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Abstract—In this paper, we proposed a novel multi-camera
auto-adjustment framework for infrastructure inspections,
specically 3D point cloud mapping via lidar-camera fusion.
Our method uses a single controller for consensus target bright-
ness and adaptive lighting. In addition, a vignette correction
lter was created to apply to images outputted from cameras
to avoid dark strips on the point cloud data. This approach
is designed to be a versatile, real-time friendly, and platform
agnostic software stack.

I. INTRODUCTION

Regular, timely, and thorough inspections are essential for

maintaining structures and ensuring their safe use. However,

high-quality inspections require a signicant time commit-

ment from highly skilled inspectors. Robotics has the po-

tential to both reduce labor and increase the overall quality

of inspections by taking over the redundant (i.e., boring),

dirty and hazardous parts of the inspection process, allowing

inspectors to use their time more efciently. As a result,

the development of novel robotic platforms has received

considerable attention in recent years within the eld of

Structural Health Monitoring as a means for improving

inspection processes.

The United States Army Corps of Engineers (USACE)

recognizes the potential for improving inspection outcomes

through robotics and is developing tools and methods for

robotic inspection. One area of focus is on thorough, multi-

sensor infrastructure mapping to generate a detailed record

of the structure during each inspection that can be compared

to past and future inspections for change detection.

As an effort to ensure safety and accuracy in the inspec-

tion process, USACE Engineer Research and Development

Center (ERDC) has developed an amphibious unmanned

ground vehicle (UGV), called the DamBot™ [1], equipped

with multiple sensors, which can be remotely controlled to

perform rst-look inspection. The platform is capable of real

The use of trade, product, or rm names in this report is for descriptive
purposes only and does not imply endorsement by the U.S. Government.
The tests described and the resulting data presented herein were obtained
from research conducted under the USACE Civil Works Flood and Coastal
Systems R&D funding. The views, opinions, ndings, and conclusions
reected in this publication are solely those of the authors and do not
represent the ofcial policy or position of the ERDC, USACE, or the
Department of Defense.

This work was also partially funded by the U.S. National Science
Foundation (NSF) under grants NSF-CAREER: 1846513 and NSF-PFI-TT:
1919127.

1Chuong Le and Hung La are with the Advanced Robotics and Au-
tomation (ARA) Lab, Department of Computer Science and Engineering,
University of Nevada, Reno, NV 89557, USA.

2 Steven Bunkley, Charles Ellison, and Anton Netchaev are with the
USACE Engineer Research and Development Center (ERDC), Information
Technology Lab, Vicksburg, MS 39180, USA.

Fig. 1. Manual inspection has an inspector in the dark with a camera and a
ashlight. This method is work-intensive, dangerous, and time-consuming.
In contrast, we can have a multi-cam UGV with LED driving through
collecting data faster with better accuracy.

time Simultaneous Localization and Mapping (SLAM) using

RTABMAP [2].

The DamBot™ is designed to inspect large underground

conduits (10+ m diameter), as shown in Figure 1. Having

a robotic inspection platform eliminates several risk factors

including bad air, poor evacuation paths, and the potential of

tunnel collapse or sudden release of water.

A. Background

To quantitatively evaluate the structural health of infras-

tructure, it is crucial to capture clean and consistent images

of all deterioration, including cracks, corrosion, concrete

spalling, water leaks, etc. It is equally important to accurately

document the location of each image so the deterioration can

be appropriately tracked.

While our overall inspection results with the DamBot™

have been good, there are still problems related to image

quality. In this paper, we focus on improving the image pre-

processing and/or post-processing of machine vision camera

data to ensure good image quality and improve 3D Mapping

and Localization during inspection.

To that end, well-exposed and low-noise images are crucial

to the vision systems on mobile/robotic inspection platforms.

While cameras with built-in Auto-Brightness algorithms are

common, they are not always versatile enough to meet the

needs of a specic application, making a custom off-device

algorithm advantageous. Further, with multi-camera setups,

it is crucial to be consistent between cameras, which cannot

be accomplished with the onboard algorithms on typical

cameras. Each camera has a different perspective, i.e., it
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may see different objects and experience different lighting

conditions, and therefore, will make unique adjustments to

the image that lead to anomalies when the data is combined.

Therefore, the authors of this report developed custom

auto-brightness tools and methods to address the following

three issues: (1) good multi-camera fusion requires consis-

tency between devices, consistency is difcult when each

camera adjusts hyperparameters like exposure time, gain, and

color saturation using its own independent Auto-Exposure

(AE), Auto-Gain (AG), and Auto-White-Balance (AWB)

algorithms. The result is image anomalies like those in Figure

2. (2) While wide-angle lenses are advantageous in terms of

the eld of view, they often result in less light toward the

sensor’s edges, i.e., vignetting. Figure 6 shows an extreme

case of vignetting affecting a map. Auto-exposure algorithms

and/or gamma correction does not solve this problem. (3)

For a mobile robotic platform that frequently works in a

dark environment, ambient lighting is insufcient. Active

lighting is required, ideally with dynamic control that works

in tandem with other auto-brightness approaches. Static light

like [3], [4] results in non-colorize or black & light 3D map.

Fig. 2. The images on top are two cameras pointing different directions in
the same environment with their independent AE algorithm which provides
different lighting. As a result, the point-cloud colorization (bottom image)
is split down the middle even though it should be the same. [5]

Since structural inspection is a continuous process, we

want to create a robust framework, not just for dams. In

this paper, we propose a novel multi-camera auto-adjust

framework able to smoothly transition all cameras to reach

a consensus brightness by optimizing the exposure time,

gain, actively adjusting light level, and applying a vignette

correction lter in real time. This framework is designed to

be a versatile and platform-agnostic software stack.

II. OUTLINE

This paper is presented in the following order: After the

related work in section III, we will be discussing the multi-

camera image pipeline used on the DambotTM in section IV.

Then, we will discuss a targeted experimental setup, present

the result of our experiment, and evaluate our work in section

V. Finally, we will discuss our results’ conclusion and future

usage in section VI.

III. RELATED WORK

Robotic platforms like DambotTM present many benets,

mainly because they increase inspection workers’ safety and

the inspections’ repeatability by increasing documentation

and avoiding human errors. Prime examples include [6]–

[13]. [7], [8] are steel bridge inspection robots utilizing

adhesion force generated by permanent magnets to traverse

regions of the bridges inaccessible to human inspectors.

[12] by Aurora et al. proposed a heterogeneous robotic

system using an unmanned ground vehicle with manipulation

capability and aerial robots for explorations and 3D mapping

in highly unstructured environments. [13] by Gibb et al. uses

a UGV equipped with multiple non-destructive evaluations

(NDE) sensors and implements a sensor fusion method to

perform an in-depth inspection of civil infrastructure like

parking garages, bridges, and pavements.

There have been many attempts at auto-exposure methods.

Generally, auto-exposure methods adjust the camera expo-

sure time to reach a targeted brightness. Basic approaches

consist of measuring the average or median intensity of

every pixel of an image, then using some variation of control

schemes like the proportional–integral–derivative controller

(PID) [14] to achieve a target value. Another approach uses

the image intensity histogram metric [15], [16], which is

fast but is not robust against complex scenarios. [17] uses

an auto-adjusting technique based on image entropy metric

for adaptive to different lighting conditions. The drawback

of the entropy and histogram approach is that they do not

work well in unknown environments since they rely on prior

information. Approaches that do not need reference are [18]–

[20] based on image gradient techniques to maximize image

information via mapping function. However, a signicant

problem with them is their tendency to over-expose images

by favoring high exposure time. To avoid this problem,

[21] introduced an image quality metric based on gradi-

ent, entropy, and noise and maximized it with the Nelder-

Mead (NM) [22] method to obtain well-exposed images by

controlling the exposure time and gain parameters. While

this method wields good images when it nally converges,

the parameter convereargence update is unstable with high,

non-smooth oscillation and slow for high-resolution images.

Moreover, it works only when cameras are static since the

NM method requires two or more (simplex) matching images

at different exposure times and gains. In addition, the 3D

colorized mapping would be affected due to the constant

change in exposure and time to get simplex data.

Most methods control exposure time or gain respectively,

but these approaches come at a cost: long exposure time leads

to motion blur, while high gain creates image noise. Our

approach controls another variable, light level through active

lighting. The reason is that we want to minimize the noise
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Fig. 3. The owchart of our multi-cam auto adjustment pipeline.

by minimizing the gain. However, decreasing the gain makes

the image received darker, which is compensated by the light

level. In addition, our parameter convergence is smooth with

low oscillation.

Moreover, while extensive work has been done on single-

camera setups, multi-camera auto-adjusting has yet to be

given the same attention. For most mobile platforms, in-

cluding ours, multi-camera setups in different directions

are essential for visual odometry, mapping, etc. Acquiring

the same brightness images can be difcult, especially in

challenging light condition, since each camera has its own

independent auto-adjustment algorithm. Current approaches

[23], [24] usually require post-processing, which does not

work for localization and real-time mapping. In compari-

son, our multi-camera setup allows an unlimited number of

cameras to obtain similar brightness and coherently exposed

images.

IV. METHOD

The DamBotTM project uses GigE protocol cameras capa-

ble of sending images and associated meta-data over ethernet

to a master processing computer. The cameras can also

respond to real-time requests from the computer to change

image settings. The cameras are feature-rich and include

onboard algorithms to adjust the exposure time, gain, and

light level to achieve a target brightness. The image sensors

are a Bayer lter mosaic.

In our pipeline, the raw output Bayer images are trans-

ferred to the computer in a Bayer RGGB format, leaving the

process of up-sampling into a full RGB image for later in the

pipeline. This approach provides two immediate benets: 1)

only one-third as much data is transferred over the network 2)

vignetting correction can be performed before up-sampling

to minimize data processing within the vignette lter.

A control algorithm on the computer is simultaneously

monitoring all images for brightness and sending coordinated

control signals to the lights and the cameras to regulate

lighting, exposure time, and hardware gain. A owchart of

the method is shown in Figure 3.

A. Denition

A simple yet efcient approach for auto-adjusting the

images was chosen where all cameras maintain the same

setting. However, a subset of the cameras can be used for

brightness evaluation. Cameras are dened as

C = [C0, .., Cn],

P = [P0, .., Pm]
(1)

where C is a set of all cameras used with n being the

number of cameras used. P is a set of master cameras,

with m being the number of master cameras. Since P ⊆

C, m ≤ n. Master cameras are cameras considered a

priority; therefore, the only ones considered for light level,

L calculations.

The image received from each camera is dened as:

X = [x0, ...xn], X ∈ R
HxW

X =


median(X) if M = ”median”

mean(X) otherwise

(2)

where X is image at height and width of H and W . xi

is intensity of pixel i, and xi ∈ [0, 255]. X is the average

(median or mean) brightness/intensity of image X depending

on whether or not the method, M is ”median” or ”mean.”

B. Vignette Correction Filter

Vignette is caused by an attenuation of intensity from the

center of the image, creating dark edges around images. The

source of our problem is classied as a natural vignette, the

falloff due to geometric optics, where different regions of the

image plane receive different irradiance. The problem lingers

despite attempts to calibrate cameras’ settings like aperture

and focal length. The dark edges create problems like dark

train track-like point cloud data of the robot’s path on the

map like in Figure 6.

Our vignette correction lter is created by using the lens’s

brightness percent decay data points from [25]. The curve for

aperture of f2.4 and magnication of -0.01 was selected from

the referenced report. Then, we t a fth-degree polynomial
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function to the curve for use in the software, B(x). To t,

we minimize the squared error of a few manually extracted

points:

E =

k

i=0

|B(xi)− yi|
2

0 ≤ B(x) ≤ 1

(3)

where k is the amount of data points, and y is the ground

truth.

Our correction lter, F ∈ R
HxW where H and W are

the height and width of the lter, which are the same as the

image (X) width and height, and

Fij = 1−B(dij) + 1

dij = |pij − c|

|pij − c| =


[(i− cr) ∗ ph]2 + [(j − cc) ∗ pw]2,

(4)

where Fij is the brightness percent increase at row i and

column j and dij is the is the distance between pixel pij
and the center pixel c, where cr and cc is the center row

and column respectively. ph and pw are the pixel width and

height. Since every pixel of the image Xij apart from the

center has brightness decrease, the lter applied needs to

increase the brightness of Xij element. Hence, all Fij ≥ 1.
The correction lter F is applied to the image X via cell-

wise multiplication.

C. Brightness Controller

To reach certain brightness, we need a controller to change

lights and exposure time. To keep it simple, we used a

variation of the PID controller with the error representing the

difference between the average brightness and target bright-

ness. When multiple master cameras are dened, brightness

is simply the mean brightness of all master cameras

u(t) = Kpe(t) +
Ki

∆t

 t

δt

e(t)dt+Kd

de(t)

dt
(5)

that is similar to the regular PID. For the integral part,

which accounts for all past values, we instead limited it to

δt. For example, if δt = 10, the system will use the last ten

values. In addition, we divide the past values by ∆t the time

between t and δt where ∆t = te(t) − δte(t).

D. Weight Distribution

For our multi-consensus controller, we used weight distri-

bution depending on the quality of each image. Hence, we

used the quality metric, gradient and entropy from [21]

fi = Lgradient + Lentropy (6)

wi =
fim

i=0 fi
(7)

where
m

i=0 wi = 1. The image with higher quality get

weighted more in the computation seen in Algorithm 1 line

15.

Algorithm 1: Multi-Camera Auto-Adjust Control

1 Ep is the previous exposure time

2 Lp is the previous light

3 Input: All cameras, C and target brightness, T

4 for each camera i in C do

5 (1) Exposure time:

6 - Compute X from Eq. (2) with T

7 - Compute new Exposure time Ei through

auto-exposure using X .

8 (2) Gain:

9 - Compute X from Eq. (2) with T

10 - Compute new Gain, Gi through auto-gain using
X .

11 (3) Light:

12 if j ∈ P then

13 - Compute change in light ul(t) with Eq. (5)

and Kl where e(t) = T − X
14 - Compute new light level, Lj = Lp + ul(t)

15 Compute L =
m

j=1 Ljwj

16 Send L to the LED and Ei and Gi to all camera C

E. Multi-Camera Auto-Adjust Control Algorithm

To achieve brightness consistency for all cameras, we

set a consensus target brightness, T , which the weighted

brightness value X needs to reach. We choose median or

mean brightness depending on situations, discussed more

in section V. Algorithm 1 shows our multi-camera auto-

adjust control at every time-step with hyper-parameters kl,

m, T where kl is a set of [Kp, Ki, Kd] parameters for

exposure time and light PID equation 5. m is the number

of master cameras. Each camera has an exposure time (1)

and gain (2) calculation that utilizes equation 5 as seen in

Algorithm 1. For light, a static light is a very inefcient

Fig. 4. Our DamBotTM setup: four cameras in each direction, a 360◦

Ouster LiDAR at the center and LED lights.
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power consumption usage. Instead, we have an adaptive

light controller that minimizes the light brightness as much

as possible while the images’ X still reach T within the

exposure and gain limits provided.

V. EXPERIMENT

A. Setup

The experimental setup is shown in Figure 4 with four LU-

CID Atlas 7.1 megapixel cameras with Schneider-Kreuznach

lens outputting HxW of 3,208x2,200 resolution images.

The main computational power consists of a thirty-two-core

AMD Ryzen Threadripper 3970X with 128Gbytes of RAM

and an NVIDIA RTX 2080Ti GPU. The multi-camera system

is fully calibrated, rectied, and integrated with the LiDAR

to create a colorized point cloud.

Power to our lights are controlled by a Talon-SRX motor

controller using Pulse-Width-Modulation (PWM) to vary the

effective voltage from 0 to 24 volts. The controller has a

PWM frequency of 15kHz and outputs is set in terms of a

duty cycle, ranges from [0,1] where 0 is 0% and 1 is 100%

duty cycle.

Throughout the experiments, we set ph = pw = 0.0045,
kl = [3e− 3, 1e− 4, 1e− 4], and T = 64 all of which were

empirically decided. Moreover, we constrained the upper

limit of exposure time to 6000 microseconds because it was

found to be the threshold for motion blur at typical operating

speeds. The maximum gain was limited to 17 dB since it

was the maximum value before noise became noticeable in

the images. Since speed determines the acceptable exposure

time, the team hopes to add dynamic exposure limits based

on perceived vehicle speed in upcoming research.

TABLE I

Quality Metric when Converged

Gradient & Entropy Entropy

Mean Median Mean Median

1.55 0.77 0.954 0.853

TABLE II

Duty Cycle in Dark Environment

Mean Median Static

0.36 0.45 1.0

Duty Cycle in Well Lit Environment

Mean Median Static

0 0 1.0

B. Result

First, we test both mean and median brightness methods to

determine the difference between the two approaches. To do

a quantitative test, we used the gradient and entropy metric

shown in [21]. We chose gradient and entropy because the

gradient metric likes overexposure images; hence, we paired

it with entropy. Entropy shows the amount of information

contained in the image. As seen in Table I, the usage of

mean T outperforms median brightness in terms of these

metrics.

Next, we tested the static light against the adaptive light.

Our quantitative test compares the usage of power. As seen

in Table II, while static light is using full power at all

times, the usage of adaptive light varies depending on the

environment: it turns uses minimal light while achieving T

and will turn completely off when in a well lit environment.

In particular, mean T used the least amount of power in

a dark environment at 0.36 power or 126 Watts, making it

the optimal T . Finally, we test the efciency of the vignette

Fig. 5. Image brightness falloff from center of original image and correction
lter.

correction lter. As seen in Figure 5, the correction lter’s

brightness decay is much less than the raw output, decreasing

approximately half as much at around 70% as opposed to

40%. Moreover, while the correction lter failed to negate

the irradiance fall-off entirely, it prevented the train-track-like

strips from showing up in the point cloud map, as shown

in Figure 6. In addition, the processing time of applying

of lter was only 30 ms (33.34 Hz) for a large image

resolution of 3208x2200, making it very suitable for real-

time applications.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel real-time multi-camera

auto-adjustment framework for infrastructure inspection,

specically for 3D mapping. Our framework auto-adjust the

exposure time, gain, and light level so all camera reached

a consensus target brightness while applying a vignette cor-

rection lter to the output image. The result was the output

images were able to achieve similar brightness sufcient for

3D mapping. In particular, the vignette correction lter was

able to remove enough of the vignette to solve the stripping

problem on the 3D map, demonstrated in Figure 6. Due to the

usage of simple control algorithms and Bayer image format,

it was able to run very smoothly in real-time. However,

we recognize that average pixel brightness is not a robust

enough metric. In addition, our vignette correction lter was

not able to fully negate the irradiance fall-off across each

image pixels. In the future, we plan to extend our work to a

more robust brightness metric while improving our vignette
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correction lter to have even brightness percentage across all

pixels.

Fig. 6. Point cloud data generated by rtabmap using data from LiDAR
and vision cameras. The top image shows data from vision cameras. The
bottom image shows data from vision cameras with the vignette correction
lter. There’s also a 25 meter ruler at the bottom to show the scale.
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