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Abstract We construct projective varieties in mixed characteristic whose
singularities model, in generic cases, those of tamely potentially crystalline
Galois deformation rings for unramified extensions of Q, with small reg-
ular Hodge—Tate weights. We establish several significant facts about their
geometry including a unibranch property at special points and a representa-
tion theoretic description of the irreducible components of their special fibers.
We derive from these geometric results a number of local and global con-
sequences: the Breuil-Mézard conjecture in arbitrary dimension for tamely
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potentially crystalline deformation rings with small Hodge—Tate weights (with
appropriate genericity conditions), the weight part of Serre’s conjecture for
U (n) as formulated by Herzig (for global Galois representations which sat-
isfy the Taylor—Wiles hypotheses and are sufficiently generic at p), and an
unconditional formulation of the weight part of Serre’s conjecture for wildly
ramified representations.
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1 Introduction

In this paper, we construct and study local models for stacks of étale
(¢, I')-modules which correspond to tamely potentially crystalline Galois rep-
resentations (of the absolute Galois group of an unramified extension of Q)
with small regular Hodge—Tate weights under suitable genericity conditions
(see §1.3). Asaconsequence, we deduce arefinement of a conjecture of Breuil—
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Mézard due to Emerton—Gee in this context and a conjecture of Herzig about
the weight part of Serre’s conjecture for definite unitary groups under gener-
icity hypotheses.

1.1 Motivation

Over the last few decades, starting with the work of Wiles and Taylor—Wiles
[81,84], there has been tremendous progress on the modularity of global Galois
representations, leading to spectacular consequences such as Fermat’s Last
Theorem and the Sato—Tate conjecture. Early modularity results such as those
in [81] require stringent p-adic Hodge theoretic hypotheses to guarantee for-
mal smoothness of patched global deformation rings. In the early 2000s, Kisin
made the crucial observation that all the singularities of the patched deforma-
tion ring come from bad places, shifting the focus to local deformation rings,
especially those at places dividing the residue characteristic of the coeffi-
cient field. He then analyzed the singularities of (two-dimensional) potentially
Barsotti-Tate local deformation rings through comparison to local models
appearing in the theory of integral models of Shimura varieties, leading to
very strong modularity lifting theorems in this setting, cf. [51]. Furthermore,
Kisin constructed potentially semistable deformation rings in great generality
and established their basic properties. However, the finer structure of these
rings remain mysterious, and they appear to be intrinsically difficult objects
in general. Indeed, the Breuil-Mézard conjecture predicts a lower bound for
the complexity of the singularities in terms of modular representation theory
of finite groups of Lie type.

In a recent advance, Emerton and Gee [22] have constructed p-adic formal
stacks which interpolate these semistable deformation rings (these deforma-
tion rings are versal rings for the stacks), thereby “globalizing” the above
deformation theory and opening up more geometric ways to study it. In this
paper, we construct and analyze local models for a subset of these stacks—
those parametrizing generic tamely potentially crystalline representations with
small Hodge—-Tate weights. A common feature of our work and Kisin’s work
is that these local models are closed subvarieties of certain Pappas—Zhu local
models. However, unlike Kisin’s situation, this inclusion is proper when the
Hodge—Tate cocharacter is non-minuscule.

1.2 Main results
All our main results hold under suitable genericity hypotheses, whose dis-

cussion we postpone to §1.3 to avoid unnecessary distractions. Fix a positive
integer n, a rational prime p, a finite unramified extension K /Q,, with residue
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field k, and a (sufficiently large) finite extension [F of IF,,. For a Hodge-Tate
cocharacter A and an inertial type , let X**7 denote the p-adic formal stack
over W (IF) corresponding to n-dimensional potentially crystalline representa-
tions of the absolute Galois group Gk of K with Hodge-Tate weights A and
Galois type 7. We let M (1), w () be the Pappas—Zhu local model correspond-
ing to the cocharacter A and the standard Iwahori subgroup (see §1.4 below
for the definition and further details). Our first main theorem establishes a
connection between X*T and M (1):

Theorem 1.2.1 (Theorem 7.3.2) Let A be a regular Hodge—Tate cocharacter,
and let T be a sufficiently generic (depending on )\) tame inertial type. The
p-adic completion of an explicit irreducible subvariety of M ()\) (depending
on 1) is a smooth modification of X*.

Theorem 1.2.1 gives explicit presentations of potentially crystalline defor-
mation rings, which we expect to have applications to local-global compati-
bility in the mod p and p-adic Langlands programs. See [6,20,26,55,60] for
applications when n = 2 and 3.

Remark 1.2.2 The genericity condition implies n{A, o) < p for any root o so
that X is necessarily “small” with respect to p and in particular is well within
the Fontaine—Laffaille range. Thus, for any generic representation to exist, we
will need p to be at least 0 (n?). See §1.3 for more details.

One can think of this result as the modular/affine analogue of the work of
Breuil-Hellmann—Schraen [7]: whereas [7] finds local models for moduli of
trianguline representations in terms of Steinberg varieties (and thus related
to the geometry of flag varieties), our models are found inside the (mixed
characteristic) affine flag variety.

With A and 7 as above, our methods also determine the irreducible compo-
nents of the underlying reduced stack Xriar and construct local models for them.

Now Xég is a maximal dimensional substack of the underlying reduced stack
of the stack X}, of (¢, I')-modules of rank n, whose irreducible components C,
are parametrized by Serre weights o (i.e. irreducible GL,, (k)-representations
over [F). If the highest weight of o is sufficiently deep in its p-alcove, we thus
obtain a description of C, in terms of certain deformed affine Springer fibers.

The list of irreducible components of Xriﬁt has a representation theoretic
interpretation which is a weak (topological) version of the Breuil-Mézard
conjecture. The usual Breuil-Mézard conjecture predicts that the special fiber
X]§ ’" has a complicated non-reduced structure, which we analyze by combining
Theorem 1.2.1 with global methods. By taking versal rings, we deduce the
following theorem (see Theorem 1.5.3 below):
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1282 D. Leetal.

Theorem 1.2.3 (Corollary 8.5.2) Fix a set A of regular Hodge—Tate cochar-
acters. The Breuil-Mézard conjecture holds for tamely potentially semistable
deformation rings of Hodge—Tate weights .. € A of sufficiently generic
(depending on A) representations p : Gg — GL, (IF).

Remark 1.2.4 Here and in the rest of the paper, we included all semistable
deformation rings to get an overdetermined system of Breuil-Mézard equa-
tions. However, our genericity hypotheses automatically imply that any
nonzero potentially semistable deformation ring that occurs is actually a poten-
tially crystalline deformation ring. In particular, we do not prove any results
about genuinely potentially semistable deformation rings.

Just as the trianguline local models [7] shed light on the constituents of
the locally analytic socle of completed cohomology of (unitary type) locally
symmetric spaces, the models in Theorem 1.2.1 shed light on the constituents
of the socle of mod p completed cohomology (the modular Serre weights). In
more traditional language, this is known as the weight part of Serre’s conjec-
ture, which seeks to classify congruences between mod p automorphic forms.
Our main result in this direction is the following theorem, which confirms the
unitary version of a conjecture of Herzig ([39, Conjecture 6.9], see also [33,
Conjecture 7.2.7, Theorem 10.2.11]). We refer the reader to §1.6 for undefined
notation.

Theorem 1.2.5 (Theorem 9.1.6) Let F / F be a CM extension which is split at
all places above p and such that F is unramified at p. Assume that F+ # Q.
Let G ,p+ be a definite unitary group which splits over F. For each place
v | pin FT, fix a place ¥ of F lying above v. Let 7 : Gp — GL,(F) be a
(G-)modular Galois representation such that ¥ (G F(g,)) IS adequate and the

— def _ . .
local components 1 = TG py are tame and sufficiently generic for all v | p.
Then the set of modular Serre weights W (r) is

{® o110 e W' Enl,

v|p

where W' (7)) is the explicit set defined by [39].

1.3 The genericity condition

We expand on the terminology sufficiently generic, which we only use in
the introduction. Let K /Q, be a finite extension and write Ix for the iner-
tia subgroup of Gg. Suppose that p : Gx — GL,(F) is tame. Then its
restriction p|y, to inertia is classified by the combinatorial data of a pair
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H K.Q o) . .
(s, ) € Sy oma, (K. @p) x (zmHom, (K.Qp) 1y 10 an equivalence relation (see

Example 2.4.1 for details). Indeed, p|;, is a sum of characters which are nec-
essarily powers of Serre’s fundamental characters. Then, informally speaking,
s determines the niveau of these characters and p determines the powers. For
example, if p is completely reducible, then we can take s to be trivial and p
defined by

n
o= ] Jewm”.

=l jeHomg, (K,Q,)

where @; : Ix — k™ is the reduction of Serre’s fundamental character of

niveau 1. We say that p is sufficiently generic if, for an implicit nonzero poly-

nomial P € Z[X1, ..., X,] independent of p, P(j1j) # 0 (mod p) for each

J € Homg, (K, @p) (for some choice of (s, u)). If p is not tame, then we say

that p is sufficiently generic if its semi-simplification p** (which is tame) is.

The independence from p guarantees that many sufficiently generic p exist

for large enough primes p, and in fact the proportion of tame p|;, which are

sufficiently generic tends to 1 as p tends to co. For other objects that have
similar combinatorial descriptions like tame inertial types t (cf. §2.4) or Serre
weights o, one has an analogous notion of sufficiently generic, which we will
freely use for the remainder of the introduction.

There are two sources of genericity in our methods.

(1) A combinatorial genericity which requires that w; is sufficiently deep in
the base alcove of the standard apartment of GL,,. The role of this condition
is to guarantee

o that various representation theoretic objects (e.g. decompositions of
mod p reductions of Deligne—Lusztig representations) behave accord-
ing to a “generic” pattern; and

o that the relevant Kisin varieties are trivial.

Some form of this condition is unavoidable for our theorems to be true, as
the Galois deformation rings are known to exhibit less uniform behavior
in its absence, see [13, Théoreme 2].

This sort of condition also appears in [33,39] and in our previous work [56,
59,60] and corresponds to a polynomial of the form P = []/_, H:}Z:o (Xi—
Xi+1 — m) for some positive M where X, is understood to be X{. In
these cases, we make the relevant M explicit. In particular, we will always
have M > (A, a) for all roots o, which gives the inequality in Remark
1.2.2.

(2) A geometric genericity, whose role is to guarantee:

o that we can apply Elkik’s approximation theorem to the local models;
and
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1284 D. Leetal.

o that our local models have the desired geometric properties.

The first item leads to a condition similar to the combinatorial genericity
condition above, i.e. it is guaranteed by a choice of polynomial of the
form P = []7_, ]—[ZI:O(X i — Xi+1 —m) for some positive M independent
of p (which arises from the singularity of local models, and hence is less
explicit).

On the other hand, to guarantee the second item, our approach is to deduce
geometric properties of the local models by specialization from some uni-
versal cases. Since the properties we are interested in (e.g. being unibranch)
are not preserved under arbitrary base change but only preserved under
“generic” base change, we need to ensure that i ; avoids a closed locus in
A7, which is independent of p (see §3). This produces a computable, but
hard to make explicit, polynomial P.

The geometric genericity condition is mainly an artifact of our proof of
Theorem 1.5.5. While the second source for the geometric genericity con-
dition appears to impose more severe restrictions, we conjecture that that
it is in fact unnecessary: in other words, we expect that our main result
(Theorem 1.5.5) hold with just a combinatorial genericity condition, but
with the caveat that the bounds depend on the singularity of (universal)
local models.

We verified this conjecture in several cases, where we write n for the
Hodge-Tate cocharacter corresponding to (n — 1,n — 2,...,1,0) in all
embedding K — @p:

e Whenn = 2, A = {n}, where we can take M = 2 (this follows from
Theorems 5.3.3 and 7.2.3, noting that the “monodromy condition” is
vacuous in this case).

e When n = 3, A = {n}, where we can take M = 4, cf. [58].

e When n = 3, A = {A} where A corresponds to (3,1,0) in all
embeddding K — @p, but restricting to a specific open locus in the
appropriate potentially crystalline stack, where we can take M = 10,
cf. “Appendix B”.

e When n is arbitrary, A = {n}, restricting to specific open loci in the
appropriate potentially crystalline stack, where we can take M to be a
linear function in n, cf. [57,61].

Unfortunately, beyond these cases, directly verifying the conjecture without
extra geometric observations seems prohibitively computationally expen-
sive with current computer algebra systems.

In the introduction, while we omit the implicit polynomial P, we will describe
exactly what it depends on (aside from n). Note that the particular P may be
different in different statements, and its precise nature will be spelled out in
the body of the paper.
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1.4 Local models for potentially crystalline stacks

The possibility of studying singularities of potentially semistable deforma-
tion rings by means of group theoretic local models was first suggested
by Kisin in [51]. Using his theory of Breuil-Kisin modules, he resolved
potentially Barsotti—Tate deformation rings (which correspond to minuscule
Hodge—Tate cocharacters) by formal schemes which are certain completions
of Pappas—Rapoport local models. To generalize this picture to non-minuscule
cocharacters, one encounters the essential difficulty that not all Breuil-Kisin
modules give rise to crystalline representations; indeed, only those obeying
the p-adic analogue of Griffiths transversality do. Thus, while local models
for the moduli of Breuil-Kisin modules exist quite generally in the form of
Pappas—Zhu models, one needs to cut them down suitably to obtain models
related to Galois deformation rings. In this section we will explain the con-
struction of the subvariety in Theorem 1.2.1 above, which achieves this in
certain situations.

Let E be a finite extension of Q, with ring of integers O, uniformizer
@, and residue field F. Let LG be the ind-group scheme given by LG(R) =
GL,(R(v + p))) for any O-algebra R, the loop group. Consider the positive
loop group scheme L1G over O sending an O-algebra R to the subgroup of
GL, (R[[v + pl) consisting of matrices that are upper triangular mod v. The
quotient LTG\LG is represented by an ind-proper O-ind-scheme Grg. This
is a mixed characteristic version of the degeneration of affine Grassmannians
introduced by Gaitsgory. Indeed its generic fiber Grg g is isomorphic to an
affine Grassmannian, while the special fiber Grg  is isomorphic to the affine
flag variety FI (for the standard Iwahori 7).

For A € Z", let S%()) denote the LT Gg-orbit of (v + p)* in Grg . The
Pappas—Zhu local model M (< A) is the Zariski closure of S3(1) in Grg,
cf. [69].

Leta € O". We now consider the condition

dA ] . —1 1 . +
v—A" " + ADiag(a)A™" € | —— | LieL™G (%)
dv v+ p

for A € LG(R). This is an approximation to the monodromy condition com-
ing from p-adic Hodge theory. This condition clearly descends to a closed
condition on Grg.

Definition 1.4.1 The local model M (A, V,) is the Zariski closure in M (< ))
of the locus of () in S%.().

Note that condition (%) is preserved under the right action by the constant
diagonal torus 7. Thus, M (A, V,) inherits an action of T compatible with the
T-action on M (< A).
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The local models M (A, V,) turn out to behave very differently from the
Pappas—Zhu models M (< A):

e The generic fiber of M (A, V,) is smooth; it is isomorphic to a partial flag
variety (see Proposition 4.1.1). In contrast, the generic fiber of M (< 1) is
not smooth unless A is minuscule (cf. [41]).

e A deep theorem of Zhu implies that the special fiber of M (< 1) is reduced,
and thus M (< )) is normal. In contrast, it will follow from the connection
between M (), V,) and Galois deformation theory that its special fiber
fails to be reduced, and M (A, V,) fails to be normal in general. In fact, this
failure is quite severe: one can get lower bounds for the non-reducedness
in terms of affine Kazhdan—Lusztig multiplicities.

In other words, while our models have nice generic fibers, they are nevertheless
complicated degenerations of partial flag varieties.

Using the standard stratifications on Grg, it is not difficult to analyze the
underlying reduced subscheme of M (A, V,), in particular one sees that it is
irreducible, and there is a combinatorial parametrization of the irreducible
components of the special fiber. However, in order to establish the connection
of our models to Galois deformation theory, we have to understand the behavior
of M (A, V,) under completion. The essential difficulty is that an irreducible
variety may break up into formal branches in some complicated way after
completions: its singularities may not be unibranch. One important sufficient
condition to guarantee this unibranch property is normality, and to the best of
our knowledge, we are not aware of any other useful general criteria. Worse
still, it turns out that M (X, V,) fails to be unibranch in general! (See “Appendix
B” for an explicit example.)

Miraculously, we manage to show that (for generic values of a) M (A, V,)
is unibranch at special points:

Theorem 1.4.2 (Theorem 3.7.1) There exists a nonzero polynomial P €
Z[X1, ..., Xn] such that if P(a) # 0 mod @, then for any T-fixed point
x € M(A, Va)(Fp), the completed local ring O?,I(A’Va)’x is a domain (i.e.,
M (A, V,) is unibranch at its T -fixed points).

This is the deepest geometric fact that we prove about M (A, V,), and its proof
lies at the technical heart of the paper. A key observation (Proposition 3.4.4) is
that the theorem holds (under a mild assumption on the characteristic) for the
equal characteristic analogues of M (A, V,) where p is replaced by a variable
t. In this context, there is more symmetry: there is an extra G,,-action given by
“loop rotation” which scales ¢. Thanks to this, the 7'-fixed points are all cone
points, in the sense that they are the fixed point of an attracting torus action, and
one observes that cone points are unibranch. Unfortunately, we can not mimic
this argument in the original mixed characteristic setting, as it doesn’t make
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sense to “scale” the prime p. Instead, we resort to a soft spreading out argument,
by contemplating the universal case where p and a are formal variables. The
fact that being unibranch can be phrased in terms of the normalization map, and
normalization commutes with generic base change, allows us to transfer the
unibranch property from equal characteristic to mixed characteristic. It is here
that the universal polynomial P appears: its vanishing locus is the obstruction
to certain properties being preserved under base change. The actual argument
is a bit more involved than this outline, since we do not base change to spectra
of fields, but rather spectra of DVRs.

Having proven the important geometric properties of M (A, V,), we now turn
to its connection to Galois theory. Let K /Q, be a finite unramified extension,
and let J be the set of embeddings Homg, (K, @p). In [22], Emerton—Gee
constructed the moduli stack X;, over Spf O of rank n (¢, I')-modules. By
its construction, &, interpolates framed deformation rings in the sense that
the set X}, (Fp) is in bijection with the set of continuous representations p :
Gk — GL, (Fp), and framed deformation rings of such p are versal rings
(in the sense of [24, Definition 2.2.9]) for A},. Furthermore, for a collection
A € (Z")Y and a rank n inertial type t defined over O (cf. §2.4 for their
definition), they construct a O-flat p-adic formal algebraic substack X*:*
which is characterized by the property that its points over any finite flat O-
algebra correspond to potentially crystalline representations p of type (X, )
(i.e. the Hodge-Tate weights of p are given by A and WD(p) induces the
inertial type 7).

Now, to any tame inertial type t for Ik, one can associate a collection
a; = (a,j)jeg, Where a; ; € O" records the inertial weights of 7 (see §7.3).
Set A = (1) jes € (Z")7. Define

Mz(0,Va,) =[] MO, Va, ),
jeJg

where, for each j € 7, the local models M (%, Va, ;) are those appearing in
Definition 1.4.1. Our main result is the following:

Theorem 1.4.3 (Theorem 7.3.2) If T is sufficiently generic (depending on 1),
then there exist Zariski open covers UXrgg)‘ "' (@) and | JUreg (T, < A, Va, )7
4 4

of U X¥Tand \J M, Va,)"r respectively such that for each?,
A<h A <A
A'reg. dom. M reg. dom.
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there exists a local model diagram

a6 (L.1)

T

X2 ") UregZ, < %, Va, )7

where both arrows are torsors for the torus TV with respect to different T -
actions and the superscript A, stands for taking p-adic completion.

Remark 1.4.4 (1) In the above statement, when we talk about the scheme-
theoretic union of two closed formal algebraic substacks )/, Z of a formal
algebraic stack X', we mean to take the scheme-theoretic image of the map
Y uZzZ — X ([22, Definition A.16]).

(2) The right arrow in the local model diagram is highly non-canonical, as
it is produced by a Hensel-type lifting argument (in the form of Elkik’s
approximation theorem [27]). However, the entire diagram is canonical in

characteristic p.

B Whena = 7 € n—1n—2..,1,0jcs € (Z"7, one has

U M.t — X1 Since potentially crystalline deformation rings of
A<x
Areg. dom.
type (1, t) are versal rings to X", we see that they appear (up to smooth
modifications) as the completion of local rings of M(n, V, ) at closed

points.

We now give a slightly simplified outline of the proof of Theorem 1.4.3. The
starting point is the theory of Breuil-Kisin modules: The potentially crystalline
stacks we consider are closed substacks of the moduli stack of Breuil-Kisin
modules Y=*7 with tame descent data of type (X, t), which is known to
have the Pappas—Zhu model M (< A) as a local model. More specifically, the
natural open affine cover of Grg = (J>U(2) by translates of the “big open
cell” induces an open cover of M (< X). We develop a theory of canonical
bases of Breuil-Kisin modules to show that this open cover induces an open
cover of Y=*T_ Thus we get the analogue of the above local model diagram
for Y=*7 and induced open affine covers on every object in sight. These are
the open covers featured in Theorem 1.4.3.

At this point, we get two closed substack of Y=*7(Z): the substack
X=M7T(Z) and the substack X'=*7*(Z) induced by the p-adic completion of
U <3 M(X', Va,) along the local model diagram for Y=*7. They are gen-
uinely different substacks, because condition (x) is only an approximation to
the condition cutting out X=*7 inside Y =*7. However, the two substacks are
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p-adically close, and using the smoothness of the generic fiber of M (X, V,),
one can produce a non-canonical embedding X=*7 (7) — X=»T*(Z). Since
both stacks turn out to have the same dimension, the maximal dimensional part
Xrgg)‘ T (2) of X=*7 (%) embeds into the maximal dimension part of X' =*7* (7).
Now, using the results of [56] (which ultimately uses Taylor—Wiles patching,
and hence automorphic forms), one obtains a lower bound on the number of
irreducible components (of the spectrum of the structure sheaf) of the former,
while Theorem 1.4.2 gives the same upper bound for the number of irre-
ducible components (of the spectrum of the structure sheaf) of the latter. Thus
the two maximal dimension parts are (non-canonically) isomorphic to each
other, which concludes the proof.

Theorem 1.4.3 allows us to study local properties of the potentially crys-
talline stacks X=*7 via the local models, which gives crucial geometric
information about potentially crystalline deformation rings needed for our
applications below, cf. Theorem 1.5.5. In characteristic p, one can do even
better: the local model diagrams produced by Theorem 1.4.3 glue together,
and thus one can even study global properties of the underlying reduced stacks
Xrtaf (which live in characteristic p) via the reduced special fiber M(x, Va,)
of M(A, Va,). To state our result, we recall [22] that &}, req iS equidimen-
sional, and its irreducible components are in bijection with the irreducible
F-representations of GL, (k) (which we refer to as Serre weights). We write
Cy for the irreducible component of X}, ;o4 corresponding to a Serre weight
o. Given A € (Z")7 regular and dominant, let V (A — 1) be the irreducible
Resk /g, GL,-representation with highest weight A — 7 (recall that 7 is such
thatn; = (n—1,n—2,...,1,0)forall j € J). We also denote the restriction
of V(A—n)to GL,(Ok) by V(A —n). Asin §1.3, atame type T corresponds to
an equivalence class of pairs (s, i). Then we let o (7) be the Deligne—Lusztig
representation R, (i) where s defines a rational torus and p defines a character
(see §2.3). For a representation V over E of a compact group, let V be the
semisimplification of the reduction of any invariant O-lattice in V. Then we
prove:

Theorem 1.4.5 (Theorem 7.4.2) Let A be regular dominant and let T be a
sufficiently generic tame inertial type. Then:

(1) Xr)ééir = UyCy, where the union runs over all Serre weights o €
JH(o(v) @ V(A — n)).

(2) There is a natural bijection between the irreducible components of
M (A, Va,) and the Jordan—Holder factors of o (t) ® g V(A — ).
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(3) For each 0 € JH(o(t) ¢ V(A — 1)), we have a mod p local model

diagram:
Co
Co

M, Va,)o

(1.2)

where M (X, Va, ) IS the irreducible component of M, Va,) labelled by
o (denoted by C, in Theorem 7.4.2) and both arrows are torsors for the
torus TV with respect to different TV -actions.

Remark 1.4.6 (1) Our proof of Theorem 1.4.5 does not go through Theorem
1.4.3. Because of that it holds under much milder genericity conditions
compared to our other theorems: we only need an explicit combinatorial
genericity condition (see §1.3).

(2) Itfollows essentially from the definitions that M, Va, )o 1s anirreducible
component of a deformed affine Springer fiber in the sense of [32]. In par-
ticular, Cy is equisingular to an irreducible component of a deformed affine
Springer fiber. We expect that this connection will be a powerful tool to
investigate the internal structure of irreducible components of the Emerton—
Gee stack. As a sample application, we deduce Herzig’s formulation of the
weight part of Serre’s conjecture (Theorem 1.6.1) from the count of torus-
fixed points in the irreducible components of affine Springer fibers obtained
by Boixeda Alvarez [1] (see §1.6 for more details).

Theorem 1.4.5 follows from analyzing the effect of condition (x) on the
reduced special fiber of M (< A), which was determined by Pappas—Zhu [69].
Namely, [69] shows that it is the reduced union of the affine Schubert cells
Sp(w) for w running over the A-admissible set Adm(2), which is defined
in terms of combinatorics of the affine Weyl group. A simple computation
shows that (x) cuts out an affine subspace of the affine space ng(@), whose
dimension is easily computed. This provides a combinatorial parametrization
of the irreducible components of M (1, Va,) in terms of a subset of Adm(1),
which beautifully matches with the parametrization of JH(o () ® g V(A — 1))
given by Jantzen’s generic decomposition pattern. Finally, one has to show that
M, Va,)o C MO, Va,) corresponds to C, in the local model diagram, and
we achieve this by identifying the Breuil-Kisin modules attached to a generic
point of MO, Va,)o-

1.5 The Breuil-Mézard conjecture

Let K/Q, be a finite extension with ring of integers Ok and residue field k.
Write G g for the absolute Galois group of K. (Note that this is a more general
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setup than in the previous section for now.) The Breuil-Mézard conjecture
quantifies the complexity of the special fibers of potentially semistable Galois
deformation rings in terms of GL,(Ok )-representations with mod p coeffi-
cients. These special fibers are especially mysterious because outside of very
special cases they do not have known moduli interpretations. We now describe
the “geometric” version of the conjecture as formulated by [23].

Let 7 be an inertial Weil-Deligne type for K (see Definition 2.5.1) and

let A € (Z”)Hom@l’(K ‘@») be a collection of regular Hodge—Tate weights. For
a continuous Galois representation p : Gy — GL,(IF), there is a unique
reduced quotient R%’T of the framed O-deformation ring RﬁD whose Q ,-points

correspond to lifts p : G — GL, (@p) which are potentially semistable of
type (A, 7) (i.e. the Hodge—Tate weights of p are given by A and WD(p) induces
the inertial Weil-Deligne type 7). The dimensions of these rings are indepen-
dent of (A, t), and one can associate to each pair (A, ) the cycle Z (R%’T J@)

in Spec RﬁD /@, which counts the irreducible components of Spec R%’r/ ()
with appropriate multiplicities.

The Breuil-Mézard conjecture describes the cycle Z (R%’T /o) in represen-
tation theoretic terms as A and t vary. For V a virtual GL,, (O )-representation
over E expressed as the difference V| — V; of two genuine representations,
we let V be the virtual GL, (O K )-representation V| — V5 over F, where for
i = 1,2, V; denotes the semisimplification of the reduction modulo z of any
GL,, (Ok)-stable O-lattice in V;. This is independent of the choice of V| and
V> and O-lattices therein.

Conjecture 1.5.1 There exist cycles Z5(p) in Spec RﬁD /@ for each irre-
ducible GL, (Og)-representation o over F such that for all T and all regular
)\'y

ZRST [m) =) [r(®) @& VO — 1) : 612, (P),

(o2

where r(t) is avirtual representation of GL,, (O ) over E defined in [74, §4.2]
using an inertial local Langlands correspondence, V (A — 1) is the restriction
to GL,(Ok) of the irreducible algebraic representation of Resk jqg,GLy with
highest weight A — n, and [r(t) ® g V(L —1n) : o] denotes the (possibly
negative) multiplicity of o inr(t) Qg V(A — n).

Remark 1.5.2 (1) The symbol 7 is used in [74] to denote what is called in
loc. cit. an inertial type, which is distinct from, but equivalent to, the notion
of a Weil-Deligne inertial type (see [77]). We ignore this distinction above.

(2) If the monodromy operator of 7 is 0, then we say that t is an inertial type.
Then r(7) is a genuine GL,, (O )-representation associated to T via the
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inertial local Langlands correspondence and denoted o (7). As mentioned in
§1.4, when 7 is tame and generic, o (7) is a Deligne-Lusztig representation
with a simple description (Proposition 2.5.5).

(3) The equations in the Conjecture 1.5.1 massively overdetermine the cycles
Zs(p). In fact, the cycles are uniquely determined by any collection of
(A, 7) such that 7(t) ®g V(A — n) span the Grothendieck group of finite
dimensional GL, (O )-representations over [F.

Combining the Taylor—Wiles patching method and the p-adic local Lang-
lands correspondence for GL2(Q,) of [18], Kisin established the conjecture
in a wide range of cases when n = 2 and K = Q, in [50]. (When n = 2
and K = Q),,, the conjecture is now known in all cases by [43,66,70,79,80].)
While the Taylor—Wiles patching method is available in some generality, the
p-adic Langlands correspondence is not known for n > 2 or n = 2 and
K # Q. Absent a general p-adic Langlands correspondence, one can still try
to establish this conjecture for classes of pairs (A, t). For example, [34] prove
Conjecture 1.5.1 when n = 2, A = n, and the monodromy operator of 7 is 0.
In §8.5, we prove this conjecture when K /Q), is unramified for sufficiently
generic p and pairs (A, ) where A ranges over a finite set and t ranges over
tame inertial Weil-Deligne types.

Theorem 1.5.3 (Corollary 8.5.2) Assume K /Q,, is unramified and let A be a
finite set of collections of regular Hodge—Tate weights. If p : Gg — GL,(IF)
is sufficiently generic (depending on A), then there exist cycles Z,(p) in
Spec RﬁD /@ for each irreducible GL, (Og)-representation o over F such
that

Z(RY ) =Y [r(®) ®c V(h — 1) : 0125 (P)

for all . € A and tame inertial Weil-Deligne types t.

Remark 1.5.4 (1) If A contains 5, then the cycles Z, () are unique since the
set of 7(t) for tame t span the Grothendieck group of finite-dimensional
GL, (Og)-representation over F. If A contains n and at least one other
Hodge—Tate weight, then the set of classes [r(7) ® g V (A — n)] is spanning
and linearly dependent in the Grothendieck group of finite-dimensional
GL, (Og)-representation over I, so Theorem 1.5.3 produces many non-
trivial linear relations among Z (R%’r J@).

(2) In contrast to [34,50], we restrict to cases where t is tame. Howeyver, this
resultis new even forn = 2if K # Q,. Indeed, in contrast to [34], A may
contain non-minuscule weights (which are necessarily “small” relative to
p; see Remark 1.2.2).
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(3) For a suitable globalization of p (as defined in [23, § 5.1.1]) and a choice
of global setup, the cycles Z,; (p) are expected to be the support cycle of
any patched module M, (o) associated to the Serre weight o, thereby con-
necting the theorem directly to modularity and the weight part of Serre’s
conjecture. When p is tame, our proof establishes this expectation—see
the discussion around Theorem 1.5.5. In particular, for tame p, this com-
patibility with patching functors gives a global characterization of Z, (p).

Our starting point to attack Theorem 1.5.3 is the Taylor—Wiles method, fol-
lowing the approach of [34,50]. The Taylor—Wiles method provides a large
supply of exact functors M, from GL, (O )-representations over O to maxi-
mal Cohen—Macaulay modules of generic rank at most one over (power series
over) framed local deformation rings with p-adic Hodge-theoretic conditions.
Given GL,, (Og)-stable O-lattices o (t)°, V(A —n)®inao (t), V (A —n) respec-
tively, it is a folklore expectation (affirmed under mild assumptions by [30])
that the Fontaine—Mazur conjecture implies that M, (o (7)°®p V (A—n)°) has
full support on Spec R%’t. If this were true, the exactness of My, would imply
Conjecture 1.5.1 holds with Z; (p) taken to be the support cycle of My (o).
Unfortunately, little seems to be known about Supp Moo (0 (7)° Qo V(A —1)°)
beyond the GL»(Q)) case, and we are unable to make this work for all p (even
for generic tame 7).

To prove Theorem 1.5.3, our first step is to establish it when p is tame, where
we can show that indeed Supp M (0 (7)° @ V(A — 1)°) = Spec R%’T. The
key input is the following theorem, which follows from the corresponding
result for the local models (Theorems 1.4.2, 1.4.3):

Theorem 1.5.5 (Theorem 7.3.2) Assume K/Qp is unramified. Let . €

(Z”)Hom@P(K Q) pe a collection of regular Hodge—Tate weights, T be a tame

inertial type for K, and p : Gx — GL,(F) be an n-dimensional represen-
tation. If T is sufficiently generic and p is tame then R%’T is a domain (or
zero).

Remark 1.5.6 (1) Theorem 1.5.5 does not hold in general without the tameness
assumption, for example when A corresponds to (3, 1, 0) in all embeddding
K — @p, for every generic 7 there is some wild p where it fails, see
Corollary B.0.5 and Corollary B.0.4. This is the reason for the tameness
assumption here and in the global applications in §1.6. However, the the-
orem does hold for possibly wild p in several situations such as: n = 2,
n =3 and A = 7 (see [26, Theorem 7.2.1], [58, Corollary 3.3.3]), or when
n is arbitrary and p has specific shapes relative to 7.

2) If R%’r # 0, then sufficient genericity of t implies that of p and vice
versa (generally with different choices of universal polynomial). Because
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of this, the conclusion of Theorem 1.5.5 also holds if we let o be tame and
sufficiently generic but impose no hypothesis on t [57, Theorem 4.0.1].

Theorem 1.5.5 immediately implies Theorem 1.5.3 for tame p: The results of
[56] imply thatif 7 is sufficiently generic, Moo (0 (7)° Qe V (A—n)°) is nonzero
if and only if R%’T is nonzero. Since the support of M (0 (7)° ®p V(A —1)°)

must be a union of irreducible components and R%’T is a domain, the support
is everything.

Having proven Theorem 1.5.3 for tame p, the second step is to spread the
result to all p. This is achieved through the use of the Emerton—Gee stack
X,,. For regular A, the special fiber of the substack X*7 is supported on a
union of irreducible components of &), ;4. Thus we can associate to it a top-
dimensional cycle Zj ; on &}, req by recording the irreducible components of
ereg weighted by their multiplicities. In [22], Emerton and Gee formulate a
Breuil-Mézard conjecture on the stack A;:

Conjecture 1.5.7 (Conjecture 8.2.2 [22]) For each Serre weight o, there exists
an effective top-dimensional cycle Z; on X, req such that for all regular A and
inertial types T, we have

Zia=Y 0@ VA —1):0]Z,.

We first remark that the potentially crystalline case of Conjecture 1.5.1
is a consequence of Conjecture 1.5.7 by completing at p and pulling back
the cycles. While it has been understood by experts that the Breuil-Mézard
conjecture should behave well as p varies, the Emerton—Gee stack makes it
possible to study the conjecture by interpolation. We refer to the conjectural
cycles Z, as Breuil-Mézard cycles. As in Conjecture 1.5.1, the system of
equations in Conjecture 1.5.7 for varying A and t over-determines the Breuil—
Mézard cycles.

Remark 1.5.8 Caraiani—-Emerton—Gee—Savitt [15] recently proved Conjecture
1.5.7 in the potentially Barsotti—Tate case (i.e. in parallel weight (1, 0)) when
n = 2 for any extension K /Q,,. The proof uses both the weight part of Serre’s
conjecture for GL; proved by Gee—Liu—Savitt [35,36] and the Breuil-Mézard
conjecture for potentially Barsotti—Tate representations established by Gee—
Kisin [34].

By interpolating from Theorem 1.5.3 for tame p, we establish a portion of
Conjecture 1.5.7.

Theorem 1.5.9 (Corollary 8.4.12) Assume K /Q,, is unramified. Fix a finite

subset A C (Z")HomQP (K.Q,) of regular dominant weights. There exists a top-
dimensional effective cycle Z5 on X, rcq for each Serre weight o such that for
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all . € A and all sufficiently generic (depending on A) tame inertial types t,

Zie=) 0@V —n):0lZ,.

Remark 1.5.10 (1) In contrast to Theorem 1.5.3, the setof o (7)) ® V(A — 1)
appearing in Theorem 1.5.9 does not span the Grothendieck group of
GL, (Ok)-representations, and so it is not immediately apparent that the
cycles Z, are uniquely determined. However, though neither stated in nor
implied by the theorem, the Z, we construct satisfy a compatibility with
patching functors after localizing at tame p as in Remark 1.5.4(3). It is
this compatibility that characterizes the Z, (see also Remark 8.6.4 for an
algorithm to compute it without choosing patching functors).
Furthermore, if we assume an extension of Theorem 1.5.9 to a sufficiently
large spanning set, then the cycles from this extension must agree with the
Z, we construct for sufficiently generic o, cf. Theorem 8.4.10. With this
understanding, we can freely invoke the cycles Z, for sufficiently generic
o in our discussion.

(2) Even though the equations in the theorem on their own do not suffice to
determine all the Z, that occurs in them, they do determine a subset of
Z4 for which o is sufficiently generic, cf. Proposition 8.6.5 and Remark
8.6.6.

We now explain the idea of the proof of Theorem 1.5.9. We first note
that one can invert the equations in Conjecture 1.5.7, and get a candi-
date for the cycle Z,: any expression of o in the Grothendieck group of
GL, (Ok)-representations as a linear combination of reductions of GL,,(Og)-
representations gives a candidate as a linear combination of the Z; ;. But there
is no a priori reason for these candidates to satisfy all the required cycle equa-
tions. However, for tame p, the compatibility of Z,; (o) with patching functors,
cf. Remark 1.5.4(3), shows that the candidate cycle Z, recovers the already
constructed Z, (p). This implies the equations hold after completion at tame
P, and we conclude because there are enough tame p to detect equality of
cycles in X,.

At this point, the proof of Theorem 1.5.3 is almost complete. The subtlety
is that Theorem 1.5.9 only controls the cycles Z, ; for t sufficiently generic.
To deal with this, we invoke a result of [56], which shows that a sufficiently
generic (depending on A) p lies in Z; . only if 7 is sufficiently generic. This
allows us to check the equations in Theorem 1.5.3 not covered by Theorem
1.5.9, by showing that they reduce to 0 = 0.

Remark 1.5.11 We can certainly write Z, = ), by ;Co, and it is natu-
ral to ask what the coefficients b, , are. We prove that b; , = 1, and that

@ Springer



1296 D. Leetal.

bs' » # 0implies a restrictive relation between o and o, namely that o covers
o’ (Definition 2.3.10). When n = 2, 3, we have Z, = C, (with mild generic-
ity assumptions). In §8.6.1, we describe an inductive algorithm for computing
Z, if one knows the cycles Z,, ; for enough 7. In turn, the cycles 2, ; can be
computed using the local model M 7(n, V), introduced in §1.4 above, which
is an “explicit” algebraic variety. This algorithm can in theory be implemented
on a computer. We have performed computer experiments when n = 4, which
indicate that Z, is not always irreducible. We remark that in the analogous sit-
uation of [7], the locally analytic Breuil-Mézard cycles are also not irreducible
in general, beginning with n = 8.

1.6 The weight part of Serre’s conjecture

Serre’s conjecture [73] predicts that any odd irreducible two-dimensional mod
p Galois representation arises from a modular form, and moreover predicts the
minimal level and weight of such a form. There has been substantial progress
in formulating and proving generalizations of this conjecture in higher rank.
While generalizations of the notion of minimal level are rather straightforward,
generalizations of the weight part of Serre’s conjecture are far from it. Herzig
[39] introduced a representation theoretic generalization in the generic tame
case, which we now discuss in the context of definite unitary groups.

Let F be an imaginary CM number field unramified at p. Let FT be the
maximal totally real subfield. Assume F* # Q and that all primes of F*
above p splitin F. Let G be a unitary group over F* which splits over F
and is isomorphic to U (n) at each infinite place. Let K” C G(A(I’i’p ) be a
compact open subgroup, and let S(K?, IF) be the space of F-valued locally
constant functions on G (F +)\G(A%O+)/ K?.Then S(K?,F) has an action of
a spherical Hecke algebra T (away from p and finitely many other places).
If m C T is a maximal ideal such that S(K?, IF),, is nonzero, then there is a
unique semisimple Galois representation7 : G — GL,, (IF) up to conjugation
which matches m via the Satake isomorphism. We say that 7 is automorphic.

Fix places ¥ of F lying over v for each place v | p of F* which together
give an isomorphism G (Op+ ®z Z,) = GL,(Op+ ®z Zp). A global Serre
weight is an irreducible smooth F-representation V of GL,(Op+ ®zZ)). Any
such representation has the form ®,, V,, with V, an irreducible representation
of GL, (k,) where k, is the residue field of F' at v. We say 7 is modular of
(global Serre) weight V' if Homgy, ©pr022,)(V, S(KP,F)y) is nonzero.

In 2009, Herzig ([39]) conjectured (in the context of locally symmetric
spaces for GL,) what the set W(r) of modular weights should be when 7
is tame at places above p, generalizing conjectures of Serre and Buzzard—
Diamond-Jarvis ([3,73]). These conjectures are collectively referred to as the
weight part of Serre’s conjecture. For the reader’s convenience, we restate
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Theorem 1.2.5, our main result towards (the analog for definite unitary groups
of) Herzig’s conjecture.

Theorem 1.6.1 (Theorem 9.1.6) Suppose that

e 7 : Gr — GL,(FF) is automorphic;
o 7(GF(,)) is adequate; and that

— def _ . . . .
e foreachv | p, 7y ef 7l Gal (Fy/Fy) IS tame and sufficiently generic (and in

particular that p 1 2n).
Then

r is modular of weight @y, Vy <= V) € W?(Fv)for allv | p,

where W’ () is the explicit collection of Serre weights defined by [39].

When n = 3, the theorem with an explicit combinatorial genericity condi-
tion was proven in [60]. For general n, the forward direction, known as weight
elimination, was proven in [56], again with an explicit combinatorial genericity
condition. The reverse direction is a statement about mod p modularity, and is
much harder. Its content is essentially the construction of all possible congru-
ences between mod p automorphic forms. One difficulty is that, in contrast to
when n < 2, Serre weights typically do not admit characteristic zero lifts and
so the set W (r) cannot be interpreted in terms of the existence of automorphic
lifts of prescribed types. As a result, W (r) does not have an apparent Galois
theoretic meaning, while at the same time its complexity grows rapidly with
n.

The tameness hypothesis in Theorem 9.1.6 is natural because the restrictions
to inertia of tame Galois representations can be parametrized combinatorially,
and this parametrization plays a central role in Herzig’s recipe. On the contrary,
a combinatorial parametrization of all Galois representations is not possible, as
isreflected by the geometry of the Emerton—Gee stack. Thus one cannot expect
explicit formulas for W (¥), rather, it should depend on the position of the local
Galois representations in their moduli. At the same time, the non-liftability
of Serre weights to characteristic zero makes it difficult to pin down such a
geometric recipe in terms of p-adic Hodge theory. For these reasons, there
has been no unconditional formulation of the weight part of Serre’s conjecture
in the wildly ramified case when n > 2. However, as observed in [33], the
Breuil-Mezard conjecture can be used to resolve the above difficulties. We
make the following definition.

e Assume Conjecture 1.5.1 holds. Define WBM (%) to be the set of o such
that Z, (p) # 0.

The set WBM (p) has some relation to characteristic zero: as one can always lift
Serre weights virtually, we can as before invert the equations in Conjectures
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1.5.1 and 1.5.7, and understand Z, (p) in terms of characteristic zero p-adic
Hodge theoretic conditions.

On the other hand, as little is known about the geometry of the cycle Z, (p),
it is helpful to also define the following set of weights.

e We say that o is a geometric Serre weight of p if p lies on C,. We let W€ ()p)
be the set of geometric Serre weights of p.

Observe that both W&(p) and WBM () are geometric in nature, and are also
defined for wildly ramified representations.

Unlike W&(p) and W’ (p), for WBM(%) to be meaningful, one requires
the knowledge of Conjecture 1.5.1 at least for sufficiently many (X, ) to pin
down Z; (p) uniquely. In particular, our result on the Breuil-M¢ézard conjecture
(Theorem 1.5.3) allows us to formulate the following unconditional version
of a conjecture of Gee—Herzig—Savitt [33, Conjecture 3.2.7]:

Conjecture 1.6.2 Suppose thatv : Gg — GL, (IF) is automorphic. Let V =
®u|p Vv be a global Serre weight. Assume that for each v | p, 7 is sufficiently
generic, then

7 is modular of weight V <— V, € WBM(fv)for allv | p.

Remark 1.6.3 (1) For p sufficiently generic, one sees that WBM(p) consists
of exactly the (neccessarily sufficiently generic) o such that p lies in the
support of the cycle Z,. In other words, the discrepancy between WE(p)
and WBM (%) is exactly the discrepancy between the irreducible component
Co of X, and the Breuil-Mezard cycle Z,,.

(2) For sufficiently generic 7, one has W&(p) C WBM (%) ¢ W’ (5%). The first
inclusion is because C, belongs to the support of Z,, and we expect this
inclusion to be strict in general (cf. Remark 1.5.11). The second inclusion
follows from [56], and is always strict when p is wildly ramified (this is
explored in [57]).

We now discuss the proof of Theorem 1.6.1. We apply Taylor—Wiles patch-
ing in our given global context. The modularity of a global Serre weight V
is equivalent to the non-vanishing of the associated patched module My (V).
Recall that W (¥) denotes the set of modular global Serre weights and we
assumed that each 7, is tame and sufficiently generic. At this point, Theo-
rem 1.5.3 (or rather, the compatibility with patching functors, see Remark
1.5.4) immediately implies Conjecture 1.6.2 for our tame 7. However, this is
not sufficient for Theorem 1.6.1, because of the very mysterious nature of
the Breuil-Mézard cycles which makes it difficult to show that WBM@G )y =
W?(7,). Instead, we observe that by the chain of inclusions

®upWEF,) C W(F) C ®yp W' (7o),
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it suffices to show W&(7,) = W' (7,). This is more accessible, since W&(7,)
is expressed in terms of C,, which has a transparent geometric meaning, while
W(F,)is combinatorially explicit. Using Theorem 1.4.5, we relate the relevant
components C, to irreducible components C, of a deformed affine Springer
fiber and tame local Galois representations to torus fixed points in the affine flag
variety. Showing that W&(7,) = W’ (¥,) turns out to be equivalent to showing
that the set of torus fixed points of C, achieves the obvious upper bound.
Fortunately, Boixeda Alvarez [1] proved the analogous fact for irreducible
components of affine Springer fibers, and a simple spreading out argument
allows us to transfer his result back to our deformed affine Springer fibers.

Finally, we remark that, in contrast to [59, Theorem 7.8] and [60, Theo-
rem 5.3.1] for example, we make no assumptions on the ramification of 7
outside of p in Theorem 1.6.1. This is possible because our results on the
geometric formulations, rather than the original numerical formulation, of
the Breuil-Mézard conjecture allow for more robust arguments in the Taylor—
Wiles method. (In fact, for this reason our arguments are slightly more involved
than what we describe above.) In the literature, the Taylor—Wiles patching con-
struction typically takes place after applying solvable base change theorems.
While this is convenient for the purposes of modularity lifting theorems, in the
interest of reducing the hypotheses on our results on the weight part of Serre’s
conjecture, we describe in the “Appendix A” the modifications necessary to
apply the Taylor—Wiles method at arbitrary sufficiently small level.

1.7 Outline of the paper

We give a brief overview of the various sections of this paper.

A reader primarily interested in the geometry of the local model and its
relationship to the Emerton—Gee stack can read §3 (or perhaps just Theorem
3.7.1), 4, 5, and 7, referring to §6 as desired. A reader primarily interested in
our main applications can read §8 and 9, referring to the main results of §7.
§2 is preliminary and can be referred to as needed.

§2 establishes various connections between extended affine Weyl groups
and representation theory used throughout the paper.

§3 is the technical heart of the paper. We introduce a universal version of the
local model (§3.3) and describe some of its basic properties. The unibranch
property at torus fixed points is established in §3.4 and the subsequent sections
§3.5, 3.6, 3.7 deal with the problem of spreading out such properties. The most
important result is Theorem 3.7.1 on the unibranch property used in the main
theorem on Galois deformations (Theorem 7.3.2).

§4 specializes the universal model to the mixed characteristic situation of
interest and then studies the special fiber. The main result (Theorem 4.6.2) uses
reductions of Deligne—Lusztig representations to parametrize the irreducible
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components of the special fiber compatibly (§4.3) over varying parameters.
Finally, Theorem 4.7.6 is the main result on torus fixed points of irreducible
components used in the proof of the weight part of Serre’s conjecture.

§5 compares stacks of Breuil-Kisin modules and Pappas—Zhu local models
in preparation for §7. The main result (Theorem 5.3.3) is the local model
diagram for (Zariski covers) of the moduli stack of Breuil-Kisin modules with
tame descent data and a Pappas—Zhu local model via a theory of gauge bases
for Breuil-Kisin modules (see §5.2, particularly Proposition 5.2.7). We also
establish directly a connection in characteristic p to the moduli stack of étale
@-modules in Proposition 5.4.7.

§6 is an interlude on patching functors. Here, global methods are used to
show the existence of local lifts of various types, which provides a key input
into component counts in §7.

§7 contains the main result (Theorem 7.3.2) on the relation between the
local models and Galois deformations used in the proof of both the Breuil—
Mézard conjecture and the weight part of Serre’s conjecture. The monodromy
condition, in particular its algebrization (Proposition 7.1.10), is studied in
§7.1. Theorem 7.2.3 compares Emerton—Gee stacks of potentially crystalline
representations with the moduli stacks of Breuil-Kisin modules with tame
descent data studied in §5. Finally, §7.3 is the culmination of the earlier sections
establishing the comparison between the tame potentially crystalline Emerton—
Gee stack and the local models of §4. Theorem 7.4.2 describes a sufficiently
generic portion of the reduced special fiber of the Emerton—Gee stack.

§8.1 introduces versions of the Breuil-Mézard conjectures, and §8.2
describes their relationship. §8.3 provides an axiomatic framework to prove
restricted versions of the Breuil-Mézard conjectures using patching functors,
which is then applied in §8.4 (see Theorem 8.4.10 and Corollary 8.5.2). In
§8.6, we describe basic properties of Breuil-Mézard cycles and an algorithm
to compute them.

Applications to the Serre weight conjecture (Theorem 9.1.6) for certain
definite unitary groups and modularity lifting are in §9.1 and 9.2, respectively.
§1 describes routine modifications to the Taylor—Wiles method needed to patch
at arbitrary level.

1.8 Notation

We fix once and for all a separable closure K of every field K and let G g &ef
Gal(K /K).If K is defined as a subfield of an algebraically closed field, then
we set K to be this field. If K is a nonarchimedean local field, we let Ix C G
denote the inertial subgroup and Wx C G denote the Weil group. We fix a
prime p € Z-o.Let E C Q p» be a subfield which is finite-dimensional over
Qp. We write O to denote its ring of integers, fix an uniformizer o € O
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and let IF denote the residue field of £. We will assume throughout that E is
sufficiently large.

1.8.1 Reductive groups

Let G denote a split connected reductive group (over some ring) together with
a Borel B, a maximal split torus 7 C B, and Z C T the center of G. Let
d = dim G — dim B. When G is a product of copies of GL,, we will take
B to be upper triangular Borel and T the diagonal torus. Let ®T C @ (resp.
®V:+t C ®Y) denote the subset of positive roots (resp. positive coroots) in
the set of roots (resp. coroots) for (G, B, T). Let A (resp. AY) be the set of
simple roots (resp. coroots). Let X*(T') be the group of characters of 7" and
A g C X*(T) denote the root lattice for G.

For a free Z-module M of finite rank (e.g. M = X*(T')), the duality pairing
between M and its Z-linear dual M* will be denoted by (, ). If A is any ring,
the pairing ( , ) extends by A-linearity to a pairing between M ®7 A and
M* Q7 A.

We say that a weight A € X*(T) is dominant (resp. regular dominant)

if 0 < (A, av) (resp. 0 < (A,a)) for all « € A. For A € X*(T), set

hy, & mag{()», a)}. Set XO(T) to be the subgroup consisting of characters
oc

A € X*(T) such that (A, ) =0 forall a € A.

Let W(G) denote the Weyl group of (G, T'). Let wp denote the longest
element of W(G). We sometimes write W for W(G) when there is no chance
for confusion. Let W, (resp. W) denote the affine Weyl group and extended
affine Weyl group

W, = Ag x W(G), W =X*(T)x W(G)

for G. We use t,, € W to denote the image of v € X*(T).

The Weyl groups W(G), W, and W, act naturally on X*(7') and on
X*(T)®z A by extension of scalars for any ring A. Given A € X*(T'), we write
Conv()) for the convex hull of the subset {w()») | w e W(G)} C X*(T).

We write GV = G/VZ for the split connected reductive group over Z defined
by the root datum (X, (T), X*(T), ®, ®). This defines a maximal split torus
TV C GV such that we have canonical identifications X*(T") = X.(T) and
X (TY) = X*(T).

For («, k) € ® xZ, we have the root hyperplane Hy def A: (A oY) =k).
An alcove is a connected component of X*(T) @z R \ (Um’n) Ha,,,). We
say that an alcove A is restricted if 0 < (L, ") < 1foralla € A and A € A.
We let Ag denote the (dominant) base alcove, i.e. the set of A € X*(T) ®z R
such that 0 < (A, V) < 1 for all @ € ®T. Let .4 denote the set of alcoves.
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Recall that W acts transitively on the set of alcoves, and = Wa x 2 where
Q2 is the stabilizer of Ag. We define

= det

=

{w e W w(Ap) is dominant}.

and

d f ~ . .
+ S {w T W(Ap) is restricted}.

We fix an element n € X*(T') such that (n, « V) = 1 for all positive simple
roots « and let wy, be wot_, € W

When G = GL,, we fix an 1s0morphism X*(T) = 7Z" in the standard
way, where the standard ith basis element ¢; = (0,...,1,...,0) (with the
1 in the ith position) of the right-hand side corresponds to extracting the ith
diagonal entry of a diagonal matrix. Dually we get a standard isomorphism
X.«(T) = 7" andlet (), ..., ¢, ) denote the dual basis.

Suppose that G is a split connected reductive group over Z,. Let O, be a
finite étale Z ,-algebra, which is necessarily isomorphic to a product [ [, s, Ov
where S, is a finite set and O, is the ring of integers of a finite unramified
extension F," of Q,. For example, we will take O, to be the ring of integers
in an unramified extension of Q, or Op+ ®z Z, where FT is a number
field in which p is unramified and O+ is its ring of integers. Let Gy =
Reso,z,(G/0,) with Borel subgroup By = Reso,/z,(Bjo,), maximal torus
Ty = Res@p/zp(T/op), and Zo = Resop/z;p(Z/op). Assume that O contains
the image of any ring homomorphism O, — Z Let J be Homz, (O, O).

Then G = (Go) Jo is naturally identified with the split reductive group G/J
We similarly define B, T, and Z. Corresponding to (G, B, T), we have the
set of positive roots @ C ® and the set of positive coroots ®V-* C ®V. The
notations Ap, W, W, ﬂ @+, ﬁfL £ should be clear as should the natural
isomorphisms X*(7) = X*(T)Y and the like. When G = GLn, then we fix
n € X*(T) to be the product of the elements (n — 1, n — ,0) ez,

The absolute Frobenius automorphismon O,/ p lifts canonlcally to an auto-
morphism ¢ of O,. We define an automorphism 7 of the identified groups
X*(T) and X4(T") by the formula 7 (1), = Agop-1 forall & € X*(T) and
o : Op — O. We assume that, in this case, the element n € X*(T) we fixed
is w-invariant. We similarly define an automorphism 7 of W and W.

1.8.2 Galois theory
Let Op and G, be asin 1.8.1. Let Fy be O,[1/p]. Then F,f is isomorphic

to the (finite) product [] F,5 where, as above, F,;t = O,[1/p] is a finite
veS)

unramified extension of Q,, for each v € §),. Let
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def
6= 1 6
Fi—E

be the dual group of G so that the Langlands dual group of Gg is G Vi &ef

GY x Gal(E/Q,) where Gal(E/Q,) acts on the set of homomorphisms
F;r — E by post-composition. For a topological O-algebra A, an L-

homomorphism over A is a continuous homomorphism Wg, — LG(A) with
open kernel whose projection to Gal(E /Q),) is the natural one. An L-parameter
over A is a GY(A)-conjugacy class of L-homomorphisms. An isomorphism

F > @p for each v € S, determines an embedding G -+ < Gq,, and the
restriction of this isomorphism to F, <> E gives a projection G¥ — GV.
Fixing isomorphisms for each v € §,, we get a bijection from the set of
L-homomorphisms over A to the set of collections of continuous representa-
tions Wp4 — GY(A) indexed by S),. This induces a bijection from the set of
L-parameters to the set of collections of GV (A)-conjugacy classes of repre-
sentations WFJ — GY(A) with open kernel indexed by Sp. Moreover, this
latter bijection does not depend on the choices of isomorphisms. Finally, if A is
finite, this latter set is equivalent to the set of collections of G (A)-conjugacy
classes of continuous representations G .+ — G"(A) indexed by ).

An inertial L-homomorphism over A is a continuous homomorphism
lp, — GY(A) with open kernel which admits an extension to an L-
homomorphism over A. An inertial L-parameter over A is a G" (A)-conjugacy
class of inertial L-homomorphisms. If K is a finite extension of Q, then
an inertial A-type (for K) is a G (A)-conjugacy class of homomorphisms
Ix — GY(A) with open kernels which admit extensions to homomorphisms
Wx — GY(A). We refer to an inertial E-type as just an inertial type. We say
that an inertial L-parameter over A (resp. inertial A-type) is tame if a homo-
morphism (equivalently all homomorphisms) in the conjugacy class factors
through the tame quotient of the inertial subgroup. There is a similar bijec-
tion between (tame) inertial L-parameters over A and collections of (tame)
inertial A-types I+ — G(A) indexed by S, (not depending on choices of
isomorphisms between algebraic closures).

We now specialize to the case that F p+ isafield K and G = GL,,. Let K /Q,,
be an unramified extension of degree f with ring of integers Ok and residue
field k. Let W (k) be ring of Witt vectors of k, which is also the ring of integers
of K. We denote the arithmetic Frobenius automorphism on W (k) by ¢; it acts
as raising to pth power on the residue field.

Recall that we fixed a separable closure K of K. We choose 7 € K such
that npf_l = —p and define wg : Gy — (’)IX( to be the character defined by
g(r) = wg(g)m. Since any choice of & differs by a pf — st root of unity
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on which Gk acts trivially, wg is independent of the choice of 7. Given a
embedding o0 : K — E,let wx s : Gk — O be the character o o wg.
If we let K" C K be the maximal unramified subfield, then for any subfield
K’ C K" which is of finite degree over Q,, Ik is canonically identified
with G gur. Thus, Ig/ is identified with Ik, and we also denote by wg and
wk o the restriction of these characters to /x/. For any integer r > 1, we let
Q,r denote the unramified degree r extension of Q,, in @p, which we assume
is in E (enlarging E if necessary). We write , for wg ., where ¢ denotes

the inclusion Q,» C E as subfields of @p. We use the overline notation
Wk, OK s, O, etc. to denote the mod @ reduction of wg, wk .+, wy, etc.
When considering n-dimensional representations of G g, we will assume that
E contains the image of any morphism K’ — @p where K/ C K" is the
subfield of degree r over K where r is the order of some element of S,,. Fix
an embedding op : K <> E. Then we define 0; = op o ¢ /. This identifies
J = Hom(k, F) = Homg, (K, E) with Z/ 7.

For K as above, we fix once and for all a sequence )4 def (Pm)meN Where

Pm € K satisfy p51+1 = pm and pg = —p. We let K def J K(pm) and

meN

Gr.. ¥ Gal(K/Koo).

Let ¢ denote the p-adic cyclotomic character. If W is a de Rham represen-
tation of Gk over E, then for each x € Homg, (K, E), we write HT,. (W) for
the multiset of Hodge—Tate weights labelled by embedding « normalized so
that the p-adic cyclotomic character ¢ has Hodge—Tate weight {1} for every «.
For n = (j) € X*(T), we say that an n-dimensional representation W has
Hodge—Tate weights u if

HTUj(W) = {Ml,jv/'LZ,j’ nun,]}

Our convention is the opposite of that of [14,22], but agrees with that of
[33]. We will always use the covariant functors attached to W, for example
D@r(W) = (W ®q, BdR)GK, and similarly we have Dpg (W) and Dycis(W).
Note that under our convention, the jumps in the Hodge filtration of Dgr (W)
occur at the opposites of the Hodge—Tate weights. We say that an n-dimensional
potentially semistable representation p : Gy — GL,(E) has type (u, t) if
p has Hodge-Tate weights p and the Weil-Deligne representation WD(p)
restricted to Ik is isomorphic to the inertial type 7. Note that this differs from
the conventions of [33] via a shift by n. The condition on inertial type is also
equivalent to Dyis(0) = Dpst(0) being isomorphic to T as Ik -representations.

Let Arty : KX — WI“{b denote the Artin map normalized so that uni-
formizers map to geometric Frobenius elements. For 7 an inertial type, we use
o (7) to denote the finite dimensional smooth irreducible Q p-representation
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of GL, (Ok) associated to T by the “inertial local Langlands correspondence”
(see §2.4). In fact, in all situations that arise, o (t) will be defined over E.

1.8.3 Miscellaneous

For any ring S, we define M,,(S) to be the set of n x n matrix with entries in
S.IfM e M,(S) and A € GL,(S) we write

Ad(A)(M) &

AMA™ (1.3)
If o = ¢ — ¢ is aroot of GL,,, we also call the (i, j)th entry of a matrix
X € M,(S) the ath entry. We will make use of both notations X;; and X, for
this entry.

Let I' be a group. If V is a finite length I'-representation, we let JH(V)
be the (finite) set of Jordan—Holder factors of V. If V° is a finite O-module
with a I'-action, we write V* for the ["-representation V° ®p F over F. If '
is a compact topological group and V is a virtual representation of I" which
is the difference V| — V, of two genuine continuous finite-dimensional I'-
representations over E, let V be the virtual representation V| =V, where V;
is the semisimplification of V? and V? is any I'-stable O-lattice in V; (and vV
depends only on V and not on any other choices). Of course, V is a genuine
representation if V is.

If X is an ind-scheme defined over O, we write X g def X X spec o Spec E and

def . . . .
Xp = X X spec © Spec IF to denote its generic and special fiber, respectively.

Similarly, if R is any O-algebra, we write Ry to denote R @ F
If P is a statement, the symbol 6p € {0, 1} takes value 1 if P is true, and 0
if P is false.

2 Preliminaries
2.1 Extended affine Weyl groups
2.1.1 Admissible sets, regular elements, and admissible pairs

Recall that G is a split reductive group with split maximal torus 7" and Borel B.

LetV def X*(T)®R = X, (T") ®R denote the apartment of (G, T') on which

W acts. Let Cp denote the dominant Weyl chamber in V. For any w € W(G),
let C,, = w(Cp). In particular, Cy,, is the anti-dominant Weyl chamber.
Recall from §1.8 the set A of alcoves of V. We let 1 denote the upper
arrow ordering on alcoves as defined in [47, § 11.6.5]. Since W, acts simply
transitively on the set of alcoves, 1 induces an upper arrow ordering on W,
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which we again denote by 1. The dominant base alcove Ag defines a Bruhat
order on W, which we denote by <. If €2 is the stabilizer of the base alcove,
then W = W, x Q and so W inherits a Bruhat and upper arrow order in the
standard way: For w;, w, € W, and § € Q, w8 < wyd (resp. wid 1 wd)
if and only if w; < w; (resp. w; 1 wy), and elements in different right W,,-
cosets are incomparable. We write X 1 Y (resp. X < Y) between sets X and
Yifx 1 y(resp.x < y)forallx € Xand y € Y. For w € W, let

~ def ~ ~ ~
Wfﬁé{SEW|SEu)}.

We write £ for the Coxeter length function on W,, which we extend to W by
letting £(58) % ¢(@) for any & € Wy, § € Q.

Definition 2.1.1 Letm > 1, wy, .. wm € W and set i o & [Ti%, w;. We say
[T/Z, w; is a reduced expression for wif (W) = Y /L, £(w;).

We now recall the definition of the admissible set as introduced by Kottwitz
and Rapoport:

Definition 2.1.2 Let A € X*(T). Define

def ~
Adm(n) = () Wey-
weW

Recall from §1.8 the hyperplanes H, , = {x € V| (x,a") = n} and the
notation ®* (resp. @) for the set of positive (resp. negative) roots. We use
the notation « > 0 (resp. @ < 0) for a positive (resp. negative) root. For
o € &, define the half-hyperplanes Ho‘lf” ={x eV | (x,a¥) > n}and
H;,={x eV |(x,a) < n}. Define the mth a-strip to be

Hogm,m-i—l) ={xeV|m<{x,a¥)<m+1}.

Define the critical strips to be strips HOEO’I) where o € ®T.

Definition 2.1.3 An alcove A € A is regular if A does not lie in any critical
strips. For any w € W, we say w is regular if w(Ap) is regular. Define

Adm™ (L) = {w € Adm()) | w is regular}.

From [56, Lemma 4.1.9] we have:
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Lemma 2.1.4 Suppose that wy and wy € W. Then ﬁ;lwowl is a reduced
expression.

Proposition 2.1.5 If i € W is regular; then there exist W and W € WFL and
a dominant weight v € X*(T) such that w = @Z_Iwotvif)l. Moreover, Wy, W,
and v as above are unique up to xX0(1).

Conversely, if ) and W, are elements of W, then Ez_l wow is regular.

Proof Suppose that @ € W is regular and w, ¥ (Ao) lies in the anti-dominant
Weyl chamber for wy € W. Let n, € X*(T) be such that wy = w2 € W1+.
Note that 75 is unique up to X°(T'). Let x be in Ag. From the assumption we
deduce that w(x) and x do not lie in the same «-strip for any root . (Note that
Ap only lies inside critical strips.) Equivalently, w,w (x) and w,(x) do not lie
in the same «-strip for any root «. In particular:

(@20 (x), )] # [{W2(x), )] =0 2.1

for all simple roots «, using that w, € Wfr to obtain the last equality.

Now let o be a simple root. Then, (wow(x), ) < 0 by assumption. More-
over, (n2, ") < 1 since 1, is 1-restricted (a lift of a multiplicity free sum of
fundamental weights). We conclude that (wow(x), o) < 1. From (2.1), we
deduce that (wow(x), a”) < 0. Since « is an arbltrary simple root, w,w(x)
lies in the anti-dominant Weyl chamber. Thus, wow,w € w+. We conclude
that wowow = t,w; for some dominant v € X*(T) and w; € W . Again, v
and w; are determined up to X 0T). _

For the converse, let w; and w; be elements of W+, Let x € Ag. Showing
that w, Ywo i is regular is equivalent to showing that wo; (x) and @ (x) do
not lie in the same «-strip for any root . This is clear from the fact that wow (x)
lies in the anti-dominant Weyl chamber while w; (x) lies in the dominant Weyl
chamber. m|

Proposition 2.1.6 Suppose that i and W, are elements in W+. Let A €
X*(T) be a dominant weight. The following are equivalent.

(1) @y 1t 1., i

(2) Wy t Wpt_pW1;

(3) @z_lwowl < tw]_1(k+n), Fwows) =1 (i) where wy, wy € W are the images
of Wy and wy in W; and

(4) W5 'wot is in Adm(x + n).

Proof 1tis clear that (1) is equivalent to (2) by [56, Proposition 4.1.2] and [47,
11.6.5(4)]. We first show that (1) implies (3). Letw € X *(T) be a dominant
weight (unique up to X 0(T)) such that t_wwg € W . Then t_wo(w)wl € WJr

uwp)W1 T Hw, H(t_oiDa), and Wy Lo = (1o 2) ™" wo(t—wy(w) B1)-
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Without loss of generality, we can assume that w, is an element of Wf' .
Then w;lwz € WT. Then Wang’s theorem [83, Theorem 4.3] (see also [56,
Theorem 4.1.1]) implies that w; < t;jb',;l wy. Using that E;l wo(tkﬁgl wy) is
a reduced expression by Lemma 2.1.4, we have that

w2 lewl < w2 th)Lwh 1wz = tw wo ()
The inequality w, Lwowy < ty, ) follows from (2) using the same argument.

Item (3) immediately 1mplles (4). We now show that (4) 1ml)lles (D).
As before, we can and do change w; and w; so that w, € W1+ with-

out affecting the product w, Ywoi; or the veracity of the relation in (1).
By writing wy = f,,wy (where 7, is dominant), it is easy to see that
Wy 'woib1 (Ag) = w3 '1—y, woil1 (A) lies in the Weyl chamber (wow2) ™! (Co)
since 1, wow1 (Aop) lies in wo(Cp). We conclude from [40, Corollary 4.4] and
the (% + 1)-admissibility of i, 'woii; that

~—] o~ ~—] ~—]~
W) WOWL = Fugun) ! Gy = Wy WO (LW " W32).

Noting that @;1{52 € W since i, € Wf' , the above factorizations are
reduced by Lemma 2.1.4. We conclude that w; < txﬂ)'h_lwz, which implies
that w; 1 1, w;libz by Wang’s theorem [83, Theorem 4.3].

For a dominant weight . € X*(T'), define the collection of admissible pairs
APG+ ) S (@1, ) € (W) x WH/XOT) | 1 1 635,82 | 22)

where X%(T) is embedded diagonally in the natural way.

Corollary 2.1.7 Let & € X*(T) be a dominant weight. Then the map

AP(A 4 1) —> Adm™E(A + n).

~ o~ ~—1 ~
(w1, w2) —> w, wowi
is a bijection.

Proof We first show that the image of the map lies in Adm"™€ (A + 7). Assume
(wy, wy) € Wfr x W is such that w; 4 tkﬂ)';l w». Note that this condition is
stable under the diagonal action of X°(T') by [47, 11.6.5(4)]. Then W, Loty €
Adm(X + n) by Proposition 2.1.6(4), and is regular by Proposition 2.1.5.

To show surjectivity, write W = w, Ywotyy € Adm™2(\ + n) as in
the statement of Proposition 2.1.5. By Proposition 2.1.6(1) we have t,w; 1
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1,1, '@, which is equivalent to @y 1 £,W;, t—uew W2 by [47, IL6.5(4)].
Since 1_ ) W2 € W, (0, I—wo(v)W2) € AP(A + 1) and has image .

The uniqueness of the decomposition up to translation by X%(7") from
Proposition 2.1.5 shows injectivity. O

Remark 2.1.8 The same proof also shows that there is a bijection

[@1. 2 € (T x WH/XOT) | @ 1 655 2} > Adm™ 0+ )
(W1, Wa) —> W, woibi,
though this plays a lesser role in what follows.

2.1.2 Genericity

Let ( WY, <) be the following partially ordered group: WV i is identified with
W asa group, and < is induced from the Bruhat order on W defined by the
antidominant base alcove.

Definition 2.1.9 We define a bijection w > w* between W and W as fol-
lows: for w = f,w € W, withw € Wand v € X*(T) = X.(T"), then

[56, Lemma 2.1.3] shows that (—)* : W — WVYis an isomorphism of
partially ordered groups.

We now introduce various notions of genericity which will be used through-
out the paper.

Definition 2.1.10 Let A € X*(T') be a weight and let m be an integer.
(1) We say that A is m-deep in a (n-shifted) p-alcove C if

ngp+m<+na’)<@mg+1)p—m,

where C is the p-alcove defined by the above inequalities with m = 0.
We now assume that m > 0.

(1) If m > 0, we say A is m-deep if A is m-deep in some p-alcove C. Equiva-
lently, m < |(x +n,a") + pk|foralla € ®* and k € Z.

(2) For w = wt, in either W or WV, we say that w is m-generic if v — 7 is
m-deep. o

(3) For w = wt, in either W or WV, we say that w is m-small if h,, < m, i.e.,
(v,av)y <mforall o € ®.
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(4) Let P = P(Xy,...,Xn) € Z|Xy, ..., X,] be a polynomial and let R
be a commutative ring. We say that a tuple a € R" is P-generic if P(a)
(mod p) € R/pisin (R/p)*. For a finite set 7, we say thata € (R")7
is P-generic if aj is P-generic forall j € J.If G = GLJ, we say that
A € X*(T) is P-generic if it is under the standard identification of X*(T)
with (Z")7 .

Remark 2.1.11 (1) We note that depth is preserved by the (p-)dot action, small-
ness is preserved by the standard W-action, but P-genericity is typically
not preserved by either of these.

(2) Suppose that G = GLY. If we let Py (X1, - .., X,) be [\, ]_[;f’ZI(X,- -
X1 — j) where X, is understood to be X1, then A — n € Cg 1s m-deep
if and only if A is P, -generic.

We record some elementary properties of smallness and genericity.

Proposition 2.1.12 Let i, % be elements in W (resp. in W) and let v €

X*(T).

(1) the element t, is m-generic (resp. m-small) if and only if ty(,) is m-generic
(resp. m-small) for all s € W(G);

(2) if w is m-small and 7 is m’-small, then w7 is (m + m’)-small;

(3) the element W is m-small if and only if W~ is m-small if and only if W* is
m-small; and

(4) if 7 is m’-generic and w is m-small with m < m’, then Zw is (m' — m)-
generic.

2.2 Serre weights

We recall some notation in 1.8. Let Gz, be a split connected reductive group
with extended affine Weyl group W.Let O p» be a finite étale Z ,-algebra. Let
Gobe Resop/zp (G/@p) and G be the split group (Go) 0. Note that the Bruhat
order on ﬂ >~ W7 is the product partial order induced from the Bruhat order
on W (hence, the partial order < on W is taken componentwise).

For a dominant character A € X*(T), we define W(1),0 to be the G-

module Ind%wok. Then W (), is the unique up to isomorphism irreducible
G, g-module of highest weight A. Let V(1) be the (irreducible) restriction

of W(1),£(E) to Go(Z,). The socle L(3) of the G y-module W(h)p &

W(A)0 ®o F is the unique up to isomorphism irreducible G /]F—module of
highest weight A. For any character A € X*(T'), we can extend the above
definition by letting W (1), be the virtual G-module

> (= 1) R'Ind g wob. (2.3)
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We similarly define the virtual modules V(1) and W (2) r.

Let G be the group Go(F) = G,0,(O,/p). A Serre weight (of G) is an
irreducible F-representation of G. An irreducible G-representation over F is
necessarily absolutely irreducible and every irreducible G-representation over

Fp is defined over . Each Serre weight is the restriction F()) &ef L()\)|g for
some A € X{(T) where

XD E (e XT),0< () < p—1foralla € A}

is the set of p-restricted dominant weights. The map A +— F (L) gives a
bijection from X((T)/(p — m)X 0(Z) to the set of isomorphism classes of
Serre weights of G (see [33, Lemma 9.2.4]). For m > 0, we say that a Serre
weight F (1) is m-deep if A is m-deep. We say that A € X((T) is regular
p-restricted or F (1) is regular if (A, ") < p —1foralla € A.

For A € X*(T), let W(1) be the restriction of W (1) ,r(F) to G, which is
a genuine representation if A is dominant. Then F (1) is an G-submodule of
W) for » € X1(T).

For the combinatorics of Serre weights it is convenient to introduce the
notion of p-alcoves and the dot action on them. A p-alcove is a connected
component of the complement X*(7T) ®z R \ (U(a,pn)(Ha,pn — n)). We
say that a p-alcove C is dominant (resp. p-restricted) if 0 < (A + n,a")
(resp. if 0 < (A +n, V) < p)foralle € A and A € C. We let C,, denote
the dominant base p-alcove, i.e. the alcove characterized by A € C if and
only if 0 < (A +n,a") < p forall @ € ®*. We define the (p-)dot action of
W on X*(T) ®ZRbyiE-A(jzeflg()»—i—n%—pv)—nforib“ = wt, € W and
A € X*(T) ®z R. In particular, W acts transitively via the dot action on the
set of p-alcoves, and 2 is the stabilizer of C, for the dot action. We have

@Jr =(WeW: - C,y is dominant}
and
weW' :w-Cg,is p — restricted}.

Lemma 2.2.1 If

e i € X*(T) is a dominant weight which is not m-deep,
e h € Z such that (i, a”) < h forall o € ®, and
e 0 € JH(W(u)),

then o is not (m + L#J)-deep.

Proof Suppose that p is as in the statement of the lemma. By [47, 11.6.13 Propo-
sition], if o € JH(W (1)), then either
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e 0 c JHW(w - p)) forw € W, with @ - & # u dominant and w - u 1 w;
or
e 0 € JH(L(wlag)-

We now replace this second condition. Suppose that o € JH(L(w)|g). If
u = po + puy for wo, my dominant and g p-restricted, then L(u) =
L(unp) ® L(pu1) by the Steinberg tensor product theorem [47, I1.3.17]. Since
Lpudle = L(w(un)lg, we have that o € JH(W (1o) ® W(x(11))).
[47, 11.5.8 Lemma] implies that o € JH(W(M — pu1 + n(v))) for some
v € Conv(uy) (recall that W(u — puy + m(v)) is a priori a virtual represen-
tation). By [47, I1.5.5 Corollary (b)], o € JH(W (w - (u — pu1 + 7 (v)))) for
some w € W such that w - (u — pu1 + 7 (v)) is dominant. By the follow-
ing lemma (where we take A, v, and k tobe u — pu1 + 1, w(v) and 7w (1),
respectively), replacing v by

7 w - (n— pur + () — (n — pu)),

we can assume without loss of generality that u — pu; + 7 (v) € X*(T) is
dominant.

Lemma 2.2.2 Suppose . € X*(T) is dominant, v € Conv(x) and w such that
w(A + v) is dominant. Then w(A 4+ v) — A € Conv(x).

Proof There is a sequence of positive roots «p,---, o such that w =
S+ Say» and setting Sa “8q(A+ V) = A+ v; we have A + v; is on
the positive side of the o j-wall while A + v;_; is on the negative side of the
aj-wall. Thus we get A+v; = A+v;_1+ma; withm = —(A+v;_1, ) = 0.
Now
i1, o) <A +vj-1,a]) <0

hence0 < m < —(k+vj_1,a;/) < —(vj_l,a}Y).Thisshowsthatvj =vj_1+
maj lies in the segment between v;_j and sq,;vj—1 = vj_1 — (vj_1, ozjV)ozj,
hence v; € Conv(k) by induction. O

Returning to the proof of Lemma 2.2.1, the upshot is thatif o € JH(W (u)),
then either

e o ¢ JHW(w - w)) forw € W, with w - u # p dominant and w - & 1 w;

e 0 € JH(W(M — pu1 + JT(U))) where (1 is nonzero, wi, 4 — pii, b —
pu1 + m(v) € X*(T) are dominant, and v € Conv(t); or

e 1 is p-restricted and 0 = F ().

In this way, either 0 = F (i) or we can replace p with a “smaller” weight. For
convenience, for . € X*(T') and v € Conv(A), we let 7, , be the operator on
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X*(T') which translates by —pA + 7 (v). Iterating the above weight reduction
process, we see that if o € JH(W (w)), then o = F(A) for A € X*(T) of the
form

Z’;LM,UMI’I).’M . (tuM_l,vM_le—l : ( o t,LLl,Ulwl . M) o ) (24)

where p; € X*(T) is dominant and nonzero and w; € W, is nontrivial for all
i and the weight at each step is dominant. Indeed, since each iteration strictly
reduces the value of (—, (n — wo(n))") which must be positive, the iterative
process must end (with an upper bound on the number of steps depending on
w). Then (2.4) can be rewrittenas A = w - 4 + 7 (v) forsome w € W and v €
Conv(pgum) Where pgum = Zf”l wi. We claim that (v, V) < LLJ for any

o € ®. Since the p-dot action preserves depth, A would not be (m + L 7 1)-
deep.

To prove our claim, consider #,,,, v, * - Ly v b = 4 — Plhsum + (V') for
some V' € Conv(usum). Observe that A 1 & — psum + 7 (v'). Then

(Prsum — (W), a¥) < (u—A,a¥) <h

for any highest root @. Choosing « € ®T a highest root so that h

Hsum  —
(sum, @), we have
(p - 1)hllsum —= (Pﬂsum - 7T(U) (04 > =< h.
We conclude that 2, < L 1J and the claim follows. O

We will call an element of X*(Z) an algebraic central character and an
element of X*(Z)/(p — ) X*(Z) a central character. Note that the character
group Hom(Zy(F ), F*) is naturally identified with X*(2)/(p — m)X*(2).
An algebraic central character determines a central character by the natural
reduction map. The central character (a character of Zy(IF ,)) of a Serre weight
F(\)isilz € X*(Z)/(p —m)X*(Z) which does not depend on the choice of
elementin A + (p — JT)XO(T) and gives the action of Zy(Fp) on F (). Note
that there is a natural identification of X*(Z) with W W/W,,, which we will use
often. _

Letw—n € CoNX*(T) and w; € ET Then 7~ (1) - (w — ) € X1(T)
and we define

Fiap € F™ (@) - (@ — ). 2.5)
We consider the equivalence relation (wy, w) ~ (t,w;, w — v) for all v €
X0 (T) and note that the map (w1, w) — F(i, ) sends equivalent pairs to the
same Serre weight. We say that the equivalence class of (Wi, ) is a lowest
alcove presentation of F(3, ). (Note that the notion of lowest alcove presen-
tation depends on the choice of n in §1.8.1.) We often will choose a pair in
the equivalence class of a lowest alcove presentation of a Serre weight, though
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nothing we do will depend on this choice. From a lowest alcove presentation
(w1, w) of a Serre weight, we obtain an algebraic central character

W/W, = X*(Z) (2.6)
tw_,@lm/ﬂa — £, 2.7)

which does not depend on the choice of representative in the equivalence
class of (W, w). Then we say that the lowest alcove presentation (wy, ) of
F(i,.0) 18 compatible with ¢ € X*(Z). The following lemma shows that ¢ is
an algebraic lift of the central character of the Serre weight.

Lemma 2.2.3 Let (W, w) be a lowest alcove presentation of a Serre weight o.
Let ¢ be the algebraic central character associated to (W1, w) by (2.6). Then
the class of ¢ in (mod (p — w)X*(Z)) = Hom(Zy(F)), F) is the central
character of o as a G-representation.

Proof This follows from the description of ¢ as a the restriction to G of the
irreducible algebraic highest weight module with highest weight 7~ (@) -

(@ —1n). o

We say that two lowest alcove presentations of Serre weights are compatible
(with each other) if they are compatible with the same element of X*(Z). As
the p-dot action preserves depth, F(3, ) is m-deep if and only if @ — 7 is
m-deep (Definition 2.1.10(1)) in alcove C, i.e.if m < (w,a”) < p —m for
alla € .

Lemma 2.2.4 If a Serre weight o is O-deep, then the map (W1, w) +—
wit,W, /W, € W/W, = X*(Z) gives a bijection between lowest alcove
presentations of o and algebraic central characters lifting the central charac-
ter of o.

Proof If (w1, w) is a lowest alcove presentation for o, then the set of lowest
alcove presentations of o is

{(@r@E™), 8- (@—n) +n):8eQ)

(where we write one pair in each equivalence class). If (W, @) maps to ¢ €
X*(Z), then the lowest alcove presentation (W™ H, 8 (w— n) 4+ n) maps
to & + (p —m)&s where {5 € X*(Z) is the image of § under the isomorphisms
Q=i/w, = X*(2). 0

2.3 Deligne-Lusztig representations and their mod p reductions

Let (s, u) € W x X*(T) be a good pair ([56, §2.2]). Using [33, Proposi-
tion 9.2.1 and 9.2.2], we can attach to (s, ) a Deligne—Lusztig representation
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R () of G defined over E. We say that (s, u — 1) is a lowest alcove presen-
tation of Ry(u) if u — n € C,. (Again, this notion depends on the choice of

n.)

Definition 2.3.1 Letm > 0 and let R be a Deligne—Lusztig representation. We
say that R is m-generic if there exists a lowest alcove presentation (s, u —n) €
W x C, for R such that i — n is m-deep (Definition 2.1.10(2)). We call such a
presentation an m-generic lowest alcove presentation. If R has a fixed lowest

alcove presentation (s, i — 1), define wW(R) & s € E and w(R) &ef seWw.

Note that u — 1 being m-deep is equivalent to w(R) being m-generic in the
sense of Definition 2.1.10(3).

Note that (s, u) € W x X*(T) is good if & — n is (0-deep) in alcove C, by [56,
Lemma 2.2.3]. By [19, Theorem 6.8], we see that a 1-generic Deligne—Lusztig
representation is irreducible.

Let A € X*(T) be a character. We say that a lowest alcove presenta-
tion (s, u — n) of a Deligne—Lusztig representation is A-compatible with
an algebraic central character { € X *(Z) if the image of the element
tHtusW, /W, € W/W_ = X*(Z) corresponds to ¢. Instead of saying O-
compatible, we just say compatible. If (s, u© —n) is alowest alcove presentation
of R compatible with £, then{ mod (p—m)X™*(Z) corresponds to the central
character of R. We say that lowest alcove presentations of a Deligne—Lusztig
representations are compatible if they are compatible with the same algebraic
central character. We say that lowest alcove presentations (s, —n) and (wy, @)
of a Deligne-Lusztig representation R and a Serre weight o are A-compatible
if (s, © —n) and (w1, w) are A-compatible and compatible, respectively, with
some { € X*(Z).

Lemma 2.3.2 If R is a 1-generic Deligne-Lusztig representation, the map
(s, u—mn) — tusW, /W, € W/W, = X*(Z) gives a bijection between
lowest alcove presentations of R and algebraic central characters lifting the
reduction of the central character of R.

Proof If (s, u — n) is a 1-generic lowest alcove presentation for R, then by
[56, Proposition 2.2.15] the set of lowest alcove presentations for R is

{(wsn(w)*l, w(p + pv — sw(v)) — 1) : wt, € 2}

Note that each of w (i + pv — s (v)) — nis 0-deep in C,. Since the image of
tw(ut pr—sz () WST(W) "L in X*(Z2) is u+pv—st(v)|z = plz+ (p-mviz,
it suffices to note that the image of wt, under the isomorphism & = W/W =
X*(Z2)isv]z. O

~
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Lemma 2.3.3 If R is a Deligne—Lusztig representation, then R = Rg(u) for
some (s, ;) € W x X*(T) such that ju is dominant and (i, ") < p + 2 for
all o« € ®. In particular, p — n is (=3)-deep in C,.

Proof Suppose that R = Ry(u) for (s,n) € W x X*(T). Then R =
Ry(1t + pv — s (v)) for any v € X*(T). Since X*(T)(W (&) = W (Ay) =
X*(T) ®z R where EO denotes the closure of the base alcove A, there exists
v € X*(T) such that h;y,, < p. Then hp, < hy +hy_py, < hy + p so
that 1, < |%£] + 1 and therefore /i py—sxiv) < p+hy < p+ [2£] + 1.
Repeatedly replacing u with u + pv — sm(v) as above, we eventually have
that 4, < p + 2. Finally, we replace (s, u) with (wsm(w)~ !, w(w)) where
w € W is such that w(u) is dominant. |

Lemma 2.3.4 Let A € X*(T) be a dominant weight such that hy4, < p — 3.
If R is a Deligne—Lusztig representation such that JH(R ® W (1)) contains an
m-deep Serre weight, then there exists a pair (s, ) € W x X*(T) such that
R = Rs(u) and . — n is (m — hyy2y)-deep in C,.

Proof Let R = R () for some (s, ) as in Lemma 2.3.3 and that o is a Serre
weight in JH(R ® W())). We assume that that ;x — nisnot (m — hjy2,)-deep
in C and will show that o is not m-deep. Note that  — nis (—3)-deep in C,
so that in particular m > hj 12, — 2. By [39,§ A34],0 € JHW (x—Y(@)) -
(@(R)zﬂz_l(n) — 1)) ® W(1)) for some wy, w, € ﬂ;r (in fact, necessarily

wy, € wiW,) where w(R) def t,.s. Then by the proof of Lemma 2.2.1, 0 €
JH(W (v)) forv € (wrr ™! (1'51))-(17)(R)17151 (n)—n)+Conv(A) forw € W with
(wr =1 (@) - (W(R)w, (1) — ) dominant and v dominant. In particular, the
depth assumption on p implies that v is not (m — hy)-deep. Furthermore, since
j—nis (=3)-deepin C, (wrr = (@) - (@(R)W5 ' () —n) is (—3 —h,)-deep
in a p-restricted alcove. In particular, for all ¥ € ® (we can assume that « is a
highest root by dominance), ((wn_l(@Q)-(@(R)w;l(n)—n), a’) < phy+2
so that (v, @) < phy + hj + 2. The result now follows from Lemma 2.2.1. O

Remark 2.3.5 If G is a product of copies of GL,,, one can show that © — n can
be taken to be (—1)-deep. One can then assume instead that 2 ,, < p — 1in
Lemma 2.3.4.

For A € X*(T) dominant, recall from §2.2 that W (1) r denotes the dual
Weyl module of highest weight A for the split algebraic group G - and that
W (A) is the restriction of W(2) r (F) to G C G(IF).

If R is A-compatible with ¢ € X*(Z), then ¢ mod (p — n)X*(Z) gives
the central character of R ® W () LR o W (). The set JH(R @ W (1))
has the following combinatorial description in terms of W. We also use 1 to
denote the ordering on X*(T) defined in [47, 11.6.4].

From (the proof of) [56, Proposition 4.1.3] we have:
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Proposition 2.3.6 Let R be a Deligne—Lusztig representation with a 2h,-
generic lowest alcove presentation (s, u — n). Let A € X1(T). Then F()) €
JH(R) if and only if there exists W = wt, € @Jr suchthatw-(u—sm(v)—n) 1
Wy - Aand w - Cy 1 Wy - Cyy.

We have the following parametrization of Jordan—Holder factors of R ®
W (X) in terms of admissible pairs from §2.1.1.

Proposition 2.3.7 Let A € X*(T) be a dominant weight and let m >
max{2hy, hy1,} be an integer. Let R be a Deligne—Lusztig representation
together with an m-generic lowest alcove presentation, with corresponding
element W(R) € W (cf. Definition 2.3.1).

Then the map

AP(A + 1) — JH(R ® W(L))
is a bijection. Moreover, these Jordan—Holder factors are (m — hjy)-deep

and the lowest alcove presentations (W, w(R )1755 ! (0)) of these Serre weights
are h-compatible with the lowest alcove presentation of R.

Proof Since W15 g 19—, Wa/ W, = T W(R)Wy 'ty W, /W, = 6, (R)

W, /W, the lowest alcove presentations (w1, w(R)w, 1(0)) of Serre weights
are A-compatible with the given lowest alcove presentation of R. If (W, w») €
AP(. + 1), then @y 11—y Wa i1, s0 that (5 1(0), @) < hj4y for all
a € @. This implies that F(wl’w(R)@z_l(o)) is (m — hjy)-deep. Lemma 2.2.4
finally implies that (2.8) is injective. .

We next show the image of (2.8) is JH(R ® W(%)). By the translation
principle and Proposition 2.3.6, every element of JH(R ® W (1)) is of the form

F(r (@) - @R (@) ~1(0) + @) — n)) (2.9)

for some w; € @T and W) € @Jr such that w; % w;lwg and some w €
Conv(1). Letwy = Wy (i) -1(0) be the unique element in Wi p@p-1o)N
@Jr. Since w € Conv(A) implies that #,,(—y) 11—y and Wz € ﬁJr implies
that we_(g)-1(0) T wal_(@y-10) = W5 (Where w) € W is the image of ),
we see that wy = tu(-w)WE_(i5)-1(0) 1 t_wo(n) W5, Which is equivalent to the
inequality w;lw; 0 t;\wglﬂb by [56, Proposition 4.1.2]. This implies the
desired inequality w; 1 t;jf);lwz.

For the converse, suppose that w; 1 1, ﬁ;l w;. Equivalently, by [56, Propo-
sition 4.1.2] and Wang’s theorem ([56, Theorem 4.1.1]), we have w, <
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T_wo) (Wpwy). Since the latter factorization is reduced, we have Wy, = Xy
where X < 1_y,,) and y < w,w;. Then by [52], X is —wq(A)-permissible,
and in particular, X(0) € Conv(—wq(A)). Taking w), € Ejﬂﬁt we conclude
that Wy = wi_, W) for some w € Conv() and W) € W with W) 1 W, W,
(equivalently @ 1 W}, 'i5). Then F(x~'(i0y) - (W(R)W, ' (0) — 1)) has the
form of (2.9). m|

We use Proposition 2.3.7 to give another description of JH(R @ W(L)).

Proposition 2.3.8 Let . € X*(T) be dominant and suppose that (W1, ) and
(s, 4 — n) are A-compatible lowest alcove presentations of a Serre weight
o and a Deligne—Lusztig representation, respectively. Suppose further that
(s, w —n) is max{2h,, h;,}-generic. Then o € JH(R®@ W())) if and only if

toW C t,sAdm(A + 7). (2.10)

<wpi

Proof Asusual we let w(R) def tys. Letwy € ﬂJr be the unique element such
that r_,w(R) € Ww;. Note that = G(R)wz_l(O). By Proposition 2.3.7
and Proposition 2.1.6, it suffices to show that w, Ywo; € Adm(x + n) is
equivalent to (2.10). If ﬁ;lwowl € Adm(X + n), then
toW o, C WRB; ' W o5, € BR)YAM(A + 1),

where the first inclusion follows from the fact that @Sw oil
left multiplication.

For the backwards direction, assume (2.10). Then in particular,

is W-stable under

W(R)W; 'woi) € 1, Wi C W(R)Adm(: + 7).

2.3.1 The covering order

Having discussed the reductions of Deligne-Lusztig representations, we now
use these results to define a partial ordering on Serre weights that arises natu-
rally in §8.

For a max{2h,, h;,}-generic Deligne-Lusztig representation R, let
JHou (R ® W())) be the subset of JTH(R ® W (L)) corresponding by (2.8)
to elements of AP(A + n) of the form (w;, wyt_,w;). We begin with the
following lemma.

Lemma 2.3.9 Suppose that F o) € JHou (R). Fix the compatible lowest
alcove presentation of R with corresponding element w(R) as in Definition
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2.3.1.If (W, w) is a compatible lowest alcove presentation of a weight F(i; ) €
JH(R), then (choosing any representatives of the equivalence class of lowest
alcove presentations)

~ ~7
w T tw’w(R)_l(a)’—a))w ,
where w' denotes the image of W' in W.

Proof We introduce the following notation for this proof. If 5 € @, then let

5 denote the unique element in W3 N ﬂf Since F(i o) € JHout (R), we
have that o’ = W(R)(w,w")~'(0) so that

~ ~/ /
whpw = wow t—IFB(R)_l(a)’)‘

Since F(i.») € JH(R), we have that » = @(R)wz_l(O) for some w 1 w;lwz
by (28) Then wz is (t—l'E(R)_l(a)))+’ so that (l—w(R)_l(w))+ T whw by [56,
Proposition 4.1.2]. Let v be w(R)~ (v — w). On the other hand,

twow' () Wh D = Wow't, 5 (R)~1 (@)
= I,U()w/l‘_w(R)—l(w)
P gy
We conclude that £,y Wpw' 1+ Wyw, or equivalently, W 1 t, )W'. o
Definition 2.3.10 Let oy be a 3h,-deep Serre weights. If
se (] JH®,

R 2hy—generic,
ooeJH(R)

where R runs over 2h,-generic Deligne-Lusztig representations, then we say
that o covers o. In other words, o cover o if every 2h,-generic Deligne—
Lusztig representation containing og also contains o.

Remark 2.3.11 Note that covering is a partial ordering on 3h,-deep Serre
weights.

The following alternate criteria for covering are sometimes useful.

Proposition 2.3.12 Suppose that (W, ) and (W', ") are (representatives for)
compatible lowest alcove presentations of Serre weights and w—nis 3h,-deep.
The following are equivalent:

(1) Fi,w) covers Fr o),
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(2) W 1 tw(w—w)W (in particular £(W') < £(w), with equality if and only if
(W, w) ~ (W', »)); and
(3) tw’ESwoﬁ’ C toW _oms and

(4) Firoyisa Jordan—Holder factor of
~ 4 1~
Dk L™ @) - (@ = n)la.

Proof We first show that (1) implies (2). Let vo be (wp, w)~1(0). Consider the
set X of X € W such that @ = X(vp). We claim that X is 2h,-generic. Indeed,
since wpw € ﬂ?, we have (vo, ") < hy, for all @ € . Then the claim
follows from the fact that w — 7 is 3/,-deep and X(0) = @ — x(vp) (Where
x € W is the image of X).

From the above paragraph, the map taking the set of 24, -generic Deligne—
Lusztig representations R with a lowest alcove presentation compatible with
(w, w) to W sending R to w(R) induces a bijection between those R with
Fi.w € JHout(E) arld X. Moreover, the map X — W, induced by the
natural quotient map W — W, is a bijection. If F(j ., covers F(3 o, then
Lemma 2.3.9 implies that @' 1 fy (y—q)W. We now show the parenthetical.
Fix s € W so that s(o’ — ) is dominant. We have that #;(,_.) W’ 1 W so that
ts(w/—)W' < W by Wang’s theorem. Since #;(,y_,,) W' is a reduced expression
(counting galleries),

E(w/) = g(ts(a)’—a))) + E(ﬂ}/) = E(ts(w/—w)w/) = @(ﬂj)

If this is an equality, then ' — @ € X(T) and '@’ € Q. Compatibility of
lowest alcove presentations implies that (w, w) ~ (W', @').
We next show that (2) implies (3). Assuming (2), [47, 11.6.5(5)] shows that

forany § 1 &' withs € W,
W5 5 1 tww-ow) W,
so that
Wiy oWS 4 .

Then Wang’s theorem implies that 7,y _,Ws < wow. As any element of
W _ o5 is in W' for some 5 as above, the result follows.

That (3) implies (1) follows from Proposition 2.3.8. Finally, we show the
equivalence of (2) and (4). Using the Steinberg tensor product theorem and

the translation principle [60, Lemma 4.2.4(1)], if we write w| € E+ as 1,W]
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with @ € W', then

La™' @) @-mle= P Fgol), 2.11)
v'eL(v)

where m (v, v’) is the multiplicity of the v’-weight space in L(v). Consideration
of the chain of inequalities tw, w] 1 w; 1 W shows that (4) implies (2).
Conversely, if fy (/—W' 1 W, then Fig . € JH(Lr Y (@1) - (0 — n)g)
where W = fy(/—e) W' and s(w’ — ) is the dominant weight in the Weyl orbit
of ' — w. |

Remark 2.3.13 (1) The equivalence of (1) and (4) in Proposition 2.3.12 shows
that if u 1 A, then F(A) covers F(u). The converse does not hold: for
GLy4, wy could be in #(1,0,0,0)S2 if w € W, Q2. Then v = (1, 0, 0, 0) so that
@' — @ would be nonzero and the Serre weights on the right hand side of
(2.11) are not in the W, p-dot orbit of 7 (W)~ (w— n).

(2) By the same equivalence and the linkage principle [47, 11.6.13], if o €
JH(W (W - (w — 1)), then F(5 4, covers o. The converse does not hold for
GL4 (see [46] or [38, Proposition 9.3]).

2.4 Tame inertial L-parameters

Recall the fundamental characters wq : Ig , = O* defined in §1.8.2. For
(w, n) € W x X*(T), we let T(w, u) be the tame inertial L-parameter over
E given by

d—1

(Y Fow™ W)@ : o, > T7(E),

i=0

where we view u here as an element of X, (T"), F* is defined to be the
endomorphism prr_l on X,(T"), and d > 1 is an integer such that (F* o
w4 = pd. (The tame inertial L-parameter does not depend on the choice
of d.) Let T(w, u) be the inertial L-parameter over [F obtained by reduction
modulo z. All tame inertial L-parameters over E and I arise in this way.

Example 2.4.1 Suppose that F ; is the field K and G is GL,,. As explained in
§1.8.2, to the tame inertial L-parameter t (s, u + 1), there is a corresponding
tame inertial type for K which we also denote by 7 (s, i + 7). Fix an isomor-

phism ¢ : K > @p. This gives a homomorphism /x — GL, (E), which we
will make explicit. The isomorphism ¢ gives an injection Gk < Gq,,. Letd

e . " L Od s -
be a positive integer. Then induced composition Ix — Ip, — O™ is @ Ka.0,
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where K is the subfield of K generated by the p¢ — Ist roots of unity and
oy : Kq — E denotes the restriction of ¢ (taking E sufficiently large). We
denote wg 7.0} by wy as well.

Let oy : .K — E denote the restriction of ¢ to K. As in §1.8.2, we let o
be og o ¢~/ for j € Z/fZ, identifying J with Z/fZ. If s = (so, ..., Sr—1),
then set s; = sos1---sr—1 € W. Then (F* os ) = (F"/ o (sr_l, L) =
! (s; 1. ...) where the unspecified components are conjugates of s, so that
(F*os~ W/ = plr where r is the order of s;. Let o def p~/ ((F*os_l)j(u—}—
n))o € X*(T)for0 < j < f—1,sothate; = s‘;ils;iz .. .S;:/-(Mf_j +
ny—;) (and eg = po + no). We also define a® & (Zj:ol (F*os™ 1 (u+

n) . = Z{:_ol pj a; € X*(T). (Note that the conventions here are different
from [56,59] as explained in detail in Remark 5.1.7.)

We have
fr—1 r—1f-1
S _ x  —INfkopx  —1\Jj )
(X Eos™iwen) = (XX F os™HH e os™ w+n),
i=0 k=0 j=0
r—1 f—1
P DI
k=0 j=0
r—1
=Y plhska©

We conclude that (s, & + 1) is 2;5 pf ksr_ ka© (g fr). More concretely,
Z()gkgr—l aig)(l.)l’fk

setting x; = Wy, for 1 <i < n, we have

(s, 4+ 1n) = ED Xi- (2.12)

1<i<n

This inertial type depends only on the inertial L-parameter (s, u + 1) and
not on the choice of isomorphism K — Q,,.

Base change — ® E and — ® I induce bijections between tame inertial
L-parameters over O, E, and IF (the inverse to — R I is the Teichmiiller lift). If
T is atame inertial L-parameter over O or E, we let T denote the corresponding
tame inertial L-parameter over F. We say that (s, u) € W x X*(T) is a lowest
alcove presentation of a tame inertial L-parameter 7 (resp. T) over E (resp. F)
if u € Cyand v = (s, u + 1) (resp. T = T(s, o + 1)). When Ff = K and
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G is GL, we say that (s, i) is a lowest alcove presentation of a tame inertial
type t (resp. T) for K over E (resp. IF) if (s, w) is a lowest alcove presentation
of the tame inertial L-parameter corresponding to it.

Let . € X*(T) be a character. We say that a lowest alcove presentation
(s, ) of a tame inertial L-parameter is A-compatible with ¢ € X*(Z) if
the image of ¢, 1, sW /W, € W/W_ = X*(Z) corresponds to ¢. (This
notion of compatibility depends on the choice of n.) When A = 0 we just say
compatible instead of O-compatible.

We say that a lowest alcove presentation (s, u) of a tame inertial L-
parameter over I is compatible with { € X*(Z) if the image of 7,sW, €
W/W, = X*(Z) is ¢. We say that lowest alcove presentations of a tame
inertial L-parameter over I and a Serre weight are compatible if these lowest
alcove presentations are both compatible with a single element of X*(Z). We
say that lowest alcove presentations of a tame inertial L-parameter over I and
a tame inertial L-parameter (over E) are A-compatible if the lowest alcove
presentations of the tame inertial L-parameters over I and E are compati-
ble and A-compatible, respectively, with a single element of X*(Z). We will
sometimes say compatible to mean 0-compatible.

Remark 2.4.2 Note that if (s, ;) is a lowest alcove presentation for a tame
inertial L-parameter T compatible with { € X*(Z), then as a lowest alcove
presentation of the tame inertial L-parameter T over [F obtained by reduction,
(s, n) is compatible with { — n|z € X*(Z). This confusing choice is made
because ¢ gives the central character of o (7) (Proposition 2.5.5) while ¢ —n|z
gives the central character of elements of W? (%), whose definition (Definition
2.6.1) involves 7.

Let det be the natural quotient map G¥ — GY/GV%" = ZV_If (s, )
is a lowest alcove presentation of a tame inertial L-parameter T (resp. T)
compatible with ¢, then, thinking of ¢ as an element of X, (Z"), {ow| = det ot
(resp. (£ — nlz) o w1 = detoT).

Definition 2.4.3 Let v be a tame inertial L-parameter over E. If F ; =K,
then we also denote by t the corresponding inertial type for K. The following
adjectives also apply to inertial (IF-)types for K.

(1) We say that t (resp. T) is regular if T (resp. T) is G -conjugate to a homo-
morphism Ig, — TY(E) (resp. Ig, — T " (IF)) such that the composition
witha : TV(E) — E* (resp. a” : TV(F) — F*) is nontrivial for any
coroot a”.

(2) We say that T (resp. 7) is m-generic for an integer m > 0 if there exists a
lowest alcove presentation (s, u) for T (resp. T) where p is m-deep in alcove
C,. We call such a presentation an m-generic lowest alcove presentation.
If 7 (resp. T) has a fixed lowest alcove presentation (s, ), then we let w(t)
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(resp. w(T)) be f,ns. Again, note that p is m-deep if and only if w(r)
(resp. w(T)) is m-generic in the sense of Definition 2.1.10(2).

Note that 1-generic implies regular (see [60, Remark 2.2.4]), and that a
lowest alcove presentation for T (resp. T) exists exactly when 7 (resp. T) is
0-generic.

[33, Proposition 9.2.1] defines an injective map Vs from the set of tame
inertial L-parameters over [F to isomorphism classes of G-representations
over E (taking E sufficiently large) which takes T(w, ) to Ry, (u). Note that
7(s, u+n) is m-generic if and only if R;(u + 1) is m-generic. As Vy, respects
the notion of lowest alcove presentation, the argument of Lemma 2.3.2 gives
the following lemma.

Lemma 2.4.4 If T is a 1-generic tame inertial L-parameter, then (s, 1) +—>
tignSW, /W, € W/W, = X*(Z) gives a bijection between lowest alcove
presentations of T and algebraic central characters {|z € X*(Z) such that,
thinking of ¢ as an element of X+(Z"), ¢ o w; = detot.

If T is a l-generic tame inertial L-parameter over F, then (s, u) +—
tusW, /W, € W/W, = X*(Z) gives a bijection between lowest alcove
presentations of T and algebraic central characters ¢ € X*(Z) such that,
thinking of ¢ as an element of X,(Z"), ({ — nlz) o @1 = detoT.

Proposition 2.4.5 Let 7 = tyw € W, w € X*(T), and let k = 7~ (W) -
(w — n). Then the tame inertial L-parameter t(1, k) is isomorphic to
(' w)'w, 0+ 77 w) " v - n)).

Proof This follows from the paragraph containing [33, (10.1.11)]. Indeed, in
the notation of loc. cit.,

R C () R TR S (O R
=L ' W) (@) +pr~ ' W) —n) = (1,77 @) - (@ — ).

2.5 Inertial local Langlands for GL,

We recall some results towards inertial local Langlands correspondence for
GL,,, before making this explicit in the tame case using the previous two sub-
sections. In this section, K is an ¢-adic field (£ a rational prime not necessarily
equal to p).

Definition 2.5.1 A Weil-Deligne inertial L-homomorphism t is a pair
(o, Ny) where p; : lgp, — GY(E) is a homomorphism with open ker-
nel, N is a nilpotent element of Lie G¥ (E), and there exists an p : Wo, —
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LG (E) such that the projection to Gal(E /Q p) 1s the natural map, p| Iy, = Pr»

and ,o(g)N,o(g)_1 = ||gl|N, where || - || : Wo, — W@p/l@p — pZ sends an
arithmetic Frobenius element to p. A Weil-Deligne inertial L-parameter is a
GV (E)-conjugacy class of Weil-Deligne inertial L-homomorphisms.

We can similarly define a Weil-Deligne inertial type t (for K) to be a
conjugacy class of pairs (p;, N;) where p; : Ix — GY(E) is a homomor-
phism with open kernel, N; is a nilpotent element of Lie GV (E), and there
exists p : Wg — G (E) such that (p, N;) is a Weil-Deligne representation,
ie. p(g)N:p(g)~! = llglIN-, where || - || : Wg, — Wo,/Ig, — p/ sends
an arithmetic Frobenius element to p/.

We say that a Weil-Deligne inertial L-parameter or type is tame if p;
above factors through the tame inertial quotient. Finally, there is a natural
bijection between Weil-Deligne inertial L-parameters T and collections of
Weil-Deligne inertial types (ty) e S, preserving tameness.

If (o, N) is a Weil-Deligne representation for K, we denote by (o, N)|
the Weil-Deligne inertial type (o|;,, N).

Remark 2.5.2 We abuse notation by denoting both inertial L-parameters
and Weil-Deligne inertial L-parameters by 7 (and similarly for inertial
types). However, there is a natural inclusion from the set of (tame) inertial
L-parameters (resp. inertial types) to the set of (tame) Weil-Deligne L-
parameters (resp. Weil-Deligne inertial types) sending an inertial L-parameter
T (resp. inertial type) to the Weil-Deligne inertial L-parameter (resp. Weil—
Deligne inertial type) with p, = 7 and N; = 0. Through this inclusion, we
will think of the set of (tame) inertial L-parameters (resp. inertial types) as a
subset of the set of (tame) Weil-Deligne inertial L-parameters (resp. inertial
types).

There is also a surjective map in the other direction from the set of (tame)
Weil-Deligne L-parameters (resp. Weil-Deligne inertial types) to the set of
(tame) inertial L-parameters (resp. inertial types), for which the above inclu-
sion is a section, given by forgetting the nilpotent element.

We now specialize our discussion to the case G = GL,. Recall that the
Jordan normal form of a nilpotent element N of gl, = M, (E) gives a par-
tition Py of n by recording the sizes of Jordan blocks, which is a complete
conjugation invariant of nilpotent elements of M, (E). Viewing a partition as
a decreasing function P : Z- — Zx¢ with finite support (P is a partition of
Yicz, P)). wewrite Py < Pyif Yy Pi(i) < Yf_; Pa(i)forallk € Zoo.
Then < defines a partial ordering on the set of partitions. We write N; < N>
for two nilpotent elements of M, (E) if Py, < Py,. Then < defines a partial
ordering on the set of conjugacy classes of nilpotent elements of M,,(E). Note
that with this partial ordering, O is the minimal element.
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For an irreducible inertial type o, let N; (7o) be the restriction of N to the
To-isotypic part of V; (which it preserves).

Definition 2.5.3 We write T < 7’ for two Weil-Deligne inertial types if p,
and p, are isomorphic and N (t9) < N'(tp) for all irreducible inertial types 7.
(In particular, the trivial representation is < the Steinberg representation.) This
defines a partial ordering on the set of Weil-Deligne inertial types. Thinking of
a Weil-Deligne inertial L-parameter as a collection of Weil-Deligne inertial
types, we say that v < ¢’ for two Weil-Deligne inertial L-parametersif 7, < 7,
foreach v € §,.

If 7 is an irreducible admissible representation of GL, (K) over E, then we
let reck () be the Weil-Deligne representation over E in [42, Theorem A].

Theorem 2.5.4 Let G = GL,,. Let t be a Weil-Deligne inertial type for K.
Then there is a smooth irreducible GL,, (O )-representation o (t) over E such
that for an irreducible admissible representation w of GL, (K),

(1) if TlGL,(0k) contains o (T) thenreck ()1, < T,

(2) ifreck ()|, = 7, then m|GL,(©k) contains o (t) with multiplicity one;
and

(3) ifreck ()|, <X T and m is generic, then 7 |GL,(0x) contains o (t) and the
multiplicity is one if furthermore t is maximal with respect to <.

Proof This combines [74, Theorem 3.7] and [68, Theorem 1.2].

Note that we make no claim of uniqueness for o (7). In what follows, o (7)
will denote either a particular choice that we have made or any choice that
satisfies the properties in Theorem 2.5.4.

If T is a Weil-Deligne inertial L-parameter corresponding to the collec-
tion of Weil-Deligne inertial types (tv)ves,, we let o(7) be the Go(Z))-
representation ®ycs 0 (Tv).

We now make particular choices of o (t) when t above is tame.

Proposition 2.5.5 Suppose that G = GL,, and (s, u) € W x X*(T). We can
choose o (t) in Theorem 2.5.4 for tame Weil-Deligne inertial L-parameters T
such that {o(t) | T = (t(s, n), N;)} is the set of all irreducible constituents
of Rg(i) (Where we view R¢(u) as a GL,(O))-representation by inflation).

Proof We immediately reduce to the case where O, is adomain, say Ok . Then
this follows from the construction of o (7) in [76, § 6] as we now explain. We
first specify the Bushnell-Kutzko type (J, A) for the Bernstein component
corresponding to (s, ). Let op be an embedding I,y — I, and let  be the
order of s; as in Example 2.4.1 (though r does not depend on the choice of
09p). Fix an embedding 0(’) . F plr > F extending o9, and let 7 also denote
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the corresponding tame inertial type for K (see Example 2.4.1, though again
T depends only on oy, but not o).

We first suppose that 7 (s, u) is cuspidal, so that in particular, the order of
the automorphism (r ~'s~!) of X*(T) is fn, and we take r above to be n.
Then recall that we can choose g; € N(T)(F,) such that g; ! F(g,) = s, and

welet T & &T = gsng_l. By [21, Proposition 13.7(ii)], the map
fn—1
i /X L F
( Y (soF) (v)) o) 1 FX,, — &' (F) (2.13)
i=0

is surjective for v € X, (T) withv; =0ifi # Oand vy = (1,0, ..., 0) (since

the (s o F)-orbit of v generates X, (7)). As the domain and codomain of (2.13)
have the same cardinality, this map is an isomorphism.

—1

8s (-

Then Ry(n) = (—1)”_1R§F where 6 is the character IF‘;M ~ pF "0

o
'(rFy ¢ T® 5 F* Thus, 0 = (5 (F* o s71i(w)) o v o o,
Since T(s, u) = @Z;&G”ﬂ o Artgs by Example 2.4.1 where K’ C K" is
the subfield of degree n over K, the result in this case follows from [25,
Proposition 2.4.1(1)]. (Note that in this case, 7’ < 7,7 < t'and ¢/ = 1
are all equivalent for 7’ a Weil-Deligne inertial type. The multiplicity one

statement comes from the fact that, in the notation of loc. cit., C—Inng;”G(f ) onT
is irreducible.) In this case, (GL,(Ok), Rs(u)) is a Bushnell-Kutzko type for
the Bernstein component corresponding to the inertial type 7 (s, ).

The general case follows from the fact that if M C GL,, is a Levi subgroup

and (Jy7, A) with Jy def M(K) N GL,(Ok) is a Bushnell-Kutzko type for

a Bernstein component for M corresponding to the inertial equivalence class
[L, o] of some supercuspidal pair (L, o), then (J, 1) is a Bushnell-Kutzko
type for the Bernstein component for G corresponding to [L, o], where J
is a minimal parahoric subgroup of GL, (Og) containing Jys, and J acts on
A through the natural quotient map J — Jys. Indeed, (J, A) is a G-cover of
(Jp, A) inthe sense of [8, Definition 8.1], and so (J, 1) is the desired Bushnell—-
Kutzko type (see [9]). Then if A = R;(u) (as an M (Fp 7)-representation),

then Ind(]}L"(OK In is R () (as a G-representation) by [21, 11.5]. By con-
struction, {o(t) | T = (t(s, u), N;)} is the set of irreducible constituents of
Ind§ " ©F% = Ry (). O
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2.6 Herzig’s conjecture on modular Serre weights

Recall that wy, def wol_y € ﬂ For a regular Serre weight o = F (), let R(o)
be the Serre weight F (W, - 1), which does not depend on the choice of A. The
map R defines a bijection from the set of regular Serre weights to itself (since
R2? is a twist by a character). Note however that R (like wj,) depends on the
choice of 7.

Definition 2.6.1 For a tame inertial L-parameter T over [F, we define W)
to be the set R(JH(o ([T]))).

Proposition 2.6.2 Let m > 2h, be an integer. Let T be a tame inertial L-
parameter over IF, together with an m-generic lowest alcove presentation with
corresponding element w(T) € W. The map

(w,mZ)'_)F~~

(W, W)W, ' (0)) (2.14)

defines a bijection between

e pairs (W, wWy) with W € ﬁT and Wy € E+, up to the diagonal X°(T)-
action, such that wy 1 w; and
e clements of W ().
Moreover, these Jordan—Hélder factors are (m — hy)-deep and the lowest

alcove presentations (W, w(T) W, 1(0)) of these Serre weights are compatible
with the fixed lowest alcove presentation of T (see §2.4).

Proof That the map is a bijection follows from the definition of W (%) and
Proposition 2.3.7. If wy 1+ w and w € ﬂ?, (1'52_1(0),05\/) < h,, for all
« € @, which implies that F (= (@) - (@ @)W, (0) — n) is (m — hy)-
deep. The lowest alcove presentation (W, W (T)w, 1(0)) is compatible with the
LA TW@) W, ' W, /W, = B@)W,/W, which
is compatible with the lowest alcove presentation of T (for the latter equality
note that w = wy modulo W ). m]

image of Wt

Definition 2.6.3 We let Wy, (7) be the subset of W (T) corresponding via
(2.14) to pairs of the form (w, w). Note that a Serre weight in Wopy (T) is
determined by the image w of w in W. We say that this is the obvious weight
of T corresponding to w.

2.6.1 Breuil-Mézard intersections

Let o and 7 be tame inertial L-parameters over [F and E, respectively. Suppose
that we can fix A-compatible lowest alcove presentations of p and 7 (with
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corresponding elements w(p) and w(t)), for some dominant A € X*(T).
Then let @ (p, 7) be W(t) '@ (p).

Proposition 2.6.4 Let . € X*™(T) be a dominant weight. Let p and t be tame
inertial L-parameters over F and E, respectively. Suppose that we can fix
A-compatible 2h,-generic and max{2h,, h;,}-generic lowest alcove presen-
tations of p and t, respectively, and let w(p) and w(t) be the corresponding
elements of W. Then (W, w) is a compatible lowest alcove presentation for a
Serre weight o € W’ (p) N JH(G (1)) if and only if there are Wy, W» € ﬂ+
such that @y + @ 1 1,1, "W and w = B(@)W; " (0) = W(7)iW5 ' (0).

The equality (p)W; ' (0) = W(t)W, ' (0) holds if and only if (P, T) =
w;lwwl for some w € W.

Proof The first claim follows from Propositions 2.3.7 and 2.6.2. For the second
claim, the equality @(ﬁ)wl_l(O) = wW(T)W, L0 implies that w(p, ‘L')wl_l €
wy'w. o

Corollary 2.6.5 Let A € X*(T) be a dominant weight. Let p and T be tame
inertial L-parameters over F and E, respectively. Suppose that we can fix
A-compatible 2h,-generic and max{2hy, hy,}-generic lowest alcove presen-
tations of p and t, respectively, and that w(p, T) = t;-1 (ot Jor some s € W.
Then the intersection W’ (p) NJH(@ (1) ® W (X)) contains exactly one weight
which is the obvious weight in Wqpy (D) corresponding to s.

Proof Suppose that (W, w) is a lowest alcove presentation of o € W) N
JH(o(r) ® W(A)) which is compatible with that of o (equivalently it is
A-compatible with that of 7). Proposition 2.6.4 implies that f-1,,, =
wp, 1) = w;ls/wl for some s’ € W, and some w;, Wy € @Jr with w; 1 w
and w 1 1, 175;1 wy. These inequalities imply that

~—1 s~ ~ ~\—1 ~
=1 gy = Wy S W1 = (Tmypgo)WhW) ™ WOW = Ly—1 a4y

where w € W is the image of w. This implies that s = w and that W = w;.
Then o is the obvious weight corresponding to s. O

Proposition 2.6.6 Let A € X*(T) be a dominant weight. Let p be a 2h,-
generic tame inertial L-parameter over F and let T be a max{2hy, h)y}-
generic tame inertial L-parameter. Assume we can fix h-compatible lowest
alcove presentations for p and t such that w(p,t) € Adm(A + n). Then
Wobv(0) NJH(o () & W (X)) is nonempty.

Proof Since w(p, t) € Adm(A+n), thereexistsaw € W suchthatw(p, ) <
ty=1itn) = (t_wo(x)@h@)_lwoﬂ)' where w € ET has image w € W. Since
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this is a reduced factorization by Lemma 2.1.4, w(p, t) = W, "w/; for some
W; < W, Wy < t_yymWpw and w’ € W. By changing w’ and using [56,
Lemma 4.3.4], we can assume without loss of generality that w; and w, are
elements of ﬁf By Wang’s theorem ([56, Theorem 4.1.1]), w; 1 w and
Wy 1 t_yy) WhW, Or equivalently by [56, Proposition 4.1.2], w 1 ;, 17);11]32

Letw € X *(T) be the unique (dominant) weight up to X O(T) such that
t_,W| € W1 Let w3 be the unique element in Wr_ r(w)wz N W . Then
two(w)W3 1 W2 just as in the proof of [56, Proposition 4.4.1] so that 7_,,w; 1
tkﬁglt_wo(w)wz 0 tkﬂ};lﬁg. Replacing w; by 7_,w; and wy by w3 and
changing w’, we have that w(p, t) = ﬁ)'z_lw/ﬁl with w; 1 tuﬂ;lfﬁz and
wl € ﬁ/—f

We claim that F P

@ F 0) € Woby(p) isin JH(o (7) ® W(A)). Indeed,

w(ﬁ)wrl(m = (D) WP, VD] (0) = B(T)W, ' (0).

The claim now follows from Proposition 2.3.7. O

Lemma 2.6.7 Let T be a tame inertial L-parameter over F. Suppose there
exists a 3hy-generic lowest alcove presentation for it and let w(T) be the
corresponding element of W. Let R be the Deligne—Lusztig representation with
the n-compatible lowest alcove presentation such that w(R) = W (T ),y (n)-
Then W' (T) Cc TH(R @ W(n)).

Proof Suppose that ¢ € W’(T) so that o has lowest alcove presentation
(W, w) with @ = w(f)wgl(()) for some w, 1 w by Proposition 2.6.2.
Then @ = W(R)(t—y—wo(nW2) " 1(0) (note that —y — wo(n) € X%(T)). By
Proposition 2.3.7, to show that o € JH(R ® W (n)), it suffices to show that
w tnwglt_n_wo(n)fﬁz = t_wo(n)ﬁglﬁ)z. Since w;lﬂi 0 15;11752, it suffices
to show that w 4 t_wo(,,)ﬁ)';lw, or equivalently that woﬁglﬁ = twomW 71
@, ' e W, This follows from [47, 11 6.5(5)].

3 The universal local model

In this section, we construct and study the universal version of our local mod-
els. This will allow us to show that various properties hold generically for the
mixed characteristic local models studied in Sect. 4. Unless otherwise speci-
fied, all algebraic groups will be over Z. Let X = Al = Spec Z[v]. For any
commutative ring R, we identify the R-points X (R) with R in the usual way:
an algebra map Z[v] — R corresponds to the image ¢ € R of the coordinate
variable v. (We will eventually consider, in sections §4, §5 and §7, Noetherian
p-adically complete O-algebras R, and take ¢ to be — p in this case.) We also
let X0 = A} \ {0} = Spec Z[v, v™!].
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3.1 Loop groups

Let G be the Bruhat-Tits group for GL,, over AIZ as in [69, 4.b.1], which is a
dilatation of the Chevalley group GL, /AL along a subgroup concentrated in

the fiber + = 0. Concretely, for any Z[v]-algebra R such that v gets sent to
t € R, the functor of points of G(R) is given by

R — { (Ag,... A1) € (GLn(R))n

Diag(1,...,t,...1) Aj_1 = A; Diag(1,...,t,...1) forall i,
where ¢ is in the i — th entry of the diagonal matrix.

In the special case that 7 is regular in R, the above data reduces to just the data
of a pair (¢, Ag) such that Ag mod ¢ is upper triangular. It is known that G is
a smooth affine group scheme with connected fibers (see [69, Corollary 3.2]
and [64, § 1.2, Theorem]).

We also get the positive loop group L*G and the loop group LG whose
functors of points on a Z[v]-algebra R (sending v to t € R) are given by

R +— G(R[[v—1t])
and
R G(R(v — 1)),

respectively (where R[[v —¢]| denotes the (v —¢)-adic completion of R[v], and

R({(v —1)) &ef R[v — t]][UL_I]). Here the values of the functor G are computed

using the maps Z[v] — R[v — t] and Z[v] — R((v — t)) sending v to v. It is
known that L™ is represented by a(n infinite type) scheme and LG is an ind-
group scheme ([69, § 5.b.1]). We have a canonical map T — L*G, sending
h € T (R) to the “constant” diagonal matrices (#, - - - , h) € GL,(R[[v—t])".
We have a well-defined determinant map of X-ind-schemes det : LG —
L (Gm) /X-

Remark 3.1.1 When R is Noetherian, v is regular in R[[v — ¢]] and R(v — 1)),
thus we get the simpler description

LTG(R) = {A € GL,(R[[v — t]), A is upper triangular modulo v},
LG(R) ={A € GL,,(R(v —t))), A is upper triangular modulo v}.

In particular, LG(R) is a subgroup of GL,(R(v — t))) for Noetherian R. In
what follows we will restrict all our functors to locally Noetherian schemes,
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and hence we will do our manipulations using these simpler descriptions. We
leave it as an exercise to the reader to formulate the right definitions for possibly
non-Noetherian input rings.

For an integer d, let LG?¢'=¢ be the subfunctor of LG given by

which is stable under the left translation action by LTG.
We also define L1 M to be the functor given by

LTM(R) = {g € M,(R[[v — t]]), g is upper triangular modulo v},

so the subfunctor LT M N LG is stable under the left and right translation
action by LTG.

By [69, § 5.b], the fpqc quotient sheaf (over the site of affine Z[v]-schemes)
LTG\LG is representable by an ind-projective ind-scheme Grg, x, which also
has a moduli interpretation in terms of G-torsors. For any ring R, we have an
injection LYG(R)\LG(R) — Grg x(R).

By construction, Grg x xx X 0is the affine Grassmannian for the split group
GL,, over XY, while Grg x x x{0} is the affine flag variety for the standard
Iwahori group scheme 7 over Z[[v].

For each integer d, we let Grde’ =4 be the fpqc quotient subsheaf
L+g\Lgdet =d C L+g\Lg_

For each h > 0, we let LG?'=%=" be the subfunctor of LG9“'=? given by

LGAer=d-=h(R) = {A e LG=4(R) | A € L+M(R)} :

1
(v—n)
Then LG%¢'=4:=h i5 [ *G-stable, and the fpqc quotient subsheaf Grde’ =d.sh _

LtG\LG4¢'=4:=h of Grg y is representable by a projective scheme over X =

Al (see the argument of [86, Lemma 1.1.5]). We clearly have Grd” =d —

det=d,<h
lim Grg % .

h

3.2 Affine charts

Given integers d, h > 0 we define and describe affine open charts 2/ (Z)4t="
for Grdgetxzd’fh, for7 € WY (see Proposition 3.2.8 and Corollary 3.2.10).

Definition 3.2.1 We define the negative loop group L~ ~G to be the subgroup
of LG whose values on Noetherian Z[v]-algebra R (sending v to ¢) is given by
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L™7G(R)

1 A is unipotent lower triangular mod ﬁR [ﬁ]
= aecL,(’R[—])]
and upper triangular mod % R [%]

v—t

1

= with coefficients in R;

(where R [ﬁ] denotes the ring of polynomials in
it is a subring of R(v — ¢))).

Note that the groups LYG, L~ Gand LG are formally smooth over X = A.;z;'

Lemma 3.2.2 The multiplication map
LYGxx L™ G— LG

is a monomorphism. In particular, the induced map L~—G — Grg x is a
monomorphism.

Proof Suppose we have a Noetherian Z[v]-algebra R, sending v to t € R.
Let g1, 8] € LTG(R) and g, g, € L™~ G(R) such that g1g> = g} g5. Then
g=(g)'g1 = gj(g2) 7" € GL,(R((v — 1)) satisfies:

1

e The entries of g above the diagonal belong to R[[v —¢]]N ER[ﬁ]

e The entries of g below the diagonal belong to vR[[v — ] N %R [ﬁ]
since v is regular in R(v — 1)).
e The diagonal entries of g belong to R[v —¢]N(1+ ﬁR[%z])’ and hence

are equal to 1. ’

0.
0,

We conclude that g = 1, hence g1 = g}, g2 = g&5.
For the last statement, we observe that the natural map LTG(R)\LG(R) —
Grg x (R) is an injection for any Z[v]-algebra R. m|

We now define various Lie algebras that will appear in §4.2, §4.3, §5.2
Let R — S be a surjection of Z[v]-algebra (sending v to ¢ € R), such that
J =ker(R — S) is a square-zero ideal. Define the S-modules

1 ]) M is nilpotent lower triangular mod ﬁ,

- e . v
v—t and is upper triangular mod ;=

Lie L==G(J) = { M e M, (J[
Lie LG(J) ={M € M, (J(v — 1)), M is upper triangular mod v},

Lie LYG(J) ={M € M, (J[lv — 1), M is upper triangular mod v} .

We observe that the map M +— 1 + M gives a canonical isomorphism
Lie LG(J) = ker(LG(R) — LG(S)). This gives an action of LG(R) on
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Lie G(J) by conjugation, which factors through LG(S), where we interpret
matrix multiplication using the S = R/J-module structure on J = J/J.
The same discussion also applies to L~™~G and L™*G.

Lemma 3.2.3 Assume that we have a square-zero extension R — S of
Z[v]-algebras, with kernel J. Then inside Lie LG(J), we have a direct sum
decomposition

Lie LG(J) =Lie L=~ G(J) ® Lie LTG(J).

Proof This follows from the direct sum decompositions

S0y = Iv— e ——s[ ],

v—1 v—1

v 1
VI (0 —1) = v —1]® — tJ[v _t].

O

Definition 3.2.4 Let f : F — G be a morphism of functors on Noetherian
rings. We say that f is formally étale at x if for every commutative diagram

Spec k %ﬁ F

Spec A— G

with A an Artinian ring with residue field k, there is a unique dotted arrow that
makes the diagram commute.

Remark 3.2.5 (1) The above notion of formally étale is slightly weaker than the
definition in [75, Tag 049S], since we only consider the lifting problems
for thickenings of Artinian affine schemes as opposed to general affine
schemes. However, for representable functors F', G such that G is locally
Noetherian and f is locally of finite type [75, Tag 02HY] shows that f
being formally étale in the sense of Definition 3.2.4 implies f is étale (and
hence also formally étale) in the sense of [75, Tag 049S].

(2) It is clear that being formally étale in the above sense is preserved by
composition and arbitrary base change.

Lemma 3.2.6 The multiplication map
LYTGxx L™ G— LG

is formally étale. Hence, the same is true for the natural map L=~ G — Grg x.
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Proof We consider the commutative diagram:

Spec k ——— LtG xx LG

SpecA—— LG

where (A, my4) is an Artinian local ring with residue field A/m4 = k. Compos-
ing with the projection LG — X makes A naturally a Z[v]-algebra, sending v
tot lifting 7 € k. The top horizontal arrow corresponds to a pair g, € LTG(k),
g, € L™~ G (k). The bottom horizontal arrow correspond to g € LG(A) lifting
g8 =28182

We need to show that the dotted arrow exists and is unique. We assume
my # 0, otherwise there is nothing to prove. The uniqueness follows from the
fact that the right vertical map is a monomorphism, by Lemma 3.2.2.

We now show the existence of the dotted arrow, that is we need to show
that g admits a decomposition g = g1g> with gy € LTG(A), g2 € L~ G(A).
By inducting on the length of A, we may assume that we have the desired
decomposition for g mod ¢, where 0 # & € my is annihilated by my.
We have the square-zero extension A — A/e. Since L1YG and L=—G are
formally smooth, we can find gi € L*tG(A), g5 € L™~ G(A) such that
(8 'g(gh)~! e ker(LG(A) - LG(A/¢)) = 1+&X.ByLemma 3.2.3 (not-
ing that ker(LG(A) — LG(A/¢)) is canonically isomorphic to Lie(LG) (ke)),
we can decompose €X = X + £ X, such that (1 + &X;) € ker(LTG(A) —
LtG(A/e)), (1 +eX3) € ker(L™"G(A) — L™ "G(A/¢)). This yields the
desired decomposition

g =(g1(1+eXD)((1+eX2)gh).
O

Let? = wt, € WY as defined in §2.1.2. We define (Z) to be the subfunctor
of LG whose value on a Noetherian Z[v]-algebra R (sending v to ¢ € R) is
given by

UR)(R) = { A € GLy(R(v — 1))

Aw—t)""wle GLn(R[ﬁ]) is unipotent lower triangular mod ﬁ
and Alv —1)7Y € GL,, (R[%]) is upper triangular mod ;%
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Lemma 3.2.7 Left multiplication by L~~G in LG preserves U(Z), and makes
UR) an L™~ G-torsor. The natural map U(Z) — Grg x is a formally étale
monomorphism.

Proof The first claim follows immediately from the definitions. For the second
claim, note that for any Noetherian Z[v]-algebra R, either U (Z)(R) = @, or
it is a left coset of L™~ G(R) in LG(R). The fact that 4(Z7) — Grg x is a
monomorphism then follows from Lemma 3.2.2.

To show that U/ (Z) — Grg x is formally étale, we first note that ¢ (%) is for-
mally smooth over X. Indeed the conditionthat A € GL,,(R((v—t))) belongs to
U(Z)(R) is that each entry A;; of A has the form (v — t)d(%)‘S (ﬁ)‘S,R[%],
where d € Z, 8,8 € {0, 1} are determined by i, j and Z, and hence it is clear
that the map U ((Z)(R) — U[Z)(S) is surjective for any square-zero nilpotent
thickening R — S. This together with Lemma 3.2.6 shows that/ () — Grg, x
is formally étale. O

For h > 0, we define U/ ()= to be the intersection U (Z) N LGdet=d.=h,
whered = |v| := Y, v; if v = (v;); € X«(T") = Z". We have the following
explicit description:

Proposition 3.2.8 For a Noetherian Z[v]-algebra R, UR)E=1(R) is the set
of n x n matrices A with Laurent polynomial entries A;; € R[v —t, ﬁ
satisfying the following degree bound and determinant condition:

e Forl <i,j <n,

Vj=8is j—=8i<uw(j)
Ai = pBis =)
ij="v Clj,k(v )" ),

k=—h

and Cu(j)jvj=su(p-; = 1.
e det A = det(w)(v — )Vl

Proof The first item follows from unraveling the definition. For the second
item, the condition given in the definition is det A € R[[v — ]* (v — t)"””.
However, a priori det A € det(w)(v — Hvla + ﬁR[ﬁ]), hence the deter-
minant condition is equivalent to det A = det(w) (v — nHvl, |

Thus U (Z)%4=" is representable by an affine scheme of finite type over Z,
namely the spectrum of the quotient of the polynomial ring generated by the
coefficients c; ; x modulo the relations given by the determinant condition. Note
that U (Z)det’fi = ( unless h is sufficiently large, namely when A +v; —§;- j —
5i<w(j) > ( for all i, ]
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Definition 3.2.9 When U(Z)%=" = @ there is a section Spec Z <>
UER)L= xy {0} given by the element T = wv” € UR)=H(R) C
GL, (R((v))), for any Noetherian Z[v] algebra R sending v to 0. We will abu-
sively denote this section and the corresponding Z-point of Grg x x x{0} by
z.

Corollary 3.2.10 The natural map
. :Z/{@det,fh N Grg‘?tX:"V"vSh
is an open immersion.

Proof We observe that U ()%= = 14 (2) XGrg x Grge’tX:”v"’fh Hence Lemma
3.2.7 shows that ¢ is a formally étale monomorphism. By Remark 3.2.5, t must
then be an étale monomorphism, and hence is an open immersion by [75, Tag
025G]. O

3.3 Universal local models

Let LGV be the subfunctor of LG x7 A" whose value on a Noetherian Z[v]-
algebra R (sending v to ¢t € R) is given by

LGV (R« {(g, a)l g € LG(R), a € R" and

., | 3.1)
v—gg_1 + gDiag(a)g ! € —L+M(R)}
dv v—t

(where the symbol Z—ﬁ means we differentiate entry-wise).

Lemma 3.3.1 The functor LG is stable by left multiplication by LTGV .

Proof Let R be a Noetherian Z[v]-algebra, sending v to t € R, and let h €
LTGY(R), LGV (R). The Leibnitz rule gives

d (hg)
dv

d h dg
_ 4 )h 'y n(v=g™! + gDiag(a)g ™!
d dv

—22(hg)~" + hgDiag(a)(hg) ™!

and the right hand side is manifestly an element in Ul IL+M(R) since
1 —— L+t M(R) is stable by conjugation by /, and that d(h) € LY M(R). O
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Thus, LGY defines a closed sub-ind-scheme Grg’ . def LTG\LGY C
Grg x x7zA" which is ind-proper over X xz A".

For X € X,.(T"),wehaveasections, : X — Grg,x induced by the element
(v—1)* € LG(R) for a Z|v]-algebra R sending vto t € R.

Remark 3.3.2 For H = A"~! ¢ A" ahyperplane where one of the coordinates
is 0, we have a natural isomorphism

LGY = (LGY N (LG xz H)) xz Al
For example, if H = {a € A" | a,, = 0}, we have an isomorphism given by

(g7a) = (g’a_ (an7"' aan)’an)-

Because this observation, we could have always worked under the assump-
tion that a, = 0 throughout the entire paper. This minor simplification is
useful when implementing computer algebra computations, see for example
“Appendix B”

We define the global Schubert variety Sx(A) to be the minimal irreducible
closed subscheme of Grg, x which contains s, and is stable under the right mul-
tiplication action of L*G (cf. [85, Definition 3.1]). We will also write Syo(X) =
Sx(A) xx X°. The maps Sx (1) — X, Syo(A) — XY are proper. Note that as
in [85, Lemma 3.6], we have an isomorphism Grg, x xx X0 = Grg, x7X9,
under which Syo corresponds to the constant family of the Schubert variety of
GrgL, for the coweight A over X O This description makes it clear that for any
geometric point x of X0, the fiber Sx(A) xx x C Grg x xxx = Grgr, is
the usual Schubert variety for the coweight A in Grg,, . In particular, we have
Sxo(X) = Syo(w(A)) for w € W. We also have the open Schubert variety
Sy = Sx() \ UA/GCOnv(X),A’¢WA Sx(1). Over X°, S%o(X) correspond to
the constant family of the open Schubert variety for the coweight A in Grgr,, .

Given A € X, (T"), we have the stabilizer group scheme of s; whose values
on a Z[v]-algebra R is given by

L*Gi(R) = LYG(R) N Ad((v — ™) (LTG(R)).

Let P; be the parabolic subgroup of GL,, determined by the condition that the
ath entry vanishes for all roots « such that (A, @“) < 0. Then there is a natural
map (LYG\LTG)yo — P3\GL, x7 X given by g — g mod (v —t), which
makes LG, \L TG into an iterated affine space bundle over the partial flag
variety P,\GL, xz X 0 (see the discussion after [86, Corollary 2.1.11] or [65,

§ 2D).

@ Springer



Local models for Galois deformation rings and applications 1339

Then for sufficiently large /#, we have a monomorphism LG, \LTG <

Grgft;”k"’fh given by the orbit map g — s,g, and Sx(A) is the scheme-

theoretic image of this map. The orbit map induces an isomorphism
(LTG\LTG) xx X0 = S%o(A). This gives us a map m : Sjo(A) —
(Pi\GLn) xz X°.

Definition 3.3.3 We define the naive universal local model to be

def

MY (<A, V) E Grf x N(Sx (1) xz A™).

We will also set Mr)‘(vo(f A V)=MFP (A, V) xx XY Tt is a proper scheme
over X9 xz A”;V
For any 7 € WY and h sufficiently large, we have

U= xz A") N MF (< 4, V) = UR) xz A") N MF (<2, V)

is an (possibly empty) open subscheme of MY (< A, V), and denote this by
U™ @, < A, V).

The following Lemma describes the part of /\/II;(VO (< A, V) inthe open global
Schubert variety S;’((, (1), away from small positive characteristics:

Proposition 3.3.4 Let A be dominant and recall h; = maxyv{(A,a)}.
The map m, induces an isomorphism m; : ( ‘;;0(5 A, V)N (S;’(0 A) xgz

AM)[zH1 = (PA\GLy) x7 X0 x7 A"[7].

Proof We first note that we have an open cover of P,\GL, by affine spaces
givenby N, w where N, is the unipotent radical of the opposite parabolic to Py,
and w runs over W. This pulls back to an open cover S°(X) yo = UweW N)w,
where N, is the affine scheme over X° whose points on a Z[v, v 1] algebra
R consists of the set of matrices (v — 1)* Nw where N € GL,(R[[v — ¢]) is a

matrix such that
e The diagonal entries of N are 1.
e For a root « such that (—A, a“) < 0, the entry N, = 0.
e Foraroota suchthat (—, ) > 0, theentry Ny = Z;;%,M)—l Xo,j(v—
)’ with X4 ; € R.

Note that this describes an affine space over X°, whose coordinates are given
by the coefficients X, ; of the entries of N. Under these coordinates, the map
7y is the map (v — H*Nw +— (N mod (v — 1)) w.

It suffices to show that m; : Grz %0 ﬂ(ﬁkw X7 An[hiﬂ) — N,w Xz
X% x, A”[h%!] induces an isomorphism for each w € W. Fix an R-point x
of X0 x7 A" corresponding to € R* and a € R". The set of R points of
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GrZ ) ﬂ(ﬁkw X7 A"[ﬁ]) above x is the set of matrices (v — £)* Nw with
N € GL,,(R[[v — ¢])) as above such that

d _
vd—v((v —t))‘Nu)>((v —t))‘Nu)) !
+ Ad ((v — t)ANw)(Diag(a)) € iLJFM(R), 3.2)

which is equivalent to

v d _1
——r+Ad(=0") (NN ")

+Ad (v — H*)(Ad(N)(Ad(w)(Diag(a)))) € LT M(R).

v—1t

This is in turn equivalent to (noting that v € R[[v — ¢]|* since t € R*)
q g

(viN + [V, Ad(w) (Diag(@) ] ) N "
dv '

1
€ — Ad((v— 1)) (Mu(R[[v — t1)).

Note that the only entries in the above matrix that can be non-zero are the oth
entries where (—A, a“) > 0 (which in particular implies @ < 0), and for such
o the above condition is that the ath entry is divisible by (v — r)~»« =1,

Now, for (—A, a") > 0, the ath entry of the above matrix has the form

(vi ~ (Ad(w) (Diag(@)), a”) ) Ne + -+
dv ’ “

where the terms in - - - involves only Ng where @ < 8 < 0. On the other hand,

. (—=r,aV)—1 i
since Ny = ), Xq.i(v —1)", we have:

d i
(v— — (Ad(w)(Diag(a)), av)) N

dv
(=r,aV)=2
= Y 1+ DXeis1(w—1)
i=0
(=r,2V)—1 '
+ ) (i —{Adw)(Diag@), a")Xeiw—1)'.
i=0
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Sincei + 1, € R* forall 0 <i < hy — 1, Eq. (3.2) solves each X, ; for
i > 0 uniquely in terms of X, o fora < o’ < 0. As 7, _is exactly obtained by
extracting X, o for all « such that (—, «") > 0, we are done. O

We thus have a description of the underlying reduced scheme of M (< A, V)
away from small positive characteristics:

Corollary 3.3.5 Let A and h) be as in Lemma 3.3.4, then the underlying
reduced subscheme of MI;IO(S A, V)[h%!] is isomorphic to

1
[I  ((P\GLy) xzX° xz A"l
N NeXH(TY) A

Proof By Proposition 3.3.4, M‘;(VO(S A, V)N (S°(M)xo X7 A”[h%!]) is iso-
morphic to (P,\GL,) xz X0 x A”[h%!], and hence is proper over X% x;
A”[h%!]. Thus the inclusion MI)‘;’O(S A, V)N (S°(A)xo X7 A”[h%!]) L

r)‘g’o(f A, V)[hiﬂ] is a proper open immersion, hence is the inclusion of a
connected component. The complement of this component has the same sup-

port as GrY m((SXo )\ 82 (0) X7 A”[%]). Since Syo (1) \ S, (4) =

g
UkA NeXF(TV) Sxo(A') set theoretically and h;, < h;, we can repeat the
above argument for A" < A to conclude. O

In particular, MI;(VO(f A V)N (S;’(0 () xz A') is a connected component of
We can now make the following definition:

Definition 3.3.6 Let A € X, (T") be dominant. The universal local model
Mx (A, V) is the closure of/\/lr)‘(vo(f A, V)N (8;0 (X)) xzA")in MY (< A, V)
(equivalently, in Grg x xzA").

We note that the difference between My (A, V) and MY (< A, V) is that the
monodromy condition is imposed, respectively, before and after taking Zariski
closures of S;’(O (A) xz A" in Grg x xzA".

We will now show that the conclusion of Corollary 3.3.5 actually holds
without taking reduced subscheme, at the expense of removing some more
small positive characteristics.

We have an action of the torus 7Y x 7 X on the X-scheme Grg_ x induced by
the right multiplication action of 7" on LG. This action evidently preserves
Sx(A) and Grg - Thus we get an induced 7 action on MY (< A, V).
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Lemma 3.3.7 The T -fixed point scheme of Sxo (M) is supported on the union
of the sections s, as )" runs over the elements of Conv ().

Proof This statement can be checked at the level of geometric fibers over X°,
where the conclusion is well-known, see for instance the discussion just before
[86, Example 2.1.12].

Proposition 3.3.8 Ler A be dominant. Then Mr)lfvo(f A, V)[%] is smooth
over X9 x4 A”[%].

Proof To ease notation, in this proof we will abbreviate ¥ = ‘;(Vo(g A, V)
[w], S=X"xy4 A”[m] and pr for the natural projection map ¥ — S.
As pr is a finite type map between finite type Z-schemes, the locus of points
where pr is smooth is open in the domain. The non-smooth locus is thus proper
over S, and is furthermore 7 -stable. If it is non-empty, it must have a non-zero
geometric fiber over X xz A”[m]. Such a fiber will be a proper variety
over a field with an action of a torus, and hence must contain a torus-fixed
closed point, which must occur in the support of s, for some pu € Conv(1).

Thus, we only need to show that pr is smooth at any closed point
x : Spec k — Y lying in the support of s,. Let s = pr(x) € §. We will
show smoothness by bounding the dimension of the tangent space dim 7Y <
dim, Y and the dimension of the relative tangent space dim 7y Y /S < dim, Y.
I/I}deed, granting this, we deduce that the completion Oy, is generated over
Ogs.s by dim, Y; elements. Using that S is regular at s and comparing dimen-
sions, we then conclude that Oy is a power series ring over Og  in dimy Y
variables.

We may without loss of generality enlarge k and assume that k is alge-
braically closed. The point s corresponds to the data of a tuple (¢, a) € k* x k"
and the point x corresponds to the data of s and the element (v — t)* €
GL, (k(v—1))). By Corollary 3.3.5, the point x is on the connected component
of Y occurring inside S;O () xzA", andhencedim, Y = dim P,\GL,+n~+1.

Let U, (t,) = Ut,) xx Xo. Set U = ([Uyo(t,) N Sxo(1)) xz A)
GrZ 0> Which is an open neighborhood of x in Y. We observe that {xo (7)) N

Sxo(X) occurs inside the closed subscheme of Z def Grget;o’fh’\ s NUK0(t)

of Uxo(t,) C Grg xo, since for an element g € Z/le)(tM)(R) to occur in
Syxo(A)(R), anecessary condition is thatdet g € R[v —¢]]* (v — 1)1l and that
IA] = |le]l, and that each entry of g(v—1) ~* belongs to (v — ¢ ) min~Hmax R[[y —
t]l, where Amin = ming<j<;—12; and fmax = MaxXo<j<p—1 i, and Amin —
Mmax = mingv {(A, (XV)} = —h;.

Thus we conclude that 7,Y; is a subspace of the tangent space of

(Grg %0 ﬂ(Z X7 A”)) at x. This latter space has the following explicit
’ A
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description (using definition of U/x (¢,,) before Lemma 3.2.7): It is the space of
matrices (1 +&X)(v — t)* with X € M, (k(v — t))) such that

h i
j);l Xii,j(v — 1)~/ with Xii,j € k.

h _
e For each root «, the ath entry X, = vde<0 Zf:l Xo j(v—1)"7.
e X is subject to the condition that

e For each i the diagonal entry X;; = )

d - -1
v%((l +eX)(v— t)“)(v — M1 +£X)

+Ad (1+eX)(Ad ((v— ") (Diag(a))) € iLJ’M(k[s] /e%).

The last condition is equivalent to

v
ev—X — ¢
dv v—t

[, X1 — e[Diag(a), X] € ﬁL*M(k[s] /e?).

Hence, we have

e Foreachl <i <n,

h}L h)\

. (G . _j 1
> —tjXii j0—0) UV Y —jXi -7 € et Lt £
j=1 j=1

This is equivalent to 7jX;; j = —(j + 1) Xj; j41 for all j > 1 (with the
convention that X;; 5, +1 = 0). Since h,! and ¢ are invertible in k, we
conclude that X;; ; = 0 for all j.

e For any root «,

hi.
Y —tj X j— 1)Ut
j=1
hy, hy,
+ D —iXaj0 =07 =) Tt ) Xa (0 = )7UFD
j=1 j=1
h;, . 1
=D (i ta,a") = duco)Xe j(v =07 € —klv —1],
j=1

This is equivalent to
1+ (0" NXej=—G+1—84co+ (n+a,a" )Xo jt1
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for j > 1 (with the convention that X 5, +1 = 0).

If (u,a”) > 0, since ¢ and (2h;)! are invertible in k and (u, a") < h;,
t(j + {u,a)) is invertible for all 1 < j < h;, and hence the above
recursion forces X, j = 0 for all j.

If (u,a) <0, t(j + (u, ")) is invertible in k unless j = —(u, a").
Thus the above recursion shows that X, ; = 0 for j > —(u, «), that
Xo,jfor 1 < j < —(u,a”) is a multiple of X, _, ov) by a particular
constant, and there are no restrictions on X _(, ov)-

The upshot of the above discussion is that dim 7, Yy < #{a|(u, oY) < 0} =
dimz, P, \GL,. Putting everything together, we have

dim7,Y < dim, Y; 4+ dimy § < dimz P,\GL, +1+n+1 =dim, Y,

which is what we want. O

We record the following proposition which is an adaptation of Elkik’s approx-
imation theorem to our situation, which will only be used in the proof of
Theorem 7.3.2. Roughly, it allows us to lift mod " -points of U™ (Z, < A, V)
once m is sufficiently large.

Proposition 3.3.9 Fix\,7Z. Choose afinite presentation of the map U™ (Z, < A,
V)[m] — X xyz A". Then there exists integers N and r (depending on the
chosen finite presentation) such that the following hold:

Let A be aring andt € A such that A is t-adically complete and t-torsion-
free, and let g : Spec A — X x7z A" be a map sending v to t. Then for any
integer m > N, and any commutative diagram

spec A/t" L Up @ <0, V)[ oy | (3.3)

| |

SpecA%X x7 A"

we can find a map f: Spec A — U™ (Z, < A, V)[m] which agrees with

f modulo t"~" making the following diagram commute:

Spec A L u™@E <, V)[m]

J |

SpecA%X X7z A"
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Proof We will apply [27, Lemme 1]. Let Spec B be the base change of
U™, < A, V)[m] along g. Let Spec S = X x7A". Let our chosen presen-

tation be U™ (T, < A, V)[m] = Spec S[X1, ..., Xx]/J. Let H be the ideal
of S[X1, ..., Xi]definedin [27, p. 555], so the image of H in S[ X1, - - - Xz]/J
is supported on the singular locus of the map U™ (Z, < A, V)[%] — X xA".
Hence, by Proposition 3.3.8, there exists an integer r such that v € H + J.
We now base change the situation to A, and let B = A[X1, --- Xx]/J, let Hp
be the base change of H, and apply [27, Lemme 1] to B and A to produce the
integer N > 2r (note that the k in loc. cit. is 0 in our situation because we
assumed A is ¢-torsion free). We check that this choice of N and r works.
Letm > N > 2r be as in the statement of the Proposition. The f induces
atuplea = (ay,---ax) € A¥ such that J(a) C t"™A. On the other hand we
know t" € Hp(a) + J(a) C Hg(a) +t™A, and hence " € Hp(a) because
A is t-adically complete and m > r. Thus [27, Lemme 1] implies we can find
atuple @ € A* lifting ¢ modulo ™~ such that J (@) = 0. But this is exactly
the data of the map Spec A — Spec B that we want. |

3.4 Equal characteristic and unibranch points

Throughout this section we fix A € X,(T") dominant, a field £ and a point
s € A(k) corresponding to a tuple a € k". We will assume that (24,)! is
invertible in k.

We have the base change M™ (< A, Vy) def MP (<A, V) xan s, and
define M (A, V,) to be the Zariski closure of (MX()\,, V) X an s) X X, X,? =
(P \GL,) X0 in M™(< A, Va). In particular, the natural map M (A, V,) —
X = A}{ is flat.

Remark 3.4.1 There is a natural map M(A, Vu) — Mx (X, V) xan s which
is an isomorphism over X 0 and identifies M (X, Va) as the Zariski closure of
Mxo(X, V) xpn s in Mx (X, V) xan s. It is unclear whether it is always an
isomorphism, but we will see in Proposition 3.5.2 that it is an isomorphism
for generic choices of a.

We recall the following definition (cf. [75, Tag 06DT]):

Definition 3.4.2 A point y € Y of a scheme is called unibranch if the nor-
malization of the local ring (Oy,y)req is local.

If Y is an integral scheme, we will write Y™™ — Y for the normalization of
Y.

Remark 3.4.3 (1) ([75, Tag 0C3B]) If Y has a finite number of irreducible
components and the normalization map Y™™ — Y is finite (e.g. when Y is
excellent), then the following are equivalent:
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(i) y is unibranch;
(i1) the (set-theoretic) fiber above y of the normalization is a single point;
and
(iii) the fiber above y of the normalization is connected.
(2) ([75, Tag OC2E]) When Y is Noetherian and excellent, Y is unibranch at
y if and only if Y is analytically irreducible at y, i.e. the completed local
ring Oy y is a domain.

We now fix 7 = wt, € WV. Recall we have a subfunctor I/ (@) of LG
defined before Lemma 3.2.7 which defines an open subfunctor of Grg x. We
let U(Z, A, Va) = U[@) XGrg y MR, Va), which is a Zariski open (possible
empty) subscheme of M(X, V,). N

Recall (Definition 3.2.9) that foreachZ = wt, € WV, we have an associated
Z-point of U(Z) xx {0} C Grg.x xx{0} given by wv" € GL,(Z(v))) which
we denote by Z. For any field &, let Z; denote the base change to k.

The following is the main result of this section:

Proposition 3.4.4 Assume that 7y € M(), Va) (k). Then for any integer e >
0, the base change M (A, Va) X x, vrsve Xk is unibranch at Z. Furthermore,
the preimage of U(Z) in (M(X, Va) Xx, vsve X)"™™ X x {0} is connected.

The Proposition implies the following crucial Corollary, which underlies the
unibranch property (at special points) of the local models we will be interested
in (cf. Theorem 3.7.1):

Corollary 3.4.5 Let ¢ > 0 be an integer and U C A". Let My &

MxA, V) xqan U - X x U, My, d=ef./\/lU XX msve X and let ./K/lv[_/,e be
the normalization of My . in My . xx XO. Assume that My — X x U
and My, — X x U are flat. Suppose we have a geometric point x of
(Muy) xx {0}(k) which lies in a section T € WY, with image 0 x s €
(X x U)(k). The the preimage of x in My . is supported at a single point.
Furthermore, the preimage of U(Z) in My .. xxxu ({0} x s) is connected.

Proof The point x gives rise to a point s € U (k) C A" (k) corresponding to a
tuple a € k". The flatness hypotheses imply that the natural map M (A, V,) —
My xy s is an isomorphism, that My . Xy s = M(X, Va) X x; v>ve Xk
and that My, xy s - My . Xy s is a finite birational map. It follows that
My, xy s is surjected on by the normalization of M (X, Va) X x, vrsve Xk,
and we conclude by Proposition 3.4.4 and Remark 3.4.3(1). O

The rest of this section is devoted to the proof of Proposition 3.4.4. We first
recall some torus actions on Grg x. Let TV = TV x G,,. We let T-**" act
on X = Al by letting TV act trivially, and the G,, factor act via scaling the
coordinate v.
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Givenr € R* we have a canonical isomorphism R((v —1)) SR (v—rt)) of
R-algebras given by the change of variable v — r~!v. This induces an action
Gm xz LG — LG of G, on LG (over Z) which is equivariant with respect to
the scaling action of G, on Al. Tt commutes with the right-translation action
of TV on LG, and thus we obtain an TV-*** action on LG which is equivariant
for the map LG — A!. It is clear that this action preserves the subgroup L*G,
and thus we get an action of 7¥-**" on Grg, x which is equivariant for the action
TV-**ton A!. This action preserves Sx (1).

Lemma 3.4.6 Let? = wt, € WV. Define an action TV x G,, x LG — LG
of TV-*** on LG given by the formula

(D.NAW) Y Adw)(D"HYAF""v)r' D,

where D € TV (R) is a diagonal matrix, r € R*, A(v) € GL,(R(v — 1))
and A(r~Y(v)) € GL,(R(v — rt) is obtained from A(v) by the change of
variable v — r~'v. Then this action preserves U{Z), UZ)® =" (for any h),
and the natural map U(Z) — Grg x is T **'-equivariant.

Proof We have

Adw) (D" HAC'Wr'Dw — rt) Yw ™!
=Adw)(D HAC'W)r'D@w —r)y Y w ™!
= Adw) (D" HAC ') v — ) w™ ! Ad(w)(D)

and

Adw) (D" HAC"Vr'Dw —rt)™"
= Adw)(D"HACE vy~ v — 1)V D.

The result now follows from the definitions since the first condition defining
U(Z)9e-= s stable under TV -conjugation and the second under both right and
left multiplication by 7V, and the change of variable v — r~'v induces an

isomorphism R[%] = R[5 _lrt] which sends —*- to O

v
v—rt"

Lemma 3.4.7 There exists a one-parameter subgroup G,, — T"-**' such
that for any h, the induced action via Lemma 3.4.6 on U(Z)%"=" satisfies the
following properties:

e Itis contracting, i.e. it extends to an action A' x UZ)%-=h — 1f(Z)deL=h
of the multiplicative monoid A,

o IfUR)CC=" is non-empty, the fixed-point subscheme of the action is given
by the sectionZ : Spec Z — UE)¥H=" x x {0}
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Proof We choose u € X,(TV) regular dominant, and choose an integer
N > h, = maxev{(u,@")}. We claim that the one parameter subgroup
r = (Ad(w=H"), rV) does the job. It suffices to verify the statement
for Noetherian Z[v]-algebras. For a Noetherian Z[v]-algebra R (sending v
to t € R), recall the explicit description of Uy (Z)%-="(R) from Propo-
sition 3.2.8. Using that description and Lemma 3.4.6, we see that for any
A € Ux @) ="(R),
the action of an element r € R* sends A to A" where A’ is given by

Vj—=8ix j—=8i<w(j)

A;j =rh (F_Nv)ai>j( Z cij,k(r_Nv — t)k)rN”jr_Mw(j)
k=—h

Vj=8i>j=8i<w(j)
— v5i>j< Z rN(Vj—5i>j—k)+ui—ﬂw(j)cij r(v — rNt)k>.

k=—nh

Ifk <vj—46i~j,then N(v; — 8 — k) + i — py(j) > Osince N > hy,.
If kK = vj — §;~;, then necessarily §; ;) = 0. We have two subcases: If
i =w(j),then N(v; —8;~; —k) + i — Lw(j) = 0 and ¢;j x = 1. Otherwise,
i > w(j), and N(vj — 5,'>j —k)+ ui — Hw(j) = Mi — Hw(j) > 0, since
w was chosen to be regular dominant. Thus we see that the coordinates c;; «
(fori # w(j) are homogenous for our G,,-action with positive weight, hence
the G,,-action extends to an action of A!, and that the fixed point scheme
Ux (2)%4=" is exactly given by the section Z. |

Lemma 3.4.8 Let k be an algebraically closed field and let M be an irre-
ducible variety over k, Suppose there is an action of the multiplicative monoid
A}( on M over k with a unique fixed point x € X (k). Then M is unibranch at
x. In particular, the completed local ring OJ?/I, . of M at x is a domain.

Proof Let m : M™ — M be the normalization map, so = is finite. Since
A}{ x M™ is normal, the action of A}( on M extends to an action of A}( on
M™, by the universal property of the normalization. In particular, we get an
induced action of G, on M™™,

We claim that the fixed-point scheme M™Cn has underlying reduced
scheme (Mnm,Gm)red — (n—l(x))red. Since n((Mnm,Gm)red) C (MGm)red —
x, we have (M™-Cmyred — (=1 (x))red On the other hand, 7~ (x) is a finite
scheme with a G,,-action, hence (7 ~!(x))™d consists of G,,-fixed points, so
(7T_1 (x))red C (Mnm,Gm)red.

Now the action map A}C x M™ — M™ induces a surjective map M"™ —
M"™-Cn _given by m +—> 0 - m. Since M™™ is irreducible, we conclude that
(') = Xisa single point. Hence, M is unibranch at x by Remark
3.4.3(1). The last assertion follows from Remark 3.4.3(2). |
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Proof Proposition 3.4.4 When e = 1, we can directly apply Lemma 3.4.8 to
U(Z, A, Va), with the G,,-action obtained from Lemma 3.4.6 via base change.
Note that U (Z, A, Va) is irreducible since M (A, V,) is by Corollary 3.3.5.
Furthermore, this contracting G, lifts to a contracting G, -action on the nor-
malization U(Z, A, V,)"™. Now the fiber of this normalization above 0 € X
has a contracting (,,,-action with a unique fixed point (namely, the pre-image
of Zx), and hence is connected.

For general e > 0, by composing the previous action with the eth power
map G,, - G,,, we can construct a contracting G,,-action on U (Z, A, Va)
which is equivariant for the eth power of the scaling action on Xj. This allows
us to define a G,-action on U (Z, A, Va) X x, v—ve Xk Which is contracting to
Zx. We can now repeat the same argument as above. O

3.5 Spreading out normality

We now return to the universal setting. Recall that X = A! = Spec Z[v], with
a chosen coordinate v. We thus get a zero section O : Spec Z — X given
by v — 0, and X° = Spec Z[v, %]. We will abusively think of v as a global
function on any X-scheme. We study the following setup:

Setup 3.5.1 We have an integral finite type Z-scheme S, and a finitely pre-
sented map M — X x S. We assume that the generic point of S has
characteristic 0. We also assume the following properties:

e The base changed family M? = M xx X° — X% x S over X is smooth.
e M is the Zariski closure of M. In particular v € O(M) is aregular element.
e M is normal.

Given this setup, we will denote My = M X x«s.0 S, the fiber of M above the
zero section 0 : Spec Z — X.

We want to understand the base change of this situation to a complete
discrete valuation ring R, via amap f : Spec R — X x § which induces a

map Z[v] — R sending v to a uniformizer of R. In general, the base change

Mg def M xxxs,r Spec R may neither be flat over Spec R, nor be normal.

However, the following Proposition will guarantee that both properties will
hold for “generic” choices of f:

Proposition 3.5.2 In Setup 3.5.1, there exists a non-empty open subscheme
U C S such that if R is a complete discrete valuation ring and f : Spec R —
X x S factor through X x U,and such that v is sent to a uniformizer of R,
then the base change Mr — Spec R is flat, and Mg is normal.

Remark 3.5.3 The hypothesis that v is sent to a uniformizer of R is necessary.
For example, let M = Spec Z[x, v]/(x*> — v) — Spec Z[v], S = Spec Z, and
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let £ : © — Spec Z[v] be the map sending v to @2 where & uniformizes R.
Then the base change Mg = Spec R[x]/ (x2 — wz) is not normal.

Lemma 3.5.4 Let B be an Alv]-algebra. Assume that v is a regular element
in B, B[%] is flat over Alv, %], and B/v is flat over A[v]/v = A. Then B is
flat over A[v].

Proof Let x € Spec B, and let y be the image of x in Spec A[v]. We need to
show By is flat over A[v],. If x € Spec B[%], this is part of our hypothesis.
If x € Spec B/v, our hypotheses imply B, /v is flat over A[v],/v, and that

Tor'lq[v]" (A[v]y/v, By) = 0. We conclude by the local criteria of flatness ([75,
Lemma 10.98.10, Tag 00MD]). O

Lemma 3.5.5 Assume Setup 3.5.1. Then there is a non-empty open subscheme
U C S such that the base change M x xxs (X x U) — X x U is flat.

Proof We already observed that the coordinate v € O(X) is regular in M. Let
My be the S-scheme M x x {0}. Since § is integral, by generic flatness ([75,
Tag 0529]), there is a non-empty open U C S such that My xg U is flat over
U. On the other hand M° — X° x S is smooth, hence flat. We conclude by
Lemma 3.5.4. O

Remark 3.5.6 The above proof actually shows that Lemma 3.5.5 holds under
much less restrictive conditions than Setup 3.5.1: In fact one only needs a
finitely presented map M — X x S such that § is integral, v is regular in M
and M? — X0 x S is flat.

Lemma 3.5.7 Assume Setup 3.5.1, and furthermore assume that M — X x S
is flat. Then there is a non-empty open subscheme U C S such that the map
My xs U — S has geometrically S fibers.

Proof Our hypotheses imply that the fiber over the generic point of § of the
composition M — X x § — § is geometrically normal. By [37, Propo-
sition 9.9.4], there exists a non-empty open subscheme U C § such that
M xs U — S has geometrically normal fibers. Hence for each geometric
point u of U, M X g u is normal, and in particular S;. Since the fiber Mg x5 u
is the zero subscheme of a regular element v € O(M x s u), itis Sj. O

Lemma 3.5.8 Assume Setup 3.5.1, and furthermore that M — X x S is flat.
Then there is a non-empty étale S-scheme U — S such that for any discrete
valuation ring R and a map f : Spec R — U which sends v to a uniformizer
of R, the base change Mg = M X x5 r (X x U) is Ry.

Proof It suffices to treat the case M is affine. As in the proof of Lemma 3.5.7,
by shrinking S, we may assume M — X x S has geometrically normal fibers.
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Let n = Spec k be the generic point of S. Then there exists a finite
(and necessarily separable) extension x’ of « such that all irreducible com-

ponents (with the reduced scheme structure) of (My), def My x5 Spec k'

are geometrically integral. The map (Mp), — Spec «’ extends to a map

(My)vy def (Mp) xs V — V where V — § is an irreducible affine étale

S-scheme. By [75, Tag 0553], we may replace V by an open subset so that for
any irreducible component Z of (Mp)y, the map Z — V has geometrically
integral fibers. This implies implies that for any discrete valuation ring R and
amap f : Spec R — X x V sending v to a uniformizer = of R, all the
irreducible components of the special fiber of the base change Mg — Spec R
are obtained by base change from the irreducible components of (Mp)y . (This
is because the base change of Z — X x V to Spec R will have geometrically
integral fibers over Spec R/@ . It is here that we use the assumption that v is
sent to a uniformizer of R.)

We now denote Spec B = M Xxxs (X x V). Then B is normal, and
(Mo)y = Spec B/vB. Let P be the finite set of minimal primes of B/vB,
which we also view as the height 1 primes of B containing v.

Let p € P, and we fix a finite set {yy ;}; of generators for p. Since B is
regular in codimension 1, the localizations By is a discrete valuation ring.
Hence there is an element x, € p C B which generates p /p* Qp By as a
By-module. This implies that the module p/(x, + p?) as amodule over B/p is
supported on a proper closed subset of Spec B/p. Thus there is f, € B with
fp € p,and ap; € B foreachi € I such that

fo Yp.i = ap.i xp mod p*. (3.4)

We remark that these relations persists on any base change of B. Now consider
the subscheme V (f,) = Spec B/(fp +p) < Spec B/p — V. The locus of
points in V' where the fiber of V (f,) has the same dimension as the fiber of
Spec B/p is constructible, and does not contain the generic point of V. Hence
there is an affine Zariski open V, C V over which the fiber of V(f,) has
dimension strictly less than the dimension of the fiber of Spec (B/p).

We finally claim that U = (), V, satisfies the conclusion of the lemma.
Indeed, let R be a discrete valuation ring and f : Spec R — X x V sending
v to a uniformizer @ of R. Let Mg = Spec B’. We already observed that the
minimal primes of B’/v = B’/w are pB’/v for p € P. But now equation
(3.4) holds in B’, and furthermore our arrangement guarantees that f, ¢ pB’.
This implies pB{, is generated by x;, hence B{, is a discrete valuation ring. O

Proof of Proposition 3.5.2 We first pick a Zariski open U; C S for which
conclusion of Lemma 3.5.5 holds. We then pick a Zariski open U, C U; for
which the conclusion of Lemma 3.5.7 holds. We let U3 — U, be the étale
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map for which the conclusion of Lemma 3.5.8 holds. Thus the base change
M x x «s Uz — Us satisfies the conclusions of Lemmas 3.5.5,3.5.7,3.5.8. We
let U be the image of U3 in S, then U is an open subscheme of §. We claim
that this choice of U satisfies the conclusion of the Proposition.

Indeed, let R be a complete discrete valuation ring and f : Spec R — U
be a map that such that v is sent to a uniformizer of R. Since R is complete,
we can lift f to a map Spec R — Uz, which we will abusively call f again.
Then the base change Mr = M is a base change of M xxxs Us — X x U3
along f : Spec R — Us. Hence Mp — Spec R is flat and is R at the generic
points of its special fiber. Since the generic fiber of Mg is smooth (being a
base change of M? — X x S), M is R. Furthermore, since the special fiber
of Mg is S1 and Mp is flat over Spec R, Mg is S>. Thus Mg is normal. |

3.6 Sections

Proposition 3.6.1 Let M — X x S be a flat finite type map of finite type
Z-schemes, and S is irreducible with characteristic 0 generic point. Suppose
we have a section s : S — My. Then there exists a non-empty Zariski open
subscheme U C S and a closed subscheme Z — M X x«s (X x U) such that

e Z — X x U is flat and quasi-finite.
e Z contains the section s|y : U — (My) xs U

(recall from §3.5 that M is the fiber of M along the zero section 0 : Spec Z —
X).

Proof Let Spec k — S be the generic point of S, and consider the base change
M, — X, = Ai. The section s induces a k-point s, of (Mp),. Since M, —
X, isflat, itis generizing, and we can find a point x of M, lying over the generic
point of X, whose closure contain s,.. The closure of X in M, is an irreducible
curve in M, which dominates X,, and is hence is flat and quasi-finite over
X,.Now, x C M, extends to a closed subscheme Z C M xx«s (X x V) for
some non-empty Zariski open V C S. Note that Z contains the generic point
of the section s, hence also contains s|y : V — (Mg) x5 V.

Now there is a non-empty Zariski open W C X x V containing X,., over
which the map Z — X x V is flat and quasi-finite. Then the image of (X x
V)\ W in V is constructible and does not contain the generic point of V', hence
its complement contains a non-empty Zariski open U C V C S. Replacing Z
by Z N (X x U), U and Z satisfy the desired properties. m|

Corollary 3.6.2 Let M — X x S, s : S — My as in Proposition 3.6.1.
Then there is an integer e and a non-empty Zariski open U C S depending on
M, S, s with the following property: for any complete discrete valuation ring
R and amap f : Spec R — X x U sending v to an element with positive
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valuation in R, there exist a finite DV R extension R’ of R of degree < e, and
an R'-point of My lifting the point induced by s in the special fiber of Mg.

Proof Wetake U and Z C M X xxs(X x U) as in the conclusion of Proposition
3.6.1, and let e be the maximal degree of a fiber of Z — X x U. Then the base
change Zr — Spec R is flat, quasi-finite and contains the point induced by s.
Since R is complete, [75, Tag 04GE] shows that Zg must contain a connected
component C which is finite flat over R contains the closed point induced by
s. The normalization of C then breaks into a disjoint union of the spectrum
of finite complete DVR extensions of R, whose degrees are < e. One of these
components will have its closed point mapping into s. O

3.7 Products

Let J be a finite set. Let A € X(T")Y = X*(T)7 be dominant. For j € 7,
Aj € X*(T") will denote the jth component.
We define Mx 7(A, V) = []; jeg Mx(Aj, V), where the product means

fiber product over X. We have My, 7(A, V) C (Grg x xA")7.

LetZ = (T Zj)jeg € WY-7 . As in Definition 3.2. 9, we have constant sections
Zj : A" — (Grg x xx{0}) x A", and these compile into a section? : (A" —
((Grg,x xx{0}) x A™YJ . We thus get an induced Z-point on each fiber of
((Grg.x xx{0}) x A" — (A", which we abusively still call Z.

The following Theorem is the main result of this section:

Theorem 3.7.1 Fix an integer e > 0. There exists a Zariski open U =
U({Aj},e,n) C A" which depends only on e, n and the subset {};} C
X (TY), such that: For any complete discrete valuation ring R and any map
f:Spec R — X xz7]] jesU such that v is sent to an element of valuation at
most e, the base change Mx_7(,, V)gr — Spec R is flat and unibranch at any
point of the special fiber of Mx_ 7 (%, V)r which lies in a section 7. Further-
more, letting U(Z, ., Vg = U(Z) N Mx,7(A, V)R, the mg-adic completion
of O(U(Z, A, V)R) is a domain.

Proof To simplify notation, in this proof we will set M; = Myx(x;, V),
and My = [[;csMj = Mx g, V). Fors € WY, we also abbreviate
Uj(s) =M; N u ).

We first observe that (M )o = Mj xx {0} can only meet a section s which
occurs in the subset {wr, € Wvl v € Conv(A;)}. Note that the latter is a finite
set depending only on A ;.

Let n be the generic pomt of A". For each j € 7, let Fix; to be the set of
T e WY such that the section 5 meets (Mj)o xan 1.

We can now find a non-empty Zariski open §; C A" depending only on A ;
such that
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o Mj xxxs (X x§;)— X x§;isflat

o (M; xxxs (X x §j))o contains the restriction of the sections )] S for
s € Fixj, and is disjoint from any section’s ¢ Fix;.

® (2hy;)!is invertible in S;.

Indeed the first item can be arranged by Remark 3.5.6, and the second item
can be arranged by the standard constructibility argument: indeed for any
5 € {wt, € WY|v € Conv(h;)}\ Fixj, the image of 5 N (M) under the
projection to S is a constructible set not containing 7, hence its complement
must contain a non-empty open subset of S. Welet § = Njc7§;, so § depends
only on the set {A;}. For the rest of the proof we replace M; by its restriction
M j |s.

By construction, for each j € J, M; — X x §is flat. Applying Corollary
3.6.2 to this family and the sections s’ with s’ € Fix;, there is a Zariski open
V C S and an integer ¢ such that: For any complete discrete valuation ring
R and amap f : Spec R — X x S sending v to an element with positive
valuation of R, there is a finite extension R’/ R of degree < ¢ such that (M R
has an R’-point for all j € J. Since the data we used to apply Corollary 3.6.2
depended only on {A; | j € J}, so does V and e. -

Now forany integer 1 </ < eand j € J, welet M ;z be the normalization

of Mj 21t EM; X 5y (X x S). By Proposition 3.3.8, each M,  — X x S
satisfies Setup 3.5.1. We now let U C V C § be the Zariski open which
satisfies the conclusion of Proposition 3.5.2 for all the M x, and furthermore
that ele! is invertible in U. Clearly U depends only on {A; | j € J} and e.

We claim that the U thus constructed satisfies the conclusion of the theo-
rem. Let R be a complete DVR and f : Spec R — X xz ][] jeg U such that
v is sent to an element a with valuation [ € [1, e]. Since all our schemes are
excellent and Noetherian, being unibranch at a point is equivalent to being
analytically irreducible. Therefore, it suffices to establish the unibranch prop-
erty after making an unramified extension of R. Thus, we may and do assume
that R has separably closed residue field. Then for any integer m invertible in
the residue field of R, there is a unique extension of R of degree m, namely
the extension obtained by adjoining the mth root of any uniformizer of R. Let
R’ be the unique extension of R of degree ¢!, so R’ contains all extensions of
degree < ¢ of R. We may choose a uniformizer @ of R’ so that ol =aq. By
construction of V, for each j € J and’s € Fix;, (M;)r admits an R’-point
lifting the point 5 in special fiber of (M ;).
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Our choice of uniformizer @ gives rise to a commutative diagram

M . (3.5)

Mjp —— M;

Spec R" —— Spec R

Here the map f’ is induced from f and the map Spec R" — X sending v
to the uniformizer @ of R’. We note that the base change of (M;)g to R’
is also the change of M;z — X x U along f ’. The construction of U
implies that the base change (M jz1) g’ is normal, and hence is the normaliza-
tion of (M 1) g = (M) g This implies that the preimage of any U; ) g
in (Mj z1)g 1is its normalization. By Corollary 3.4.5 (which applies by the
construction ofNU ), for each s occurring in the special fiber of (M;)g, its
pre-image in (M ;1) g/ is supported at a point. This implies that (M;) g is
unibranch at 5, and hence the completed local ring OE\MJ,)R/ > 1s a domain.
Furthermore, Corollary 3.4.5 also shows that the preimage of the special fiber
of U; (g in (M z1) g is connected. By Lemma 3.7.2 below, the @ -adic
completlon O(U;(5))"” is a domain.

We now finish the proof. Let? € WY+ such thatZ occurs in the special fiber
of (Mx,7)r. Then for each j € J, the componentz; € Fix;. The completed

local ring of (M, 7) g’ at 7 is the completed tensor product over ® O( M) %0
J.R

where the index j runs through the set 7. Now each factor c is a complete local
Noetherian domain, has an R’-point, and (’)( M) 3 [ w] is regular (since the
generic fiber of (M) g is smooth). By [54, Proposition 2.2] (which was stated
for finite extensions of Z,, but the proof works for general complete DVRs),
the completed tensor product is also a domain. Since the completed local ring
of (Mx, 7)r atZ embeds into the completed local ring of (Mx, 7) g at Z, the
former must also be a domain. Hence (M, 7)r is analytically irreducible at
Z, and so is unibranch at 7 by Remark 3.4.3(2).

Finally, we show the @ -adic completion of O(U(Z, 2, V)g') = Qg J
O(U(z;)g) is adomain. To do this, instead of invoking [54, Proposition 2.2],
we use [10, Lemma A.1.1]: since each O(U; (z’Vj)R/)/\w[%] is a regular affi-
noid domain which admits a rational point over R’ [%], they are geometrically

@ Springer



1356 D. Leetal.

connected. Thus the completed tensor product ®_/-(’)(U f1t) R/)[%] is geo-
metrically connected. Since it is also regular, it is a domain. We conclude as
before. m|

Lemma 3.7.2 Let R be a complete DVR with uniformizer w. Let A be a finite
type flat R-algebra, and assume A[%] is a regular domain. Furthermore,
assume that the special fiber Spec A™ /@ of the normalization of Spec A is
connected. Then the w-adic completion A™® of A is a domain.

Proof Since A is excellent, A"™ is excellent and finite over A (by [75, Lemma

07QV], [75, Lemma 035S]), and we have an inclusion A" C AM:"= of

. . def . .
@ -adic completions. It thus suffices to show that B = Ao s a domain.

Now our hypotheses implies that B is R-flat, excellent ([53, Main The-
orem 2]), normal ([75, Lemma 0C22]), and B[%] is regular ([75, Lemma
033A]). Thus if B is not a domain, Spec B[%] must be disconnected, and
hence there is a non-trivial idempotent e € B[%]. But B is normal, hence
e € B. Furthermore, ¢ ¢ @w B, since if ¢ € w B, then e = 2 implies e is
infinitely divisible by @ in B, and hence is O since B is @ -adically com-
plete and separated. Similarly, (¢ — 1) ¢ @ B. Thus the image of ¢ in B/@
is a non-trivial idempotent, contradicting our hypothesis that Spec B/w is
connected. O

4 Local models in mixed characteristic

In this section, we will specialize the universal models from §3 to a mixed
characteristic DVR. We introduce naive models which may not be flat but
are defined by an explicit condition. The main result is Theorem 4.6.2 which
labels the top-dimensional irreducible components of the special fiber by Serre
weights. In fact, this label is “intrinsic” to the component in the sense that com-
ponents with same label which appear in different models can be canonically
identified inside (a suitable subvariety of) the affine flag variety (see Theorem
4.3.10). Finally, we study the TV -fixed points on these components and match
this with Herzig’s conjecture (Definition 2.6.1) in Theorem 4.7.6.

Recall that O is a finite flat local Z ,-algebra with fraction field E and residue
field F. When we decorate an object that occurs in §3 with a subscript O, it
means the base change of that object to © via the map A' — O sending ¢
to — p. In particular, we have the objects LGo, LTGo, L™~ Go, LT Mo, and
Grg.o = LTGo\LGo. Similarly, objects decorated with E or F denote the
further base change to E or IF respectively. As before, the restrictions of these
functors to the category of Noetherian O-algebras have simple descriptions
setting t = —p.
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4.1 Mixed characteristic local model

For convenience of the reader, we recall some of the discussion from §3 special-
ized over O. As explained at the end of §3.1, since v is invertible in E[[v + p]l,

Grg, g is isomorphic to the affine Grassmannian of GL, over E. Similarly,
Iy def LGy is the usual Iwahori group scheme. (In §5.1, we introduce a

version of Z over O but for now, we only need it over F.) Then

(Grg.0)r = FI & T \L(GL,)x

is the affine flag variety over F.

Let A € X,(T") be a dominant cocharacter of 7V C GL,. Define S,(1) S
GrgL,, e to be the open affine Schubert cell associated to (v + p)A € GrgL, E»
SE(X) € GrgL, g its Zariski closure, and M (< A) the Zariski closure of
Se(A) in Grg . Then M (< A) is the Pappas—Zhu local model defined in
[69] associated to the group GL,, the conjugacy class of A, and the Iwahori
subgroup.

Leta € O". Let R be a Noetherian (O-algebra. Recall that

LT Mo(R) = {M € Mat,(R[[v+ pl) | M is upper triangular mod v}.
Define the closed subfunctor nga C LG by the condition that

LG (R) &

dA  _,
AeLGo(R)| v—A
dv

+ADiag(a)A~! € Jlr L+MO(R)}. (4.1)
v

4

It is easy to see that LTGo(R) - nga(R) - LQZ"(R) and hence we get a
closed subfunctor Ger‘o def LJFQO\LQ(Y)zl C Grg, o (viewed as functors on

Noetherian (O-algebras). Comparing with (3.1), Grgj’o is clearly the fiber of
the universal Grg’ x over the O-point (—p, a).

Proposition 4.1.1 Let a € O". There is a natural isomorphism
S5 NGriiy — (PA\GLy)Eg

where P, is the parabolic subgroup of GL,, determined by the condition that
the ath entry vanishes for all roots a such that (A, a") < 0. In particular,

SE(A) N Ger‘o is a closed, irreducible, projective and smooth subscheme of
SeL).
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Proof This is Proposition 3.3.4 base changed to E and taking the fiber over
ac A"(E). 0

We can now define the local model associated to A and a.

Definition 4.1.2 Let a € O". Define M (), V,) to be the Zariski closure of
S% AN Ger‘O in M (< A). Itis a projective, flat, O-scheme of relative dimen-
sion dim(P,\GL,) .

4.1.1 Naive local model
Definition 4.1.3 Let a € O". Define
M™(< 2, Va) = M(< 1) NGr g .

Remark 4.1.4 There is a natural inclusion of M™ (< A, V,) into the base
change MY/ (< A, V) via the map Spec O — X x A" given by (—p, a)
which is an isomorphism on the generic fibers over E. It is in fact the case
that this map is an isomorphism, though we will not need to know this: By
[62, Théoreme 1.5], the global Schubert variety Sx(A) is flat over X, hence
the base change of Sx (1) along Spec Z, — X induced by ¢ — —p is flat,
hence coincides with M (< A). Imposing Eq. 4.1 yields the result.

Proposition 4.1.5 For any ' € X, (T") dominant with \' < A anda € O",
M@, Va) C M™(< A, Va).

Proof Since S%(1') C Sg(A), S5(A)¥» C M™(< A, Va)g. This gives the
desired inclusion. O

Notice in Proposition 4.1.5 that the generic fiber of M™ (< A, V,) contains
the generic fibers of the models M (A’, V,) forall A" < A. For later applications,
we will need an O-flat model with the same generic fiber. With that in mind,
we make the following definition

M= Vo) € | MO, Va), 4.2)
A <A

which is O-flat and projective and clearly satisfies M (< A, Vo) C M™(< A,
Va).

Proposition 4.1.6 The above inclusion induces an equality

M(S A, Va)E = an(f A, Va)E-
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Proof Since E is characteristic 0, by Corollary 3.3.5 and Proposition 3.3.8
M™(< &, Va)e = [/, (P \GL,)g. In particular, the generic fiber is the
reduced disjoint union of the generic fibers of M (', V,) for A < A. O

4.2 Special fiber

In this section, we study the special fiber M™ (< A, Vo) of M™(< X, V)
which is a closed subscheme of the affine flag variety F1 = Grg . In particular,
we study the condition (4.1) over IF. To ease notation, we let F1V2 = Ger‘F C H
be the closed subscheme defined by the condition (4.1) restricted to [F-algebras.

Note that when R is a Noetherian F-algebra, L™ M (R) appearing in (4.1) is

the same as Lie Zr(R) &f {M € Mat, (R[[v]) | M is upper triangular mod v}.

Recall that by [69, Theorem 9.3] (which is a consequence of the coherence
conjecture proven in [85]) the special fiber M (< A)Fr can be identified with
the reduced union of the affine Schubert cells S]lii(ﬁ)')déf Ir\IrwZy for w €
Adm" (1). The goal of this section is to describe Sp(w) N F1Va, thereby giving
a topological description of M™ (< A, Vu)F.

Remark 4.2.1 The special fibers of M™(< A, V,) and M (A, V,) are not
reduced in general (see Remark 8.1.4).

Definition 4.2.2 Let R be an F-algebra and a = (ay,...,a,) € R". For
any positive integer m, we say a is m-generic if for all i # j, a; —a; ¢
{—m,—m +1,...,m — 1, m}, where —m, —m + 1, ... are considered as
elements of ), < F.

Remark 4.2.3 Letv € X*(T) = 7Z". If 1, € W is m-generic in the sense
of Definition 2.1.10(2), then v mod p € (FF,)" is m-generic in the sense of
Definition 4.2.2.

Let d def dim(B\GL,,)r. Recall the « critical strip HOEO’I) ={xeV]0<
(x,aV) < 1} from §2.1.1. We now state the main result of this section.

Theorem 4.2.4 Let h be a positive integer. Let W € W and a € O". Assume
that W is h-small (Definition 2.1.10(3)) and thata = a mod @w € F" is h-
generic. Then the intersection Sp(W*) N F1V2 is an affine space of dimension

d —#{a e dF | (A c HOD).

Lemma4.2.5 Let A € X (TY) = X*(T). Let h), = maxyv{(A,a”)}. If
w € Adm(L), then w* € Adm" (1) and w* is hy-small.

Proof This follows directly from [56, Lemmas 2.1.4 and 2.1.5].
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Corollary 4.2.6 Let . € X*(T") be a dominant cocharacter. Assume that
a=a mod w € " is hy-generic. Then there is a natural bijection

W > (Sp(W*) NFIVa)

between Adm™2(A) and the top-dimensional irreducible components of
an(f )"7 Va)]F-

Proof By [69, Theorem 9.3], M(< A)F is the reduced union of SIE(E) for
Z € AdmY (A). Thus, (M™ (< X, Va)F)red is the reduced union of Sg (%) NF1Va,
By [56, Lemma 2.1.4], any such 7 is of the form w* for w € Adm()). By

Lemma 4.2.5, all 7 € AdmY (L) satisfy the hypotheses of Theorem 4.2.4.
Thus, Sg(Z) N F1V2 has maximal dimension d if and only if 7 = @* where @ is

regular. Moreover, the assignment w +> (ng(w*) NF1V) is injective: indeed

if (Sp) NF1YVa) = (Sp(Z") NF1Ya) then Sp(Z) N FIV2 and SR(Z') NF1Va are
both open and nonempty in an irreducible scheme and so must intersect. In
particular, Sg(Z) and S2(Z') intersect so that 7 =7'. |

The remainder of the section is devoted to the proof of Theorem 4.2.4 by
studying the V,- condition (4.1) in terms of explicit coordinates for Sf;(w*).
Let i € W. The open affine Schubert cell Sp(w*) C Flis an affine space of
dimension £(w*). We now recall explicit coordinates for the affine space using
the open cell.

Recall that the roots ® of G = GL, are canonically identified with the
coroots of G and so we use the same notation for both. Thus, for any integer
m and any o € ®, we have an affine root group Uy, of GV. Concretely, if
a = a;; with i # k, then U, ;, is the unipotent group with ik-entry cv™ for ¢
a constant and all other non-diagonal entries zero.

Specializing Definition 3.2.1 to IF (hence # = 0), we have

def

1 1
L™ Gr(R) = {g € GLn(R[—D ‘ g mod — is lower unipotent}.
v v

In particular, Uy ,, C L™~ Gy if and only if m < —{4~¢. (Recall from §1.8.3
that §p is 1 if P is true and O if P if false.)

We first record two easy lemmas.
Lemma 4.2.7 If w = st, € W and we set? = w* € WV, then W _gm? =
U—s(oc),m—i—(v,av)-

Now fix x € Ayp.
Lemma 4.2.8 If w € W and we setZ = w* € WY, then U_am C7\IFZif
and only if (W(x), a) < m. Similarly, U_g ,, C Z-'L™GgZ if and only if
m < (w(x),av).
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Proof Let w~! be st,. By Lemma 4.2.7, U_y,, C Z 'ZpZ is equivalent
to U_g@)mtaY) = ZU_omZ~' C Zp. This is equivalent to the fact
that m + (v, ) > (x,s(«)") (note that [(x,s(a)")] = 8s@)=0), or that
m > (s7'(x) —v,av) = (W(x), «). The proof of the second part is similar.

m]

Definition 4.2.9 For any Z € WV, define N3 def 7 'L~ GrZ N Ip.

We can use Lemma 4.2.8 to characterize the affine roots which appear in
Ny.

Proposition 4.2.10 If &’ € W and set 7 = w* € WY, then U_gqm C N if
and only if
(x,a¥)y <m < (W), a). (4.3)

Proof This follows from the definition of Nz and Lemma 4.2.8. O
Let dy i be [{W(x), ")) — [(x, «¥)]. Note that [(x, «")] = Sa=0.
Remark 4.2.11 1f w is m-small, then dy 5 < m for any o € ®.

The following elementary corollary describes the entries of Ng in terms of
“polynomials with degree bounds”.

Corollary 4.2.12 Let R be a Noetherian F-algebra and a« € . Then
(Ng+(R))_q = {v5“>0fa,R} where fo r € R[v] has degree dy 3 (with the
convention that fu, r = 0ifdy 5 < 0.)

The significance of Nz lies in the following standard description of the affine
Schubert cell over F.

Proposition 4.2.13 Let 7 € WV. The subgroup scheme N3 is a finite-
dimensional affine unipotent group scheme over F. The natural map

Nz — Sp(2)
is an isomorphism of affine spaces of dimension £(2).

Before giving the proof of Theorem 4.2.4, we collect a series of preliminary
results.

Definition 4.2.14 Define the support of N (denoted Supp(Ng)) to be the set
of o € ® such that U, ,, C Ny for some m.

Corollary 4.2.15 Leta € ® and w € W. Then the following are equivalent:

(1) —a € Supp(Ng+),
(2) [(wx),a")] > [{x,a")]; and
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(3) (w(x),a”) > 0and w(x) and x lie in different a-strips.
In particular, —Supp(Ny+) C w(®T) where w € W is the unique element so
that w1 € W+ and #Supp(Ng+) = #0+ — #{a € T | W(Ag) ¢ HV).

Proof The equivalence of (1) and (2) follows from Proposition 4.2.10. The
equivalence between (2) and (3) is clear.

If —o € Supp(Ng), thenby (3), (W(x), &) = (w™ ' W(x), w™(@)¥) > 0.
Since w— ' € W, we have that w1 (&) € & and that @ € w(d™).

For each o € ®T, (3) implies that exactly one of {o, —a} is in Supp(Ny+)
unless w(Ag) C Ho([o’l). This gives the desired formula for #Supp(Ng+). O

Corollary 4.2.16 Let w be as in Corollary 4.2.15. Then Ng+ C w(LTN)w™!
where N represents the subfunctor of GL,, of unipotent lower triangular matri-
ces and LT N represents the functor on F-algebras R — N (R[[v]).

Proof of Theorem 4.2.4 Letw be asin Corollary 4.2.15 so that —Supp(Ng+) C
w(®T). Let C = w(Cp) denote the Weyl chamber corresponding to w(®™).
We use <¢ to denote the partial order on w(®™") defined by the set of simple
roots w(A) (i.e.a’ <¢ «if and only if @ — ' is a non-negative sum of elements
in w(A)).

For any « € Supp(Ng+), by standard results about unipotent groups,
(Nug*l)_a = —v5“>0fa + G4 (<c @) where G4 (<¢ @) is a linear combination
of terms of the form v‘S“I>°+“'+‘Sak>0falfa2 oo foqp Wherea = oy + ...+ ax
and —o; € Supp(Ng+). Note that if @ > 0, then at least one of the «; is also
positive and so v3e>0 divides G4 (<c o).

Consider the expression

v def d N+
Ly(Ng=) =v 70

Nz! + Ng+Diag@ Nz

Let —a € Supp(Ng+).
Then,

(NzDiag@ Nz = @, " )0%0 fy + Go(<c @) + Fag(<c o) (4.4)

where F» ,(<¢ o)isalinear combination of terms of the form pde1>0 Ja, Gy (<c
an) where o] + ap = o and —a1, —ar € Supp(Ng+). (Recall from 1.8.1 that
(a, o) denotes the difference a; — ay ifa = &; — e anda = (ay, ..., a,) €
F".) Note that if « > 0, then at least one of the «, 3 is also positive and so
ve>0 divides Fo(<c a).

do, i
Let fo =) ;%0 ca,iV'. Set

da,zﬂ
def , dNgx s . ;
f; = v dv )—g = V70 § @ +5a>0)ca,ivl-
i=0
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Since the diagonal terms of v dg’f* are zero, a direct computation shows that
dy, i

W= =N o = 00 Y (i + Baz0)caiv’ + Flo(<c o), (45)
i=0

where Fi o (<c @) is alinear combination of terms of the form fjl G, (<c a2)
where a1 + a2 = o and —a 1, —ap € Supp(Ng+). By the same logic as above,
F1.o(<c «) is always divisible by pde>0,

Combining (4.4) and (4.5),
dot,ﬁ?

Ly (Ng)—a = 00 Y (i 4+ 840+ @ a"))caiv) + Fu(<c @),  (4.6)
i=0

where Fo(<c &) = aiGo(<c @) + Fia(<c @) + F2,o(<c ).
Finally, we consider the naive monodromy condition (4.1) on the family
w* Ng«. By Leibniz rule, this is the condition that

- - 1
W*LY (Ng) (@)~ + LY (") € = Lie Tp .
v

It is straightforward to check that Lz (w*) € %Lie Zr and so the condition
is equivalent to vLY (Ny+) € (0*)~!LieZp w*. By Lemma 4.2.8, this is
equivalent to p%«d+de=0 — ylL@@).a”)] dividing LX (Ni#)—q forall @ € ®.
In other words, all terms but the top degree one in (4.6) must vanish for all
—a € Supp(Ng+).

ByRemark4.2.11,dy 7 < mforall —o € Supp(Ng+). Since ais m-generic,
i+68y~0+ (@, a”) #0forallo and alli < dy, . The above condition on (4.6)
solves for ¢y ; foralli < dy i in terms of the coefficients of ple>0 F, (<c a).
The coefficients of v%>0 F, (<¢ «) are expressions in terms of coefficients
of fy for @’ <¢ a. There is no condition on Cady  fOr —a € Supp(Ny).

Thus, if we take N {g,‘i C Ny to be the subspace defined by these conditions,
then clearly N gv)i is an affine space of dimension #Supp(Ng+) with coordinates
given by the ¢y 4, ; for all —a € Supp(Ng+). Since w*N;}i‘ is isomorphic to
Sp(w*) N F1Va, this proves the theorem by the formula in Corollary 4.2.15. O

4.3 Irreducible components in the special fiber
We next want to compare the irreducible components of the special fibers

M™ (< A, Vu)r for different pairs (A, a). To do this, we introduce a common
space in which they all embed.
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Define F1Y0 to be the fpqc-sheafification of the sub-presheaf on F-algebras
R

R+ {IIFA € Zr(R)\LGL,(R) | (vdiA)A—1 c lLieIIF(R)} . @47
v v

This is a special case of GrZa]F where a = (0, 0, ..., 0), hence the notation.

We have and action of WY onFl by right translation, induced by the standard
embedding WY C LGL,(Z) (which sends an element w € W to the n by n
matrix whose (i, j)th entries are § j—(;), and sends #,, to v¥).

Proposition 4.3.1 Let7 = s_ltu e WV acting by right translation on Fl. Let
a € 7" and assume that a = s~ (1) mod p. Then

M(< MFZNFIY = M™(< 1, Va)rZ.
Similarly, for any w* € WY, we have
(Sp@*)Z) NFIYO = (Sp(@*) NFIV» )Z.
In particular, right translation by 7 induces a closed immersion
rz s M™(< A, Va)p < FIVO

Proof We show that the Vy-condition on M (< A)p 7 induces the V,-condition
(4.1) which defines M™ (< A, Va)F.

Let R be any Noetherian [F-algebra and let A € LGL,(R). We compute the
Vo-condition on the translate AZ. Namely, Zp -(AZ) € FIV° if and only if

d - d o IR
(vE(AE'))z_IA_l = v%(A)A_l + ADiag(s ' (1))A™! € — Lie Zp(R)
v

using that v%(v“) = Diag(u)v*. This is identical to the condition defining
FIVa = GrJ%. O

Since M™ (< A, Va)F is topologically the union of Sg(w*) N F1Va for w €
Adm(}), we consider certain translates of Schubert cells inside Fl arising from
the inclusion in Proposition 4.3.1.

Definition 4.3.2 Let5 € W and let iy, i, € WT. We define:

(1) Sp(wy, w2,s) C Fltobe the locally closed subvariety Sﬁ((wz_lwoﬁl)*)'sv*
C Hl;
(2) S3(@ T2 5V L S, T2.5) NFIY; and
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) S]Fvo (i1, W2, 3) to be the closure of S2(W1, W2, 5)V° in FI'0.

Remark 4.3.3 (1) he motivation for considering elements of the form w,, ! woWi
is that regular elements are of this form by Proposition 2.1.5.

(2) The closure of Sg (w1, W, %) V0 is usually strictly smaller than the closure of
Sp(w1, wa,s) (Which s a translate of an affine Schubert variety) intersected
with F1V0 (see §4.7).

Proposition 4.3.4 Let 5 = t,5 € W and let wy,wy € WT. Let m be
a positive integer. Assume W, Ywoiy is m-small and 5 is m-generic. Then
Sp(W1, W2, 5)V0 is isomorphic to an affine space of dimension d.

Proof By Proposition 4.3.1, S(@y, Wy, 5)"0 is isomorphic to S(Z) N F1Va
where 7 = (wz—lwowl)* for any a € Z" such thata = s~ (x) mod p. As Iy
is m-generic we deduce by Remark 4.2.3 that s~ () mod p is m-generic; the
result follows now from Theorem 4.2.4. O

Proposition 4.3.4 defines a collection of irreducible closed subvarieties
Sg" (W1, W, 5) of F1Y0 of dimension d, associated to certain triples (i1, W2, 5).
As we will see, in many cases, we get the same subvariety for different triples
(w1, Wy, s) and this is crucial in understanding how the special fibers of dif-
ferent M (< A, V,) interact.

Proposition 4.3.5 Let 5 € W and let @y, Wy € W. Assume that for each

i € {1, 2} there exists a positive integer m; such that w; is m;-small. There is
a closed immersion

Sp(, e, 5w, )Y C Sp(y, i, 5)Y°.
If S is (m1 + my)-generic, then the two sides are equal, hence
Vo~ e Vo, ~ o~
SpO (1, e, 5105 ) = Spl (W1, o, ).

Proof LetZ; = wj and 7, = wj. Then, we see that Zjwoz, s a reduced
expressionin WV, by Lemma 2.1.4 and the proof of [56, Lemma 2.1.3] (which
says that the star operation preserves reduced expressions). By [45, Proposi-
tion 2.8], we have

TrZiwo Ir 2, Ir = Tp Z1woZ, | Ir

L . L ~ o]y def ~
which in particular implies that Sp(wi, e, Sw, h € Sp(Z1wo)7, I3

~_ def ~ o~ . . . . .
Sp(Z1woz, l)’s""‘ = Sp(w1, W, ). This gives the desired inclusion.
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By Proposition 2.1.12, 17)2_11110@1 is (m1 +m>p)-small and if 5'is (m| +m>)-
generic, then 5w, Vism 1-generic. Thus, if 5'is (m + my)-generic, then both
sides are affine spaces of the same dimension by Proposition 4.3.4 and so
inclusion implies equality. m|

Proposition 4.3.6 Lets € W and ; € W1+ . Assume that’s is (n — 1)-generic.
Then, for any w € W,

S30(i1, e, 3) = Sy° (i, e, 5w ™).

We prove the Proposition after a couple of Lemmas.

Lemma 4.3.7 Lets, w, Wy be as in Proposition 4.3.6. Then,

Sp(wy, e,s) = Sp(wy, e, Sw™!)
where closure is taken in Fl.

Proof Translating by (5*)~! inside Fl, it suffices to consider the case where
s is the identity. Recall that Sg (w1, e, e) &ef Sp(Wiwo) def Ir\Ir wiwo Ip.
It suffices to show that Sg(wwo) is W -stable under right multiplication.
As wiw' is a reduced expression for all w’ € WV (as follows from a gallery
argument and the fact that the x-involution is length preserving), by [45, Propo-
sition 2.8], Sg(wjwo) contains Zp\Zp w} Ir w’ Iy for any w’ € W". By the
Bruhat decomposition L*GL, = U,yewvZr w' I, so that Sp(Wjwo) is the
closure of Zp\Zr w 1 L*GL,, which is evidently WY -stable under right mul-
tiplication. The result follows.

Lemma 4.3.8 Let's, wy be as in Proposition 4.3.6. If s, is a simple reflection
fora € A, then

~ Vo, ~

WiwoseS™ € Sp° (W, e,5).
Proof Set 7 = wiwo and T = Zsq. Since wy is longest element in W
and s, is a simple reflection, we deduce from Lemma 2.1.4 that 77 < 7 and

£(7) =4£(@) — 1. Let L, C GL, denote the minimal standard Levi subgroup
containing Uy,0 and U_, o. Consider the family

Xy ¥ 75\ 757 Ly C FI.

We clearly have 7 = 7's, € X, and it is standard result that X, = }P’IlF and
Xo C Sp(Z) (see, for example, [67, Proposition 8.8]).

@ Springer



Local models for Galois deformation rings and applications 1367

We show that X,5* C FIVo. This will imply that X,5* C S3° (i, e, 3),
hence the statement. For any A € L, the Vy-condition (4.7) on 7' As™ is given
by

d - d 1.
v—CG)E) T+ T Av—GHEH AT @) € - LieZp (4.8)
dv dv v
since 44 = 0. If 5 = 5711, then vA )™ = Diag(s~ ().

Thus, AvL(5*)(*)"'A~! € Lie Ly. Then (4.8) is satisfied if vLie Ly C
@) 'LieZg7. B

Since « € A and w; € W]+, 0 < (wy(x), —wo(a@)”) < 1. This implies
that —1 < (T*(x),aY) < 0, so that {((Z)*(x), £«V) < 1. The inclusion
vLie L, C (Z)~ ! Lie ZpZ' now follows from Lemma 4.2.8. ]

Proof of Proposition 4.3.6 By induction on length of w in W, we can assume
w = Sy, a simple reflection for o € A.

Consider Sg O(wy,e,5) C Sp(wi,e,s), a closed subvariety. By Lemma
4.3.7, the intersection Sgo (W1, e, 5)NSg(W1, e, 54 isopen in Sgo (wy, e,s).If
the intersection is non-empty, then since SI; (w1, e, ) is irreducible by Propo-
sition 4.3.4 (as w; € VT/IJF implies that w; is (n — 1)-small), the intersection is
open and dense and this proves the inclusion SHY O(wy, e,s) C S]Fv O(wy, e, 5sq).
(Note that Sy° (@1, e,5) N S2(i1, e, $5¢) S Sp° (i1, €, 55¢).) By symmetry,
this is enough to prove the proposition.

Lemma 4.3.8 shows that the intersection is non-empty since the point
Wiwoses* € Sp(W1, e, 5sg) lies in s§°(w1 , ¢,'s). This completes the proof. O

Using Propositions 4.3.5 and 4.3.6, we are able to identify the closed sub-
varieties of the monodromy affine flag variety F1V° which arise in this way.
Let Irry(F1Y0) denote the set of irreducible subvarieties of dimension d. We
‘label” the subvarieties in following way:

Consider (w1, w) € Wfr x X*(T). Assume that ¢, is (n — 1)-generic (Def-
inition 2.1.10(2)). Define

C@w) S Sgo(wl, e,s) € Irrd(F]VO) (4.9)

for any choice of 5 € W such that 5(0) = w. By Proposition 4.3.6, this does
not depend on the choice of 5. Note that it also only depends on (w;, @) up to
equivalence relation (1, ) ~ (t,, w —v) for v € X°(T) from §2.2. Since
wy is (n — 1)-small, C(i,,e) is an irreducible closed subvariety of dimension
d.
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Theorem 4.3.9 Let iy, 0,5 € W such that i € VT/IJF and i, € W. Let
m > 1. Assume that Wy is m-small and that’s is (m + n — 1)-generic. Then

Vo~ ~ —
Sp’ (W, W2, 5) = C @ 5w, 0

Proof The assumption implies that tmz_l(o) is (n — 1)-generic by Proposition

2.1.12,and 50 € 55-1(g), is well-defined and equal to Sy (i1, e, W, '3) by
(4.9). By Proposition 4.3.5,

Vo, ~ ~ Vo, ~ ~~—]
Sp’ (W1, Wa,s) = SFO(w1, e, suw, ).
]

Let A € X.(T") be a dominant cocharacter. We now assume that A is
regular. Note then that A — 5 is dominant where 7 is our choice of lift of half-
sum of positive roots. In Corollary 4.2.6, we identified the top-dimensional
irreducible components of M™ (< A, V,)r (with a genericity condition on a).
We now combine this with Theorem 4.3.9 to identify those same components
in Irry (F1Y0). This will allow us to compare special fibers for various (1, a).

Theorem 4.3.10 Let A be dominant and regular. Let h), = maxqv{{A, a")}
andleta € O". Lets = t,s be (hy, +n — 1)-generic. Assume that a = s ()
modulo @ . There is a natural bijection between AP (L) (definedin (2.2)) and the
d-dimensional irreducible components of M™ (< A, Va)F)5* C FIVO, given by

W1, W2) = Cg, 5571 0

Proof By Corollary 2.1.7, there is a bijection between AP(1) and Adm™2())
given by (wy, w) > 17)2_11110@1. By Corollary 4.2.6, there is a bijection

between regular elements w def W, Ywo; € Adm™()) and Irrg(M™ (< A,
Va)r) sending w to

Sp(@iwo(W3)~1) NF1Va.

By Proposition 4.3.1 and Theorem 4.3.9,

YT — Vo~
(Sp(@Fwo(w3)~h) NEFIYa)5™ = Sg’ (w1, W, s) = C(wl,’s'wz’l(o))
(note that w5 is hy-small). O
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4.4 TV -torsors

Let Fl be the ind-scheme representing the fpqc-sheafification of the functor on
F-algebras given by R — Z1 p(R)\LGL,(R), where

Z1r: R+— {A € GL,(R[v]), A is upper triangular unipotent modulo v}.

The natural quotient map W : Fl — Flisa Ty -torsor. We define M(< M via
the Cartesian diagram

M(< Mp———Fl

o

M(< A)pC—— FI.

In particular, M (SEMF > M(EM)F is a TFV -torsor. §imilarly, for any
a € 0", we have TFV—tA(J)rsors MO, V)F = MO\, Vo), M™(< A, Vo) —
M™(< X, VoF, and M (< A, Va)F — M(< X, Vo) defined by analogous
diagrams. We abusively use W to denote any of these induced maps.

Remark 4.4.1 Despite the notation M (< MR, we will not define (and will not
need) an object M (< A) over O whose special fiber is M (< A)r. However, we
will construct U (Z, < M) (cf. (5.9)) which are torus torsors over Zariski opens
that cover M (< A). The same is true of the other objects defined above.

Given our choice of embedding WY C LGL,(Z), W acts by right trans-
lation on FI (see the beginning of §4.3). Hence, we can lift the map rz from
Proposition 4.3.1 to a Cartesian diagram:

M™(< A, Vo) 170 (4.10)

M™ (< &, Va)p—— FIV0

where F1"° is the preimage of EIVO in Fl.
Finally, for any (w, ) € W1+ x X*(T) where t, is (n — 1)-generic, let

C (W,0) C 1’51% denote the preimage of C g, ). It is a closed irreducible sub-
scheme of dimension n 4+ d, i.e., C (@,0) € Itrgyy (ﬁvo).
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4.5 Products

Let J be a finite set as in §1.8. We take products of all the constructions and

results of the previous sections; this will be essential for the connection to

Galois representations in §7.3. We briefly summarize the necessary notation.
For A = (A})jeg € X«(TY)7 = X*(T)7. Then

Adm(n) = [ Adm@j) ¢ W7, Adm™ () = [ Adm™2()).
jeT jeT

We can then define a local model M 7(< A) = ]_[jej M(< ;) C Gr‘g’(9 a
projective scheme over . Similarly, we define M T(EMNF > Mgs(S M)F a
T]Fv 7 _torsor.

Forany a € (O")7, we define local models M 7 (A, Vi), M7(< A, Va), and
M nV(< A, Va) in the natural way. We have a closed immersion of the latter
inside Flvo def (F1V0)7 as in Proposition 4.3.1.

We extend the construction in Sect. 4.4 to get the corresponding T} MU
torsors Mj (A, Va)F, Mj(< A, Va)r and M“V(< A, Va)r over the spemal

fibers. For consistency in notation, we define FIVO def (F1V0)7.
We then have analog of Proposition 4.3.1 and (4.10):

Proposition 451 Let7 = s_lt e W7 acting by right translation on F17

and F17 component-wise. Let a € (O™ . If. for each j € J, a; = s (MJ)
mod @, then right translation by 7 induces a Cartesian diagram

~ A=A
MY (< A, Va)p“—— FL;

\DJ l\lf
\Y
where the horizontal arrows are closed immersions and the vertical arrows

are smooth Tﬁ/’j—torsors.

Letd; & #7)d = #J7) dimg(B\GL,)z, Let © = (@))jeg € X*(T)7

where each lo; is (n — 1)-generic. Let w € (Wl )7 . Define

def \V/ ~ def ~ ~ V
Clow) = ]‘[ C(iv;.0 C FI? and Cipo) = 1‘[ C@,.0) CFL7 (4.11)
jeJg jeg
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irreducible closed subschemes of dimension d 7 and n(#.7) + d 7 respectively
by Proposition 4.3.4 and the results of §4.4.

4.6 Local models, Deligne-Lusztig representations and Serre weights

We now connect up the local models to the representation theory results of §2.3.
Let 7 = Hom(k, F) and let ¢ € X*(Z)7 be an algebraic central character.
Let o denote an (n — 1)-deep Serre weight for G which admits a lowest alcove
prgsentation compatible with ¢ (see §2.2) and fix a representative (w;, w) €
(W7 x X*(T)7 for this lowest alcove presentation.

Definition 4.6.1 For o, (W1, w) and ¢ as above, define

def
Cg = C(@1,0)
as defined in (4.9). Note that C(,,») does not depend on the choice of the
representative (wy, w) for the ¢-compatible lowest alcove presentation of o
(see discussion after (4.9)).

We can now give arepresentation theoretic parametrization of the irreducible
components of the special fiber of the local models using Theorem 4.3.10.

Theorem 4.6.2 Let . € X*(T)7 be a regular dominant weight and set
h;, = max{(A,a") | a € ®}. Let R be a Deligne—Lusztig representation
with max{2n, h, }-generic lowest alcove presentation (s, u) which is (A — n)-
compatible with ¢ € X*(Z). Leta € (O")7 such thata = s~ (u+n) modulo
w. Then

frry, ((M}V(s A va))F(s”z,H,,)) = {C¢ |0 e THRR® WO —n)).

Remark 4.6.3 (1) One can show that M}V(S A, Va)F is equidimensional of
dimension d7 when A is regular, using arguments similar to that of the
proof of Theorem 4.3.9. As we will not need this information, we will not
pursue this here.

(2) One can ask whether Theorem 4.6.2 holds for the flat closure M 7 (< A, Vy)
C M} (< A, Va). This is true under stronger genericity hypotheses and can
be deduced from Theorem 7.4.2. Note that the proof Theorem 7.4.2 uses
global input in order to construct the desired lifts of generic points on the
components of the special fiber.

Proof We begin with the bijection
AP() = JH(R® W(L — 1))
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from Proposition 2.3.7. In particular, each o € JH(R® W (A —n)) is (n — 1)-
deep and there exists a unique element (wi, wy) + X%T)7 e AP()) such
that (w1, w) def (W1, (tyqns)Wy 10)) is representative for a lowest alcove
presentation for o compatible with ¢.
If we write w1 = (W1,;)jes and w = (®;) je7, then by Definitions 4.6.1
and (4.11),
ci=T] Cajop (4.12)
jeg
We now examine the top-dimensional irreducible components of (M T2,
Va))F(s_lt,H_n). We have a product structure

trra (M3 (= 3 Va) (6™ )

= T i (™ (= 2 V)5 0 0.
JjeT

Theorem 4.3.10 says that
AP(L) S Ind((MnV(kj, vaj))F(sJ?le+nj))

such that the d-dimensional irreducible components are exactly the Ci, ;, ;)
appearing in (4.12). O

4.7 TV-fixed points and Serre weights

In this section, we discuss results about the 77 -fixed points on the compo-
nents C; from Definition 4.6.1 which will used in the proof of the weight part
of Serre’s conjecture in Sect. 9.1.

Assume o is an (n — 1)-deep Serre weight with lowest alcove presentation
compatible with ¢. Fix a representative (@1, w) € (W;")7 x X*(T)7 for this
lowest alcove presentation so that Cy = Ciyw)-

Recall that the TV-fixed point of Fl under the right translation action are in
bijection with WY under the natural inclusion WY C FI. It is easy to check

directly from condition (4.7) that WY c FIVo. If we let TV+7 act on Fl;0
component-wise, then clearly WY+7 C Fl\v70 are exactly the TV -fixed points.
We will abuse notation and use 7 € WY+ to also denote the corresponding
point of FIZO. We also recall (cf. Sect. 3.4) that there is an action of 7V-*X! =
TV x G,, on Fl where T" acts on Fl by left translation and the G,, factor acts
by loop rotation v — r~lv.

We start with a criteria to detect the torus fixed point of a subvariety of Fl:
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Lemma 4.7.1 Let Y C Fl be a finite type irreduciblsz closed subscheme which
is stable under the action of TV, and letZ € FI "~ be a TV -fixed point. Let
Y° C Y be an open dense subscheme of Y. Then the following are equivalent:

(1)ZCY.
(2) YN L™"GpzZ # 0.
(3) YN L™~Gpz # 0.

Proof Specializing the G, -action constructed in Lemma 3.4.7 and noting that
L~~Gr7 is the specialization of (%) in loc. cit. along the map Z[v] — F
sending v to 0, we find an one parameter subgroup G,, C T"-*** which induces
a contracting action on L~ Gz with unique fixed point Z. It is clear that the
first item implies the second item. Conversely, if the second item holds, then
the firstitem holds, since 7 is the limit of a G, -orbit of any pointin Y N L™~ GpZ
and Y is closed and TV-**'-stable.

Finally, since Y NL~~GrZ # @ is an open subscheme of Y, it is either empty
or open and dense in Y. Thus the second and the third item are equivalent. O

Proposition 4.7.2 The setof TV -fixed points of Ci, o) contains {(t,ww)* |
we WJ)

Proof Since C(@,0) = [ljes Ciinyj.0p, this reduces immediately to
a statement about C(g, ;,0;).- By Theorem 4.3.9, C, ; ;) is equal to

S;O(ﬁl,j, e, ty;wwo) (see Definition 4.3.2((3))) which is easily seen to con-
tain the point (7, wi ;)*. O

As discussed in Remark 4.3.3((2)), SH_YO(ij, e, t;) can be much smaller

than Sy ((wowy, )M, NFI1Y0. Nevertheless under suitable genericity hypothe-
ses, they have the same T -fixed points.

Proposition 4.7.3 There exists a polynomial Py, ;€ Z[X1, ..., X,] depend-
ing only on W j € W1+ such that if Py, ;(wj) # 0 mod p forall j € J,
then the set of T+7 -fixed points of C(, ) is exactly {W*t,, | W < woiy}.

Proof Fix j € J. By Proposition 4.3.1, Y def C(@, j.wj)l-w; 1 the closure

of yo S]‘hi(wf jwo) N F1Y . One inclusion then follows from the standard

description of the TV-fixed points of the closure of Sﬁf«(ﬂii jwo) in terms of
the Bruhat order. )

Fix w < wowi, ;. We need to show thatZ & 5% belongs to ¥ if wj mod p
avoids the zero locus of a universal polynomial depending only on w ;. We
will deduce the result from the main result of [1], which describes the torus
fixed points of certain affine Springer fibers.

We consider the base change of the objects in Section 3.1 along the map
Z[v] — Z sending v to 0. In particular we get Fly = Grg x X xZ and the
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ind-group schemes LGy, L=~ Gy, etc. Thus Fly is the affine flag variety for
GL,, over Z, and we have the open affine Schubert variety S%(@T’ jwo) C Flz,

which is isomorphic ALwoi1) 'We also have the subfunctor Uz (Z) C Fly, by
base changing U/ (Z), which coincides with L~~GzZ. The closed subfunctor of
LGy x7 Al x7 A" which classifies triples (g, b, a) such that

d 1
b8 4=1 | ¢Diag(a)g~' € ~LTM
dv v

induces a closed subscheme )° of Sz(@’l“’jwo) x7 Al x7 A" Letm : )° —
A™*1 be the projection map. We observe

e Y° is the base change of J’° along the map A!' x7 A" — F corresponding
to the tuple (1, w; mod p) € F*+1,

e Let V C Al x7 A" be the open locus of tuples (b, a) such that b(i +84~0) +
(a, o)) isinvertible for all roots@ and 0 < i < da,wwlvj . Then the proof of
Theorem 4.2.4 shows that the restriction & : °|y — V is isomorphic to
the projection A4 x5 V = V (recall from §4.2 that d = dim(B\GL,)F).

e The G,,-action on Flz xz A"T! induced by the scaling action on A™t!
and the trivial action on Flz preserves )°.

e If k is a field and (0, a) is a k-point of V, then the reduced fiber of )°
above (0, a) is an open dense subset of an irreducible component of the
affine Springer fiber in Fl; associated to the element va € gl (v)). This is
exactly the affine Springer fiber studied in [1].

We now consider the intersection Z def V° NUz ) xz A"!, Then by the
fourth item above and [1, Theorem 3.1], this intersection is non-empty. Thus
Z is a non-empty open subscheme of )°, hence its image 7 (Z) is open in
A" Since Z is also stable under the scaling Gy, action, so is w(Z). Thus
there exists a non-zero homogenous polynomial P € Z[b, ay, - - “dn] which
vanishes on the complement of 77 (Z) N V. Note that J°, and hence P depends
only on i ; and 7. Setting Py, ; (a1, --- ,an) = P(l,a1,---ay) # 0, we
see that as long as Pwl,j,g(a)j) mod p # 0, the fiber of Z at the tuple (1, w;)
is non-empty. But this fiber is exactly Y° N L™~ GfZ, so Lemma 4.7.1 shows
that 7 € Y in this situation. The polynomial Pz, ; = [z y,z, P,z thus
satisfies the conclusion of the Proposition. O

Remark 4.7.4 (1) In fact, whether Py, ;(w;) # 0 mod p fora j € J with
Pg;, ; as in the proof of Proposition 4.7.3 does not depend on the choice of
representative (W, w) for the lowest alcove presentation of Fg, -

(2) If o, o’ are two Serre weights for which Proposition 4.7.3 holds, then
Proposition 2.3.12 shows that o covers o’ if and only if all the 7V-7 -fixed

points of Cfr, lie in C.
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We also record the following, which will be convenient for applications:
Proposition 4.7.5 C ) is unibranch at each of its TV-J -fixed points.

Proof LetZ € C,.0) is a fixed point. The result follows applying Lemma
3.4.8 to C(i,.0) N L™~ Gr7Z, using the (specialization of the) contracting G,,-
action constructed in 3.4.7. O

We now connect back to the Herzig’s conjecture on modular Serre weights
§2.6.

Theorem 4.7.6 Suppose that (Wi, ) is a lowest alcove presentation of an
(n — 1)-deep Serre weight o and (s, ) is a 2(n — 1)-generic lowest alcove
presentation of a tame inertial L-parameter p over F. Suppose that both
lowest alcove presentations are compatible with { € X*(Z). Let w*(p) =

|
(ZM+,7S)* =S luty-

(1) If o € Wony(p), then i5*(p) € Cs.

(2) If *(p) € C&, then o € W' (p).

(3) Foreach j € J, let Py, ; € Z[X1, ..., X,] be as in Proposition 4.7.3. If
P@l‘j(a)j) #0 mod pforall j € Jando € W?(ﬁ), then w*(p) € Cé.

Proof The set {w*t, | w < wow w1} from Proposition 4.7.3 can also written
{(tywwr)* |we W, Wy e Wt T Wy < w1} and taking Wy = w; gives the
set from Proposition 4.7.2. Let (W, w;) be the pair as in (2.14) which gives the
. ¢ e~ ]

presentation for o so that C;, = C @1.5@T; " 0)" Writing w(p)w, * as t,w
the first item follows from Proposition 4.7.2 and the third from Proposition
4.7.3.

For the second item, by the upper bound on 7V-fixed points of cs, if
W*(p) € C5 then W(p) = t,w'iW, where Wy < ) as above. By Proposi-
tion 2.6.2, 0 € W’ (p) since (), ' (0) = w. O

5 Breuil-Kisin modules and Pappas—Zhu local models
5.1 Breuil-Kisin modules with tame descent

Throughout this section we take G = GL,, and consider the setting of §2.4. Let
t:lg, —> f(E ) be a tame inertial L-parameter over E, with an associated
tame inertial type T : Ix — GL, (E) for K as described in Example 2.4.1. We
fix throughout this section a 1-generic lowest alcove presentation (s, u) for t.
Let r be the order of s,, and let K’ be the subfield of K which is unramified
of degree r over K. Set 7' = Homg, (K, E) and J = Homg, (K, E). Let

£ fr e pl" — 1. We fix an isomorphism oy : K’ = E which extends
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oo : K — E. The identifications 7' = Z/f'Z and J = 7Z/f7Z (given by

o def - . ~ def —j . .
oy = 0y0¢ — j and 0; = opo ¢~/ > j respectively) are such
that restriction of embeddings from K’ to K induces the surjection 7' — J
given by reducing modulo f in the above identifications. Write 7’ for the tame
inertial type for K’ obtained from t via the identification Ix, = I¢ induced
by the inclusion K’ € K.

We fix an ¢’th root 7/ € K of —p and set L’ &ef K'(7). Let A’ &ef
Gal(L'/K") ¢ A & Gal(L'/K). We set wg:(g) = £Z2 for g € A’ and
note that wg does not depend on the choice of 7z’. We can also think of wg-
as a character of Ix» = Ik valued in O, (the units in the ring of integers of
K’). Composing with o}, we get a character w Kol A" — O*. In notation

-7
of Example 2.4.1, we have WK’ o) = Qf and hence WK'0; = a)?,

Let R be an O-algebra. Let 61 € W) [/ and &1/ ¢ & (W(K) ®2,

R)[u']. As usual, ¢ : &/ g — S/ g acts as Frobenius on W (k'), trivially
on R, and sends u’ to (u/)P.

We endow S/ g with an action of A as follows: for any g in A’, g(u') =

g;i,,)u’ = wg(g)u’ and g acts trivially on the coefficients; if o/ € Gal(L'/K)

is the lift of pf -Frobenius on W (k') which fixes 7/, then o/ is a generator for
Gal(K’/K), acting in natural way on W (k') and trivially on both u’ and R. Set
v = (1')¢, and define

def

&k = (S p)*=' = (W(k) ®z, BIv].

Set E(w) v+ p = ) +p.
We will make use of the group scheme Z defined over O, which is the base

change of LT G along the map A' — Spec O sending ¢ to 0. In other words,
for R a Noetherian O-algebra,

I(R) = {A € GL,(R[[v]) | A is upper triangular mod v}.
We also have the normal subgroup Z; of Z defined by
Zi(R) = {A € GL,(R[[v]D) | A is unipotent upper triangular mod v}.

Note that 7 = T,y x Zj, where T is viewed as the subgroup of 7 consisting
of constant diagonal matrices.

As in Sect. 4, when we decorate an object that occurs in Sect. 3 with a
subscript O, it means we take the base change of that object to O via the map
Al — O sending ¢ to —p. In particular, we have the objects LG, L1Go,
L™ Gop, Grg.p = LTGo\LGo.
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In general the map v + v” does not extend to a homomorphism
R[v+ pll — R[v + pll. However, when R is p-adically complete, we have
R[v+ pll = R[[v], and so ¢ extends to R[[v + p]. Similarly, if p is nilpotent
in R then R(v + p)) = R((v)), and so ¢ extends to R((v + p)). Furthermore,
the group functors Z and L™ Gp coincide on the category of p-adically com-
plete Noetherian O-algebras. Unless stated otherwise, R will be a p-adically
complete (O-algebra for the remainder of the section.

For any positive integer &, let Y%"1(R) be the groupoid of Breuil-Kisin
modules of rank n over &/ g and height in [0, A]:

Definition 5.1.1 Anobjectof Y%"I(R)isapair (9, pon) where Mt is a finitely
generated projective &/ g-module, which is locally free of rank n, and ¢gy :
@* (M) — M is an injective S/ g-linear map whose cokernel is annihilated

by E)" = (w)?’ ~1 + p)t.

For any (O, ¢op) € YI0-11(R), we have a standard R[[u']-linear decomposi-
tion M = P/ 7 9", induced by the maps W (k') ®z, R — R defined
by x @ r — .aj/(x)r for j/ € J'. Note that for the corresponding R[[u']-
decomposition S,/ g = @ e R[[u'], the action of A" on u’ in embedding

Y

L i . . .
j'is given by ¢ o wgr = a)lf’, . The Frobenius ¢gy induces morphisms

ff’éjjz) : w*(gm(j’—l)) — mU".

Remark 5.1.2 There is choice of convention on whether the domain or target

of ¢§(DJ{) should correspond to the o j-embedding. We are changing the conven-
tion here from our previous works, namely [56,59,60]. The convention here
makes the connection to Hodge—Tate weights labelled by embedding and rep-
resentation theory more natural. The comparison with [56,59,60] is explained
in detail in Remark 5.1.7.

We let Y[0-21.7(R) denote the groupoid of Breuil-Kisin modules of rank r,
height in [0, /] and descent data of type 7 (cf. [17, § 3], [60, Definition 3.1.3]):

Definition 5.1.3 An object of YI%#L7(R) is the datum of (9N, gon) €
YLO-Al(R) together with a semilinear action of A on 9t which commutes with
@9, and such that, for each j' € 7/,

MUY mod ' =1V @0 R

as A’/ -representations. In particular, the semilinear action of A induces an iso-
morphism g : (o /)*(9) = M (see [59, § 6.1]) as elements of yl0-ALT (R).

We will often omit the additional data and just write 91 € Y [0.AL7 (R).
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Remark 5.1.4 (1) As explained in [59, § 6.1], the data of an extension of the
action of A’ to an action of A is equivalent to the choice of an isomorphism
ton © (0 )*(9) = 9 satisfying an appropriate cocycle condition. We will
use both points of view interchangeably.

(2) Itis known ([15, Corollary 3.1.7], see also [17, Theorem 4.7]) that yl0.Al.z
is a p-adic formal algebraic stack in the sense of [15, Definition A.2] and
therefore it is determined by its values on O/w“-algebras of finite type,
for a > 1 (and hence, on p-adically complete Noetherian (J-algebras).

(3) The appearance of " in the definition is due to the fact that we are using
the contravariant functors to Galois representations to be consistent with
[56,59]. In [59], we didn’t use the notation 7V. Instead, we included it
in our description of descent data by having a minus sign in the equation
before Definition 2.1 of loc. cit. The notion of Kisin module with tame
descent data of type t here is consistent with what appears in both [56,59].

Remark 5.1.5 Recall that we have fixed a lowest alcove presentation of the
tame inertial L-parameter 7. Definitions 5.1.6 and 5.1.9 below, as well as
the definition of matrix of partial Frobenius A(J ) depend on the choice of
presentation.

Definition 5.1.6 ([60, Definition 3.1.6]) Let M € Y%7 (R). An eigenbasis
of 91 is a collection of (ordered) bases 8 () = = (f 2 G’ ), e, f,,(" )) for
each MU for j' € J’ such that A" acts on fl.(j ) via the character X;l from

(2.12) and Which is compatible with the isomorphism tgy in the sense that
(6 H)*(BYY)) = BYUT) as unordered bases (with reordering given by

St).

We now define the notion of matrix of partial Frobenius with respect to 8 for
an object M € Y017 (R). Let M e Y07 (R) and let B be an eigenbasis for
M. Define C gjjt)ﬂ to be the matrix of qﬁéjjt) S * (MU /_1)) — M) with respect
to the bases ¢*(8Y ~1) and U ). The height condition on )1 is equivalent to
Cgy)s € Mat, (R[u']) and E(w)"(CH ) =" € Mat, (R[[/]).

("

Because ¢gy’ commutes with descent datum, this implies a certain u'-

divisibility of the entries of C G’ )ﬂ To “remove the descent datum,” we
first recall some data related to the tame inertial type 7. Let (s, u) be a
lowest alcove presentation of t. Recall from Example 2.4.1 that o; =
s;ils}?iz .. .S;ij(,uf_j +np-j)forl < j < f—1andeao= o+ no,and
that s; = sos1...57-1 € W. We have the corresponding data for 7/ which is
the tame inertial type for K’ obtained as the restriction to I, of t. Namely,
for any j' € J’, define

oy Z sk @pfor0<j<f—1,0<k<r—1L (5.1)
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Next, for any j' € J’, define

=1
1Y d f .
aU) = E oc’_j,+l-p’. (5.2)
i=0

7(0)
Note that if x; are the characters appearing in 7 as in (2.12), then x; = a)z}’}

We define the orientation s € W' of (oz’j,)j,ej/ by

Scl)r,j+kf défslr“"l(s;ils;iz...sj_ﬁl) for0<j<f—-1,0<k<r-—1,

(5.3)
where the empty product is interpreted as the identity. It is an element of W /

such that (s(’) . j/)_l (@yv ,)) is dominant, and there is a unique such element if

/

is 0-generic. This follows from the definitions of s . oc’f,_l_j/,

noting that

a'U" is dominated by p/" ;..

Then
i) def _ NI -
Ay = Ad (65, 07 ™) (el (5.4)

is the matrix of the j'-th partial Frobenius of 9 with respect to 8. (Note the
different meaning of the superscript (j’) when comparing with the notion of
matrix of partial Frobenii appearing in [60, § 3.6.1], [56, § 3.2], see Remark
5.1.7 below.)

Remark 5.1.7 Inthe discussion between Definition 3.2.8 and Proposition 3.2.9
in [56], we find the definition of matrices A" /), attached to an eigenbasis
for M e Y0717 (R) where 7 is a tame inertial type with a given lowest alcove
presentation (s, ;) in the sense of [56, Definition 2.2.5(4)]. These matrices
differ from those defined in equation (5.4) by a shift due to a change in con-
vention. We now explain in detail the differences between the conventions in
this paper, and those in [56,60].

Let 7 be the tame inertial type with lowest alcove presentation (s, ), which
we fixed at the beginning of this section. Then the lowest alcove presentation
of the tame inertial type in the sense of [56, Definition 2.2.5(4)], [60, Def-

inition 2.2.2(4)] is the element (s_, u_) € W(G)Y x X*(T)Y defined by

S def SfojsM—,j def wf—j. Recall that in [56, § 3.2] we associate elements

St, S, Iz oc’(‘L 1)k and azs(i/)ui) to (s—, u—). The comparison between

the two conventions gives the following.

(1) The element s, defined in Example 2.4.1 coincides with the element s,
defined in [56, § 3.2];

(2) the element s, 7 defined in (5.3) coincides with the element s 7 defined

in [56, (3.2)];
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(3) the elements a/j kf a’U") defined in (5.1), (5.2) respectively, coincide with

the elements e, 1y a” . defined in [56, § 3.2] and [56, (3.4)]
respectively;

(4) the characters yx; defined in (2.12) coincide with the characters x; defined
in [56, (3.1)]; and

(5) forany 0 < j < f — 1, we have (s_);ft(,,drn);f = S;—:ltﬂj+1+ﬂj+1 where
the (-)* in the left hand side of the equality denotes the “star” opera-
tion defined in [56, Definition 2.1.2], [60, Definition 3.1.1] (in particular,

()5 =" g (e = e gy 1),
Since the partial Frobenius qﬁg(DJ;) defined above is denoted as ¢é£_l) in [56,
§3.2], [60] we easily deduce from items (1)—(5) that the matrix Ag{)ﬁ defined

in (5.4) coincides with the matrix AU'~D defined in [56, § 3.2] (see the dis-
cussion after Definition 3.2.8 in loc.cit.) with respect to the eigenbasis 8 and

(s—, n—) as the fixed lowest alcove presentation (in the sense of [56, Defini-
tion 2.2.5(4)]).

Because 7 is 1-generic, the condition that CS(DJ;)ﬂ € Mat, (R[[«']) is equiv-

alent to Ag{’)ﬂ € Mat, (R[[v]]) and is upper triangular modulo v (equivalently
Ag{’)ﬁ € LT Mo(R) if R is p-adically complete) (This follows as in [59,
Proposition 2.13], noticing by Remark 5.1.7 that Cg(vj{)ﬁ would be denoted as
CY"*D in loc. cit.) Similarly, the height condition translates into the condi-
tion that E (v)h(Ag()gt/’)ﬁ)_1 € Mat, (R[v]]) and is upper triangular modulo v.
The fact that 8 is compatible with tgy : (o H*om) = m implies that Ag{’)ﬁ

0))

only depends on j* mod f. Abusing notation, we occasionally write Agy; 8

for j € J with the obvious meaning.

The following Proposition is a reformulation of [56, Proposition 3.2.9] and

describes how Ag{)ﬂ behaves under change of eigenbasis.

Proposition 5.1.8 ([56, Proposition 3.2.9]) Ler9 € Y017 (R) together with
two eigenbases B1 and B> related by

i’ -\ d ("
with DY) € GL,(RIu') for ' € J'. Set 1) € Ad (s, )" @)="")

(D).
Then 1Y" € T(R) depends only on j' mod f, and for all j' € J',

G — G 2UD —1, wi+n; (j'—=Dy—1
Amﬂz_lf Aim,/ﬁl(Ad(sj vt n/)(w(lj ) ))
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where j = j/ mod f.
Furthermore, if (1Y) € Z(R)7 with 1U) = 1U'+) then Ad ((u')?
8o j/)(l(j/)) = DY) e GL,(R[«']) and for any eigenbasis B, (BY")

D(j/))j/ej/ is again an eigenbasis.

()

Proof By Remark 5.1.7, we see that the matrix /¥ ) defined above coincides
with the matrix ") defined in the statement of [56, Proposition 3.2.9] (for
which we use the lowest alcove presentation (s—, «—) in the sense of [56,
Definition 2.2.1(iv)] for 7). From the conclusion of Remark 5.1.7, and its item
(5), we see that the statement of the Proposition is just the statement of [56,
Proposition 3.2.9] with j taken to be j' — 1. |

Definition 5.1.9 The shape of amod p Breuil-Kisin module It € Y017 (F")
with respect to 7 is the elementZ = (7)) € WV-7 such that for any eigenbasis
B and any j € J, the matrix Agg 5 lies in Z(F")Z; Z(IF"). (This doesn’t depend
on the choice of eigenbasis by Proposition 5.1.8.)

We record a useful and elementary lemma for later computations:

Lemma 5.1.10 Assume that T admits an m-generic lowest alcove presentation
(s, u). Let R be an O-algebra.

(a) Let I € T1(R). Then Ad(sj_lvﬂj-i-flj)((p(l)) —1 mod vt

(b) I_fl € GLn(R[[U]]); m > 1, and ] =1 mod Uk, ﬂ’Len Ad(s]._]vﬂj+7]j)
(p(I)) =1 mod v*k—Dptm+1

(c) If Y € Mat,(R[[v]l) and is upper triangular mod v, then Ad(sj_lvﬂﬂrm)
(Y) € v Mat, (R[[v]).

(d) If Y e v*Mat,(R[[v]), then Ad(sflv“f“L”J')(go(Y)) N
Mat, (R[v]).

Proof We provide a proof of item (a) and leave the rest to the reader. It suf-
fices to prove that Ad(v*it)(p(I)) = 1 mod v™*!. Recall (cf. Definition
2.1.10) that since (s, @) is an m-generic lowest alcove presentation, for any
aedt,

m<{u+na’)<p-—m.

In particular, for such a p to exist we need m + 1 < p.

The diagonal entries of Ad(v*i™)(p(1)) are the same as the diagonal
entries of ¢(/), which are congruent to 1 mod v” since I € Z{(R). For the
off-diagonal entries, let o be a positive root. The a-entry of Ad(v*i i) (¢(I))
is divisible by v#**71:¢”")_ Similarly, the —a-entry of ¢(I) is divisible by v?
and so the —a entry of Ad(v*i ™) (¢p(1)) is divisible by pP=(ntn.a”) Thig
gives the desired divisibility. m|
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5.2 Gauge bases

The goal of this subsection is to discuss the notion of gauge basis, which
will provide a normal form for various families of Breuil-Kisin modules of
type 7, and which will be our main tool to analyze the structure of the p-
adic completion of the stack Y%7 in the next subsection. For 7 sufficiently
generic relative to i, we will define the notion of a Breuil-Kisin module
admitting a Z-gauge, for7 € W">7 . This is an open condition in the moduli of
Breuil-Kisin modules, and thus is stable under small deformations. We then
show that such Breuil-Kisin modules admit a canonical basis adapted to Z,
which is unique up to rescaling. An innovation compared to our previous work
[56,59] is that we do not just consider canonical bases associated to the shape of
a Breuil-Kisin module (which is an element of WY canonically attached to
each closed point of Y1%-#1-7) The stratification by shape decomposes Y017
into a disjoint union of locally closed substack, and hence the property of
having constant shape is not preserved under small deformations. For this
reason, our approach here is better suited for the local study of Y0717,

Recall that we have the twisted loop group LGp, the twisted positive loop
group LT Gp and the space Lt M. Let a < b be integers. We let LI**1G,
be the subfunctor of LG» whose value on a Noetherian O-algebra is given by
given by

LI"Go(R) = {g € LGo(R) | g € (v+ p)*LY Mo (R) and
w+p)Pg !t e LY Mo(R)}.

Clearly LI0"1G is preserved by left and right multiplication by L*Ge, and
we define

Gl € LG\ LG,
Let now L!“?1(GL,,)r be the subfunctor of L(GL,,)r defined on [F-algebras R
by

LA € LGL)R(R) | v %A, 1P A € Mat, (R[v])).

(5.5)

L) (GL,)p(R)

The fpqc-sheafification of R — Zp(R)\L!*?1(GL,)r(R) is a finite type closed
subscheme F1!%-?  FI (consider the natural projection of Fl onto the affine
Grassmannian for GL,, over IF, and for the latter use [86, Lemma 1.1.5]).
Base changing to F, we get Gré””ﬁl = Ir\LI*PIGr c Fll*P] (where the

containment is strict). We also define Gf[ga ’f] =T F\L*PIGp ﬁ[a’b], which
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is the pullback of the previous situation to Fl (as in §4.4). We evidently have
-+ p)" Grlet] = Grletmbm]

We first give a presentation of the p-adic completion of the stack Y
as a quotient stack. Given a pair (s, u) € WY x X*(T)7, we define the
(s, u)-twisted @-conjugation action of (L*Gn)7 on (LGp)? by

0,h],T

(I(j))j . (A(j))j — I(j)A(j)(Ad(sj_lv“f+"f)((p(1(j_1))_l))_

Similarly, we define the (s, pt)-twisted conjugation action by the above for-
mula, but with the ¢ dropped. The following is essentially a reformulation of
Proposition 5.1.8:

Proposition 5.2.1 Let (s, 1) be a lowest alcove presentation of t. Then
there is a canonical isomorphism of p-adic formal O-stacks Y10-M.7 =
[(LOMGo)T [ (5.0 (LTGo)T 17, where the action is the (s, p)-twisted ¢-
conjugation action.

Proof Consider the groupoid Y [%#1.%-# parametrizing pairs (9%, 8) where 90 €
Y0217 and B is an eigenbasis of M. There is a map YO"L08 — (LGH)T
given by sending (9N, B) to the collection of matrices of partial Frobenii
(Ag:}g ﬂ) jes- The condition that I € yl0-hl.T g equivalent to the condition
(Ag%)’ ﬂ) e (L"G»)T  For R a p-adically complete Noetherian O-algebra,
Proposition 5.1.8 shows that the set of eigenbases on a given Mt € Y047 (R)
is a torsor for Z(R)Y = LtGon(R)Y, and the action of (LTGo(R))Y corre-
sponds to the (s, u)-twisted p-conjugation action on ng (R) under the above
map. Thus [(L[O’h]go)j/(s,ﬂ),w(L+QO)J]AP is the substack of Y017 con-
sisting of objects which fpqc-locally admits an eigenbasis. However, every
object M e YIO1.7(R) has this property: Zariski locally on R, we can find
a basis for 9t/u’9, which furthermore consists of eigenvectors for A’ and is
compatible with ¢y modulo «’. Such a basis can be lifted to an eigenbasis of
I, since A’ has order prime to p. O

The following Lemma shows that over I, the (s, u)-twisted ¢-conjugation
action can sometimes be “straightened” to a left translation action, at least on
the subgroup (Z7)7.

Lemma 5.2.2 Let R be an F-algebra and (A\) jc 7, (AY) je7 € LI®MGL,

(R)Y. Let7 = s_lt,H,] e WV-7 where wis (h+1)-deepin Cyands € wY.

Then, there is a bijection between the following:

(1) Tuples (D) jc7 € Ty (R)T such AYZ; = 1D AV ;0(10=D)"! for all
jeJ; ‘ .

(2) Tuples (X ) jes € Ti(R) such that AY) = X;AY forall j € 7.
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Proof Throughout the proof, we will use that
AdGH(eUY™D) ™) =1 mod v+ (5.6)

for any /U~ e T;(R), by Lemma 5.1.10.
We give a map F from (1) to (2). Given the data in (1), we define
F((IY)je7) = (X})jeg, where

def (j), 4 ()\— T o .
X; € A7 = 1947 (Ad@ (eI a7

To check that (X ;) je 7 satisfies (2), we only need to check X ; € Z;(R) for all
j € J.By (5.6), we can write Ad(Z;) (¢(IV~D)71) = 1 + 0" 2Y; with ¥; €
Mat, 4

(R[[v]). By the height condition on AEJ ), we deduce that

X; =190 +0"2AVy, A9 e 7y (R)

as desired.
Next, we construct a map G from (2) to (1). Thus we are given X; € Z;(R)

such that Aéj )= x inj ) for all j € J, and we need to construct a solution
1Y) € Z;(R)Y to the system of equations

X, (AIE (o)) AP = 10,

We construct such a solution as a limit of a convergent sequence in Z;(R)
with the v-adic topology. Let Jé] ) = 1d. For i > 0, set

. . . NN
1= X0 () A (o)

We prove that (Ji(j ))l. converges in Z1(R) in the v-adic topology. Fori > 1,
we have

() ) ) (=D (O)) ()\—1
Ji—{-l - Jij = XjAlj (Ad(zj)(‘ﬁ(]i] - ‘Iiil )))(AIJ )

Since ]l(j) = X, by Lemma 5.1.10 we have Ad(Zj)(go(Jl(j_l) — Jéj_l))) €
v"+t2Mat, (R[[v]) and hence Agj)fjw(Jl(J_l) - Jé]_l)ﬁ;l(Agj))_l e v?

Mat, (R[[v]]) by the height condition. Therefore Jz(j )_ Jl(j ) e 2 Mat, (R[[v]).
We conclude by induction on i that

TP — 79 € v Mat, (R[[v])
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for i > 3 and hence the sequence (Ji(j ))l. converges in Z{(R) in the v-adic
topology.

We construct the map G by G((X ) je7) = (lim;_s J )]GJ By con-
struction, the composition F o G is the identity, thus F is surJectlve To finish
the proof, we just need to show that F is injective.

Suppose that F((I') je.7) = F((J)jeg) = (X)) jeg, then F((JU)~!
10 ))_,-e 7) = (1)jeg. Thus we may assume without loss of generality that
JD =X;=1.

We now have

I(j) A(])(Ad(NJ)(QD(I(j l))—l))(A(]))

for all j, and we need to show that /) = 1 for all j. By (5.6), we have
Agj)(Ad('z‘_,-)((p(l(f_l))_l))(A(J'))_1 = 1 mod v? forall j, thus /) = 1 mod
v? for all j. Suppose that for all j € 7, I¥) = 1 mod v? for some § > 2.
Then, by Lemma 5.1.10,

Ad(zj)(‘ﬂ(l(j_l))_l) = 1 mod p?@®—D+h+2

Hence 1) = 1 mod v?®~D*2 Since p(8 — 1) + 2 > &, this shows that
1) = 1 modulo arbitrary high powers of v for all j. This shows 1) = 1 for
all j. O

Corollary 5.2.3 Suppose (s, 1) is a lowest alcove presentation of T such that
wis (h+1)-deep in C\,. Then forming matrices of partial Frobenii with respect
to an eigenbasis induces an isomorphism of F-stacks

~ 0,h 0,h
T YT 2 (Grg ) [0 Ty 1 C IEAYNT f 0T,

where the action of the constant torus TIBY e (LtGr)Y is the (s, u)-twisted
conjugation action.

Proof This follows immediately from Proposition 5.2.1, Lemma 5.2.2, the fact
that ¢ acts trivially on 7Y and that Z = TV x 7. |

We construct an open cover for Y1017 ysing the above isomorphism. Recall
from before Lemma 3.2.7 that for any 7 = (Z;)jes € WY, we have a

subfunctor I/ (?) &ef I1 jeg (Zj) € LG . For any integers a < b, we define

U@ L Uu@o N (LGo).
It follows from Lemma 3.2.7 that the projection map U%4?1(Z) — Gr[g“’ ’(g]’j is

an open immersion, since Gr[ga’(,l;]’j is a finite type O-scheme. Hence U (2)r —
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Grg F= F17 is an open immersion with T]l;/ 7 _stable image. Since F17 is
ind-proper and all the T I fixed points (for the right translation action) are
given by 7 C WY-J | we conclude that (the images of) ¢(Z)r form an open
cover of F17. We also set @) = TVTUR) c LG, and similarly define
Ulabl@) = T(\Q/ JUla.b)(F). Then (the i images of) the UG)r form an open
cover of F17 , in fact this is the pullback of the above open cover of FI7 to 7.

We thus get the open cover U%?1(Z)g (resp. U 014213\ p) of Gr[a bL.J (resp.
G [a b] J)

Definition 5.2.4 LetZ € WV7.

(1) Define Ylﬁo’h]’f (Z) to be the open substack of Y[O T Which corresponds via
(s, ) to the open substack [ﬁ[o’h]@r/(S,ﬂ)T ]of[Gr [0.5).7 /(s,10) TIFV’J].

(2) More generally, we define the p-adic formal stack Y1 h] T () as the open
substack of Y!%#1.7 induced by Y%O’h]’r@. For R a p-adically complete
Noetherian O-algebra, M c YO#1.7(R) is said to admit a Z-gauge if
M e Y011 Z)(R), or equivalently, M/ M € YL @) (R/w R).

Remark 5.2.5 Let F’ be a field extension of F. If 9t € Y0217 (F’) has shape
7 (Definition 5.1.9), then 9 admits a Z-gauge.

Let R be a Noetherian F-algebra and 9t € Ylgo’h]’f(R). Assume that 91
admit an eigenbasis. Then the condition that 9t admits a7 = (Z;) je7-gauge
is equivalent to the condition that for any eigenbasis §, the matrix of partial
Frobenius A 5 belongs to Z(R)UE)(R)) = T (R)(T1(R)) UE,)(R)) for
allj e J. Furthermore in this case Proposition 5.2.2 shows that we can adjust
the eigenbasis 8 so that A(J ) om.p € TV(RU®T j)(R). The proof of Proposition
5.2.2 and the fact that the multlphcatlon map Z(R) x U(w)(R) — LGo(R)
is an injection shows that an eigenbasis 8’ has this property if and only if
it is obtained from B by a change of basis given by {(z;/) jes € T]FV(R) |
tir = ty for j' = k' mod f} = TFV’J(R). Thus the set of eigenbases with
this property form a torsor for the group TFv 7 This motivates the following
definition:

Definition 5.2.6 LetZ = (Z))jes € WV-7 . Let R be a Noetherian p-adically
complete O-algebra, and assume M e Y17 (R) admits a Z-gauge. An
eigenbasis B of 9N is called a Z-gauge basis if the matrix of partial Frobenii

Agggﬁ e TV(R)YUE,)(R)) forall j € J.

Proposition 5.2.7 Let (s, i) be a lowest alcove presentation of T where | is
(h + 1)-deep in C. Let R be a Noetherian p-adically complete O-algebra
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and M € YORLT(R). Assume that O admits both a Z-gauge and an eigen-
basis. Then 9 admits a 7-gauge basis B, which is uniquely determined up to
scaling by the group {(tj/) jieg € TV-7'(R) | tjr =ty for j' = k' mod f} =
TV-7(R).

Proof It suffices to prove the Proposition for R a Noetherian O/ ?-algebra,
for any a > 1. We already observed that the Proposition holds when a = 1.
Thus we have a Z-gauge basis B of M /w19 € YT (R/w 1), Let E
be any eigenbasis of I lifting B. We also set Rp = R/, My = M/oM
and fr = B mod .

i oM =W ) () ()
- - - —
We set A/ = AYUI,ﬂ’ A = A a1 B Ap’ = A‘JJT]F P

the square-zero extension R — R/w“ ! with kernel / = w? 'R. As in
§3.2, we have R/ '-modules Lie LGo(J), LieZ(J) & Lie L*Go(J),
Lie L=~ Gn(J), which are in fact Rp-modules. We also have the obvious vari-
ants Lie TV (J), Lie Z; (J). Note that Lie Z(J) = Lie T¥(J) @ Lie Z;(J). By
Proposition 5.1.8, given the choice of eigenbasis E , the set of eigenbases S of
I lifting Bisin bijection with the set of tuples (X /) e 7 € Z(R)j/ such that

We get

e X depends only on the image of ;" in 7.

o X; eker(L*Go(R) — L*Go(R/m 1)), ie. ¥; & X; — 1 € LieZ(J)

forall j € J.

We thus need to analyze the set of tuples (X ;) je7 as above such that
X;AD (Ad(s; v ) (X ;1) 7)) € TY(RYUG)(R)).

Note that U(Z;)(R) = L™~ Go(R)Z; and similarly for R/z*~!. By con-

struction, we have a2V =D, UJEJ, where 5 e TV(R/w ') and ﬁ €
L~ g@ (R/w?™ 1) Slnce TV and L™~ Gp are formally smooth, we can ﬁnd
lifts D € TY(R) and UJ € L7 Go(R) of D and U ; respectively. Thus,

Z(j) =+ aj)ﬁjﬁj’ij,
where a; € Lie LGo(J).
We record the effect of (s, u)-twisted @-conjugation by (X ;) je7 = (1 +
Y;)je7. Namely, if we write,
X;AD (Ad(s; o) (p(X ;-0 7")) = L+ d)D;U 3
then we find that

a; =Y +a;— Ad(A(]) s LRty (@(Y-1))
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in Lie LG (J).
Since the set of elements in TY(R)U®Z)(R) lifting D U7 jzj are exactly
those of the form (l—l—a )D szj wherea € (Lie L“QO(J)GBLw TV(J)),

our job boils down to analyzmg the set of solutlons (Y;) € Lie LtGo ()7 to
the system of containments

Yj +a; — Ad(AY s ) (p(Yj-0) € (Lie L™G(J) @ Lie TV (J)),
jed. (5.7)

Observe that the set of solutions to the system (5.7) is invariant under transla-
tionby Lie TV (J)7:if Y; € Lie T¥(J) then Ad(AI(Fj)sj_1 Vit (p(Y-1)) =
Ad(D;U j)(Ad(s; H)(Yj-1)) € Ad(D;Uj)(Lie T¥(J)) C Lie L™~Go(J)&®
Lie TV (J), where the last inclusion follows from the fact that Ty - L™~ Go is
a subgroup of LGx. Thus, to finish the induction, we only need to show that
the system (5.7) has a unique solution in Lie Z; (Y.

Now, it follows from Lemma 3.2.3 that Lie LGo(J) = Lie L™"Go(J) @&
Lie TV (J)®Lie Z1(J) where Lie Z; (J) = { M € M,(J[[v]), M is unipotent
uppertriangularmodv} . Consider themap W : Lie Z; (J)Y — Lie LG(J)7
givenby (Y))jes > (¥Y;—Ad(AYs7 0% 1) (p(¥; ). By Lemma 5.1.10,
Ad(sj_lv“ﬁ"-i)((p(Yj_l)) =0 mod v"*? and so, by the height condition on
IMMp, we have:

Ad(A]%j)sj_lv“-i+”-7)((p(Yj_1)) =0 mod v>.

Thus the image of W is in Lie Z; (J)Y . Furthermore, if ¥ 7 =0 mod v¥ for
k > 0, then

Ad(A(’) 57 (Y1) =0 mod vt

by Lemma 5.1.10. Hence, as an endomorphism of Lie Z;(J)7, ¥ decomposes
as a sum of an automorphism and a topologically nilpotent endomorphism.
We conclude then that W itself is an automorphism. We thus conclude that the
system (5.7) has a unique solution in Z; (J ), namely W —1 of the the projection
of (—a;) e onto Lie Z1(J)7. O

5.3 Local models for moduli of Breuil-Kisin modules

In this section, we describe the local structure of the p-adic formal stack
Y1077 and its closed substack ¥ =*7.
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We have the following mixed characteristic generalization of Corollary
5.2.3:

Theorem 5.3.1 Let (s, i) be a lowest alcove presentation of T such that ju is
(h + 1)-deep in C), and let 7 € WY-J . Then there is a local model diagram
(depending on (s, n)) of p-adic formal O-stacks

ﬁ[O,h](’Z)Ap
~ A
YIOR @) = [0 @)/ 757 ] v (5.8)
0.h],7 [0.h],7 \ P
y 0.7, Grg'o

where

o The left diagonal arrow corresponds to extracting a 7-gauge basis and
taking its matrices of partial Frobenii.
e The diagonal arrows are torsors for the ( p-adic completion of) T(,\)/ T for

two different Tg I _actions (and hence are smooth maps): The left diagonal
arrow correspond to quotiening by the (s, i)-twisted conjugation action
while the right diagonal arrow correspond to quotiening by the left trans-
lation action.

e The vertical arrows are open immersion.

Proof The left side of the diagram follows from Proposition 5.2.7 and the
existence of an eigenbasis Zariski locally. The right side of the diagram is a
consequence of Lemmas 3.2.2, 3.2.7 and the fact that Gr[go”g] is a finite type

O-scheme. m|

Warning 5.3.2 AsZ varies in WY+ | the y10-hl.T (?) form a Zariski open cover
of YIOMT  Lemma 5.2.2 shows that over F, these local model diagram glue
together to give a local model diagram for Ylgo’h]’r, cf. Corollary 5.2.3. How-
ever, the local model diagrams do not glue together into a local model diagram
for Y017 iy eeneral. The reason is that Lemma 5.2.2 fails over test rings R
where p # 0, namely, the (s, w)-twisted @-conjugation is not equivalent to
the left translation relation by T1(R). For example, let R = O/w?, | J| = 1,
(s, n) = (1, (k,0)), and let

1 0 11
AZ(O v+p)’X:<o 1)'
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Then A and X A Ad(v¥) (go(X)_ l) areinthe same (s, |L)-twisted p-equivalence
class, but do not differ by a left translation by an element of Z1(R). Indeed

XAAdW") (p(X) )A™! = ((1) W}p)

does not belong to Z1(R), since

vk

v+ p

a—1
= T B ¢ R

We now impose bounded p-adic Hodge type conditions. Let A €
X(TY)Y = X*(T)7. We assume that A is effective and has height < 4,
that is each component 1; € X (TVY) satisfies Aj € [0, h]". (Note that if
h; = max{(A,a") | « € ®} then up to changing A by a central cocharacter
we can take & = h).) We now recall from [17, Theorem 5.3] the closed p-adic
formal substack Y =*7 c Y1047 (denoted Y*7 in loc. cit.). It is characterized
by the following properties (cf. [17, Theorem 5.13]):

e Y="7 is flat over O, and has reduced versal rings (i.e. it is analytically
unramified in the sense of [28, Definition 8.22]).

e For any finite extension E’ of E with ring of integers (O’, an element
M e YIOALT () belongs to Y =47 (O') if and only if 9[1/p] has p-adic
Hodge type < A. This is a condition on the type of the induced grading on
M/ E (). Lemma 5.10 in [17] says that the grading on 991/ E (v)N is
the base change of a grading on the x-isotypic piece for x appearing in the
type 7. The type of this grading is directly related to the elementary divisors
of the matrices of partial Frobenii Ag{ P (with respect to any eigenbasis).
Because of this, the p-adic Hodge type < A condition translates to the con-
dition that Aé;?) 8 viewed as an element of GL,,(E’ (v + p))) has elementary
divisors bounded by (v + p)*/. Note that this last condition is exactly the
condition imposed by the closed affine Schubert variety Sg (1) C Grg £

We wish to identify the object that corresponds to ¥ =*7 under the local model
diagram of Theorem 5.3.1. Recall the (finite type over O) closed subscheme
M7(<A) = LTGo\LGo = Grg o» Which is the Zariski closure of the

(Leduced) affine Schubert variety Sg (1) C Grg, g in Grg o-ForZ? = (Z)jes €
WV we set

UG =n) = [[Uu@ponM(=ip,

jed
UG <n =[] 78 x UGpoNM(< 1)) (5.9)
jeJg
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where the intersections are understood to be taken inside Grg o (which can
then be lifted to LGo since U (Z;) is canonically lifted to LG), and define
Y=*7(Z) as the intersection Y=*7 N Y0117 (%) (taken inside Y[O-"-7) We
have the following:

Theorem 5.3.3 Let (s, u) be a lowest alcove presentation of T such that 1 is
(h + 1)-deep in C, and let 7 € WV-I . Assume ) = Aj)jeg € X (T
satisfies Aj € [0, h]". Then diagram (5.8) induces a local model diagram of
p-adic formal O-stacks

UG <0 C LGS

J8T— 5
y=sht _ | v,J ~p \ A
@) =[0G =M/ | UG, < 1)
§ ¢
y=he Mg (< 0"
(5.10)

where the superscript N, stands for taking p-adic completion.

Proof We need to check Y=*T and M 7(< 1)"\» coincide after pulling back
to U0 (Z)"r along diagram (5.8). Since both pull-backs are reduced and O-
flat, it suffices to check they have the same O’-points for O’ the integers in a
finite extension E’ of E. But this is immediate, since the elementary divisor
condition on an element of GL,,(E’(v + p))) is preserved under both left and
right multiplication by GL, (E'[[v + p]). ]

Corollary 5.3.4 Assume the hypotheses of Theorem 5.3.3. Then Y =»7(Z) # ¢
if and only if 7 € Adm" ().

Proof Y=*T(Z) # @ if and only if UZ, <1)» # @ if and only if
U@, <AMr # . On the other hand, by Theorem [69, Theorem 9.3],
M 7 (< M is the union of affine Schubert varieties S (5) where’s € Adm"Y (1).
Thus, the set of torus fixed points of M 7(< A)r is Adm" (1). The result then
follows from Lemma 4.7.1. O

Corollary 5.3.5 Assume the hypotheses of Theorem 5.3.3. Let F' /T be a finite
extension. Then MM € Y=*T(F') if and only if the shape of I with respect to
T lies in AdmY (L).
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5.4 Etale @-modules
5.4.1 Background

Let Og g (resp. Og /) be the p-adic completion of (W (k)[vI)[1/v]
(resp. of (W (k")[u'T)[1/u’]). It is endowed with a continuous Frobenius mor-
phism ¢ extending the Frobenius on W (k) (resp. on W(k’), and moreover
endowed with an action of A, cf. [59, § 6.1] for the explicit defini-
tion of this action) and such that ¢(v) = v? (resp. pu') = @W')P).
Let R be a p-adically complete Noetherian (O-algebra. We then have the
groupoid ®-Modg" (R) (resp. ®- Modﬁ;d"L/(R)) of étale (¢, O¢, K®Z R)-
modules (resp. étale (¢, Og¢, L/®Z R)-modules with descent data from L
to K). Its objects are rank n prOJectlve modules M over Og, K®Z R
(resp. Og. L/®Z R)), endowed with a Frobenius semilinear endomorphlsm
om M — /\/l (resp. a Frobenius semilinear endomorphism ¢ : M —
M, and a semilinear action of A commuting with ¢ ) inducing an iso-
morphism on the pull-back: id ®, ¢ @ @* (M) —> M. It is known that
®-Mod%" (R) and ®- Modet’"L/(R) form fppf stacks over Spf O (see [22,
§3.11,[24, § 5.2], [15, § 3.1] where they are denoted R, ’R 1 respectively).

We use ®- Mod% (R) (resp. ®- Mod? 741, (R)) to denote the category of étale
¢-modules over K (resp. over L’ with descent) with coefficients in R and of
arbitrary finite rank.

Given 9 € Y1047 (R), the element MRs,, , (OS,L/®Zp R) is naturally an
object ®- Modgtd"L, (R) and we define an étale p-module M € ®- Mode;’" (R)
by

d f
= (M ®s,, , (Oe,18z,R)™!

with the induced Frobenius. This construction defines a map of stacks &; :
Y0t 5 - Mod%’". Note that ¢, is independent of any presentation of t.

Proposition 5.4.1 The map &, is representable by algebraic spaces, proper,
and of finite presentation.

Proof First, the morphism Y047 — ¢- Modfitd 1+ 18 representable by alge-
braic spaces, proper, and of finite presentation by Corollary 3.1.7(3) and

Proposition 3.3.5 of [15]. Finally, the map - ModfitdnL, to ®- Mode;’" defined
by taking A-invariants is an equivalence of stacks with quasi-inverse given by
M= M ®(’)5 K Og’L/. O

For any (M, ¢pr) € P- Mod?: % (R), we decompose M = @; ej./\/l(]) over
the embeddings o; : W (k) — O, withinduced maps (,255{/1) MU=D 5 MO,
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The following proposition, a direct generalization of [60, Proposition 3.2.1],
records the effect of ¢; in terms of eigenbases.

Proposition 5.4.2 Ler M € Y17 (R) and set M = e, (9N). Let (s, ) be
the fixed lowest alcove presentation of T. If B is an eigenbasis of M, then there
exists a basis | (determined by B) for M such that the matrix of ¢(J ) with
respect to | is given by

Agt)ﬁsj_lv“ﬁ"f.

Proof The statement is [60, Proposition 3.2.1] whose proof is generalized in
the proof of [56, Corollary 3.2.17]. For the convenience of the reader, we
reproduce the argument here. In particular, the proof below is obtained by a
simple relabeling from the proof of loc. cit., using Remark 5.1.7. We define a
basis 8’ for M’ &f Mes,, Og’L/)A/:l as follows: foreach 0 < j' < f'—1,
define

B def ﬁ(f)((u/)a’(/))’

which is a basis for M’ ") This uses that the action on u’ of A in embedding

!t

f - +/ +/
Jj' is through the character a)?, " The matrix for ¢>(j ) MUD D
with respect to A is given by

-/ -/
/ m 1 R m 1%y
Sor ] (sor ]/) ( ) - sor ] (Sor ]’) -

since pa’ =D — a0 = (p/" — D)a},_,. Define § by B0 & Fs;

forall0 < j' < f/ —1. Letj/ —j—i—ifforO < j < f — 1. Then the matrix
for qb(j ) with respect to ﬂ is given by

(Spe o) @y
A(] ﬁ(sor J’ 2N 1Sc/>r jr—1v -0 - A(] )ﬂ forr,
Since (af) (E(j/)) = E(j/*f) this descends to a basis § of M def eL(OM) =

(M')e /=1 , with respect to which the matrix of qj(] ) has the form described in
the statement of the Proposition. |

The following Proposition, which is the global version of the triviality of
Kisin varieties, shows that ¢; does not lose information in generic situations:

Proposition 5.4.3 Let h be a nonnegative integer and assume t is (h + 1)-
generic. Then the proper map €, : YI0"T — @- Mod%’n is a monomorphism
of stacks over Spt O, and hence is a closed immersion.
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To prepare for the proof, we record the following Lemmas:

Lemma 5.4.4 Let R be an F-algebra, and let (AY)jcr, (AV)jes €
LIOMGL, (R). Assume 7 = s_ltwr,7 e WY such that p is (h + 1)-deep in
Co-Let (1) jeg € GLy(R())7 such that A% = 1D AVZ (10U~
forall j € J, then IY) € Ip(R) forall j € J.

Proof We essentially repeat the argument in the proof of [59, Theorem 3.2]

for a general F-algebra R. For all j € 7, define k; € 7Z so that [0+ &
vki 1) e Mat, (R[[v]) and 1>+ £ 0 modulo v. Rewriting the equation and
multiplying through by v”, we have

‘ a1 o
plikj—pkj-1 AdG))(pU=D ) = oh <A§])> I+ (])Agl)’

where thg right side is in Mat, (R[[v])) by the height condition.
As I)-+ = 0 modulo v, we deduce that

kj z pkj—1 — max{(u; + nj,a’)y—h>pkj_1—p+m—h

> pkj—1— 1) +1 (5.11)
since w is (h + 1)-deep in C,. We conclude that k;; < 0 for all j € J or,
equivalently, I/} € Mat, (R[v]) for all j € J. By exchanging the roles of
A1 and A, we conclude that /) € GL,,(R[[v]) forall j € J.

We now prove that / () e Z(R) for all j € J. Let a be a negative root of
GL,,. Assume (1(1_1))a # 0 mod v for some j € J. Since

(Ad (v411) (1Y) = (pIYU™D)) vlitnia”)

Ad(Zj)(w(I(j_l))) has apole of order —(u j+n;, aV) > h.Thisis acontradic-
tion since v AdE)(@(I0~D)) = v ((AP) ' 1D AY) is in Mat, (R[v]]).
O

The same argument also proves the following:

Lemma 5.4.5 Let R be an F-algebra and let J be an R-module. Let
(A(‘/))]‘ej € LIMGL,(R)7. Assume 7 = s~ 'ty € WY7 such that p
is (h + 1)-deep in C. Let (Y;) jes € Mat, (J (v))). Assume that

N 1
Yj = AdAVZ)e(Yj-1) € — Maty (J [V,
forall j € J.ThenY; € Lie Ir(J).
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Proof of Proposition 5.4.3 We need to show that for each p-adically com-
plete Noetherian O-algebra, &, induces a fully faithful functor Y017 (R) —
o- Mod?’"(R). It suffices to treat the case where R is a Noetherian O/w“-
algebra. We choose a lowest alcove presentation (s, i) of t such that u is
(h + 1)-deep in Cy,.

Suppose My, My € YIOMT(R), and let M; = &, (9;) fori = 1,2.
We need to show ¢&; induces an isomorphism Homyo.n.r gy (MM, M2) =

Hom m, Modétn(R)(Ml M>). Since this assertion is local in R, we may

assume that 9J7; admits eigenbases S;. Let A(J ) = A(j ) My B Proposition

5.4.2 using the bases fi, fo constructed from ,31, B> shows that an element

Hom Mg o gétn (M1, M3) is in bijection with the set of tuples (I(J))Jej €
-Mod " (R)

LGo(R)Y such that
DAY = A(J)Ad(s—‘vﬂfﬂr)((p(l“ M), (5.12)

while Homyo.n1.- gy (91, M>) is in bijection with the set of tuple (I(j))jej €
Ir(R) satisfying the same relation by Proposition 5.1.8. In other words, we
need to show that any solution to (5.12) in LGo(R)Y must automatically
belong to Z(R)Y . We will prove this assertion by induction on a.

The case a = 1 is treated by Lemma 5.4.4. Suppose our assertion is true

up to a — 1. We may assume that Agj) = Aéj) mod @ !, and B = B
mod @', Let A[(Fj) = AY) = AY) mod w. We perform a Lie algebra
computation similar to the proof of Proposition 5.2.7. Set J = @~ R. We
canwrite AY) = (14+a;)AY and 1) = 1+ ¥;, witha;, ¥; € Mat, (J (v))).
Equation 5.12 translates to

Y; = a; + Ad(AY s v ) (X)),

Since Algj) e LI%MGL,(R), aj € vlh Mat, (J[[v]). Lemma 5.4.5 thus shows
that Y; € Lie Z(J), and thus /) € Z(R). O

5.4.2 Etale ¢p-modules and local models

Fix an (h + 1)-generic tame inertial type t with a lowest alcove presentation
(s, m) such that p is (h + 1)-deep in C,. This gives rises to local model
diagrams (5.8) and (5.10) for Y[%#1.7(Z) and Y =*7 (Z). Over F, these diagrams
glue together into local model diagrams for Y]ﬁo’h]’r and Y]FSX’T. On the other
hand, we have the canonical map &; which does not depend on the presentation
(s, w). It is therefore natural to express ¢; in terms of the objects occurring
in the local model diagram. This will later be used in conjunction with the
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results of §4.3 to describe the irreducible components of the Emerton-Gee
stack which occur in Y=*7 in terms of the local model.
Let?Z = (Zj)jes € WY+ and a < b integers, define a closed subscheme

~la,b]

A = T @ e \L“YGLp ) c B,

jeJ

where LI*?IGL, is as in Definition 5.5. Clearly, Fl[a - Fl[a bl Z. There is
a natural map LE : ]_[jej(L[ ]GLn)]F 7 = <I>—Mod§§fl’;, which for an F-
algebra R is given by sending (AV)Z;)c7 € [Tjer LI“PIGL, (R)Z; to the

free rank n étale p-module M over R such that ¢(J ) is given by AU )EJ in the

standard basis. Clearly L~ factors through the quotient by the ¢-conjugation
action []_[ St b]GLn)F z,/(p Tr].

Now assume that 7 = o~ tH € WV where v is (b — a + 1)-deep in
C,. Since right translation by 7 intertwines the (o, v)-twisted ¢-conjugation

action with the ¢-conjugation action, Lemma 5.2.2 shows that L’~ descends to

a map (z Fl? 2 o Modet ".. This further factors through the quotient

[ Fle b]/Tv j-COIlJ] where the action of TV is given by (I]A(j)Z])Jej >
(DjflA(J Zj jil)jej for (Dj)jeg € T]F 7 We will abbreviate this as the

shifted TIFv ’j—conjugation action.

Proposition 5.4.6 Assume that 7 = a_ltv_H, where v is (b — a + 1)-deep in
Cy- The map 13 induces a monomorphism of stacks

[Fl[; 2Ty -conj] <> ®-Mod%l.

Proof Unraveling the definitions and twisting by v™¢, the Proposition boils
down to the statement that if R is an [F-algebra, (AIJ)ZJ)JGJ, (Aéj)fj)jej €
]_[jej L10.b—a] GLn(R)zj are g-conjugate by an element (I(j))jgj e GL,
(R(v))Y, then IV) € Zp(R) for all j € J. This follows from Lemma 5.4.4.

O

The following Proposition, obtained by combining Propositions 5.4.6, 5.4.3
and Corollary 5.2.3, provides our desired description of &;:

Proposition 5.4.7 Suppose we are given the following data:

e Integersa < b, and h > 0. _
o Anelement? = 0_1tv+n € WY+J such that v is (b — a + 1)-deep in Cy.
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e A tame inertial type T with lowest alcove presentation (s, 1) such that
w is (h + 1)-deep in C,. Setting w*(r) = s_lt,Hn, assume that
0,h], ~ b
(Gr5w )i () c P2
o Anelement A € X.(TV)7 such that A; € [0, h]" forall j € J.

Then we have a commutative diagram

~ ~ r{i/’,* T ~ ~
Mg (< Mp—— Grg’g]’j<—>( ) Fl?:g] —_ [FI?ZSJ/TFV’j-conj]

| fon _—" ]

<\T [0,h],T¢ et ét,n
Yp© —— Y5 - Mody

(5.13)

Remark 5.4.8 In Proposition 5.4.7, there is a natural choice of a, b, Z, namely,
a=0b=hand? = s"'t,,, = W*(r). However, to compare multiple
types, it can be convenient to make other choices.

5.5 Semisimple Breuil-Kisin modules

Let Gg,, C Gk denote the Galois group of K. Recall that Koo /K 1is
totally wildly ramified. When R is a complete Noetherian local O-algebra
with finite residue field, from the theory of fields of norms, we have an exact
anti-equivalence ( [31])

% d-Mod" (R) — Reply(Gk.,)
M = Homg((M®o, ,&,, r(Oem k87, R)*7 R)

(where Rep's (Gk,,) denotes the groupoid of G g -representations on rank n
projective R-modules) and hence a functor T : ylOALT(Ry — Repk (Gk,.)
defined as the composite of &, followed by V.. (We caution the reader that
the formula for V% in [59, § 2.3] was inaccurate.)

Since the subgroup Gk, of G projects surjectively to the tame quotient
of G, the restriction map

Repr(Gk) — Repp(Gk,,)

is fully faithful on the subcategory of tame representations of rank n. We will
often implicitly identify representations of G g in the essential image (of the
tame representations) with their canonical extensions to G . Note that this
essential image contains exactly representations of G g, which are trivial on
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Gk, N Gk, where K' is the maximal tamely ramified extension of K. Note
that semisimple representations of G are necessarily tame and hence extend
uniquely to Gg.

Given an n-dimensional F-representation p of Gx or G, we denote its
semisimplification by p*. If p is tame, i.e. if p = p*°, then p|, is a tame
inertial F-type for K (see §2.4).

Definition 5.5.1 Let p be an n-dimensional F-representation of Gg or Gk .

(1) Given an integer m > 0, we say that p is m-generic if the tame inertial
F-type p**|;, is m-generic in the sense of Definition 2.4.3(2).

(2) Ifpistame we say that (s, ) € W x X*(T) is alowest alcove presentations
for p if (s, u) is a lowest alcove presentation for the inertial F-type p|;, as

defined in the paragraph following Example 2.4.1. We then write w (p) for

the element W(p|;,) = f,,4ns defined in Definition 2.4.3(2) and w*(p) def

-1
t,+n- A lowest alcove presentation is m-generic if w(p) is m-generic.

We can directly relate the lowest alcove presentation to a description of the
corresponding étale ¢-module.

Proposition 5.5.2 Let7 € Fl[“ d Y fora, b,? as in Proposition 5.4.7. Let p be
an n-dimensional semisimple JF representatlon of either Gg or G Koo Then p p
admits a lowest alcove presentation (s, i) such that w*(p) = s~ tu+n =7
if and only if there exists D € TV (F) such that

k (z(D7)) = Pl -

Proof LetZ = s~ 't,4,. Then p is 1-deep in C, by the hypotheses in Propo-
sition 5.4.7. The fact that for any such D, the restriction to Ix of (the tame
G k -representation) Vi (1z(D7")) is T(s, i + 1) (and hence has lowest alcove
presentation (s, 1)) follows from a direct computation as in Proposition 3.1.2
of [56]. (Note that one needs to use Remark 5.1.7 to translate the conventions
of loc. cit. into conventions of this paper.)

To show the forward direction, one has to show that the choice of D accounts
for all possible extensions from /x to Gg. This can be done by counting
isomorphism classes over IF since by Proposition 5.4.7, (D7') = z(D'7) if
and only if DZ and D'Z’ are T"+7 (F)-conjugate by shifted conjugation. O

Remark 5.5.3 In Proposition 5.5.2, if p admits a 1-generic lowest alcove pre-
sentation with corresponding element w(p), then one can take 7 = w*(p) and
a = b = 0 to satisfy the hypotheses of Proposition 5.5.2.

Fix A € X*(T)7 dominant. Assume that Aj€[0,h]" forh > 0.Lett bea
tame inertial type together with a (h + 1)-generic lowest alcove presentation.
We now recall notion of shape of p with respect to t:
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Definition 5.5.4 Let p be n-dimensional F-representation of Ggx or Gk .
If there exists M € Y017 (F) such that T 1 (M) = Pl - then define the

shape w*(p, T) € WV-7 of o with respect to T to be the shape of 91 (Definition
5.1.9).
This is well-defined since €, is a monomorphism (Proposition 5.4.7).

We also have the notion of a semisimple Breuil-Kisin module:

Definition 5.5.5 Let M € Y017 (F") for any finite extension F’/F. Then 90
is semisimple of shape 7 € WY-7 if M e Y1011.7(Z) and for any choice of
Z-gauge basis 8, the image of (91, B) under the map UM Z)p — UM Z)p
from (5.8) is the 7V -fixed point 7 of Gr[o hl.7 . (In this case, 91 clearly has
shape 7.)

Remark 5.5.6 Concretely, the condition of being semisimple of shape 7 in
Definition 5.5.5 is that there exists an eigenbasis for 99t such that Agt) g €

TY(F)Zj for all j € J. By [56, Proposition 3.2.16], this is equivalent to the
definition given in Definition 3.2.14 of loc. cit.

Recall that for a fixed lowest presentation (s, i) of t, we define w*(t) =
s .
Proposition 5.5.7 Let t be a tame inertial type with lowest alcove presenta-
tion (s, u) where w is (h + 1)-deep in C. Let p : Gk, — GL,(IF) be a
semisimple representation. There exists a semisimple MM € Y017 (F) such
thatp = T;,(IN) if and only if p admits a lowest alcove presentation such that

T*@)(@* (1)"" € Gy In this case, M has shape W* () (F* (7))~
Furthermore, M € Y<)‘ T(F) if and only if W(p,t) = (W(r))"'w(p) €
Adm()).

Proof The forward direction follows from Proposition 5.5.2 and the diagram
in Proposition 5.4.7 with a = 0,b = h and 7 = w*(r). Namely, if 91 is
semisimple of shape 7 € Gr[0 M7 then e, (M) = 1+ () (DZw* (1)) for some
D e TVI(F). By Proposmon 5.52,p = T;,(M) is semisimple and has a

lowest alcove presentation (w, v) such that w*(p) =7Zw*(7) as desired.
Similarly, if » admits a lowest alcove presentation such that 7 =

(@) (W*(r) ! € Gr[o 11T then w*(p) € Fl[0 4] #*(r)- Thus, by Proposi-
tion 5.5.2, there exists D € Tv -7 (F) such that Lw*(f)(Dw (p)) gives rise to
the étale p-module corresponding to p|g,_ . Then 7, w (D7) is the desired
semisimple 9T since the diagram in Proposition 5.4.7 commutes.

The final statement follows from Corollary 5.3.5. |
Corollary 5.5.8 Let p : Gk — GL,,(IF) be a tame representation and t be
as in Proposition 5.5.7. If R%’T is non-zero, then p has a A-compatible lowest

alcove presentation such that W(p, ) = w(r) " 'W(p) € Adm(}).
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Proof By the same argument as in case (2) of Theorem [56, Theorem 3.2.20],
there exists a semisimple 9 € Y =MT(F) such that p|g ko =T, ; - (O0). The rest
follows from Proposition 5.5.7 noting that (i (7))~ '@ (p) € Adm(}) implies
that the lowest alcove presentation of p is A-compatible (see §2.4). O

Proposition 5.5.9 Let F'/F be a finite extension. If M € Y=*T(F') (resp.
YIO-RLT (), then there exists a semisimple Breuil-Kisin module I €
Y=RT(F) (resp. YIOMT(F)) such that T}, (9 = T, ().

Proof Let p = Tj;(M), and let M = IM[1/u'] € d- Mod;;’jL,(F/). Let
(pi)o<i<a denote a decreasing filtration on p such that gr;(p) = p;/p;1
is semisimple for all i. Recall the exact anti-equivalence of categories V7,
between Modf}d’ L,(IF‘/ ) and Repp (G, ) (see pg. 24 in [59] for example).
Using this equivalence, there is an increasing filtration M; C M such that

VigMi/Mi—1) = gr;(p)

for all i. Define 9; = 991N M;. By construction, 9; is a lattice in M; stable
under both ¢y and the action of A. Thus, 901; is a Breuil-Kisin module over
L’ with descent datum to K and of rank dim (V% ;(M;)). We can inductively
construct a basis « adapted to the filtration (9);); and compatible with the
descent datum. That is, we inductively pick bases o; = (al.(j )) for each 9J1; such
that A’ acts by characters on individual basis elements and ¢ : (ozl.(j )) = al.(j ),
Let @ = ay. Define the matrix C) € GL,,(F'(('))) by the condition

¢£§:{t) (go*(oz(j_l))) = oWV

By construction, C /) lies in a parabolic subgroup P (F'(u")) C GL, (F'(u"))
corresponding to the filtration (M;). Let L denote the corresponding Levi
subgroup which contains the diagonal torus 7. Choose a dominant cocharacter
v such that L is the centralizer of v.

We now construct a family M, of free étale ¢-module with descent data of
rank n over Aﬁw = Spec F'[x] as follows: we take a basis «, and let A act on ay
in the same way it acts on «, and let Frobenius act by C)EJ ) = p(xX)CPDy(x)~!
(with respect to «, ). Note that the right-hand side belongs to GL,, (F'[x ] (")),
and that C (gj ) lieg in the Levi subgroup L (FF'(«"))). The family M, gives amap
A}, — ©-Mody,'; .

The family we constructed has the following properties:

e For each x € FX, the matrices C )(C" ) define a Breuil-Kisin module with
descent data MM, C M. Furthermore, 91, = 9 as Breuil-Kisin modules
with descent data (via scaling the basis by v(x)), and thus 907, gives a point
of Y=*7(F).
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o Vi, (Mo) =7

Since the map Y =7 — &- ModZE}"L, is representable and proper (and in fact
is a closed immersion in the current éituation), the locus of x where M, comes
from a Breuil-Kisin module in Y=*7 is closed. Since this locus contains all
elements of F * ,itmust contain x = 0. We conclude that there is a Breuil-Kisin
module M € Y=»7(F) inside M. In particular we have T7,(0) = 5%,
and Proposition 5.5.7 implies furthermore that 9%’ is semisimple. O

Corollary 5.5.10 Let ' be a finite extension of F and let M e Y1017 (F).
Assume that T is m-generic where m > h + 1. Then T ,(9)% admits a
(m — h)-generic lowest alcove presentation (w, v).

Proof By Proposition 5.5.9, we can reduce to the case where T,(9)
is semisimple. Choose a lowest alcove presentation (s, u) of t where u
is m-deep in C. By Proposition 5.5.7, 9t is semisimple of shape 7 =
((sj*ltvj_,lj w;)*)jes where T7,(OM) |, = T(w, v + n). By the height con-
dition on 9N, it is clear that 7 is A-small so [(v — u, a¥)| < h foralla € ®.
Since p is m-deep in C), we conclude the v at least (m — h)-deepin C,. 0O

6 Global methods
6.1 Deformations of representations

Let Co be the category of Noetherian complete local O-algebras with residue
field I and local O-algebra homomorphisms. Let G,» be a split (possibly
disconnected) reductive group. Given a topological group I', a continuous
representation 7 : I' — G(IF), and (A, my) € Cp, an A-valued lifting of 7 is
a continuous representation r4 : I' — G(A) such that 7 = r4 (mod my).

6.1.1 Deformations of local Galois representations

Let L be a nonarchimedean local field of characteristic zero. For a continuous
Galois representation p : Gy — G(IF), define the functor DﬁD : Co — Sets
by letting D5(A) be the set of A-valued liftings of p. Then DﬁD is represented
by a ring RﬁD, the O-lifting ring of p.

Suppose now that G = GL, and that L is not a p-adic field. If 7 is an
inertial type for L, then let R% denote the reduced O-flat quotient of RﬁD
whose E’-points correspond to representations p : Gy, — GL,(E’) with
WD(p)|;, =1 ®f E' forany E' C @p which is finite-dimensional over E.

Now suppose that L is a p-adic field. Let 7" and B be the diagonal maximal
torus and upper triangular Borel subgroup, respectively, in G = GL,. Let
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T def Homg, (L, E),leti € X, (TV) = X,.(T")Y be adominant cocharacter,
and let T be a Weil-Deligne inertial type for L. Then let R%’T be the reduced O-

flat quotient of R%‘ such that Spec R%’T is the Zariski closure of E’-points which
correspond to potentially semistable representations p : G, — GL,(E’) of
Hodge type A with WD(p)|;, = t ® E' for any subfield E’ C Q, which is
of finite degree over E. Let Spec R%’ﬁr denote the reduced union U/ <, R%’T/
(see Definition 2.5.3 for the relation <). We also write RY (resp. Rﬁff) for Rg’r

(resp. R%’ft).

Remark 6.1.1 If the nilpotent element N, of t is zero (i.e. T is minimal with
respect to <), then R%’I is a framed potentially crystalline deformation ring

defined in [49] and is a versal ring for X' at (the point corresponding to) 7;

*=T is a framed potentially

see §7.2. If T is maximal with respect to < then R 5

semistable deformation ring defined in [49].

6.2 Patching axioms

Recall from §1.8.2 that O, is a finite étale Z,-algebra, which we write as

[T O, where S, is a finite set and for each v € S, O, is the ring of integers
vesS)

in a finite unramified extension F, of Q,. Let G /7 be a split reductive group.
We let G be Reso,z, (G /@p) and denote the Langlands dual group (defined

over Z) of Gy by L' G. Recall from §1.8.2 that L G = Gy % Gal(E/Qp) and
that Qyz = G/vij where J = Homgz,(O,, O0).

We fix isomorphisms F," — @p for each v € §),. Then we recall that
an L-homomorphism Wg, — LG(A) over a finite cardinality O-algebra A
is equivalent to a collection (G FF GY(A))ye S, of continuous homomor-
phisms. Similarly, a Weil-Deligne inertial L-parameter t is equivalent to a
collection (7y)ye s, of Weil-Deligne inertial types. We now take G to be GL,,.
Let o be an L—horzl\omorphism over [ with corresponding collection (p,)ye S,

Let Roo be Rz®0 RP where

def
R; =X RY
ves,,0 Py

and R? is a (nonzero) complete local Noetherian equidimensional flat O-
algebra with residue field F (we suppress the dependence on R? below).
(Though we will not use it, Rz = RE, forg =L G where o’ denotes the

unique extension or p to G, .) Fora Weil-Deligne inertial L-parameter 7 and a
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cocharacter A € X, (T),let Roo(A, T) (resp. Roo(A, < 7)) be Roo®RﬁRH"’T

Y3
A, <
(resp. Roo @R, ﬁ+" =%y where
&‘H%T déf ® Rﬁv‘i‘rlu:fu (resp R&‘H’Ivff d;f ® R&v+’ivv§7v)
z veS,, 0" Py e veS,, 0 Py '

Let Xoo, Xoo(X, 7), and Xoo(X, < 7T) be Spec Rso, Spec Roo(A, T), and
Spec Roo (A, < 1), respectively. Let Mod(X ) be the category of coherent
sheaves over X, and let Rep,, (GL,,(O))) denote the category of topological
O[GL, (O))]-modules which are finitely generated over O. Leto (A, 7) be the
finitely generated E[GL, (O))]-module V(1) ® o (7).

Definition 6.2.1 A weak patching functor for p is defined to be a nonzero
covariant exact functor M, : Repy(GL,(O)p)) — Mod(X ) satisfying the
following: if °(A, 7) is an O-lattice in o (X, ) then

(1) Mx(0°(A, t)) is a maximal Cohen—Macaulay sheaf on X, (A, < 7); and
(2) forallo € JH(@° (A, 7)), Moo (o) is a maximal Cohen—Macaulay sheaf on
Xoo(A, X 1) (Oris0).

Moreover, we distinguish the following kind of weak minimal patching func-
tors.

(I) A weak patching functor is minimal if R? is formally smooth over O
and whenever 7 is an inertial L-parameter (so N = 0 as in Remark
2.5.2), Mo (o®(X, T))[ p_l], which is locally free over (the regular scheme)
Spec Roo (X, T)[ p‘l], has rank at most one on each connected component.

(II) A weak patching functor is potentially diagonalizable if M, (c°(A, 7)) is
nonzero whenever each p, for v € S, has a potentially diagonalizable lift
of type (Ay + 1y, Ty) (in the sense of [10, §1.4]).

(II) If p is semisimple and 2n-generic, we say that a weak patching functor
M« is detectable if o € Wy (p) implies that Mo, (o) is nonzero.

(IV) LetSbeasetoftypes (A+n, ) with T an inertial L-parameter (so Ny = 0).
A minimal patching functor for p and S is a minimal weak patching functor
for p such that My, (6°(A, r))[p_l] has rank one on Spec R (X, r)[p‘l]
whenever (A + n, 7) € S and 0°(A, ) is as above.

Remark 6.2.2 We essentially consider two contexts: one global and one local.
Correspondingly, in practice, S, will either be the set of p-adic places of a
number field or contain a single element. In the global context, p will arise
from restriction of a global characteristic p Galois representation. However,
in either context, all constructions of patching functors that we use will come
from (modifications of) the (global) Taylor—Wiles patching method.

When §), is the set of p-adic places of a number field, then R” will be a
formally smooth algebra over a completed tensor product of local deformation
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rings at some places away from p. (The extra variables, sometimes called
auxiliary, are a byproduct of the global nature of the construction.)

When §), contains a single element, we globalize the local Galois repre-
sentation p i.e. find a suitable number field F™ whose completion at a place
v is F," and a Galois representation whose restriction to the decomposition
group at v is isomorphic to p. We then apply the Taylor—Wiles method to this
globalization to obtain a patching functor. In this case, R” will be a formally
smooth algebra over a completed tensor product of local deformation rings
at some places away from v (including all places that divide p except for v).
In this local context then, the notation R” may be misleading, for which we
apologize.

Proposition 6.2.3 Let p be as above, M, be any weak patching functor, and
o be a Serre weight such that Mo (0) # 0. If either p3’ is (6bn — 2)-generic
forallv | p orois (2n — 1)-deep and p3’ is 4n- generlcfor allv | p, then
o € W (p%), where p* denotes the L-homomorphism over F corresponding
to the collection (py)ves,,-

Proof Leto be ®yes,0v. Suppose first that p3° is (6n —2)-generic forall v | p.
Then the axioms for MOO imply that for each vp € §), Moo(— @ ®y£yy0v) :
F[GL, (ky,)] — Vect,p is an arithmetic cohomology functor in the sense of
[56, Definition 4.2.1]. Then [56, Corollary 4.2.4] implies that o, € w? (%
foreachv € §,.

Now suppose that o is (2n — 1)-deep and p;’ is 4n-generic for all v | p. Let

A € X*(T) besuchthat F(A) = o.Thent def 7(w, Wy, - A +n) is an n-generic
tame inertial type for all w € W. Moreover, the proof of [56, Corollary 4.1.12]
(and [29, Lemma 5]) shows that there is a w € W such that p does not have
a potentially crystalline lift of type (1, 7) if o ¢ W’ (p). By the axioms
of Mo, it would suffice to show that o € JH(c(t)). This follows from the
observation that if (s, © — n) is an n-generic lowest alcove presentation of t
then F( ~1 (@) - (¢,,s~'(n) — 1)) € JTH@ (7)) (The fact that ;1 — -nis - deep
ensures that tusw—1 (n) — n is dominant and p-restricted for any w € W1 )

Proposition 6.2.4 (1) If p 1 2n and p is an L-homomorphism over I, then a
weak potentially diagonalizable patching functor exists.

(2) If furthermore for each v € Sy, p, has a potentially diagonalizable lift of
type (& + ny, Ty) so that the potentially crystalline lifting ring R%M’r is

formally smooth, then a weak minimal potentially diagonalizable patching

functor exists.

Proof We can assume that O, is a domain Ok as the general case follows
by taking completed tensor products. By [22, Theorem 6.4.4], a (potentially)
crystalline potentially diagonalizable lift always exists, say of type (§ + 7, T).
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Setting £ and 7 in [14, § 2] to be this & and t, the construction in loc. cit. pro-
duces a finitely generated R~[[GL,(Ok)]-module M. For o a finite
O[GL,,(Ok)]-module, we define M, (o) to be Homg’[r[‘(t}Ln(OK)]] My, V)Y
where (—)Y denotes the Pontrjagin dual. Then My, (—) is a weak patching
functor by [14, Lemma 4.18(1)]. By construction, 7 in loc. cit. is potentially
diagonalizably automorphic, which implies that M, is potentially diagonal-
izable by the proof of [56, Theorem 4.3.8]. If R%Jr”’r is formally smooth, then
M~ is minimal. |

Remark 6.2.5 For our purposes, the hypothesis p t 2n is often implicitly
assumed since if p | 2n, then there are no n-generic tame inertial L-parameters.

Let K be a finite unramified extension of Q, with ring of integers Ok,
and we now let O, be Ok . We assume for the remainder of this section that
p 1 2n (otherwise there are no n-generic tame inertial L-parameters). Then an
L-homomorphism over FF is equivalent to a representation p : Gg — GL, (F)
which we also denote by p.

Proposition 6.2.6 If o : Gx — GL,(IF) is a semisimple continuous Galois
representation whose restriction p|j, corresponds to a 4n-generic tame iner-
tial L-parameter over I, then any weak potentially diagonalizable patching
functor for p is detectable. Moreover, a weak minimal detectable potentially
diagonalizable patching functor exists.

Proof The first part follows from the proof of [56, Theorem 4.3.8] using Propo-
sition 6.2.3 in place of Corollary 4.2.7 in loc. cit.. For each v € §,, o,
is Fontaine—Laffaille and so p, has a crystalline potentially diagonalizable
lift for some Fontaine—Laffaille Hodge—Tate weights and the correspond-
ing crystalline lifting ring is formally smooth ( [10, Lemma 1.4.3(2)], [16,
Lemma 2.4.1]). (Alternatively, one can use [56, Theorem 3.4.1].) Proposition
6.2.46.2.4 implies that a weak minimal potentially diagonalizable patching
functor exists, which is then necessarily detectable. O

Proposition 6.2.7 Let p be a semisimple Galois continuous representation
whose restriction p|, corresponds to a 4n-generic tame inertial L-parameter
over F. Let . € X.(T") be dominant with Aj € [0,h]". Let T be a tame
inertial type with a fixed max{2n, h+n—1}-generic lowest alcove presentation
(cf. Definition 2.4.3(2))). Let 6°(A, T) be an O-lattice in o (A, T). Let Mo be
a weak detectable minimal patching functor for p (which exists by Proposition
6.2.6 if O is a domain). Then the following are equivalent.

(1) Moo (o°(A, T)) is nonzero;
(2) Rso(A, T) is nonzero;
(3) R%Jrn’r is nonzero, and
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(4) there is a A-compatible lowest alcove presentation of p and w(p, T) €
Adm(A + n).

Proof If Moo (0°(X, 7)), which is supported on X (A, T), is nonzero, then
Roo (A, T) must be nonzero. By definition, Ry (A, T) is nonzero if and only if

A+n,T .
—+n 1S NONZEro.

If R%H’T is nonzero, then there is a A-compatible lowest alcove pre-
sentation of p such that w(p, ) € Adm(i + n) by Corollary 5.5.8. If
w(p, T) € Adm(A + 1), then Wopy (9) NJTH(G° (A, 7)) is nonempty by Propo-
sition 2.6.6. If o is in this intersection then M, (o) is nonzero, which implies
that M (c°(A, 7)) is nonzero by exactness of M. O

We will also need a version of the above result for certain non-semisimple

0:

Lemma 6.2.8 Let « € X (T) be (n — 1)-deep. Suppose that p : Gg —
GL, (F) is of the form

X1 * *

0 72 - *

0 -+ 0 %,
—Kjitn;ji

where X1, =11 jeT PKlg; - Then p can be lifted to a representation p of
the form

X1 * *
0 x2 *
0 0 xn

1

where xily, = ght Hjej a)l;{’gj Any such lift is potentially crystalline of
type (1, (1, k).

Proof The depth hypothesis implies that x; # ;€ forall 1 <i <i’ <n,so
that H>(Gg, 71'7;'_/1) = 0 and there are no obstructions to finding an upper
triangular lift p of p with characters x; on the diagonal.

We now check that such a lift p is potentially crystalline of type (1, T(1, k)).
Since for each embedding j € J, the j-labelled Hodge-Tate weights of
p increase along the diagonal, p is de Rham, by [4, Lemme 6.5]. Hence p is
potentially semistable. Clearly the Hodge—Tate weight of p is . Now Dy (o) is
a successive extension of Dy (x;) as I -representations, and since Dpg(x;) =
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I jeg a)j’ " as I g -representations, p has inertial type (1, «). Finally, the depth
hypothesis on « implies that D (0) |, 1s a direct sum of n distinct characters,
which forces the monodromy operator N on Dy to be 0. Thus p is in fact
potentially crystalline of type (n, (1, «)). O

Proposition 6.2.9 Suppose that k and p are as in Lemma 6.2.8. If p is
4n-generic and My is a weak potentially diagonalizable patching func-
tor (which exists by Proposition 6.2.4), then Moo (F(x)) # 0. Moreover, if
F(x) €e JH(o (A, 1)), then R%Jrn’r is nonzero.

Proof Since p is ordinary in Lemma 6.2.8, p is potentially diagonalizable
by [10, Lemma 1.4.3]. Then Mo (c°(7(1, ))) is nonzero for any O-lattice
o°(t(l,k))ino(t(1, k)).

Let (w, w) be a lowest alcove presentation for F'(«x) so that k = () -
(w — 7). Since p is 4n-generic, (W, w) is a 3n-generic lowest alcove presen-
tation. We let w € ﬂ;r be 1, w. Then writing (1, k) = (N (w) 'w, 0 +
7w~ w) ™ gy — ) and 7%, =T (w) T 'w, @+ 77 w) 7! () using
Proposition 2.4.5 gives compatible lowest alcove presentations of 7(1, ) and
Plig- Since w(p, t(l,k)) = fy=1(n)> W’ @) NJH@ (t(1, k))) = {F(x)} by
Corollary 2.6.5. For any o € JH(@(z(1, k))) with o % F(k), o ¢ W’ (p*)
and o is 2n-deep by Proposition 2.3.7, and so Ms,(c) = 0 by Proposition
6.2.3. This implies that M., (F (x)) is nonzero. The final part then follows
from the axioms satisfied by M. m|

7 Monodromy, potentially crystalline stacks, and local models

As we saw earlier, Theorems 5.3.1 and 5.3.3 gives a Zariski local description of
the moduli of Breuil-Kisin module ¥ in terms of certain affine opens of
global Schubert varieties. In this section, we give a similar description for the
potentially semistable stacks of type (A, ). This will the main local ingredient
for the global applications.

7.1 The monodromy condition

We are in the setup of §5.1. We have fixed a tame inertial L-parameter 7 :
lg, — T (E) together with a 1-generic lowest alcove presentation (s, u). To
the tame inertial L-parameter above, we associate a tame inertial type for K,
denoted by 7 : Iy — GL,(FE), as described in the Example 2.4.1. Let r be
the order of s;. As in §5.1 we write K’ for the unramified extension of K of
degree r, let k' be its residue field and set f = fr, ¢ = p/ — 1. Finally,
recall that we have fixed an identification of 7' = Homq, (K', E) with Z/f'Z

by the choice of the isomorphism ¢ : K > @p.
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K =
[, “%]]) [%] denote the ring of rigid analytic functions on the open unit disc
over K'. There is a natural injective map (’);i(g, — (WEH®Q)I[u'l = K'u',
which identifies (’) i€ 25 the subring consisting of power series Y oo a, (u')"
such that |a,|,R" — O forall R < 1. Clearly G/ C Orlg Set

= E@ ri

n=0

We begin by recalling some notations from [48]. Let 0"g — (1(31" W (k")

def

We define a derivation on O X by Ny = —u'’+%< d( the Frobenius ¢ on &/

/) ,
extends to a Frobenius ¢ on 055 k- If A is a finite flat O-algebra, we define

Or,?’; &ef (92‘(’: ®Z A. For any Kisin module M e Y07 (A), we define its

base change to 05 KA 38 srie < op ®s (’)“g
One has the following important result of KlSln

Theorem 7.1.1 The module YN"E[1/1] is equipped with a unique derivation
Noyiie over Ny such that

Nmrig(pmrig = E(u/)¢mrigNmrig (71)

and Ngyrie mod u’ = 0. The module "¢ is stable under Nyys if and only if
T;,(OM)[1/p] is the restriction to Gk, of a potentially crystalline represen-

tation of Gk over A[%], of inertial type © for K and Hodge—Tate weights in
[0, A].

Proof This is essentially [48, Corollary 1.3.15]. The result in loc. cit. is
stated there without tame descent data, however, using the full faithfulness
of the restriction from crystalline G ;/-representations to G/ _-representations
(Corollary 2.1.14 in loc. cit.), we see the stability of "€ under Noyrig 1s
equivalent to V = T;,(9)[1/ p] extending to a potentially crystalline repre-
sentation of G g, which becomes crystalline over L'. The fact that it has inertial
type 7 follows from the fact that D (V) is isomorphic to ((9t/u’ E)ﬁ)[%])v
as an /g -representation. O

Definition 7.1.2 Let A be a finite flat O-algebra. We say that M € Y [0.21,7 (A)
satisfies the monodromy condition if Ngyrig (I"€) C IN"E.

The significance of the monodromy condition is that by Theorem 7.1.1,
it captures the condition that the G g_ representation attached to a Breuil—
Kisin module comes from potentially crystalline G g -representations, at least
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on finite E-algebras. We would like to study this condition when one varies
the Breuil-Kisin module in a family, and understand it explicitly in terms of
the coordinate charts of Y%7 produced by Theorem 5.3.1.

Let R be a p-adically complete, topologically of finite type flat O-algebra.

We define (’);i,g = l(ir_nn R[[v, %]][%], which can be interpreted as the ring
of rigid analytic function on the open unit ball (Spf R)"& x D° over the rigid
analytic generic fiber of Spf R. There is a natural injection O;g — R[%][[u/ 1
whose image is stable under %, and we will always think of the former as a
subring of the latter via this injection. Note that for each m > 0, we have map

ng (R[ DIu'1/¢™(E (u")), which we can roughly think of as “evaluation

at (—p)¢ P”’ ” (in contrast, there is no such map for R[p][[u/]]) If Fe (9
we write F|gmg@u))=0 to mean the image of F under this evaluation map
Note that the condition F|ymg@y)=0 = 0 is a Zariski closed condition on

Spec R[1]. Finally, we note that the formation of O;;g is a Zariski sheaf on
Spf R (and thus we are free to make Zariski localizations on Spf R in our
arguments below): Indeed, a Zariski open cover of Spf R induces an open
cover of the adic space (Spf R[[u’ 12 whose generic fiber over (Spf Z p)"“ld
(Spf R)"& x D°, and these adic spaces are sheafy by [44, Theorem 2.2].

We also define the variant OK, = 1(1£1n(W(k ) ®z, R, “p ]][p], which
is a subring of (K" ®z, R)[[u']l. Since R is an O-algebra, we have a decom-

position (’)rll(‘oi =11 jeg’ O;g . The operators ¢, Ny continue to make sense
rig
on O p. .
Given M € Y017 (R), we define Mg = MRes,, , O?ﬁ > Which decom-
poses as MIe = @j/ej’mrig’(j/).

Proposition 7.1.3 Let R be a p-adically complete, topologically finite type
flat O-algebra, and M € YO (R).
ere exists a unique derivation rig gl — ig[ 1] over Ny
(1) Th ' ique derivation Ngprig : ONUE[1] — 9Nrie[1] N
such that

Nmrig(bmrig = E(u/)(bmrigNmrig (72)

and Ngyrig mod u’ = 0.

(2) Suppose I admits an eigenbasis B = (ﬂ(j,))j/ej/, and recall that Cigt)ﬂ €
Mat,, (R[[u']) is the matrix 0f¢gm c U =D 5 9nU0, Define inductively
the sequence N(] ) e Mat, (R[L IIu’]])for j € J andi > 0 as follows:

o NJ) =0forall j/ e J'.
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e Foreachi > 1, define
df i'—1 _ i’ iy —
Then for each j' € J', the sequence Ni(j ) converges in Mat(R[1/p]lu'T)

)J’ T Matn(Or %), and is the
matrix of Noyrig : orie. () — gmrie. (1) yyirh respect to ,B(J ),

to an element Nég ). Furthermore Néé) €

Proof To prove both parts, we can work Zariski locally on R and hence assume
that 9t admits a eigenbasis B. First, assume Nyyig exist, then itis (W (k") ® R)-
linear so it preserves 91U/ ). Let NU") be the matrix of Noyrie With respect

to BU D LetCcU) = CS()}t)ﬂ We can thus write the commutation relation (7.2)
as

NUCU) = B p(NU'=D) = Ny(cW). (7.3)

Then Ngyrie is unique since this system has at most one solution even in
Matn(R[%]IIu/ 1" . Indeed, the difference X j»of any two solutions will satisfy

(noting that CY/") € GL, (R[51[u'T))

Xj = EW)Ad(CY)(@(X ;)

and Xy mod u’ = 0. From this we deduce by induction that X ;- is infinitely

divisible by «’ in Matn(R[%][[u’]]), hence must be 0.
Thus, we are left with showing the second part of the Proposition, since the

limiting Néé ) constructed there will be a solution to the commutation relation
(7.3). We show by induction that

. WP _
A I(Nt(—JH) NY) e m‘ﬂ’“(kh)Mat(Rl[u/]])- (7.4)

For the base case, we have
h=1n G hr DGOV (G
AN =0 d—(C )(cY)

— oo L () By (i) ew(xh% Mat,, (R[u'T),

)hd/
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since Y, E@)"(cUN~! e Mat, (R[«']) by the height condition. Now
suppose we already know (7.4) uptoi — 1 > 0. We have

AN =N = i(”) ¢y (=1 (N0 = NITDY) (e !

belongs to

1 <<u/>P"“¢" (A

/
=1\ G- )Mat"(RH” )

4

@) ,
= SraenEn ) Mat (RIW'D),

since we have CU) | E (u/)" (C(j/)) e Mat, (R[[«']) by the height condition.
This finishes the inductive step.

Property (7.4) shows the convergence of N; K in Matn(R[ 1[«'T), and the
limit necessarlly is the unique solution of the system (7.3). 1t remalns to show
Néé) € )J' r Mat, (Ong) From (7.4), we just need to show an element in

R[%]IIM/]] of the form

wyr :
V= Z(;pu(h DG+ ¥ O fiu)

with f;(u") € R[[u’']] must belong to Ogg . Equivalently, we need to show that
for each fixed m, i lies in the image of the homomorphism R[x, y]][%] —

(u)

R[ ][«'] sending x to u” and y to . However this is clear, since <pi+l A) €

7 [[(u )’”]] and W fiu) € W) R, (“) ]I for i sufficiently large
relatlve to m. O

Proposition 7.1.4 Let A be a finite flat O-algebra and let M € Y10t (A)
with a eigenbasis B. Let Néft) o be as in Proposition 7.1.3. Then ML satisfies
the monodromy condition if and only if for all0 <t < h —2and j' € J/,

(L) | Ew=0 G INE) = 0.

Proof The forward direction is clear. For the reverse direction, we deduce from
the commutation relation (7.3).,that (%)’ lom E(u)=0 (Ah_lNé{) )) = 0 for all
m > 0. It follows that Ah_lNéé) e a1 Matn((’)ﬁg). O
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Corollary 7.1.5 Let R be a p-adically complete topologically finite type flat
O-algebra, let M € YIOMT(R). Assume M is free over S g Let B be a

eigenbasis for M. Let N(g) be the matrix of Ngyrig with respect to BY). Then

e The condition (%)WE(M/)ZO(A}’_lNg)) =O0forall0 <t <h—2and
j' € J' defines a Zariski closed subset Spec R[%]Sm’VOO C Spec R[%],
which is independent of the choice of the eigenbasis B.

e The formation of Spec R [%]‘“W’VOO is compatible with arbitrary base change
on the pair (R, M) satisfying the above hypotheses.

Proof By Proposition 7.1.3, each entry of (%)qquo(xh—wg{)) is
an element of R[%][u’]/E (u’). The Zariski closedness is immediate. A

change of the choice of eigenbasis B changes Néél) to Ad(X(j/))(Nég)) —
X(j/))nu/%((X(j,))_l) for X" e GL,(R[«']), and an easy computation
shows the independence on the choice of eigenbasis. The last assertion is
immediate, as the generators for the ideal cutting out our condition are liter-
ally the same if we compute using compatible choice of eigenbases. O

Proposition 7.1.6 Let R be a p-adically complete topologically finite type flat
O-algebra, let M € YIOMLT(R). There is a unique ideal Ion v, such that

e R/Iy v, is O-flat; and

e Foranyflat map R — S such that S is a p-adically complete topologically
finite type flat O-algebra and the base change Mg of M to S is free, one
has Spec S[%]/lzm,voo = Spec S[%]ms’vw.

Furthermore formation of Isn v, is compatible with flat base change on the
pairs (R, 9N) as above.

Remark 7.1.7 The compatibility with base change means that for flat R —
S, we have Iyg v, S = Iy v, . In general, we always have an inclusion

Imv,.S C Iy v,

Proof The existence when 9 is free follows from Corollary 7.1.5, taking
the Zariski closure of Spec R [%]Em’VOC in Spec R. The uniqueness then fol-
lows, since there is a Zariski cover of Spf R by p-adic affine formal schemes
topologically of finite type over O, over which 91 becomes free. Finally the
existence in general and the compatibility with flat base change follows from
the base change property in Corollary 7.1.5. O

We now wish to analyze the ideal oy v, more closely, and in particular
find some approximation of it which is more algebraic in nature. To this end,
we let R be a p-adically complete topologically finite type O-flat algebra,
and fix a pair (901, B) where M € Y%7 (R) and B is an eigenbasis for M.
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Given this data we get the matrices of partial Frobenii AU ) = Ag{)ﬂ and
cUh = Cé};)ﬂ for j/ € J’, cf the discussion after Definition 5.1.6. On the

other hand, Proposition 7.1.3 constructs the matrices Nc()é ) e Mat,, (Ong)

)»h 1
given by the infinite series

x o' (N} ”)(1‘[ “E@) Y=y )) (7.5)
k

where Nl(j') _ ku’%(c(j/))(c(j/))_l.
Thus we can write

y d . ., e
PTING = oM —— (€ w + p) )T+ S X
du —
=

- i—1
A e v
Xi(j) = =D H‘pk(c(j )
p k=0

d oo\ [ '
X ¢ (u/ﬁcw —l)) (I!:[l (pk <(v + p)h(C(] —k))—l)) )

We can rewrite this in terms of the AU" by “removing the descent data” as in
[59, Page 52]. We obtain (see (5.4)):

phAd (( Orj/)* ( ) a(f))(kh lN(/ ))

=~ Py(AY)) + Zcpi“mhzi(” (7.6)
i=1

where (cf. [59, Lemma 5.4])

d -/ i’ i’
Py(AU) E (—e/vd—A“ ) — [Diag((s,, ;)" @ ")), aY >])
. ,
x (v+ p)"(AY)) " e LY M(R) € Mat,(R[[v + p]),
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(j) def / 1, n—a'() 1 G
Z77 = Ad (s ;07 @) )(Wxi )

We make the following definition:

Definition 7.1.8 Let R, (91, B) be as above, giving rise to the matrices of
partial Frobenii A/, We define the ideal Ipn g,v, C Rtobetheideal generated
by the elements () (v %=1 Py (AU D))y for 0 <t <h —2,j' € J'
and 1 <k,l <n.

Remark 7.1.9 When p > h—2, the condition thata series F = Y > am(v+
p)™ belongs to (v + p)"'R[[v + p] is equivalent to the condition that
(%)’Fb:,p = 0for0 <t < h — 2. Thus in this case, we see that the
ideal Inn g v, cuts out the locus in Spec R where

d -~/ </ ./
<e/v%A(j ) _ A(J )Diag((s(/)r’j,)—l(a/ ( ))))

, 1
(-1 +
(AU ¢ s +p)L M(R) (7.7)

forall j* € J'. Note that the condition (7.7) depends only on the image of j’ in
J . Furthermore, for each fixed embedding j’ € 7, because ¢’ isinvertible in O,
condition (7.7) is the same as condition (4.1) witha = — ((s(’)r’j,)_1 (a (j/))) /e’
(and hence is a specialization of condition (3.1)).

Proposition 7.1.10 Let t be a tame inertial type with a lowest alcove presen-
tation (s, w). Assume that w is m-deep in C. Let R be a p-adically complete
topologically finite type O-flat algebra. Let 9 € YI%"LT(R) and B an eigen-
basis of M. Then

I gy, C Imv.,, P" 2.

Remark 7.1.11 This Proposition controls the discrepancy between the “true”
monodromy condition in Proposition 7.1.4 and its truncation (7.7). It is a
generalization of [59, Theorem 5.6], which asserts that the tail/error term of
the true monodromy condition is highly divisible by p.

Proof We continue to use the notations introduced above. It follows from that
definitions that we have the recursion

i’ 1 v il SN\ —
2 = A9 Adis; ) (2T )+ ) (a0)
ph- J

1
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fori > 1, and

i’ _ _a/ () d - N
z§) = Ad ((sgr’j/) M= ) (u'WC(] )> (w+ p)(Aav))!

/ 4 d , i
= <[Diag<(sf,r,j,)—1(a/u >)>, AU )] + e/v%(Ao )))

-/ 1
hea(Gy—1 +
x w4+ p)(AY )" e o )L/\/l (R).

An easy induction using the fact thatm +1 < (u +n,a”) < p—m — 1

shows that fori > 1

1
i(h—1)

y -1
79 e o' Mat, (R + pl). (7.8)

p

Now over Spec R/ IWI,VOO[%], forall 0 <t < h — 2, we have by definition

d !
(i)
A

du’

and since u’ is invertible in R[u']/(Isn. v, E(u’))[%],

d \ s ,
r = h ! —1, n—a'l h=1A,G" .
(u du/) )E(u’):o (p Ad <(s0r’.1'/) () )()‘ Noo )) =0.

Equation (7.6) thus shows

A
du’

Since the expression inside the derivative belongs to R[%]I[v]] and u’ ﬁ =

7., d
evy; we get

(vit)

A=1nU0Y —
E(u,)zo( )

hence also

E(u/)zo( %)

o0
<—g0()\,)hPN(A(J/)) + Z ¢i+1()\’)hzi(] )) = 0.
i=1

E@')=0

(—(p()\)hPN(A(j/)) + Z<p"+1(x)hz§f')> =0. (7.9
v i=1
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Now observe that

° (vj—v)tlvz_p(pk()\) € p”_IZp forany ¢, k > 1.

o If F € vM Mat,, (R[[v + p])) then (v%)tll,:_p € pMR forany ¢ > 0.
Hence (7.8) and (7.9) imply the equation

d t
v_
( dv)
in R/ Igm,voo[%], where the symbol O( pM ) stands for an element in pM R.

Since the differential operator (v %)t - (f—v)t is a Z-linear combination of

differential operators v* (%)b with a, b < t, (7.10) implies by induction

d t
(&)
in R/lfm,voo[%] forall 0 < t < h — 2. Now using the equation (%)lv =

t(%)t_1 + (%)’, we conclude that

Py(AY)) 4 0(pmTI=D) = 0 (7.10)

v=—p

v PNAT) 0TI = 0

d \ i’
(%) e pv ™ Py (A )y + O (p" D) = 0

R/Iim,voo[%] forO <t <h-—2,1<k,l <n. Since the left-hand side of the

above equation belong to R and R/Isn v, is a subring of R/ IS)JI,VOO[%L the
above equation implies

d\ 3 y B
(%) lo=—pv 2 Py (AU )y € (on .y, p 203,

7.2 Tame potentially crystalline stacks

In [22], Emerton and Gee considered the formal stack A, over Spf O
parametrizing (projective) étale (¢, I')-modules (see [22, Definition 3.2.1]
for the definition) and showed that X, is a Noetherian formal algebraic
stack. For any complete local Noetherian O-algebra R with finite residue
field, the groupoid A}, (R) is equivalent to the groupoid of R-families of
G g -representations, i.e. rank n projective R-modules equipped with a con-
tinuous G g -action. We will write XnK for X, if we want to emphasize the
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dependence on the field K. Similarly, if O, is a finite étale Z,-algebra and

f . o
F;r « O, ®z, Q) which can be written in the form [ |
FT
P

A

+ .
ves, £ then we write

for the product

T ~".

veS,,Spf O

In this section, we will consider the case O, = Ok, but the evident general-
izations follow by taking products.

Now let T be a tame inertial type (for K) and A € X, (7)Y dominant. Then
[22, Theorem 4.8.12] shows there is a unique closed formal substack X MT of
X}, which is characterized by the following properties:

o AT is O-flat.

e For any finite flat O-algebra A, the groupoid X*'T (A) is the subgroupoid of
X, (A) consisting of G g-representations on rank n projective A-modules
which (after inverting p) are potentially crystalline with Hodge—Tate
weight A and inertial type t.

Furthermore, X*7 is a p-adic formal algebraic stack topologically of finite
type over Spf O. For any & > 0, we also have the closed substack X107
X, characterized by the same properties except in the second item, where
we demand the Hodge-Tate weights to belong to [0, #]. Then X107 is the
scheme theoretic union of X*7 for A = (A;)jes satisfying A; € [0, h]".
Finally, we set XY=*7 c X027 to be the scheme theoretic union of X’ M. for
)/ dominant and A" < A.

Recall from [28, Definition 8.22] that a p-adic formal algebraic stack Z
topologically of finite type over Spf O (which implies residual Jacobson) is
analytically unramified if for any smooth chart Spf A — Z, A isreduced. This
is is also equivalent to Z having reduced versal rings at all finite type points.
Given Z, [28, Example 9.10] shows that it admits an associated reduced formal
algebraic substack Z’ < Z. It is characterized as the maximal analytically
unramified closed substack of Z. For any smooth chart Spf A — Z, the
pullback of 2’ is Spf A™4, where A™ is the maximal reduced quotient of A.

Warning 7.2.1 (1) In[22], the convention for Hodge—Tate weights is such that
the cyclotomic character has weight —1. This is opposite of our conven-
tion, where the cyclotomic character has weight 1. As a result, a point

in X A’f(@p) gives rise to a p-adic Galois representation p such that

the covariant admissible module Dpst(p) is isomorphic to ‘L’[%] as an Ig-

representation (and N = 0), and the Hodge filtration has jumps described
by —woA. In other words, our X** would be X~"°*)T in the notation of
[22].
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(2) We warn the reader that the notion of associated reduced formal algebraic
substack is different from the notion of underlying reduced algebraic stack:
For Z = Spf A, the former notion gives the formal scheme Spf A™4, while
the latter gives the scheme Spec (A1), for I an ideal of definition for
the topology on A. In particular, the former notion is usually larger than
the latter.

We now record some basic properties of these stacks established in [22].
Theorem 7.2.2 Let ? € {[0, k], < A, A}.

(1) The stack X" is a p-adic formal algebraic stack, flat and topologically
of finite type over Spf O. Furthermore, X% is analytically unramified.

(2) For any smooth map Spf R — X from a topologically finite type affine
p-adic formal algebraic space, the ring R[%] is regular.

(3) Let p € X""(F) corresponding to a mod p representation of G k. Then
the potentially crystalline deformation ring R%’T is a versal ring to X7 at
2.

(4) The stack X*7 is equidimensional of dimension

1+ " dimg Py \GL,.
je7

Proof The first half of part (1) follows from [23, Theorem 4.8.12]. Part (3) fol-
lows from [23, Proposition 4.8.10]. Part (4) follows from [23, Theorem 4.8.14].
Finally, part (2) and the second half of part (1) follows from part (3) and [49,
Theorem 3.3.8]. |

ét,n

By [22, Proposition 3.7.2], there is a canonical map X, — ®-Mody ",
which when evaluated on complete local Noetherian O-algebras A corresponds
to restricting G g -representations to G g -representations.

Let

clo.nT _ plonlT o yl0.l7

®-Mod4"
be the pullback of &, : Y047 5 - Mode;’” along X7 — ®- Mod‘;}” .
Similarly, for » € X,(T")7 such that A; € [0, h]", we have the pullbacks
’Ck,r’ ’ka,r_

Finally, we let Y[0-4.7Veo s yI0ALT pe the unique O-flat closed sub-
stack characterized by the following property: For any p-adically complete
topologically finite type flat O-algebra R and a map f : Spf R — YI04lT
corresponding to M € Y047 (R), f factors through Y10"17-Veo if and only
if the ideal Ign v, C R constructed in Proposition 7.1.6 is 0. The existence of
such a substack follows from the general construction of [28, § 9], using the
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compatibility of oy v, with smooth base change established in Proposition
7.1.6. Similarly, we define the O-flat closed substack ¥ =*7-Veo s y=hT by
imposing the same kind of condition.

The following result is the main result of this section, which summarizes
the relationship between the tame potentially crystalline stacks and the moduli
stack of Breuil-Kisin modules in generic situations:

Proposition 7.2.3 Let h > 1, and t be an (h + 2)-generic tame inertial type.
Let . = (Aj) jeg € X«(TY)7 be dominant such that %; € [0, h]", and let \'
be dominant such that A’ < A.

We then have the following diagram

~

/
KoM TC skt Y =A T, Vol y YSAT

N [

- - Cl0.nLT = y10.].7. Voo yl0.l.
JE \[\Sr
X)J,r( x=hc X[O,h],r( - Mode}é’”

S

(7.11)

such that:

e All rectangles and trapezoids except possibly for the top right rectangle
are Cartesian.

e The arrows decorated with the symbol = are isomorphisms.

e All the hooked arrows are monomorphisms, and except for the rightmost
bottom horizontal arrow, are even closed immersions.

In particular, X107 = ylOMtVe gnd if A = (1) jeq € Xu(TV)7 is
dominant such that A € [0, h]" for all j € J then X=hT Xy =kt Voo

Remark 7.2.4 1t’s not clear to us if the top right rectangle in diagram (7.11) is
Cartesian: it is Cartesian after inverting p, but taking Zariski closure does not
commute with base change in general.

The proof of Proposition 7.2.3 will occupy the rest of this section. To prepare
for the proof, we record some Lemmas which give criteria for maps of schemes
or stacks to be isomorphisms using information on special kinds of points.
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Lemma 7.2.5 Leta > 1 and let f : Y — Z be a map between finite type
O/ *-schemes. Assume that for any local Artinian ring A with finite residue
field, f induces a bijection Y (A) = Z(A). Then f is an isomorphism.

Proof We note that for any finite type O /@ “%-scheme, the set of closed points
is dense, and the residue field at the closed points are finite fields.

By [75, Tag 02HY], f is a smooth map. Since f is also quasi-finite, f is
¢tale. Thus the diagonal Ay : Y — Y xz Y is an open immersion. Since A ¢
is surjective on closed points, it is an isomorphism, hence f is a monomor-
phism. Thus f is an étale monomorphism, hence is an open immersion by
[75, Tag 025F]. Finally f is also surjective on closed points, hence f is an
isomorphism. o

Lemma 7.2.6 Let f : Y — Z be amonomorphism of p-adic formal algebraic
stacks topologically of finite type over Spt O. Assume that Z is flat over Spf O.
Assume that either of the following holds:

(1) Z is analytically unramified, and for any finite flat O-algebra A, f
Y(A) = Z(A) is essentially surjective.

(2) Z is analytically unramified, f is a closed immersion, and for any finite
extension E' of E with ring of integers O', f : Y(O') — Z(O') is an
essentially surjective.

(3) f is a closed immersion, and for any finite flat O-algebra A, f : Y(A) —
Z(A) is essentially surjective.

Then f is an isomorphism.

Proof As the problem is local (in the smooth topology) in Z, we reduce to the
case Z = Spf B where B is a p-adically complete topologically of finite type
O-flat algebra. Then ) is a formal algebraic space (in fact, a formal scheme
by [75, Tag 0B89]).

Suppose that we are in the first case. We claim that for any local Artinian O-
algebra A with finite residue field, f : JV(A) — Z(A) is an equivalence. Since
we already have fully faithfulness (from f being a monomorphism), we only
need to show essential surjectivity. Suppose we have an element x € Z(A),
which corresponds to a map B — A, which factors through B/mf — A for
some maximal ideal m of A and k > 1. Now our hypotheses on Z imply that
B is reduced and Z,-flat. Furthermore, since B is p-adically complete and
B/p is Nagata, B is also Nagata [63] Hence [2, Lemma 4.1.2] implies that
B — B/mk factors through some continuous map B — A where A is a finite
flat O-algebra. Thus x can be lifted to a point X € Z(A) = Y(A), hence x is
in the essential image of J(A). But now for each a > 1, Lemma 7.2.5 implies
that the base change ()0 e — (Z)©/wa is an isomorphism, hence f itself
is an isomorphism.
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Suppose now that we are in the second case. Then V = Spf B/J. Since
the residue fields at maximal ideals of B[%] are finite extensions of E, and

any map B[%] — E’ where E’ is a finite extension of E comes from a map
B — (', our hypothesis implies that J [%] is in the intersection of all the
maximal ideals of B[%]. Since B[%] is Jacobson, J [%] =0,andhence J =0
since B is O-flat.

Finally, suppose that we are in the third case. Then Y = Spf B/J. For any
maximal ideal m of B[%] and any a > 1, B[%] /m4 is finite dimensional over

E, and the map B — B[%] /m? factors through some finite flat O-algebra A

such that A[%] = B[%] /m?. Our hypothesis implies that the map B — A

factors through B/J. It follows that J [%] C N2, m¢, hence J [%]m = 0 Since
this is true for any maximal ideal m, we have J [%] = 0, and hence J = 0
since B is O-flat. O

We can now deal with the vertical isomorphisms occurring in diagram
(7.11):

Proposition 7.2.7 Assume that t is (h + 1)-generic. Then the natural map
KLO0-AT s x10-117 g an isomorphism.

Proof 1t follows from Proposition 5.4.3 that our map is a closed immersion. By
Lemma 7.2.6, we only need to check that for any finite extension E’ of E with
ring of integers @, the natural functor K197 (") — X[0-1.7(@') is essen-
tially surjective. Let V € X[%"1.7(®) be an O'-lattice in a potentially crys-
talline representation over E” with Hodge-Tate weights in [0, 2], and let M €

o- Modffc’lf'y (O") be the associated étale p-module with descent data from L’ to
K. By [48, Corollary (1.3.15), Proposition (2.1.5) and Lemma (2.1.15)], there
isaunique projective S/ ¢-submodule 9t C M which is ¢ r(-stable (projec-
tivity follows from [2, Remark 2.2.16(2)]), such that M = M ®¢,, O¢, 1’ and
the cokernel of ¢ o on 91 is killed by E (u)". The uniqueness implies that St
is stable under the semi-linear action of A’. As :/u’ snt[%] = Dp(VY) =
7 ®o (K’ ®z, O') as projective K’ ®7, O'-modules with A = I(L'/K)-
action, we deduce that Mt € Y102L7(©"). Thus V e X047 (') isisomorphic
to the image of (V, M) e K0-4.7(©). O

Remark 7.2.8 For a general finite flat O-algebra A which is not the ring of
integers of a finite extension of E and V e X[0-#1(A), the unique Breuil-Kisin
module 9 associated to V viewed as an O-lattice in potentially crystalline
representation over E is a priori only an &/ ,-module. However, it follows
from the above Proposition that in this case, it is actually &/ -projective.
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We now analyze the bottom horizontal map of diagram (7.11). We recall
the following definition [59, Definition 3.8]. Recall that ¢ denotes the p-adic
cyclotomic character.

Definition 7.2.9 Let p : Gx — GL,, (Fp). We say p is cyclotomic free if
there is an unramified extension M /K of degree prime to p such that ﬁ|§§M is
a direct sum of characters, and

HGu.pl, ®e™) =0.

The main feature about this notion that is relevant to us is the following

Lemma 7.2.10 (1) Suppose p is cyclotomic free. Then the natural inclusion
induces an isomorphism

H°(Gk,p) = H(Gk.,, D)

(2) If p*°| 1, is 2-generic, then ad(p) is cyclotomic free.

(3) Suppose V, W are two O|G g 1-modules of finite length. Assume there exists
a semisimple G g -representation p such that ad(p) is cyclotomic free, and
such that VS5, W3S are direct summands of a direct sum of finitely many
copies of p. Then the natural restriction map induces an isomorphism

Homg, (V, W) = Homg, (V, W)

(4) Let W as in (3). Then any Gk -submodule V. C W is G g -stable.

Proof (1) This follows from (the proof of) [59, Lemma 3.11].

(2) This is [59, Proposition 3.9]. Note the proof in loc. cit. was written for
n = 3, but works in general. Also, 2-generic in the sense of this paper is
stronger than 2-generic in loc. cit. (see [56, Remark 2.2.8]).

(3) Since ad(p) = p ® p" is cyclotomic free, the same is true for any finite
direct sum of ad(p). Now VS5, W* are direct summands of a finite direct
sum of o, hence W% ® (V*%)V is a direct summand of a finite direct sum
of ad(p), and thus is cyclotomic free. Since (W @ V)% = WS ® (VS5)V,
W ® V" is also cyclotomic free. The result now follows from the first part.

(4) We first assume that V is irreducible. Then V extends uniquely to a G-
module. By the previous part, the G k__-equivariantinclusionmap V <— W
is G g -equivariant, thus finishing the proof in this case.

For general V, we let Vj be non-zero irreducible G g -submodule of W.
Then the argument above shows that Vg is a G g-submodule of W. We
repeat the argument for V/Vy < W/ Vj to conclude. |

Proposition 7.2.11 Suppose t is (h + 2)-generic. Then the composition
xonr 5 x CIJ-Mod%’” is a monomorphism.
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Proof It suffices to show that for any a > 1 and A a finite type O/w *-algebra,
the functor X017 (A) — ®-Mod5" (A) is fully faithful.

Suppose first that A is local Artinian (O-algebra with finite residue field
F’. Then X, (A) is equivalent to the groupoid of G g -representation on pro-
jective A-modules of rank n, ®- Mod?’”(A) is equivalent to the groupoid of
G k., -representation on projective A-modules of rank n. Suppose we have
two such G g -representations V4, W4. We need to show the restriction map
induces a bijection between the set of isomorphisms Isomg, (Va, W) =
Isomg,  (Va, Wa).

We first observe that if either set is non-empty, then V> = Wp: indeed,
the restriction map identifies the semisimple representations of Gg and G g,
over . We can thus assume that V7 = W}?, and denote this common rep-
resentation by p. But now V'[G,_  comes from an object of ¥ (0.2 (F"), so
Lemma 5.5.10 shows that p is 2-generic. Finally, since V;* and W3 are direct
summands of a finite direct sum of p, we conclude by Lemma 7.2.10.

Suppose now that A is a general finite type O/w “-algebra. Let x1, x2 €
X017 (A) and let ¥1, y2 be their images in &- Mod?’”(A). Let Y =
Isom(x, x2) and Z = Isom(yq, y2) be the functor over Spec A which repre-
sents isomorphisms between x1, x and y;, y2. By [24, Proposition 5.4.8], Y,
Z are representable by finite type A-schemes, and hence are finite type O /@ “-
schemes. The composition in the statement of the proposition induces a natural
map ¥ — Z. By the Artinian case above, for any local Artinian ring B with
finite residue field, the natural map Y (B) — Z(B) is a bijection. Lemma 7.2.5
then shows that Y — Z is an isomorphism of A-schemes, hence in particular
Y(A) = Z(A), and hence the subsets of Y (A) and Z(A) which maps to the
identity via the structure maps ¥ — Spec A, Z — Spec A also coincide. But
these sets are exactly the Hom space between x1, x5 in X%/ (A) and the
Hom space between y;, y, in - Mod%’”(A). O

Finally, we deal with the middle and top horizontal maps of diagram (7.11).

Proposition 7.2.12 The natural map KI%"7 — yI017 gactors through the
substack Y1017Voo < yIORLT - and the natural map K=*7 — KOALT
Y1017 factors through Y45 Voo C Y10 The induced maps KIOM® —
Y1017 Vos gnd K27 — Y =2TVee gre isomorphisms.

Proof We first show that K077 — ylO.ALT factors through Y1047 Ve To
do this, it suffices to show that for some smooth cover Spf R — K047 the
induced map Spf R — Y1017 factors through Y10/7 Voo Since K047 =
X017 i5 O-flat, analytically unramified and topologically of finite type over
Spf O, R is also O-flat, reduced and topologically of finite type over O. The
induced map Spf R — Y%7 corresponds to an object M € Y1047 (R), and
the existence of the desired factorization is equivalent to Iy v,, = 0. Now for
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any finite extension E’/E with ring of integers ', and any map x : R — ',
the base change MM, of 9 along x is the Breuil-Kisin module associated to
an (O'-lattice in a potentially crystalline representation with inertial type ,
and thus 9N, satisfies the monodromy condition (cf. Definition 7.1.2). Thus
Iyn, v,, = 0in O’ by Proposition 7.1.4, so Ipn v, C kerx. This shows that
I v, [l] lies in the intersection of all the maximal ideals of R [l]. Since R[%]
isreduced and Jacobson, this intersection is 0, and hence Ioy v, = 0 since R is
O-flat. We note that this argument actually shows that Spf R — Y0717 factors
through the associated reduced formal algebraic substack Z of Y0217 Voo,
We have a sequence of monomorphisms K047 <5 Z s Y0417, Voo,
since K047 — yl0.ALT is 3 monomorphism, being the base change of the
monomorphism X047 s - Mode};’" (see Proposition 7.2.11). Note that the
second monomorphism is a closed immersion. We now show that for any finite
flat O-algebra A, the composition K% (A) — Z(A) — YIOALT(A) s
essentially surjective. Let x € Y1071:%-Voo(A). Then x corresponds to an object
M, € Y017 (A). Since x € YIOALT.Vo(A) and S A is semilocal, M,
satisfies the hypothesis of Proposition 7.1.4. Thus V = T7,(9My) isa Gk, -
representation on a free A-module of rank n, and V [%] extends to a potentially

crystalline representation of G g over A[%] with Hodge—Tate weights in [0, /]
and inertial type t. By Lemma 7.2.13 below, V' C V[%] is actually G g -stable,

and hence x indeed comes an object V e X[0LT(A) = K027 (A). The
upshot of this argument is that on the one hand, K[%#7 = Z by the first
criterion of Lemma 7.2.6, and on the other hand Z = Y0717V by the third
criterion of Lemma 7.2.6.

We have thus proved the result for C[%#1.7. To show the result for K=*7,
we use the following observations

o If V e XI0ALT() with associated Breuil-Kisin module 9t €
Y017, then Dgr (V") is identified with ((p*fm/E(u/)ga*im)[%], cf.
[22, §4.7] (the appearance of the dual is because we use the contravari-
ant functor T;d on Breuil-Kisin modules, in contrast to [22]). Thus the
jumps in the Hodge filtration of Dgr (V") occur at the components of rela-
tive position of ¢*91 with respect to 9t (which is given by the elementary
divisors of the matrices of partial Frobenii). This implies that V has Hodge—
Tate weights < A if and only if 9t € Y=7((’), cf. the discussion above
Theorem 5.3.3.

e Let A is a finite flat O-algebra and and V € X [0.h1.7 (A) with associated
Breuil-Kisin module 9t € Y[0/17(A). Then M € Y=*7(A) implies
V € X=»T(A). Thisis due to the fact that the Hodge filtration on Dgr (V")
are given by projective A[%] modules, hence one can check the Hodge—
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Tate weight < A condition by passing to A™4, which is dealt with by the
item above.

The first item shows the existence of the factorization =*7 < Y =47 Voo s
Y=7 s Y07 “and the second item allows us to carry out the above
argument to conclude =47 = Yy =47 Veo, |

Lemma 7.2.13 Let t be (h + 2)-generic. Let A be a finite flat O-algebra.
Suppose M € YOt (AY and V = T, (M), a Gk, -representation on a
free A-module of rank n. Suppose V[%] extends to a G g -representation. Then

VC V[%] is G g -stable.

Proof Tt suffices to treat the case A local. Let F’ be the residue field of A.
Note that the semisimplified reduction V' extends uniquely to a semisimple
G g -representation p. By Lemma 5.5.10, p is 2-generic. We choose a A[G k|-
stable O-lattice W in V[%] such that V. W. Then (W /@)% is isomorphic
to a finite direct sum of p as G g -representations. Choose N large enough so
that pNW c V c W. Applying Lemma 7.2.10(4) to V/p"W c W/p"W,
we conclude that V/ pN W, and hence V is G g-stable. O

Proof of Proposition 7.2.3 The Cartesian-ness of the rectangles and trapezoids
follows from the definitions. Proposition 7.2.7 shows that the vertical maps
labelled with = are isomorphisms. Proposition 7.2.11 and the definitions shows
that all the hooked arrows are monomorphisms. Finally, Proposition 7.2.12
show that the maps K07 s ylOALT apnd =47 <5 y=AT gre closed
immersions with images as claimed. O

7.3 Local models for potentially crystalline stacks

Throughout this section, we fix A € X,(T")Y regular dominant such that
Aj € [0, h]",and a tame inertial type T with alowest alcove presentation (s, jt).
By Proposition 7.2.3, if u is (h + 2)-deep in C), we have X=<*7 = y =t T Voo,
which is obtained from the stack of Breuil-Kisin modules ¥ =*7 by imposing
an explicit list of equations. On the other hand, Theorem 5.3.3 relates the local
structure of Y=*7 to the p-adic completion of the local model M 7(< A). Thus
we wish to analyze the effect of imposing the V, equations on the local model
diagram of Theorem 5.3.3.

To our lowest alcove presentation (s, ) of 7, we get the data a’ U e zn
for any j' € J’, cf. equation (5.2). For each integer j' € 7', define

def _ -/ /
arj = (s ;) @Y/ = ph)

s0 a; € (0")7'. We caution that a, depends on the choice of presentation
(s, i), and not just on 7. A direct computation gives:
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Lemma 7.3.1 Leta, € (O")7 " be as above. Then
ag; _s (,u]—i—n]) mod .

forany j € {0,..., f—1}

Proof The proof is obtained by unraveling the definitions. First of all, we
notice that a; ; = (s(’)r’ j)_l(a/ ()) modulo @, hence:

arj = (si; ;) (@) modulo &

= (S(/)r,j)_l(sf)aj>0(af—j) (7.12)

for0 < j < f — 1, using (5.2) and (5.1) above (where we set o ¢ def o).
Recall from (5.3) that s}, , = so, that s, ; = s¢(s7L,...57,}) for0 < j <
f — 1 and that s or, f—1 = St- Thus the expression (7.12) equals s, (ct()) for
J=0,(j41.. Sf 1)(ocf jyfor0 < j < f—Tlandeyif j = f— 1. As
ap = s;il S ([L./ +mnj)for0 < j < f—1and @y = o + no (see

Example 2.4.1), the conclusion follows. O
Recall from §4.1.1, §4.5 the projective O-scheme M}V(S A, Va,) = Hjej
M™(< Aj, Va, ;). Here, for each j € J, we defined M™(< Aj, Va, ;) as the

intersection M (A) N Grg (,jj inside Grg, . In other words if R is a Noethe-
rian O-algebra and x € M(A;)(R) is represented by A € LG(R), then
x € M™(< Aj, Va, ;) if and only if

d 1
vd—(A)A_l + ADiag(a, )A™! LT M(R).
v p

We have dim M (< A, Va,) < 1 +#J dimg(B\GL,)g = | + #7241

Recall from Definition 4.1.2 and §4.5 the O-flat subscheme M 7 (A, V,,) C
M}V(g A, Va,). By Proposition 4.1.6, the scheme theoretic union of M (1,
Va,) over A dominant and A" < A is the O-flat part of M7 (< A, Va,). We
define M7 es(< X, Va,) to be the scheme theoretic union of M7 (L', Vy,)
over A" regular dominant and A’ < A. Because dimMy(A', V,,) < 1 +
#J dimg (B\GL,) g with equality if and only if A" is regular, M7 reg(< A, Va,)
is characterized as the maximal O-flat closed subscheme of M 7(< A, V, )
which is equidimensional of dimension

1 +#J dimg(B\GL,).

Let? = (Z}) jes.Recall from (5.9) the open affine subscheme U (Z, < 1) —
M 7(< 1) and the trivial T, VT _torsor U UZ <)) = v T % U(Z, < A). Inter-
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secting with these affine opens, we get the objects U (Z, A, Va,), UG, A, Va,),
Ureg(v <X, Va,)and Ureg(v < A, Va,).
Our main result is the following

Theorem 7.3.2 Let (s, i) be a (h + 2)-lowest alcove presentation for T and
consider the commutative diagram of p-adic formal algebraic stacks

~ ~ T
Ureg 3, < )», Va )V —————— U™ (@, <A, V)" G U™E, <2, Va )V o M?(S x, Va )"?

N
X,e“(“) —— UG <1 Ve, o;) — UG, EAW 187, UG, £/\)A/’ —— Mjé M)
57 lTVJ lT
Xrex TE) ey YIRTVe(3) s YERT()
p é é
Xrggmf < st.r,Vm < YgA,r
(7.13)
where:

e Theobjects Mj(< 2), M} (< A, Va,) are definedin §4.5; YSRT YERT(D),
UE, <)), and U3, < 1) are defined in §5.3,Y =7V~ is defined in §7.2
and finally Ureg(N < A, Va,) is defined in the paragraph above;

° Xég ¥ is the scheme theoretic union U,y X )‘,’t, where A runs over all
regular dominant coweights < \.

e All solid rectangles are Cartesian. This defines any previously undefined
object in the diagram, namely U™ (Z, < A, Vo )", U™(Z, < A, Va,)"'?,

reg "G, UG, < A, Vz.00)s Xrgg)"r () and Y =*7 Vo (). (Note that the first

two objects are p-adic completions ofﬁn"(i, <X, Va,), UY(Z, <A, Vy,),
which are defined by the same pullbacks but without the p-adic completion.)

o All undecorated hooked arrows are closed immersions.

o All circled hooked arrows are open immersions.

o All arrows decorated with T(\g/ '~ are T(g T _torsors.

Then:

(1) There exists an integer Nging = N({A;}je7) which depends only on the
subset {A;} C Z" (and not on p) such that if |1 is Nsing-deep in C, then
the diagonal dotted arrow exists for allZ € WY+,

(2) There exists a polynomial P = PAJ Vieds X1, ,Xy) € Z[Xq, -, Xyl
depending only on the subset {A j} C Z"* and the ramification index e of O
(and not on p), such that if u is P-generic, then

e Thedotted arrows exist and the vertical dotted arrow is an isomorphism.

e Forany ) < X regular dominant and any semisimple p € X, (Fp), the
versal rings to X Mot gt 0 are domains (or 0). In other words, X Mot s
analytically irreducible at the Fp -points corresponding to semisimple
G g -representations.
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Warning 7.3.3 (1) Unlike U™z, < A, Va,) which is a scheme, UG, <A,
Vi.00) is only a p-adic formal scheme. This is because the equations
imposed by the Vi o condition involve infinite series which only make
sense over p-adically complete test rings. This is why we need to put the
p-adic completion on some objects in the diagram.

(2) The way we will produce the dotted map is by invoking Proposition 3.3.9,
which appeals to Elkik’s approximation theorem, and hence produces non-
canonical liftings. We do not expect that there is a choice which makes
the triangle commute. Looking at explicit formulas, we suspect, but have
not tried to show, that the rigid generic fibers of U (Z, < A, Vi.00) and
U “V(V < X, Va,)"'? do not coincide as subspaces of the rigid generic fiber
of U(Z, < 1)r in general.

However, we will see that once the diagonal dotted arrow has been con-
structed, it will induce the vertical dotted arrow to make the top left
trapezoid commute.

Remark 7.3.4 Theorem 7.3.2 is stated for the stacks Xréé” *" parametrizing rep-
resentations of Gx where K is a given unramified extension of QQ, which
we fixed at the beginning of this section. More generally, if we have a finite
collection (Fv+ Jves, of such, we have analogous objects szg TUYEMT ete. by
taking products over S,. Then the proof given below carries over verbatim and
shows that Theorem 7.3.2 continues to hold in this more general setting.

Lemma 7.3.5 Let A € X.(TY) regular dominant such that A/j. € [0,n]"
forall j € J and t a tame inertial type together with a fixed (4n +h')-generic
lowest alcove presentation. Then X M@y = x¥ Tyt is non-empty
if and only if 7 € Adm" ().

Proof For one direction, we consider the Breuil-Kisin module 2z €
Y=%7(Z)(F) which has matrices of partial Frobenii with respect to an eigen-
basis given by AY) = Z; where 7 € Adm"(X'). Then p = T},(M) is a
semisimple representation of G g, hence is also a semisimple representation
of Gk. By Corollary 5.5.10, p is 4n-generic. Furthermore, by Proposition
5.5.7 based on [56, Corollary 3.2.17], |, admits a lowest alcove presenta-
tion (w, v) which is (A" — n)-compatible such that w(p, ) € Adm(1'). Then
p satisfies the fourth item of Proposition 6.2.7 with A = A" — n and hence
P admits a potentially crystalline lift with Hodge—Tate weight A" and inertial
type T, and this produces a point of X N’T(E). Conversely, if X )‘/’T(E‘) # 0,
then Y=*"7(%) # #, hence 7 € Adm" ()) by Corollary 5.3.5. i

Proof of Theorem 7.3.2 (1) Suppose u is M-deep in C; where M > 2h — 3.
From Theorem 5.3.3, U(Z, < A)» = Spf R classifies objects in ¥ =7
together with a Z-gauge basis. Thus we get the universal such pair (90, )

over R, and the matrix of partial Frobenii AY) = Ai()';{() g We have
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2

U, < A Veoo) = Spf R/l v, while, by Remark 7.1.9 and the def-
inition of a, j, U™ (Z, < X, Va,)""? = Spf R/Ism g,v, is cut out by the
condition

d . ) . . 1
v—AD A 4 AUVDiag(a, )(A) ' € —— LT M(R).
dv ’ v+ p

By Proposition 7.1.10, Ipn g,v, C (Im,v.,, p"), where N = M — 2h + 3.
We also note that this implies that for each j € J there is a diagram

5
Spec R/ (I vy . PV ) Spec R/ (I p.v,. pY) —— UY Ej. < 4;, V)

| |

(—=p.acj)
Spec R/Ion v, P Al x A"

Note that R/Isn, v, is p-adically complete and p-torsion free. By Propo-
sition 3.3.9, there exists an integer Ns’ing depending only on the set {A;}
such that if M > 2max ez hy; + N;ing , we can lift f; mod p to a map
fj : Spec R/Iypv,, — UR' (T, < 1;, V). Since V-7 is Emooth over
Z, we can also lift the composite Spec R/(Iogp,v,,,p) = U@, <L) =
T(\Q/’j xUZ, <)) —> Tg’j to Spec R/Ign v, — Tg’j. Taking the prod-

uct of the lifts above produces a map

f :Spec R/Ipn.v,, — (l_[ TV xUy' @}, <2, V)o,
jeg

where the base change is along the map Spec © — X x A™Y given by
the tuple (—p,a;). By Remark 4.1.4, the fact that U™(Z, < A, V,,) =
M7 (< A, Va,) NU(Z, < 1), and the fact that R/Ion v, is O-flat and p-
adically complete, f factors through U™ (Z, < A, V4, ), and further factors
through the p-adic completion, which produces the desired dotted arrow.
This map is a closed immersion of p-adic formal algebraic stacks, since it
is a closed immersion modulo p. This finishes the proof of the first part.
We first claim that if the diagonal dotted arrow exists, then it induces
the vertical arrow so that the trapezoid commutes. Indeed by construc-
tion Ureg(Z, < X, Va,)"? is the maximal closed p-adic formal subscheme
of UN(Z, < A, Va,)"? which is O-flat and equidimensional of dimension
1 + dimg(B\GL,)g#J + n#J. But Theorem 7.2.2 says that 22?2‘(2)
has both these properties, proving our claim.

We abbreviate Spf B = ﬁreg(f, <X, Va,)"? and Spf A = 2?}@*’@. Note
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that A and B are both O-flat, p-adically complete, reduced, equidimen-
sional of dimension 14+#7 w, and thereis a surjection B — A provided
by the existence of the dotted vertical arrow.
We now apply Theorem 3.7.1 for each A < X regular dominant. It implies
there exists a polynomial P € Z[ X1, - - - X,,] depending only on the rami-
fication index e of O and the set {4} jc 7 such thatif P(a; ;) mod p #0
forall j € 7, then for each A" < A regular dominant:
e M()/, Vy,) is the base change of M x 7(1/, V) via the map Spec O —
X x AT given by (—p, a;).
e O(U(Z, ), Va,)"r) is a domain. Hence the same is also true for
OWU @, A, Va, )" ).
e U(Z, 2, Va,) is unibranch (equivalently, analytically irreducible) at Z.
In other words, any of its versal rings at 7 is a domain.

(To arrange the firstitem, we use Remark 3.5.6 to the map M x 7 (A, V) —
X x A" to guarantee that the base change of My (X', V) via the map
Spec O — X x A™YJ given by (—p, a,) is O-flat for each A".)

Now if U(Z, A, Va,) # ¥ then Y=*"T(Z)r # ¥. Hence by Corollary 5.3.5,
7 € AdmY ()). It follows from this and the first item above that the number
of minimal primes of B is at most

#{)' < A\’ regular dominant, 7 € Adm" (1)}.

On the other hand, taking M > max{4n + h, 2h + 3}, Lemma 7.3.5 shows
that the number of minimal primes of A is at least

#{\' < A|A’ regular dominant, 7 € Adm" (1)}.

This forces the kernel ker(B — A) to lie in the intersection of all the
minimal primes of B, and hence is 0. This shows that the surjection induces
an isomorphism B > A

We now wish to show that given a semisimple G g representation p €
Xy (Fp) and A/ < A regular dominant, any versal ring to X M.t oat 0 1s an
integral domain or zero.

We may assume without loss of generality that p € X),(F). Forany A" < A,
let n;, > 0 be the number of minimal primes of any versal ring to X’ M. at

0.

First suppose p € X <M T(F). By Proposition 5.5.7, the image 95 of p
in YSY'7(F) is a semisimple Breuil-Kisin module of some shape 7 by
the uniqueness of 95 (Proposition 5.4.3). Hence, M5 € ¥ S’V*’(Z)(IF),
and can be lifted to an element in 7V7 (F)Z C U(Z, < A')(F). Thus we

/
can find a versal ring R to Xrgg)‘ 'T at p which is also a versal ring to
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Uteg (Z, < A/, Va,) atZ. Now it follows from the second item above that the
number of minimal primes of R is exactly #{1” < A’ regular dominant|7 €

AdmY (1")}. Since Xégk T is the scheme theoretic union of X*"7 over
A" < A regular dominant (each of which is equidimensional of the same
dimension and no two share an irreducible component), we have thus shown
that

Z nyr = #{A” < A/ regular dominant|Z € Adm" (L")}
A<’ regular dominant

(7.14)

On the other hand, if 5 ¢ X=*"7(F), then Y_,,_, ny» = 0, and #{1” <
A/ regular dominant|Z € AdmY (1”)} = 0 by Lemma 7.3.5.

Thus Eq. (7.14) holds for all A’ < A regular dominant. This implies by
induction on #{A” < A\’|A” regular dominant} that n,, € {0, 1} and that
ny = 1if and only if 7 € Adm" (1'). Thus any versal ring to X*"7 to 7 is
either the zero ring or a domain. O

7.4 Structure of potentially crystalline stacks modulo p

In [22, Theorem 6.5.1], Emerton and Gee describe a parametrization of the
irreducible components of the underlying reduced stack A}, eq of the moduli of
(¢, I')-modules &, by Serre weights of GL,, (O ). Taking products, this gives
a parametrization of the irreducible components of the underlying reduced
stack

Fy def F
p = v
n red l_[ n, red X” - l_[ Xn

ves,,F veS,,Spf O

by Serre weights of G. Let 0 = F (k) be a Serre weight of GL,,(Og) with
Kk € X1(I) = X1(T)7. Then the component XEG,n,red labelled by o is
characterized as the reduced substack of A, which is is the closure of the locus
of p € &, (Fp) such that p has the form

X1 k k
_ 10 x *
p = .

0 0 xn
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where

e p is maximally non-split niveau 1, i.e. it has a unique G g -stable complete

flag;
_l—i—Kjpt1-i .

o filix =ljes @k o, i

o If xip1% 'y =& ' then (kj,eY , —eY,, ;) =p—1forall j € Jif
and onlyif x;11x;”' =& !, and the element Ext! (x;, xi+1) = H'(Gk, ¥
determined by 7 is trés ramifiée (and otherwise (kj, e, _; — &/ ;) =0
forall j € J).

We define C,, def Xgé%dfé:l. Thus if o = F (k) is 1-deep and p is as above,

then

X1 * *

5 (:) SR (7.15)
0 0

_(kj+n;j)i

where x|, = ]_[jej Dk i and admits a unique G g -stable flag.

We now analyze the C,; in terms of local models, for sufficiently generic o.
To do so, we recall the setup of Sect. 4.6. Thus, we fix { € X*(Z) an algebraic
central character, a regular dominant weight A € X*(7) such thatA; € [0, h]"
for all j € J, and a tame inertial type T = t(s, u + 1) with lowest alcove
presentation (s, ;) which is A-compatible with ¢. Set w*(t) = s~ 't#1". We
assume that p is (h + 2)-deep in C,. We also continue to use notations from
Sect. 7.3.

Recall the diagram from Proposition 5.4.7 specialized witha = 0,b = h
and 7 = w*(7).

~ F'i* (r) ~[0,h
Ma(< e FTH. (7.16)
J”(s,u) l
Ygx,f I51[0,h] /Tv,j N PRt C)) b-M dét,n
F SRR ATAICI VA r @-Mod g
<A, T

We have the potentially crystalline substack A7"" — YFEA’T by Proposi-
tion 7.2.3, and define ffA’T to be its pullback along 7 ;). This is compatible

with our earlier notation, since for any 7 € wv-I , é‘?f’\’r NnU @Z, <A =

fsk,t @r.
When working over I, we have the following refinement of Theorem

7.3.2(1):
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Proposition 7.4.1 Assume v is (2h — 2)-deep in C,. Then the closed immer-
sion XFSA’I — M 7 (< MF factors through M?(f A, Va )F.

Proof 1t suffices to check the factorization after intersecting with each affine
open U (Z, < A)p. But this follows from Proposition 7.1.10, since u is at least
2h — 2-deep in Cy, (cf. the proof of Theorem 7.3.2(1)). |

We now recall the top dimensional irreducible components of M 7 (£ A, Va,)
F constructed inN Sects. 4.3 and 4.5 and identified in Theorem 4.6.2. Since A
is regular, dim Mf}"(s A, Va )F = d7 = #J dimp(B\GL,,)p. For each Serre
weight o with a lowest alcove presentation (w, ) compatible with ¢, we have
aclosed d 7-dimensional subvariety Cé = C(iy,0) of (F1V0)7 defined in (4.11).
Recall that

Vo, ~ ~ o~
Cino = 1_[ S]Fo(wl,j, w2 j,8;)
jeg

for any choices of Wy, Wy, s such that
~ ~ o~
(w, w) = (wy, sw, (0)),

cf. Theorem 4.3.9. Recall that SHYO (W1, j, Wa,, ;) (Definition 4.3.2((3))) is the
closure of the intersection Sﬁ%((wz_’ } wowy, j)*)E;.‘ N F1Y0. Pulling back to Fl,
we get the subvarieties C5 e Al

Theorem 4.6.2 shows that the top dimensional irreducible components of

M}V(g A, Va,) are exactly the translates 5§1Z*(t)_1 C Fl, where o runs over
JHW@ —n) ® o(1)).
Our main result in this section is the following:

Theorem 7.4.2 Let » € X (T)7 be regular dominant and let T be a tame
inertial type with lowest alcove presentation (s, (1) which is (A —n)-compatible
with £ € X*(Z). Assume that j¢ is max{2(h + 1), 4n + h}-deep.

(1) sz‘ }Zd = Xr)é’df = UysCqy, where the union runs over all Serre weights

o e JHWA —n) ®ac(r)).
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(2) Foreacho € JH(W(A —n) ® o (1)), we have a local model diagram:

Cs

IS

~ - - ~ T (1) ~1[0,h
 C e MY (< &, Va )5 M7 (< Nr—— A )
ol 77 VT [FSL. )/ 13 con]

®- Mod{™%
(7.17)

where
e C, isdefined so that all rectangles are Cartesian, and all vertical arrows
are TFV’j-torsors.
e All hooked arrows are closed immersions.
e The bottom diagonal map is the canonical composition C, — X, —

ét,n
o- ModK’F.

Remark 7.4.3 (1) The theorem shows that C, = [5(4; / T]FV ’j—conj] as subfunc-

tors of - Mod?’v’]}. Note that this depends only on ¢ and not on the choice
of A, s, and u.

On the other hand, making the choices A, s, 4 computes C, as a quotient
[Ty 7 C5T*(1) ™" /(5.1 T Y71, where Ty C5i*(z)~" is an irreducible
component of a deformed affine Springer fiber in the sense of [32], i.e. the
reduced subvariety of FI7 cut out by the condition

d .
(vd—g)g‘1 +Ad(g)(v* ) € LieT
v

In particular, C, is equisingular to an irreducible component of a deformed
affine Springer fiber.

(2) As the proof shows, the isomorphism between (Z, and 5§ holds as long
as there exists (A, 7) such that C, € X=*7 and t is 2(h + 1)-generic (in
particular, any irreducible component of the special fiber of X" where T
is 2n-generic). As long as o is (3n — 1)-deep, this can always be arranged
(see the proof of Proposition 7.4.7).

(3) Under the weaker hypotheses that  is 2(h + 1)-deep, one can still show the

upper bound on the components ere;f C ergx }zd C UyCy. In the proof,
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the bound 4n + h only appears when invoking weight elimination and
modularity of obvious weights from [56].
(4) Using the fact that Mf‘}’(f A, Va)r is equidimensional (cf. Remark 4.6.3),

one can strengthen the first part of the Theorem to Xrﬁ T = UyCys; in

particular, XFSA’T is equidimensional. This is because Lemma 7.4.4 below
shows that )?sdk " exhausts all the top dimensional irreducible components
of Mf‘7"(§ A, Va_)r, and has the same underlying reduced scheme.

(5) By taking products over a finite set S, indexing finite unramified exten-

sions F," of Q,, one obtains the evident generalization of this theorem for

Ffat
ks
XF .

The rest of this section is devoted to the proof of Theorem 7.4.2.

Lemma 7.4.4 Assume that v is (4n+h)-deepinCy. Letoc € JHW(A—1n) ®
5 (t)). Then C; C X*T C X=MT,

Proof By Proposition 2.3.7 (noting the n-shift), o is 4n-deep. Then for any o
of the form (7.15) for o, p is 4n-generic. By Proposition 6.2.9, any such p of
lies in X* 7 (F). Since such points are dense in C,, we are done. m|

Corollary 7.4.5 Assume that (v is max{2(h + 1), 4n + h}-deep in C. Then

the d 7-dimensional irreducible components of ere;f and Xsdk T are exactly
the Cy witho € JHW (A — 1) @ 5(1)).

Proof By Lemma 7.4.4, X*7 has at least #]JHW (L — ) ® o (1)) dg-
dimensional irreducible components. On the other hand, Proposition 7.4.1
and Theorem 4.6.2 (using that x is 2(k + 1)-deep which implies that t is 2n-
generic) imply that X=*7 has at most #JH(W (A — ) ® 5 (1)) d 7-dimensional
irreducible components. We conclude that equality must be achieved at each
stage. O

Lemma 7.4.6 Let 0 be an (n — 1)-deep Serre weight with a lowest alcove
presentation (0, w) compatible with ¢. Let k = 7w~ ' () - (w — 1) so that
o = F(«). Then there is an open dense subset US C C5 with the following

property: For any point x € 55 lying over Ug with associated étale p-module
My, Vi (My) has the form

X] * “ e *
0 X2 el %
0 -+ 0 xq
where the (canonical extension to Gk of) character x; satisfies xili, =
1—[ (kj+n;)i
jeJg K.,o; .
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Proof We write W = t,,w, thus kj = w;_1(®;) + pnw;_, — n;. The set of
triples (wy, ws, 5) such that

W =W, Wp=wpy, 5w, (0)=w (7.18)

is in bijection with W | since the first two condition determines w0, >, and
the third condition uniquely specifies 5 once the image of 5 in W is fixed.
Thus we can choose the triple (w1, w7, s) such that the above conditions hold,
and furthermore writing s = 7,5, we have

wiswil =1 (7.19)
forall j € J. Note that our choices give w, Ywowwy = ty-1(n)-

We now choose Us to be the open affine

[T (e jwoid, p")5; A% € 5.
jed

Let x € C5 (F) such that the image of x in F17 is in Us. By Proposition
4.2.13, Corollary 4.2.16 and the fact that u)tw_l’7 € EJF, we see that x can be

. =1, . —
represented by a tuple of matrices (CY)Y; = (Djv"i (”’)wj_le ;) €
GL, (F(v)))Y where N j 18 unipotent lower triangular and D; € TV (IF).

Writing ?;‘ = sj_lv j» p-conjugation by (w;) yields
C'V = w;CVw ! = Ad(w;) (D)) Ad@")(N joiw;s; v"iwi !
= E/jv'?ﬁw/'—l”j

where E//- is lower triangular with constant diagonal entries. Thus the étale
@-module M, associated to x has a filtration by rank 1 étale ¢-module, and
Vi = Vi (My) has a Gk -stable complete flag 0 = Fil c Fill c--- C
Fil" = V, with associated graded
g Vil = wg’j;;wj*lvj)i.
jeg

This follows from Proposition 3.1.2 [56] noting that in the conventions of
this paper as explained in Remark 5.1.7(5), T(s*, u*) would be replaced by
T(s~!, ) in the formula. Now the relations (7.18) gives

-1
V; +sj~wj (mj — ij) =w
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and (7.19) then implies
vj =wj— w00 = Nw;)
and thus
nj+wj-1vj) = wj-1(@;) + Nu;-

We conclude by observing that

(ejt)i _ (wj—t(@)+pm; )i _ (Wit 4,
Ko; = @K o) o VK0 ’
jeJg jeg jeJ
since wh, = w =
Ko; — ®YK.oj-1-

Proof of Theorem 7.4.2 The first part follows from Corollary 7.4.5 and the
fact that XS; T and X2 are equidimensional of dimension d..

We now prove the second part. Let 0 € JH(W (A — 1) ® o (1)) with lowest
alcove presentation (W, w) and setk = 7 @) (w— n). Then C, occurs as an
irreducible component of Xrgé‘ ’T, and we have the pullback C, as in diagram
(7.17). Now Cy is a top dimensional irreducible component of M‘n}’( <A, Va),
thus it must be of the form Eg,w*(t)_l for some o’ € JH(W(A — ) @5 (1)).
Let (W', @) be the lowest alcove presentation of o’ compatible with ¢ and
K =7 '@ (o —n).

We need to show that 6’ = o. To this end, let Uf;, be the open subscheme
of Cg, constructed in Lemma 7.4.6. By the definition of C,, we can find a

dense set of points x € Co (F) such that the associated Galois representation
px has the form described in (7.15). We can thus find such a point x which
furthermore induces a point in Ué,. Since ad(p) is cyclotomic free as p is at
least 4n-generic, Lemma 7.2.10(4) implies that that any G g__-stable filtration
on px|Gg, 1s automatically G g -stable. We conclude that the filtration of py
coming from Lemma 7.4.6 and the filtration described in (7.15) coincide.
Comparing the associated graded thus shows that

i
1—[ a)(Kj_H“)i - a)(Kj+77j)i
K,Uj - K,O’j
jed jeJ

for 1 <i < n. The equation above shows that k — k" € (p — ) X*(T). Since
« and «’ are both p-restricted, k — k’ € (p — 7)X°(T) which means that

o =o', m]
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Proposition 7.4.7 Let o be (3n — 1)-deep Serre weight with lowest alcove
presentation (Wi, ). Let p be a tame n-dimensional representation of Gk
which is 2n-generic.

(1) If o € Woby(p), then p € Co.

(2) Foreach j € J, let P@u € Z[X1, ..., Xu] be as in Proposition 4.7.3. If
o € W (p) and P{El,j(wj) %0 mod pforall j € J, thenp € C,.

(3) If 5 € Cy, then o € W' (D).

Proof First, we claim there exists a 2n-generic 7 such that C, C X, Let

o = F (k). The component C, is characterized by the fact it contains all p

of the form (7.15) such that i, = [T;e jagffjj”k”, To show C, C X7, it

suffices to show that all such p have potentially crystalline lifts of type (1, 7).
By Lemma 6.2.8, this property holds for t = (1, x). Furthermore, if « is
(3n — 1)-deep in its alcove, then by Proposition 2.4.5, 7(1, ) is 2n-generic.

Thus, by Remark 7.4.3(3), there is a diagram as in (7.17) such that C(I is
isomorphic to C;. By Propositions 5.5.2 and 5.5.7, p € C, if and only if p
admits a lowest alcove presentation such that w*(p) € Cé.

Since w*(p) € Cs exactly when w*(p) € C&. Each item follows directly
from corresponding item in Theorem 4.7.6. O

Remark 7.4.8 Proposition 7.4.7 likely holds for 2n-deep weights. However, it
requires more work to realize C, inside some X" in that case.

8 The Breuil-Mézard conjecture

In this section, we let K /QQ p be afinite extensionandn > O aninteger. Let J be
HomQP (K, E). Welet Gg be Resok/zp (GLy /0 ) so that G = ]_[J(GL,,/O)
and G¥ =[], GL,.

8.1 The statement of the conjectures

In this section, we recall two conjectures which we call the geometric and
versal Breuil-Mézard conjectures.

Let Z[ X, req] denote the free abelian group on the irreducible components
Co of X, red parametrized by Serre weights o. We call elements of Z[ X}, red]
cycles and call C, € Z[ A, req] for a Serre weight o an irreducible cycle. (One
might normally call these top-dimensional cycles among cycles of varying
dimension, but since we only consider top-dimensional cycles, we omit this
adjective.) A cycle is effective if its coefficients are nonnegative. We say that
Z1 € Z[ X, rea] is greater than or equal to Zy € Z[ X}, req] (and write Z1 > Z3)
if Zy — Z; is effective. Let K (Repy(G)) be the Grothendieck group of finitely
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generated F[G]-modules, or equivalently the free abelian group generated by
Serre weights for G. If W is a finitely generated F[G]-module, we write [W] =
ZU[W : o]lo] for its image in K (Repp(G)) where [W : o] denotes the
multiplicity of a Serre weight o as a Jordan—Holder factor of W. If V is a
finitely generated E[G]-module, then [VO] is independent of the G-stable O-
lattice V° C V, and so denote this by [V]. We then also denote [VO : 0] by
[V :0o]

A typeisapair (A+n, T) where A € X,(T") is adominant weight and 7 is a
Weil-Deligne inertial type for K. We say that a type is extremal if T is maximal
or minimal with respect to <. Recall that given an extremal type (A + n, T),
X*H1.T denotes the potentially semistable or the potentially crystalline stack
of type (A + n, 7). Let Z, . denote the cycle

Y o (X TC,

in Z[ X, rea] where pig (XI? - ") denotes the multiplicity of C, as an irreducible

component of Xﬂf} 1T in the sense of [75, Tag ODR4]. We also denote by A the
corresponding element in X* (7). For a set S of extremal types (A + 1, T), we
write

JH@(S)) € Ugsn.0)esTH@ (1, 1)).

The following conjecture is based on a geometric version of (a generalization
of) a conjecture of Breuil-Mézard ( [11]).

Conjecture 8.1.1 (Geometric Breuil-Mézard conjecture) Let S be a set of
extremal types. Then for each o € JH(G(S)), there exists an effective cycle
Zy € LI Xy real such that for all (. + n, ) € S, we have

Zie =Y [6(0.1):0]Z,.

o

Remark 8.1.2 Though it is not necessary for our purposes, we further expect
that Z, in Conjecture 8.1.1 is greater than or equal to C,, .

Recall from [33, § 3.3] that S is called a Breuil-Mézard system if the map

Z[S] — K (Repp(G))
A+n1)H> oA, 1T)]

has finite cokernel.
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Remark 8.1.3 (1) If we take S to contain all extremal types (A + 7, T), then
Conjecture 8.1.1 combines the potentially crystalline and semistable parts
of [22, Conjecture 8.2.2] with the additional assertion that the cycles Z,
are effective.

(2) It is not hard to see that if a system of cycles Z, in Conjecture 8.1.1
exists for a Breuil-Mézard system S, then it must be unique. Of course,
for general S, there may be more than one system of cycles Z, for which
Conjecture 8.1.1 holds. We will show that the cycles Z; can sometimes
also be characterized using minimal patching functors even when S is not
a Breuil-Mézard system (see Theorem 8.4.10).

Remark 8.1.4 If[6(A, T) : 0] > 1 and Z, is nonzero for some Serre weight o,

then Conjecture 8.1.1 (with (A 4+, t) € S) would imply that X]§ 17 is neces-
sarily non-reduced. It is known that when n > 4 and 7 is 2n-generic, JH(o (7))
has Jordan—Holder factors with higher multiplicity and so the same will be true
for JH(o (A, 7)) for any A. Under suitable genericity hypotheses, Proposition
7.4.1 and Conjecture 8.1.1 then imply that the local model M 7 (< A, V,,) will
also have non-reduced special fiber when o (A, ) has multiplicities.

Taking versal rings for &}, (and taking Hilbert—Samuel multiplicities) recov-
ers the original Breuil-Mézard conjecture. Let p : Gg — GL,(F) be a
continuous Galois representation. We also let p denote the corresponding [F-
point of X,. Fix a versal ring RF" for &, at p. For example, we could take

the framed deformation ring Rg. For a type (A + n, T), the fiber product
Spf R%er X x, X**1T is a closed formal subscheme of Spf R%er, which we

denote by Spf RYMHNT Then RY™T is a versal ring for X**7:7 at p.
Similarly, the fiber product Spf R% " X x;, Xn red 1s a closed formal subscheme

of Spf R%er , which we denote by Spf R%lg. Since &), req is an algebraic stack, the

versal map Spf R%lg — X, .red 1s effective ( [24, Definition 2.2.9]), i.e. arises
from a map

. alg
iz : Spec Rﬁ — X red-

The map iz induces a map from the set of irreducible components of Spec R%lg
to the set of irreducible components &}, .q Whose image is exactly the set of
irreducible components of &, cq containing p (see

[75, Tag ODRB]). We denote by Z[Spec R%lg] the free abelian group gen-

erated by irreducible components of Spec R%lg. We use the terms cycle,
irreducible, and effective in this context as well. Thinking of Z[X), req] and

Z[Spec R%lg] as spaces of functions on sets of irreducible components, pull-

back gives a map i; : ZI Xy red]l — Z[Spec R%lg]. Let 2, . (p) denote the cycle
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*(ZA 7) € Z[Spec Ra £] which is the cycle corresponding to Spec RVer AT

usmg that taking formal fibers preserves multiplicities (see [75, Tag ODRD])
(We suppress in the notation Z; ;(p) the dependence on the choice of versal
ring.)

Conjecture 8.1.5 (Versal Breuil-Mézard conjecture) Let S be a set of
extremal types. For each o € JH(c(S)), there exist effective cycles Z;(p)
in Spec R%lg such that for all (A + n, 7) € S, we have

Z(@) =) 60 1): 012, (D).

Remark 8.1.6 (1) As stated, Conjecture 8.1.5 depends on the choice of a versal
ring. However, by choosing a common formally smooth covering of any
two versal rings and using that a formally smooth covering of an equidimen-
sional scheme induces a bijection between sets of irreducible components
and preserves multiplicities of components, we see that Conjecture 8.1.5
for one choice of versal ring implies the same result for any other choice.

(2) Taking S to contain all minimal types (7 is minimal) and R%er to be the

framed deformationring R% recovers [23, Conjecture 4.2.1], with the added
assertion that Z,; (p) is effective.

8.1.1 Cycles from modules

If M is a finitely generated RVer At

we will let Z(M) be the cycle

-module for some type (A + 1, 7), then

D ue(M)C € ZiSpec RG],
C

where C ranges over irreducible components of Spec RVer A, T ue(M)

ver A0, T

denotes length ver 1, «(My.), and pe C R denotes the prime ideal
F.pe

corresponding to C.
8.2 Relations between the two conjectures

Proposition 8.2.1 Let S be a set of extremal types. Then Conjecture 8.1.1 (for
S) implies Conjecture 8.1.5 (for S) for all p € &, ().

Proof This follows from the fact that multiplicities of cycles do not change
upon passing to versal rings ([75, Tag ODRD]). O

@ Springer


https://stacks.math.columbia.edu/tag/0DRD
https://stacks.math.columbia.edu/tag/0DRD

1442 D. Leetal.

In fact, the converse of this statement is true (see Remark 8.2.4), but we will
need a variation of it. Let P C A}, (IF) be a subset. Let

.5 def .
i5 S [Tt : 2% real > [] ZISpec RYE).

xeP xeP

For a set S of extremal types, let C(S) denote the set of irreducible compo-
nents of X, eq Which lie in the support of X AT for some (A + 1, T) € S.
We say that P meets all components of S if any C € C(S) intersects P.

Lemma 8.2.2 If P meets all components of a set S of extremal types, then
the restriction of if, to Z[C(S)], the Z-span of C(S), is injective. Moreover,
Z € ZIC(S)] is effective if and only if i, (Z) is effective (i.e. i} (Z) is effective
forall x € P).

Proof 1f C is in the support of Z, a nonzero element of the Z-span of C(S), then
C contains some x € P. Then i} (Z) is nonzero by [75, Tag ODRD]. Similarly,
if the coefficient of C is negative, then i} (Z) is not effective. |

Proposition 8.2.3 Let S be a set of extremal types and P C X, (F) be a subset.
Assume the following:

(1) P C X,(F) meets all components of S; and
(2) Conjecture 8.1.5 holds for S and all x € P with cycles Z,(x) for each
o € JH@(S)) and x € P.

Then for each o € JH(c(S)), there is at most one cycle Z5 in Z[ X, redl
such that the support of Z, is contained in the support of Z) ; for some
(A +n, 1) € Sandforeach x € P, ii(2,) = Z4(x). If all such cycles exist,
then they satisfy the conclusion of Conjecture 8.1.1.

Proof The uniqueness of the cycles Z, follows from Lemma 8.2.2.

We next show that the cycles Z, are effective. Indeed, if an irreducible cycle
C in Z, has a negative coefficient, then there is a point x € P with x € C
since P meets all components of S. Then i} (Z,) is not effective by [75, Tag
ODRDY], which is a contradiction.

From the existence of the cycles, the equality 2, ; = ) [0 (A, 7) : 012,
follows again from Lemma 8.2.2. O

Remark 8.2.4 We recall a strong form of the converse of Proposition 8.2.1
from [22, § 8.3]. Let S be a set of extremal types. The set P = {x¢}¢, where
C ranges over irreducible components of U(HH,T)GSXI;“LM and xc € Cis a
smooth point of &}, 14, meets all components of S. Moreover, one can define
Zs asin[22, § 8.3], so that this collection satisfies the hypothesis of Proposition
8.2.3. In fact, i}, induces an isomorphism on (top-dimensional) cycles. We
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conclude that the following strong form of the converse of Proposition 8.2.1
holds: if Conjecture 8.1.5 holds at all points in P, then Conjecture 8.1.1 holds.

It is natural to ask if a strong form of the converse holds for any set P
which meets all components of S. In general, it is not as easy to construct
the collection of cycles Z, satisfying the properties in Proposition 8.2.3. In
§8.3 we show how to use a minimal patching functor to construct Z, so that
Conjecture 8.1.1 holds for a subset of S. In §8.4, we will take P to be the set
of semisimple p.

8.3 Patching functors and Breuil-Mézard cycles

In this section, we provide an axiomatic framework to show how patching
functors (§6.2) can be used to deduce versions of Conjectures 8.1.1 and 8.1.5.
The idea is to define the cycles Z; in Conjecture 8.1.1 by formally inverting
the Breuil-Mézard equations and ignoring suitably non-generic components.
Then one can prove Conjecture 8.1.1 using Lemma 8.2.2 assuming Conjec-
ture 8.1.5 for each p in a large enough set P (in particular P must meet all
components of §). Conjecture 8.1.5 holds given the existence of a suitable
minimal patching functor. The argument requires some intricate definitions,
and the reader is invited to consider the context of §8.4.

Definition 8.3.1 If p : Gy — GL,(IF) is a continuous representation and
Selim 1s a set of extremal types,

we say that a Serre weight o is (0, Selim)-irrelevant if there exists (A +
N, T) € Selim such that

(1) o € JH(G (X, 7)); and
2) R%*”’ff =0.

ForasetP C &, (F), we say thata Serre weight o is (P, Selim)-itrelevantif o is
(i, Selim)-irrelevant for every p € P. We say o is p-irrelevant or P-irrelevant
if o is (0, Selim)-irrelevant or (P, Sejim )-irrelevant for some Sejim.

Remark 8.3.2 The significance of Definition 8.3.1 comes from the fact that if
M, is a weak patching functor for p : Gy — GL,(F), then My (o) =
0 for all p-irrelevant Serre weights o since REET — implies that
Moo (o° (A, 7)) = 0 for any O-lattice 6°(X, ) C o (X, 7). Similarly, if Con-
jecture 8.1.5 holds for Sefim, then Z,; (p) = 0 for all (0, Selim)-irrelevant Serre
weights o.

Definition 8.3.3 Below, S, S’, §, and §elim denote sets of extremal types.

(1) We say that ¢ € JH(G(S)) S-covers o’ if (. +1,7) € S and o €
JH@ (A, 7)) imply that Cy lies in X t"".
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(2) We say that o € JH(5(S)) is S-disjoint from S’ if for all Serre weights «
such that o S-covers «, C, does not lie in XI;”HJ forany (A +1n,7) € S'.

IS CA:S'\, we say that o € JH(@(S)) is (S, §)—generic if o is g—disjoint
from S\ S.

As before, we let P C A, (IF) be a subset.

(1) We say that Sisa (P, ‘g’\elim)—Breuil—Mézard system if for any Serre weight
o there is a nonzero integer d, and integers nj _ such that

dolol— Y nf 60, 1)]

(A +n,7)eS

is supported only at (P, ilim)—irrelevant Serre weights. As before, we say
that S is a P- Breuil Mézard system if S is a (P, Selim)-Breuil-Mézard
system for some Sehm

2) If Sis a P-Breuil-Mézard system and S C S, then we let Sp C S denote
the subset of types (A + 7, T) such that JH(o (A, 7)) contains only (‘s\ S)
generic Serre weights. (We suppress here the dependence of Sp on S.)

Remark 8.3.4 Itis notclear a priori that given a set of extremal types S, a Serre
weight S-covers itself, i.e. C, < Z) ; whenever o € JH(c (A, 7)), though we
expect this to be true, as would follow from the strengthening of Conjecture
8.1.1 in Remark 8.1.2. Indeed, it will be true in some contexts that we consider
in §8.4 (see Proposition 8.6.1).

Theorem 8.3.5 (1) Let P C X, (F) and let S be a set of extremal types (A +

n, T). Suppose that for each x € P, there exists a minimal patching functor

M3, for x and S. Then Conjecture 8.1.5 holds for eachx € P with Z, (x) &

Z(MZ(0)).

(2) Suppose further that P meets all components of S, and that S is a P-Breuil
Mézard system containing S. Then for each (S, S) -generic o, there exists
a unique cycle Zs in Z[ X, red] such that the support of Z, is contained
in the support of 2 . for some (A + n,t) € S and for each x € P,
i¥(Z5) = 25 (x). Moreover, Z; is effective. In particular, Conjecture 8.1.1
holds for Sp. _

(3) For each (S, S)-generic o, the cycle Z, does not depend on the choice of
the patching functors M, for x € ‘P. In particular, the cycle Z(M3 (o))
in Ralg depends only on the versal ring R of X, at x (and not on other
data in M}).

(4) If furthermore there is a Breuil-Mézard system Sehm containing S such
that S isa (P, Sehm) Breuil-Mézard system and Conjecture 8.1.1 holds
for Sehm, then the above cycles Z; coincide with those in Conjecture 8.1.1.
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Proof For item (1), we can assume that P contains a single element p. The
data of a minimal patching functor for p provides a choice of versal ring
Roo = R%@O RP for X, at p as R? is a formally smooth O-algebra. We need
to show that

Z0:(P) =) _[60, 1) : 01Z(Moo(0)).

o

Foreach (A+n,7) € S, Z(Mx (0 (X, 7)) = 25 - (p) by [23, Lemma 2.2.10].
On the other hand,

Z(Mo@(, 7)) = Y 6, T) : 01Z(Moo(0))

by [23, Lemma 2.2.7]. R

We now proceed to items (2) and (3). We first define Z,; for every (S, S)-
generic Serre weight 0. For such a o, we can find d; and nf _ as in Definition
8.3.3(1). Let try s denote the 1dempotent endomorphism of Z1 X, real which
maps C, to itself if S-covers o’ and to 0 otherwise. We let

def 1
Zs = try.s <£ Z ni’rzx,f),

(A+n,r)e§

which is a priori a cycle with rational coefficients. We will show that i} (Z,) =
Zs(x) for all x € P, which also implies that Z, is a cycle with integer
coefficients by [75, Tag ODRD]. Uniqueness and effectivity in (2) follows
as in the proof of Proposition 8.2.3. Item (3) follows from the fact that the
definition of Z; does not depend on the choices of M7 forx € P.

We need the following lemma, which follows from definitions.
Lemma 8.3.6 If (A +1,7) € S\ S, then trg.5(Z;.¢) = 0.

Fix an element x € P. Let try s(x) be the idempotent endomorphism of

Z[Spec Rilg] such that i} otry s = trg s(x) o i} which exists and is unique by
[75, Tag ODRB, Tag ODRD].

Lemma 8.3.7 We have try s(x)(Z45(x)) = Z5(x).

Proof Suppose that C,/(x) is an irreducible cycle in the support of Z;(x),
which is also in the support of i} (C,) for some Serre weight 0. Then for any
A+n,1)€ S such that o € JH(@ (%, 7)) we have that Cpr(x) < Z5(x) <
Z;.,¢(x) (by (1)), which implies that C,» < Z; ;. This means that o S-covers
o'. |
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Note that for any (A +17, 7) € S\ S, tr.5(x)(Z(MZ (@ (A, 7)))) = 0 since
try,5(x)(Z5,:(x)) = 0 by Lemma 8.3.6 and Z(M3 (c(A, 7)))) < Z) . (x).
Then

Zo(x) = Z(M3(0))

1
= > nl L Z(MLGE (1))
7 (tn,0)e8
1
= d_ Z I’lg’l_ tro-’S(X)(Z(MgO(E()\" T))))

7 an0es

1
- Z ng e s(xX)(Z(M3, (@ (x, 7))))

o (A+n,7)eS

1
= Y L ths()(Z ()

dg (A+n,7)eS
= l;:(ZO')a

where the first equality is by definition, the second equality follows from
Remark 8.3.2, the third equality follows from Lemma 8.3.7, the fourth equality
follows from the previous sentence, the fifth equality is as in the first paragraph
of the proof, and the final equality is by definition of Z; and try,s.

Finalll, we turn to /\(4). Supp9§e that Sejim is a Breuil-Mézard system con-
taining S such ﬁlat S is a (P, Selim)-Breuil-Mézard system and gonjecture
8.1.1 holds for Sejim With cycles ZE‘M. We will show that for a (S, §)-generic
o, the cycle Z; coincides with ZEM. Suppose that

def 1

o S lol—— Y nf (. 1)

7 (An,7)ES

is supported only at (P, "Szlim)—inelevant weights, and define

BM def BM 1 o
Zoirr =Z, —— Z nk,rz)»,f’
% (A+n,1)ES

which is a rational linear combination of cycles ZEM for (P, ilim)—irrelevant
weights k. We claim that

o try s(ZBM) = ZBM and

o try 5(Z3M) = 0.
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Then

ZBM _ tr, 5(2BM)

def BM 1
= .8 <Zﬂirr + d_ Z ni’rZ)\’-[)
7 (A+n,r)e§

1
= trg,s (d_ Z A”lg’-[z)\,r>
(A+n,7)eS

def
éZO'7

where the first and third equalities correspond to the above claims. Turning
to the claims, the first follows from the proof of Lemma 8.3.7. To show the
second claim, by linearity we assume without loss of generality that ojy is a
(P, Selim)-irrelevant Serre weight. §ince oirr 18 (P, Selim )-irrelevant, for each
x € P, there exists (Ay + 1, Tx) € Selim such that oj,; € JH(o (A, 7,)) and the
support of Z; . does not contain x. Then the support of Zg’irl:/[, which is less
than or equal to Z,, ., for all x € P, contains no elements of P. On the other
hand, suppose that ¢ € JH(o (A, 7)) for (A + 71, 7) € S. Since P meets all
components of S, the support of Z, ; (the set of irreducible components) must
be disjoint from that of Z,, . We conclude that o cannot S-cover any weights
corresponding to components in the support of Z,, ~so that trG,S(Z(]fir]:’[) = 0.

O

8.4 Geometric Breuil-Mézard for generic tamely potentially crystalline
types

We apply the results of the previous section to a context in which we have
enough patching functors. The section begins with a series of lemmas that
establish the requisite hypotheses.

Let A C X4(T") be a finite set of dominant weights containing 0, and let
St denote the union of the set of extremal types (A" + 1, 7) where A’ < A for
some A € A and is dominant and 7 is a P; 4 .-generic and (6n — 2 + hjy 4;)-
generic tame inertial type. Let Pg be the set of X € X, (IF) such that x|, isa
(6n — 2)-generic tame inertial F-type for K. Let S ¢ be the union of S  and
the set of types (17, T) where 7 is a 2n-generic tame inertial type for K. Let
SA t.elim be the union of Sx ¢ and the set of extremal types (1, T) where p; is
tame.

Remark 8.4.1 In what follows, we could replace Pss by any set P C X, (IF) so
that {x|;, | x € P} is the set of (bn — 2)-generic tame inertial F-types for K.
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Lemma 8.4.2 Suppose thatp € X, (IF') is such that p|, isa (6n — 2)-generic
tame inertial F-type for K. If o ¢ w? (x|1¢), theno is (p, SA t.elim)-irrelevant.

Proof This follows immediately from the proof of [56, Corollary 4.2.4]. O

Remark 8.4.3 We use Lemma 8.4.2 to apply Theorem 8.3.5 in the setting of
this section. However, examining the proof of Theorem 8.3.5, we just need that
the evaluations of patching functors applied to Pgs-irrelevant weights vanish,
for which Proposition 6.2.3 suffices.

Lemma 8.4.4 The set S, At is a (Pss, S, A.t.clim)-Breuil-Mézard system.

Proof Given a Serre weight o, we can write [0] = ) . n‘l’i,[ﬁ] in the
Grothendieck group by [72, Theorem 33], where R runs over irreducible G-

representations over E. If T is a 2n-generic tame type, we let ”0 . ben? )

We otherwise let nk’t def Ofor(A+n,7) € SA,t. Since each such R above
is a Jordan—-Holder factor of a Deligne—Lusztig representation R, (w) by [19,
Corollary 7.7], if a Serre weight is in the support of

ol— Y nfylE@],

(41,7)€8A ¢

then itis contained in JH(R) for some Deligne-Lusztig representation R which
is not 2n-generic. By Lemma 2.3.4, such Serre weights are not (4n — 2)-deep,
and so not in W?(x|1K) for any x € Psg by Proposition 2.6.2. O

Lemma 8.4.5 Ifo is 3n — 1-deep and §A,t-covers o/, then o covers o’ (in the
sense of Definition 2.3.10).

Proof Suppose that o S, Ai-covers o’. Any (2n — 2)-generic tame inertial type
t for K with 0 € JH(o (7)) must be 2n-generic by Proposition 2.3.7, so
that C, is contained in XH? " by assumption. Remark 7.4.3(3) implies that
o’ € JH(o (7)). The conclusion follows. O

Definition 8.4.6 We say that a Serre weight o is generic if o € JH(o (7)) for
some (7, T) 98{0“ and o does not cover any Serre weights in JH(a (")) for

all (n, ) € Spo1.¢ \ Sjoy.t

Remark 8.4.7 (1) If o is generic, then o is necessarily (6n —2)-deep by Propo-
sition 2.3.7 and the fact that o € JH(c (1)) for some (7, ) € Sjo),¢
(2) If o is generic and covers o’, then ¢’ is generic.

Lemma 8.4.8 If o is generic, then o is (Sa 1, gA,t)-generic (for any set A as
above).
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Proof Suppose that crAg A.t-covers a Serre weight o’ and that C,- is contained
in X[g’f for (n, ) € Sar. We need to show that (1, ) € Sp . Lemma 8.4.5
implies that o covers o’. Remark 7.4.3(3) implies that ¢’ € JH(c (7)). Then
the genericity of o implies that (1, ) € S ;. O

Lemma 8.4.9 The set Pss meets all components of Sp .. Any tame p €
X*T(F) where (A, T) € Sa .z is (bn — 2)-generic.

Proof 1f C, is a component of XAT for (A + 1, T) € Sa.r, then o €
JH(@ (A, 7)) by Remark 7.4.3(3). Fix a 6n — 2 + h; 1,-generic lowest alcove
presentation for 7. Then (w, w(r)w, L0)) is a A-compatible lowest alcove
presentation for o for some @, € W' with & 4 mﬁh_lﬁz by Proposition
2.3.7.Letp : Gg — GL, () be a semisimple continuous representation such
that p|7, has a lowest alcove presentation such that w (|7, ) = w(r)w, Ywi
for some w € W. This lowest alcove presentation is (6n — 2)-generic so that
b € Pss. Moreover, since @(7)i; ' (0) = B(pl1,) W~ 1(0), 6 € Woby (Bl 15)-
Then p € C, by Proposition 7.4.7(1). O

Let Sp ot C Sa ¢ be the subset consisting of types (A + 7, T) such that
JH(o (A, 7)) consists only of generic Serre weights o. The following result is
the main result of the section.

Theorem 8.4.10 (1) For any semisimple (bn —2)-generic p, a minimal patch-

d
ing functor Moo for p and S 1 exists. In particular, setting Z(p) =

Z(Mx(0)),

Z(@ =) 60, 1) : 012, (p).

forall (A +n,7) € Sar
(2) For each x € Pss, choose a minimal patching functor M  for x and
Sa.t. Then, for each generic Serre weight o, there exists a unique cycle

Zs in LI Xy real such that the support of 2, is contained in the set {C, |

o covers k} and for each x € P, ii(Z5) = Z,(x), where Z5(x) &

Z(MZ,(0)).

(3) For generic o, the cycle Z, does not depend on the choice of the patching
Sfunctors M3 for x € Pss. For generic o and semisimple (6n — 2)-generic
P with minimal patching functor M, for p and Sab Z(M5,(c)) depends
only on the versal ring R (i.e., it is the pullback to Rso of a cycle that is
independent of M%,).

(4) Assume Conjecture 8.1.1 holds for a Breuil-Mézard system containing
Shtelim- Then the above cycles Z, (for generic o) coincide with those
from Conjecture 8.1.1.
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Proof We start with item (1). Let M, be a weak minimal detectable patching
functor for p. We claim that M is a minimal patching functor for p and S .
If (A +n, t) € Sa 1, then Roo (X, 7) is a domain (or zero) by Theorem 7.3.2(2).
Moreover, M~ (0°(A, T)) is nonzero if and only if Ry (X, T) is nonzero by
Proposition 6.2.7. These facts imply that M (o °(A, t))[1/p], which is locally
free of rank at most one over Ro (A, T)[1/p], is locally free of rank one. This
proves the first part. Items (2), (3), and (4) follow from Theorem 8.3.5 (and
the previous lemmas in this section). The stronger conclusion that the support
of Z, is contained in the set {C, | o covers k} follows from the definition of
Z, and Lemma 8.4.5. O

8.4.1 Breuil-Mézard with polynomial genericity

Let 134,7’6 be the product of P, . and Py,_3 (see Theorem 7.3.2(2) and Remark
2.1.11Q2.1.1D). If f(t1,...,t,) € Z[ty,...,ty] and w € X*(T) = Z" is
dominant, let

def

oS [T fe—vn =) € ZlHL L 1] B1)

veConv(w)

For a finite set A C X, (T") of dominant weights, we let

def ~5A+n—wo(n))
Ppae= [T11 Pre '
reA jeT

Lemma 8.4.11 Let A C X, (T") be a finite set of dominant weights contain-
ing 0. Let T be a tame inertial type for K with a lowest alcove presentation
(s, w — n) such that  is Pp_a .-generic. Then (. + n,t) € Sp a1 for any
A€ A

Proof We need to show that for any A € A, any o € JH(o (A, 1)) is generic,
i.e.thatifo coverso’and o’ € JH(G (")) for some tame inertial type 7/, then 7’
has alowest alcove presentation (s’, u’—n) such that ' is P, .-generic. In fact,
we take (s’, ' — 1) to be compatible with (s, i — n). Since o covers o', o’ €
JH(@ (7)) so that we can assume without loss of generality that e = o’. Choose
a tame inertial F-type p such that o € W’(p). Then choosing the compatible
lowest alcove presentation for p, we have that w(p, t) € Adm(A + 1) and
w(p, ') € Adm(n). Thus w(r) " 'w(z’) € Adm(h + n — wo(y)), so that
li/ — p € Conv(A +n — wo(n)). Then the Pp A .-genericity of p implies the
P, .-genericity of p'. |
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Corollary 8.4.12 Let A C X.(T") be a finite set of dominant weights con-
taining 0. Then there exist effective cycles Z, € Z|X, red] for each Serre
weight o such that

Zir =Y [0 1) : 012,

o

for any & € A and tame inertial type T with a lowest alcove presentation
(s, u —n) with u Pp p .-generic.

Proof This follows from Lemma 8.4.11 and Theorem 8.4.10. O

Remark 8.4.13 If o is not generic, then o ¢ JH(o' (A, t)) forany (A +1n, 7) €
Sp At Hence any o such that Z,; occurs in Corollary 8.4.12 must be generic.

Remark 8.4.14 In this entire section, we have restricted ourselves to the case
where O, is the ring of integers of a p-adic field K. However, the evident
generalization of Theorem 8.4.10 to the general case can be proven in the exact
same way. Moreover, since the completed tensor products of patching functors
are again patching functors, the uniqueness statements in Theorem 8.4.10(2)
and (3) imply that the cycles Z, have a product structure corresponding to that
of 0.

8.5 Generic Breuil-Mézard for tamely potentially semistable
deformation rings in small weight

In this section, we prove the Breuil-Mézard conjecture for sufficiently generic
Galois representations and the Breuil-Mézard system coming from tame iner-
tial Weil-Deligne types and small regular weight.

Lemma 8.5.1 Let A C X, (T") be a finite subset of dominant weights, and
let (s, u — n) be a lowest alcove presentation of a tame inertial F-type p for
K. If ujis Pg’A’e-genen’c (see Lemma 8.4.11) for all j € [J, then for any
tame inertial type T for K with w(p, t) € Adm(A + n) for . € A (and for
some lowest alcove presentation for t), (A +1n,7) € Sp At

Proof This follows from Lemma 8.4.11 and a similar argument. O

For a finite subset A C X*(T) = X, (T"), let
ha def max (A, o).
reA,aed

The following is a corollary of Theorem 8.4.10(2) and Proposition 8.2.1.
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Corollary 8.5.2 Let A C X.(T") be a finite subset of dominant weights
containing 0. Let p : Gk — GL,(IF) be a continuous Galois representation
such that p*|j, has a lowest alcove presentation (s, — n) where w; is
Pg’A’er-genericfor all j € J and m = max{2hx + 2h;, 6n — 2}. Then

there exist cycles Z5(p) € Z[Spec R%lg] for each Serre weight o such that
ZRST) =Y [r(@) @ VA : 012, (P) (8.2)

for all A € A and tame inertial Weil-Deligne types T, where r(t) is a virtual
representation of GL,(Ok) over E defined in [74, § 4.2].

Proof If o is a generic Serre weight, then let Z, (p) def i%(ZG) with Z, as in

Theorem 8.4.10(2) with the set A. Otherwise, let Z,(5) & 0. Then (8.2) for
7 such that N; = 0 and (A + 1, ) € Sp,a ¢ holds by Theorem 8.4.10(2) and
and Proposition 8.2.1. Note that when N; = 0, r(t) = o (7) (the semisimple
case in [74]).

Fix 1 € A. It suffices to show that for any other v with (A +1, 7) ¢ Sp.a 1,

%ﬂér is zero and Z;(p) = 0 for any o € JH(c (A, t)). Then both sides
of (8.2) would be zero since r(t) for any such 7 is a virtual combination of
o (1) for such 7. To show that R%Jrn’ﬂ is zero, it suffices to show that Rﬁjsf is
zero by [29, Lemma 5]. We assume without loss of generality that p = 5.
If v (or really p;) is (hp + hy + 1)-generic and (A 4+ 1, T) ¢ Sp A, then
w(p, 7) ¢ Adm(A + n) by Lemma 8.5.1 so that R%H’ff = %Jrn’r is zero by
Corollary 5.5.8.

Suppose now that p; is not (ks + hy + 1)-generic. It suffices to show that
R;lzlll(’/‘/ is zero for any subfield K’ C K of finite degree over K. Taking K’
to be a sufficiently large unramified extension of K, we assume without loss
of generality that 7 is a principal series type. Then the claim follows from a
mild strengthening of [29, Proposition 7] (the same proof works with minor
modifications), replacing [—n + 1, 0] and az. € [0,n — 1] in loc. cit. with
[—ha — hy +1,0] with @} € [0, 7in + hy — 1], respectively,

We now show that if o € JH(c (A, 7)) where (A + 1, 7) ¢ Sp.a, then
Zs(p) = 0. If o is not generic, Z, = 0 by definition. Assume that o is
generic. There exists a tame type 7’ such that o € JH(G(z")) C JH(@G@ (A, 7))
so that in particular (17, ) € So),.. Then i} (Z5) < i¥(Z, ) forall x € P
by Theorem 8.4.10(2). If i} (Z, ;') is zero for all x € Pgs, we deduce that Z,
is zero by Lemma 8.2.2. Suppose that i} (Z, /) is nonzero for some x € Ps.
Then i}(Z;4) is nonzero by Theorem 7.4.2(1). Lemma 8.5.1 implies that
(A +n, t) € Sp a1, which is a contradiction. O
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8.6 The generic Breuil-Mézard basis

In this section, we prove some basic results about the Breuil-Mézard cycles
Z, that appear in Theorem 8.4.10.

Proposition 8.6.1 Let o be generic and Z; be as in Theorem 8.4.10. Then the
coefficient of Cy in Z4 is 1.

Proof Choose a lowest alcove presentation (w, w) for o compatible with ¢ €
X*(Z). Let p be a semisimple Galois representation such that there exists a
lowest alcove presentation of p|;, so that w(p) = t,w. Then 0 € Wopy(p)
(see Definition 2.6.3) and so p € C, by Proposition 7.4.7(1).

Let 7 be the tame inertial type with lowest alcove presentation so that w(t) =
towowpw. Then T is 2n-generic and o € JH(a (1)) corresponds to (W, w;,w)
in (2.8). In fact, since o is generic, (1, T) € Sjo),¢ so that C, is a component
of Xlg’r by Theorem 7.4.2. We conclude that 0 < i;(CU) < i%(Zn,,) for

any versal ring at p. On the other hand, R%’T is formally smooth by [56,
Theorem 3.4.1] since w(p, 7) = fy-1(y Where w € W is the image of w. This
implies that i;(Cg) = i;(ZW,T) and that both of these are irreducible cycles.
By the proof of Theorem 8.4.10, there exists a minimal patching functor
M for p and Sy ¢, which is detectable. Then M, (o) is nonzero, and hence
s0 is Z5(p). Theorem 8.4.10 implies that 0 < Z;(p) < i;(Z,”) = i%(C(,),
so that i%(Ca) = i%(ZU). The result follows from [75, Tag ODRD]. O

Proposition 8.6.2 The cycles Z,, for o generic, form a basis for the span of
the cycles Cy, for o generic.

Proof By Theorem 8.4.10, Remark 2.3.11, Remark 8.4.7(2), and Proposition
8.6.1, the “change-of-basis matrix” relating (Cs)s and (Z4)s is “unipotent
upper triangular”. O

8.6.1 Computation of the Breuil-Mézard basis

We end this section with an alternative proof of Theorem 8.4.10(3), which
introduces notation and arguments that will be used in §9.1. Let p be a
2n-generic tame inertial F-type and choose a 2n-generic lowest alcove pre-
sentation for p with corresponding element w(p) (cf. Definition 5.5.1). If
o € W) corresponds to the pair (v, ;) in (2.14), we say that the
p-defect 85(0) of o is £(t;) — ¢((Wyw) 'wowi). Since a change of low-
est alcove presentation corresponds to conjugation by an element of 2 and
the latter preserves length, §5(o) is independent of the choice of lowest
alcove presentation of p. Wang’s theorem implies that w; < w so that
(Whw) two; < (Wpw) 'wew = ty-1(y- Hence, §5(0) > 0 with equal-
ity if and only if 0 € Wby (0).
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Proposition 8.6.3 Let p be a 2n-generic tame inertial F-type and t be a
2n-generic tame inertial type. Fix compatible 2n-generic lowest alcove pre-
sentations for them, with corresponding elements w(p) and w(t).

If w(p, ) € Adm™&(n) with factorization w;lwowl as in Remark 2.1.8,

def . . . . -
then k = F(zﬁ,jlﬁz,@(ﬁ)(ﬁl)‘l(o)) is the unique Serre weight in W’(p) N
JH(o (7)) which maximizes the defect function &3.

Proof First, the fact that w; 1 I'Dh_lwg implies that k € W’ () by Proposition
2.6.2. Since w(p) (1)~ (0) = W(r)(W2)~'(0), «k € JH(@ (1)) by Proposition
2.3.7.

Suppose that (W, w) is acompatible lowest alcove presentation of an element
o € W(p) NJH(G (7)). By Proposition 2.6.4, w;lwowl = Ez_ls'il with 57,
5 € ﬂ+ ands) t w 1 ﬁh_l'svg. By Wang’s theorem s> < wj,w, and by Lemma
2.1.4 (W) ‘wos; > 'Ez_lwo?]. So we have

85(0) = £(ty) — LWy W)~ wos7)
< €(ty) — LGy 'wos)
< Uty) — LGy '$51) = £(ty) — £(@5 ' woiby) = 85(k).

Equality implies thatsy = w;,w and s = wy. By the uniqueness in Proposition
2.1.5, 65(0) = 85(k) implies that o = «. O

Alternative proof of Theorem 8.4.10(3) We will denote by o both a continuous
representation Gx — GL, (IF) and the corresponding inertial F-type obtained
by restriction. We are given a minimal patching functor M5, for p and Sy ;, and

thus a versal ring Rgo to X, at’p. Foracycle Z of Rgo of dimension dim Rgo X x,
Xy red, define its generic part Z&°" to be the cycle obtained from Z by removing

any components whose support do not belong to | J U/generici%(cd/). For any
def def

Serre weight o and tame type 7, define Z,(p) = Z (MoﬁO (o)) and Z;(p) =
Z(M5, (T (1))). We observe:

e If o is generic, then Z,(p)®*" = Z,(p). This is because the support of
Z4(p) belongs to N i%(X Ty = i%(CK), which consists of
o CJH(o (7)) O CcOvers K
only generic components.

e If 7 is a tame type such that JH(c' (7)) does not contain any generic weight,
then Z; (0)&" = 0.

e If 7 is a tame type such that JH(c (7)) contains a generic weight, then
Z(p) = i2(X™Y).

(For the first two items, we use that Theorem 7.4.2 applies to any X* contain-

ing p, since p is (6n — 2)-generic.) In particular, each Z; (p)&" only depends
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on the versal ring Rgo, i.e. equals the i; of a cycle independent of the patching

functor Moﬁo.
We now show by induction on §5(0) that for any o, Z, ()" depends only

on Rgo. This proves Theorem 8.4.10(3) in view of the first item above. By
Proposition 6.2.3, it suffices to restrict our attention to weights in W’ (p).
Choose a lowest alcove presentation (w, @) of o and a compatible lowest

alcove presentation of p.

If 65(c) = 0, then w(r) &ef w(p)t_,,-1(, corresponds to a compatible

lowest alcove presentation of a tame type t, where w € W is the image of w.
By Corollary 2.6.5, W’(p) NJH®@G (1)) = {o}. By Proposition 6.2.3, [o(7) :
0125 ()" = Z:(p)°". (It is well-known that [6(7) : o] = 1, though we
will not use this. In fact, this can be seen from the proof of Proposition 8.6.1.)
This finishes the base case.

Now, suppose §5(0) > 0. If o corresponds to (w, W) in (2.14), we choose

7 so that () & (%) (@)~ woi. Then

[0(7) : 0125 (0)¥" = Z: (p)*" — Z [0(7) : k12 (P)*".
keW(P)NTH( (7))
(8.3)

(Again, [o(t) : o] = 1.) Since the right hand side depends only on Rgo by
induction and Proposition 8.6.3, so does the left hand side. m|

Remark 8.6.4 Combining the above with Proposition 8.2.3 gives the following
recursive procedure to compute Z, for generic o: For any o’ covered by
o, choose a tame p lying on C, (for instance, those given by Proposition
7.4.7(1)). This gives a defect function on W’ (p), and the above proof allows
us to recursively compute the coefficient of C,/ in Z, for « € W?(ﬁ), and in
particular the coefficient of C, in Z,. Note that € W’ (p) by Proposition
2.3.12(3) (see Remark 4.7.4(2)) and Theorem 4.7.6(2).

Proposition 8.6.5 Let A C X, (T") be a finite set of dominant weights con-
taining 0. Suppose there are two collection of effective cycles Z,, 2] €
Z| X, real for each Serre weight o such that

Zie =Y [0, 1) : 012,

g

Zir =Y [0 1) :0]Z,.

for any A € A and tame inertial type T which is Pp p .-generic. Let oy be a
Serre weight such that:
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e For any pair of tame types 11, T2 such that JH(c (1)) N JH(c(12)) # @
and k € JH(o (11)) for some k covered by oy, 12 is Pp_a .-generic.

Then for each semisimple p € X,(F), Z4,(p) = Z(’,O (0). In particular, Z5, =
Z(’,O.

Proof In the proof, we will only consider cycles Z, that occur in the given
cycle equations.

We call a Serre weight o satisfying condition in the statement very generic.
For a cycle Z of &), req, we define its very generic part ZV-2°" to be the cycle
obtained by removing from Z any component C, such that o not very generic.

We make the following observations:

e Suppose o has the property that any tame type t such that ¢ € JH(c (7))

is Pp a .-generic. Then the support of Z, belongs to N A"t =
o elH(@ (7))
U C« (where the equality follows from Theorem 7.4.2). In particular,

0 COVers K

as in Remark 8.6.4, for any tame p such that Z;(p) # 0 we have o €
W’ (®).

e Suppose p is tame and Z,¥"(p) # 0. Since Z, occurs in the given
cycle equations, we can find a Pp 4 .-generic tame type 71 such that o €
JH(@ (1)). By Theorem 7.4.2, Zy %" (p) # 0 implies « € JH(@ (11)) for
some very generic k. The definition of very generic implies the previous
item applies to o, thus we learn that o € W’ (p).

e If o is very generic, then Z, " = Z,,.

e If T is a tame type such that Z; does not occur in the given cycle equations,
then Z, 5" = 0 for any o € JH(o (7)).

We now fix a very generic og and p such that C.(p) # 0 for some «
covered by op. Given the above observations, we can repeat the argument
in the alternative proof Theorem 8.4.10(3) to give a recursive formula for
Zy 8" (5) in terms of 27 €" (p) for various tame types t. But then Zpveen )
satisfies the same recursive formula, and hence Z;,(p) = Z{TO o). O

Remark 8.6.6 The condition on the Serre weight o¢ in Proposition 8.6.5 is
guaranteed by Q-genericity, for an appropriate polynomial Q built out of
Pp_a e (cf. Proposition 2.3.7 and the proof of Lemma 8.4.11).

9 Global applications
9.1 Serre weights for some definite unitary groups

Let F' be a totally real field not equal to Q, and let F C F ' beaCM extension
of FT. Denote the set of places in F T dividing p by S,. We say that a finite
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place of F (resp. of F) is split if it splits in F (resp. if its restriction to FT
splits in F). Suppose from now on that all places in S, are split. Let G, z+ be
a reductive group which is an outer form for GL, which

e splits over F; and
e is definite at all archimedean places.

Recall from [25, § 7.1] that G admits a reductive model G defined over
OpFp+[1/N], for some N € N which is prime to p, together with an isomor-
phism

Lt Gropi1/N = GLujosi1/n] 9.1)

which specializes t0 1, : G(Op+) = G(OF,) = GL4(O,) for all split
finite places w in F where v is w|g+ here. For each split place v of FT,
we choose a place v of F dividing v, and we let ¢, be the composition of
ty and the canonical isomorphism GL,(OF;) = GL, (O FJ) (suppressing the
dependence on the choice of V).

IfU =U,U®? < G(A%ﬂ’p) X G(A;o;p ) is a compact open subgroup and
W is a finite O-module endowed with a continuous action of U ,, then we define
the space of algebraic automorphic forms on G of level U and coefficients in
W to be the (finite) O-module

SW.W) E{f: GFON\GAE,) — W]
g =u,' @) ¥ g € GO ue U], 9.2)

We recall that the level U is said to be sufficiently small if for all t € G (A‘;ﬂ),
the order of the finite group ' G (F )t N U is prime to p. If U is sufficiently
small, then S(U, —) defines an exact functor from finite O-modules with a
continuous U ,-action to finite O-modules. From now on we assume that U is
sufficiently small.

For a finite place v of F prime to N, we say that U is unramified at v if
one has a decomposition U = G(O U U, Let S be a finite set of finite places
in FT containing S, all places dividing N, and all places at which U is not
unramified.

Let Ps be the set of split finite places w of F such that v = w|p+ ¢ S.
For any subset P C Pg of finite complement that is closed under complex

conjugation, we write Tp def (’)[Tlff), w € P, 0 <i < n] for the universal
Hecke algebra on P. The space of algebraic automorphic forms S(U, W) is
endowed with an action of Tp, where Tu(f) acts by the usual double coset
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operator

_ Id; O
Lwl [GLYZ(OFH)) (wwo ! Idn—i) GLH(OFUJ)} *

Suppose that S(U, W), # 0 (or equivalently S(U, W Q¢ F), # 0) where
m is the kernel of a homomorphism « : Tp — F. Let Tp(U, W) be the
image of Tp in Endp(S(U, W))—it is a semilocal ring. If Q is the (finite)
set {w|p+ : w € Ps \ P}, then we also denote Tp(U, W) by TC(WU, W).
Let o : Tp — T2(U, W) be the natural quotient map. There is a Galois

representation ry def rU,Win : Gp+s — Gy (T2(U, W)w), where G, is
the group scheme over Z defined in [16, §2.1] (see also §A.3), determined by
the equations

det (1 = (U, W)l (Frob,) X) = Z(—l)j(NF/Q(w))(é)a(Tlf)j))Xj
Jj=0

forall w € P.Let7 : Gp+ — G,(IF) be the reduction ry, (mod m). We say

that such a Galois representation 7 is automorphic of level U and coefficients

W, and m is the maximal ideal of Tp corresponding to 7. We say that 7 is

automorphic if ¥ is automorphic of some level U and some coefficients W.
Let O) be Op+ ®7 Zp = || Op+. Then the composition

veS)

def

p = [Jw:60p) =[] 90 = [ OLaOp) (93

veS) ves, ves,

gives an equivalence between G(O))-modules and [] GL,.(O F;r)-modules.
veS),

Let k, denote the residue field of FUJr and G oot [] GL,(ky). If o is a Serre

veS)

weight of G, then o is naturally a [] GL,(O ;)-module by inflation. We

veS,
can now define what it means for a 7 as above to be automorphic of a particular
weight and level.

Definition 9.1.1 Let U = G(O,)U 5» be a sufficiently small compact open
subgroup of G(A%,) and let o be a Serre weight for G.

We say that 7 is automorphic of weight o and level U or o is a modular
(Serre) weight for 7 at level U if ¥ is automorphic of level U and coefficients
0" oy, where o denotes the F-dual of o. We say that 7 is automorphic of
weight o or o is a modular (Serre) weight for r if ¥ is automorphic of weight
o and some level U.
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Let W (r) be the set of modular Serre weights of 7. Let Ween (7) be the subset
of generic Serre weights in W () (see Definition 8.4.6).

It is a standard fact that if 7 is automorphic, then W (r) is nonempty. Indeed
if 7 is automorphic, then we can assume by exactness of S(U, —)n, that 7
is automorphic of level U and coefficients W where W is an irreducible
F[G(Op)]-module. Since the space of invariants of a pro-p group acting con-
tinuously on an F-vector space is nonzero, W is of the form o o ¢, for some
Serre weight o of G.

Fixing maps Fre fj for each v € §, the restriction of a continuous
representation v : G g+ — G, () gives a collection of continuous representa-
tions (ry : G FF GL,(IF))ye Sps which is equivalent to an L-homomorphism

over [ which we denote 7, : Wo, — L G (F) where G = GL,,.

Definition 9.1.2 Given an L-parameter p : Gg, — LG (F), we say that o is
a geometric Serre weight of p if the corresponding collection (p,)yes, lies on
Co (equivalently, p, lies on Cy, for all v € S), where 0 = Qyes,0v). We let
ngen (p) be the set of geometric Serre weights of p which are 3n — 1-deep.

We let Wg‘;l:ld (p) be the set of generic Serre weights such that p lies in the
support of Z, (defined in Theorem 8.4.10(2), see Remark 8.4.14). By Remark
8.4.14,

Wenm (9) = {®yes, 00|00 € Wom (5,)}.

Remark 9.1.3 Proposition 8.6.1 implies that any generic Serre weight in

ngen () is contained in ngll\l’[ (o).

The following conjecture is based on [39, Conjecture 6.9] and [33,
§ 2and 9.2].

Conjecture 9.1.4 Suppose that v : G g+ — G, (F) is automorphic and that
the inertial L-homomorphism Fp|1Qp over F is tame and 2n-generic. Then

WE) =W (Tplrg,)-

We can use Theorem 8.4.10(2) to make the following unconditional version
of [33, Conjecture 3.2.7].

Conjecture 9.1.5 Suppose that v : Gp+ — G,(F) is automorphic. Then
Wgen(F) = nglxl(’?p)-

Theorem 9.1.6 There exists a polynomial P(X1, ..., X,) € Z[ X1, ..., X,],
independent of p, such that if (p 1 2n and) and

o 7 : Gp+ — G, (IF) is automorphic;
* 716 (GF(,)) is adequate; and that
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e the inertial L-parameter 7 p| Iy, over F is tame and has a lowest alcove

presentation (s, ju—n) suchthat wis P-generic,i.e. P(ij 1, ..., j,) #0
(mod p) forall j € J, where 7 = Hom(F ™, E),
then

W) = Ween(Fp) = W' (Tplig,) and Ween(r) = Woan (7).
Remark 9.1.7 (1) The polynomial P in Theorem 9.1.6 can be taken to be the
product of the polynomials Ps,—2, P2, P,Zog, and Q appearing, respec-
tively, in Remark 2.1.11, Theorem 7.3.2(2), equation (8.1) and the proof
of Lemma 9.1.9 below.
(2) There exists P so that the P-genericity hypothesis implies that W?(Fp)
contains only generic Serre weights. SO Wgen (7) in Theorem 9.1.6 could
be replaced by W (7).

Remark 9.1.8 We describe a method to construct examples to which Theorem
9.1.6 applies. Suppose that p { 2n, K/Q, is a finite unramified extension,
and let p : Gg — GL, () be a semisimple continuous Galois representation
such that p|;, has a lowest alcove presentation (s, i — 1) with u P-generic
with P as in Theorem 9.1.6. Then by [14, Corollary A.7], there exists a CM
extension F/F with F™ # Q and a (potentially diagonalizably) automorphic
representation 7 : G g+ — G, (IF) which is isomorphic to p at all p-adic places
and whose restriction 7| (G r(¢,)) is adequate. Then Theorem 9.1.6 applies
to7.

Lemma 9.1.9 There exists a nonzero polynomial P(X1, ..., X,) € Z[X;,
..., Xy such that if p is a tame L-homomorphism over IF such that p| Ig, has

a lowest alcove presentation (s, i —n) where |1 is P-generic, then ngen (o) =
W’ @lig,)-

Proof The inclusion ngen (p) C W?(ﬁl IQp) follows from Proposition 7.4.7(3)
if p is 4n-generic. We now show the opposite inclusion. Fix a set R of repre-
sentatives for the (finite) set WlJr /X 0(T), and consider the (finite) product

def

oxi,.... X0 I  T1 T] PoX +wit; o)),

WER iy, WreW+ weWw

where Py is as in Proposition 4.7.3 and ww, 1(0) is an element of Z" under
the usual identification X*(T') = Z". If p|, has a lowest alcove presentation
(s, 4 — n) such that p is Q-generic, then the compatible lowest alcove pre-
sentation for o € W’ (p] 1) from Proposition 2.6.2 satisfies the hypothesis of
Proposition 7.4.7(2) so that p € C,. We can therefore take P = Q Pa, (see
2.1.11(2.1.11)). O
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We introduce notation for prime ideals in deformation rings corresponding
to the irreducible components of

Fr Ft
P _ v
Xn,red - l_[ Xn,red‘
ves§, . F

Recall that we index these irreducible components C, by Serre weights o of
G. Let p be a tame L-homomorphism over [F, and recall from §6.2 that

def
Ro = @5, oo
veS, 0 Po

Then there is a versal map i : Spf Rz — [[,c S,.Spf O X,,F”Jr. By Proposition
4.7.5 and Remark 7.4.3(2), if p is Q Ps,-generic as in the proof of Lemma
9.1.9 and o is (3n — 1)-deep, then i;(Co) is an irreducible cycle (if nonzero).
In this case, we let p, () C Rz denote the corresponding prime ideal.

Lemma 9.1.10 There exists a polynomial P(X1, ..., X,) € Z[ Xy, ..., X,]
such that if p is a tame L-homomorphism over F such that p| Ig, has a low-
est alcove presentation (s, 0 — 1) where wu is P-generic and M~ is a weak
detectable patching functor for p, then

{0 ] Mog(0) # 0} = W' (Blry,) and {o generic | Moo (o) # 0} = W (9.

Proof We claim that the result holds with P taken to be the product of P,?% (see
Theorem 7.3.2(2) and equation (8.1)), Ps,—2 (see Remark 2.1.11), and Q (from
the proof of Lemma 9.1.9). We have that {0 | Ms (o) # 0} € W’(p| Io,)
by Proposition 6.2.3 (using that Pg,_> | P and Remark 2.1.11(2.1.11)), so it
suffices to show the opposite inclusion.

We first claim thatif o € W’ (p) is a Serre weight such that Ann RyMoo(0) C

po'(p) for some Serre weight o’ € ngen(ﬁ), then 6@,@ () < (Sm,Q (o)
P P
with 5 o, defined in §8.6.1. Suppose that o € W’ (p| I@p) corresponds to

(w, wi) in (2.14) (with the lowest alcove presentation as in the statement of
the theorem). Then we let 7 be the tame inertial L-parameter with a 2n-generic
lowest alcove presentation such that w(t) = wW(p|g, ) (Wp )~ wow;. As in
the alternative proof of Theorem 8.4.10(3) (§8.6.1, this choice is made so
that the set W?(ﬁl ’Qp) N JH(o (1)) contains o and weights of strictly smaller
ﬁl’@p -defect than o (we say that t is strictly defect lowering for p and o).
Theorem 7.4.2(1) implies (after taking products as in Remark 7.4.3(5)) that
the irreducible components of Spec R% are
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{Cor(P) | 0" € Wgen(P) NTH(T (7))}
= {Cor(@) | 0" € W (Bl1,) NTH@E (D)), (9.4)

where the equality uses Lemma 9.1.9 (and that Q Py, | P).If Ann R;Moo(0) C
por(p), then since Anng, Moo(0(7)) C Anng,Moo(0o), we conclude that
o’ € JH(G (1)). The claim then follows from (9.4) and that t is strictly defect
lowering for p and o.

We now establish the opposite inclusion: for o € W?(ﬁl I, ), we show that
M (o) # 0. Choose t in terms of o as in the previous paragraph. Since
(W)~ 'woib; € Adm(n) by Proposition 2.1.6 and P,, | P, (1, T) € So by
the proof of Lemma 8.4.11. Choosing an O-lattice 6°(t) C o(t), combining
that M, (0°(7)) is maximal Cohen—Macaulay over R (7), R% is adomain by
Theorem 7.3.2(2) (cf. Remark 7.3.4), M, (c°(t)) is nonzero by Proposition
6.2.7, and Theorem 7.4.2(1), we conclude that Ann RHM o (@°(1)) is contained
in ps (p) (which is a proper ideal by (9.4)). Then Anng; M (o) is contained
in p,(p) for some o’ € W?(m IQp) N JH(o (7)). The claim in the previous
paragraph (with the roles of o and ¢’ reversed) implies that 85 o, (o) <

Wyl o, (o). Since 7 is strictly defect lowering for pand 0,0 = o’. We conclude

that M, (0) # 0.
Finally, we claim that if o is generic, then o € W’ (p) if and only if o €

Wg%\l/[ (p). The forward implication follows from Lemma 9.1.9 and Remark

9.1.3. We now show that Wg%ﬁ’l(ﬁ) C W?(ﬁ). Suppose that o € Wg%lxl(ﬁ).
Then for any minimal patching functor M/ for p and Sp 1, M (o) # 0 by
Theorem 8.4.10(2) so that o € W’ (p) by Proposition 6.2.3. Alternatively, by
the same result, p € C, for some o’ which o covers. Then p € C, by Remark

4.7.4(2) (see the proof of Proposition 7.4.7). |

Proof of Theorem 9.1.6 The result follows from Lemmas 9.1.10 and A.1.1. O

9.2 A modularity lifting result

Theorem 9.2.1 Let F/F* be a CM extension, and let r : G — GL,(E) be
a continuous representation such that

e 1 is unramified at all but finitely many places;

e r is potentially crystalline at places dividing p of type (A 4+ n, T) where
AE (Z:’L)H"m(F 'E) and t is a tame inertial type that admits a lowest alcove
presentation (s, L — n) where [ is Py y .-generic;

o ¢ r\/el—n’.

e 7 is semisimple locally at places above p;
—ker adr

o 7 : Gr,) —> GLy(F) is an adequate subgroup and &), ¢ ; and
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e 7 = 7,(m) for some w a regular algebraic conjugate self-dual cuspidal
(RACSDC) automorphic representation of GL,,(AFr) of weight A so that
o(t) is a K-type for w at places dividing p.

Then r is automorphic i.e. r = r, (') for some ©' a RACSDC automorphic
representation of GL, (Ar) (of weight A so that o(t) is a K -type for w at
places dividing p).

Proof This follows from Theorem 7.3.2 from standard base change and
Taylor—Wiles patching arguments cf. the proof of [60, Proposition 6.0.2]. O

Remark 9.2.2 (1) After possibly changing the polynomial P, . in Theorem
9.2.1, the last condition on r can be relaxed to only require that 7 = 7,(;r)
for some RACSDC automorphic representation v using Theorem 9.1.6 to
incorporate a “change of weight” result.

(2) Unfortunately, the inexplicit nature of P, 4, . makes Theorem 9.2.1 rather
impractical to apply.
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Appendix A. Taylor—Wiles patching

The goal of this section is to construct a patching functor from algebraic
modular forms on a definite unitary group using the Taylor—Wiles method.
This differs from most other constructions in that we allow arbitrary level
while other constructions typically assume that the level away from p is rather
mild. For the purposes of automorphy lifting results, one can arrange for this
assumption to hold using solvable base change. Since Theorem 9.1.6 is a
characteristic p result, we cannot use solvable base change as a reduction step.
Fortunately, the necessary modifications to account for level are not difficult.
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A.l. The result

Lemma A.1.1 We use notation from §9.1. Assume that p 1 2n. Let7 : G p+ —
G, (IF) be a continuous representation.

(1) IfT is automorphic and7r|g . (G F(gp)) IS adequate, then there exists a weak
patching functor for r, such that Mo (o) # 0 if and only if o € W (r).

(2) If furthermore, the inertial L-parameter 7P|1Q,, over F is tame and has a
lowest alcove presentation (s, w — n) such that ju is Pey—2 Py .-generic,
there exists Moo as above such that M, is furthermore detectable.

A.2. Patching functors and obvious weights

Letp be atame L-homomorphismover F. Leti; : Spf Ry — [[,c S,.Spf O XnF;r
be the versal map from §9.1. Recall that for any Serre weight o of G, we let
Co (p) be the irreducible cycle i%(CU) and let p, (p) C Ry denote the prime
ideal defining C; (p) (and let p, (p) = R5 if C5(p) = 0). For an inertial type
7, let py :(P) C Rz denote the ideal defining Spec R%H’t. We write p; (0)
for po,: (0).

Lemma A.2.1 Letp be an L-homomorphism over F and M, a weak patching
functor for p. If og is 3n — 1)-deep and AnnRﬁMoQ (00) C po(p), then og
covers o.

Proof Suppose that Anng; Moo (00) C po(p) and that 7 is a 2n-generic tame
inertial L-parameter T with g € JH(o (7)). Then by Definition 6.2.1,

po(P) D Anng;Moo(00) D Anng, Moo (5°(7)) D pr(p) + (o).

Remark 7.4.3(2) then implies that o € JH(o (7)). We conclude that o covers
o. O

We say that a tame L-homomorphism p over IF'is P>, .-generic if the inertial
L-parameter T with W(p, T) = fytuwy(y) IS Pay,.-generic.

Proposition A.2.2 Suppose that p is a tame L-homomorphism over F such
that p| I, has a lowest alcove presentation (s, u — n) such that w is Py .-
generic. If My is a weak patching functor, then M (o) % O for every o €
Wobv(0) in the highest p-restricted alcove.

Proof Let t be the tame inertial L-parameter with a lowest alcove presentation
n-compatible with that of » such that wW(t) = W(P)t_,;—wyy. If M is a
weak patching functor for p, then My, (0°(n, T)) is nonzero for any lattice
0°(n, ) C o(n, t) by Proposition 6.2.3 and Lemma 2.6.7. By assumption,
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T has a lowest alcove presentation (s, u — 2n — won) where u — n — won
is (up to XO(Z)) Py, .-generic, so that AnnRﬁMoo(o"(n, 7)) = py,z(p) since

%’” is a domain by Theorem 7.3.2 and since My (0°(n, T)) is maximally

Cohen—Macaulay over R (7, T) by Definition 6.2.1(1). Since Mo (c° (17, T))
and R%"’t are O-flat, this implies that Anng_ Mo, (G°(1, 7)) = py.c (P) + (@).
In particular, Anng, Moo (°(1, 7)) C po(p) for any o € JH(a(n, 7)) by
Theorem 7.4.2. Then for any o € JH(G (n, 7)), there exists a Serre weight o’
such that Anng, M (") C po (D).

We now take o € Wypy () in the highest p-restricted alcove. Then p € C,
by Proposition 7.4.7(1). Lemma A.2.1 implies that My (c’) # 0 for some
o’ which covers o. Then Proposition 2.3.12(2) implies that ¢’ = o, so that
My (o) # 0. O

A.3. Galois deformations

We recall some some definitions from §6.1. Let G, be a split (possibly dis-
connected) reductive group. Let Co be the category with objects Noetherian
complete local O-algebras with residue field I and morphisms local O-algebra
homomorphisms. Given a topological group I', a continuous representation
r:I' - G@), and (A, my) € Cp, an A-valued lifting of 7 is a continuous
representation r4 : I' — G(A) such that7 = ry4 (mod my). We say that two
A-valued liftings are equivalent if they are ker(G(A) — G(IF))-conjugate. An
A-valued deformation of 7 is an equivalence class of A-valued liftings. Given
a A-valued lifting r4 : I' — G(A), letdetry : ' — G®(A) denote its com-
position with the natural quotient map. Note that detr4 only depends on the
equivalence class of 74.

An example of G which will play an important role in what follows is the
group scheme G, from [16], which is the (disconnected) split reductive group
scheme over Z defined as the semidirect product

(GL, x GLy) x {1, 7} = G% % {1, j},
where j(g,a)] = (a'g™', a). Letv : G, — GL; be the homomorphism
defined by v(g,a) = a and v(j) = —1. Let ggb be the quotient of G, by its

derived subgroup. Then Qf,‘b is isomorphic to GL; x {1, 7} (see [5, § 5.1]). In
the next sections, I' will be taken to be a Galois group.

A.3.1. Local deformations

Let L be a nonarchimedean local field of characteristic zero. For a Galois
representation p : Gy — G,(IF), define the functor DﬁD : Co — Sets by
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letting D5(A) be the set of A-valued liftings of 7. Then DﬁD is represented by
aring Rg, the O-lifting ring of p.

Definition A.3.1 A local deformation problem for p is a nontrivial subfunctor

Dy of DﬁD such that

(1) if Ry — Rg and R, — Ry are two surjections in Cp and R3 = ker(R; x
R> — Ry) € Co with the natural ring structure, then D5(R3) is identified
with the equalizer of the diagram

Dp(R1) x Dp(R2) —X Dy(Ro);

(2) D5(A) is ker(G(A) — G(IF))-conjugation invariant for all A € Cp;

(3) the natural map Dg(l(ir_n Ap) = Lln D5(A;) is an isomorphism; and

(4) if i : A < B is an injection in Cp, then r4 € D5(A) if and only if
ix(ra) € Dy(B).

Any local deformation problem D5 is represented by a quotient Rz of RﬁD.

If£: G — GP(O)isalift of detp : G — G(F), define D5'(A) to be
the set of lifts p4 such that det p4 = £ (i.e. £ composed with the map coming
from the structure map O — A). Then D%/ is a local deformation problem
represented by a ring R%’/. Let R% be the maximal O-flat quotient of R%’/, and
let D% be the corresponding local deformation problem.

If p(G ) is contained in QB (IF), then denote the projection of a deformation
pa toGL,(A) by pa|. Then pg — palinduces a natural isomorphism D% =
D5

A.3.2. Global deformations

Let FT be a totally real extension of Q and let F C F ' be a CM extension
of FT. There is a natural inclusion Gr C Gp+. Let S be a finite set of
finite places of F*. Let F(S) be the maximal extension of F unramified
outside S, and let Gp+ g be Gal(F(S)/F*). Let 7 : Gr+s — Gu(F) be

a representation which induces an isomorphism G g+ /GF S Gu(F) / QS ().
(All representations 7 : Gp+ g — Gn(A) below are assumed to induce the
isomorphism Gg+/GF = Gy (A)/QS(A).) Fix alifté : Gp+ — gﬁb(O) of
det7. Let DE % denote the functor taking A € Cp to the set of A-valued lifts

with detr4 = &, which is represented by a quotient RE £ of RFD. We let 7|G,
denote the restriction of ¥ to G composed with the projection to GL, (I).
Suppose now that 7|, is absolutely irreducible. Then the functor DE, taking
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A € Cp to the set of equivalence classes in DE 8 (A), is represented by a
deformation ring R?

For each place v of F', we fix a map e f:r. Then restriction gives
an inclusion G p+ — Gp+. A global Gy, -deformation datum is a tuple

S = (F/FJ’_’ S’ OaFaga {DU}UES)9

where F/F*, S, O, 7, and £ are as before, and D, corresponds to a local

deformation problem for 7, def 7lg - which is a subfunctor of Dg” where
& o &l . For an O-algebra A, we say that a lifting r4 : Gp+ — G,(A)

of 7 is of type Sif detry = £ and rg , def ralc - € D,(A) forallv € S.
We say that a deformation [r4] of 7 is of type S 1f some (or equivalently any)
lifting in the equivalence class is of type S. Let DE Cc D> 0.8 (resp. Ds C DF)
be the subfunctor consisting of liftings (resp. deformations) of type S. Then
DE (resp. Dg) is represented by a quotient RE of R? 8 (resp. a quotient Rs
of Rg).

For T C S, an A-valued T-framed lifting of ¥ of type S is a tuple
(ra, (oy)yer) Where ry € DE(A) and o, € ker(GL,(A) - GL,(F)) for
each v € T.If we let Or be Ollzy,; jllver,1<i, j<n, then the functor send-
ing A to the set of A-valued T -framed liftings of 7 of type S is represented
by the ring RD Or o~ RE@O(’)T. We say that A-valued T'-framed liftings
(ra, (dy)ver) and (rA, (ot )yer) of 7 of type S are equivalent if for some
B € ker(GL,(A) — GL,(F)), r), = Brap~! and @, = Bay forallv e T.
An A-valued T-framed deformation of 7 of type S is an equivalence class of
A-valued T -framed liftings of 7 of type S. The functor of T-framed deforma-
tions of 7 of type S is represented by a ring RET. Taking equivalence classes

gives a tautological map RET — RE’DT. The maps sending [(74, (oty)veT)]

to (Ad(a; Dra p)ver induces a map R};’,CT o Ouver.0Ry — RET where R,
denotes the ring representing D,,.

Fix a universal lifting rs : Gp+ — G,(Rs) (or equivalently a section
Spec Rs — Spec RD of the natural map Spec RD — Spec Rg) This induces
a map RS ®R0Or — Rs®pO7 and the composition RS — RIj Or o~
RD®@OT — Rs®pO7 isan isomorphism. (Indeed, since 7|g . is absolutely
irreducible and p > 2, 8 € ker(GL,(A) = GL,(IF)) centralizes 7 if and only

if B = id,.)
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A.3.3. Tangent spaces

Given a representation » : I' — G, (A), one naturally obtains an adjoint
representation I' — Autg4(Lie G,(A)). Note that Lie G, = gl, x gl;. Let
adr : I' — Auty(gl,(A)) be the representation obtained by the projection
Lie G, — gl,.

For (A,m4) € O, the reduced tangent space of A is defined to be
Homp(mz4 /mi, [F), which is naturally identified with the set of morphisms
A — F[e]/e? in Co. In the setup of §A.3.1, the reduced tangent space of R%
is naturally identified with both DZ(F[e]/¢?) and C'(G .+, ad p).

Recall that 7 : Gp+ g — G, (IF) is a representation which induces an iso-
morphism G p+/GF =G, )/ g,? (IF) and whose restriction 7| . is absolutely
irreducible. Fix a global G, -deformation datum

S=(F/F',S,0,7,& {Dy}ves).

For each v € S,let L, ¢ C'(G ;> ad p) be the subspace corresponding to
Dy (F(e]/e?). ,

As before, let T be a subset of S. We define H"S’T(GFJF’S, adr) to be the
cohomology of the complex

Cs 1(Gp+g,adF) L Cl(Gr+.5 adP) @ @ C NGy ad )/ M

ves

where M{; = Ounlessv € S\ T andi = 0 in which case M,? = CO(GFU+, ad7r)
orve S\Tandi = 1 in which case MJ = L,. The boundary map for the
above complex maps (¢, (Yv)ves) to (39, (PG, — 0¥v)ves)-

Proposition A.3.2 There is a natural isomorphism

2 ~ 771 -
Hom@(ngr/(mR?T +mR§?T), F) = Hg 1 (GFp+s, adr).

A.3.4. Taylor—Wiles primes
Let
S=(F/F'.S,0.7.& {Dy}es),
be a global G,-deformation datum. Let Q be a set of split places in F* such

that Nv = 1 (mod p) for all v € Q, and let v/, be a generalized eigenspace
for the projection of 7 (Frob,) to GL, (IF) on which 7 (Frob,) acts semisimply.
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Let s, be the complementary 7 (Frob, )-stable subspace. For v € Q, let D,(A)
be the set of A-liftings which induce G f+-actions of A" which decompose as
sy @ Yy lifting the decomposition over T such that sy 18 unramified and the
inertial subgroup acts on ¥, by scalars. Then D, is alocal deformation problem
by [78, Lemma 4.2], and we consider the global G,-deformation datum

SQ = (F/F+7 S7 077’ E’ {DU}UESUQ)'

Proposition A.3.3 Let go > 0 be an integer and
S=(F/F",5, 0,7, {Dy}es).

be a global G,-deformation datum such that v¥(G F+(§,,)) is adequate and
E(cy) = —1 for each v | oo where ¢, denotes complex conjugation at v.
Let T C S be a finite set such that every place in S\ T is splits in F and that

dimg L, — dimg HO(G s, adF) = |10 Qoln@n = D/2 vl p.

v 0 ifvtp.
Let q be the larger of dimp HEL’T(GW s,ad7(1)) and qo (with H} ,
(Gfp+.s5,adr(1)) defined as in [16, § 2.3]). Then for any integer N > 0,
we can find (Q, (JU)UGQ) wheg Q is a set of places in F* which split in
F which is disjoint from S and v, is a nontrivial generalized eigenspace for
7 (Froby) on which r (Froby) acts semisimply for each v € Q such that

e #0 =gq;
e Nv=1 (mod p") forallv e Q; and
O . ! 1
° RSQT can be topologically generated over RgG = Réﬁ’;’T by q —
ZveT,vlp[Flj_ : Qpln(n — 1)/2 elements.
Proof This follows from [78, Proposition 4.4]. O

We say that (Q, (Ev)vé o) in Proposition A.3.3 is a Taylor-Wiles datum of
level N disjoint from S.
With Q as above, let Ap be [] kX(p) where k, denotes the residue field
veQ
of F,\ and k¥ (p) denotes the maximal p-quotient of k.. (So A is nontrivial

if Q is nonempty.) Choose a universal lifting rs, and let ¥, be as above for
each v € Q. For each v € Q, the action of &, thought of as a subgroup of
I;‘b, acts on the summand v, and gives a character kK, — R EQ which factors

through & (p). Altogether, we have a map O[Ag] — Rs,. Moreover, the
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natural map Rs,/a9 — Rs is an isomorphism, where ap C O[A o] denotes
the augmentation ideal. Similarly, REQT /ag —> RET is an isomorphism.

A.4. Automorphic forms on definite unitary groups

For the reader’s convenience, we recall notation from §9.1. Recall that F is
a totally real field not equal to QQ and that F C F ' is a CM extension of F*.
The set of places in F* dividing p is denoted S,. A finite place of F* (resp. of
F)is split if it splits in F (resp. if its restriction to F'T splits in F). We assume
that all places in S), are split. Recall that G, p+ is an outer form for GL,, which

e splits over F; and
e is definite at all archimedean places.

Moreover, there is an N € N prime to p and a reductive model G0, [1/n) for
G with an isomorphism

Lt Gropn/n = GLn 0p11/N] (A.D)

which specializes to ¢y, : Q(OFU+) = G(Orf,) = GL,(OF,,) for all split
finite places w in F where v is w| g+ here.

In §A.3.2, we chose homomorphisms 7+ s F:r, which induces a v-adic
normon F (for the unique norm on fj extending any fixed norm on F," in
the class of the place v). Restriction to F gives a place v dividing v (that does
not depend on the choice of the norm on F,"). Changing the homomorphisms
Froo fj, we assume without loss of generality, that v coincides with
the choices in §9.1. We write ¢, be the composition of (3 and the canonical
isomorphism GL,(Op;) = GL,(OF+) (suppressing the dependence on the
choice of V).

IfU =U,U>®P < G(A%oﬂp) X G(A;o;p) is a compact open subgroup,
and W is a finite O-module endowed with a continuous action of U, then

SW. W) E{f: GFNGAE,) - W|

flgw =u;'f(@) Vg€ GAF)ueU], (A2)

From now on we assume that U is sufficiently small, i.e. for all t € G(A%,),
the order of the finite group r~!G(F 1)t N U is prime to p, so that S(U, —) is
exact.

We let S be a finite set of finite places in F* containing S, places dividing
N, and all places at which U is not unramified; and we let Py be the set of split
finite places w of F such that v = w|p+ ¢ S. For a subset P C Py of finite
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complement that is closed under complex conjugation, Tp = (’)[Tu(f), w €

P, 0 <i < n] is the universal Hecke algebra on P. Then Tlf,i) € Tp acts on
S(U, W) by the usual double coset operator

_ d;, 0
0! [GLH((’)Fw) (w"(’) i Idn—i) GL,,((’)Fw)]

Suppose that S(U, W), # 0 where m is the kernel of a homomorphism
o : Tp — F. Let Tp(U, W) be the image of Tp in Endp(S(U, W)). If
Q is the (finite) set {w|g+ : w € Ps \ P}, then we also denote Tp(U, W)
by TC(U, W). Leta : Tp — T2(U, W) be the natural quotient map. Then

there is a Galois representation ry, def r(U,Win: Gp+ 5 — Gy (TQ(U, W)
determined by the equations

det (1 — r(U, W)mlg (Froby)X)

=3 (=1 Nrjow) D (1) X
j=0

for all w € P. We denote the reduction rp, (mod m) by 7 : Gp+ — G, (F).
Let O, be Op+ @z Z, = [] Op:+- Then the composition

veS,

def

pE [[w:90)=[]60 = []OLOpr)  (AD)

veS) ves, ves,

gives an equivalence between G(O,)-modules and [[ GL,(O Fj)—modules.
veS)

Let k, denote the residue field of F;r and G def [ GL,(ky). If o is a Serre

veS)

weight of G, then o is naturally a [[ GL,(O F;+)-module by inflation.
veES)

We will need a local-global compatibility result for (U, W)n. Let G be
(the split group) (Res F+@Q,/Q, GL,)/E.

e Fix a highest weight & = (A,) ¢ S, of G, which we also view as a coweight
of the dual group G". For v € S, let 7, be an n-dimensional Weil-Deligne
inertial type for F,. Recall that there is a natural correspondence between

local deformation problems for p,, in D%” and local deformation problems

for p,|. Recall from §6.1.1 that R%”if” represents a certain subfunctor,

which we will denote D%“if“, of a potentially semistable deformation func-

Ay, Ty

tor. Let Dﬁ'“r" be the local deformation problem corresponding to Dz
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(Note that D%”’r” does not depend on the choice of place v.)

e Let m be a positive integer and (Q, (Ju)vé o) a Taylor-Wiles datum of
level m and disjoint from the union of S, and the set of places dividing N
(see §A.3.4). Let d, be the dimension of the generalized ¥, -eigenspace.
Let p, be the standard (block upper triangular) parahoric corresponding to

the partition (n — d,) + d, of n (suppressing the dependence on V). Let

p] be the kernel of the natural map p” — GLg, (ky) det k) — kS(p),

where k, is the residue field of Fv+ and k.S (p) def A, denotes the maximal

p-quotient of k. Setting U = UQUQ, let Ug(Q) (resp. U1(Q)) be the

compact open subgroup ( [] Up(Q),)U2 (resp. ([] U1(Q),)U?) where
veQ veQ

Uo(Q)y (resp. U1 (Q)y)is ¢y L (p?) (resp. ;! (p?)). Let D, be the local defor-

mation problem defined in §A.3.4. Note that for each v € Q, the quotient

Uop(Q)y/U1(Q)y is naturally identified with A, so that Uy(Q)/U1(Q) is

naturally identified with A g def IL co Dv.

Theorem A.4.1 Let £ be s! T P+ where 8 g p+ denotes the quadratic char-
acter of G p+/G . Fix a dominant weight .. = (Ay)ves, of G and, for each
v € Sy, an n-dimensional Weil-Deligne inertial type t, for F,". Let o (1) be
as in Theorem 2.5.4. For v € S, let Dy, be D75’T“. Let W be an O-lattice in

the U ,-module

® o (Ay, Tv)* O Ly,

veS),

where (—)* denotes the E-dual of an E-vector space. Suppose that S contains
Sp, places dividing N, and all places where U is not unramified.

As in §A.3.4, let (Q, (EU)UEQ) be a Taylor-Wiles datum disjoint from
S. Then there are a maximal ideal mg C Tpg o, maps a : Tpoop —
TeWU, Wy, @0 : Tpao — T/ (Uo(Q), Wimg, and a1 : Tpao —
(U, (@) W)y, and Galois representations

o r(U, Wim, : Gp+ 5 — G (T2 (U, W)m,), uniquely determined by the
equations

det (1 — (U, W)my |G (Frob,) X) = Z(-l)!’(NF/Q(w))@a(T,fj))Xf
j=0
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forallw € Ps\ Q, of type
d _
SY (F/F*, S, 0,F, & {Dyhues, U{DE huesis,);

o r(Uo(Q), Wim, : Gp+ 5 — gn(']I‘@(Uo(Q), Wmg)s uniquely determined
by the equations

det (1 = r(Uo(Q), Wmglg, (Froby)X)

=3 (1)) Nr o) Dag(T) x7

Jj=0
forallw € Ps\ Q, of type
S=(F/F", 5 0,7,& {Dy}hes, U{D5hvess,):

o and r(Ui(Q), Wimg : Grt 5 = Gu(T'(U1(Q), W)my), uniquely deter-
mined by the equations

et (1 = r(U1(Q). Wimg g (Froby)X)

N

(= 1) (N g (w) Doy (1) X
=0

forallw € Ps\ Q, of type
So = (F/FT,5UQ,0,7,& {Dy}lves, U{Dy}ve U {D5 }vess,)-

Proof The construction of the Galois representations is as in the proof of [16,
Proposition 3.4.4] using [25, Theorem 7.2.1]. O

If U is sufficiently small, then with the natural action of Ap on
SWU1(Q), W), S(U1(Q), W) is a free O[Ag]-module and the image of
SWUo(Q), W) in S(U1(Q), W) under the natural inclusion is identified
with S(U1(Q), W)l[ap]l. Moreover, the induced action on S(Ui(Q), W)m
coincides with the one given by the composition O[Ag] — Rs, —

T?(U1(Q), W)m — Endo(SU1(Q), W)m).

For each v € Q, choose an element ¢, € W+ lifting the geometric Frobe-
nius element. Let @, € O FF be the uniformizer such that Art P () is the
image of ¢, in Wab Using the isomorphism ¢, : g(0F+) = GL, (F;1), we
definepr,, € Endo(S U; (Q), W)mQ) asin [78, Proposition 5.9] (suppressing
the dependence on U and (Q, (wv)veg)). Then the operators pr,, commute
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with each other and with the actions of O[A(] and T(U; (Q), Wm, for
i =0, 1.Soletting pr = HUEQ P, > Pr(SUi(Q), W)m,,) is well-defined for
i=0,1,pr(S(U1(Q), Wmg) is a free O[A g]-module, and the natural map

Pr(S(Uo(Q), Wmy) = pr(SWU1(Q), Wimg)lag]

is anisomorphism. Moreover, the image of the natural injection S(U, W)m, —
SUo(Q), W)m, 18 pr(S(Uo(Q), W)m,) as in the proof of [78, Theorem 6.8].

A.5. The patching construction

We continue with the notation from §A.4. Let 7 : Gp+ — G,(F) be an
automorphic Galois representation such that 7(G p+(¢,)) is adequate (so that
in particular 7| . is absolutely irreducible). By shrinking the level U, we can
assume that 7 is automorphic of level U = Us,U 5» and coefficients O with

trivial U -action so that ([ ], s, 9(OpNU Sv is sufficiently small. Let S be
a finite set of finite places of F containing S, all places dividing N, and all
places at which U is not unramified.

Let S be the global G,,-deformation datum

S=(F/FT,S,O,F, & {D5},cs).

For each integer m > 1, let (Q,, (Wu)veQm) be as in Proposition A.3.3. For
each m and v € Qy, choose an element ¢, € Wi+ lifting the geometric
Frobenius element. Let @, € O P be the uniformizer such that Art P (wy) 18

the image of ¢, in W"ﬁlb Then for each Q,,, we define pr as in §A.4. For any
open compact subgroup K, C Us, and integer r > 0, we define

def
M. k,.r = pr(S(KpUr(Qm)>", W/@ Img, )" [, .

where (—)¥ = Hom{" (—, E/O) (with the compact open topology) denotes
the Pontrjagin dual. By Theorem A.4.1, we have a (in fact surjective) map
Rs,, — TOm (KpUl(Qm)SP, W)m,,, - Then M k,.r is an Rs, -module,
and we define

ad def Os ,_r
My k,r = Mm.k,.r ®R5Qm Rst/aS’

where ag C Og denotes the augmentation ideal of the formally smooth O-
algebra Oy defined in §A.3.2. Let O be Oy, ..., y41. Foreach m € N
choose an ordering vy, ..., v, of Oy and for each v; a generator g; of A,
which gives a surjection Ox, — O[A,, ] mapping y; to[g;]—1 € O[A,,]. Let
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Soo def Ose®0Os and let as, C So denote the augmentation ideal. Then Sy,

acts on M’E’ Kpor forall N, K, and r, and M,E’ Kpr /8so 1s naturally identified
with S(K,US?, W/ ")y,
We now patch our (dual) spaces of automorphic forms on G as in [14,

§ 2], in the language of ultrafilters following [71, § 9]. Choose a non-principal

ultrafilter 7 c 2V, Let R & [L1eny © and S C R be the multiplicative set of

idempotents e; = (€7 m)meN Where ey ,, = 1ifm € I andey,, =0ifm ¢ I.
Then the diagonal map O — R induces an isomorphism

O = lim SF'R/(@"),

r

. . .. . -1 N o~
which gives a surjection R — l(lr_nr Sz R/(@w") = O. Then we let

— : O
MOO - 1(21 o ®R 1_[ Mm,Kp,r'
KpCUs,.r meN

Through the diagonal map, S acts on M, and

Meo/as = lim  S(K,U, W/ )y (A4)

KpCUsp,r
Moreover, (y1,...,Yg, 21, ---»Z,245) 18 an Moo-regular sequence, where
(215 ..., Z285) 1s any Og-regular sequence. Since Q(OP)US!’ is sufficiently
small, lim S(KPUSI’, W/w") is a finite free O[Go(Z,)]-module.

<~—K, CUSP Nd

By (A.4), M /a is a finitely generated projective and hence finitely gener-
ated maximal Cohen-Macaulay O[[G(Z)]-module. This implies that M is
a finitely generated maximal Cohen-Macaulay S [ G (Z)) [-module. By 82,
Theorem 6.2], M is a finitely generated projective Seo[[Go(Z)) |-module.

Let Roo be R[[x1, ..., xg]l where g = g — [F : Qln(n — 1)/2. Then for
each m € N, we can and do choose surjections Ry, —* Rggm by Proposition
A.3.3. We get a surjective map

O O
R TT A%~ O [] 85
o0 Som ®R Som’
meN meN

where the first map is the product of the above surjections (composed with the
diagonal map). Through this map, M is an Ry,-module. The above S, action

on M, factors through O Qg HmeN RES as in §A.4. By formal smoothness
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of Soo, we can and do choose a lift

-7 O

Recall that we set O, def Op+QzZ, = [] O Fi Then M has an natural

veSy
G(Op)-action (evena G (F T®oQ p)-action though we will not use this), which
can be thought of as a GL,(O,) = G((Z)-action via

' def l—[ G0, = 1_[ g(OFU+) = 1_[ GLn(OFUJr).

vES) veS), veS),

Then we let
( ) def Ho cont (M ( )\/)v
Moo - mO[[Go(Zp)]] 0>

be the exact covariant functor from finite O[Go(Z,)]-modules to finitely gen-
erated Ro-modules (finitely generated even over Suo).

Proof of Lemma A.1.1 In the construction of M., above, by shrinking US» we
can assume without loss of generality that W = O and that if 7 is modular of
weight o, then it is modular of weight o and level G(O,)U Sp. We claim that
M, constructed above is a weak patching functor. Since Ry = RFI,@@RP

where R? def (®U€S\S OR )x1, ..., xgll then R? is equidimensional by

[5, Theorem 3.3.3] or [12, Theorem 1].
To see that My, (—) is nonzero, note that

Maso(In dGO(Z”)IF) /oo
Go(Z
= HomS1t, z, 1Moo/ aoo, (Ind) "'F))”
= Hom%)[r[lz;o(zp)]]( Lln S(KPUSP, O/w_r)r\r/v (Ind GO(ZP)F) )
KpCUSp
~ Homeont In dGO(Zp) I SIK.US? E/O))
= Homppg, g, (In F, lim S(KpU°, E/O)m)
KpCUS[7
= SWU,F),
£0.
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If o is a Serre weight, then the same computation shows that My, (0)/as =
S(G(O,)U5, V). By assumption, this latter space is nonzero if and only
if o € W(r). Furthermore, by Nakayama’s lemma, My, (o) is nonzero if and
only if M (0)/ax is nonzero. We conclude that M., (o) is nonzero if and
only if o € W(r).

Let A € X*(T) be a dominant weight and t a Weil-Deligne inertial L-
parameter. For an O-lattice 6°(A, ) C o (X, T), M (0°(X, T)) is isomorphic
to

cont

HomOIIGo(Zp)]] (Moo, 0°(X, _L,)\/)\/

=lim lim Homgyz, (O ®r [ [ My k, . (0°G, 0)/@))Y

r KpCUsp meN
=lim lim Homg,z, (c°(, 1)/@’,
r KpCUsp
O @r [ [ pr(S(KpU1(Qm)*, O/ Ing,) ®rs, Rss /05)
meN
=1lim O @R [ pr(SG(O)UI(Qm)*, (6°0h, 1) /") Img,,)
r meN

Us r\V
®RSQ’H RSQ}'H /aS) :

So the action of Ry, on My, (0°(A, 7)) factors through Roo (A, X 7) by
Theorem A.4.1. Moreover, M, (c°(X, 7)) is a maximal Cohen—Macaulay
Seo-module, and therefore a maximal Cohen—Macaulay R (A, < 7)-module
since dim Sy = dim Ry (A, < T) as can be seen from [49, Theorem 3.3.4].
Finally, if 0 € JH(@°(%, 7)), then the Ryo-action on My, (o), a subquo-
tient of Mso(°(X, 7)) factors through R.o (X, <X 1)/ . Since M (o) is a
maximal Cohen—Macaulay S, /@ -module, it is a maximal Cohen—Macaulay
Roo (A, < 1)/ by dimension considerations. This concludes the proof of (1).

Proposition A.2.2 applied to M,(—) above implies that 7 is modu-
lar of a weight in Wobv(7p|1Qp). Then [56, Theorem 4.3.8] implies that
Wobv (7 pl ’Qp) C W(r). This implies that M, (—) above is detectable, which
establishes (2). O

Appendix B. A numerical example
In this appendix, we work out a numerical example where the polynomial P

appearing in item (2) of Theorem 7.3.2 is made explicit. For our example, we
will choose n = 3, 7 is a singleton, A = (3, 1,0) and 2 = (23)7(2,1,1).
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We first recall the scheme U (2)94=0 — X = A! from §3.2. By Proposition
3.2.8, the universal matrix A € U(2)94=0 has the form

w—02+di(v—1)+ci ver 13
v(da1(v —t) +c21) 2 (v—1)+c23
v(dz1 (v —1t) +c31) v (v —10d33+c33

so that udet,gO@ is the quotient of Z[t, 11, d11, c12, €13, €21, d21, €22, €23,
ds1, c31, €33, d33] subject to the equation

detA = —(v—n*.

The affine scheme U (Z) NSy (1) is obtained by imposing divisibility conditions
of the minors on the universal matrix A corresponding to A (and taking the
underlying reduced subscheme).

We now turn to the universal monodromy condition (3.1) as in §3.3. In
fact, we will work with its simplified version as explained in Remark 3.3.2,
so that our a € A? always belongs to the A where the last coordinate is
0, i.e. a = (a, b,0). In addition, we will only work over the open locus
V = Spec Zla, b][ﬁ] c A? where

P(a,b)=Tbb —-1)a—1D@—-2)a—-b)a—b—-1)a—-b-2)

is invertible. This turns out to substantially simplify our considerations below,
and is enough for our purposes, as any specialization we will eventually con-
sider always occurs in V, due to the fact that the inertial types we consider
will need to be at least 2-generic.

LetU(Z, 1, V) = UR) x A2)NMx (1, V), an open affine of (the simplified
variant of) Mx (X, V).

Proposition B.0.1 (1) The schemelU (Z, 1, V) x 42V is represented by the quo-
tient of the ring Z[t, a, b, c12, c13, da1, ¢22, d31, d33][%] by the ideal
generated by

(a —2)ci13¢22 — (@ — b — 2)craendsz + ciat(a — b),
b(a — 1)(a — 2)c13d1
+@a—b—1)(a—1)a—2)c1pd31 —bla—1)(a —b —2)crdss
+t((a—b—1)(a—2)+ (a—b)a—1)b—2(a—1(a-2),
(a — 1)(a — 2)(c12da1d33 — c13da1 — c2d33 + 1)
+t(a—2)+ (a—1)(—t(a—0b)+ (a—b—2)cnds).
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(2) The irreducible components of U(Z, A, V) X xy 42 ({0} x V) are given by

(€22, c12d33 — 13, bdy1d33 + (a — b — 1)d31)

(c22, da1, c12)

(d31, c22, d21)

(c22, €13, €12)

(d33, c13, ¢12)

(d33, d31, c13)

(d31, c12da1 — 2, (@ — b — 2)c12d33 + (—a + 2)cy3)

(3) UZ, *, V)X g2V isanirreducible complete intersection, andU(Z, k., V) X p2
V - X xz V is flat.

(4) Let H be the ideal generated by the 3 x 3 minors of Jacobian matrix
of OUZ, ,, V) xp2 V) relative to Z[t, a, b][ﬁ] with respect to the
presentation (1). Then e H.

Proof Let R be the ring given by the presentation in the first item. We first
observe that the equations in the first item indeed hold in/ (Z, A, V) x 42V, and
that the monodromy condition solves the variables ¢, di1, ¢21, €23, ¢31, €33 1n
terms of ¢, c12, 13, da1, €22, d31, d33 (this uses the fact that its ring of functions
if ¢-torsion free and that P(a, b) is invertible). Thus, U(Z, A, V) x,2 V is a
closed subcheme of Spec R. Note that over X 0 this closed subscheme is all
of Spec R[%].

Next, we observe that the minimal primes of Spec R/t are given by
the list in the second item. In particular, this shows that each fiber of
Spec R — X x V has codimension 3 in the corresponding fiber of
Spec Zl[t, a, b, c12, c13, da21, ¢22, d31, d33][%] — X x V. It follows that
Spec R is a complete intersection, and that Spec R — X x V is flat [75,
Tag O0R4]. Since R[%] is a regular domain (using the corresponding fact
for UZ, &, V) X xy a2 X° x V cf Proposition 3.3.4), we conclude from the
fact that ¢ is regular in R that Spec R[%] is dense in Spec R. It follows that
UE, A, V) x,2 V = Spec R. This finishes the proof of the first three items.
The last item follows from by a computation in Macaulay 2. O

We now define U4 (Z, A, V)™ to be the spectrum of the quotient of Z[¢, a, b, W,
c12, €13, d21, €22, d31, d33] by the ideal I generated by the following polyno-
mials
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Wep + tdyy,
(a —2)b(a —b)Wcip + b(a — 2)c13dy
+(@a—2)(b+1)(a—>b—1)ciad31 — bla — b —2)crdss
—t(b(b —a) + (a —2)),
(@ —b —2)cizc2d33 — (a — 2)c13c2 — t(a — b)cia,
berpdridss
—(a—=>b)a—1DWcip—(a—2)(a—b—1cids
—bcadsz + (b — 2)t, (a — 2)cipdr1d33
+a—2)(b—a)Wcip — (a —2)ci3dy
—(a —2)(a — b — 1)cipds) — bepdsz +1(b — 2),
bala—b) —a+b—-1)Wdydsz +blaa—b—-2)+b+1)
dydsidys + (a — 1)(b— (@ —b)W? +
+(@a—b—1D(abd—-1)—b)Wds,
b(a —2)ci3dandsz — (a —2)(a — 1)(b— 1)(@a —b)Weis
—(a—2)(a—b—1)(ab—1) = b)ci3ds1 +
+b(—a + b + 2)cnd3; — th(—a + b)ds3.

We have the natural map 4 (Z, A, V)™ — U(Z, A, V) which is finite and
birational, and hence identifies the former as a partial normalization of the latter
(for the birationality, we note that the map is an isomorphism after inverting
c2, and in fact OU(E, %, V)™) is the subring OWUE, 1, V))[=22L] in the
fraction field of OU(Z, A, V)).)

Proposition B.0.2 Suppose we are given s : Spec O — X x V. C X x A?,
correspoding to (—p, a, b) € O3,

(1) The base change U(Z, A, V(a,b,0) = U@, A, V) X x, p2 s Spec O is O-flat.

(2) The base change U (Z, A, Va,p,0)"" = U@, A, V)™ Xx, p2 ¢ Spec O is
O-flat and normal.
Inparticular the base changedmap U (Z, ., Va.5.0)"™ — U(Z, A, V(a.b.0))
is the normalization map.

(3) The pullback of each irreducible component of U(Z, A, V(a.p.0))F along
U@ A, Vap0)F" — U@ A, Viap0)r decomposes into irreducible
components according to Table 1

Remark B.0.3 1t follows from the first item that U (Z, A, V(4,5.0)) is the inter-
section of M (A, V(4.p.0y) (cf Definition4.1.2) with the affine open U (z, < 1) C
M(< )) (cf (5.9)).

Proof The firstitem immediately follows from Proposition B.0.1(3), while the
last item is a direct computation in Macaulay 2.
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We now establish the second item. Let / be the image of (the base change
of) I inside F[W, c12, c13, d21, ¢22, d31, d33] under the natural mod-z reduc-
tion map. Using the fact that 7!6(b — 1)(a — 1)(a — 2)(a — b)(a — b —
(a — b —2) € F*, we verify by running Buchberger’s algorithm that /
admits the following Groebner basis with respect to the monomial order on
F[W, c12, c13, da1, c22, d31, d33] given by W > c12 > ci13 > dog > ¢ >
d31 > di3:

Weaa,
(a —1)(a —2)bcizdyr + (a —2)(a — 1)(@ — b — D)ciads;
—(a — Db(a — b — 2)cads3,
—(@a—2)a—1@—-b)Wcia—(a—2)(a—1)(a—b—1)cids,
—(a — )b(—a + b + 1)crad31da3,
(a—2)(a—1)(a—b—1cipdsidss
+(a—2)(a—1D*b—1)(a—b)Weys
+(a—2)(a—1)(a—b—1)(ab—1) = b)ci3dsy,
(@ — b —2)cipe0d33 — (a — 2)c13e2,
beiadadss — (a — D(a —b)Wern — (a — 2)(a — b — 1)c1ad31 — beaodss,
b((a —b)(a—1) —1)Wdyd3z + (a — 1)b(a — b — 1)da1d31d33
+@a—1)b—1)(a— b)W2 +(@—b—1(ab—-1)—b)Wds,
(@ —2)(a—1)(@—b— 1czcndsy,
(a—=2)(a—1)(a—>b— 1cipcands,
(a—2)(a—1%b—1)(a—b)>Wci3
+@a—-—2)a—1)Rab—-1)—-2b+ 1)(a—b —1)(a—b)Wcizd3 +
+(a—2)(a— Db — 1) = b)(—a+b+ 1)’ci3dsy,

and the leading monomial for each polynomial is the left-most term, except
when (a — b)((a — 1) — 1) vanishes the leading term of the 8th generator is
its second monomial (since its first monomial vanishes in this case).

A computation in Macaulay2 shows that the monomial scheme defined by
the ideal of leading terms of /

Spec FIW, c12, c13, dai, ¢22, d31, d33]/ lead ()
is Cohen—Macaulay. Since there is a flat Groebner degeneration from
U (Z, Ma,b,0))

V)" to this monomial scheme, we conclude that U (Z, A, V(a,5,0))5" is Cohen-
Macaulay.
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Next, we compute that the irreducible components of the special fiber of
U@, A, Via,p,0)F" are given by

(c22, (@ — D)W + (a — b — 1)d31, c12d33 — c13, bda1d33
+(a — b — Dd31, beizda + (@ — b — 1cnadsy),
(d31, €22, da1, W),
(d33, d31, c13, W),
(d33, c13, c12, W),
(d31, W, crada1 — 22, (@ — b — 2)ci2d33 + (—a + 2)cy3,
(a —2)c13dr1 + (—a + b + 2)ca0d33),
(c22.da1, 12, (a— 1) (b — D(a—b)W + (a — b — 1)(a(b — 1) — b)d3)),
(c22, c13, C12, b(a(a -b—-1+b—- 1)Wd21d33
+(a@a — b(a — b — 1)dy1d31d33
+@—1)b—1)(a—bW? +
+(a—b—1(ab—1) —b)Wds3)).

From this, we see by inspection that U (Z, A, V(4,5,0))f is generically reduced,
and since it is also S (since it is Cohen-Macaulay), we conclude it is reduced.

Nextwe show that U (Z, &, V(4,5,0)"™ is O-flat. For this, we first observe that
U(Z, A, Va,p,0)™™ is topologically flat over O. Now, if U(Z, &, V(4,p,0)™™
were not O-flat, we can find a global function g which is not divisible by @
and is @ -power torsion. Then g must be nilpotent by topological flatness, but
its reduction mod @ then produces a non-zero nilpotent global function on
U@, A, Via,p,0)F" a contradiction.

Finally, since U(Z, A, V(4,p.0)™ is O-flat with reduced special fiber,
U@, &, Via.p.0)"™ is normal [69, Proposition 8.2]. O

Corollary B.0.4 Suppose (a, b) € O? such that
b(b—1)a—1)(a—2)a—b)a—b—1)a—b—-2)ec O

and p > 7. Then:
(1) U@, M, Vap,0) is unibranch at7 € U(Z, A, Vigp.0)) (F).

(2) U(Z, A, Vap,0)) is not unibranch on a Zariski dense set of points on the
irreducible component of its special fiber given by

(c22, €13, €12).
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Proof Letw : U(Z, &, Va.p.0)™ — U(Z, A, V(a.b,0)). Then 7 is the normal-
ization map by Proposition B.0.2(2).

The first item immediately follows from the fact that 7~!(%) is set-
theoretically a singleton.

For the second item, let C be the irreducible componentof U (Z, &, V(4.5.0))F
cutout by theideal (c22, c13, c12). Then according to Table 1, at the set theoretic
level the map 7 : 7~ 1(C) — C identifies with

7 — A%
(da1,d31,d33, W) — (da1,d31, d33).

where Z C A% is cut out by

b((a —=b)(a—-1) -1 b(a—b—1)
(@a—1)(b—1)(a—->b) Wdaids; + md21d31d33
(a—b—1(ab—-1)—1b)

(a—1b—1)(a—b)

Wds; + W2.

This map is a double cover of A% by an irreducible quadric, and hence is
generically finite étale of degree 2. In particular, any point outside the branch
locus will not be (geometrically) unibranch. O

Corollary B.0.5 Letn =3, K = Qp, A = (3,1,0) and 7 = (23)t2,1,1). Let
(s, i) be a 5-generic lowest alcove presentation of a tame inertial type t. Then
both conclusions of Theorem 7.3.2 holds when p is 10-deep in Cy, i.e. with the
polynomial in loc.cit. taken to be P(X,Y, Z) = l—Lan:O ((X —Y —m)(Y —
Z—-m)(Z—X—m))

In particular, if u is 10-deep in Co, then

‘)?/)\’t(z\‘) ; 6(57A’ Var)

Proof For the conclusion of the first part of Theorem 7.3.2, we need to choose
the polynomial P(X, Y, Z) to guarantee the Elkik approximation argument
goes through. By Propositions 3.3.9 and 7.1.10 we need u to be m-deep in Co
for any m such that

m—6+3>6
since the integer » in Propositions 3.3.9 is 3 by Proposition B.0.1(4)and /1, = 3.
In other words, we need m > 10, leading to the polynomial P in the statement.

However, in view of Corollary 7.3.2, this choice of P already guarantees the
unibranch property needed for the second part of Theorem 7.3.2.
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Finally the last statement follows from the fact that 7 is not A’-admissible
for any A" < A. ]

Remark B.0.6 Corollary B.0.4 has only been stated when J is a singleton.
However, it easily generalizes to the case of general 7 by taking products: the
essential point is that in our situation taking products preserves the property
of being reduced, and hence the product version of U (z, A, V(4,,0))™™ is still
the normalization of the product version of U (Z, A, V(a,b,0))- In particular, the
generelization of Corollary B.0.5 to the case K being a general unramified
extension of @, holds.
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