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This paper presents a method for detecting the location of spalling and assessing the severity level of the 
spalling in concrete surfaces. The proposed method is constructed based on deep learning architectures and 
multi-class semantic segmentation. The proposed method can detect each pixel as a non-spalling, a deep-
spalling, or a shallow-spalling. The proposed method consists of three dierent deep learning architectures 
with several encoders as backbone networks. Both qualitative and quantitative analyses show that the deep 
learning architecture with a certain encoder network can detect spalling with dierent severity levels very well. 
Additionally, the paper proposes a method to analyze the deep spalling areas of concrete to show their severity 
levels. The performance analysis shows that this approach provides very convincing results with respect to the 
actual aected spalling areas. The results convey that this paper achieved a higher level of performance for 
detecting spalling and assessing the severity of the spalling.

1. Introduction

Concrete distress, such as spalling, poses life-threatening risks, ne-
cessitating regular maintenance to prevent hazardous incidents [1][2]. 
Spalling, a concrete abnormality caused by heavy loads and surface ero-
sion, compromises structural integrity in bridges and buildings. It is 
required to conduct regular inspections to ensure structural integrity 
[3–5]. To address this issue, autonomous detection systems are now 

mandatory.
To manage spalling eectively, precise measurements and catego-

rization are essential. Depending on spalling conditions, post-inspection 

actions vary. Priority is given to large or deep spalling, while smaller or 
shallower instances may follow. Detecting spalling alone is insucient; 
assessing severity (based on size [6] or depth) is crucial to prioritize 
repairs. Spalling severity ranges from deep (high risk) to shallow or 
non-existent. Deep spalling signicantly impacts structural health.

Therefore, this paper introduces spalling detection and categoriza-
tion: deep, shallow, and non-spalling. We also propose a method for 
ranking the severity among deep spalling areas. The severity levels of 
spalling are shown in Fig. 1.
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The rest of the paper is organized as follows: Section 1 also presents 
the related works and our contribution. Section 2 outlines the research 

methodology and our proposed work. Section 3 analyzes the results. 
Finally, the conclusion and future work of this paper are given in sec-
tion 4.

1.1. Literature review

In recent years, there has been an increasing interest in spalling de-
tection techniques for various infrastructure applications such as metro 
tunnels, subway networks, bridges, and railway surfaces. These meth-
ods often utilize machine vision, laser scanning, deep learning, and 

infrared thermography to detect and evaluate spalling.
One approach proposed for detecting spalling in subway networks 

is based on image processing [7]. The color image of the spalled area 
is processed to remove noise and extract surface features. A 3D visual-
ization is created from the extracted features, and spalling severity and 

depth are detected using a projection of the spalling intensity curve and 

regression analysis.
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Fig. 1. Dierent level of spalling (a) non-spalling, (b) Deep Spalling, (c) Shallow Spalling.

Another approach suggested for metro tunnels utilizes surface 
roughness analysis based on a 3D mobile laser scanning system [8]. 
Point cloud data obtained from the scanning system is used to analyze 
the surface roughness, which is then used to detect concrete spalling.

A machine learning and vision-based approach has been developed 

for subways to detect and quantify spalling [9]. This approach involves 
extracting important features from images, removing noise, and detect-
ing surface distresses in subways.

To detect concrete spalling automatically in multiple spots (within 

a single structural element or in multiple structural elements), a deep 

learning-based method has been developed [10]. In this work, an inex-
pensive depth camera is integrated with a faster region-based convolu-
tional neural network (Faster R-CNN) to automatically detect, localize, 
and quantify the spalling damage.

Another deep learning-based real-time multi-drone approach has 
been proposed to detect surface defects in high-rise civil structures [11]. 
To detect ve types of concrete surface defect images of two classes 
(crack and spalling): vertical crack, horizontal crack, diagonal crack, 
branch crack, and spalling, the authors have used the deep learning 
model YOLO-v3 (You Look Only Once-version3) and the edge comput-
ing principle.

A morphological attention ensemble learning method for surface de-
fect detection at the bounding box level is proposed to detect three 
types of defects (crack, eorescence, and spalling) [12,13]. The au-
thors propose a specialized loss for each defect to demonstrate improved 

defect-recognition accuracy. Moreover, the deformable convolutional 
network (DCN) [14] and multi-task ensemble learning techniques have 
been exploited to adaptively extract defect features according to the 
feature shapes and to apply the loss of each defect, respectively.

Another approach based on Faster RCNN is proposed to detect 
four dierent damage types: surface cracks, spalling (including façade 
spalling and concrete spalling), and severe damage with exposed rebars 
and severely buckled rebars [15]. Since the purpose of their study is to 
present a timely assessment of defects and damages that occurred due 
to an earthquake to buildings, the authors manually evaluated the ap-
proach using annotated image data collected from damaged concrete 
buildings during several past earthquakes.

For rail surface spalling detection, a real-time visual inspection sys-
tem has been proposed that utilizes image acquisition and image pro-
cessing sub-systems [16]. Images captured by a camera are segmented, 
and spalling on the rail surface is detected using histogram curve infor-
mation in the longitudinal direction of the track image.

An optical detection algorithm based on visual salience has been 

proposed for rail surface spalling detection [17]. This algorithm uses a 
threshold value to detect the dierence between spalled and non-spalled 

areas after removing unnecessary noises from the neighborhood area of 
spalling.

A novel automated 3D spalling defects inspection system for railway 
tunnel linings has been proposed that uses laser intensity and depth 

information for accurate spalling detection [18]. A spalling intensity 

depurator network is also proposed for automatic feature extraction, 
and the system produces 3D inspection results with quantitative analy-
sis of the spalled area.

Deep learning approaches have also been developed for automatic 
detection of cracks and spalling in buildings and bridges [19]. These ap-
proaches utilize Mask R-CNNs for continuous segmentation of damaged 

areas in bridges and buildings, and the deep CNN architectures can be 
extended for surface damage detection and evaluation.

To automatically detect concrete spalling, image texture and piece-
wise linear stochastic gradient descent logistic regression are used for 
pattern recognition [20]. Image textures are extracted from images, and 

statistical properties are used to categorize the condition of the concrete 
surface into non-spalled and spalled classes.

A terrestrial laser scanner was utilized in this study to simultane-
ously localize and quantify spalling defects on concrete surfaces, as 
reported by Kim et al. in 2015 [21]. The proposed method combines 
features with complementary properties to enhance the localization and 

quantication of spalling defects. To extract relevant information, such 

as the condition and size of the damaged portion of the concrete surface, 
a defect classier was developed. The concrete structure was scanned 

using a terrestrial laser scanner, and a region of interest was selected 

for analysis. The scanner captured 3D coordinate information of the 
scanned points within the selected region. Once the raw scanned data 
was ready, the proposed method initiated the defect detection process.

Spalling in concrete structures can happen during re conditions, as 
reported by Kodur et al. in 2021 [22]. The proposed approach consid-
ers factors like pore pressure, thermal gradients, and structural loading 
as contributors to spalling. Comparing the approach’s predictions to ex-
perimental data from full-scale re resistance tests on concrete beams 
of dierent strengths, the analysis reveals that pore pressure-induced 

stresses are the primary cause of spalling. However, thermal and me-
chanical stress levels also play a role in spalling. The extent of spalling 
signicantly aects the re resistance of concrete beams in severe re 
scenarios.

The method proposed by Naser et al. in 2019 [23] is based on Ma-
chine Cognition (MC) to obtain expression in order to detect defects in 

concrete structures due to re conditions. These expressions consider 
the geometric attributes, material composition, and distinct character-
istics of reinforced concrete (RC) columns. Their purpose is to predict 
the occurrence and intensity of re-induced spalling and assess the re 
resistance of these structural components.

Another approach to identifying essential factors that inuence the 
occurrence of re-induced spalling in RC columns oers an exploration 

of how data science and machine learning techniques can be employed 

[24]. Nine distinct algorithms (naive Bayes, generalized linear model, 
logistic regression, fast large margin, deep learning, decision tree, ran-
dom forest, gradient boosted trees, and support vector machine) have 
been used for this study to examine data collected from 185 re ex-
periments. These algorithms were similarly employed to pinpoint the 
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essential attributes inuencing the likelihood of re-induced spalling in 

RC columns and to create tools for immediate spalling prediction.
The study focused on investigating the eects of dierent types and 

sizes of specimens on concrete spalling when exposed to a hydrocarbon 

re, as reported by Mohd et al. in 2018 [25]. Four dierent types of 
specimen sizes, including cylinders, columns, and panels, were analyzed 

to isolate the variables that aect concrete spalling. Additionally, three 
aggregate sizes were used in the concrete mixes to determine the impact 
of aggregate size on concrete spalling. The investigation also included 

analyzing the eect of aggregate type on concrete spalling.
Concrete spalling detection can be achieved using active infrared 

thermography, as reported by Tanaka et al. in 2006 [26]. Various 
irradiation devices, such as halogen lamps, xenon arc lamps, and far-
infrared irradiation devices, can be used to heat the concrete surface 
and create a temperature gradient for detecting spalling. Active infrared 

thermography was chosen in this study due to its ability to provide mea-
surements independent of meteorological conditions. Photogrammetry, 
laser scanning, and Light Detection and Ranging (LiDAR) are technolo-
gies commonly used for surface damage detection, including spalling, 
as reported by Zhang et al. in 2022 [27]. In the proposed method, point 
cloud data from the laser scanner was utilized to detect spalling and 

quantify its key properties in reinforced concrete columns. The rst 
phase of the method involved removing noise points and calibrating 
the coordinate system of the captured point cloud data, which was then 

sliced into thin layers for analysis of the damaged areas. The second 

phase included detecting points corresponding to distressed and non-
distressed areas. Finally, linear interpolation was used to calculate the 
spalling area and lost concrete volume.

A computer application has been developed to automatically evalu-
ate spalling and detect spalling severity in concrete bridges [28]. The 
proposed approach utilizes a single-objective particle swarm optimiza-
tion model based on the Tsallis entropy function to detect spalling. In 

the second phase, the severity of spalling is evaluated by generating a 
comprehensive analysis of the bridge deck image using the Daubechies 
discrete wavelet transform feature description algorithm. A hybrid arti-
cial neural network-particle swarm optimization model is used in the 
second phase to accurately predict the spalling area and overcome the 
limitations of the gradient descent algorithm.

The timely and accurate detection of spalling and its severity is crit-
ical, and computer vision plays a vital role in this context by extracting 
numerical information from various sources such as depth images, digi-
tal images, videos, and 3D point clouds, processing the data, and taking 
appropriate actions [29]. A computer vision-based approach for classi-
fying concrete spalling severity has been developed [30]. This method 

utilizes concrete images and categorizes the severity levels as shallow 

spall or deep spall. Features of the concrete surface, including statisti-
cal measurements of color channels, gray-level run length, and center-
symmetric local binary pattern, are used to optimize the support vector 
machine classier using the jellysh search metaheuristic to divide the 
data into shallow spalling and deep spalling based on a decision bound-
ary.

An entropy-based automated method has been proposed, which con-
sists of three signicant parts and utilizes computer vision technologies 
for spalling detection [31]. The spalling detection phase employs a 
segmentation model that integrates a multi-objective invasive weed 

optimization and information theory-based formalism of images. The 
feature extraction phase combines singular value decomposition and 

discrete wavelet transform to obtain ecient image information. The 
third phase involves developing a rating system for spalling severity 
based on its area and depth.

The study introduces a method for identifying spalling damage us-
ing point cloud data and incorporating the damaged elements into a 
Building Information Model (BIM) by enhancing the as-built Industry 
Foundation Classes (IFC) model with semantic information [32]. The 
authors present a methodology for creating the as-built BIM, recon-

structing the geometric properties of identied damage point clusters, 
and enhancing the associated IFC model with semantic information.

A deep neural network called MaDnet (material-and-damage-
network), which is designed to perform dual tasks, it can identify both 

the material type (concrete, steel, asphalt) and distinguish between 

ne (cracks, exposed rebar) and coarse (spalling, corrosion) structural 
damage simultaneously [33]. The authors utilize semantic segmenta-
tion, which involves assigning material and damage labels to individual 
pixels in the image. The connection between material and damage is in-
tegrated by training shared lters using a multi-objective optimization 

approach.
Computer vision approaches oer solutions for detecting spalling 

severity on concrete surfaces [34]. The proposed work utilizes Extreme 
Gradient Boosting Machine and Deep Convolutional Neural Network 
(DCNN) to classify image data into shallow spall and deep spall. Feature 
extraction methods such as local binary pattern, center symmetric lo-
cal binary pattern, local ternary pattern, and attractive repulsive center 
symmetric local binary pattern are used to extract properties of spalling 
from the concrete surface image. The prediction performance of the 
Extreme Gradient Boosting Machine is enhanced using the Aquila opti-
mizer metaheuristic.

In summary, various approaches have been proposed for detect-
ing spalling, or surface damage, in subway networks, metro tunnels, 
rail surfaces, buildings, and bridges. These approaches utilize image 
processing, laser scanning, machine learning, and other techniques for 
extracting features, removing noise, and detecting spalling severity and 

depth. Deep learning approaches, such as Mask R-CNNs, have been 

used for continuous segmentation of damaged areas in bridges and 

buildings. Terrestrial laser scanners have been utilized for localization 

and quantication of spalling defects on concrete surfaces. Active in-
frared thermography has been used for concrete spalling detection, and 

photogrammetry, laser scanning, and LiDAR have been used for sur-
face damage detection. Computer applications and optimization models 
have also been developed for automated evaluation of spalling severity. 
These approaches aim to provide accurate and ecient detection of 
spalling in various structures, aiding in maintenance and repair eorts. 
However, there is a limited number of methods that focus on identify-
ing and categorizing the severity of concrete spalling. We have provided 

a contrasting analysis between our proposed work and previous works 
in Table 1.

1.2. Contributions

Ensuring the structural health of concrete is crucial for maintaining 
the wellness of civil infrastructure. Therefore, detecting spalling and 

classifying its severity level has a signicant impact on achieving this 
goal. Although there are several methods for detecting spalling, there 
are few approaches for classifying its severity level. This is important 
because it helps prioritize spalling maintenance, especially in critical 
areas.

Previous approaches for spalling detection have some limitations, 
such as that “non-spalling” areas were not categorized as a level of 
severity. To properly identify distressed surfaces and non-aected areas, 
these “non-spalling” areas should be included in the severity level. Ad-
ditionally, spalling classes should be discretely segmented with proper 
visual mapping based on severity level. Thus, the classication of sever-
ity can be measured by how deep or shallow the spalling is, or whether 
there is no spalling at all. As a result of the benets of image segmenta-
tion techniques in various elds, we considered this problem to be one 
of semantic segmentation.

To overcome these limitations, we propose a method for detect-
ing and classifying spalling severity levels using deep architecture and 

encoder-decoder networks. Our approach uses pixel-by-pixel multiclass 
semantic segmentation to categorize spalling as non-spalling, shallow, 
or deep. We conducted a comparative analysis to determine the best 
combination of deep architecture and encoder-decoder networks. Ac-
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Table 1
Comparison of spalling detection systems. Symbol: ✓Addressed, □ Not Addressed.

Spalling Detection Surface Spalling Spalling Severity Level Non-spalling

Dawood et al. [7]

Dawood et al. [9] Subway network ✓ □ □

Wu et al. [8] Metro tunnel ✓ □ □

Beckman et al. [10]

Hong et al. [12]

Ghosh et al. [15]

Kim et al. [21]

Tanaka et al. [26]

Zhang et al. [27] Concrete surface ✓ □ □

Kumar et al. [11]

Bai et al. [19]

Abdelkader et al. [28]

Isailovic et al. [32] High-rise civil structure ✓ □ □

Zhou et al. [18]

Pham et al. [16] Rail Surface ✓ □ □

Hu et al. [17] Rail Surface ✓ □ ✓

Hoang et al. [20] Concrete Surface ✓ □ ✓

Kodur et al. [22]

Naser et al. [23]

Naser et al. [24]

Mohd et al. [24] Concrete surface under re condition ✓ □ □

Hoang et al. [30]

Nguyen et al. [34] Concrete Surface ✓ Two severity levels □

Abdelkader et al. [31] Concrete Surface ✓ A rating system □

Hoskere et al. [33] Concrete, steel, asphalt ✓ □ □

Our proposed approach Concrete surface ✓ Three severity levels, an additional ranking system ✓

cording to the severity level, deep spallings are more crucial since they 
aect the concrete surfaces more alarmingly. They are crucial and need 

further analysis. The aected area of a deep spalling may vary accord-
ing to dierent sizes. We also proposed a pixel-wise severity ranking 
method to calculate the ranking of severity for deep spalling areas.

Our proposed approach is designed to identify distressed sur-
faces and non-aected areas accurately and to classify the severity 
of spalling more precisely. It oers several contributions, including 
a deep architecture-based method with dierent backbone networks, 
multi-class segmentation using pixel-by-pixel categorization, a pixel-
wise severity ranking method, and qualitative and quantitative analysis 
to obtain the best results.

Overall, our proposed method provides an eective solution for de-
tecting and classifying spalling severity levels. This will help engineers 
and maintenance personnel to prioritize and plan spalling maintenance 
activities more eciently, resulting in improved infrastructure wellness 
and durability.

2. Research methodology

In this section, we have presented a comprehensive analysis of the 
dierent aspects of our proposed method for detecting spalling and 

severity levels. The approach for detecting spalling and spalling sever-
ity levels is based on Deep encoder-decoder networks. In recent years, 
several encoder-decoder-based deep convolutional networks have been 

proposed; SegNet [35], UNet [36], PSPNet [37], FCN [38], DeepLab 

[39], DeepCrack [40]. We have selected SegNet, PSPNet, and UNet for 
our proposed architecture. Our proposed approach delineated the use 
of SegNet, PSPNet, and UNet along with variations in the backbone net-
works to predict the best deep architecture-backbone network pair. A 

comparative analysis of the performance achieved from the three deep 

architectures in terms of dierent performance metrics has been dis-
cussed in the results and discussion section. We have employed dierent 

encoder modules leveraged within the context of the dierent deep ar-
chitectures including ResNet-50 [41][42], VGG-19 [43], Xception [44], 
and MobileNet [45].

We have discussed several concepts related to our proposed ap-
proach. First, several deep encoder-decoder-based architectures will be 
discussed. The preparation of datasets and the data augmentation pro-
cess will be included in this section. Along with these discussions, our 
proposed methodology for detecting spalling and severity levels using 
deep encoder-decoder networks will be outlined.

2.1. Deep encoder-decoder architecture

SegNet: The SegNet is an encoder-decoder network based architec-
ture [35]. SegNet architecture-based image segmentation process has 
been used to extract abnormal skin lesions from dermoscopy image 
[46], for gland segmentation from colon cancer histology images [47], 
to detect dark spots in oil spill areas [48], for automated brain tumor 
segmentation on multi-modal MR image [49], to detect pixel level crack 
detection [50], and for the inspection and evaluation of bridge decks 
[51].

This architecture was proposed for pixel-wise semantic segmenta-
tion. The architecture for SegNet with encoder-decoder block is shown 

in Fig. 2. The encoder block of SegNet architecture contains 13 con-
volutional layers for feature maps which leads to object classication. 
The dense convolutions, ReLU non-linearity, and a non-overlapping 
max-pooling are performed by encoder block [52]. The max pooling 
is performed with a (2 × 2) window. The SegNet architecture avoids 
the fully connected layers to gain higher-resolution feature maps at 
the deepest encoder output. The down-sampling is the nal step of the 
encoder. In the decoder block up-sampling and convolutions are per-
formed [35]. The decoder conducts the up-sampling and calls the max 
pooling indices of the corresponding encoder layer. There is a K-class 
softmax classier at the end to predict the class for each pixel.
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Fig. 2. Overview of SegNet Architecture [35].

Fig. 3. Overview of UNet Architecture [36][58].

UNet: Several works used the UNet architecture for image segmen-
tation; brain tumor image segmentation using UNet [53] and UNet-
VGG16 [54], COVID-19 lung CT image segmentation [55], crack de-
tection model [56], and dental panoramic image segmentation [57].

UNet is an encoder-decoder-based architecture consisting of four 
encoder and four decoder blocks. Fig. 3 shows the overview of UNet 
architecture. The encoder block contains two 3 × 3 convolutions [36].

A ReLU activation function comes after each convolution. The en-
coder component of the UNet architecture functions as an image feature 
extractor and gathers the image’s features. Each encoder block’s num-
ber of feature channels is doubled and its spatial dimensions are cut in 

half by the encoder network. A link connects the encoder blocks and 

decoder blocks together. The resulting output of the encoder blocks’ 
ReLU activation function connects to the matching decoder blocks. Two 
(3 × 3) convolutions are used in the connection between the encoder 
and decoder blocks, and each convolution is followed by a ReLU activa-
tion function. By providing supplementary information, this connection 

enables the decoder to build stronger semantic features. The decoder 
network has half the number of feature channels and doubles the spatial 
dimensions. A (2 × 2) transpose convolution is present in the decoder’s 
initial stage. Using a concatenation process of convolution and connec-
tion, the feature maps are transferred through the connection between 

the encoder and decoder. A segmentation mask is created in the decoder 
section. A (1 × 1) convolution with sigmoid activation is applied to the 
output generated by the nal decoder. Using an activation function, the 
segmentation mask is transformed into pixel-wise categorization.

PSPNet: The architectural overview of PSPNet is shown in Fig. 4. 
PSPNet is one of the most well-recognized image segmentation models. 
PSPNet-based semantic segmentation process used in image semantic 
segmentation [59], pavement distress detection [60] and crack detec-
tion [61][62], arms and hands segmentation for egocentric perspective 
using image segmentation [63], and image segmentation for coronary 
angiography [64].

This architecture has two blocks like most semantic segmentation 

models: PSPNet encoder and PSPNet decoder. The PSPNet encoder 
consists of the CNN backbone with dilated convolutions [65] and the 
pyramid pooling module. Dilated convolution layers are used in place 
of the typical convolutional layers in the backbone’s last layers, which 

helps to increase the receptive eld. The last two blocks of the back-
bone contain these dilated convolution layers. As a result, the feature 
that is added at the end of the backbone has more features. During con-
volution, the value of dilation indicates the sparsity. In comparison to 
standard convolution, dilated convolution has a broader receptive eld. 
The size of the used context information is found from the size of the 
receptive eld. The pyramid pooling module is the primary component 
of this model since it enables the model to recognize the global con-
text in the image and classify the pixels according to that context. The 
backbone’s feature map is pooled at dierent sizes, passed through a 
convolution layer, and then upsampled to bring the pooled features up 

to the size of the original feature map. The original feature map and 

the upsampled maps are nally concatenated before being sent to the 
decoder. This method aggregates the overall context by fusing the in-
formation at dierent scales. The decoder will then take those features 
and turn them into predictions by feeding them into its layers once the 
encoder has extracted the image’s features. The decoder is another net-
work that processes inputted characteristics to provide predictions.

2.2. Backbone network

Several CNN’s (convolutional neural network) backbone networks 
have made signicant advancements with the highest quality perfor-
mances over the past few years. These network architectures may ef-
fectively extract an image’s feature mapping, providing a strong base 
network for semantic segmentation [66]. We have used ResNet-50, 
VGG-19, MobileNet, and Xception as feature extractors in our deep ar-
chitectures.
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Fig. 4. Overview of PSPNet Architecture [37].

ResNet-50, VGG-19, and Xception are CNN with 50 layers, 19 layers 
and 71 layers deep, respectively [42][43][44]. MobileNet is one kind 

of CNN designed for mobile and embedded vision applications [45]. 
MobileNet, VGG-19, Xception have been used in the eld of medical 
imaging, eye’s region classication, namely apple leaf diseases iden-
tication, skin lesion classication, and diagnosis of pneumonia from 

chest X-Ray images [67][68][69][70]. In the area of image recognition 

or image classication, VGG-19, ResNet-50, and Xception are used to 
classify images and malware data, to recognize the facial expression, 
and to detect and localize rebar for bridge deck inspection and evalua-
tion [71][72][73][74][75].

2.3. Preparation of dataset

Large volumes of data are required to train, validate, and test the 
models in deep network architectures [76]. As a result, managing a 
well-balanced dataset is a crucial step. For our proposed method, we 
have collected images of dierent buildings and bridges. For bridge data 
collection, we mainly used our developed robots integrated with non-
destructive evaluation sensors and cameras to collect the bridge deck 
surface images [77–81]. We collected images at dierent times of the 
day to maintain the non-uniformity of the environment. We have em-
ployed a data augmentation procedure for our proposed architecture to 
help with the data management issue. We assigned the labels of non-
spalling, deep spalling, and shallow spalling, along with the labels of 
severity, to each image in our collection. As a result, during the train-
ing process, pixel mapping is automatically generated from the labeling 
of the image.

The non-spalling area and the severity levels of spalling are anno-
tated with RGB combinations because the labeling of images follows 
the RGB range. The process of annotating images is an arduous and 

time-consuming task [82]. We have annotated each image according to 
the spalling area; Deep spalling area, shallow spalling area, and non-
spalling area. The example of the annotation process of an image is 
shown in Fig. 5.

We have prepared a collection of images for each original image 
and respective annotated image using the data augmentation procedure. 
The augmentation procedure chooses a random picture for each image 
as well as a random pixel point for the tagged image. A selected image 
and pixel map of the relevant original image is made in accordance 
with that. The augmentation method generates a number of sub-images 
at random from the pixel locations by ipping or rotating the pixel map. 
The augmentation process of a sample image is shown in Fig. 6.

2.4. Proposed architecture

We have proposed the method using three dierent types of deep ar-
chitectures with dierent backbone networks for detecting the spalling 

Fig. 5. Data Annotation (a) Image of shallow spalling, (b) Annotation of shallow 

spalling.

and level of severity. The Encoder-Decoders model used in deep 

learning-based image segmentation technology is trained from start to 
end [83]. A pre-trained CNNs model, such as the ResNet pre-trained 

model, MobileNet pre-trained model, or VGG pre-trained model, is 
the encoder. We have implemented this deep architecture with PSP-
Net (Fig. 4), UNet (Fig. 3), and SegNet (Fig. 2).

For the encoder part, we have employed ResNet-50, VGG-19, Xcep-
tion, and MobileNet. The encoder block has convolution and pooling 
layers. A set of down-sampled feature maps are produced by each part 
of the encoder using an input picture or feature map. The pooling lay-
ers help the encoder to form integrated feature points after the feature 
is extracted from the convolution layers.

The decoder is essentially a mirrored encoder. The dierence be-
tween the decoder block and encoder block is the up-sampling layer 
instead of the pooling layers. It gradually upsamples the encoder’s out-
put and semantically projects into high-resolution pixel space from the 
low-resolution identiable feature maps.

The advantage of employing deep learning-based image segmenta-
tion architecture is, the segmentation model dierentiate each pixel at 
the pixel level as well as projects the features with the dierent category 
at various stages into the pixel space learned by the encoder to fully seg-
ment the target region [83]. Moreover, using the concatenation process 
the decoder connects to the corresponding encoder and helps to reduce 
the loss that happened during the down-sampling process. Therefore, 
due to the advantage and performance of deep learning-based image 
segmentation architecture in several elds [84][85][86], we have pro-
posed the use of deep architectures with encoder-decoder networks to 
detect spalling and severity level. We have considered the spalling and 

severity detection process as multi-class image segmentation. There-
fore, as the output or semantic segmentation of the given data from the 
encoder-decoder network, we get the segmented area of spalling; non-
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Fig. 6. Data Augmentation Process.

Fig. 7. Overview of the proposed methodology.

spalling, deep spalling, or shallow spalling. Fig. 7 shows the overview 

of the proposed methodology to detect the spalling severity levels.
For the deep architecture-based proposed method, we have anno-

tated the images of deep spalling based on the exposed reinforcing steel 
bars. The annotated images are used to detect the spalling severity level. 
These deep spalling areas based on the reinforcing steel bars can be 
large, very large, or small. Along with the depth, the ratio of the af-
fected deep spall areas helps provide more insight into the severity. For 
that reason, we have proposed a method to calculate the ranking of 
severity for the deep spalling area. This proposed method determines 
the aected deep spalling area using pixel-wise calculation. Afterwards, 
the ranking of deep spalling areas is determined according to the ra-
tio of the aected area (number of aected pixels) with respect to the 
overall area (number of total pixels). We have determined the ratio us-
ing Equation (1), where _ provides the number of total pixels of 
deep spalling area, and  _ counts the total number of pixels for 
the entire image. The ranking of deep spalling areas is categorized as 
“very severe,” “medium severe,” and “less severe” based on the value 
of the ratio using a predened threshold.

 =
_

 _
(1)

Hence, we rst detected spalling and its severity. Moreover, we 
discussed the comparative analysis of the performances achieved by 
the deep architectures. Using pixel-wise calculation, we determined the 
severity ranking for deep spalling areas. We have provided a compara-
tive analysis of severity ranking for three selected image categories in 

the Result and Discussion section.

3. Result and discussion

In this section, we are going to present the performance analy-
sis of the proposed deep architecture with dierent encoder-decoder 
networks. The results and experimental analysis part includes dataset 
preparations, experimental setup, and qualitative and quantitative anal-
ysis of proposed architectures.

3.1. Experimental setup

The dataset contains images of spalling in buildings and bridges. 
These images have dierent types of noises, namely, oil spills, faded 

colors, and stones. It is dicult to detect any abnormality in the cru-
cial corners of bridges, for example, the intersection of pillars, due to 
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Fig. 8. Categorical cross-entropy (CCE) loss curves for training and validation (a) PSPNet, (b) PSPNet with ResNet-50, (c) PSPNet with Xception, (d) PSPNet with 
MobileNet, (e) PSPNet with VGG-19.

the dierence in light. The images were taken at dierent times of the 
day to avoid any impact of light and shadow on the result of spalling 
detection.

We have used GIMP (GNU Image Manipulation Program) to anno-
tate our images in the pixel-by-pixel map. GIMP is one of the most 
popular illustration and image editing programs available [87]. We 
have annotated each image according to the spall class. The reason be-
hind the image size (256 × 256) is to focus on the specic spall class 
with any noises or light dierences. Our dataset contains dierent cat-
egories of images: only deep spalling, deep spalling with non-spalling 
area, only shallow spalling, shallow spalling with non-spalling area, and 

non-spalling. The spalling area is categorized as deep spalling when 

the reinforcing steel bars are exposed. The shallow spalling areas are 
the ones whose condition lies between deep spalling and non-spalling. 
Moreover, the spalling without exposed steel bars was considered shal-
low spalling in this paper.

The method was trained and tested on a system with a GTX 1080 

GPU. The size of the image was (256 × 256). For the multi-class classi-
cation problem, we used categorical cross-entropy (CCE) loss, which is 
also known as Softmax loss. The Adam optimizer was used to optimize 
the architecture with a learning rate of 0.001.

We have used an augmentation process (described in Fig. 6) during 
the training and validation phases. The use of the augmentation process 
during the training and validation phases has the advantage of avoid-
ing overtting problems [82]. The dataset contains 10000 images for 
training and another 2000 images for validation. The CCE loss curve 

of the training and validation for PSPNet, SegNet, and UNet are shown 

in Fig. 8, 9, and 10, respectively. We recorded the loss for all the deep 

encoder-decoder combinations. In the loss curve, the training loss and 

validation loss show how the model ts the training data and the new 

data, respectively. The loss is measured by the error between its pre-
dicted output and the true output. Our goal is to get the loss value as 
close as 0. During the starting phase, Fig. 8, 9, and 10 show gaps be-
tween the training and validation curves. The use of the augmentation 

process during the training and validation phases helped to reduce the 
gaps gradually. Since the gaps were reducing and both of the loss curves 
were getting close to 0, the model was tting well. The training and val-
idation curves started converging approximately after 90 epochs which 

indicates a desirable characteristic. We maintained 100 epochs for all 
the architectures to avoid overtting.

The testing phase was conducted on 300 images. First, we tested 

the proposed approach with 100 images to determine the dierence in 

performance achieved based on the number of test images. The dier-
ence in performance for these two datasets is negligible (approximately 
0.01% for all metrics), which justies a consistent performance. Hence, 
we have presented the performance analysis only for the dataset with 

300 images. The proposed approach trained for 100 epochs. Therefore, 
on each epoch, it was trained on a dierent dataset because of the aug-
mentation process.

Because spalling is detected based on its severity levels, we have 
presented non-statistical qualitative analysis as well as quantitative 
analysis with statistical measurements. In the quantitative analysis sub-
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Fig. 9. CCE loss curves for training and validation (a) SegNet, (b) SegNet with ResNet-50, (c) SegNet with Xception, (d) SegNet with MobileNet, (e) SegNet with 
VGG-19.

section, we evaluated the performance of three deep architectures with 

dierent encoder-decoder networks using dierent metrics. The quali-
tative analysis subsection describes the performance comparison based 

on the results of spalling detection and severity level.

3.2. Quantitative analysis

This section presents a performance-based statistical analysis and 

deep learning-based image segmentation architectures with dierent 
encoder-decoder networks. The overall performance for spalling detec-
tion with severity level is shown in Table 2.

 =
 + 

 +  +  + 
(2)

  =


 + 
(3)

 =


 + 
(4)

 =


 +  + 
(5)

We have used Dice loss, mIoU, Precision, Recall, and Accuracy met-
rics for the performance analysis. The dice loss referred to the loss level 
for the combination architecture with dierent encoder-decoder net-
works. We have performed the calculation on Equation (2), (3), and (4)
to nd out the Accuracy, Precision, and Recall respectively. From Equa-
tion (5), we get the calculation for IoU for each class which helps to 
calculate the mean value of IoU for all classes.

Table 3 describes the quantitative measures used for evaluating the 
performance of deep network architectures. The lower Dice Loss val-
ues are more appropriate since they reect the degree of loss incurred 

by the dierent combinations of network frameworks employed in the 
proposed system for spalling and severity detection. The higher val-
ues for all other performance measures reect the proposed spalling 
and severity detection system’s improved performance. The suggested 

system performs well for spalling and severity detection as the mIoU, 
precision, recall, and accuracy values increase.

The statistical performance for PSPNet is shown in Table 2; the result 
for PSPNet architecture with encoders namely, Xception, ResNet-50, 
MobileNet, and VGG-19, respectively. According to the metrics dis-
cussed above, PSPNet architecture with Xception gives the best result 
among all the combinations (e.g., Dice Loss: 5.94%, mIoU: 88.78%, 
Precision: 94.67%, Recall: 98.43%, Accuracy: 96.06%). The result 
for ResNet-50 is pretty close to Xception. PSPNet with default encoder-
decoder network gives comparatively poor results than with the other 
encoder-decoder networks (e.g., Dice Loss: 8.33%, mIoU: 84.62%, 
Precision: 92.53%, Recall: 90.82%, Accuracy: 92.40%). The perfor-
mance of VGG-19 with the PSPNet architecture shows that it closely 
follows the performance of PSPNet with the default encoder-decoder 
network (e.g., Dice Loss: 7.82%, mIoU: 85.49%, Precision: 94.44%, 
Recall: 92.95%, Accuracy: 92.97%). For PSPNet, the decreasing CNN 

layers (during employing Xception, ResNet-50, MobileNet, VGG-19) 
have a negative impact on the performance for spalling and severity 
level detection.
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Fig. 10. CCE loss curves for training and validation (a) UNet, (b) UNet with ResNet-50, (c) UNet with Xception, (d) UNet with MobileNet, (e) UNet with VGG-19.

Table 2
Performance comparison among Deep architectures with dierent backbone networks.

Base Model Encoder Dice Loss (%) mIoU (%) Precision (%) Recall (%) Accuracy (%)

SegNet - 9.58 82.49 93.99 95.37 92.40

” Xception 6.80 87.97 90.86 98.43 95.19

” ResNet-50 6.96 86.97 93.77 96.39 94.57

” MobileNet 8.49 84.35 95.36 95.79 94.23

” VGG-19 16.30 71.96 93.83 92.34 92.0

UNet - 11.78 78.90 92.73 91.42 89.65

” Xception 7.28 86.43 92.75 97.23 93.79

” ResNet-50 11.58 79.24 90.68 92.89 92.04

” MobileNet 7.36 86.29 93.91 96.13 93.52

” VGG-19 18.16 69.26 89.49 86.53 88.59

PSPNet - 8.33 84.62 92.53 90.82 92.40

” Xception 5.94 88.78 94.67 98.43 96.06

” ResNet-50 6.90 87.16 92.08 97.20 95.58

” MobileNet 7.44 86.13 91.19 93.46 93.58

” VGG-19 7.82 85.49 94.44 92.95 92.97

In Table 2 the results are shown for UNet framework with dier-
ent encoder-decoder networks with metrics Dice loss, mIoU, Precision, 
Recall, and Accuracy. The results are provided for UNet architecture 
with encoders namely, Xception, ResNet-50, MobileNet, and VGG-19. 
Similarly to the performance of PSPNet, UNet architecture provides the 
best result with Xception among all UNet architecture combinations 
(e.g., Dice Loss: 7.28%, mIoU: 86.43%, Precision: 92.75%, Recall: 

97.23%, Accuracy: 93.79%). The comparative analysis shows that 
MobileNet follows the performance of Xception quite closely. Unlike 
PSPNet, ResNet-50 provides a pretty low performance than Xception 

and MobileNet. The performance of VGG-19 encoder is comparatively 
poor than the other encoder-decoder networks for UNet architecture 
(e.g., Dice Loss: 18.16%, mIoU: 69.26%, Precision: 89.49%, Recall: 
86.53%, Accuracy: 88.59%).
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Table 3
Quantitative measures used for evaluating the performance of deep network archi-
tectures. Spalling pixels belong to the positive class and non-spalling pixels belong 
to the negative class.

Measure Denition Description

TP True Positive Number of accurately identied spalling pixels

FP False Positive Number of pixels erroneously labeled as spalling pixels

TN True Negative Number of accurately identied non-spalling pixels

FN False Negative the number of pixels detected as non-spalling erroneously

Fig. 11. Spalling ratio of 100 test images for deep spalling areas.

The comparative analysis of the statistical performance of SegNet 
architecture with default encoder-decoder and Xception, ResNet-50, 
MobileNet, and VGG-19 are shown in Table 2. The SegNet architecture 
with VGG-19 encoder performs similarly to the UNet architecture with 

VGG-19 encoder; comparatively poor results than the other encoder-
decoder networks (SegNet with VGG-19: Dice Loss: 16.30%, mIoU: 
71.96%, Precision: 93.83%, Recall: 92.34%, Accuracy: 92.0%). The 
comparative analysis shows that the SegNet architecture with Xception 

provides the best result among all the combinations (e.g., Dice Loss: 
6.80%, mIoU: 87.97%, Precision: 90.86%, Recall: 98.43%, Accu-
racy: 95.19%). For SegNet architecture, the performance achieved with 

ResNet-50 matches the performance of Xception pretty closely. When 

using Xception, ResNet-50, MobileNet, and VGG-19 with SegNet archi-
tecture, the performance of spalling and severity level detection suers 
as the number of CNN layers decreases.

The above discussion and performance evaluation shown in Table 2
infer that PSPNet gives comparatively good performance for detecting 
spalling and severity levels among the three deep architectures. For all 
three deep architectures, Xception gives the best result. The VGG-19 

provides comparatively poor performance compared to other encoder-
decoder networks for detecting spalling and severity levels with SegNet 
and UNet architectures. For PSPNet architecture, the VGG-19 encoder 
and PSPNet with the default encoder-decoder network both provide 
poorer performance than other encoder-decoder networks.

Table 4 shows the results for the severity ranking of deep spalling 
for three image categories.

Several ranking methods are proposed for civil infrastructure [88]
[89]. Moreover, we have analyzed our dataset and observed that we 
should categorize the severity ranking for deep spalling areas. We have 
300 images for testing the deep architectures for spalling severity de-
tection. Among the 300 images, there are around 100 images of deep 

spalling areas. Based on our observation, we have dened the ranking 
for deep spalling areas as very severe, medium severe, and less severe. 
Fig. 11 shows the spalling ratio of 100 test images for deep spalling ar-

eas. According to the spalling ratio and from our observations of the 
dataset, we have dened thresholds for the severity ranking. The pre-
dened thresholds for the severity ranking are dened as: less severe 
when Ratio ≤ 0.39, medium severe when, 0.4 ≤ Ratio ≤ 0.69, and very 
severe when Ratio ≥ 0.7. Table 4 displays the ratio, which is expressed
in terms of 100%. We have selected three dierent categories of im-
ages from the 100 deep spalling images. In Table 4, we presented the 
results of the severity ranking for each deep architecture with dier-
ent backbone networks based on each selected image category. The
Input Size displays the total number of pixels of the image, which is 
the same for all the images, Spalling Size refers to the number of pix-
els aected by deep spalling, Ratio is calculated using Equation (1) and 

shown in 100%, and Severity Ranking determines the ranking of sever-
ity based on the ratio and the predened threshold value. We compared 

the severity ranking to ground truth for each image category. For most 
of the models, the severity ranking follows the ranking of ground truth 

very closely.

3.3. Qualitative analysis

This section presents the qualitative analysis of the proposed ap-
proach to show the non-statistical performance of the deep architectures 
with dierent encoder-decoder networks. The performance evaluation 

of dierent deep architectures for detecting spalling and severity level 
segmentation has been shown in Fig. 12, Fig. 13, and Fig. 14. The 
results highlight the overall performance of spalling and severity detec-
tion based on deep spalling, shallow spalling, and non-spalling images.

In Fig. 12, the results are shown for the PSPNet framework with 

dierent encoder-decoder networks. We have mentioned earlier that 
the images in our dataset are categorized as only deep spalling, deep 

spalling with non-spalling area, only shallow spalling, shallow spalling 
with non-spalling area, and non-spalling. For the PSPNet framework, 
only deep spalling, shallow spalling with non-spalling, and non-spalling 
areas were chosen as input to present the performance evaluation. In 

Fig. 12, we have original image, ground truth which is pixel-by-pixel 
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Table 4
Results for severity ranking of deep spalling for three dierent image categories.

Input Image Model Name Input Size 
(No. of Pixels)

Spalling Size 
(No. of Pixels)

Ratio (%) Severity Ranking

Category 1 Ground Truth 65536 65536 100 Very Severe

” PSPNet ” 65003 99.19 Very Severe

” PSPNet(Xception) ” 65536 100 Very Severe

” PSPNet(ResNet-50) ” 65401 99.79 Very Severe

” PSPNet(MobileNet) ” 60221 91.89 Very Severe

” PSPNet(VGG-19) ” 60006 91.56 Very Severe

Category 2 Ground Truth ” 20481 31.25 Less Severe

” SegNet ” 20222 30.86 Less Severe

” SegNet(Xception) ” 20500 31.28 Less Severe

” SegNet(ResNet-50) ” 20377 31.09 Less Severe

” SegNet(MobileNet) ” 20147 30.74 Less Severe

” SegNet(VGG-19) ” 20110 30.69 Less Severe

Category 3 Ground Truth ” 29721 45.35 Medium Severe

” UNet ” 35314 53.88 Medium Severe

” UNet(Xception) ” 31027 47.34 Medium Severe

” UNet(ResNet-50) ” 25889 39.50 Less Severe

” UNet(MobileNet) ” 32276 49.25 Medium Severe

” UNet(VGG-19) ” 35080 53.52 Medium Severe

mapping of original image for each spalling class, result for PSPNet ar-
chitecture, result for PSPNet architecture with encoders namely, Xcep-
tion, ResNet-50, MobileNet, and VGG-19, respectively. The comparative 
analysis in Fig. 12 shows that, PSPNet architecture with Xception gives 
the best result among all the combinations. ResNet-50 provides pretty 
similar performance to Xception. In comparison to ground truth, Mo-
bileNet gives some inaccurate predictions for deep spalling, shallow 

spalling, and non-spalling images.
The PSPNet architecture with the default encoder and VGG-19 net-

work gives comparatively poor results compared to the other encoder-
decoder networks. Among the three severity classes of spalling, non-
spalling areas are predicted to be more accurate for all the architecture 
combinations.

The results are shown for the UNet framework with dierent 
encoder-decoder networks in Fig. 13. For the UNet framework, we have 
chosen here deep spalling with a non-spalling area, shallow spalling 
with a non-spalling area, and non-spalling area as input for performance 
evaluation. A sticker serves as noise in the shallow spalling image. We 
have the original image, ground truth, which is a pixel-by-pixel map-
ping of the original image for each spalling class, the result for UNet 
architecture, and the result for UNet architecture with encoders namely, 
Xception, ResNet-50, MobileNet, and VGG-19, as shown in Fig. 13, re-
spectively. Fig. 13 for Xception shows that the UNet architecture gives 
the best result among all the combinations. The comparative analysis 
shows that MobileNet follows the results of Xception. ResNet-50 pro-
vides pretty low performance compared to Xception and MobileNet, 
unlike PSPNet. In comparison to ground truth, the results provided 

by Unet architecture, UNet architecture with ResNet-50, and VGG-19 

MobileNet have some inaccurate predictions for deep spalling, shal-
low spalling, and non-spalling images. Fig. 13 shows that the VGG-19 

encoder performs poorly in comparison to the other encoder-decoder 
networks.

The comparative analysis of SegNet architecture with the default 
encoder-decoder and with Xception, ResNet-50, MobileNet, and VGG-
19 is shown in Fig. 14. The categorization of images for performance 
evaluation of the SegNet framework was chosen here as deep spalling 
with the non-spalling area, shallow spalling with non-spalling, and non-
spalling. In Fig. 14, we have the original image of deep spalling, shallow 

spalling, and non-spalling area, ground truth which is pixel-by-pixel 
mapping of the original image for each spalling class, result for Seg-

Net architecture, result for SegNet architecture with encoders namely, 
Xception, ResNet-50, MobileNet, and VGG-19, respectively. The Seg-
Net architecture with the VGG-19 encoder gives comparatively poor 
results compared to other encoder-decoder networks like the UNet ar-
chitecture. VGG-19 shows poor performance, especially for non-spalling 
and shallow spalling classes. The non-spalling is predicted pretty accu-
rately by most of the architecture combinations, except for the Seg-
Net architecture with VGG-19. In Fig. 14, the comparative analysis 
presents that the SegNet architecture with Xception gives the best result 
among all the combinations for all the spalling severity classes. The re-
sults for ResNet-50 show that it matches the result for Xception pretty 
closely. SegNet architecture with the default encoder-decoder network 
gives poor results compared to ground truth, especially for shallow 

spalling. MobileNet gives some incorrect predictions for deep and shal-
low spalling areas.

Based on the discussion above and the performance shown in 

Fig. 12, 13, and 14, it can be concluded that most deep architectures 
with encoder-decoder networks provide comparatively good results for 
non-spalling areas. The performance evaluation for predicting deep 

spalling and shallow spalling closely follows the performance evalu-
ation for predicting non-spalling areas. The performance evaluation 

shows that, among the three deep architectures, PSPNet shows the best 
performance for detecting spalling and severity classication. The Xcep-
tion gives the best results for detecting deep spalling, shallow spalling, 
and non-spalling with SegNet, UNet, and PSPNet deep architectures. 
Comparatively, VGG-19 shows poor performance in detecting spalling 
and severity levels with UNet and SegNet architectures. For PSPNet, 
the VGG-19 encoder closely follows the performance of PSPNet with 

the default encoder-decoder network.

4. Conclusions and future work

This paper presents an innovative deep learning-based approach 

to detect spalling and its severity levels in civil infrastructure using 
encoder-decoder networks. The proposed method lls the gap in the 
literature, where very few methods exist for detecting the severity level 
of spalling accurately. Our study shows that deep learning-based ar-
chitectures with encoder-decoder networks oer high performance in 

detecting spalling severity levels in dierent elds, including civil in-
frastructure.
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Fig. 12. Results are shown for the PSPNet framework with dierent encoder-
decoder networks.

We incorporated three dierent deep architectures and four back-
bone networks in our proposed methodology to achieve the best per-
formance. Our results indicate that the PSPNet-based deep architecture 
with the Xception encoder oers the best performance. We have also 
conducted statistical and non-statistical analyses to demonstrate the 
proposed method’s high performance.

Our study has several potential future directions, including im-
proving the proposed deep architecture’s eciency by reducing power 
consumption and memory requirements while achieving better per-
formance in detecting spalling and severity levels. Additionally, this 
approach’s adaptability to detect various concrete distresses using a 
deep architecture-based combined detection process is worth explor-
ing. Overall, our proposed method provides a promising solution for 
detecting and classifying spalling severity levels in civil infrastructure, 
which is crucial for ensuring the structural health of concrete.

Fig. 13. Results are shown for the UNet framework with dierent encoder-
decoder networks.
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Fig. 14. Results are shown for the SegNet framework with dierent encoder-
decoder networks.
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[46] Kadry S, Taniar D, Damaševičius R, Rajinikanth V, Lawal IA. Extraction of abnormal 
skin lesion from dermoscopy image using vgg-segnet. In: 2021 seventh international 
conference on bio signals, images, and instrumentation (ICBSII). IEEE; 2021. p. 1–5.

[47] Tang J, Li J, Xu X. Segnet-based gland segmentation from colon cancer histology 
images. In: 2018 33rd youth academic annual conference of Chinese association of 
automation (YAC). IEEE; 2018. p. 1078–82.

[48] Guo H, Wei G, An J. Dark spot detection in sar images of oil spill using segnet. Appl 
Sci 2018;8:2670. https://doi .org /10 .3390 /app8122670.

[49] Alqazzaz S, Sun X, Yang X, Nokes L. Automated brain tumor segmentation on multi-
modal mr image using segnet. Comput Vis Media 2019;5:209–19. https://doi .org /
10 .1007 /s41095 -019 -0139 -y.

[50] Song C, Wu L, Chen Z, Zhou H, Lin P, Cheng S, et al. Pixel-level crack detection 
in images using segnet. In: International conference on multi-disciplinary trends in 
articial intelligence. Springer; 2019. p. 247–54.

[51] Ahmed H, La HM, Tavakolli A. Use of deep encoder-decoder network for sub-surface 
inspection and evaluation of bridge decks. In: Structural health monitoring 2021; 
2021.

[52] Badrinarayanan V, Handa A, Cipolla R. Segnet: a deep convolutional encoder-
decoder architecture for robust semantic pixel-wise labelling. ArXiv preprint arXiv :
1505 .07293, 2015. https://doi .org /10 .48550 /arXiv .1505 .07293.

[53] Aghalari M, Aghagolzadeh A, Ezoji M. Brain tumor image segmentation via asym-
metric/symmetric unet based on two-pathway-residual blocks. Biomed Signal Pro-
cess Control 2021;69:102841. https://doi .org /10 .1016 /j .bspc .2021 .102841.

[54] Pravitasari AA, Iriawan N, Almuhayar M, Azmi T, Irhamah I, Fithriasari K, et 
al. Unet-vgg16 with transfer learning for mri-based brain tumor segmentation. 
TELKOMNIKA (Telecommu Comput Electron Control) 2020;18:1310–8. https://
doi .org /10 .12928 /telkomnika .v18i3 .14753.

[55] Saood A, Hatem I. Covid-19 lung ct image segmentation using deep learning meth-
ods: unet vs. segnet. BMC Med Imaging 2021;21:2–10. https://doi .org /10 .1186 /
s12880 -020 -00529 -5.

[56] Liu F, Wang L. Unet-based model for crack detection integrating visual explanations. 
Constr Build Mater 2022;322:126265. https://doi .org /10 .1016 /j .conbuildmat .
2021 .126265.

[57] Sivagami S, Chitra P, Kailash GSR, Muralidharan S. Unet architecture based dental 
panoramic image segmentation. In: 2020 international conference on wireless com-
munications signal processing and networking (WiSPNET). IEEE; 2020. p. 187–91.

[58] Li J, Li W, Jin C, Yang L, He H. One view per city for buildings segmentation in 
remote-sensing images via fully convolutional networks: a proof-of-concept study. 
Sensors 2019;20:141. https://doi .org /10 .3390 /s20010141.

[59] Yang C, Guo H. A method of image semantic segmentation based on pspnet. In: 
Mathematical problems in engineering 2022; 2022.

[60] Zhong J, Zhu J, Huyan J, Ma T, Zhang W. Multi-scale feature fusion network for 
pixel-level pavement distress detection. Autom Constr 2022;141:104436. https://
doi .org /10 .1016 /j .autcon .2022 .104436.

[61] Shu J, Li J, Zhang J, Zhao W, Duan Y, Zhang Z. An active learning method with dif-
culty learning mechanism for crack detection. Smart Struct Syst 2022;29:195–206. 
https://doi .org /10 .12989 /sss .2022 .29 .1 .195.

[62] Wang J-J, Liu Y-F, Nie X, Mo Y. Deep convolutional neural networks for semantic 
segmentation of cracks. Struct Control Health Monit 2022;29:e2850. https://doi .
org /10 .1002 /stc .2850.

[63] Sarah H, Clua E, Vasconcelos CN. Arms and hands segmentation for egocentric 
perspective based on pspnet and deeplab. In: International conference on human-
computer interaction. Springer; 2020. p. 152–70.

[64] Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation 
based on pspnet. Comput Methods Programs Biomed 2021;200:105897. https://
doi .org /10 .1016 /j .cmpb .2020 .105897.

[65] Yu F, Koltun V, Funkhouser T. Dilated residual networks. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition; 2017. p. 472–80.

[66] Xing Y, Zhong L, Zhong X. An encoder-decoder network based fcn architecture for 
semantic segmentation. Wirel Commun Mob Comput 2020;2020. https://doi .org /
10 .1155 /2020 /8861886.

[67] Carvalho T, De Rezende ER, Alves MT, Balieiro FK, Sovat RB. Exposing computer 
generated images by eye’s region classication via transfer learning of vgg19 cnn. 
In: 2017 16th IEEE international conference on machine learning and applications 
(ICMLA). IEEE; 2017. p. 866–70.

[68] Bi C, Wang J, Duan Y, Fu B, Kang J-R, Shi Y. Mobilenet based apple leaf dis-
eases identication. Mob Netw Appl 2020:1–9. https://doi .org /10 .1007 /s11036 -
020 -01640 -1.

[69] Chhabra M, Kumar R. A smart healthcare system based on concatenation of 
resnet50v2 and xception model for detecting pneumonia from medical images. In: 
2022 international conference on machine learning, big data, cloud and parallel 
computing (COM-IT-CON), vol. 1. IEEE; 2022. p. 161–7.

[70] Ayan E, Ünver HM. Diagnosis of pneumonia from chest x-ray images using deep 
learning. In: 2019 scientic meeting on electrical-electronics & biomedical engi-
neering and computer science (EBBT). IEEE; 2019. p. 1–5.

[71] Bansal M, Kumar M, Sachdeva M, Mittal A. Transfer learning for image classica-
tion using vgg19: caltech-101 image data set. J Ambient Intell Humaniz Comput 
2021:1–12. https://doi .org /10 .1007 /s12652 -021 -03488 -z.

[72] Rezende E, Ruppert G, Carvalho T, Ramos F, De Geus P. Malicious software clas-
sication using transfer learning of resnet-50 deep neural network. In: 2017 16th 
IEEE international conference on machine learning and applications (ICMLA). IEEE; 
2017. p. 1011–4.

[73] Lo WW, Yang X, Wang Y. An xception convolutional neural network for malware 
classication with transfer learning. In: 2019 10th IFIP international conference on 
new technologies, mobility and security (NTMS). IEEE; 2019. p. 1–5.

[74] Li B, Lima D. Facial expression recognition via resnet-50. Int J Cogn Comput Eng 
2021;2:57–64. https://doi .org /10 .1016 /j .ijcce .2021 .02.002.



Computers and Structures 300 (2024) 107398

16

T. Yasmin, D. La, K. La et al.

[75] Ahmed H, La HM, Tran K. Rebar detection and localization for bridge deck inspec-
tion and evaluation using deep residual networks. Autom Constr 2020;120:103393. 
https://doi .org /10 .1016 /j .autcon .2020 .103393.

[76] Billah UH, Tavakkoli A, La HM. Concrete crack pixel classication using an encoder 
decoder based deep learning architecture. In: International symposium on visual 
computing. Springer; 2019. p. 593–604.

[77] Van Nguyen L, Gibb S, Pham HX, La HM. A mobile robot for automated civil in-
frastructure inspection and evaluation. In: 2018 IEEE international symposium on 
safety, security, and rescue robotics (SSRR); 2018. p. 1–6.

[78] Gibb S, Le T, La HM, Schmid R, Berendsen T. A multi-functional inspection robot 
for civil infrastructure evaluation and maintenance. In: 2017 IEEE/RSJ international 
conference on intelligent robots and systems (IROS); 2017. p. 2672–7.

[79] Gibb S, La HM, Le T, Nguyen L, Schmid R, Pham H. Nondestructive evaluation 
sensor fusion with autonomous robotic system for civil infrastructure inspection. J 
Field Robot 2018;35:988–1004. https://doi .org /10 .1002 /rob .21791.

[80] La HM, Gucunski N, Dana K, Kee S-H. Development of an autonomous bridge deck 
inspection robotic system. J Field Robot 2017;34:1489–504. https://doi .org /10 .
1002 /rob .21725.

[81] Le T, Gibb S, Pham N, La HM, Falk L, Berendsen T. Autonomous robotic system 

using non-destructive evaluation methods for bridge deck inspection. In: 2017 IEEE 
international conference on robotics and automation (ICRA); 2017. p. 3672–7.

[82] Billah UH, La HM, Tavakkoli A. Deep learning-based feature silencing for ac-
curate concrete crack detection. Sensors 2020;20:4403. https://doi .org /10 .3390 /
s20164403.

[83] Liu Y, Zhang Z, Liu X, Wang L, Xia X. Ecient image segmentation based on deep 
learning for mineral image classication. Adv Powder Technol 2021;32:3885–903. 
https://doi .org /10 .1016 /j .apt .2021 .08 .038.

[84] Zhang Z, Wu C, Coleman S, Kerr D. Dense-inception u-net for medical image seg-
mentation. Comput Methods Programs Biomed 2020;192:105395. https://doi .org /
10 .1016 /j .cmpb .2020 .105395.

[85] Peng H, Xue C, Shao Y, Chen K, Xiong J, Xie Z, et al. Semantic segmentation of 
litchi branches using deeplabv3+ model. IEEE Access 2020;8:164546–55. https://
doi .org /10 .1109 /access .2020 .3021739.

[86] Liu S, Li M, Li M, Xu Q. Research of animals image semantic segmentation based 
on deep learning. Concurr Comput, Pract Exp 2020;32:e4892. https://doi .org /10 .
1002 /cpe .4892.

[87] Sparavigna AC. A method for the segmentation of images based on thresholding 
and applied to vesicular textures. ArXiv preprint arXiv :1612 .01131, 2016. https://
doi .org /10 .48550 /arXiv .1612 .01131.

[88] Mokhtari S, Wu L, Yun H-B. Statistical selection and interpretation of im-
agery features for computer vision-based pavement crack–detection systems. J 
Perform Constr Facil 2017;31:04017054. https://doi .org /10 .1061 /(ASCE )CF .1943 -
5509 .0001006.

[89] Shah YU, Jain S, Tiwari D, Jain M. Development of overall pavement condition 
index for urban road network. Proc, Soc Behav Sci 2013;104:332–41. https://doi .
org /10 .1016 /j .sbspro .2013 .11 .126.


