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Abstract—Although experience sharing (ES) accelerates mul-
tiagent reinforcement learning (MARL) in an advisor-advisee
framework, attempts to apply ES to decentralized multiagent
systems have so far relied on trusted environments and over-
looked the possibility of adversarial manipulation and inference.
Nevertheless, in a real-world setting, some Byzantine attackers,
disguised as advisors, may provide false advice to the advisee
and catastrophically degrade the overall learning performance.
Also, an inference attacker, disguised as an advisee, may con-
duct several queries to infer the advisors’ private information
and make the entire ES process questionable in terms of privacy
leakage. To address and tackle these issues, we propose a
novel MARL framework (BRNES) that heuristically selects
a dynamic neighbor zone for each advisee at each learning
step and adopts a weighted experience aggregation technique
to reduce Byzantine attack impact. Furthermore, to keep the
agent’s private information safe from adversarial inference
attacks, we leverage the local differential privacy (LDP)-induced
noise during the ES process. Our experiments show that our
framework outperforms the state-of-the-art in terms of the steps
to goal, obtained reward, and time to goal metrics. Particularly,
our evaluation shows that the proposed framework is 8.32x
faster than the current non-private frameworks and 1.41x faster
than the private frameworks in an adversarial setting.

I. INTRODUCTION

Experience sharing (ES) [1] has become increasingly

signicant in the multiagent reinforcement learning (MARL)

[2] paradigm due to its efcacy in accelerating learning

performance. As the popularity of ES processes increases,

so do concerns about their security and privacy. Namely,

advisors’ shared experience shapes the learning behavior and

outcomes of an advisee [1]. A shared but malicious experi-

ence could mislead an advisee to take incorrect measures

during the experience harvesting (EH) phase of ES [3], [4].

Likewise, as the shared experience is computed based on the

inputs (e.g., reward signal) that commonly rely on advisors’

data, an inference attack on those may leak advisors’ private

information during the experience giving (EG) phase of

ES [5], [6]. These security (adversarial manipulation) and
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privacy (adversarial inference) threats, unfortunately, over-

looked by many related studies [1], [7]–[10]; can bring down

catastrophic consequences on MARL-based safety-critical

applications in domains such as robotics [2], cyber-physical

systems [11], automotive industries [12], etc. For example,

false advising from an advisor car in autonomous driving

may make lane-changing ambiguous and lead to severe road

accidents for an advisee car [13], whereas an inference attack

from an advisee may reveal sensitive data of the advisors [5],

[14]. Therefore, to facilitate a secure and private MARL for

next-generation robotic and autonomous systems, a study of

the adversarial manipulation and inference threats posed by

the current ES process is non-trivial.

Particularly, from a security perspective, false advising

threat is prominent in the decentralized MARL settings,

where there is no central authority to ensure the consensus on

advice integrity and agents’ authenticity, and thus susceptible

to Byzantine general problems [15]. Researchers in [3]

address this false advising threat from Byzantine advisors

in a MARL platform by adopting differential privacy (DP)

[16] at the advisee’s end. However, a strategic attacker can

exploit the DP-noise to conduct optimal false data injection

(or simply false advising) attacks and hamper the learning

outcomes signicantly [17], [18]. To tackle this, we propose

to incorporate the experience, whether it is differentially

private or not, into the advisee’s learning through a weighted

experience aggregation technique.

From a privacy perspective, we argue that inference attack-

ers, disguised as advisees, could try to infer advisors’ sensi-

tive information by recursively querying their experience for

every state-action pair. For example, the advisors’ experience

in Q-value sharing frameworks (e.g., [1], [19], [20]) can

reect their rewarding strategy that builds their decision-

making criteria, and movement trajectory that carries impor-

tant contextual information, such as users’ preference, next

course of actions, etc. [5]. To protect such sensitive infor-

mation in untrusted environments, unlike [3], we propose to

adopt local differential privacy (LDP) [21] during ES. LDP

perturbs advisors’ experience before sharing it, making it

harder for inference attackers to obtain sensitive information.

Different from the above-mentioned works, our paper

presents a novel Byzantine Robust Neighbor Experience

Sharing (BRNES) framework that addresses the security

and privacy threats in the ES process from two adversarial

perspectives: (1) false advising during the advisee’s EH, and

(2) inference attack during the advisor’s EG. Therefore, our

contribution in this paper is twofold: in decentralized EH,

we address the security attacks from Byzantine attackers,
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and in EG, we address the privacy attacks from inference

attackers. To ensure the framework is Byzantine robust,

we develop an adaptive heuristic neighbor zone selection

process for each advisee that limits the possibility of a

Byzantine advisor deterministically appearing in the vicinity

of any targeted advisee signicantly due to the inherent

randomness in the process. Additionally, to further limit the

false advising impacts from Byzantine advisors, we leverage

a weighted experience aggregation technique that prevents

the direct integration of advisors’ experience. To prevent

inference attackers from inferring advisors’ sensitive data,

we leverage the provable privacy guarantee offered by the

LDP mechanism. In summary, our contributions are:

• to enable security and privacy-aware ES in MARL, we

propose a novel framework (BRNES) that addresses

adversarial manipulation and inference problems in ex-

isting multiagent robotic and autonomous systems and

lls two important research gaps in the literature- (1)

the absence of a Byzantine robust decentralized EH

mechanism, and (2) the lack of a private EG process.

• to achieve Byzantine robustness, we formulate a novel

adaptive heuristic neighbor zone selection strategy and

leverage the weighted experience aggregation technique.

• to make EG privacy-protected, we leverage the provable

privacy guarantee offered by the LDP technique.

• comparing to the state-of-the-art (SOTA), we show

that our framework is 1.41x faster than DA-RL [20]

and 8.32x faster than AdhocTD [1] under adversarial

presence.

II. RELATED WORKS

ES strategies have been studied extensively to enhance the

learning performance of MARL agents [1], [3], [4], [7], [8],

[10], [19], [20], [22]–[26]. For instance, the problem of slow

convergence of MARL policy is addressed in [7], where, to

tackle the slow learning, the authors propose central knowl-

edge transfer units for the participating agents. Similarly,

to mitigate the curse of dimensionality in conventional ES-

driven MARL platforms, several novel MARL algorithms

based on mixed Q-networks [26], simultaneous learning [1],

[10], and differential advising [3], [20] have been developed.

Specically, [1] reduces the number of inter-agent com-

munications by (1) limiting the students to seek advice

from the teachers only when their condence is low for a

given state, and (2) limiting the teachers to respond only

when they believe they have much knowledge for that state.

Nonetheless, [1] overlooks the possibility of adversarial

manipulation and inference, which may impede the success

of ES processes in real-life MARL applications.

An alternative approach to simultaneous learning, the

iteration-based Q-learning is proposed in [10], where a

centralized aggregator forms a swarm matrix containing

the extremes of Q-values from all agents. Nonetheless, cen-

tralized aggregation may possess various drawbacks (e.g.,

single-point-of-failure) despite its fast convergence.

Intuitively, a decentralized mechanism is more effective

in an environment with resource-constrained edge devices

than a centralized mechanism. Moreover, decentralization

alleviates the single-point-of-failure problem. Considering

this, [19] introduces a decentralized and heuristic Q-value

advising method called PSAF that addresses when to ask for

the advice, when to give the advice, and how to use the advice

in a teacher-student framework. However, decentralization

may create opportunities for the Byzantine and inference

attackers [15]. Field research and experience of MARL ap-

plication’s post-deployment [4], [22] show that any malicious

agent, in general, may conduct eavesdropping, inference

attacks, Byzantine attacks, etc., creating signicant security

and privacy challenges for multiagent systems (MAS).

Researchers partially solve the false advising in MARL

[3]. They design the adviser selection problem as a Multi-

armed bandit and solve it using the DP technique. However,

their assumption of eliminating probabilistic false advice

by malicious agents through direct DP integration does not

hold in the presence of any strategic attacker. The extension

of their work involves accommodating the advice from a

slightly different state [20]. Yet, they adopt the DP mecha-

nism for learning performance improvement only, but not to

protect the privacy and security of the agents.

Privacy and security concerns in MAS are addressed in

[4], [27]. From the privacy perspective, [27] emphasizes

preserving agents’ privacy against inference attackers by

proposing a DP-MAS framework. From the security perspec-

tive, [4] shows that an adversary can mislead honest agents to

attain its malicious objectives in a consensus-based MARL

platform. However, both [4], [27] are limited to central-

ized environments, and thus, cannot apply to decentralized

MARL applications. We summarize major contrasting points

between literature and this work in Table I.

TABLE I

MARL FRAMEWORK COMPARISON. SYMBOL: ADDRESSED (✓), NOT

ADDRESSED (□). “L”EARNING TYPE (“C”ENTRAL OR “D”ECENTRAL).

“H”EURISTIC ADVISING . “A”DVISING CONFIDENCE. “B”UDGET

CONSTRAINTS. “F”ALSE ADVISING. “P”RIVACY ATTACKS. “N”EIGHBOR

ZONE. “W”EIGHTED ADVICE AGGREGATION.

L
H A B F P N W

C D

Silva et al., 2017 [1] □ ✓ ✓ ✓ ✓ □ □ □ □

Matta et al., 2019 [10] ✓ □ □ □ □ □ □ □ ✓

Ye et al., 2020 [3] □ ✓ ✓ ✓ ✓ ✓ □ □ □

Figura et al., 2021 [4] ✓ □ □ □ □ ✓ ✓ □ ✓

Zhu et al., 2021 [19] □ ✓ ✓ ✓ □ □ □ □ □

Li et al., 2021 [27] ✓ □ □ □ □ □ ✓ □ ✓

Ye et al., 2022 [20] □ ✓ ✓ ✓ ✓ □ □ □ □

This work □ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

III. PROBLEM FORMULATION AND THREAT MODELLING

Let us consider N robotic agents (N = {p1, ..., pn}),
which are learning cooperatively to achieve an objective in

environment E of H × W dimension following a Markov

game. The game is represented as a tuple (N , S ,A,Φ, γ, T )
having state-space S = S1 × ... × Sn, joint action space

A := A1 × A2 × ... × An, transition function T : S × A ,
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reward function Φ : S ×A× S , and discount factor γ ∈ [0, 1]
for all future rewards. The goal point is G and the action

space is A = {Left, Right, Up,Down}. Consider several

obstacles Ox={0,1,...} in the environment. If any agent hits

the environment boundaries or the obstacles, it would get

a penalty, ϕO ∈ Φ. However, assume one freeway F in E,

which could be used by any agent to earn a reward before

reaching G . Incorporating this freeway structure within the

grid-based environmental model enhances the opportunities

for agents to accrue supplementary rewards, and invariably

introduces additional dimensions of complexity to the task

landscape. After reaching G , the agents are rewarded with

ϕG ∈ Φ s.t. ϕG > ϕF (if ϕG ≤ ϕF , the agents would not be

motivated to move to the goal). Note that, |N |+ |Ox |+ |F |+
|G | < H ×W , otherwise the agents cannot move smoothly

through the empty spaces of the grid.

The position of the agents, obstacles, and freeway are

randomly initialized in each episode. Assume the obstacles

randomly change positions at each step, thus making it harder

for the agents to learn. The objective completes when all the

agents reach G . Any individual agent pi is spatially aware

of the position of G . pi’s objective is to take the lowest

possible steps to goal (SGmin) for collecting freeway

reward ϕf and reaching goal G without hitting environ-

ment boundary or any obstacles Ox while, also, earning

maximum rewards (ϕmax = ϕF + ϕG + [ϕO = 0]). Thus,
pi’s objective can be formalized as (a) SGpi

= SGmin, (b)

ϕpi
= ϕmax, and (c) ∥(xpi

, ypi
) − (xG , yG)∥ = 0, where

(xpi
, ypi

) ∈ [(0, 0), (H × W )] and (xG , yG) ∈ [(0, 0), (H ×
W )] are pi’s and G’s position, respectively.

A. Byzantine Attacks during EH

During EH, a Byzantine advisor pb ∈ N may send false

information to pi, with a malicious objective to impede pi’s
convergence as depicted in Figure 1a. We assume that pb
has the knowledge of A, S ,Φ, (xG , yG) and pi’s current state
s. Particularly, pb could promote a larger Q-value for a

misleading action am ∈ A than the rest of the actions

A\{am}, i.e., Qpb
(st, am) > Qpb

(st, ah)∀ah ∈ A\{am},
thus continuously drive pi towards a desired malicious point.

However, if pb always shares a set of large Q-values to

attain a large incentive, it might be identied easily by any

anomaly detector at the advisee’s end. On the contrary, if

it shares a set of small Q-values, the attack impact might

be negligible. This fundamental adversarial tradeoff problem

can be tackled in several ways. One approach is to shufe the

Q-values for all actions corresponding to the requested state

and inject false noise that is similar to the maximum reward

using reward poisoning methods [28]. Another approach is

to draw the false noise from an adversarial distribution that

has similar statistical properties to a benign noise distribution

used for achieving DP [17]. For simplicity, but without losing

generality, we choose the former method to generate false

advice in this study since any optimal false advising attack

method would always involve false data that is difcult to

distinguish from benign data.



 



Goal 



 



Neighbor zone

Goal

(a) Byzantine attack threat (b) Inference attack threat



N
ei
g
h
b
o
r
zo
n
e

N
ei
g
h
b
o
r
zo
n
e

!

,  ?

"

Honest advisee (),

seeking advice

#

Non-neighbor agent

Neighbor zone

,  ?

,  ?

,  ?

,  ?

Non-neighbor agent

 ∗

M
al
ic
io
u
s

 ∗

H
o
n
es
t

Inference attacker (),

seeking advice

Fig. 1. Threats in MARL: (a) A Byzantine advisor (pb) providing false
information (Qpb ) to the honest advisee (pi); (b) An inference attacker (pk)
performing multiple queries (s7, a0,1,...) to an advisor (pa).

B. Inference Attacker during EG

The advisee itself could be an adversary, whose malicious

objective is to infer the private information of an honest advi-

sor pa ∈ N by analyzing pa’s experience (Figure 1b). We as-

sume that the advisee has the knowledge of A, S ,Φ, (xG,yG
),

but does not know pa’s current state. Specically, a malicious

advisee pk ∈ N could perform multiple queries to pa’s
Q-tables for each and every state and action in order to

reconstruct pa’s entire Q-table and infer sensitive information

related to pa’s residing states, next actions, rewards, and

adopted strategies.

IV. BRNES FRAMEWORK

We model our BRNES framework (Figure 2) for robotic

agents which share their experience under the adversarial

presence and budget constraints. We use a model-free and

off-policy MARL approach, Q-learning, to develop and test

our framework in a stochastic environment. We formulate the

experience as Q-values instead of the recommended actions

since the Q-value advising, unlike the action advising, does

not impair the performance of the agent’s learning directly

[19]. The framework mimics an advisee-advisor network

where agents are homogeneous and interchangeable. They

have identical strategies, however, they maintain their own

Q-table to store their local knowledge. Algorithm 1 presents

Fig. 2. BRNES framework: Advisee pi is harvesting the experience while
advisor pa is sharing experience to pi.
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Algorithm 1: Experience harvesting (EH) by advisee

pi. G : goal, pi: advisee, E: environment, nv: number

of visit, ϵ: probability, α: learning rate, s: state, a:
action, Φ: reward set, γ: discount factor, Z: neighbor

zone, N : agent set, ξ: best advice, (x, y): position
coordinate, w: aggregation factor (weight), B: advice

seeking budget, τ, τ ′,κ: predened threshold

Require: Environment, E

1 Initialize Q-table and set ϵ,α, γ
2 for each t = 1, 2, ..., T episodes do

3 Observe stpi
, nd nv

pi
← stpi

, and compute

P a
pi

= f(nv
pi
, Bpi

, Btot
pi

, τ, τ ′) from Algorithm 2
4 if 0 < P a

pi
< κ then

5 Find Zt
pi

= NZ(|N |, stpi
,E) from Algorithm 2

6 Send advise request to neighbors within Zt
pi

7 if No Advice then

8 Perform nal Q-update

9 else

10 Receive advice from all k advisors as


Q′

pa
(stpi

)
k

pa=1
(refer to Algorithm 3)

11 Find best advice (ξtpi
) by grouping &

averaging Q-values for each action

12 Perform weighted aggregation

Qpi
(stpi

) = w×Qpi
(stpi

)+ (1−w)× ξtpi

13 Find ϵ-greedy action & observe st+1
pi

, Φt
pi

14 Perform nal Q-update for selected action

Qt
pi
(stpi

, at) = (1− α)Qt
i(s

t
pi
, at) +

α(Φt
pi

+ γ ∗max
at+1

Qt
pi
(st+1

pi
, at+1))

15 end

16 else

17 Take action and perform nal Q-update

18 end

19 Set stpi
= st+1

pi
// update to next state

20 if ∥(xpi
, ypi

)− (xG , yG)∥ > 0 then Continue

21 else End episode and reset environment

22 end

the pseudocode for the EH phase. Algorithm 2 outlines

the required sub-functions and Algorithm 3 shows the LDP

adaptation technique during the EG phase.

A. Experience Harvesting (EH) Process

To tackle the adversarial manipulation, it is necessary to

ensure that no particular advisor frequently appears in the

close vicinity of advisee pi for multiple episodes and that

their advice is not directly integrated into pi’s Q-learning.

Considering this, at timestamp t, pi rst observes its current
state initialized by a stochastic initialization process (i.e.,

at every episode, all agents appear in random states, thus

limiting the consecutive attack opportunity over a targeted

agent) (Figure 2, step 1). Then, pi computes its experience

harvesting condence (EHC), P a
pi

(Algorithm 1, line 3). The
advisee seeks advice from the experienced advisors in its

neighborhood only when- (1) its knowledge of that particular

state is low, and (2) it has the budget to seek advice.

1) Computing Experience Harvesting Condence (EHC):

pi’s EHC can be calculated as Algorithm 2, line 1− 2 [20],

Algorithm 2: Sub-functions.

1 Function f(nv
pi
, Bpi

, Btot
pi

, τ, τ ′):

2 return P a
pi

=







1√
nv
pi

·



Bpi

Btot
pi

, τ ≤ nv
pi

≤ τ ′

0, Otherwise

3 Function NZ(|N |, stpi
,E):

4 Find pi’s position at t, i.e., (xt
pi
, ytpi

) ← stpi

5 Find height(H ), width(W ) ← E

6 Calculate zone radius, rtpi
=



H×W
|N |

7 Dene zonal boundary lines,

Zt
pi
=



xt
pi

± rtpi
, ytpi

± rtpi



∀0 ≤ (xt
pi

± rtpi
) ≤ W and 0 ≤ (ytpi

± rtpi
) ≤ H

8 return Zt
pi

where pi’s current and total communication budget are Bpi

and Btot
pi

, respectively. The user-dened threshold τ prevents

pi to avoid spending all of its budgets in the early episodes

and τ ′ prevents pi to avoid seeking advice for the highly-

visited states. Function, f provides a higher probability for

the states that the advisee visits rarely and vice versa. pi
performs nal Q-update if P a

pi
is zero. Otherwise (i.e., 0 <

P a
pi

< κ where κ is a predened threshold), it proceeds to

the next steps as shown in line 5− 14 of Algorithm 1.

2) Selecting Adaptive Heuristic Neighbor Zone: To avoid

any specic agent from frequently appearing in the neighbor

zone, pi computes the radius of the neighbor zone based

on the environment’s dimensions and the total number of

agents (Algorithm 2, line 4 − 7). Since we use a 2D grid

space, we only consider the x and y coordinates of the

environment when calculating the neighbor zone. However,

in more complex environments with multiple dimensions,

the neighbor zone to those dimensions could be extended.

If there are few agents in a large grid space, the zone

radius would be large, but if the agent number increases or

the grid space gets smaller, the zone radius would become

smaller. The boundary of the zone is calculated at each

timestamp, and it is adjusted as pi moves to a new state in

each episode. Since the zone size is dynamic and shifts with

pi’s movement, the chance of the same manipulative advisor

repeatedly appearing in pi’s neighbor zone is reduced.

3) Performing Weighted Experience Aggregation: Ad-

visee pi seeks advice from the agents residing in its neighbor

zone. If no advice is received, the EH process is terminated,

and the nal Q-update is computed. Nonetheless, if pi
receives advice, then it computes the best advice set of

Q-values (ξtpi
) by grouping and averaging Q-values (i.e.,

ξtpi
← 1

n

k
pa=0

Qpa
) for every action (Algorithm 1, line

10 − 11). After that, pi incorporates the best advice into

its Q-table following a weighted linear combination process

(Algorithm 1, line 12). The degree of advice is controlled

by a user-dened weight factor w ∈ [0, 1]. This ensures that
even if any Byzantine advisor pb provides false information

with the highest Q-value, it should not affect pi’s learning

signicantly. Next, pi performs the conventional ϵ-greedy

action and observes the next state and reward. Finally, pi
performs the nal Q-update and update its state (Algorithm
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1, line 13− 14, and 19).

B. Experience Giving (EG) Process

When advisor pa receives an advice request from an

advisee pi for any state, it has to solve the following

problems: (1) whether it is condent enough to provide the

advice, and (2) if it is safe to provide the advice.

1) Computing Experience Giving Condence (EGC):

To tackle the rst problem, we use the experience giving

condence (EGC) process described in Algorithm 2, line 2.
Specically, pa computes a probability of giving advice, P g

pa

based on its knowledge about that state (i.e., visit time, nv
pa

and advice giving budget, Bpa
. If P g

pa
is zero, pa does not

provide any advice to pi.
2) Incorporating Local Differential Privacy (LDP): To

solve the adversarial inference problem, advisor, pa uses the

DP technique that ensures that the output of an algorithm is

not affected by small changes in input data from individual

users. DP is typically set up in a way that involves a trusted

third party, who collects data, adds noise to the query results

in a way that meets the DP requirements, and then releases

the noisy results. Nonetheless, in practice, nding a trusted

third party could be difcult [21]. For example, in our threat

model, the advisee itself could be an untrusted party. To

address this issue, the ε-LDP mechanism [21], a variant of

the basic DP technique [16], emerges. ε-LDP applies the DP

property locally to each user’s data following a predened

privacy budget (ε) without the need for a trusted third party,

rather than to the data as a whole. The formal denition of

the ε-LDP mechanism can be given as [21]:

Denition 1: A randomized mechanism M satises ε-

LDP if for any pairs of input values x and x′ in the domain

of M, and for any possible output y ∈ Y , it holds

P [M(x) = y] ≤ eε · P [M(x′) = y] , (1)

where P [·] denotes probability, Y denotes output domain,

and ε is the privacy budget. The smaller the ε, the stronger

the privacy protection, but the weaker the data utility, and

vice versa. ε-LDP allows advisors to have plausible denia-

bility whether or not the advisee is compromised. It satises

the sequential property that facilitates the development of

complex LDP algorithms from simpler subroutines and can

be described as [21]:

Theorem 1: If Mi(x) is an εi-LDP algorithm for x and

M(x) is the sequential composition of M1(x), ...,Mn(x),
then M(x) satises ε-LDP for ε =

n
i=1

εi.

Further details and the proof of Theorem 1 can be found

in [21]. The fundamental mechanism to achieve ε-LDP is

the randomized response (RR) [29], a generalized version

of which is Generalized Randomized Response (GRR), [29].

GRR is also described as a special Direct Encoding (DE)

method and a generalization of k-randomized response [29].

In GRR, given the domain size d = |D| and privacy budget,

ε, the following perturbation probability ensures ε-LDP [29].

Pr [MGRR(x) = y] =



eε

d+eε−1
if y = x

1

d+eε−1
otherwise

(2)

Algorithm 3: Experience giving (EG) by advisor, pa.
nv: no. of visits, ε: privacy budget, s: state, a: action,
B: advice budget, η: LDP-noise, d: domain size

Require: stpi
, nv

pa
, ε

1 Receive advice request for state stpi
from advisee pi

2 P g
pa

=







1− 1√
nv
pa

·


Bpa

Btot
pa

, nv
pa

> nv
pi

0, Otherwise

3 if P g
pa

> 0 then

4 for each Q-value, x in set Qpa
(stpi

) do
5 b = random.random()

6 if b ≤ e
ε

n /(d+ e
ε

n − 1) then Q′

pa
(stpi

) ← x
7 else Q′

pa
(stpi

) ← Uniform(Qpa
(stpi

)/x)
8 end

9 return Q′

pa
(stpi

)
10 end

11 else return No Advice

Theorem 2: GRR satises ε-LDP.

Proof: To satisfy ε-LDP, the ratio of the probabilities

for x, x′ ∈ D needs to be equal to eε. Here, we have

Pr [MGRR(x) = y]

Pr [MGRR(x′) = y]
=

eε

d+eε−1

1

d+eε−1

= eε (3)

which satises the condition of ε-LDP.

In our setting, the advisors follow the GRR-based per-

turbation mechanism to achieve ε-LDP since GRR directly

takes the original value as input into the perturbing step with-

out the need for the encoding process. Following Denition

1, if we assume the set of all Q-values for every action in

a particular state, spi
as a dataset, Da = {Qa1

, ..., Qan
},

then the corresponding private (perturbed) dataset, D ′

a =
{Q′

a1
, ..., Q′

an
}. The original Q-values {Qax

}nx=1 and private

Q-values {Q′

ax
}nx=1 are linked by the privacy preservation

mechanism MGRR. Here, Q
′

ax
depends only on Qax

; and

not on any other Q-values Qay
or Q′

ay
for y ̸= x. Therefore,

this noninteractive framework can be given as

Q′

ax
← Qax

and Q′

ax
⊥ {Qay

, Q′

ay
, y ̸= x}|Qax

, (4)

where ⊥ denotes the symbol of noninteractive relation.

Algorithm 3 shows the pseudocodes (line 4 to 7) of the GRR
mechanism for Q-value sharing. Given a privacy budget, ε,

an original Q-value set Da, the algorithm returns a perturbed

Q-value set D′

a. Nonetheless, for any two neighboring Q-

value sets of equal length (e.g., Da = {Qa1
, ..., Qan

},
Db = {Qb1 , ..., Qbn}, and |Da| = |Db | = n), the changes can
occur for maximum n positions. Therefore, the sensitivity

of the mechanism is n here. Specically, the mechanism

keeps a particular Q-value unchanged (i.e., Q′

ax
← Qax

)

with a probability, p = eε/n

d+eε/n−1
and perturbs it to a

different random Q-value (i.e., Q′

ax
← Uniform(Da/Qax

))
with probability q = 1

d+eε/n−1
.

Proposition 1: The proposed EG method satises ε-LDP.

Proof: The algorithm applies the GRR mechanism

separately to each Q-value of a state learned by an ad-

visor. If Mi(.) is applied on a particular Q-value, x ∈
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Qpa
(stpi

), where |Qpa
(stpi

)| = n and the output is y, then

Pr [Mi(x) = y]

Pr [Mi(x′) = y]
=

eε/n

d+eε/n−1

1

d+eε/n−1

= eε/n (5)

Therefore, following Theorem 2, Mi(.) satises ε

n -LDP.
Now, if we consider εi = ε

n , then we can combine n
subroutines (each satisfying εi-LDP independently) for n
number of Q-values by following the sequential property of

ε-LDP given in Theorem 1 for our EG algorithm and show

that EG satises
n

i=1
εi = n · εi = n · ε

n = ε-LDP.

Remark. In our experimental setting, there are four Q-values

for four corresponding actions (Left, Right, Up, Down).

Thus, |Da| = 4. Also, the maximum difference between

two adjacent Q-value sets would be 4. Hence, the applied

GRR mechanism for each Q-value in a set satises ε

4
-LDP,

ensuring the overall EG method satises 4x ε

4
= ε-LDP.

V. EXPERIMENTAL ANALYSIS

We implement our framework following a modied

predator-prey domain [24]. Next, we compare our results

with two SOTA approaches: AdhocTD [1], which proposes

visit-based advising, but neither adopts DP nor incorporates

weighted experience aggregation during ES; and DA-RL

[20], which proposes a differential advising method but does

not incorporate any neighbor zone concept and/or weighted

experience aggregation technique to enable security and

privacy-aware ES.

Our environment is a H × W grid world with multiple

agents and one goal. Agents have four actions to choose, Left,

Right, Up, Down to move from one cell to another. They can

collect additional rewards upon visiting a freeway on the path

to the goal. Nonetheless, grid obstacles can cause penalties

upon encounter. Moreover, the agents get penalties if they hit

any grid boundary. The positions of the agents, obstacles, and

freeway are initialized randomly at the beginning of every

episode. The game ends when all the agents reach the goal.

Nonetheless, if the agents do not reach the goal within a

predened (grid size× 100) steps, the environment is reset.

While we demonstrate our work in a grid world, it is also

extendable to real-world domains with sensitive data. Table

II lists the parameters we have used during our experiment.

We investigate the impact of the environment in three

scenarios of different scales: (1) small-scale: 5 × 5 grid

with 5 agents, 1 obstacle, and 1 freeway, (2) medium-scale:

10× 10 grid with 10 agents, 3 obstacles, and 1 freeway, and

(3) large-scale: 30×30 grid with 20 agents, 5 obstacles, and

1 freeway. We also consider varying percentages of attackers

in each environment (e.g., no attacker, 20% attackers, etc.).

To evaluate and compare our results with AdhocTD [1] and

DA-RL [20], we use three popular metrics [19]: Steps to

goal (SG), Reward, and Time to goal (TG). SG is the

average number of steps needs to reach the goal, Reward

is the total average incentive earned, and TG is the total

average learning time (in seconds) before reaching the goal.

The experiments were conducted on a Lambda Tensorbook

equipped with an 11th Gen Intel(R) Core(TM) i7-11800H
@2.30GHz CPU, RTX 3080 Max-Q GPU, 64 GB RAM, 2

TABLE II

PARAMETER VALUE. α: LEARNING RATE, ϵ:

EXPLORATION-EXPLOITATION PROBABILITY, γ : DISCOUNT FACTOR, B:

COMMUNICATION BUDGET, w: AGGREGATION FACTOR, τ, τ ′,κ:

PREDEFINED THRESHOLD, ϕ: REWARD, ε: PRIVACY BUDGET.

Parameter α ϵ γ Btot
pi

Btot
pa

w τ

Value 0.10 0.08 0.80 100,000 10,000 0.85 100

Parameter ϕG ϕF ϕO ϕW ε κ τ ′

Value 10.0 0.50 -1.50 -0.50 1.0 0.1 100,000

TB storage, Windows 10 pro (64-bit) OS, Python 3.9.7, and
PyTorch 1.10.0+cpu.

A. Trajectory Analysis

We perform a trajectory analysis of the agents. The result

is illustrated in Figure 3. The cells with darker colors have

been visited more frequently than the cells with lighter

colors. It can be inferred that all of the agents have visited

the cells that are closer to the goal more frequently as

compared to the cells that are far distant from the goal.

Another interesting fact is that in most cases, the agents

have a lower tendency to visit the boundary cells, which in

turn provides evidence that the agents have learned to avoid

hitting the grid boundaries and getting penalties.

Fig. 3. Visiting trajectory of the agents.

B. Steps to Goal (SG) and Reward Analysis

Figure 4a-4d reects the average SG values and corre-

sponding rewards of our framework (BRNES), AdhocTD [1],

and DA-RL [20] in a medium-scale environment under no

attacker and multiple attackers scenarios. Lower SG values

indicate that the agents reach the goal more quickly, and

vice versa. When there is no attacker (Figure 4a), all of the

frameworks have lower SG values from early episodes (i.e.,

< 200 episodes). Particularly, AdhocTD [1] exhibits the most

stable performance in no attacker cases (Figure 4a). This is

mostly because it does not incorporate any DP noise and

thus, incurs zero privacy cost. Nonetheless, despite having

some privacy overhead, BRNES continues to closely follow

AdhocTD [1] and outperforms DA-RL [20] for no attacker

case. In contrast, as soon as Byzantine advisors appear, the

SG values of AdhocTD [1] rapidly grow. The more the

concentration of the attacker among the agents, the more

the SG values. This can be observed in Figure 4b-4d, which

illustrates that BRNES outperforms both AdhocTD [1] and

DA-RL [20] in multiple attacker scenarios. Reward graphs,
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Fig. 4. Steps to goal (SG) and Reward comparison for 1000 episodes among AdhocTD [1], DA-RL [20] and Our (BRNES) framework. Environment (E)
feature: [(H ×W ) : (10× 10),G : 1, F : 1, O : 3, |N | = 10]. (a) Baseline scenario (No Attacker), (b)-(d) Multiple Attackers, (e) Variable privacy budget.

Fig. 5. (a) Convergence is faster when privacy is low (i.e., large ε), (a)
BRNES converges faster than AdhocTD [1] and DA-RL [20]. Both (a) and
(b) are in a medium-scale environment with 30% attackers.

underneath the corresponding SG graphs, exhibit similar

results. Specically, in Figure 4b-4d where AdhocTD [1] and

DA-RL [20] obtained optimal reward after approximately

300, 400, and 600 episodes, BRNES continues to indicate

signicant improvement in learning by obtaining optimal

rewards in earlier episodes.

C. Impact of Privacy Budget

We evaluate our framework for multiple values of privacy

budget, ε. As shown in Figure 4e, BRNES performs better

for higher ε (i.e., low privacy regime) in terms of both SG

and Reward. Also, Figure 5a depicts that the convergence

happens faster for ε = 1.00 compared to ε = 0.01, which
also supports the privacy-utility tradeoff scenario of DP, i.e.,

higher privacy, lower utility, and vice versa.

D. Convergence Analysis

Convergence analysis under adversarial presence is de-

picted in Figure 5b. It is evaluated based on the average

values of the ∆Q(st, at) for all ∆Q = Q(st+1, at+1) −
Q(st, at). The key idea is to show the Q-values are con-

verging into the optimal Q value (Q∗). For simplicity, we

only present the deterministic case, in which Q(st+1, at+1)
converges to Q∗(s, a). Therefore, if the average of ∆Q(s, a)

goes to zero, BRNES can be considered stable. From Fig-

ure 5b, it can be seen that ∆Q(s, a) gradually goes to

zero. Nonetheless, while AdhocTD [1] and DA-RL [20] are

converging after around 900 and 400 episodes respectively,

BRNES converges faster (i.e., in < 200 episodes).

E. Time to Goal (TG) Analysis

TG value comparison is presented in Figure 6a and Table

III. BRNES requires the lowest time for the agents to reach

the goal, except for 0% attackers cases since it deploys

LDP-noise to enable private experience sharing, which leads

to noisy Q-values. In addition to this privacy cost, the

neighbor zone selection and weighted aggregation technique

also incur some computational overhead. Nonetheless, this

overhead becomes insignicant for BRNES as compared to

other frameworks under adversarial presence (Figure 6a and

Table III). Particularly, for 40% attacker case in a medium

scale-environment, BRNES is (15640.1/1877.8) ≈ 8.32x
faster than AdhocTD [1], and (2660.2/1877.8) ≈ 1.41x
faster than DA-RL [20] in terms of TG value metric.

F. Protection from Inference Attacks

To empirically evaluate the effectiveness of our LDP-

driven BRNES framework against inference attacks, we

compare multiple ε scenarios with a baseline Non-LDP

scenario We observe how accurately and quickly an attacker

Fig. 6. (a) TG comparison under adversarial presence, (b) Inference attack
success rate (%) is the lowest when privacy is the highest (i.e., ε = 0.1).

9275

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on May 24,2024 at 00:29:19 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III

EXPERIMENTAL RESULT FOR TIME TO GOAL (TG).

Environment
Type

Attacker
(%Agent)

AdhocTD [1]
(TG (sec)

DA-RL [20]
(TG (sec)

BRNES
(TG (sec)

small-scale
0% 91.3 699.7 552.4
20% 3125.1 776.5 584.9

40% 4170.2 970.1 754.2

medium-scale
0% 750.2 1032.7 1188.9
30% 14845.5 2470.1 1598.2

40% 15640.1 2660.2 1877.8

large-scale
0% 45487.5 71479.4 61693.8
30% 164852.8 95172.9 73740.8

40% 245425.7 146295.7 103787.3

could infer the movement of an advisor by performing re-

peated advising requests. The results, as shown in Figure 6b,

demonstrate that the Non-LDP baseline scenario allows an

attacker to achieve a success rate of approximately over 70%
within 3000 episodes. However, as we adopt LDP through

our proposed framework and increase privacy protection (i.e.,

decrease ε), the attack success rate decreases signicantly.

VI. CONCLUSION

In this study, to mitigate the adversarial impact dur-

ing experience sharing in CMARL, we propose a novel

framework, BRNES, that strategically incorporates neigh-

bors’ experiences for effective and faster convergence. Our

framework outperforms the SOTA approaches in terms of

steps to goal (SG), reward, and time to goal (TG) while

achieving ε-LDP to mitigate inference attacks. Specically,

our framework achieves 8.32x faster TG than a non-

private framework, AdhocTD [1], and 1.41x faster TG

than a private framework, DA-RL [20] in a medium-scale

environment under adversarial presence.

Several interesting extensions emerge for future privacy

and security research in MARL, including analyzing adver-

sarial activity in fully cooperative or competitive and mixed

cooperative-competitive environments. Our framework could

be extended to a more dynamic environment, where agents

receive new tasks when they complete their current tasks.
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