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This paper presents a method for detecting the location of spalling and assessing the severity level of the
spalling in concrete surfaces. The proposed method is constructed based on deep learning architectures and
multi-class semantic segmentation. The proposed method can detect each pixel as a non-spalling, a deep-
spalling, or a shallow-spalling. The proposed method consists of three different deep learning architectures
with several encoders as backbone networks. Both qualitative and quantitative analyses show that the deep
learning architecture with a certain encoder network can detect spalling with different severity levels very well.
Additionally, the paper proposes a method to analyze the deep spalling areas of concrete to show their severity
levels. The performance analysis shows that this approach provides very convincing results with respect to the

actual affected spalling areas. The results convey that this paper achieved a higher level of performance for
detecting spalling and assessing the severity of the spalling.

1. Introduction

Concrete distress, such as spalling, poses life-threatening risks, ne-
cessitating regular maintenance to prevent hazardous incidents [1][2].
Spalling, a concrete abnormality caused by heavy loads and surface ero-
sion, compromises structural integrity in bridges and buildings. It is
required to conduct regular inspections to ensure structural integrity
[3-5]. To address this issue, autonomous detection systems are now
mandatory.

To manage spalling effectively, precise measurements and catego-
rization are essential. Depending on spalling conditions, post-inspection
actions vary. Priority is given to large or deep spalling, while smaller or
shallower instances may follow. Detecting spalling alone is insufficient;
assessing severity (based on size [6] or depth) is crucial to prioritize
repairs. Spalling severity ranges from deep (high risk) to shallow or
non-existent. Deep spalling significantly impacts structural health.

Therefore, this paper introduces spalling detection and categoriza-
tion: deep, shallow, and non-spalling. We also propose a method for
ranking the severity among deep spalling areas. The severity levels of
spalling are shown in Fig. 1.
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The rest of the paper is organized as follows: Section 1 also presents
the related works and our contribution. Section 2 outlines the research
methodology and our proposed work. Section 3 analyzes the results.
Finally, the conclusion and future work of this paper are given in sec-
tion 4.

1.1. Literature review

In recent years, there has been an increasing interest in spalling de-
tection techniques for various infrastructure applications such as metro
tunnels, subway networks, bridges, and railway surfaces. These meth-
ods often utilize machine vision, laser scanning, deep learning, and
infrared thermography to detect and evaluate spalling.

One approach proposed for detecting spalling in subway networks
is based on image processing [7]. The color image of the spalled area
is processed to remove noise and extract surface features. A 3D visual-
ization is created from the extracted features, and spalling severity and
depth are detected using a projection of the spalling intensity curve and
regression analysis.
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Fig. 1. Different level of spalling (a) non-spalling, (b) Deep Spalling, (c) Shallow Spalling.

Another approach suggested for metro tunnels utilizes surface
roughness analysis based on a 3D mobile laser scanning system [8].
Point cloud data obtained from the scanning system is used to analyze
the surface roughness, which is then used to detect concrete spalling.

A machine learning and vision-based approach has been developed
for subways to detect and quantify spalling [9]. This approach involves
extracting important features from images, removing noise, and detect-
ing surface distresses in subways.

To detect concrete spalling automatically in multiple spots (within
a single structural element or in multiple structural elements), a deep
learning-based method has been developed [10]. In this work, an inex-
pensive depth camera is integrated with a faster region-based convolu-
tional neural network (Faster R-CNN) to automatically detect, localize,
and quantify the spalling damage.

Another deep learning-based real-time multi-drone approach has
been proposed to detect surface defects in high-rise civil structures [11].
To detect five types of concrete surface defect images of two classes
(crack and spalling): vertical crack, horizontal crack, diagonal crack,
branch crack, and spalling, the authors have used the deep learning
model YOLO-v3 (You Look Only Once-version3) and the edge comput-
ing principle.

A morphological attention ensemble learning method for surface de-
fect detection at the bounding box level is proposed to detect three
types of defects (crack, efflorescence, and spalling) [12,13]. The au-
thors propose a specialized loss for each defect to demonstrate improved
defect-recognition accuracy. Moreover, the deformable convolutional
network (DCN) [14] and multi-task ensemble learning techniques have
been exploited to adaptively extract defect features according to the
feature shapes and to apply the loss of each defect, respectively.

Another approach based on Faster RCNN is proposed to detect
four different damage types: surface cracks, spalling (including facade
spalling and concrete spalling), and severe damage with exposed rebars
and severely buckled rebars [15]. Since the purpose of their study is to
present a timely assessment of defects and damages that occurred due
to an earthquake to buildings, the authors manually evaluated the ap-
proach using annotated image data collected from damaged concrete
buildings during several past earthquakes.

For rail surface spalling detection, a real-time visual inspection sys-
tem has been proposed that utilizes image acquisition and image pro-
cessing sub-systems [16]. Images captured by a camera are segmented,
and spalling on the rail surface is detected using histogram curve infor-
mation in the longitudinal direction of the track image.

An optical detection algorithm based on visual salience has been
proposed for rail surface spalling detection [17]. This algorithm uses a
threshold value to detect the difference between spalled and non-spalled
areas after removing unnecessary noises from the neighborhood area of
spalling.

A novel automated 3D spalling defects inspection system for railway
tunnel linings has been proposed that uses laser intensity and depth
information for accurate spalling detection [18]. A spalling intensity

depurator network is also proposed for automatic feature extraction,
and the system produces 3D inspection results with quantitative analy-
sis of the spalled area.

Deep learning approaches have also been developed for automatic
detection of cracks and spalling in buildings and bridges [19]. These ap-
proaches utilize Mask R-CNNs for continuous segmentation of damaged
areas in bridges and buildings, and the deep CNN architectures can be
extended for surface damage detection and evaluation.

To automatically detect concrete spalling, image texture and piece-
wise linear stochastic gradient descent logistic regression are used for
pattern recognition [20]. Image textures are extracted from images, and
statistical properties are used to categorize the condition of the concrete
surface into non-spalled and spalled classes.

A terrestrial laser scanner was utilized in this study to simultane-
ously localize and quantify spalling defects on concrete surfaces, as
reported by Kim et al. in 2015 [21]. The proposed method combines
features with complementary properties to enhance the localization and
quantification of spalling defects. To extract relevant information, such
as the condition and size of the damaged portion of the concrete surface,
a defect classifier was developed. The concrete structure was scanned
using a terrestrial laser scanner, and a region of interest was selected
for analysis. The scanner captured 3D coordinate information of the
scanned points within the selected region. Once the raw scanned data
was ready, the proposed method initiated the defect detection process.

Spalling in concrete structures can happen during fire conditions, as
reported by Kodur et al. in 2021 [22]. The proposed approach consid-
ers factors like pore pressure, thermal gradients, and structural loading
as contributors to spalling. Comparing the approach’s predictions to ex-
perimental data from full-scale fire resistance tests on concrete beams
of different strengths, the analysis reveals that pore pressure-induced
stresses are the primary cause of spalling. However, thermal and me-
chanical stress levels also play a role in spalling. The extent of spalling
significantly affects the fire resistance of concrete beams in severe fire
scenarios.

The method proposed by Naser et al. in 2019 [23] is based on Ma-
chine Cognition (MC) to obtain expression in order to detect defects in
concrete structures due to fire conditions. These expressions consider
the geometric attributes, material composition, and distinct character-
istics of reinforced concrete (RC) columns. Their purpose is to predict
the occurrence and intensity of fire-induced spalling and assess the fire
resistance of these structural components.

Another approach to identifying essential factors that influence the
occurrence of fire-induced spalling in RC columns offers an exploration
of how data science and machine learning techniques can be employed
[24]. Nine distinct algorithms (naive Bayes, generalized linear model,
logistic regression, fast large margin, deep learning, decision tree, ran-
dom forest, gradient boosted trees, and support vector machine) have
been used for this study to examine data collected from 185 fire ex-
periments. These algorithms were similarly employed to pinpoint the
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essential attributes influencing the likelihood of fire-induced spalling in
RC columns and to create tools for immediate spalling prediction.

The study focused on investigating the effects of different types and
sizes of specimens on concrete spalling when exposed to a hydrocarbon
fire, as reported by Mohd et al. in 2018 [25]. Four different types of
specimen sizes, including cylinders, columns, and panels, were analyzed
to isolate the variables that affect concrete spalling. Additionally, three
aggregate sizes were used in the concrete mixes to determine the impact
of aggregate size on concrete spalling. The investigation also included
analyzing the effect of aggregate type on concrete spalling.

Concrete spalling detection can be achieved using active infrared
thermography, as reported by Tanaka et al. in 2006 [26]. Various
irradiation devices, such as halogen lamps, xenon arc lamps, and far-
infrared irradiation devices, can be used to heat the concrete surface
and create a temperature gradient for detecting spalling. Active infrared
thermography was chosen in this study due to its ability to provide mea-
surements independent of meteorological conditions. Photogrammetry,
laser scanning, and Light Detection and Ranging (LiDAR) are technolo-
gies commonly used for surface damage detection, including spalling,
as reported by Zhang et al. in 2022 [27]. In the proposed method, point
cloud data from the laser scanner was utilized to detect spalling and
quantify its key properties in reinforced concrete columns. The first
phase of the method involved removing noise points and calibrating
the coordinate system of the captured point cloud data, which was then
sliced into thin layers for analysis of the damaged areas. The second
phase included detecting points corresponding to distressed and non-
distressed areas. Finally, linear interpolation was used to calculate the
spalling area and lost concrete volume.

A computer application has been developed to automatically evalu-
ate spalling and detect spalling severity in concrete bridges [28]. The
proposed approach utilizes a single-objective particle swarm optimiza-
tion model based on the Tsallis entropy function to detect spalling. In
the second phase, the severity of spalling is evaluated by generating a
comprehensive analysis of the bridge deck image using the Daubechies
discrete wavelet transform feature description algorithm. A hybrid arti-
ficial neural network-particle swarm optimization model is used in the
second phase to accurately predict the spalling area and overcome the
limitations of the gradient descent algorithm.

The timely and accurate detection of spalling and its severity is crit-
ical, and computer vision plays a vital role in this context by extracting
numerical information from various sources such as depth images, digi-
tal images, videos, and 3D point clouds, processing the data, and taking
appropriate actions [29]. A computer vision-based approach for classi-
fying concrete spalling severity has been developed [30]. This method
utilizes concrete images and categorizes the severity levels as shallow
spall or deep spall. Features of the concrete surface, including statisti-
cal measurements of color channels, gray-level run length, and center-
symmetric local binary pattern, are used to optimize the support vector
machine classifier using the jellyfish search metaheuristic to divide the
data into shallow spalling and deep spalling based on a decision bound-
ary.

An entropy-based automated method has been proposed, which con-
sists of three significant parts and utilizes computer vision technologies
for spalling detection [31]. The spalling detection phase employs a
segmentation model that integrates a multi-objective invasive weed
optimization and information theory-based formalism of images. The
feature extraction phase combines singular value decomposition and
discrete wavelet transform to obtain efficient image information. The
third phase involves developing a rating system for spalling severity
based on its area and depth.

The study introduces a method for identifying spalling damage us-
ing point cloud data and incorporating the damaged elements into a
Building Information Model (BIM) by enhancing the as-built Industry
Foundation Classes (IFC) model with semantic information [32]. The
authors present a methodology for creating the as-built BIM, recon-
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structing the geometric properties of identified damage point clusters,
and enhancing the associated IFC model with semantic information.

A deep neural network called MaDnet (material-and-damage-
network), which is designed to perform dual tasks, it can identify both
the material type (concrete, steel, asphalt) and distinguish between
fine (cracks, exposed rebar) and coarse (spalling, corrosion) structural
damage simultaneously [33]. The authors utilize semantic segmenta-
tion, which involves assigning material and damage labels to individual
pixels in the image. The connection between material and damage is in-
tegrated by training shared filters using a multi-objective optimization
approach.

Computer vision approaches offer solutions for detecting spalling
severity on concrete surfaces [34]. The proposed work utilizes Extreme
Gradient Boosting Machine and Deep Convolutional Neural Network
(DCNN) to classify image data into shallow spall and deep spall. Feature
extraction methods such as local binary pattern, center symmetric lo-
cal binary pattern, local ternary pattern, and attractive repulsive center
symmetric local binary pattern are used to extract properties of spalling
from the concrete surface image. The prediction performance of the
Extreme Gradient Boosting Machine is enhanced using the Aquila opti-
mizer metaheuristic.

In summary, various approaches have been proposed for detect-
ing spalling, or surface damage, in subway networks, metro tunnels,
rail surfaces, buildings, and bridges. These approaches utilize image
processing, laser scanning, machine learning, and other techniques for
extracting features, removing noise, and detecting spalling severity and
depth. Deep learning approaches, such as Mask R-CNNs, have been
used for continuous segmentation of damaged areas in bridges and
buildings. Terrestrial laser scanners have been utilized for localization
and quantification of spalling defects on concrete surfaces. Active in-
frared thermography has been used for concrete spalling detection, and
photogrammetry, laser scanning, and LiDAR have been used for sur-
face damage detection. Computer applications and optimization models
have also been developed for automated evaluation of spalling severity.
These approaches aim to provide accurate and efficient detection of
spalling in various structures, aiding in maintenance and repair efforts.
However, there is a limited number of methods that focus on identify-
ing and categorizing the severity of concrete spalling. We have provided
a contrasting analysis between our proposed work and previous works
in Table 1.

1.2. Contributions

Ensuring the structural health of concrete is crucial for maintaining
the wellness of civil infrastructure. Therefore, detecting spalling and
classifying its severity level has a significant impact on achieving this
goal. Although there are several methods for detecting spalling, there
are few approaches for classifying its severity level. This is important
because it helps prioritize spalling maintenance, especially in critical
areas.

Previous approaches for spalling detection have some limitations,
such as that “non-spalling” areas were not categorized as a level of
severity. To properly identify distressed surfaces and non-affected areas,
these “non-spalling” areas should be included in the severity level. Ad-
ditionally, spalling classes should be discretely segmented with proper
visual mapping based on severity level. Thus, the classification of sever-
ity can be measured by how deep or shallow the spalling is, or whether
there is no spalling at all. As a result of the benefits of image segmenta-
tion techniques in various fields, we considered this problem to be one
of semantic segmentation.

To overcome these limitations, we propose a method for detect-
ing and classifying spalling severity levels using deep architecture and
encoder-decoder networks. Our approach uses pixel-by-pixel multiclass
semantic segmentation to categorize spalling as non-spalling, shallow,
or deep. We conducted a comparative analysis to determine the best
combination of deep architecture and encoder-decoder networks. Ac-
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Table 1
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Comparison of spalling detection systems. Symbol: v'Addressed, [] Not Addressed.

Spalling Detection Surface Spalling Spalling Severity Level Non-spalling
Dawood et al. [7]
Dawood et al. [9] Subway network v O O
Wu et al. [8] Metro tunnel v O O
Beckman et al. [10]
Hong et al. [12]
Ghosh et al. [15]
Kim et al. [21]
Tanaka et al. [26]
Zhang et al. [27] Concrete surface v O O
Kumar et al. [11]
Bai et al. [19]
Abdelkader et al. [28]
Isailovic et al. [32] High-rise civil structure v O O
Zhou et al. [18]
Pham et al. [16] Rail Surface v O O
Huetal. [17] Rail Surface v O v
Hoang et al. [20] Concrete Surface v O v
Kodur et al. [22]
Naser et al. [23]
Naser et al. [24]
Mohd et al. [24] Concrete surface under fire condition v O O
Hoang et al. [30]
Nguyen et al. [34] Concrete Surface v Two severity levels O
Abdelkader et al. [31] Concrete Surface v A rating system O
Hoskere et al. [33] Concrete, steel, asphalt v O O
Our proposed approach ~ Concrete surface v Three severity levels, an additional ranking system v

cording to the severity level, deep spallings are more crucial since they
affect the concrete surfaces more alarmingly. They are crucial and need
further analysis. The affected area of a deep spalling may vary accord-
ing to different sizes. We also proposed a pixel-wise severity ranking
method to calculate the ranking of severity for deep spalling areas.

Our proposed approach is designed to identify distressed sur-
faces and non-affected areas accurately and to classify the severity
of spalling more precisely. It offers several contributions, including
a deep architecture-based method with different backbone networks,
multi-class segmentation using pixel-by-pixel categorization, a pixel-
wise severity ranking method, and qualitative and quantitative analysis
to obtain the best results.

Overall, our proposed method provides an effective solution for de-
tecting and classifying spalling severity levels. This will help engineers
and maintenance personnel to prioritize and plan spalling maintenance
activities more efficiently, resulting in improved infrastructure wellness
and durability.

2. Research methodology

In this section, we have presented a comprehensive analysis of the
different aspects of our proposed method for detecting spalling and
severity levels. The approach for detecting spalling and spalling sever-
ity levels is based on Deep encoder-decoder networks. In recent years,
several encoder-decoder-based deep convolutional networks have been
proposed; SegNet [35], UNet [36], PSPNet [37], FCN [38], DeepLab
[39], DeepCrack [40]. We have selected SegNet, PSPNet, and UNet for
our proposed architecture. Our proposed approach delineated the use
of SegNet, PSPNet, and UNet along with variations in the backbone net-
works to predict the best deep architecture-backbone network pair. A
comparative analysis of the performance achieved from the three deep
architectures in terms of different performance metrics has been dis-
cussed in the results and discussion section. We have employed different

encoder modules leveraged within the context of the different deep ar-
chitectures including ResNet-50 [41][42], VGG-19 [43], Xception [44],
and MobileNet [45].

We have discussed several concepts related to our proposed ap-
proach. First, several deep encoder-decoder-based architectures will be
discussed. The preparation of datasets and the data augmentation pro-
cess will be included in this section. Along with these discussions, our
proposed methodology for detecting spalling and severity levels using
deep encoder-decoder networks will be outlined.

2.1. Deep encoder-decoder architecture

SegNet: The SegNet is an encoder-decoder network based architec-
ture [35]. SegNet architecture-based image segmentation process has
been used to extract abnormal skin lesions from dermoscopy image
[46], for gland segmentation from colon cancer histology images [47],
to detect dark spots in oil spill areas [48], for automated brain tumor
segmentation on multi-modal MR image [49], to detect pixel level crack
detection [50], and for the inspection and evaluation of bridge decks
[51].

This architecture was proposed for pixel-wise semantic segmenta-
tion. The architecture for SegNet with encoder-decoder block is shown
in Fig. 2. The encoder block of SegNet architecture contains 13 con-
volutional layers for feature maps which leads to object classification.
The dense convolutions, ReLU non-linearity, and a non-overlapping
max-pooling are performed by encoder block [52]. The max pooling
is performed with a (2 X 2) window. The SegNet architecture avoids
the fully connected layers to gain higher-resolution feature maps at
the deepest encoder output. The down-sampling is the final step of the
encoder. In the decoder block up-sampling and convolutions are per-
formed [35]. The decoder conducts the up-sampling and calls the max
pooling indices of the corresponding encoder layer. There is a K-class
softmax classifier at the end to predict the class for each pixel.
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UNet: Several works used the UNet architecture for image segmen-
tation; brain tumor image segmentation using UNet [53] and UNet-
VGG16 [54], COVID-19 lung CT image segmentation [55], crack de-
tection model [56], and dental panoramic image segmentation [57].

UNet is an encoder-decoder-based architecture consisting of four
encoder and four decoder blocks. Fig. 3 shows the overview of UNet
architecture. The encoder block contains two 3 X 3 convolutions [36].

A ReLU activation function comes after each convolution. The en-
coder component of the UNet architecture functions as an image feature
extractor and gathers the image’s features. Each encoder block’s num-
ber of feature channels is doubled and its spatial dimensions are cut in
half by the encoder network. A link connects the encoder blocks and
decoder blocks together. The resulting output of the encoder blocks’
ReLU activation function connects to the matching decoder blocks. Two
(3 x 3) convolutions are used in the connection between the encoder
and decoder blocks, and each convolution is followed by a ReLU activa-
tion function. By providing supplementary information, this connection
enables the decoder to build stronger semantic features. The decoder
network has half the number of feature channels and doubles the spatial
dimensions. A (2 X 2) transpose convolution is present in the decoder’s
initial stage. Using a concatenation process of convolution and connec-
tion, the feature maps are transferred through the connection between
the encoder and decoder. A segmentation mask is created in the decoder
section. A (1 X 1) convolution with sigmoid activation is applied to the
output generated by the final decoder. Using an activation function, the
segmentation mask is transformed into pixel-wise categorization.

PSPNet: The architectural overview of PSPNet is shown in Fig. 4.
PSPNet is one of the most well-recognized image segmentation models.
PSPNet-based semantic segmentation process used in image semantic
segmentation [59], pavement distress detection [60] and crack detec-
tion [61][62], arms and hands segmentation for egocentric perspective
using image segmentation [63], and image segmentation for coronary
angiography [64].

This architecture has two blocks like most semantic segmentation
models: PSPNet encoder and PSPNet decoder. The PSPNet encoder
consists of the CNN backbone with dilated convolutions [65] and the
pyramid pooling module. Dilated convolution layers are used in place
of the typical convolutional layers in the backbone’s last layers, which
helps to increase the receptive field. The last two blocks of the back-
bone contain these dilated convolution layers. As a result, the feature
that is added at the end of the backbone has more features. During con-
volution, the value of dilation indicates the sparsity. In comparison to
standard convolution, dilated convolution has a broader receptive field.
The size of the used context information is found from the size of the
receptive field. The pyramid pooling module is the primary component
of this model since it enables the model to recognize the global con-
text in the image and classify the pixels according to that context. The
backbone’s feature map is pooled at different sizes, passed through a
convolution layer, and then upsampled to bring the pooled features up
to the size of the original feature map. The original feature map and
the upsampled maps are finally concatenated before being sent to the
decoder. This method aggregates the overall context by fusing the in-
formation at different scales. The decoder will then take those features
and turn them into predictions by feeding them into its layers once the
encoder has extracted the image’s features. The decoder is another net-
work that processes inputted characteristics to provide predictions.

2.2. Backbone network

Several CNN’s (convolutional neural network) backbone networks
have made significant advancements with the highest quality perfor-
mances over the past few years. These network architectures may ef-
fectively extract an image’s feature mapping, providing a strong base
network for semantic segmentation [66]. We have used ResNet-50,
VGG-19, MobileNet, and Xception as feature extractors in our deep ar-
chitectures.
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Fig. 4. Overview of PSPNet Architecture [37].

ResNet-50, VGG-19, and Xception are CNN with 50 layers, 19 layers
and 71 layers deep, respectively [42][43][44]. MobileNet is one kind
of CNN designed for mobile and embedded vision applications [45].
MobileNet, VGG-19, Xception have been used in the field of medical
imaging, eye’s region classification, namely apple leaf diseases iden-
tification, skin lesion classification, and diagnosis of pneumonia from
chest X-Ray images [67]1[68][69]1[70]. In the area of image recognition
or image classification, VGG-19, ResNet-50, and Xception are used to
classify images and malware data, to recognize the facial expression,
and to detect and localize rebar for bridge deck inspection and evalua-
tion [711[721[731[741[75].

2.3. Preparation of dataset

Large volumes of data are required to train, validate, and test the
models in deep network architectures [76]. As a result, managing a
well-balanced dataset is a crucial step. For our proposed method, we
have collected images of different buildings and bridges. For bridge data
collection, we mainly used our developed robots integrated with non-
destructive evaluation sensors and cameras to collect the bridge deck
surface images [77-81]. We collected images at different times of the
day to maintain the non-uniformity of the environment. We have em-
ployed a data augmentation procedure for our proposed architecture to
help with the data management issue. We assigned the labels of non-
spalling, deep spalling, and shallow spalling, along with the labels of
severity, to each image in our collection. As a result, during the train-
ing process, pixel mapping is automatically generated from the labeling
of the image.

The non-spalling area and the severity levels of spalling are anno-
tated with RGB combinations because the labeling of images follows
the RGB range. The process of annotating images is an arduous and
time-consuming task [82]. We have annotated each image according to
the spalling area; Deep spalling area, shallow spalling area, and non-
spalling area. The example of the annotation process of an image is
shown in Fig. 5.

We have prepared a collection of images for each original image
and respective annotated image using the data augmentation procedure.
The augmentation procedure chooses a random picture for each image
as well as a random pixel point for the tagged image. A selected image
and pixel map of the relevant original image is made in accordance
with that. The augmentation method generates a number of sub-images
at random from the pixel locations by flipping or rotating the pixel map.
The augmentation process of a sample image is shown in Fig. 6.

2.4. Proposed architecture

We have proposed the method using three different types of deep ar-
chitectures with different backbone networks for detecting the spalling

;
r i

(a) (b)

Fig. 5. Data Annotation (a) Image of shallow spalling, (b) Annotation of shallow
spalling.

and level of severity. The Encoder-Decoders model used in deep
learning-based image segmentation technology is trained from start to
end [83]. A pre-trained CNNs model, such as the ResNet pre-trained
model, MobileNet pre-trained model, or VGG pre-trained model, is
the encoder. We have implemented this deep architecture with PSP-
Net (Fig. 4), UNet (Fig. 3), and SegNet (Fig. 2).

For the encoder part, we have employed ResNet-50, VGG-19, Xcep-
tion, and MobileNet. The encoder block has convolution and pooling
layers. A set of down-sampled feature maps are produced by each part
of the encoder using an input picture or feature map. The pooling lay-
ers help the encoder to form integrated feature points after the feature
is extracted from the convolution layers.

The decoder is essentially a mirrored encoder. The difference be-
tween the decoder block and encoder block is the up-sampling layer
instead of the pooling layers. It gradually upsamples the encoder’s out-
put and semantically projects into high-resolution pixel space from the
low-resolution identifiable feature maps.

The advantage of employing deep learning-based image segmenta-
tion architecture is, the segmentation model differentiate each pixel at
the pixel level as well as projects the features with the different category
at various stages into the pixel space learned by the encoder to fully seg-
ment the target region [83]. Moreover, using the concatenation process
the decoder connects to the corresponding encoder and helps to reduce
the loss that happened during the down-sampling process. Therefore,
due to the advantage and performance of deep learning-based image
segmentation architecture in several fields [84][85][86], we have pro-
posed the use of deep architectures with encoder-decoder networks to
detect spalling and severity level. We have considered the spalling and
severity detection process as multi-class image segmentation. There-
fore, as the output or semantic segmentation of the given data from the
encoder-decoder network, we get the segmented area of spalling; non-
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spalling, deep spalling, or shallow spalling. Fig. 7 shows the overview
of the proposed methodology to detect the spalling severity levels.

For the deep architecture-based proposed method, we have anno-
tated the images of deep spalling based on the exposed reinforcing steel
bars. The annotated images are used to detect the spalling severity level.
These deep spalling areas based on the reinforcing steel bars can be
large, very large, or small. Along with the depth, the ratio of the af-
fected deep spall areas helps provide more insight into the severity. For
that reason, we have proposed a method to calculate the ranking of
severity for the deep spalling area. This proposed method determines
the affected deep spalling area using pixel-wise calculation. Afterwards,
the ranking of deep spalling areas is determined according to the ra-
tio of the affected area (number of affected pixels) with respect to the
overall area (number of total pixels). We have determined the ratio us-
ing Equation (1), where D_pixel provides the number of total pixels of
deep spalling area, and T _pixel counts the total number of pixels for
the entire image. The ranking of deep spalling areas is categorized as
“very severe,” “medium severe,” and “less severe” based on the value
of the ratio using a predefined threshold.

D_pixel M

Ratio= ———
T _pixel

Hence, we first detected spalling and its severity. Moreover, we
discussed the comparative analysis of the performances achieved by
the deep architectures. Using pixel-wise calculation, we determined the
severity ranking for deep spalling areas. We have provided a compara-
tive analysis of severity ranking for three selected image categories in
the Result and Discussion section.

3. Result and discussion

In this section, we are going to present the performance analy-
sis of the proposed deep architecture with different encoder-decoder
networks. The results and experimental analysis part includes dataset
preparations, experimental setup, and qualitative and quantitative anal-
ysis of proposed architectures.

3.1. Experimental setup

The dataset contains images of spalling in buildings and bridges.
These images have different types of noises, namely, oil spills, faded
colors, and stones. It is difficult to detect any abnormality in the cru-
cial corners of bridges, for example, the intersection of pillars, due to
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MobileNet, (e) PSPNet with VGG-19.

the difference in light. The images were taken at different times of the
day to avoid any impact of light and shadow on the result of spalling
detection.

We have used GIMP (GNU Image Manipulation Program) to anno-
tate our images in the pixel-by-pixel map. GIMP is one of the most
popular illustration and image editing programs available [87]. We
have annotated each image according to the spall class. The reason be-
hind the image size (256 X 256) is to focus on the specific spall class
with any noises or light differences. Our dataset contains different cat-
egories of images: only deep spalling, deep spalling with non-spalling
area, only shallow spalling, shallow spalling with non-spalling area, and
non-spalling. The spalling area is categorized as deep spalling when
the reinforcing steel bars are exposed. The shallow spalling areas are
the ones whose condition lies between deep spalling and non-spalling.
Moreover, the spalling without exposed steel bars was considered shal-
low spalling in this paper.

The method was trained and tested on a system with a GTX 1080
GPU. The size of the image was (256 X 256). For the multi-class classifi-
cation problem, we used categorical cross-entropy (CCE) loss, which is
also known as Softmax loss. The Adam optimizer was used to optimize
the architecture with a learning rate of 0.001.

We have used an augmentation process (described in Fig. 6) during
the training and validation phases. The use of the augmentation process
during the training and validation phases has the advantage of avoid-
ing overfitting problems [82]. The dataset contains 10000 images for
training and another 2000 images for validation. The CCE loss curve

of the training and validation for PSPNet, SegNet, and UNet are shown
in Fig. 8, 9, and 10, respectively. We recorded the loss for all the deep
encoder-decoder combinations. In the loss curve, the training loss and
validation loss show how the model fits the training data and the new
data, respectively. The loss is measured by the error between its pre-
dicted output and the true output. Our goal is to get the loss value as
close as 0. During the starting phase, Fig. 8, 9, and 10 show gaps be-
tween the training and validation curves. The use of the augmentation
process during the training and validation phases helped to reduce the
gaps gradually. Since the gaps were reducing and both of the loss curves
were getting close to 0, the model was fitting well. The training and val-
idation curves started converging approximately after 90 epochs which
indicates a desirable characteristic. We maintained 100 epochs for all
the architectures to avoid overfitting.

The testing phase was conducted on 300 images. First, we tested
the proposed approach with 100 images to determine the difference in
performance achieved based on the number of test images. The differ-
ence in performance for these two datasets is negligible (approximately
0.01% for all metrics), which justifies a consistent performance. Hence,
we have presented the performance analysis only for the dataset with
300 images. The proposed approach trained for 100 epochs. Therefore,
on each epoch, it was trained on a different dataset because of the aug-
mentation process.

Because spalling is detected based on its severity levels, we have
presented non-statistical qualitative analysis as well as quantitative
analysis with statistical measurements. In the quantitative analysis sub-
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Fig. 9. CCE loss curves for training and validation (a) SegNet, (b) SegNet with ResNet-50, (c) SegNet with Xception, (d) SegNet with MobileNet, (e) SegNet with

VGG-19.

section, we evaluated the performance of three deep architectures with
different encoder-decoder networks using different metrics. The quali-
tative analysis subsection describes the performance comparison based
on the results of spalling detection and severity level.

3.2. Quantitative analysis

This section presents a performance-based statistical analysis and
deep learning-based image segmentation architectures with different
encoder-decoder networks. The overall performance for spalling detec-
tion with severity level is shown in Table 2.

TP+TN
Accuracy = (2)
TP+ FP+TN+FN
Precision = _Te 3)
TP+ FP
Recall = _Tre (©)]
TP+ FN
TP

ToU %)

" TP+FN+FP

We have used Dice loss, mloU, Precision, Recall, and Accuracy met-
rics for the performance analysis. The dice loss referred to the loss level
for the combination architecture with different encoder-decoder net-
works. We have performed the calculation on Equation (2), (3), and (4)
to find out the Accuracy, Precision, and Recall respectively. From Equa-
tion (5), we get the calculation for IoU for each class which helps to
calculate the mean value of IoU for all classes.

Table 3 describes the quantitative measures used for evaluating the
performance of deep network architectures. The lower Dice Loss val-
ues are more appropriate since they reflect the degree of loss incurred
by the different combinations of network frameworks employed in the
proposed system for spalling and severity detection. The higher val-
ues for all other performance measures reflect the proposed spalling
and severity detection system’s improved performance. The suggested
system performs well for spalling and severity detection as the mloU,
precision, recall, and accuracy values increase.

The statistical performance for PSPNet is shown in Table 2; the result
for PSPNet architecture with encoders namely, Xception, ResNet-50,
MobileNet, and VGG-19, respectively. According to the metrics dis-
cussed above, PSPNet architecture with Xception gives the best result
among all the combinations (e.g., Dice Loss: 5.94%, mIoU: 88.78%,
Precision: 94.67%, Recall: 98.43%, Accuracy: 96.06%). The result
for ResNet-50 is pretty close to Xception. PSPNet with default encoder-
decoder network gives comparatively poor results than with the other
encoder-decoder networks (e.g., Dice Loss: 8.33%, mlIoU: 84.62%,
Precision: 92.53%, Recall: 90.82%, Accuracy: 92.40%). The perfor-
mance of VGG-19 with the PSPNet architecture shows that it closely
follows the performance of PSPNet with the default encoder-decoder
network (e.g., Dice Loss: 7.82%, mloU: 85.49%, Precision: 94.44%,
Recall: 92.95%, Accuracy: 92.97%). For PSPNet, the decreasing CNN
layers (during employing Xception, ResNet-50, MobileNet, VGG-19)
have a negative impact on the performance for spalling and severity
level detection.
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Fig. 10. CCE loss curves for training and validation (a) UNet, (b) UNet with ResNet-50, (c) UNet with Xception, (d) UNet with MobileNet, (e) UNet with VGG-19.

Table 2
Performance comparison among Deep architectures with different backbone networks.

Base Model Encoder Dice Loss (%) mloU (%) Precision (%) Recall (%) Accuracy (%)

SegNet - 9.58 82.49 93.99 95.37 92.40

? Xception 6.80 87.97 90.86 98.43 95.19

” ResNet-50 6.96 86.97 93.77 96.39 94.57

” MobileNet 8.49 84.35 95.36 95.79 94.23

” VGG-19 16.30 71.96 93.83 92.34 92.0

UNet - 11.78 78.90 92.73 91.42 89.65

? Xception 7.28 86.43 92.75 97.23 93.79

” ResNet-50 11.58 79.24 90.68 92.89 92.04

” MobileNet 7.36 86.29 93.91 96.13 93.52

” VGG-19 18.16 69.26 89.49 86.53 88.59

PSPNet - 8.33 84.62 92.53 90.82 92.40

? Xception 5.94 88.78 94.67 98.43 96.06

” ResNet-50  6.90 87.16 92.08 97.20 95.58

” MobileNet 7.44 86.13 91.19 93.46 93.58

” VGG-19 7.82 85.49 94.44 92.95 92.97

In Table 2 the results are shown for UNet framework with differ- 97.23%, Accuracy: 93.79%). The comparative analysis shows that

ent encoder-decoder networks with metrics Dice loss, mloU, Precision, MobileNet follows the performance of Xception quite closely. Unlike
Recall, and Accuracy. The results are provided for UNet architecture PSPNet, ResNet-50 provides a pretty low performance than Xception
with encoders namely, Xception, ResNet-50, MobileNet, and VGG-19. and MobileNet. The performance of VGG-19 encoder is comparatively
Similarly to the performance of PSPNet, UNet architecture provides the poor than the other encoder-decoder networks for UNet architecture
best result with Xception among all UNet architecture combinations (e.g., Dice Loss: 18.16%, mIoU: 69.26%, Precision: 89.49%, Recall:

(e.g., Dice Loss: 7.28%, mloU: 86.43%, Precision: 92.75%, Recall: 86.53%, Accuracy: 88.59%).
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Quantitative measures used for evaluating the performance of deep network archi-
tectures. Spalling pixels belong to the positive class and non-spalling pixels belong

to the negative class.

Number of accurately identified spalling pixels
Number of pixels erroneously labeled as spalling pixels
Number of accurately identified non-spalling pixels

the number of pixels detected as non-spalling erroneously

Measure Definition Description
TP True Positive
FP False Positive
TN True Negative
FN False Negative
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Fig. 11. Spalling ratio of 100 test images for deep spalling areas.

The comparative analysis of the statistical performance of SegNet
architecture with default encoder-decoder and Xception, ResNet-50,
MobileNet, and VGG-19 are shown in Table 2. The SegNet architecture
with VGG-19 encoder performs similarly to the UNet architecture with
VGG-19 encoder; comparatively poor results than the other encoder-
decoder networks (SegNet with VGG-19: Dice Loss: 16.30%, mIoU:
71.96%, Precision: 93.83%, Recall: 92.34%, Accuracy: 92.0%). The
comparative analysis shows that the SegNet architecture with Xception
provides the best result among all the combinations (e.g., Dice Loss:
6.80%, mIoU: 87.97%, Precision: 90.86%, Recall: 98.43%, Accu-
racy: 95.19%). For SegNet architecture, the performance achieved with
ResNet-50 matches the performance of Xception pretty closely. When
using Xception, ResNet-50, MobileNet, and VGG-19 with SegNet archi-
tecture, the performance of spalling and severity level detection suffers
as the number of CNN layers decreases.

The above discussion and performance evaluation shown in Table 2
infer that PSPNet gives comparatively good performance for detecting
spalling and severity levels among the three deep architectures. For all
three deep architectures, Xception gives the best result. The VGG-19
provides comparatively poor performance compared to other encoder-
decoder networks for detecting spalling and severity levels with SegNet
and UNet architectures. For PSPNet architecture, the VGG-19 encoder
and PSPNet with the default encoder-decoder network both provide
poorer performance than other encoder-decoder networks.

Table 4 shows the results for the severity ranking of deep spalling
for three image categories.

Several ranking methods are proposed for civil infrastructure [88]
[89]. Moreover, we have analyzed our dataset and observed that we
should categorize the severity ranking for deep spalling areas. We have
300 images for testing the deep architectures for spalling severity de-
tection. Among the 300 images, there are around 100 images of deep
spalling areas. Based on our observation, we have defined the ranking
for deep spalling areas as very severe, medium severe, and less severe.
Fig. 11 shows the spalling ratio of 100 test images for deep spalling ar-
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eas. According to the spalling ratio and from our observations of the
dataset, we have defined thresholds for the severity ranking. The pre-
defined thresholds for the severity ranking are defined as: less severe
when Ratio <0.39, medium severe when, 0.4 < Ratio < 0.69, and very
severe when Ratio > 0.7. Table 4 displays the ratio, which is expressed
in terms of 100%. We have selected three different categories of im-
ages from the 100 deep spalling images. In Table 4, we presented the
results of the severity ranking for each deep architecture with differ-
ent backbone networks based on each selected image category. The
Input Size displays the total number of pixels of the image, which is
the same for all the images, Spalling Size refers to the number of pix-
els affected by deep spalling, Ratio is calculated using Equation (1) and
shown in 100%, and Severity Ranking determines the ranking of sever-
ity based on the ratio and the predefined threshold value. We compared
the severity ranking to ground truth for each image category. For most
of the models, the severity ranking follows the ranking of ground truth
very closely.

3.3. Qualitative analysis

This section presents the qualitative analysis of the proposed ap-
proach to show the non-statistical performance of the deep architectures
with different encoder-decoder networks. The performance evaluation
of different deep architectures for detecting spalling and severity level
segmentation has been shown in Fig. 12, Fig. 13, and Fig. 14. The
results highlight the overall performance of spalling and severity detec-
tion based on deep spalling, shallow spalling, and non-spalling images.

In Fig. 12, the results are shown for the PSPNet framework with
different encoder-decoder networks. We have mentioned earlier that
the images in our dataset are categorized as only deep spalling, deep
spalling with non-spalling area, only shallow spalling, shallow spalling
with non-spalling area, and non-spalling. For the PSPNet framework,
only deep spalling, shallow spalling with non-spalling, and non-spalling
areas were chosen as input to present the performance evaluation. In
Fig. 12, we have original image, ground truth which is pixel-by-pixel
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Results for severity ranking of deep spalling for three different image categories.

Input Image Model Name Input Size

(No. of Pixels)

Spalling Size Ratio (%)

(No. of Pixels)

Severity Ranking

Category 1 Ground Truth 65536
” PSPNet ”
” PSPNet(Xception) ”
? PSPNet(ResNet-50) ?
” PSPNet(MobileNet) ”
” PSPNet(VGG-19) ”
Ground Truth 4
” SegNet ”
SegNet(Xception)
” SegNet(ResNet-50) ”
” SegNet(MobileNet) ”
” SegNet(VGG-19) ”
Ground Truth ”
” UNet ”
” UNet(Xception) ”
? UNet(ResNet-50) ?
4 UNet(MobileNet) ”
” UNet(VGG-19) ”

65536 100 Very Severe
65003 99.19 Very Severe
65536 100 Very Severe
65401 99.79 Very Severe
60221 91.89 Very Severe
60006 91.56 Very Severe
20481 31.25 Less Severe
20222 30.86 Less Severe
20500 31.28 Less Severe
20377 31.09 Less Severe
20147 30.74 Less Severe
20110 30.69 Less Severe
29721 45.35 Medium Severe
35314 53.88 Medium Severe
31027 47.34 Medium Severe
25889 39.50 Less Severe
32276 49.25 Medium Severe
35080 53.52 Medium Severe

mapping of original image for each spalling class, result for PSPNet ar-
chitecture, result for PSPNet architecture with encoders namely, Xcep-
tion, ResNet-50, MobileNet, and VGG-19, respectively. The comparative
analysis in Fig. 12 shows that, PSPNet architecture with Xception gives
the best result among all the combinations. ResNet-50 provides pretty
similar performance to Xception. In comparison to ground truth, Mo-
bileNet gives some inaccurate predictions for deep spalling, shallow
spalling, and non-spalling images.

The PSPNet architecture with the default encoder and VGG-19 net-
work gives comparatively poor results compared to the other encoder-
decoder networks. Among the three severity classes of spalling, non-
spalling areas are predicted to be more accurate for all the architecture
combinations.

The results are shown for the UNet framework with different
encoder-decoder networks in Fig. 13. For the UNet framework, we have
chosen here deep spalling with a non-spalling area, shallow spalling
with a non-spalling area, and non-spalling area as input for performance
evaluation. A sticker serves as noise in the shallow spalling image. We
have the original image, ground truth, which is a pixel-by-pixel map-
ping of the original image for each spalling class, the result for UNet
architecture, and the result for UNet architecture with encoders namely,
Xception, ResNet-50, MobileNet, and VGG-19, as shown in Fig. 13, re-
spectively. Fig. 13 for Xception shows that the UNet architecture gives
the best result among all the combinations. The comparative analysis
shows that MobileNet follows the results of Xception. ResNet-50 pro-
vides pretty low performance compared to Xception and MobileNet,
unlike PSPNet. In comparison to ground truth, the results provided
by Unet architecture, UNet architecture with ResNet-50, and VGG-19
MobileNet have some inaccurate predictions for deep spalling, shal-
low spalling, and non-spalling images. Fig. 13 shows that the VGG-19
encoder performs poorly in comparison to the other encoder-decoder
networks.

The comparative analysis of SegNet architecture with the default
encoder-decoder and with Xception, ResNet-50, MobileNet, and VGG-
19 is shown in Fig. 14. The categorization of images for performance
evaluation of the SegNet framework was chosen here as deep spalling
with the non-spalling area, shallow spalling with non-spalling, and non-
spalling. In Fig. 14, we have the original image of deep spalling, shallow
spalling, and non-spalling area, ground truth which is pixel-by-pixel
mapping of the original image for each spalling class, result for Seg-
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Net architecture, result for SegNet architecture with encoders namely,
Xception, ResNet-50, MobileNet, and VGG-19, respectively. The Seg-
Net architecture with the VGG-19 encoder gives comparatively poor
results compared to other encoder-decoder networks like the UNet ar-
chitecture. VGG-19 shows poor performance, especially for non-spalling
and shallow spalling classes. The non-spalling is predicted pretty accu-
rately by most of the architecture combinations, except for the Seg-
Net architecture with VGG-19. In Fig. 14, the comparative analysis
presents that the SegNet architecture with Xception gives the best result
among all the combinations for all the spalling severity classes. The re-
sults for ResNet-50 show that it matches the result for Xception pretty
closely. SegNet architecture with the default encoder-decoder network
gives poor results compared to ground truth, especially for shallow
spalling. MobileNet gives some incorrect predictions for deep and shal-
low spalling areas.

Based on the discussion above and the performance shown in
Fig. 12, 13, and 14, it can be concluded that most deep architectures
with encoder-decoder networks provide comparatively good results for
non-spalling areas. The performance evaluation for predicting deep
spalling and shallow spalling closely follows the performance evalu-
ation for predicting non-spalling areas. The performance evaluation
shows that, among the three deep architectures, PSPNet shows the best
performance for detecting spalling and severity classification. The Xcep-
tion gives the best results for detecting deep spalling, shallow spalling,
and non-spalling with SegNet, UNet, and PSPNet deep architectures.
Comparatively, VGG-19 shows poor performance in detecting spalling
and severity levels with UNet and SegNet architectures. For PSPNet,
the VGG-19 encoder closely follows the performance of PSPNet with
the default encoder-decoder network.

4. Conclusions and future work

This paper presents an innovative deep learning-based approach
to detect spalling and its severity levels in civil infrastructure using
encoder-decoder networks. The proposed method fills the gap in the
literature, where very few methods exist for detecting the severity level
of spalling accurately. Our study shows that deep learning-based ar-
chitectures with encoder-decoder networks offer high performance in
detecting spalling severity levels in different fields, including civil in-
frastructure.
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Fig. 12. Results are shown for the PSPNet framework with different encoder-
decoder networks.

We incorporated three different deep architectures and four back-
bone networks in our proposed methodology to achieve the best per-
formance. Our results indicate that the PSPNet-based deep architecture
with the Xception encoder offers the best performance. We have also
conducted statistical and non-statistical analyses to demonstrate the
proposed method’s high performance.

Our study has several potential future directions, including im-
proving the proposed deep architecture’s efficiency by reducing power
consumption and memory requirements while achieving better per-
formance in detecting spalling and severity levels. Additionally, this
approach’s adaptability to detect various concrete distresses using a
deep architecture-based combined detection process is worth explor-
ing. Overall, our proposed method provides a promising solution for
detecting and classifying spalling severity levels in civil infrastructure,
which is crucial for ensuring the structural health of concrete.
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Fig. 13. Results are shown for the UNet framework with different encoder-
decoder networks.
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