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Abstract—In this paper, we proposed a novel multi-camera
auto-adjustment framework for infrastructure inspections,
specifically 3D point cloud mapping via lidar-camera fusion.
Our method uses a single controller for consensus target bright-
ness and adaptive lighting. In addition, a vignette correction
filter was created to apply to images outputted from cameras
to avoid dark strips on the point cloud data. This approach
is designed to be a versatile, real-time friendly, and platform
agnostic software stack.

I. INTRODUCTION

Regular, timely, and thorough inspections are essential for
maintaining structures and ensuring their safe use. However,
high-quality inspections require a significant time commit-
ment from highly skilled inspectors. Robotics has the po-
tential to both reduce labor and increase the overall quality
of inspections by taking over the redundant (i.e., boring),
dirty and hazardous parts of the inspection process, allowing
inspectors to use their time more efficiently. As a result,
the development of novel robotic platforms has received
considerable attention in recent years within the field of
Structural Health Monitoring as a means for improving
inspection processes.

The United States Army Corps of Engineers (USACE)
recognizes the potential for improving inspection outcomes
through robotics and is developing tools and methods for
robotic inspection. One area of focus is on thorough, multi-
sensor infrastructure mapping to generate a detailed record
of the structure during each inspection that can be compared
to past and future inspections for change detection.

As an effort to ensure safety and accuracy in the inspec-
tion process, USACE Engineer Research and Development
Center (ERDC) has developed an amphibious unmanned
ground vehicle (UGV), called the DamBot™ [1], equipped
with multiple sensors, which can be remotely controlled to
perform first-look inspection. The platform is capable of real
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Fig. 1. Manual inspection has an inspector in the dark with a camera and a
flashlight. This method is work-intensive, dangerous, and time-consuming.
In contrast, we can have a multi-cam UGV with LED driving through
collecting data faster with better accuracy.

time Simultaneous Localization and Mapping (SLAM) using
RTABMAP [2].

The DamBot™ is designed to inspect large underground
conduits (10+ m diameter), as shown in Figure 1. Having
a robotic inspection platform eliminates several risk factors
including bad air, poor evacuation paths, and the potential of
tunnel collapse or sudden release of water.

A. Background

To quantitatively evaluate the structural health of infras-
tructure, it is crucial to capture clean and consistent images
of all deterioration, including cracks, corrosion, concrete
spalling, water leaks, etc. It is equally important to accurately
document the location of each image so the deterioration can
be appropriately tracked.

While our overall inspection results with the DamBot™
have been good, there are still problems related to image
quality. In this paper, we focus on improving the image pre-
processing and/or post-processing of machine vision camera
data to ensure good image quality and improve 3D Mapping
and Localization during inspection.

To that end, well-exposed and low-noise images are crucial
to the vision systems on mobile/robotic inspection platforms.
While cameras with built-in Auto-Brightness algorithms are
common, they are not always versatile enough to meet the
needs of a specific application, making a custom off-device
algorithm advantageous. Further, with multi-camera setups,
it is crucial to be consistent between cameras, which cannot
be accomplished with the onboard algorithms on typical
cameras. Each camera has a different perspective, i.e., it
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may see different objects and experience different lighting
conditions, and therefore, will make unique adjustments to
the image that lead to anomalies when the data is combined.

Therefore, the authors of this report developed custom
auto-brightness tools and methods to address the following
three issues: (1) good multi-camera fusion requires consis-
tency between devices, consistency is difficult when each
camera adjusts hyperparameters like exposure time, gain, and
color saturation using its own independent Auto-Exposure
(AE), Auto-Gain (AG), and Auto-White-Balance (AWB)
algorithms. The result is image anomalies like those in Figure
2. (2) While wide-angle lenses are advantageous in terms of
the field of view, they often result in less light toward the
sensor’s edges, i.e., vignetting. Figure 6 shows an extreme
case of vignetting affecting a map. Auto-exposure algorithms
and/or gamma correction does not solve this problem. (3)
For a mobile robotic platform that frequently works in a
dark environment, ambient lighting is insufficient. Active
lighting is required, ideally with dynamic control that works
in tandem with other auto-brightness approaches. Static light
like [3], [4] results in non-colorize or black & light 3D map.

Fig. 2. The images on top are two cameras pointing different directions in
the same environment with their independent AE algorithm which provides
different lighting. As a result, the point-cloud colorization (bottom image)
is split down the middle even though it should be the same. [5]

Since structural inspection iS a continuous process, we
want to create a robust framework, not just for dams. In
this paper, we propose a novel multi-camera auto-adjust
framework able to smoothly transition all cameras to reach
a consensus brightness by optimizing the exposure time,
gain, actively adjusting light level, and applying a vignette
correction filter in real time. This framework is designed to
be a versatile and platform-agnostic software stack.

II. OUTLINE

This paper is presented in the following order: After the
related work in section III, we will be discussing the multi-

camera image pipeline used on the Dambot™ in section IV.

Then, we will discuss a targeted experimental setup, present
the result of our experiment, and evaluate our work in section
V. Finally, we will discuss our results’ conclusion and future
usage in section VI.

III. RELATED WORK

Robotic platforms like Dambot™ present many benefits,
mainly because they increase inspection workers’ safety and
the inspections’ repeatability by increasing documentation
and avoiding human errors. Prime examples include [6]-
[13]. [7], [8] are steel bridge inspection robots utilizing
adhesion force generated by permanent magnets to traverse
regions of the bridges inaccessible to human inspectors.
[12] by Aurora et al. proposed a heterogeneous robotic
system using an unmanned ground vehicle with manipulation
capability and aerial robots for explorations and 3D mapping
in highly unstructured environments. [13] by Gibb et al. uses
a UGV equipped with multiple non-destructive evaluations
(NDE) sensors and implements a sensor fusion method to
perform an in-depth inspection of civil infrastructure like
parking garages, bridges, and pavements.

There have been many attempts at auto-exposure methods.
Generally, auto-exposure methods adjust the camera expo-
sure time to reach a targeted brightness. Basic approaches
consist of measuring the average or median intensity of
every pixel of an image, then using some variation of control
schemes like the proportional-integral-derivative controller
(PID) [14] to achieve a target value. Another approach uses
the image intensity histogram metric [15], [16], which is
fast but is not robust against complex scenarios. [17] uses
an auto-adjusting technique based on image entropy metric
for adaptive to different lighting conditions. The drawback
of the entropy and histogram approach is that they do not
work well in unknown environments since they rely on prior
information. Approaches that do not need reference are [18]—
[20] based on image gradient techniques to maximize image
information via mapping function. However, a significant
problem with them is their tendency to over-expose images
by favoring high exposure time. To avoid this problem,
[21] introduced an image quality metric based on gradi-
ent, entropy, and noise and maximized it with the Nelder-
Mead (NM) [22] method to obtain well-exposed images by
controlling the exposure time and gain parameters. While
this method wields good images when it finally converges,
the parameter convereargence update is unstable with high,
non-smooth oscillation and slow for high-resolution images.
Moreover, it works only when cameras are static since the
NM method requires two or more (simplex) matching images
at different exposure times and gains. In addition, the 3D
colorized mapping would be affected due to the constant
change in exposure and time to get simplex data.

Most methods control exposure time or gain respectively,
but these approaches come at a cost: long exposure time leads
to motion blur, while high gain creates image noise. Our
approach controls another variable, light level through active
lighting. The reason is that we want to minimize the noise
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by minimizing the gain. However, decreasing the gain makes
the image received darker, which is compensated by the light
level. In addition, our parameter convergence is smooth with
low oscillation.

Moreover, while extensive work has been done on single-
camera setups, multi-camera auto-adjusting has yet to be
given the same attention. For most mobile platforms, in-
cluding ours, multi-camera setups in different directions
are essential for visual odometry, mapping, etc. Acquiring
the same brightness images can be difficult, especially in
challenging light condition, since each camera has its own
independent auto-adjustment algorithm. Current approaches
[23], [24] usually require post-processing, which does not
work for localization and real-time mapping. In compari-
son, our multi-camera setup allows an unlimited number of
cameras to obtain similar brightness and coherently exposed
images.

IV. METHOD

The DamBot™ project uses GigE protocol cameras capa-
ble of sending images and associated meta-data over ethernet
to a master processing computer. The cameras can also
respond to real-time requests from the computer to change
image settings. The cameras are feature-rich and include
onboard algorithms to adjust the exposure time, gain, and
light level to achieve a target brightness. The image sensors
are a Bayer filter mosaic.

In our pipeline, the raw output Bayer images are trans-
ferred to the computer in a Bayer RGGB format, leaving the
process of up-sampling into a full RGB image for later in the
pipeline. This approach provides two immediate benefits: 1)
only one-third as much data is transferred over the network 2)
vignetting correction can be performed before up-sampling
to minimize data processing within the vignette filter.

A control algorithm on the computer is simultaneously
monitoring all images for brightness and sending coordinated
control signals to the lights and the cameras to regulate
lighting, exposure time, and hardware gain. A flowchart of
the method is shown in Figure 3.
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The flowchart of our multi-cam auto adjustment pipeline.

A. Definition

A simple yet efficient approach for auto-adjusting the
images was chosen where all cameras maintain the same
setting. However, a subset of the cameras can be used for
brightness evaluation. Cameras are defined as

C =|[Cy,..,Cy],

P=[P,.., Py )

where C' is a set of all cameras used with n being the
number of cameras used. P is a set of master cameras,
with m being the number of master cameras. Since P C
C, m < n. Master cameras are cameras considered a
priority; therefore, the only ones considered for light level,
L calculations.

The image received from each camera is defined as:

X = [xg,...xn), X € RFZW
% _ {median(X) if M = "median”

mean(X) otherwise
where X is image at height and width of H and W. z;
is intensity of pixel 4, and x; € [0,255]. X is the average
(median or mean) brightness/intensity of image X depending
on whether or not the method, M is "median” or “mean.”

2

B. Vignette Correction Filter

Vignette is caused by an attenuation of intensity from the
center of the image, creating dark edges around images. The
source of our problem is classified as a natural vignette, the
falloff due to geometric optics, where different regions of the
image plane receive different irradiance. The problem lingers
despite attempts to calibrate cameras’ settings like aperture
and focal length. The dark edges create problems like dark
train track-like point cloud data of the robot’s path on the
map like in Figure 6.

Our vignette correction filter is created by using the lens’s
brightness percent decay data points from [25]. The curve for
aperture of f2.4 and magnification of -0.01 was selected from
the referenced report. Then, we fit a fifth-degree polynomial
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function to the curve for use in the software, B(x). To fit,
we minimize the squared error of a few manually extracted
points:

k

E= \B(Jﬁz‘)—%‘|2
; 3)
0<B(z)<1

where k is the amount of data points, and y is the ground
truth.

Our correction filter, F € R¥*W where H and W are
the height and width of the filter, which are the same as the
image (X) width and height, and

F;j =1—-B(di;)+1
dij = |pij — | @
pij — | = VI — ) * pul? + [(J — ce) * pul?,

where Fj; is the brightness percent increase at row ¢ and
column j and d;; is the is the distance between pixel p;;
and the center pixel ¢, where ¢, and c. is the center row
and column respectively. p, and p,, are the pixel width and
height. Since every pixel of the image X;; apart from the
center has brightness decrease, the filter applied needs to
increase the brightness of X;; element. Hence, all F;; > 1.

The correction filter F' is applied to the image X via cell-
wise multiplication.

C. Brightness Controller

To reach certain brightness, we need a controller to change
lights and exposure time. To keep it simple, we used a
variation of the PID controller with the error representing the
difference between the average brightness and target bright-
ness. When multiple master cameras are defined, brightness
is simply the mean brightness of all master cameras

t
u(t) = Kpe(t) + IA{—; /6t e(t)dt + Kq dz(tt)

that is similar to the regular PID. For the integral part,
which accounts for all past values, we instead limited it to
ot. For example, if d¢ = 10, the system will use the last ten
values. In addition, we divide the past values by At the time
between t and 6t where At = t,(y) — 0te(y).

®)

D. Weight Distribution

For our multi-consensus controller, we used weight distri-
bution depending on the quality of each image. Hence, we
used the quality metric, gradient and entropy from [21]

fi = Lgradient + Lentropy (6)
fi
Wi = = (M
Zi:o fi

where Z?;O w; = 1. The image with higher quality get
weighted more in the computation seen in Algorithm 1 line
15.

Algorithm 1: Multi-Camera Auto-Adjust Control

E, is the previous exposure time

L, is the previous light

Input: All cameras, C' and target brightness, T’
for each camera i in C' do

(1) Exposure time:

- Compute X from Eq. 2) with T

- Compute new Exposure time E; through
auto-exposure using X.

8 (2) Gain:

9 - Compute X from Eq. (2) with T'

10 - Compute new Gain, G; through auto-gain using
X.

11 (3) Light:

12 if j € P then

N R W N -

13 - Compute change in light u;(t) with Eq. (5)
and K; where e(t) =T — X
14 - Compute new light level, L; = L, + w(t)

o
wn

Compute L = 37" | Ljw;
6 Send L to the LED and F; and G; to all camera C

ot

E. Multi-Camera Auto-Adjust Control Algorithm

To achieve brightness consistency for all cameras, we
set a consensus target brightness, T', which the weighted
brightness value X needs to reach. We choose median or
mean brightness depending on situations, discussed more
in section V. Algorithm 1 shows our multi-camera auto-
adjust control at every time-step with hyper-parameters k;,
m, T where k; is a set of [K), K;, K4] parameters for
exposure time and light PID equation 5. m is the number
of master cameras. Each camera has an exposure time (1)
and gain (2) calculation that utilizes equation 5 as seen in
Algorithm 1. For light, a static light is a very inefficient

Fig. 4.

Our DamBot™ setup: four cameras in each direction, a 360°
Ouster LiDAR at the center and LED lights.
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power consumption usage. Instead, we have an adaptive
light controller that minimizes the light brightness as much
as possible while the images’ X still reach 7" within the
exposure and gain limits provided.

V. EXPERIMENT
A. Setup

The experimental setup is shown in Figure 4 with four LU-
CID Atlas 7.1 megapixel cameras with Schneider-Kreuznach
lens outputting HxW of 3,208x2,200 resolution images.
The main computational power consists of a thirty-two-core
AMD Ryzen Threadripper 3970X with 128Gbytes of RAM
and an NVIDIA RTX 2080Ti GPU. The multi-camera system
is fully calibrated, rectified, and integrated with the LiDAR
to create a colorized point cloud.

Power to our lights are controlled by a Talon-SRX motor
controller using Pulse-Width-Modulation (PWM) to vary the
effective voltage from 0 to 24 volts. The controller has a
PWM frequency of 15kHz and outputs is set in terms of a
duty cycle, ranges from [0,1] where 0 is 0% and 1 is 100%
duty cycle.

Throughout the experiments, we set pp = p,, = 0.0045,
ky =[3e —3,1le — 4,1e — 4], and T = 64 all of which were
empirically decided. Moreover, we constrained the upper
limit of exposure time to 6000 microseconds because it was
found to be the threshold for motion blur at typical operating
speeds. The maximum gain was limited to 17 dB since it
was the maximum value before noise became noticeable in
the images. Since speed determines the acceptable exposure
time, the team hopes to add dynamic exposure limits based
on perceived vehicle speed in upcoming research.

TABLE 1
Quality Metric when Converged
Gradient & Entropy Entropy
Mean Median Mean Median
1.55 0.77 0.954 0.853
TABLE 1I
Duty Cycle in Dark Environment
Mean Median Static
0.36 0.45 1.0
Duty Cycle in Well Lit Environment
Mean Median Static
0 0 1.0
B. Result

First, we test both mean and median brightness methods to
determine the difference between the two approaches. To do
a quantitative test, we used the gradient and entropy metric
shown in [21]. We chose gradient and entropy because the
gradient metric likes overexposure images; hence, we paired
it with entropy. Entropy shows the amount of information
contained in the image. As seen in Table I, the usage of
mean 7' outperforms median brightness in terms of these
metrics.

Next, we tested the static light against the adaptive light.
Our quantitative test compares the usage of power. As seen
in Table II, while static light is using full power at all
times, the usage of adaptive light varies depending on the
environment: it turns uses minimal light while achieving T’
and will turn completely off when in a well lit environment.
In particular, mean 7T used the least amount of power in
a dark environment at 0.36 power or 126 Watts, making it
the optimal T'. Finally, we test the efficiency of the vignette
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Fig. 5. Image brightness falloff from center of original image and correction
filter.

correction filter. As seen in Figure 5, the correction filter’s
brightness decay is much less than the raw output, decreasing
approximately half as much at around 70% as opposed to
40%. Moreover, while the correction filter failed to negate
the irradiance fall-off entirely, it prevented the train-track-like
strips from showing up in the point cloud map, as shown
in Figure 6. In addition, the processing time of applying
of filter was only 30 ms (33.34 Hz) for a large image
resolution of 3208x2200, making it very suitable for real-
time applications.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel real-time multi-camera
auto-adjustment framework for infrastructure inspection,
specifically for 3D mapping. Our framework auto-adjust the
exposure time, gain, and light level so all camera reached
a consensus target brightness while applying a vignette cor-
rection filter to the output image. The result was the output
images were able to achieve similar brightness sufficient for
3D mapping. In particular, the vignette correction filter was
able to remove enough of the vignette to solve the stripping
problem on the 3D map, demonstrated in Figure 6. Due to the
usage of simple control algorithms and Bayer image format,
it was able to run very smoothly in real-time. However,
we recognize that average pixel brightness is not a robust
enough metric. In addition, our vignette correction filter was
not able to fully negate the irradiance fall-off across each
image pixels. In the future, we plan to extend our work to a
more robust brightness metric while improving our vignette
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correction filter to have even brightness percentage across all
pixels.

Fig. 6. Point cloud data generated by rtabmap using data from LiDAR
and vision cameras. The top image shows data from vision cameras. The
bottom image shows data from vision cameras with the vignette correction
filter. There’s also a 25 meter ruler at the bottom to show the scale.
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