ in Conjecture 8.1.1 by formally inverting
the Breuil–Mézard equations and ignoring suitably non-generic components.
Then one can prove Conjecture 8.1.1 using Lemma 8.2.2 assuming Conjec-
ture 8.1.5 for each ρ in a large enough set P (in particular P must meet all
components of S). Conjecture 8.1.5 holds given the existence of a suitable
minimal patching functor. The argument requires some intricate definitions,
and the reader is invited to consider the context of §8.4.

Definition 8.3.1 If ρ : G K → GLn(F) is a continuous representation and
Selim is a set of extremal types,

we say that a Serre weight σ is (ρ,Selim)-irrelevant if there exists (λ +
η, τ) ∈ Selim such that

(1) σ ∈ JH(σ (λ, τ )); and
(2) Rλ+η, τρ = 0.

For a setP ⊂ Xn(F), we say that a Serreweightσ is (P,Selim)-irrelevant ifσ is
(ρ,Selim)-irrelevant for every ρ ∈ P . We say σ is ρ-irrelevant or P-irrelevant
if σ is (ρ,Selim)-irrelevant or (P,Selim)-irrelevant for some Selim.

Remark 8.3.2 The significance of Definition 8.3.1 comes from the fact that if
M∞ is a weak patching functor for ρ : G K → GLn(F), then M∞(σ ) =
0 for all ρ-irrelevant Serre weights σ since Rλ+η, τρ = 0 implies that
M∞(σ ◦(λ, τ )) = 0 for any O-lattice σ ◦(λ, τ ) ⊂ σ(λ, τ ). Similarly, if Con-
jecture 8.1.5 holds for Selim, thenZσ (ρ) = 0 for all (ρ,Selim)-irrelevant Serre
weights σ .

Definition 8.3.3 Below, S, S ′, ̂S, and ̂Selim denote sets of extremal types.

(1) We say that σ ∈ JH(σ (S)) S-covers σ ′ if (λ + η, τ) ∈ S and σ ∈
JH(σ (λ, τ )) imply that Cσ ′ lies in X λ+η,τ

F
.
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(2) We say that σ ∈ JH(σ (S)) is S-disjoint from S ′ if for all Serre weights κ
such that σ S-covers κ , Cκ does not lie in X λ+η,τ

F
for any (λ+ η, τ) ∈ S ′.

(3) If S ⊂ ̂S, we say that σ ∈ JH(σ (S)) is (S, ̂S)-generic if σ is ̂S-disjoint
from ̂S \ S.

As before, we let P ⊂ Xn(F) be a subset.

(1) We say that ̂S is a (P, ̂Selim)-Breuil–Mézard system if for any Serre weight
σ there is a nonzero integer dσ and integers nσλ,τ such that

dσ [σ ] −
∑

(λ+η,τ)∈̂S
nσλ,τ [σ(λ, τ )]

is supported only at (P, ̂Selim)-irrelevant Serre weights. As before, we say
that S is a P-Breuil–Mézard system if ̂S is a (P, ̂Selim)-Breuil–Mézard
system for some ̂Selim.

(2) If ̂S is a P-Breuil–Mézard system and S ⊂ ̂S, then we let SP ⊂ S denote
the subset of types (λ+ η, τ) such that JH(σ (λ, τ )) contains only (S, ̂S)-
generic Serre weights. (We suppress here the dependence of SP on ̂S.)

Remark 8.3.4 It is not clear a priori that given a set of extremal typesS, a Serre
weight S-covers itself, i.e. Cσ ≤ Zλ,τ whenever σ ∈ JH(σ (λ, τ )), though we
expect this to be true, as would follow from the strengthening of Conjecture
8.1.1 in Remark 8.1.2. Indeed, it will be true in some contexts that we consider
in §8.4 (see Proposition 8.6.1).

Theorem 8.3.5 (1) Let P ⊂ Xn(F) and let S be a set of extremal types (λ+
η, τ). Suppose that for each x ∈ P , there exists a minimal patching functor

Mx∞ for x andS. Then Conjecture8.1.5holds for each x ∈ P withZσ (x) def=
Z(Mx∞(σ )).

(2) Suppose further thatP meets all components ofS, and that ̂S is aP-Breuil–
Mézard system containing S. Then for each (S, ̂S)-generic σ , there exists
a unique cycle Zσ in Z[Xn,red] such that the support of Zσ is contained
in the support of Zλ,τ for some (λ + η, τ) ∈ S and for each x ∈ P ,
i∗x (Zσ ) = Zσ (x). Moreover,Zσ is effective. In particular, Conjecture 8.1.1
holds for SP .

(3) For each (S, ̂S)-generic σ , the cycle Zσ does not depend on the choice of
the patching functors Mx∞ for x ∈ P . In particular, the cycle Z(Mx∞(σ ))
in Ralg

x depends only on the versal ring Rx∞ of Xn at x (and not on other
data in Mx∞).

(4) If furthermore there is a Breuil–Mézard system ̂Selim containing ̂S such
that ̂S is a (P, ̂Selim)-Breuil–Mézard system and Conjecture 8.1.1 holds
for ̂Selim, then the above cycles Zσ coincide with those in Conjecture 8.1.1.
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Proof For item (1), we can assume that P contains a single element ρ. The
data of a minimal patching functor for ρ provides a choice of versal ring
R∞ = R�

ρ
̂⊗OR p for Xn at ρ as R p is a formally smoothO-algebra. We need

to show that

Zλ,τ (ρ) =
∑

σ

[σ(λ, τ ) : σ ]Z(M∞(σ )).

For each (λ+η, τ) ∈ S, Z(M∞(σ (λ, τ ))) = Zλ,τ (ρ) by [23, Lemma 2.2.10].
On the other hand,

Z(M∞(σ (λ, τ ))) =
∑

σ

[σ(λ, τ ) : σ ]Z(M∞(σ ))

by [23, Lemma 2.2.7].
We now proceed to items (2) and (3). We first define Zσ for every (S, ̂S)-

generic Serre weight σ . For such a σ , we can find dσ and nσλ,τ as in Definition
8.3.3(1). Let trσ,S denote the idempotent endomorphism of Z[Xn,red] which
maps Cσ ′ to itself if σ ̂S-covers σ ′ and to 0 otherwise. We let

Zσ def= trσ,S
( 1

dσ

∑

(λ+η,τ)∈̂S
nσλ,τZλ,τ

)

,

which is a priori a cycle with rational coefficients.Wewill show that i∗x (Zσ ) =
Zσ (x) for all x ∈ P , which also implies that Zσ is a cycle with integer
coefficients by [75, Tag 0DRD]. Uniqueness and effectivity in (2) follows
as in the proof of Proposition 8.2.3. Item (3) follows from the fact that the
definition of Zσ does not depend on the choices of Mx∞ for x ∈ P .

We need the following lemma, which follows from definitions.

Lemma 8.3.6 If (λ+ η, τ) ∈ ̂S \ S, then trσ,S(Zλ,τ ) = 0.

Fix an element x ∈ P . Let trσ,S(x) be the idempotent endomorphism of
Z[Spec Ralg

x ] such that i∗x ◦ trσ,S = trσ,S(x) ◦ i∗x which exists and is unique by
[75, Tag 0DRB, Tag 0DRD].

Lemma 8.3.7 We have trσ,S(x)(Zσ (x)) = Zσ (x).
Proof Suppose that Cσ ′(x) is an irreducible cycle in the support of Zσ (x),
which is also in the support of i∗x (Cσ ′) for some Serre weight σ ′. Then for any
(λ + η, τ) ∈ ̂S such that σ ∈ JH(σ (λ, τ )) we have that Cσ ′(x) ≤ Zσ (x) ≤
Zλ,τ (x) (by (1)), which implies that Cσ ′ ≤ Zλ,τ . This means that σ ̂S-covers
σ ′. ��
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Note that for any (λ+ η, τ) ∈ ̂S \S, trσ,S(x)(Z(Mx∞(σ (λ, τ )))) = 0 since
trσ,S(x)(Zλ,τ (x)) = 0 by Lemma 8.3.6 and Z(Mx∞(σ (λ, τ )))) ≤ Zλ,τ (x).
Then

Zσ (x) = Z(Mx∞(σ ))

= 1

dσ

∑

(λ+η,τ)∈̂S
nσλ,τ Z(Mx∞(σ (λ, τ )))

= 1

dσ

∑

(λ+η,τ)∈̂S
nσλ,τ trσ,S(x)(Z(M

x∞(σ (λ, τ ))))

= 1

dσ

∑

(λ+η,τ)∈S
nσλ,τ trσ,S(x)(Z(M

x∞(σ (λ, τ ))))

= 1

dσ

∑

(λ+η,τ)∈S
nσλ,τ trσ,S(x)(Zλ,τ (x))

= i∗x (Zσ ),

where the first equality is by definition, the second equality follows from
Remark 8.3.2, the third equality follows fromLemma 8.3.7, the fourth equality
follows from the previous sentence, the fifth equality is as in the first paragraph
of the proof, and the final equality is by definition of Zσ and trσ,S .

Finally, we turn to (4). Suppose that ̂Selim is a Breuil–Mézard system con-
taining ̂S such that ̂S is a (P, ̂Selim)-Breuil–Mézard system and Conjecture
8.1.1 holds for ̂Selim with cycles ZBM

σ . We will show that for a (S, ̂S)-generic
σ , the cycle Zσ coincides with ZBM

σ . Suppose that

σirr
def= [σ ] − 1

dσ

∑

(λ+η,τ)∈S
nσλ,τ [σ(λ, τ )]

is supported only at (P, ̂Selim)-irrelevant weights, and define

ZBM
σirr

def= ZBM
σ − 1

dσ

∑

(λ+η,τ)∈S
nσλ,τZλ,τ ,

which is a rational linear combination of cycles ZBM
κ for (P, ̂Selim)-irrelevant

weights κ . We claim that

• trσ,S(ZBM
σ ) = ZBM

σ and
• trσ,S(ZBM

σirr
) = 0.
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Then

ZBM
σ = trσ,S(ZBM

σ )

def= trσ,S
(

ZBM
σirr

+ 1

dσ

∑

(λ+η,τ)∈̂S
nσλ,τZλ,τ

)

= trσ,S
( 1

dσ

∑

(λ+η,τ)∈̂S
nσλ,τZλ,τ

)

def= Zσ ,

where the first and third equalities correspond to the above claims. Turning
to the claims, the first follows from the proof of Lemma 8.3.7. To show the
second claim, by linearity we assume without loss of generality that σirr is a
(P, ̂Selim)-irrelevant Serre weight. Since σirr is (P, ̂Selim)-irrelevant, for each
x ∈ P , there exists (λx +η, τx ) ∈ ̂Selim such that σirr ∈ JH(σ (λx , τx )) and the
support of Zλx ,τx does not contain x . Then the support of ZBM

σirr
, which is less

than or equal to Zλx ,τx for all x ∈ P , contains no elements of P . On the other
hand, suppose that σ ∈ JH(σ (λ, τ )) for (λ + η, τ) ∈ S. Since P meets all
components of S, the support ofZλ,τ (the set of irreducible components) must
be disjoint from that of Zσirr . We conclude that σ cannot ̂S-cover any weights
corresponding to components in the support of Zσirr so that trσ,S(ZBM

σirr
) = 0.

��

8.4 Geometric Breuil–Mézard for generic tamely potentially crystalline
types

We apply the results of the previous section to a context in which we have
enough patching functors. The section begins with a series of lemmas that
establish the requisite hypotheses.

Let 	 ⊂ X∗(T∨) be a finite set of dominant weights containing 0, and let
S	,t denote the union of the set of extremal types (λ′ +η, τ)where λ′ ≤ λ for
some λ ∈ 	 and is dominant and τ is a Pλ+η,e-generic and (6n − 2+ hλ+η)-
generic tame inertial type. Let Pss be the set of x ∈ Xn(F) such that x |IK is a
(6n− 2)-generic tame inertial F-type for K . Let ̂S	,t be the union of S	,t and
the set of types (η, τ ) where τ is a 2n-generic tame inertial type for K . Let
̂S	,t,elim be the union of S	,t and the set of extremal types (η, τ ) where ρτ is
tame.

Remark 8.4.1 In what follows, we could replace Pss by any set P ⊂ Xn(F) so
that {x |IK | x ∈ P} is the set of (6n − 2)-generic tame inertial F-types for K .

123



1448 D. Le et al.

Lemma 8.4.2 Suppose that ρ ∈ Xn(F) is such that ρ|IK is a (6n−2)-generic
tame inertial F-type for K . If σ /∈ W ?(x |IK ), then σ is (ρ, ̂S	,t,elim)-irrelevant.

Proof This follows immediately from the proof of [56, Corollary 4.2.4]. ��
Remark 8.4.3 We use Lemma 8.4.2 to apply Theorem 8.3.5 in the setting of
this section. However, examining the proof of Theorem 8.3.5, we just need that
the evaluations of patching functors applied to Pss-irrelevant weights vanish,
for which Proposition 6.2.3 suffices.

Lemma 8.4.4 The set ̂S	,t is a (Pss, ̂S	,t,elim)-Breuil–Mézard system.

Proof Given a Serre weight σ , we can write [σ ] = ∑

R nσR[R] in the
Grothendieck group by [72, Theorem 33], where R runs over irreducible G-
representations over E . If τ is a 2n-generic tame type, we let nσ0,τ be nσσ(τ).

We otherwise let nσλ,τ
def= 0 for (λ + η, τ) ∈ ̂S	,t. Since each such R above

is a Jordan–Hölder factor of a Deligne–Lusztig representation Rs(μ) by [19,
Corollary 7.7], if a Serre weight is in the support of

[σ ] −
∑

(λ+η,τ)∈̂S	,t
nσσ(τ)[σ(τ)],

then it is contained in JH(R) for someDeligne–Lusztig representation R which
is not 2n-generic. By Lemma 2.3.4, such Serre weights are not (4n− 2)-deep,
and so not in W ?(x |IK ) for any x ∈ Pss by Proposition 2.6.2. ��
Lemma 8.4.5 If σ is 3n−1-deep and ̂S	,t-covers σ ′, then σ covers σ ′ (in the
sense of Definition 2.3.10).

Proof Suppose that σ ̂S	,t-covers σ ′. Any (2n−2)-generic tame inertial type
τ for K with σ ∈ JH(σ (τ )) must be 2n-generic by Proposition 2.3.7, so
that Cσ ′ is contained in X η,τ

F
by assumption. Remark 7.4.3(3) implies that

σ ′ ∈ JH(σ (τ )). The conclusion follows. ��
Definition 8.4.6 We say that a Serre weight σ is generic if σ ∈ JH(σ (τ )) for
some (η, τ ) ∈ S{0},t and σ does not cover any Serre weights in JH(σ (τ ′)) for
all (η, τ ′) ∈ ̂S{0},t \ S{0},t.
Remark 8.4.7 (1) If σ is generic, then σ is necessarily (6n−2)-deep by Propo-

sition 2.3.7 and the fact that σ ∈ JH(σ (τ )) for some (η, τ ) ∈ S{0},t.
(2) If σ is generic and covers σ ′, then σ ′ is generic.

Lemma 8.4.8 If σ is generic, then σ is (S	,t, ̂S	,t)-generic (for any set	 as
above).
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Proof Suppose that σ ̂S	,t-covers a Serre weight σ ′ and that Cσ ′ is contained
in X η,τ

F
for (η, τ ) ∈ ̂S	,t. We need to show that (η, τ ) ∈ S	,t. Lemma 8.4.5

implies that σ covers σ ′. Remark 7.4.3(3) implies that σ ′ ∈ JH(σ (τ )). Then
the genericity of σ implies that (η, τ ) ∈ S	,t. ��
Lemma 8.4.9 The set Pss meets all components of S	,τ . Any tame ρ ∈
X λ,τ (F) where (λ, τ ) ∈ S	,τ is (6n − 2)-generic.

Proof If Cσ is a component of X λ+η,τ for (λ + η, τ) ∈ S	,τ , then σ ∈
JH(σ (λ, τ )) by Remark 7.4.3(3). Fix a 6n − 2+ hλ+η-generic lowest alcove
presentation for τ . Then (w̃, w̃(τ )w̃−12 (0)) is a λ-compatible lowest alcove

presentation for σ for some w̃2 ∈ ˜W
+
with w̃ ↑ tλw̃

−1
h w̃2 by Proposition

2.3.7. Let ρ : G K → GLn(F) be a semisimple continuous representation such
that ρ|IK has a lowest alcove presentation such that w̃(ρ|IK ) = w̃(τ )w̃−12 ww̃

for some w ∈ W . This lowest alcove presentation is (6n − 2)-generic so that
ρ ∈ Pss. Moreover, since w̃(τ )w̃−12 (0) = w̃(ρ|IK )w̃

−1(0), σ ∈ Wobv(ρ|IK ).
Then ρ ∈ Cσ by Proposition 7.4.7(1). ��

Let SP,	,t ⊂ S	,t be the subset consisting of types (λ + η, τ) such that
JH(σ (λ, τ )) consists only of generic Serre weights σ . The following result is
the main result of the section.

Theorem 8.4.10 (1) For any semisimple (6n−2)-generic ρ, a minimal patch-

ing functor M∞ for ρ and S	,t exists. In particular, setting Zσ (ρ) def=
Z(M∞(σ )),

Zλ,τ (ρ) =
∑

σ

[σ(λ, τ ) : σ ]Zσ (ρ).

for all (λ+ η, τ) ∈ S	,t.
(2) For each x ∈ Pss, choose a minimal patching functor Mx∞ for x and

S	,t. Then, for each generic Serre weight σ , there exists a unique cycle
Zσ in Z[Xn,red] such that the support of Zσ is contained in the set {Cκ |
σ covers κ} and for each x ∈ Pss, i∗x (Zσ ) = Zσ (x), where Zσ (x) def=
Z(Mx∞(σ )).

(3) For generic σ , the cycle Zσ does not depend on the choice of the patching
functors Mx∞ for x ∈ Pss. For generic σ and semisimple (6n − 2)-generic

ρ with minimal patching functor Mρ∞ for ρ and S	,t, Z(Mρ∞(σ )) depends
only on the versal ring R∞ (i.e., it is the pullback to R∞ of a cycle that is
independent of Mρ∞).

(4) Assume Conjecture 8.1.1 holds for a Breuil–Mézard system containing
̂S	,t,elim. Then the above cycles Zσ (for generic σ ) coincide with those
from Conjecture 8.1.1.
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Proof We start with item (1). Let M∞ be a weak minimal detectable patching
functor for ρ. We claim that M∞ is a minimal patching functor for ρ and S	,t.
If (λ+η, τ) ∈ S	,t, then R∞(λ, τ ) is a domain (or zero) by Theorem 7.3.2(2).
Moreover, M∞(σ ◦(λ, τ )) is nonzero if and only if R∞(λ, τ ) is nonzero by
Proposition 6.2.7. These facts imply that M∞(σ ◦(λ, τ ))[1/p], which is locally
free of rank at most one over R∞(λ, τ )[1/p], is locally free of rank one. This
proves the first part. Items (2), (3), and (4) follow from Theorem 8.3.5 (and
the previous lemmas in this section). The stronger conclusion that the support
of Zσ is contained in the set {Cκ | σ covers κ} follows from the definition of
Zσ and Lemma 8.4.5. ��

8.4.1 Breuil–Mézard with polynomial genericity

Let ˜Pη,e be the product of Pη,e and P7n−3 (see Theorem 7.3.2(2) and Remark
2.1.11(2.1.11)). If f (t1, . . . , tn) ∈ Z[t1, . . . , tn] and ω ∈ X∗(T ) ∼= Zn is
dominant, let

f ω(t1, . . . , tn)
def=

∏

ν∈Conv(ω)
f (t1 − ν1, . . . , tn − νn) ∈ Z[t1, . . . , tn]. (8.1)

For a finite set 	 ⊂ X∗(T∨) of dominant weights, we let

PP,	,e
def=
∏

λ∈	

∏

j∈J
˜P
(λ+η−w0(η)) j
η,e .

Lemma 8.4.11 Let	 ⊂ X∗(T∨) be a finite set of dominant weights contain-
ing 0. Let τ be a tame inertial type for K with a lowest alcove presentation
(s, μ − η) such that μ is PP,	,e-generic. Then (λ + η, τ) ∈ SP,	,t for any
λ ∈ 	.

Proof We need to show that for any λ ∈ 	, any σ ∈ JH(σ (λ, τ )) is generic,
i.e. that ifσ coversσ ′ andσ ′ ∈ JH(σ (τ ′)) for some tame inertial type τ ′, then τ ′
has a lowest alcove presentation (s′, μ′−η) such thatμ′ is ˜Pη,e-generic. In fact,
we take (s′, μ′ − η) to be compatible with (s, μ− η). Since σ covers σ ′, σ ′ ∈
JH(σ (τ )) so that we can assumewithout loss of generality that σ = σ ′. Choose
a tame inertial F-type ρ such that σ ∈ W ?(ρ). Then choosing the compatible
lowest alcove presentation for ρ, we have that w̃(ρ, τ ) ∈ Adm(λ + η) and
w̃(ρ, τ ′) ∈ Adm(η). Thus w̃(τ )−1w̃(τ ′) ∈ Adm(λ + η − w0(η)), so that
μ′ − μ ∈ Conv(λ+ η−w0(η)). Then the PP,	,e-genericity of μ implies the
˜Pη,e-genericity of μ′. ��
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Corollary 8.4.12 Let 	 ⊂ X∗(T∨) be a finite set of dominant weights con-
taining 0. Then there exist effective cycles Zσ ∈ Z[Xn,red] for each Serre
weight σ such that

Zλ,τ =
∑

σ

[σ(λ, τ ) : σ ]Zσ

for any λ ∈ 	 and tame inertial type τ with a lowest alcove presentation
(s, μ− η) with μ PP,	,e-generic.

Proof This follows from Lemma 8.4.11 and Theorem 8.4.10. ��
Remark 8.4.13 If σ is not generic, then σ /∈ JH(σ (λ, τ )) for any (λ+ η, τ) ∈
SP,	,t. Hence any σ such that Zσ occurs in Corollary 8.4.12 must be generic.

Remark 8.4.14 In this entire section, we have restricted ourselves to the case
where Op is the ring of integers of a p-adic field K . However, the evident
generalization of Theorem 8.4.10 to the general case can be proven in the exact
same way.Moreover, since the completed tensor products of patching functors
are again patching functors, the uniqueness statements in Theorem 8.4.10(2)
and (3) imply that the cyclesZσ have a product structure corresponding to that
of Op.

8.5 Generic Breuil–Mézard for tamely potentially semistable
deformation rings in small weight

In this section, we prove the Breuil–Mézard conjecture for sufficiently generic
Galois representations and the Breuil–Mézard system coming from tame iner-
tial Weil–Deligne types and small regular weight.

Lemma 8.5.1 Let 	 ⊂ X∗(T∨) be a finite subset of dominant weights, and
let (s, μ − η) be a lowest alcove presentation of a tame inertial F-type ρ for
K . If μ j is PηP,	,e-generic (see Lemma 8.4.11) for all j ∈ J , then for any
tame inertial type τ for K with w̃(ρ, τ ) ∈ Adm(λ + η) for λ ∈ 	 (and for
some lowest alcove presentation for τ ), (λ+ η, τ) ∈ SP,	,t.

Proof This follows from Lemma 8.4.11 and a similar argument. ��
For a finite subset 	 ⊂ X∗(T ) = X∗(T∨), let

h	
def= max

λ∈	,α∈�〈λ, α
∨〉.

The following is a corollary of Theorem 8.4.10(2) and Proposition 8.2.1.
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Corollary 8.5.2 Let 	 ⊂ X∗(T∨) be a finite subset of dominant weights
containing 0. Let ρ : G K → GLn(F) be a continuous Galois representation
such that ρss|IK has a lowest alcove presentation (s, μ − η) where μ j is
PηP,	,e Pm-generic for all j ∈ J and m = max{2h	 + 2hη, 6n − 2}. Then

there exist cycles Zσ (ρ) ∈ Z[Spec Ralg
ρ ] for each Serre weight σ such that

Z(Rλ+η,τ
ρ,F

) =
∑

σ

[r(τ )⊗E V (λ) : σ ]Zσ (ρ) (8.2)

for all λ ∈ 	 and tame inertial Weil–Deligne types τ , where r(τ ) is a virtual
representation of GLn(OK ) over E defined in [74, § 4.2].

Proof If σ is a generic Serre weight, then let Zσ (ρ) def= i∗ρ(Zσ ) with Zσ as in

Theorem 8.4.10(2) with the set 	. Otherwise, let Zσ (ρ) def= 0. Then (8.2) for
τ such that Nτ = 0 and (λ+ η, τ) ∈ SP,	,t holds by Theorem 8.4.10(2) and
and Proposition 8.2.1. Note that when Nτ = 0, r(τ ) = σ(τ) (the semisimple
case in [74]).

Fix λ ∈ 	. It suffices to show that for any other τ with (λ+ η, τ) /∈ SP,	,t,
Rλ+η, τρ is zero and Zσ (ρ) = 0 for any σ ∈ JH(σ (λ, τ )). Then both sides
of (8.2) would be zero since r(τ ) for any such τ is a virtual combination of
σ(τ) for such τ . To show that Rλ+η, τρ is zero, it suffices to show that R τ

ρss
is

zero by [29, Lemma 5]. We assume without loss of generality that ρ ∼= ρss.
If τ (or really ρτ ) is (h	 + hη + 1)-generic and (λ + η, τ) /∈ SP,	,t, then
w̃(ρ, τ ) /∈ Adm(λ+ η) by Lemma 8.5.1 so that Rλ+η, τρ = Rλ+η,τρ is zero by
Corollary 5.5.8.

Suppose now that ρτ is not (h	 + hη + 1)-generic. It suffices to show that

R
 τ |IK ′
ρ|G K ′

is zero for any subfield K ′ ⊂ K of finite degree over K . Taking K ′

to be a sufficiently large unramified extension of K , we assume without loss
of generality that τ is a principal series type. Then the claim follows from a
mild strengthening of [29, Proposition 7] (the same proof works with minor
modifications), replacing [−n + 1, 0] and ai

j ∈ [0, n − 1] in loc. cit. with

[−h	 − hη + 1, 0] with ai
j ∈ [0, h	 + hη − 1], respectively.

We now show that if σ ∈ JH(σ (λ, τ )) where (λ + η, τ) /∈ SP,	,t, then
Zσ (ρ) = 0. If σ is not generic, Zσ = 0 by definition. Assume that σ is
generic. There exists a tame type τ ′ such that σ ∈ JH(σ (τ ′)) ⊂ JH(σ (λ, τ ))
so that in particular (η, τ ′) ∈ S{0},t. Then i∗x (Zσ ) ≤ i∗x (Zη,τ ′) for all x ∈ Pss
by Theorem 8.4.10(2). If i∗x (Zη,τ ′) is zero for all x ∈ Pss, we deduce that Zσ
is zero by Lemma 8.2.2. Suppose that i∗x (Zη,τ ′) is nonzero for some x ∈ Pss.
Then i∗x (Zλ+τ ) is nonzero by Theorem 7.4.2(1). Lemma 8.5.1 implies that
(λ+ η, τ) ∈ SP,	,t, which is a contradiction. ��
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8.6 The generic Breuil–Mézard basis

In this section, we prove some basic results about the Breuil–Mézard cycles
Zσ that appear in Theorem 8.4.10.

Proposition 8.6.1 Let σ be generic and Zσ be as in Theorem 8.4.10. Then the
coefficient of Cσ in Zσ is 1.

Proof Choose a lowest alcove presentation (w̃, ω) for σ compatible with ζ ∈
X∗(Z). Let ρ be a semisimple Galois representation such that there exists a
lowest alcove presentation of ρ|IK so that w̃(ρ) = tωw̃. Then σ ∈ Wobv(ρ)

(see Definition 2.6.3) and so ρ ∈ Cσ by Proposition 7.4.7(1).
Let τ be the tame inertial typewith lowest alcovepresentation so that w̃(τ ) =

tωw0w̃hw̃. Then τ is 2n-generic and σ ∈ JH(σ (τ )) corresponds to (w̃, w̃hw̃)

in (2.8). In fact, since σ is generic, (η, τ ) ∈ S{0},t so that Cσ is a component
of X η,τ

F
by Theorem 7.4.2. We conclude that 0 < i∗ρ(Cσ ) ≤ i∗ρ(Zη,τ ) for

any versal ring at ρ. On the other hand, Rη,τρ is formally smooth by [56,
Theorem 3.4.1] since w̃(ρ, τ ) = tw−1(η) wherew ∈ W is the image of w̃. This
implies that i∗ρ(Cσ ) = i∗ρ(Zη,τ ) and that both of these are irreducible cycles.

By the proof of Theorem 8.4.10, there exists a minimal patching functor
M∞ for ρ and S	,t, which is detectable. Then M∞(σ ) is nonzero, and hence
so is Zσ (ρ). Theorem 8.4.10 implies that 0 < Zσ (ρ) ≤ i∗ρ(Zη,τ ) = i∗ρ(Cσ ),
so that i∗ρ(Cσ ) = i∗ρ(Zσ ). The result follows from [75, Tag 0DRD]. ��
Proposition 8.6.2 The cycles Zσ , for σ generic, form a basis for the span of
the cycles Cσ , for σ generic.

Proof By Theorem 8.4.10, Remark 2.3.11, Remark 8.4.7(2), and Proposition
8.6.1, the “change-of-basis matrix” relating (Cσ )σ and (Zσ )σ is “unipotent
upper triangular”. ��
8.6.1 Computation of the Breuil–Mézard basis

We end this section with an alternative proof of Theorem 8.4.10(3), which
introduces notation and arguments that will be used in §9.1. Let ρ be a
2n-generic tame inertial F-type and choose a 2n-generic lowest alcove pre-
sentation for ρ with corresponding element w̃(ρ) (cf. Definition 5.5.1). If
σ ∈ W ?(ρ) corresponds to the pair (w̃, w̃1) in (2.14), we say that the
ρ-defect δρ(σ ) of σ is �(tη) − �((w̃hw̃)

−1w0w̃1). Since a change of low-
est alcove presentation corresponds to conjugation by an element of � and
the latter preserves length, δρ(σ ) is independent of the choice of lowest
alcove presentation of ρ. Wang’s theorem implies that w̃1 ≤ w̃ so that
(w̃hw̃)

−1w0w̃1 ≤ (w̃hw̃)
−1w0w̃ = tw−1(η). Hence, δρ(σ ) ≥ 0 with equal-

ity if and only if σ ∈ Wobv(ρ).

123

https://stacks.math.columbia.edu/tag/0DRD


1454 D. Le et al.

Proposition 8.6.3 Let ρ be a 2n-generic tame inertial F-type and τ be a
2n-generic tame inertial type. Fix compatible 2n-generic lowest alcove pre-
sentations for them, with corresponding elements w̃(ρ) and w̃(τ ).

If w̃(ρ, τ ) ∈ Admreg(η) with factorization w̃−12 w0w̃1 as in Remark 2.1.8,

then κ
def= F

(w̃−1h w̃2,w̃(ρ)(w̃1)−1(0)) is the unique Serre weight in W ?(ρ) ∩
JH(σ (τ )) which maximizes the defect function δρ .

Proof First, the fact that w̃1 ↑ w̃−1h w̃2 implies that κ ∈ W ?(ρ) by Proposition
2.6.2. Since w̃(ρ)(w̃1)

−1(0) = w̃(τ )(w̃2)
−1(0), κ ∈ JH(σ (τ )) by Proposition

2.3.7.
Suppose that (w̃, ω) is a compatible lowest alcove presentation of an element

σ ∈ W ?(ρ) ∩ JH(σ (τ )). By Proposition 2.6.4, w̃−12 w0w̃1 = s̃−12 s̃s1 with s̃1,

s̃2 ∈ ˜W+
and s̃1 ↑ w̃ ↑ w̃−1h s̃2. ByWang’s theorem s̃2 ≤ w̃hw̃, and by Lemma

2.1.4 (w̃hw̃)
−1w0s̃1 ≥ s̃−12 w0s̃1. So we have

δρ(σ ) = �(tη)− �((w̃hw̃)
−1w0s̃1)

≤ �(tη)− �(̃s−12 w0s̃1)

≤ �(tη)− �(̃s−12 s̃s1) = �(tη)− �(w̃−12 w0w̃1) = δρ(κ).
Equality implies that s̃2 = w̃hw̃ and s = w0. By the uniqueness in Proposition
2.1.5, δρ(σ ) = δρ(κ) implies that σ ∼= κ . ��
Alternative proof of Theorem 8.4.10(3) Wewill denote byρ both a continuous
representation G K → GLn(F) and the corresponding inertial F-type obtained
by restriction.We are given aminimal patching functor Mρ∞ forρ andS	,t , and
thus a versal ring Rρ∞ toXn atρ. For a cycleZ of Rρ∞ of dimension dim Rρ∞×Xn

Xn,red, define its generic partZgen to be the cycle obtained fromZ by removing
any components whose support do not belong to

⋃

σ ′generici
∗
ρ(Cσ ′). For any

Serre weight σ and tame type τ , define Zσ (ρ) def= Z(Mρ∞(σ )) and Zτ (ρ) def=
Z(Mρ∞(σ (τ ))). We observe:

• If σ is generic, then Zσ (ρ)gen = Zσ (ρ). This is because the support of
Zσ (ρ) belongs to

⋂

σ⊂JH(σ (τ ))
i∗ρ(X η,τ ) = ⋃

σ covers κ
i∗ρ(Cκ), which consists of

only generic components.
• If τ is a tame type such that JH(σ (τ )) does not contain any generic weight,
then Zτ (ρ)gen = 0.

• If τ is a tame type such that JH(σ (τ )) contains a generic weight, then
Zτ (ρ) = i∗ρ(X η,τ ).

(For the first two items, we use that Theorem 7.4.2 applies to anyX η,τ contain-
ing ρ, since ρ is (6n− 2)-generic.) In particular, each Zτ (ρ)gen only depends
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on the versal ring Rρ∞, i.e. equals the i∗ρ of a cycle independent of the patching
functor Mρ∞.

We now show by induction on δρ(σ ) that for any σ ,Zσ (ρ)gen depends only
on Rρ∞. This proves Theorem 8.4.10(3) in view of the first item above. By
Proposition 6.2.3, it suffices to restrict our attention to weights in W ?(ρ).

Choose a lowest alcove presentation (w̃, ω) of σ and a compatible lowest
alcove presentation of ρ.

If δρ(σ ) = 0, then w̃(τ )
def= w̃(ρ)t−w−1(η) corresponds to a compatible

lowest alcove presentation of a tame type τ , where w ∈ W is the image of w̃.
By Corollary 2.6.5, W ?(ρ) ∩ JH(σ (τ )) = {σ }. By Proposition 6.2.3, [σ(τ) :
σ ]Zσ (ρ)gen = Zτ (ρ)gen. (It is well-known that [σ(τ) : σ ] = 1, though we
will not use this. In fact, this can be seen from the proof of Proposition 8.6.1.)
This finishes the base case.

Now, suppose δρ(σ ) > 0. If σ corresponds to (w̃, w̃1) in (2.14), we choose

τ so that w̃(τ )
def= w̃(ρ)(w̃hw̃)

−1w0w̃1. Then

[σ(τ) : σ ]Zσ (ρ)gen = Zτ (ρ)gen −
∑

κ∈W ?(ρ)∩JH(σ (τ ))
[σ(τ) : κ]Zκ(ρ)gen.

(8.3)

(Again, [σ(τ) : σ ] = 1.) Since the right hand side depends only on Rρ∞ by
induction and Proposition 8.6.3, so does the left hand side. ��
Remark 8.6.4 Combining the abovewith Proposition 8.2.3 gives the following
recursive procedure to compute Zσ for generic σ : For any σ ′ covered by
σ , choose a tame ρ lying on Cσ ′ (for instance, those given by Proposition
7.4.7(1)). This gives a defect function on W ?(ρ), and the above proof allows
us to recursively compute the coefficient of Cσ ′ in Zκ for κ ∈ W ?(ρ), and in
particular the coefficient of Cσ ′ in Zσ . Note that σ ∈ W ?(ρ) by Proposition
2.3.12(3) (see Remark 4.7.4(2)) and Theorem 4.7.6(2).

Proposition 8.6.5 Let 	 ⊂ X∗(T∨) be a finite set of dominant weights con-
taining 0. Suppose there are two collection of effective cycles Zσ ,Z ′σ ∈
Z[Xn,red] for each Serre weight σ such that

Zλ,τ =
∑

σ

[σ(λ, τ ) : σ ]Zσ ,

Zλ,τ =
∑

σ

[σ(λ, τ ) : σ ]Z ′σ .

for any λ ∈ 	 and tame inertial type τ which is PP,	,e-generic. Let σ0 be a
Serre weight such that:
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• For any pair of tame types τ1, τ2 such that JH(σ (τ1)) ∩ JH(σ (τ2)) �= ∅
and κ ∈ JH(σ (τ1)) for some κ covered by σ0, τ2 is PP,	,e-generic.

Then for each semisimple ρ ∈ Xn(F), Zσ0(ρ) = Z ′σ0(ρ). In particular, Zσ0 =
Z ′σ0 .

Proof In the proof, we will only consider cycles Zσ that occur in the given
cycle equations.

We call a Serre weight σ satisfying condition in the statement very generic.
For a cycle Z of Xn,red, we define its very generic part Zv.gen to be the cycle
obtained by removing fromZ any component Cσ such that σ not very generic.

We make the following observations:

• Suppose σ has the property that any tame type τ such that σ ∈ JH(σ (τ ))
is PP,	,e-generic. Then the support of Zσ belongs to

⋂

σ∈JH(σ (τ ))
X η,τ =

⋃

σ covers κ
Cκ (where the equality follows from Theorem 7.4.2). In particular,

as in Remark 8.6.4, for any tame ρ such that Zσ (ρ) �= 0 we have σ ∈
W ?(ρ).

• Suppose ρ is tame and Zv.gen
σ (ρ) �= 0. Since Zσ occurs in the given

cycle equations, we can find a PP,	,e-generic tame type τ1 such that σ ∈
JH(σ (τ1)). By Theorem 7.4.2, Zv.gen

σ (ρ) �= 0 implies κ ∈ JH(σ (τ1)) for
some very generic κ . The definition of very generic implies the previous
item applies to σ , thus we learn that σ ∈ W ?(ρ).

• If σ is very generic, then Zv.gen
σ = Zσ .

• If τ is a tame type such thatZτ does not occur in the given cycle equations,
then Zv.gen

σ = 0 for any σ ∈ JH(σ (τ )).

We now fix a very generic σ0 and ρ such that Cκ(ρ) �= 0 for some κ
covered by σ0. Given the above observations, we can repeat the argument
in the alternative proof Theorem 8.4.10(3) to give a recursive formula for
Zv.gen
σ (ρ) in terms of Zv.gen

τ (ρ) for various tame types τ . But then Z ′,v.genσ (ρ)

satisfies the same recursive formula, and hence Zσ0(ρ) = Z ′σ0(ρ). ��
Remark 8.6.6 The condition on the Serre weight σ0 in Proposition 8.6.5 is
guaranteed by Q-genericity, for an appropriate polynomial Q built out of
PP,	,e (cf. Proposition 2.3.7 and the proof of Lemma 8.4.11).

9 Global applications

9.1 Serre weights for some definite unitary groups

Let F+ be a totally real field not equal toQ, and let F ⊂ F
+
be aCMextension

of F+. Denote the set of places in F+ dividing p by Sp. We say that a finite
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place of F+ (resp. of F) is split if it splits in F (resp. if its restriction to F+
splits in F). Suppose from now on that all places in Sp are split. Let G/F+ be
a reductive group which is an outer form for GLn which

• splits over F ; and
• is definite at all archimedean places.

Recall from [25, § 7.1] that G admits a reductive model G defined over
OF+[1/N ], for some N ∈ N which is prime to p, together with an isomor-
phism

ι : G/OF [1/N ]
ι→ GLn/OF [1/N ] (9.1)

which specializes to ιw : G(OF+v )
∼→ G(OFw)

ι→ GLn(OFw) for all split
finite places w in F where v is w|F+ here. For each split place v of F+,
we choose a place ṽ of F dividing v, and we let ιv be the composition of
ι̃v and the canonical isomorphism GLn(OF̃v )

∼= GLn(OF+v ) (suppressing the
dependence on the choice of ṽ).

IfU = UpU∞,p ≤ G(A∞F+,p)×G(A∞,pF+ ) is a compact open subgroup and
W is a finiteO-module endowedwith a continuous action ofUp, thenwe define
the space of algebraic automorphic forms on G of level U and coefficients in
W to be the (finite) O-module

S(U,W )
def= { f : G(F+)\G(A∞F+)→ W |

f (gu) = u−1p f (g) ∀ g ∈ G(A∞F+), u ∈ U
}

. (9.2)

We recall that the level U is said to be sufficiently small if for all t ∈ G(A∞F+),
the order of the finite group t−1G(F+)t ∩U is prime to p. If U is sufficiently
small, then S(U,−) defines an exact functor from finite O-modules with a
continuous Up-action to finiteO-modules. From now on we assume that U is
sufficiently small.

For a finite place v of F+ prime to N , we say that U is unramified at v if
one has a decomposition U = G(OF+v )U

v . Let S be a finite set of finite places
in F+ containing Sp, all places dividing N , and all places at which U is not
unramified.

Let PS be the set of split finite places w of F such that v = w|F+ /∈ S.
For any subset P ⊆ PS of finite complement that is closed under complex

conjugation, we write TP
def= O[T (i)w , w ∈ P, 0 ≤ i ≤ n] for the universal

Hecke algebra on P . The space of algebraic automorphic forms S(U,W ) is
endowed with an action of TP , where T (i)w acts by the usual double coset
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operator

ι−1w
[

GLn(OFw)

(

�wIdi 0
0 Idn−i

)

GLn(OFw)

]

.

Suppose that S(U,W )m �= 0 (or equivalently S(U,W ⊗O F)m �= 0) where
m is the kernel of a homomorphism α : TP → F. Let TP(U,W ) be the
image of TP in EndO(S(U,W ))—it is a semilocal ring. If Q is the (finite)
set {w|F+ : w ∈ PS \ P}, then we also denote TP(U,W ) by TQ(U,W ).
Let α : TP � TQ(U,W )m be the natural quotient map. There is a Galois

representation rm
def= r(U,W )m : G F+,S → Gn(T

Q(U,W )m), where Gn is
the group scheme over Z defined in [16, §2.1] (see also §A.3), determined by
the equations

det
(

1− r(U,W )m|G F (Frobw)X
) =

n
∑

j=0
(−1) j (NF/Q(w))

( j
2)α(T ( j)

w )X j

for all w ∈ P . Let r : G F+ → Gn(F) be the reduction rm (mod m). We say
that such a Galois representation r is automorphic of level U and coefficients
W , and m is the maximal ideal of TP corresponding to r . We say that r is
automorphic if r is automorphic of some level U and some coefficients W .

Let Op be OF+ ⊗Z Zp
∼= ∏

v∈Sp

OF+v . Then the composition

ιp
def=
∏

v∈Sp

ιv : G(Op) ∼=
∏

v∈Sp

G(OF+v )
∼→
∏

v∈Sp

GLn(OF+v ) (9.3)

gives an equivalence between G(Op)-modules and
∏

v∈Sp

GLn(OF+v )-modules.

Let kv denote the residue field of F+v and G
def= ∏

v∈Sp

GLn(kv). If σ is a Serre

weight of G, then σ is naturally a
∏

v∈Sp

GLn(OF+v )-module by inflation. We

can now define what it means for a r as above to be automorphic of a particular
weight and level.

Definition 9.1.1 Let U = G(Op)U Sp be a sufficiently small compact open
subgroup of G(A∞F+) and let σ be a Serre weight for G.

We say that r is automorphic of weight σ and level U or σ is a modular
(Serre) weight for r at level U if r is automorphic of level U and coefficients
σ∨ ◦ ιp, where σ∨ denotes the F-dual of σ . We say that r is automorphic of
weight σ or σ is a modular (Serre) weight for r if r is automorphic of weight
σ and some level U .
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Let W (r) be the set of modular Serre weights of r . Let Wgen(r) be the subset
of generic Serre weights in W (r) (see Definition 8.4.6).

It is a standard fact that if r is automorphic, then W (r) is nonempty. Indeed
if r is automorphic, then we can assume by exactness of S(U,−)m that r
is automorphic of level U and coefficients W where W is an irreducible
F[G(Op)]-module. Since the space of invariants of a pro-p group acting con-
tinuously on an F-vector space is nonzero, W is of the form σ∨ ◦ ιp for some
Serre weight σ of G.

Fixing maps F
+
↪→ F

+
v for each v ∈ Sp, the restriction of a continuous

representation r : G F+ → Gn(F) gives a collection of continuous representa-
tions (rv : G F+v → GLn(F))v∈Sp , which is equivalent to an L-homomorphism

over F which we denote r p : WQp → L G(F) where G = GLn .

Definition 9.1.2 Given an L-parameter ρ : GQp → L G(F), we say that σ is
a geometric Serre weight of ρ if the corresponding collection (ρv)v∈Sp lies on
Cσ (equivalently, ρv lies on Cσv for all v ∈ Sp where σ ∼= ⊗v∈Spσv). We let
W g

gen(ρ) be the set of geometric Serre weights of ρ which are 3n − 1-deep.
We let WBM

gen (ρ) be the set of generic Serre weights such that ρ lies in the
support ofZσ (defined in Theorem 8.4.10(2), see Remark 8.4.14). By Remark
8.4.14,

WBM
gen (ρ) = {⊗v∈Spσv|σv ∈ WBM

gen (ρv)}.
Remark 9.1.3 Proposition 8.6.1 implies that any generic Serre weight in
W g

gen(ρ) is contained in WBM
gen (ρ).

The following conjecture is based on [39, Conjecture 6.9] and [33,
§ 2 and 9.2].

Conjecture 9.1.4 Suppose that r : G F+ → Gn(F) is automorphic and that
the inertial L-homomorphism r p|IQp

over F is tame and 2n-generic. Then

W (r) = W ?(r p|IQp
).

We can use Theorem 8.4.10(2) to make the following unconditional version
of [33, Conjecture 3.2.7].

Conjecture 9.1.5 Suppose that r : G F+ → Gn(F) is automorphic. Then
Wgen(r) = WBM

gen (r p).

Theorem 9.1.6 There exists a polynomial P(X1, . . . , Xn) ∈ Z[X1, . . . , Xn],
independent of p, such that if (p � 2n and) and

• r : G F+ → Gn(F) is automorphic;
• r |G F (G F(ζp)) is adequate; and that
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• the inertial L-parameter r p|IQp
over F is tame and has a lowest alcove

presentation (s, μ−η) such thatμ is P-generic, i.e. P(μ j,1, . . . , μ j,n) �≡ 0
(mod p) for all j ∈ J , where J = Hom(F+, E),

then

W (r) = W g
gen(r p) = W ?(r p|IQp

) and Wgen(r) = WBM
gen (r p).

Remark 9.1.7 (1) The polynomial P in Theorem 9.1.6 can be taken to be the
product of the polynomials P6n−2, P2η,e, Pη0η,e, and Q appearing, respec-
tively, in Remark 2.1.11, Theorem 7.3.2(2), equation (8.1) and the proof
of Lemma 9.1.9 below.

(2) There exists P so that the P-genericity hypothesis implies that W ?(r p)

contains only generic Serre weights. So Wgen(r) in Theorem 9.1.6 could
be replaced by W (r).

Remark 9.1.8 We describe a method to construct examples to which Theorem
9.1.6 applies. Suppose that p � 2n, K/Qp is a finite unramified extension,
and let ρ : G K → GLn(F) be a semisimple continuous Galois representation
such that ρ|IK has a lowest alcove presentation (s, μ − η) with μ P-generic
with P as in Theorem 9.1.6. Then by [14, Corollary A.7], there exists a CM
extension F/F+with F+ �= Q and a (potentially diagonalizably) automorphic
representation r : G F+ → Gn(F)which is isomorphic to ρ at all p-adic places
and whose restriction r |G F (G F(ζp)) is adequate. Then Theorem 9.1.6 applies
to r .

Lemma 9.1.9 There exists a nonzero polynomial P(X1, . . . , Xn) ∈ Z[X1,

. . . , Xn] such that if ρ is a tame L-homomorphism over F such that ρ|IQp
has

a lowest alcove presentation (s, μ−η)whereμ is P-generic, then W g
gen(ρ) =

W ?(ρ|IQp
).

Proof The inclusion W g
gen(ρ) ⊂ W ?(ρ|IQp

) follows from Proposition 7.4.7(3)
if ρ is 4n-generic. We now show the opposite inclusion. Fix a set R of repre-
sentatives for the (finite) set ˜W+

1 /X0(T ), and consider the (finite) product

Q(X1, . . . , Xn)
def=
∏

w̃∈R

∏

w̃2↑w̃,w̃2∈˜W+

∏

w∈W

Pw̃(X + ww̃−12 (0)),

where Pw̃ is as in Proposition 4.7.3 and ww̃−12 (0) is an element of Zn under
the usual identification X∗(T ) ∼= Zn . If ρ|IK has a lowest alcove presentation
(s, μ − η) such that μ is Q-generic, then the compatible lowest alcove pre-
sentation for σ ∈ W ?(ρ|IK ) from Proposition 2.6.2 satisfies the hypothesis of
Proposition 7.4.7(2) so that ρ ∈ Cσ . We can therefore take P = Q P4n (see
2.1.11(2.1.11)). ��
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We introduce notation for prime ideals in deformation rings corresponding
to the irreducible components of

X F+p
n,red =

∏

v∈Sp,F

X F+v
n,red.

Recall that we index these irreducible components Cσ by Serre weights σ of
G. Let ρ be a tame L-homomorphism over F, and recall from §6.2 that

Rρ
def= ̂

⊗

v∈Sp,O
R�
ρv
.

Then there is a versal map iρ : Spf Rρ → ∏

v∈Sp,Spf O X F+v
n . By Proposition

4.7.5 and Remark 7.4.3(2), if ρ is Q P4n-generic as in the proof of Lemma
9.1.9 and σ is (3n − 1)-deep, then i∗ρ(Cσ ) is an irreducible cycle (if nonzero).
In this case, we let pσ (ρ) ⊂ Rρ denote the corresponding prime ideal.

Lemma 9.1.10 There exists a polynomial P(X1, . . . , Xn) ∈ Z[X1, . . . , Xn]
such that if ρ is a tame L-homomorphism over F such that ρ|IQp

has a low-
est alcove presentation (s, μ − η) where μ is P-generic and M∞ is a weak
detectable patching functor for ρ, then

{σ | M∞(σ ) �= 0} = W ?(ρ|IQp
) and {σ generic | M∞(σ ) �= 0} = WBM

gen (ρ).

Proof We claim that the result holds with P taken to be the product of Pη0η,e (see
Theorem7.3.2(2) and equation (8.1)), P6n−2 (seeRemark 2.1.11), and Q (from
the proof of Lemma 9.1.9). We have that {σ | M∞(σ ) �= 0} ⊂ W ?(ρ|IQp

)

by Proposition 6.2.3 (using that P6n−2 | P and Remark 2.1.11(2.1.11)), so it
suffices to show the opposite inclusion.

Wefirst claim that ifσ ∈ W ?(ρ) is a Serreweight such thatAnnRρ M∞(σ ) ⊂
pσ ′(ρ) for some Serre weight σ ′ ∈ W g

gen(ρ), then δρ|IQp
(σ ′) ≤ δρ|IQp

(σ )

with δρ|IQp
defined in §8.6.1. Suppose that σ ∈ W ?(ρ|IQp

) corresponds to

(w̃, w̃1) in (2.14) (with the lowest alcove presentation as in the statement of
the theorem). Then we let τ be the tame inertial L-parameter with a 2n-generic
lowest alcove presentation such that w̃(τ ) = w̃(ρ|IQp

)(w̃hw̃)
−1w0w̃1. As in

the alternative proof of Theorem 8.4.10(3) (§8.6.1, this choice is made so
that the set W ?(ρ|IQp

) ∩ JH(σ (τ )) contains σ and weights of strictly smaller
ρ|IQp

-defect than σ (we say that τ is strictly defect lowering for ρ and σ ).
Theorem 7.4.2(1) implies (after taking products as in Remark 7.4.3(5)) that
the irreducible components of Spec Rτρ are
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{Cσ ′(ρ) | σ ′ ∈ W g
gen(ρ) ∩ JH(σ (τ ))}

= {Cσ ′(ρ) | σ ′ ∈ W ?(ρ|IQp
) ∩ JH(σ (τ ))}, (9.4)

where the equality uses Lemma 9.1.9 (and that Q P4n | P). If AnnRρ M∞(σ ) ⊂
pσ ′(ρ), then since AnnRρ M∞(σ (τ )) ⊂ AnnRρ M∞(σ ), we conclude that
σ ′ ∈ JH(σ (τ )). The claim then follows from (9.4) and that τ is strictly defect
lowering for ρ and σ .

We now establish the opposite inclusion: for σ ∈ W ?(ρ|IQp
), we show that

M∞(σ ) �= 0. Choose τ in terms of σ as in the previous paragraph. Since
(w̃hw̃)

−1w0w̃1 ∈ Adm(η) by Proposition 2.1.6 and Pη0η,e | P , (η, τ ) ∈ S0,t by
the proof of Lemma 8.4.11. Choosing an O-lattice σ ◦(τ ) ⊂ σ(τ), combining
that M∞(σ ◦(τ )) is maximal Cohen–Macaulay over R∞(τ ), Rτρ is a domain by
Theorem 7.3.2(2) (cf. Remark 7.3.4), M∞(σ ◦(τ )) is nonzero by Proposition
6.2.7, and Theorem 7.4.2(1), we conclude that AnnRρ M∞(σ ◦(τ )) is contained
in pσ (ρ) (which is a proper ideal by (9.4)). Then AnnRρ M∞(σ ′) is contained
in pσ (ρ) for some σ ′ ∈ W ?(ρ|IQp

) ∩ JH(σ (τ )). The claim in the previous
paragraph (with the roles of σ and σ ′ reversed) implies that δρ|IQp

(σ ) ≤
δρ|IQp

(σ ′). Since τ is strictly defect lowering forρ andσ ,σ = σ ′.We conclude

that M∞(σ ) �= 0.
Finally, we claim that if σ is generic, then σ ∈ W ?(ρ) if and only if σ ∈

WBM
gen (ρ). The forward implication follows from Lemma 9.1.9 and Remark

9.1.3. We now show that WBM
gen (ρ) ⊂ W ?(ρ). Suppose that σ ∈ WBM

gen (ρ).
Then for any minimal patching functor M ′∞ for ρ and S0,t, M ′∞(σ ) �= 0 by
Theorem 8.4.10(2) so that σ ∈ W ?(ρ) by Proposition 6.2.3. Alternatively, by
the same result, ρ ∈ Cσ ′ for some σ ′ which σ covers. Then ρ ∈ Cσ by Remark
4.7.4(2) (see the proof of Proposition 7.4.7). ��
Proof of Theorem 9.1.6 The result follows from Lemmas 9.1.10 and A.1.1. ��

9.2 A modularity lifting result

Theorem 9.2.1 Let F/F+ be a CM extension, and let r : G F → GLn(E) be
a continuous representation such that

• r is unramified at all but finitely many places;
• r is potentially crystalline at places dividing p of type (λ + η, τ) where
λ ∈ (Zn+)Hom(F,E) and τ is a tame inertial type that admits a lowest alcove
presentation (s, μ− η) where μ is Pλ+η,e-generic;

• rc ∼= r∨ε1−n;
• r is semisimple locally at places above p;

• r : G F(ζp) → GLn(F) is an adequate subgroup and ζp /∈ F
ker adr

; and
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• r ∼= r ι(π) for some π a regular algebraic conjugate self-dual cuspidal
(RACSDC) automorphic representation of GLn(AF ) of weight λ so that
σ(τ) is a K -type for π at places dividing p.

Then r is automorphic i.e. r ∼= rι(π ′) for some π ′ a RACSDC automorphic
representation of GLn(AF ) (of weight λ so that σ(τ) is a K -type for π at
places dividing p).

Proof This follows from Theorem 7.3.2 from standard base change and
Taylor–Wiles patching arguments cf. the proof of [60, Proposition 6.0.2]. ��

Remark 9.2.2 (1) After possibly changing the polynomial Pλ+η,e in Theorem
9.2.1, the last condition on r can be relaxed to only require that r ∼= r ι(π)
for some RACSDC automorphic representation π using Theorem 9.1.6 to
incorporate a “change of weight” result.

(2) Unfortunately, the inexplicit nature of Pλ+η,e makes Theorem 9.2.1 rather
impractical to apply.
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Appendix A. Taylor–Wiles patching

The goal of this section is to construct a patching functor from algebraic
modular forms on a definite unitary group using the Taylor–Wiles method.
This differs from most other constructions in that we allow arbitrary level
while other constructions typically assume that the level away from p is rather
mild. For the purposes of automorphy lifting results, one can arrange for this
assumption to hold using solvable base change. Since Theorem 9.1.6 is a
characteristic p result, we cannot use solvable base change as a reduction step.
Fortunately, the necessary modifications to account for level are not difficult.
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A.1. The result

Lemma A.1.1 We use notation from §9.1. Assume that p � 2n. Let r : G F+ →
Gn(F) be a continuous representation.

(1) If r is automorphic and r |G F (G F(ζp)) is adequate, then there exists a weak
patching functor for r p such that M∞(σ ) �= 0 if and only if σ ∈ W (r).

(2) If furthermore, the inertial L-parameter r p|IQp
over F is tame and has a

lowest alcove presentation (s, μ − η) such that μ is P6n−2P2η,e-generic,
there exists M∞ as above such that M∞ is furthermore detectable.

A.2. Patching functors and obvious weights

Letρ be a tame L-homomorphismoverF. Let iρ : Spf Rρ →∏

v∈Sp,Spf O X F+v
n

be the versal map from §9.1. Recall that for any Serre weight σ of G, we let
Cσ (ρ) be the irreducible cycle i∗ρ(Cσ ) and let pσ (ρ) ⊂ Rρ denote the prime
ideal defining Cσ (ρ) (and let pσ (ρ) = Rρ if Cσ (ρ) = 0). For an inertial type

τ , let pλ,τ (ρ) ⊂ Rρ denote the ideal defining Spec Rλ+η,τρ . We write pτ (ρ)
for p0,τ (ρ).

Lemma A.2.1 Let ρ be an L-homomorphism over F and M∞ a weak patching
functor for ρ. If σ0 is (3n − 1)-deep and AnnRρ M∞(σ0) ⊂ pσ (ρ), then σ0
covers σ .

Proof Suppose that AnnRρ M∞(σ0) ⊂ pσ (ρ) and that τ is a 2n-generic tame
inertial L-parameter τ with σ0 ∈ JH(σ (τ )). Then by Definition 6.2.1,

pσ (ρ) ⊃ AnnRρ M∞(σ0) ⊃ AnnRρ M∞(σ ◦(τ )) ⊃ pτ (ρ)+ (�).
Remark 7.4.3(2) then implies that σ ∈ JH(σ (τ )). We conclude that σ0 covers
σ . ��

We say that a tame L-homomorphism ρ overF is P2η,e-generic if the inertial
L-parameter τ with w̃(ρ, τ ) = tη+w0(η) is P2η,e-generic.

Proposition A.2.2 Suppose that ρ is a tame L-homomorphism over F such
that ρ|IQp

has a lowest alcove presentation (s, μ − η) such that μ is P2η,e-
generic. If M∞ is a weak patching functor, then M∞(σ ) �= 0 for every σ ∈
Wobv(ρ) in the highest p-restricted alcove.

Proof Let τ be the tame inertial L-parameter with a lowest alcove presentation
η-compatible with that of ρ such that w̃(τ ) = w̃(ρ)t−η−w0η. If M∞ is a
weak patching functor for ρ, then M∞(σ ◦(η, τ )) is nonzero for any lattice
σ ◦(η, τ ) ⊂ σ(η, τ ) by Proposition 6.2.3 and Lemma 2.6.7. By assumption,
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τ has a lowest alcove presentation (s, μ − 2η − w0η) where μ − η − w0η

is (up to X0(T )) P2η,e-generic, so that AnnRρ M∞(σ ◦(η, τ )) = pη,τ (ρ) since

R2η,τ
ρ is a domain by Theorem 7.3.2 and since M∞(σ ◦(η, τ )) is maximally

Cohen–Macaulay over R∞(η, τ ) by Definition 6.2.1(1). Since M∞(σ ◦(η, τ ))
and R2η,τ

ρ areO-flat, this implies that AnnRρ M∞(σ ◦(η, τ )) = pη,τ (ρ)+ (�).
In particular, AnnRρ M∞(σ ◦(η, τ )) ⊂ pσ (ρ) for any σ ∈ JH(σ (η, τ )) by
Theorem 7.4.2. Then for any σ ∈ JH(σ (η, τ )), there exists a Serre weight σ ′
such that AnnRρ M∞(σ ′) ⊂ pσ (ρ).

We now take σ ∈ Wobv(ρ) in the highest p-restricted alcove. Then ρ ∈ Cσ
by Proposition 7.4.7(1). Lemma A.2.1 implies that M∞(σ ′) �= 0 for some
σ ′ which covers σ . Then Proposition 2.3.12(2) implies that σ ′ = σ , so that
M∞(σ ) �= 0. ��

A.3. Galois deformations

We recall some some definitions from §6.1. Let G/O be a split (possibly dis-
connected) reductive group. Let CO be the category with objects Noetherian
complete localO-algebras with residue fieldF andmorphisms localO-algebra
homomorphisms. Given a topological group �, a continuous representation
r : � → G(F), and (A,mA) ∈ CO, an A-valued lifting of r is a continuous
representation rA : � → G(A) such that r ≡ rA (mod mA). We say that two
A-valued liftings are equivalent if they are ker(G(A) � G(F))-conjugate. An
A-valued deformation of r is an equivalence class of A-valued liftings. Given
a A-valued lifting rA : � → G(A), let det rA : � → Gab(A) denote its com-
position with the natural quotient map. Note that det rA only depends on the
equivalence class of rA.

An example of G which will play an important role in what follows is the
group scheme Gn from [16], which is the (disconnected) split reductive group
scheme over Z defined as the semidirect product

(GLn × GL1)� {1, j} = G0
n � {1, j},

where j (g, a)j = (a t g−1, a). Let ν : Gn → GL1 be the homomorphism
defined by ν(g, a) = a and ν(j) = −1. Let Gab

n be the quotient of Gn by its
derived subgroup. Then Gab

n is isomorphic to GL1 × {1, j} (see [5, § 5.1]). In
the next sections, � will be taken to be a Galois group.

A.3.1. Local deformations

Let L be a nonarchimedean local field of characteristic zero. For a Galois
representation ρ : GL → Gn(F), define the functor D�

ρ : CO → Sets by
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letting Dρ(A) be the set of A-valued liftings of r . Then D�
ρ is represented by

a ring R�
ρ , the O-lifting ring of ρ.

Definition A.3.1 A local deformation problem for ρ is a nontrivial subfunctor
Dρ of D�

ρ such that

(1) if R1 � R0 and R2 � R0 are two surjections in CO and R3 = ker(R1 ×
R2 → R0) ∈ CO with the natural ring structure, then Dρ(R3) is identified
with the equalizer of the diagram

Dρ(R1)× Dρ(R2) Dρ(R0);

(2) Dρ(A) is ker(G(A) � G(F))-conjugation invariant for all A ∈ CO;
(3) the natural map Dρ(lim←− Ai )

∼→ lim←− Dρ(Ai ) is an isomorphism; and
(4) if i : A ↪→ B is an injection in CO, then rA ∈ Dρ(A) if and only if

i∗(rA) ∈ Dρ(B).

Any local deformation problem Dρ is represented by a quotient Rρ of R�
ρ .

If ξ : GL → Gab
n (O) is a lift of det ρ : GL → Gab

n (F), define Dξ,′
ρ (A) to be

the set of lifts ρA such that det ρA = ξ (i.e. ξ composed with the map coming
from the structure map O → A). Then Dξ,′

ρ is a local deformation problem

represented by a ring Rξ,′ρ . Let Rξρ be the maximalO-flat quotient of Rξ,′ρ , and

let Dξ
ρ be the corresponding local deformation problem.

If ρ(GL) is contained in G0
n(F), then denote the projection of a deformation

ρA to GLn(A) by ρA|. Then ρA �→ ρA| induces a natural isomorphism Dξ
ρ

∼→
D�
ρ|.

A.3.2. Global deformations

Let F+ be a totally real extension of Q and let F ⊂ F
+
be a CM extension

of F+. There is a natural inclusion G F ⊂ G F+ . Let S be a finite set of
finite places of F+. Let F(S) be the maximal extension of F unramified
outside S, and let G F+,S be Gal(F(S)/F+). Let r : G F+,S → Gn(F) be

a representation which induces an isomorphism G F+/G F
∼→ Gn(F)/G0

n(F).
(All representations r : G F+,S → Gn(A) below are assumed to induce the

isomorphism G F+/G F
∼→ Gn(A)/G0

n(A).) Fix a lift ξ : G F+ → Gab
n (O) of

det r . Let D�,ξ
r denote the functor taking A ∈ CO to the set of A-valued lifts

with det rA = ξ , which is represented by a quotient R�,ξ
r of R�

r . We let r |G F

denote the restriction of r to G F composed with the projection to GLn(F).
Suppose now that r |G F is absolutely irreducible. Then the functor Dξ

r , taking
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A ∈ CO to the set of equivalence classes in D�,ξ
r (A), is represented by a

deformation ring Rξr .

For each place v of F+, we fix a map F
+
↪→ F

+
v . Then restriction gives

an inclusion G F+v ↪→ G F+ . A global Gn-deformation datum is a tuple

S = (F/F+, S,O, r , ξ, {Dv}v∈S),

where F/F+, S, O, r , and ξ are as before, and Dv corresponds to a local

deformation problem for rv
def= r |G

F+v
which is a subfunctor of Dξv

rv
where

ξv
def= ξ |G

F+v
. For an O-algebra A, we say that a lifting rA : G F+ → Gn(A)

of r is of type S if det rA = ξ and rA,v
def= rA|G

F+v
∈ Dv(A) for all v ∈ S.

We say that a deformation [rA] of r is of type S if some (or equivalently any)
lifting in the equivalence class is of type S. Let D�

S ⊂ D�,ξ
r (resp. DS ⊂ Dξ

r )
be the subfunctor consisting of liftings (resp. deformations) of type S. Then
D�
S (resp. DS) is represented by a quotient R�

S of R�,ξ
r (resp. a quotient RS

of Rξr ).
For T ⊂ S, an A-valued T -framed lifting of r of type S is a tuple

(rA, (αv)v∈T ) where rA ∈ D�
S (A) and αv ∈ ker(GLn(A) � GLn(F)) for

each v ∈ T . If we let OT be O[[zv,i, j ]]v∈T,1≤i, j≤n , then the functor send-
ing A to the set of A-valued T -framed liftings of r of type S is represented
by the ring R�,�T

S ∼= R�
S ̂⊗OOT . We say that A-valued T -framed liftings

(rA, (αv)v∈T ) and (r ′A, (α′v)v∈T ) of r of type S are equivalent if for some
β ∈ ker(GLn(A) � GLn(F)), r ′A = βrAβ

−1 and α′v = βαv for all v ∈ T .
An A-valued T -framed deformation of r of type S is an equivalence class of
A-valued T -framed liftings of r of type S. The functor of T -framed deforma-
tions of r of type S is represented by a ring R�T

S . Taking equivalence classes

gives a tautological map R�T
S → R�,�T

S . The maps sending [(rA, (αv)v∈T )]
to (Ad(α−1v )rA,v)v∈T induces a map Rloc

S,T
def= ̂⊗v∈T,ORv → R�T

S where Rv
denotes the ring representing Dv .

Fix a universal lifting rS : G F+ → Gn(RS) (or equivalently a section
Spec RS → Spec R�

S of the natural map Spec R�
S → Spec RS). This induces

a map R�
S ̂⊗OOT → RŜ⊗OOT and the composition R�T

S → R�,�T
S ∼=

R�
S ̂⊗OOT → RŜ⊗OOT is an isomorphism. (Indeed, since r |G F is absolutely

irreducible and p > 2, β ∈ ker(GLn(A) � GLn(F)) centralizes r if and only
if β = idn .)
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A.3.3. Tangent spaces

Given a representation r : � → Gn(A), one naturally obtains an adjoint
representation � → AutA(LieGn(A)). Note that LieGn

∼= gln × gl1. Let
ad r : � → AutA(gln(A)) be the representation obtained by the projection
LieGn � gln .

For (A,mA) ∈ O, the reduced tangent space of A is defined to be
HomO(mA/m

2
A,F), which is naturally identified with the set of morphisms

A → F[ε]/ε2 in CO. In the setup of §A.3.1, the reduced tangent space of R�
ρ

is naturally identified with both D�
ρ (F[ε]/ε2) and C1(G F+v , ad ρ).

Recall that r : G F+,S → Gn(F) is a representation which induces an iso-

morphismG F+/G F
∼→ Gn(F)/G0

n(F) andwhose restriction r |G F is absolutely
irreducible. Fix a global Gn-deformation datum

S = (F/F+, S,O, r , ξ, {Dv}v∈S).

For each v ∈ S, let Lv ⊂ C1(G F+v , ad ρ) be the subspace corresponding to
Dv(F[ε]/ε2).
As before, let T be a subset of S. We define Hi

S,T (G F+,S, ad r) to be the
cohomology of the complex

Ci
S,T (G F+,S, ad r)

def= Ci (G F+,S, ad r)⊕
⊕

v∈S

Ci−1(G F+v , ad r)/Mi−1
v ,

where Mi
v = 0 unless v ∈ S\T and i = 0 in which case M0

v = C0(G F+v , ad r)

or v ∈ S \ T and i = 1 in which case M1
v = Lv . The boundary map for the

above complex maps (φ, (ψv)v∈S) to (∂φ, (φ|G
F+v
− ∂ψv)v∈S).

Proposition A.3.2 There is a natural isomorphism

HomO(mR
�T
S
/(m2

R
�T
S
+mRloc

S,T
),F) ∼= H1

S,T (G F+,S, ad r).

A.3.4. Taylor–Wiles primes

Let

S = (F/F+, S,O, r , ξ, {Dv}v∈S),

be a global Gn-deformation datum. Let Q be a set of split places in F+ such
that Nv ≡ 1 (mod p) for all v ∈ Q, and let ψv be a generalized eigenspace
for the projection of r(Frobv) to GLn(F) on which r(Frobv) acts semisimply.
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Let sv be the complementary r(Frobv)-stable subspace. For v ∈ Q, let Dv(A)
be the set of A-liftings which induce G F+v -actions of An which decompose as
sv ⊕ ψv lifting the decomposition over F such that sv is unramified and the
inertial subgroup acts onψv by scalars. Then Dv is a local deformation problem
by [78, Lemma 4.2], and we consider the global Gn-deformation datum

SQ = (F/F+, S,O, r , ξ, {Dv}v∈S∪Q).

Proposition A.3.3 Let q0 ≥ 0 be an integer and

S = (F/F+, S,O, r , ξ, {Dv}v∈S),

be a global Gn-deformation datum such that r(G F+(ζp)) is adequate and
ξ(cv) = −1 for each v | ∞ where cv denotes complex conjugation at v.
Let T ⊂ S be a finite set such that every place in S \ T is splits in F and that

dimF Lv − dimF H0(G F+v , ad r) =
{

[F+v : Qp]n(n − 1)/2 if v | p,

0 if v � p.

Let q be the larger of dimF H1
L⊥,T (G F+,S, ad r(1)) and q0 (with H1

L⊥,T
(G F+,S, ad r(1)) defined as in [16, § 2.3]). Then for any integer N ≥ 0,
we can find (Q, (ψv)v∈Q) where Q is a set of places in F+ which split in
F which is disjoint from S and ψv is a nontrivial generalized eigenspace for
r(Frobv) on which r(Frobv) acts semisimply for each v ∈ Q such that

• #Q = q;
• Nv ≡ 1 (mod pN ) for all v ∈ Q; and
• R�T

SQ
can be topologically generated over Rloc

S,T = Rloc
SQ ,T

by q −
∑

v∈T,v|p[F+v : Qp]n(n − 1)/2 elements.

Proof This follows from [78, Proposition 4.4]. ��
We say that (Q, (ψv)v∈Q) in Proposition A.3.3 is a Taylor–Wiles datum of

level N disjoint from S.
With Q as above, let �Q be

∏

v∈Q
k×v (p) where kv denotes the residue field

of F+v and k×v (p) denotes the maximal p-quotient of k×v . (So�Q is nontrivial
if Q is nonempty.) Choose a universal lifting rSQ and let ψv be as above for
each v ∈ Q. For each v ∈ Q, the action of k×v , thought of as a subgroup of
I abv , acts on the summand ψv and gives a character k×v → R×SQ

which factors

through k×v (p). Altogether, we have a map O[�Q] → RSQ . Moreover, the
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natural map RSQ/aQ → RS is an isomorphism, where aQ ⊂ O[�Q] denotes
the augmentation ideal. Similarly, R�T

SQ
/aQ → R�T

S is an isomorphism.

A.4. Automorphic forms on definite unitary groups

For the reader’s convenience, we recall notation from §9.1. Recall that F+ is
a totally real field not equal to Q and that F ⊂ F

+
is a CM extension of F+.

The set of places in F+ dividing p is denoted Sp. A finite place of F+ (resp. of
F) is split if it splits in F (resp. if its restriction to F+ splits in F). We assume
that all places in Sp are split. Recall that G/F+ is an outer form for GLn which

• splits over F ; and
• is definite at all archimedean places.

Moreover, there is an N ∈ N prime to p and a reductive model G/OF+[1/N ] for
G with an isomorphism

ι : G/OF [1/N ]
ι→ GLn/OF [1/N ] (A.1)

which specializes to ιw : G(OF+v )
∼→ G(OFw)

ι→ GLn(OFw) for all split
finite places w in F where v is w|F+ here.

In §A.3.2, we chose homomorphisms F
+
↪→ F

+
v , which induces a v-adic

norm on F
+
(for the unique norm on F

+
v extending any fixed norm on F+v in

the class of the place v). Restriction to F gives a place ṽ dividing v (that does
not depend on the choice of the norm on F+v ). Changing the homomorphisms

F
+
↪→ F

+
v , we assume without loss of generality, that ṽ coincides with

the choices in §9.1. We write ιv be the composition of ι̃v and the canonical
isomorphism GLn(OF̃v )

∼= GLn(OF+v ) (suppressing the dependence on the
choice of ṽ).

If U = UpU∞,p ≤ G(A∞F+,p) × G(A∞,pF+ ) is a compact open subgroup,
and W is a finite O-module endowed with a continuous action of Up, then

S(U,W )
def= { f : G(F+)\G(A∞F+)→ W |

f (gu) = u−1p f (g) ∀ g ∈ G(A∞F+), u ∈ U
}

. (A.2)

From now on we assume that U is sufficiently small, i.e. for all t ∈ G(A∞F+),
the order of the finite group t−1G(F+)t ∩U is prime to p, so that S(U,−) is
exact.

We let S be a finite set of finite places in F+ containing Sp, places dividing
N , and all places at whichU is not unramified; and we letPS be the set of split
finite places w of F such that v = w|F+ /∈ S. For a subset P ⊆ PS of finite
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complement that is closed under complex conjugation, TP = O[T (i)w , w ∈
P, 0 ≤ i ≤ n] is the universal Hecke algebra on P . Then T (i)w ∈ TP acts on
S(U,W ) by the usual double coset operator

ι−1w
[

GLn(OFw)

(

�wIdi 0
0 Idn−i

)

GLn(OFw)

]

.

Suppose that S(U,W )m �= 0 where m is the kernel of a homomorphism
α : TP → F. Let TP(U,W ) be the image of TP in EndO(S(U,W )). If
Q is the (finite) set {w|F+ : w ∈ PS \ P}, then we also denote TP(U,W )

by TQ(U,W ). Let α : TP � TQ(U,W )m be the natural quotient map. Then

there is aGalois representation rm
def= r(U,W )m : G F+,S → Gn(T

Q(U,W )m)

determined by the equations

det
(

1− r(U,W )m|G F (Frobw)X
)

=
n
∑

j=0
(−1) j (NF/Q(w))

( j
2)α(T ( j)

w )X j

for all w ∈ P . We denote the reduction rm (mod m) by r : G F+ → Gn(F).
Let Op be OF+ ⊗Z Zp

∼= ∏

v∈Sp

OF+v . Then the composition

ιp
def=
∏

v∈Sp

ιv : G(Op) ∼=
∏

v∈Sp

G(OF+v )
∼→
∏

v∈Sp

GLn(OF+v ) (A.3)

gives an equivalence between G(Op)-modules and
∏

v∈Sp

GLn(OF+v )-modules.

Let kv denote the residue field of F+v and G
def= ∏

v∈Sp

GLn(kv). If σ is a Serre

weight of G, then σ is naturally a
∏

v∈Sp

GLn(OF+v )-module by inflation.

We will need a local-global compatibility result for r(U,W )m. Let G be
(the split group) (ResF+⊗Qp/QpGLn)/E .

• Fix a highest weight λ = (λv)v∈Sp of G, which we also view as a coweight
of the dual group G∨. For v ∈ Sp, let τv be an n-dimensionalWeil–Deligne
inertial type for F+v . Recall that there is a natural correspondence between
local deformation problems for ρv in Dξv

ρv
and local deformation problems

for ρv|. Recall from §6.1.1 that Rλv,τvρv | represents a certain subfunctor,

which we will denote Dλv,τv
ρv | , of a potentially semistable deformation func-

tor. Let Dλv,τv
ρv

be the local deformation problem corresponding to Dλv,τv
ρv | .
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(Note that Dλv,τv
ρv

does not depend on the choice of place ṽ.)

• Let m be a positive integer and (Q, (ψv)v∈Q) a Taylor–Wiles datum of
level m and disjoint from the union of Sp and the set of places dividing N
(see §A.3.4). Let dv be the dimension of the generalized ψv-eigenspace.
Let pv be the standard (block upper triangular) parahoric corresponding to
the partition (n − dv)+ dv of n (suppressing the dependence on ψv). Let

pv1 be the kernel of the natural map pv → GLdv (kv)
det→ k×v → k×v (p),

where kv is the residue field of F+v and k×v (p)
def= �v denotes the maximal

p-quotient of k×v . Setting U = UQU Q , let U0(Q) (resp. U1(Q)) be the
compact open subgroup (

∏

v∈Q
U0(Q)v)U Q (resp. (

∏

v∈Q
U1(Q)v)U Q) where

U0(Q)v (resp.U1(Q)v) is ι−1v (pv) (resp. ι−1v (pv1)). Let Dv be the local defor-
mation problem defined in §A.3.4. Note that for each v ∈ Q, the quotient
U0(Q)v/U1(Q)v is naturally identified with �v so that U0(Q)/U1(Q) is

naturally identified with �Q
def= ∏v∈Q �v .

Theorem A.4.1 Let ξ be ε1−nδn
F/F+ where δF/F+ denotes the quadratic char-

acter of G F+/G F . Fix a dominant weight λ = (λv)v∈Sp of G and, for each
v ∈ Sp, an n-dimensional Weil–Deligne inertial type τv for F+v . Let σ(τv) be

as in Theorem 2.5.4. For v ∈ Sp, let Dv be Dλv,τv
rv

. Let W be an O-lattice in
the Up-module

⊗

v∈Sp

σ(λv, τv)
∗ ◦ ιv,

where (−)∗ denotes the E-dual of an E-vector space. Suppose that S contains
Sp, places dividing N, and all places where U is not unramified.

As in §A.3.4, let (Q, (ψv)v∈Q) be a Taylor–Wiles datum disjoint from
S. Then there are a maximal ideal mQ ⊂ TPS\Q, maps α : TPS\Q →
TQ(U,W )mQ , α0 : TPS\Q → T∅(U0(Q),W )mQ , and α1 : TPS\Q →
T∅(U1(Q),W )mQ , and Galois representations

• r(U,W )mQ : G F+,S → Gn(T
Q(U,W )mQ ), uniquely determined by the

equations

det
(

1− r(U,W )mQ |G F (Frobw)X
) =

n
∑

j=0
(−1) j (NF/Q(w))

( j
2)α(T ( j)

w )X j
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for all w ∈ PS \ Q, of type

S def= (F/F+, S,O, r , ξ, {Dv}v∈Sp ∪ {Dξv
v }v∈S\Sp);

• r(U0(Q),W )mQ : G F+,S → Gn(T
∅(U0(Q),W )mQ ), uniquely determined

by the equations

det
(

1− r(U0(Q),W )mQ |G F (Frobw)X
)

=
n
∑

j=0
(−1) j (NF/Q(w))

( j
2)α0(T

( j)
w )X j

for all w ∈ PS \ Q, of type

S = (F/F+, S,O, r , ξ, {Dv}v∈Sp ∪ {Dξv
v }v∈S\Sp);

• and r(U1(Q),W )mQ : G F+,S → Gn(T
∅(U1(Q),W )mQ ), uniquely deter-

mined by the equations

det
(

1− r(U1(Q),W )mQ |G F (Frobw)X
)

=
n
∑

j=0
(−1) j (NF/Q(w))

( j
2)α1(T

( j)
w )X j

for all w ∈ PS \ Q, of type

SQ = (F/F+, S ∪ Q,O, r , ξ, {Dv}v∈Sp ∪ {Dv}v∈Q ∪ {Dξv
v }v∈S\Sp).

Proof The construction of the Galois representations is as in the proof of [16,
Proposition 3.4.4] using [25, Theorem 7.2.1]. ��

If U is sufficiently small, then with the natural action of �Q on
S(U1(Q),W ), S(U1(Q),W ) is a free O[�Q]-module and the image of
S(U0(Q),W ) in S(U1(Q),W ) under the natural inclusion is identified
with S(U1(Q),W )[aQ]. Moreover, the induced action on S(U1(Q),W )m
coincides with the one given by the composition O[�Q] → RSQ →
T∅(U1(Q),W )m → EndO(S(U1(Q),W )m).

For each v ∈ Q, choose an element φv ∈ WF+v lifting the geometric Frobe-
nius element. Let �v ∈ OF+v be the uniformizer such that ArtF+v (�v) is the

image of φv in W ab
F+v

. Using the isomorphism ιv : G(OF+v )
∼→ GLn(F+v ), we

define pr�v ∈ EndO(S(Ui (Q),W )mQ ) as in [78, Proposition 5.9] (suppressing
the dependence on U and (Q, (ψv)v∈Q)). Then the operators pr�v commute
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with each other and with the actions of O[�Q] and T∅(Ui (Q),W )mQ for
i = 0, 1. So letting pr =∏v∈Q pr�v , pr(S(Ui (Q),W )mQ ) is well-defined for
i = 0, 1, pr(S(U1(Q),W )mQ ) is a free O[�Q]-module, and the natural map

pr(S(U0(Q),W )mQ )
∼→ pr(S(U1(Q),W )mQ )[aQ]

is an isomorphism.Moreover, the imageof the natural injection S(U,W )mQ →
S(U0(Q),W )mQ is pr(S(U0(Q),W )mQ ) as in the proof of [78, Theorem 6.8].

A.5. The patching construction

We continue with the notation from §A.4. Let r : G F+ → Gn(F) be an
automorphic Galois representation such that r(G F+(ζp)) is adequate (so that
in particular r |G F is absolutely irreducible). By shrinking the level U , we can
assume that r is automorphic of level U = USpU Sp and coefficients O with
trivial Up-action so that (

∏

v∈Sp
G(OF+v ))U

Sp is sufficiently small. Let S be

a finite set of finite places of F+ containing Sp, all places dividing N , and all
places at which U is not unramified.

Let S be the global Gn-deformation datum

S = (F/F+, S,O, r , ξ, {Dξv
v }v∈S).

For each integer m ≥ 1, let (Qm, (ψv)v∈Qm ) be as in Proposition A.3.3. For
each m and v ∈ Qm , choose an element φv ∈ WF+v lifting the geometric
Frobenius element. Let�v ∈ OF+v be the uniformizer such that ArtF+v (�v) is

the image of φv in W ab
F+v

. Then for each Qm , we define pr as in §A.4. For any
open compact subgroup K p ⊂ USp and integer r > 0, we define

Mm,K p,r
def= pr(S(K pU1(Qm)

Sp ,W/� r )mQm
)∨/ar

Qm
,

where (−)∨ = Homcont
O (−, E/O) (with the compact open topology) denotes

the Pontrjagin dual. By Theorem A.4.1, we have a (in fact surjective) map
RSQm

→ TQm (K pU1(Qm)
Sp ,W )mQm

. Then Mm,K p,r is an RSQm
-module,

and we define

M�
m,K p,r

def= Mm,K p,r ⊗RSQm
R�S
SQm

/ar
S,

where aS ⊂ OS denotes the augmentation ideal of the formally smooth O-
algebra OS defined in §A.3.2. Let O∞ be O[[y1, . . . , yq ]]. For each m ∈ N

choose an ordering v1, . . . , vq of Qm and for each vi a generator gi of �vi

which gives a surjectionO∞ � O[�Qm ]mapping yi to [gi ]−1 ∈ O[�vi ]. Let
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S∞
def= O∞̂⊗OOS and let a∞ ⊂ S∞ denote the augmentation ideal. Then S∞

acts on M�
m,K p,r

for all N , K p, and r , and M�
m,K p,r

/a∞ is naturally identified

with S(K pU Sp ,W/� r )∨m.
We now patch our (dual) spaces of automorphic forms on G as in [14,

§ 2], in the language of ultrafilters following [71, § 9]. Choose a non-principal

ultrafilterF ⊂ 2N. LetR def= ∏m∈N O and SF ⊂ R be the multiplicative set of
idempotents eI = (eI,m)m∈N where eI,m = 1 if m ∈ I and eI,m = 0 if m /∈ I .
Then the diagonal map O→ R induces an isomorphism

O ∼= lim←−
r

S−1F R/(� r ),

which gives a surjection R � lim←−r
S−1F R/(� r ) ∼= O. Then we let

M∞ = lim←−
K p⊂USp ,r

O ⊗R

∏

m∈N

M�
m,K p,r .

Through the diagonal map, S∞ acts on M∞ and

M∞/a∞ ∼= lim←−
K p⊂USp ,r

S(K pU Sp ,W/� r )∨m. (A.4)

Moreover, (y1, . . . , yq , z1, . . . , zn2#S) is an M∞-regular sequence, where
(z1, . . . , zn2#S) is any OS-regular sequence. Since G(Op)U Sp is sufficiently
small, lim←−K p⊂USp ,r

S(K pU Sp ,W/� r )∨ is a finite free O[[G0(Zp)]]-module.

By (A.4), M∞/a∞ is a finitely generated projective and hence finitely gener-
atedmaximal Cohen–MacaulayO[[G0(Zp)]]-module. This implies that M∞ is
a finitely generatedmaximal Cohen–Macaulay S∞[[G0(Zp)]]-module. By [82,
Theorem 6.2], M∞ is a finitely generated projective S∞[[G0(Zp)]]-module.

Let R∞ be Rloc
S,S[[x1, . . . , xg]] where g = q − [F : Q]n(n − 1)/2. Then for

each m ∈ N, we can and do choose surjections R∞ � R�S
SQm

by Proposition
A.3.3. We get a surjective map

R∞ →
∏

m∈N

R�S
SQm

� O ⊗R

∏

m∈N

R�S
SQm

,

where the first map is the product of the above surjections (composed with the
diagonalmap). Through thismap, M∞ is an R∞-module. The above S∞ action
on M∞ factors throughO⊗R

∏

m∈N R�S
SQm

as in §A.4. By formal smoothness
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of S∞, we can and do choose a lift

R∞

S∞ O ⊗R
∏

m∈N R�S
SQm

.

Recall that we setOp
def= OF+⊗Z Zp

∼= ∏

v∈Sp

OF+v . Then M∞ has an natural

G(Op)-action (even aG(F+⊗QQp)-action thoughwewill not use this), which
can be thought of as a GLn(Op) ∼= G0(Zp)-action via

ιp
def=
∏

v∈Sp

ιv : G(Op) ∼=
∏

v∈Sp

G(OF+v )
∼→
∏

v∈Sp

GLn(OF+v ).

Then we let

M∞(−) def= Homcont
O[[G0(Zp)]](M∞, (−)∨)∨

be the exact covariant functor from finiteO[G0(Zp)]-modules to finitely gen-
erated R∞-modules (finitely generated even over S∞).

Proof of Lemma A.1.1 In the construction of M∞ above, by shrinkingU Sp we
can assume without loss of generality that W = O and that if r is modular of
weight σ , then it is modular of weight σ and level G(Op)U Sp . We claim that
M∞ constructed above is a weak patching functor. Since R∞ ∼= Rr p

̂⊗OR p

where R p def= (̂
⊗

v∈S\Sp,ORξvv )[[x1, . . . , xg]] then R p is equidimensional by
[5, Theorem 3.3.3] or [12, Theorem 1].

To see that M∞(−) is nonzero, note that

M∞(Ind
G0(Zp)

USp
F)/a∞

∼= Homcont
O[[G0(Zp)]](M∞/a∞, (Ind

G0(Zp)

USp
F)∨)∨

∼= Homcont
O[[G0(Zp)]]( lim←−

K p⊂USp ,r

S(K pU Sp ,O/� r )∨m, (Ind
G0(Zp)

USp
F)∨)∨

∼= Homcont
O[[G0(Zp)]](Ind

G0(Zp)

USp
F, lim−→

K p⊂USp

S(K pU Sp , E/O)m)∨

∼= S(U,F)∨m
�= 0.
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If σ is a Serre weight, then the same computation shows that M∞(σ )/a∞ ∼=
S(G(Op)U Sp , σ∨)∨m. By assumption, this latter space is nonzero if and only
if σ ∈ W (r). Furthermore, by Nakayama’s lemma, M∞(σ ) is nonzero if and
only if M∞(σ )/a∞ is nonzero. We conclude that M∞(σ ) is nonzero if and
only if σ ∈ W (r).

Let λ ∈ X∗(T ) be a dominant weight and τ a Weil–Deligne inertial L-
parameter. For anO-lattice σ ◦(λ, τ ) ⊂ σ(λ, τ ), M∞(σ ◦(λ, τ )) is isomorphic
to

Homcont
O[[G0(Zp)]](M∞, σ ◦(λ, τ )∨)∨

∼= lim←−
r

lim←−
K p⊂USp

HomG0(Zp)(O ⊗R

∏

m∈N

M�
m,K p,r , (σ

◦(λ, τ )/� r )∨)∨

∼= lim←−
r

lim←−
K p⊂USp

HomG0(Zp)(σ
◦(λ, τ )/� r ,

O ⊗R

∏

m∈N

pr(S(K pU1(Qm)
Sp ,O/� r )mQm

)⊗RSQm
R�S
SQm

/ar
S)
∨

∼= lim←−
r

O ⊗R

∏

m∈N

pr(S(G(Op)U1(Qm)
Sp , (σ ◦(λ, τ )/� r )∨)mQm

)

⊗RSQm
R�S
SQm

/ar
S)
∨.

So the action of R∞ on M∞(σ ◦(λ, τ )) factors through R∞(λ, τ) by
Theorem A.4.1. Moreover, M∞(σ ◦(λ, τ )) is a maximal Cohen–Macaulay
S∞-module, and therefore a maximal Cohen–Macaulay R∞(λ, τ)-module
since dim S∞ = dim R∞(λ, τ) as can be seen from [49, Theorem 3.3.4].
Finally, if σ ∈ JH(σ ◦(λ, τ )), then the R∞-action on M∞(σ ), a subquo-
tient of M∞(σ ◦(λ, τ )) factors through R∞(λ, τ)/� . Since M∞(σ ) is a
maximal Cohen–Macaulay S∞/� -module, it is a maximal Cohen–Macaulay
R∞(λ, τ)/� by dimension considerations. This concludes the proof of (1).
Proposition A.2.2 applied to M∞(−) above implies that r is modu-

lar of a weight in Wobv(r p|IQp
). Then [56, Theorem 4.3.8] implies that

Wobv(r p|IQp
) ⊂ W (r). This implies that M∞(−) above is detectable, which

establishes (2). ��

Appendix B. A numerical example

In this appendix, we work out a numerical example where the polynomial P
appearing in item (2) of Theorem 7.3.2 is made explicit. For our example, we
will choose n = 3, J is a singleton, λ = (3, 1, 0) and z̃ = (23)t(2,1,1).
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We first recall the schemeU (̃z)det,≤0 → X = A1 from §3.2. By Proposition
3.2.8, the universal matrix A ∈ U (̃z)det,≤0 has the form

⎛

⎝

(v − t)2 + d11(v − t)+ c11 vc12 c13
v(d21(v − t)+ c21) c22 (v − t)+ c23
v(d31(v − t)+ c31) v (v − t)d33 + c33

⎞

⎠ .

so that Udet,≤0(̃z) is the quotient of Z[t, c11, d11, c12, c13, c21, d21, c22, c23,
d31, c31, c33, d33] subject to the equation

det A = −(v − t)4.

The affine schemeU (̃z)∩SX (λ) is obtained by imposing divisibility conditions
of the minors on the universal matrix A corresponding to λ (and taking the
underlying reduced subscheme).

We now turn to the universal monodromy condition (3.1) as in §3.3. In
fact, we will work with its simplified version as explained in Remark 3.3.2,
so that our a ∈ A3 always belongs to the A2 where the last coordinate is
0, i.e. a = (a, b, 0). In addition, we will only work over the open locus
V = Spec Z[a, b][ 1

P(a,b) ] ⊂ A2 where

P(a, b) = 7!b(b − 1)(a − 1)(a − 2)(a − b)(a − b − 1)(a − b − 2)

is invertible. This turns out to substantially simplify our considerations below,
and is enough for our purposes, as any specialization we will eventually con-
sider always occurs in V , due to the fact that the inertial types we consider
will need to be at least 2-generic.

LetU (̃z, λ,∇) = (U (̃z)×A2)∩MX (λ,∇), an open affine of (the simplified
variant of) MX (λ,∇).
Proposition B.0.1 (1) The schemeU (̃z, λ,∇)×A2 V is represented by the quo-

tient of the ring Z[t, a, b, c12, c13, d21, c22, d31, d33][ 1
P(a,b) ] by the ideal

generated by

(a − 2)c13c22 − (a − b − 2)c12c22d33 + c12t (a − b),

b(a − 1)(a − 2)c13d21
+(a − b − 1)(a − 1)(a − 2)c12d31 − b(a − 1)(a − b − 2)c22d33
+t
(

(a − b − 1)(a − 2)+ (a − b)(a − 1)b − 2(a − 1)(a − 2)
)

,

(a − 1)(a − 2)
(

c12d21d33 − c13d21 − c22d33 + t
)

+t (a − 2)+ (a − 1)
(− t (a − b)+ (a − b − 2)c22d33

)

.
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(2) The irreducible components of U (̃z, λ,∇)×X×A2 ({0} × V ) are given by

(c22, c12d33 − c13, bd21d33 + (a − b − 1)d31)

(c22, d21, c12)

(d31, c22, d21)

(c22, c13, c12)

(d33, c13, c12)

(d33, d31, c13)

(d31, c12d21 − c22, (a − b − 2)c12d33 + (−a + 2)c13)

(3) U (̃z, λ,∇)×A2V is an irreducible complete intersection, andU (̃z, λ,∇)×A2

V → X ×Z V is flat.
(4) Let H be the ideal generated by the 3 × 3 minors of Jacobian matrix

of O(U (̃z, λ,∇) ×A2 V ) relative to Z[t, a, b][ 1
P(a,b) ] with respect to the

presentation (1). Then t3 ∈ H.

Proof Let R be the ring given by the presentation in the first item. We first
observe that the equations in the first item indeed hold inU (̃z, λ,∇)×A2 V , and
that themonodromy condition solves the variables c11, d11, c21, c23, c31, c33 in
terms of t, c12, c13, d21, c22, d31, d33 (this uses the fact that its ring of functions
if t-torsion free and that P(a, b) is invertible). Thus, U (̃z, λ,∇) ×A2 V is a
closed subcheme of Spec R. Note that over X0, this closed subscheme is all
of Spec R[1t ].

Next, we observe that the minimal primes of Spec R/t are given by
the list in the second item. In particular, this shows that each fiber of
Spec R → X × V has codimension 3 in the corresponding fiber of
Spec Z[t, a, b, c12, c13, d21, c22, d31, d33][ 1

P(a,b) ] → X × V . It follows that
Spec R is a complete intersection, and that Spec R → X × V is flat [75,
Tag 00R4]. Since R[1t ] is a regular domain (using the corresponding fact
for U (̃z, λ,∇) ×X×A2 X0 × V cf Proposition 3.3.4), we conclude from the
fact that t is regular in R that Spec R[1t ] is dense in Spec R. It follows that
U (̃z, λ,∇) ×A2 V = Spec R. This finishes the proof of the first three items.
The last item follows from by a computation in Macaulay 2. ��
Wenow defineU (̃z, λ,∇)nm to be the spectrum of the quotient ofZ[t, a, b,W,
c12, c13, d21, c22, d31, d33] by the ideal ˜I generated by the following polyno-
mials
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W c22 + td21,

(a − 2)b(a − b)W c12 + b(a − 2)c13d21
+(a − 2)(b + 1)(a − b − 1)c12d31 − b(a − b − 2)c22d33
−t (b(b − a)+ (a − 2)),

(a − b − 2)c12c22d33 − (a − 2)c13c22 − t (a − b)c12,

bc12d21d33
−(a − b)(a − 1)W c12 − (a − 2)(a − b − 1)c12d31
−bc22d33 + (b − 2)t, (a − 2)c12d21d33
+(a − 2)(b − a)W c12 − (a − 2)c13d21
−(a − 2)(a − b − 1)c12d31 − bc22d33 + t (b − 2),

b(a(a − b)− a + b − 1)W d21d33 + b(a(a − b − 2)+ b + 1)

d21d31d33 + (a − 1)(b − 1)(a − b)W 2 +
+(a − b − 1)(a(b − 1)− b)W d31,

b(a − 2)c13d21d33 − (a − 2)(a − 1)(b − 1)(a − b)W c13
−(a − 2)(a − b − 1)(a(b − 1)− b)c13d31 +
+b(−a + b + 2)c22d2

33 − tb(−a + b)d33.

We have the natural map U (̃z, λ,∇)nm → U (̃z, λ,∇) which is finite and
birational, and hence identifies the former as a partial normalization of the latter
(for the birationality, we note that the map is an isomorphism after inverting
c22, and in fact O(U (̃z, λ,∇)nm) is the subring O(U (̃z, λ,∇))[−td21

c22
] in the

fraction field of O(U (̃z, λ,∇)).)
Proposition B.0.2 Suppose we are given s : Spec O → X × V ⊂ X × A2,
correspoding to (−p, a, b) ∈ O3.

(1) The base change U (̃z, λ,∇(a,b,0)) = U (̃z, λ,∇)×X×A2,s SpecO is O-flat.
(2) The base change U (̃z, λ,∇(a,b,0))nm = U (̃z, λ,∇)nm ×X×A2,s Spec O is

O-flat and normal.
In particular the base changed mapU (̃z, λ,∇(a,b,0))nm → U (̃z, λ,∇(a,b,0))
is the normalization map.

(3) The pullback of each irreducible component of U (̃z, λ,∇(a,b,0))F along
U (̃z, λ,∇(a,b,0))nmF

→ U (̃z, λ,∇(a,b,0))F decomposes into irreducible
components according to Table 1

Remark B.0.3 It follows from the first item that U (̃z, λ,∇(a,b,0)) is the inter-
section of M(λ,∇(a,b,0)) (cfDefinition 4.1.2)with the affine openU (̃z,≤ λ) ⊂
M(≤ λ) (cf (5.9)).
Proof The first item immediately follows from Proposition B.0.1(3), while the
last item is a direct computation in Macaulay 2.

123



Local models for Galois deformation rings and applications 1481

We now establish the second item. Let I be the image of (the base change
of) ˜I inside F[W, c12, c13, d21, c22, d31, d33] under the natural mod-� reduc-
tion map. Using the fact that 7!b(b − 1)(a − 1)(a − 2)(a − b)(a − b −
1)(a − b − 2) ∈ F×, we verify by running Buchberger’s algorithm that I
admits the following Groebner basis with respect to the monomial order on
F[W, c12, c13, d21, c22, d31, d33] given by W > c12 > c13 > d21 > c22 >
d31 > d33:

W c22,

(a − 1)(a − 2)bc13d21 + (a − 2)(a − 1)(a − b − 1)c12d31
−(a − 1)b(a − b − 2)c22d33,

−(a − 2)(a − 1)(a − b)W c12 − (a − 2)(a − 1)(a − b − 1)c12d31,

−(a − 1)b(−a + b + 1)c22d31d33,

(a − 2)(a − 1)(a − b − 1)c12d31d33
+(a − 2)(a − 1)2(b − 1)(a − b)W c13
+(a − 2)(a − 1)(a − b − 1)(a(b − 1)− b)c13d31,

(a − b − 2)c12c22d33 − (a − 2)c13c22,

bc12d21d33 − (a − 1)(a − b)W c12 − (a − 2)(a − b − 1)c12d31 − bc22d33,

b((a − b)(a − 1)− 1)W d21d33 + (a − 1)b(a − b − 1)d21d31d33
+(a − 1)(b − 1)(a − b)W 2 + (a − b − 1)(a(b − 1)− b)W d31,

(a − 2)(a − 1)(a − b − 1)c13c22d31,

(a − 2)(a − 1)(a − b − 1)c12c22d31,

(a − 2)(a − 1)2(b − 1)(a − b)2W 2c13
+(a − 2)(a − 1)(2a(b − 1)− 2b + 1)(a − b − 1)(a − b)W c13d31 +
+(a − 2)(a − 1)(a(b − 1)− b)(−a + b + 1)2c13d2

31,

and the leading monomial for each polynomial is the left-most term, except
when (a − b)((a − 1) − 1) vanishes the leading term of the 8th generator is
its second monomial (since its first monomial vanishes in this case).

A computation in Macaulay2 shows that the monomial scheme defined by
the ideal of leading terms of I

Spec F[W, c12, c13, d21, c22, d31, d33]/ lead(I )

is Cohen–Macaulay. Since there is a flat Groebner degeneration from
U (̃z, λ(a,b,0)),
∇)nm

F
to thismonomial scheme,we conclude thatU (̃z, λ,∇(a,b,0))nmF

is Cohen-
Macaulay.
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Next, we compute that the irreducible components of the special fiber of
U (̃z, λ,∇(a,b,0))nmF

are given by

(c22, (a − b)W + (a − b − 1)d31, c12d33 − c13, bd21d33
+(a − b − 1)d31, bc13d21 + (a − b − 1)c12d31),

(d31, c22, d21,W ),

(d33, d31, c13,W ),

(d33, c13, c12,W ),

(d31,W, c12d21 − c22, (a − b − 2)c12d33 + (−a + 2)c13,

(a − 2)c13d21 + (−a + b + 2)c22d33),

(c22, d21, c12, (a − 1)(b − 1)(a − b)W + (a − b − 1)
(

a(b − 1)− b
)

d31),

(c22, c13, c12, b
(

a(a − b − 1)+ b − 1
)

W d21d33
+(a − 1)b(a − b − 1)d21d31d33
+(a − 1)(b − 1)(a − b)W 2 +
+(a − b − 1)

(

a(b − 1)− b
)

W d31).

From this, we see by inspection thatU (̃z, λ,∇(a,b,0))nmF
is generically reduced,

and since it is also S1 (since it is Cohen-Macaulay), we conclude it is reduced.
Nextwe show thatU (̃z, λ,∇(a,b,0))nm isO-flat. For this,wefirst observe that

U (̃z, λ,∇(a,b,0))nm is topologically flat over O. Now, if U (̃z, λ,∇(a,b,0))nm
were not O-flat, we can find a global function g which is not divisible by �
and is� -power torsion. Then g must be nilpotent by topological flatness, but
its reduction mod � then produces a non-zero nilpotent global function on
U (̃z, λ,∇(a,b,0))nmF

, a contradiction.
Finally, since U (̃z, λ,∇(a,b,0))nm is O-flat with reduced special fiber,

U (̃z, λ,∇(a,b,0))nm is normal [69, Proposition 8.2]. ��

Corollary B.0.4 Suppose (a, b) ∈ O2 such that

b(b − 1)(a − 1)(a − 2)(a − b)(a − b − 1)(a − b − 2) ∈ O×

and p > 7. Then:

(1) U (̃z, λ,∇(a,b,0)) is unibranch at z̃ ∈ U (̃z, λ,∇(a,b,0))(F).
(2) U (̃z, λ,∇(a,b,0)) is not unibranch on a Zariski dense set of points on the

irreducible component of its special fiber given by

(c22, c13, c12).
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Proof Let π : U (̃z, λ,∇(a,b,0))nm → U (̃z, λ,∇(a,b,0)). Then π is the normal-
ization map by Proposition B.0.2(2).

The first item immediately follows from the fact that π−1(̃z) is set-
theoretically a singleton.

For the second item, letC be the irreducible component ofU (̃z, λ,∇(a,b,0))F
cut out by the ideal (c22, c13, c12). Then according toTable 1, at the set theoretic
level the map π : π−1(C)→ C identifies with

Z → A3
F

(d21, d31, d33,W ) �→ (d21, d31, d33).

where Z ⊂ A4
F
is cut out by

b((a − b)(a − 1)− 1)

(a − 1)(b − 1)(a − b)
W d21d33 + b(a − b − 1)

(b − 1)(a − b)
d21d31d33

+(a − b − 1)(a(b − 1)− b)

(a − 1)(b − 1)(a − b)
W d31 +W 2.

This map is a double cover of A3
F
by an irreducible quadric, and hence is

generically finite étale of degree 2. In particular, any point outside the branch
locus will not be (geometrically) unibranch. ��
Corollary B.0.5 Let n = 3, K = Qp, λ = (3, 1, 0) and z̃ = (23)t(2,1,1). Let
(s, μ) be a 5-generic lowest alcove presentation of a tame inertial type τ . Then
both conclusions of Theorem 7.3.2 holds whenμ is 10-deep in C0, i.e. with the
polynomial in loc.cit. taken to be P(X, Y, Z) = ∏10

m=0
(

(X − Y − m)(Y −
Z − m)(Z − X − m)

)

In particular, if μ is 10-deep in C0, then

˜X λ,τ (̃z) ∼= ˜U (̃z, λ,∇aτ )

Proof For the conclusion of the first part of Theorem 7.3.2, we need to choose
the polynomial P(X, Y, Z) to guarantee the Elkik approximation argument
goes through. By Propositions 3.3.9 and 7.1.10 we need μ to be m-deep in C0
for any m such that

m − 6+ 3 > 6

since the integer r inPropositions 3.3.9 is 3 byPropositionB.0.1(4) andhλ = 3.
In other words, we need m ≥ 10, leading to the polynomial P in the statement.
However, in view of Corollary 7.3.2, this choice of P already guarantees the
unibranch property needed for the second part of Theorem 7.3.2.

123



Local models for Galois deformation rings and applications 1485

Finally the last statement follows from the fact that z̃ is not λ′-admissible
for any λ′ < λ. ��

Remark B.0.6 Corollary B.0.4 has only been stated when J is a singleton.
However, it easily generalizes to the case of general J by taking products: the
essential point is that in our situation taking products preserves the property
of being reduced, and hence the product version of U (̃z, λ,∇(a,b,0))nm is still
the normalization of the product version of U (̃z, λ,∇(a,b,0)). In particular, the
generelization of Corollary B.0.5 to the case K being a general unramified
extension of Qp holds.
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