
Abstract:

Lately, differential privacy (DP) has been introduced in co-

operative multiagent reinforcement learning (CMARL) to safe-

guard the agents’ privacy against adversarial inference during

knowledge sharing. Nevertheless, we argue that the noise intro-

duced by DP mechanisms may inadvertently give rise to a novel

poisoning threat, specically in the context of private knowledge

sharing during CMARL, which remains unexplored in the lit-

erature. To address this shortcoming, we present an adaptive,

privacy-exploiting, and evasion-resilient localized poisoning at-

tack (PeLPA) that capitalizes on the inherent DP-noise to circum-

vent anomaly detection systems and hinder the optimal conver-

gence of the CMARLmodel. We rigorously evaluate our proposed

PeLPA attack in diverse environments, encompassing both non-

adversarial and multiple-adversarial contexts. Our ndings re-

veal that, in a medium-scale environment, the PeLPA attack with

attacker ratios of 20% and 40% can lead to an increase in average

steps to goal by 50.69% and 64.41%, respectively. Furthermore,

under similar conditions, PeLPA can result in a 1.4x and 1.6x com-

putational time increase in optimal reward attainment and a 1.18x

and 1.38x slower convergence for attacker ratios of 20% and 40%,

respectively.
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1. Introduction

Cooperative multiagent reinforcement learning (CMARL)

has been acknowledged for its prociency in orchestrating

complex tasks, such as automated robotic swarming and dis-

tributed power system optimization, through multi-agent col-

laboration [1–3]. However, the inherent nature of data sharing

in CMARL can trigger potential privacy infringements, as the

shared experiences often encompass sensitive data [4, 5]. To

combat this, differential privacy (DP) mechanisms [6], which

employ stochastic noise addition to obfuscate sensitive data,

are posited as effective countermeasures [4, 7–9].

Yet, we conjecture that adversaries could exploit DP’s

noise-adding mechanism to craft their own malicious noise in

CMARL, thereby degrading the learning efcacy while remain-

ing undetected by hiding behind the DP-noise, leading to catas-

trophic implications in sectors like robotics, cyber-physical sys-

tems, automotive industries, etc. [10–13]. For example, false

advising with DP-exploited misleading knowledge from advi-

sor cars in autonomous driving may make lane-changing am-

biguous and lead to severe road accidents. Contemporary state-

of-the-art (SOTA) poisoning attacks typically focus on volu-

minous malicious data injection, which is prone to detection,

leaving the creation of subtle, stealthy adversarial instances as

a formidable challenge [14–17].

Addressing this challenge, our research proposes a novel ad-

versarial model tailored for CMARL that exploits DP-induced

noise to facilitate stealthy, localized poisoning attacks [18–20].

To our knowledge, this is the rst investigation into DP-noise

exploitation for conducting local poisoning attacks while evad-

ing detection in CMARL. Our contributions are:

• Uncovering the susceptibility of DP mechanisms to adver-

sarial poisoning attacks, illustrating how adversaries can

adaptively perturb knowledge to remain undetected.

• Proposing a novel privacy-exploiting local poisoning at-

tack (PeLPA), contrasting general poisoning attacks that

overlook the importance of attack stealthiness.

• Experimentally evaluating the potential ramications of

DP-exploited stealthy attacks in safety-critical sectors.
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The terms knowledge’, experience’, advice’, and Q-value’

are used interchangeably throughout the paper.

2. Related Works

In this section, we address the SOTA poisoning techniques.

2.1. Application of Differential Privacy for Knowledge
Sharing

DP, a prominent method for privacy preservation, has been

extensively employed in private knowledge sharing within the

realm of CMARL [4, 7–9, 21, 22]. The scope of its application

includes DP-guided Q-learning models to maintain the privacy

of reward data [21], privacy-centric multi-agent frameworks

leveraging federated learning (FL) and DP to obstruct illegit-

imate access to data statistics [4], and harnessing (β,ϕ)-DP to

counteract ofoading preference inference attacks in vehicular

ad-hoc networks (VANET) [22]. Apart from protecting user in-

formation during private knowledge sharing, DP has also been

proposed for differential advising. In particular, Ye et al. [7]

propose a DP-based advising method for CMARL that enables

agents to use the advice in a state even if the advice is cre-

ated in a slightly different state. Nevertheless, they overlook

the susceptibility of DP to poisoning attacks during knowledge

sharing [7–9].

2.2. Poisoning Attacks in Cooperative Multiagent
Learning

The inltration of poisoning attacks in CMARL, which can

alter training datasets and consequently disrupt learning out-

comes, is a pertinent research concern [15,16,23,24]. Research

has delved into scenarios where adversarial agents can manip-

ulate network-wide policies [23], scrutinized targeted poison-

ing attacks in dual-agent frameworks where one agent’s pol-

icy is modied [16], and investigated the implications of soft

actor-critic algorithms in CMARL for executing poisoning at-

tacks [24]. For instance, Figura et al. [23] demonstrate that

an adversarial agent can persuade all other agents in the net-

work to implement policies that optimize its desired objec-

tive. Another approach for performing poisoning attacks by any

malicious advisor in multiagent Q-learning as demonstrated

in [25], is to shufe the Q-values for all actions corresponding

to the requested state and inject false noise that is similar to the

maximum reward using reward poisoning method. However,

the ramications of these SOTA poisoning techniques against

anomaly detection and privacy-preserving knowledge-sharing

technologies remain largely unexplored. Our work endeavors

to model a DP noise-exploiting poisoning attack that remains

resilient to detection algorithms.

2.3. Differential Privacy Exploitation Techniques

Another domain of interest focuses on the possible exploita-

tion of DP in classication challenges, even though it does not

necessarily concentrate on adversarial onslaughts on CMARL

algorithms [14,17–20,26,27]. This research trajectory involves

the systemic degradation of utility by exploiting DP noise [19],

gauging the impact of DP manipulation in smart grid networks

[27], and designing stealthy model poisoning attacks on an FL

model [18, 20]. Similarly, [27] investigates the impact of DP

exploitation in a smart grid network and introduces a corre-

lation among DP parameters to enable the system designer to

calibrate the privacy level and reduce the attack surface. To ex-

amine the effect of DP-exploiting attacks on an FL model, [18]

proposes a stealthy model poisoning attack leveraging DP noise

added to ensure privacy. They improve their attack technique

in [20], investigating how the degree of model poisoning can

be adjusted dynamically through episodic loss memorization in

FL and demonstrating how their attack can evade some SOTA

defense techniques, such as norm, accuracy, and mix detection.

However, these attack models face constraints in multi-agent

environments or decentralized CMARL platforms. Contrarily,

Cao et al. [14] propose an attack on the Local Differential

Privacy (LDP) protocol by introducing fraudulent users. Our

research, however, targets legitimate yet compromised users

infusing false noise into shared data, also aiming to dodge

anomaly detectors - a critical objective for a successful attack.

3. Local Differentially Private Cooperative Multia-
gent Reinforcement Learning

We present a local differentially private CMARL (LDP-

CMARL) framework akin to the one adopted in [25]. How-

ever, for demonstration simplicity, instead of a generalized ran-

domized response (GRR) technique, we leverage a Bounded

Laplace (BLP) mechanism [28] to model our LDP framework

that also achieves the same ε-LDP guarantee.

3.1. Cooperative Multiagent Reinforcement Learning
(CMARL)

Environment model. Our research formalizes a cooperative

reinforcement learning context with a Markov game M =
(N,S,A,Φ,Γ, T ) incorporating N robots navigating an envi-

ronment E of dimensions height (H) and width (W ) towards
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a goal G. It introduces obstacles O and freeway F with cor-

responding reward penalties and incentives, ϕO and ϕF . Dy-

namic obstacle positioning adds complexity to learning, which

concludes when the rst agent reaches G.

Learning objectives. Agent pi’s objective is to take the

fewest steps, Π to reach G, collect ϕf , avoid hitting ox ∈ O,

and earn as much as rewards, ϕF,G. In short, the objectives can

be formalized as

(a) Πpi = min
M

Π

(b) ϕpi
= ϕF + ϕG + [ϕO = 0]

(c) ∥(xpi
, ypi

)− (xG, yG)∥ = 0

∀ϕG,F,O ∈ Φ and ϕG > ϕF

(1)

where (xpi
, ypi

), and (xG, yG) are pi’s and G’s positions.

3.2. Integrating Local Differential Privacy (LDP) in
CMARL

LDP protocols encapsulate two main stages: perturbation

and aggregation. The Q-values domain, denoted as Q = [q],
undergoes local perturbation before being relayed to the ad-

visee, pi, ensuring pi’s inability to infer the original Q-value of
the advisor, pk. The aggregation phase facilitates pi’s estima-

tion of optimal advice utilizing the perturbed values received

from all pk, with perturbation function for Q-values of all ac-

tions, a in state s represented as P (Q(s)). Following the def-

inition of ε-LDP [14], a protocol achieving LDP must ensure

the probabilistic resemblance between any pair of perturbed Q-

values.

LDP offers plausible deniability to pk, restraining pi from
determining the origin of the output condently. This ambi-

guity is regulated by the privacy budget, ε [6]. To actualize

(ε, 0)-DP, the Laplace mechanism, a noise-addition technique,

is applied as follows [6]:

M(D) = f(D) + η ∼ N (0, b) (2)

where the added noise, η is drawn from a zero-mean Laplace

distribution with scale parameter, b ≥ ∆

ε
. Here, ∆ denotes

the sensitivity of the query function. Nonetheless, the same

Laplace mechanism that satises (ε, 0)-DP, can be deployed

in a distributed fashion for achieving ε-LDP [28, 29], by inte-

grating randomized Laplace noise into each state-action pair’s

Q-values of an advisor. We leverage the higher noise sensitiv-

ity offered by the Laplace mechanism to attain stronger privacy

protection as compared to Gaussian or Exponential mechanism.

The advisee, pi computes the average value from all the noisy

Q-values [29]. We utilize the following BLP technique for in-

put perturbation [28]:

Denition 1 (Bounded Laplace Mechanism (BLP)) Given

an input q ∈ [l, u] ⊂ R, and scale b > 0, the BLP technique,

M : Ω → [l, u] over output q̄ can be represented by the

following conditional probability density function (pdf):

fM(q̄) =



0 if q̄ /∈ [l, u]
1
Cq

1
2be

−
|q̄−q|

b if q̄ ∈ [l, u]
(3)

where l and u are the lower and upper range, and Cq =
 u

l
1
2be

−
|q̄−q|

b dq̄ is a normalization constant. The proof and

further details can be found in [28]. BLP constrains noise sam-

pling within a predened range, avoiding values that may detri-

ment learning performance. Hence, the sensitivity of the com-

bined LDP mechanism is∆ = |u−l|. Similar to [7], within our

LDP-CMARL framework, the sensitivity ∆ needs to be calcu-

lated carefully. The LDP-CMARL framework training stages

utilizing the BLP mechanism are outlined in Algorithm 1. Dur-

ing advice request dispatch, pi species a neighbor zone, Z,

and sends advice requests only to advisors within Z. Both pi
and pk calculate their advice requesting (ϱpi

) and advice giving

(ϱpk
) probabilities as per [7]. After receiving advice from the

neighbors, pi aggregates all the advice following a weighted

linear aggregation technique, controlled by a predened weight

parameter, w [25]. Then, pi selects and executes an optimal

action followed by a nal Q-table update.

4. Privacy Exploited Localized Poisoning Attack

In this section, we dissect the DP noise exploitation mecha-

nism, formulating adversarial noise prole challenges. We also

articulate our threat model and proposed PeLPA algorithm.

4.1. How can LDP-noise be Exploited for Poisoning At-
tacks?

DP not included. Considering a non-LDP advising sce-

nario, the agents exchange Q-value knowledge, facilitating

learning. We formulate the knowledge as Q-values instead of

the recommended actions since the Q-value advising, unlike

the action advising, does not impair the performance of the

agent’s learning directly [30]. Let us assume an anomaly de-

tector at pi’s end that monitors Q-values sequences from ad-

visor agents for all actions in a specic state, s. Generally,

for a received Q-value, Qpk
(s), from advisor pk, the condition

|Qpk
(s) − Q0(s)| ≤ τ is consistently maintained, where τ is

a detection threshold and Q0(s), a historical standard Q-value.

Any deviation raises an alarm, implying a potential malicious

advisor pa ∈ [pk] with biased Q-values. Nonetheless, to evade
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Algorithm 1: LDP-CMARL Framework

Input : E, N,A, S,Φ → (l, u)
Output: Trained LDP-CMARL model

1 Initialize Q-table, set ε,α,Γ, and compute b = α|u−l|
ε

2 for each agent, pi ∈ N do

3 for each episode do

4 Initialize state, s for each state do

5 Send advice request to pk in Z with ϱpi

6 Receive LDP-advice,

LDP(s, ε, b) → Q̄pi
(s) =



Q̄i(s)
k

i=1

7 for each action a ∈ Ai in state, s do
8 Find weighted Q-value, Q∗

pi
(s, a) =

w·Qpi
(s, a)+(1−w)( 1

k

k

i=1 Q̄i(s, a))
9 Append Q∗

pi
(s, a) to Q∗

pi
(s)

10 Update Q-table with Q∗

pi
(s)

11 Choose a∗ ∈ Ai for s using ϵ-greedy policy

12 Execute action, a∗, observe ϕpi
, s′

13 Perform Qpi
(s, a) ← (1− α)Qpi

(s, a) +

α


ϕpi
+ Γ max

a′

Q(s′, a′)


14 Set, s ← s′

15 If ∥(xpi
, ypi

)− (xG,yG
) > 0∥ then continue

16 else end episode and reset E

17 return Trained LDP-CMARL model

18 Function LDP(s, ε, b):
19 for i = 1, 2, ..., k advisors do

20 Receive advice request for the state, s
21 With ϱpk

, for each action a ∈ Ai do

22 nd Qi(s, a) and generate ηi ∼ N (0, b)
23 Add LDP-noise, Q̄i(s, a) = Qi(s, a) + ηi
24 if Q̄i(s, a) /∈ (l, u) then
25 Repeat loop until Q̄i(s, a) ∈ (l, u)
26 else

27 Append Q̄i(s, a) to Q̄i(s)

28 return Q̄i(s)

29 return


Q̄i(s)
k

i=1

detection, the attacker can introduce a bias up to a maximum of

τ relative to the standard value, i.e., Qpa
(s) ≤ Q0(s) + τ .

DP included. With an LDP mechanism safeguarding knowl-

edge exchange, any received Q-value, Q̄pk(s) = Qpk(s) +
η, includes noise, η following a zero-mean Laplace distri-

bution, N (0, b), where b is the distribution scale. To pre-

vent false-positive alarms for benign differentially private Q-

values, the detector adjusts the previous detection condition to

|Q̄pk(s) − Q0(s)| ≤ τ ′ with τ ′ = τ × κ; ∀κ ∈ R, where

κ is the tolerance multiplier. This adjustment creates a poi-

soning window of |τ (1 − κ)| that an attacker can exploit, en-

abling a larger bias in knowledge (i.e., Q-values) without de-

tection. Formally, the attacker shares malicious knowledge,

Q̄pa(s) = Qpa(s) + ηa; ∀ηa ∈ |τ(1 − κ)|, where ηa denotes

the malicious noise drawn from an adversarial noise prole,

Na. Hence, an increase in noise for privacy enhancement also

expands the detection and the poisoning window.

4.2. Challenges in Formulating Adversarial Noise Pro-
le

Crafting an adversarial noise prole, ηa, that optimizes at-

tack gain while evading anomaly detection poses a technical

conundrum. A previous methodology [15] attempted this by

maximizing utility degradation, although this leads to a para-

doxical situation in the face of an anomaly detector - more

noise aids detection but less noise diminishes the attack gain.

A sophisticated alternative, as proposed by [19], models this as

a multi-objective optimization problem, i.e., max
A

G(A,D) ∋

|Q̄pa
(s) − Q0(s)| ≤ τ ′ where A,D, and G denote the attack,

the detect, and the gain function, respectively. The solution

of this multi-criteria optimization problem is derived in [19],

where the authors presented an attack impact, µ∗

a, and an opti-

mal adversarial distribution, N ∗

a (µ
∗

a, b) having the probability

density function, f∗

a as

f∗

a (x) =
k2 − b2

2bc2
e−

|x−θ|
b

+
(x−θ)

c and µ∗

a =
b2(θ − 2c)− θc2

b2 − c2
(4)

where θ is the mean, b2 is the variance, and c is the Lagrange
multiplier. c can be solved numerically from [19]:

2b2

c2 − b2
+ ln (1−

b2

c2
) = γ. (5)

Here, γ is the degree of knowledge poisoning; a high γ im-

plies a large malicious noise injection (i.e., a higher attack gain)

and vice versa. In particular, choosing a high γ can lead to unre-

alistically large Q-values whereas choosing a minuscule γ can

result in negligible to almost zero attack gain. Consequently,

tuning γ for an optimal attack is non-trivial but challenging,

which, unfortunately, overlooked by literature so far. We ad-

dress this research gap in section 4.4. Figure 1(a) demonstrates

the inuence of κ and γ on detected outliers and RMSE. By

adding LDP-noise to 100 uniform random values, non-DP Q-

values detect a steady number of outliers for a xed τ , whereas

LDP implementation signicantly increases outlier detection
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due to benign DP Q-values agged as false positives. This can

be mitigated by setting τ ′ = τ×κ. Moreover, an optimal attack

approach as per (4) allows successful detection evasion, main-

taining the baseline outlier count while inating the system’s

RMSE, as shown in Fig. 1(b).

FIGURE 1. (a) Impact of tolerance multiplier, κ over detected

outliers in both non-DP and DP settings, (b) Impact of degree

of knowledge poisoning, γ over attack evasion (difference in out-

lier count between non-attack and attack scenario) and attack gain

(System’s RMSE).

4.3. Attacker’s Capability and Knowledge

We contemplate an attacker manipulating knowledge sub-

missions to an advisee, either by exploiting susceptible agents

(internal threats) or by compromising communication channels

(external threats) (Fig. 2a, b). The attacker, in line with SOTA

research [31], is presumed to know the publicly available ε-

value and noise distribution.

4.4. Proposed PeLPA Algorithm

A malevolent advisor, pa ∈ N , could disrupt pi’s
convergence by transmitting erroneous information dur-

ing the knowledge-sharing phase. Having knowledge of

A, S,Φ, (xG, yG) and pi’s state, s, pa might manipulate larger

Q-values for a misleading action am versus an ideal action ah.
This would steer pi towards a malicious point. Yet, anomalous

Q-values could either invite detection or result in an insignif-

icant attack impact. The optimal attack method in section 4.2

addresses this trade-off. Our proposed PeLPA attack for LDP-

CMARL is detailed in Algorithm 2. pa continually injects ad-

versarial noises (ηa) to its Q-values (Qa(s, a)) until either the
malicious Q-values drop below pi’s maximum Q-value for an

action a, or γ exceeds a predetermined poisoning threshold

…
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FIGURE 2. (a) Internal poisoning: Attacker compromises advi-

sors and replaces benign LDP process with adversarial LDP pro-

cess, (b) External poisoning: Attacker compromises the commu-

nication path and injects additional malicious noise.

(τγ). Additionally, pa ensures malicious advice stays within

the reward range Q̄pa
(s, a) ∈ [l, u] to evade detection.

Algorithm 2: Proposed PeLPA Algorithm

Input : ε, b,α, Qpi
(s), Qpa

(s)
1 Initialize Q̄pa

(s) = [ ] and set

γ ← 0,Ψ ← True, θ ← 0
2 while Ψ is True do

3 γ = γ + 1
4 With b and γ, nd c numerically from (5)

5 Then, with c, θ and b, nd µ∗

pa
from (4)

6 for each a ∈ Ai in state, s do
7 while Q̄pa

(s, a) /∈ (l, u) do
8 Q̄pa

(s, a) = Qpa
(s, a) + ηa ∼ N (µ∗

pa
, b)

9 Append Q̄pa
(s, a) to Q̄pa

(s)

10 Q̄∗

pa
(s) =











Q̄pa
(s) and

Ψ ← False,

if Q̄pa
(s, a) < Qpi

(s, a) s.t.

a for maxQpi
(s) or γ > τγ

Continue, Otherwise until γ ≤ τγ

11 Set Q̄pa
(s) = [ ]

12 return Q̄∗

pa
(s)

5. Experimental Analysis

In this section, we implement our proposed PeLPA attack in

a modied predator-prey domain, following the environmen-

tal specications detailed in section 3.1 [3]. The environment

consists of multiple predator agents and one prey. The environ-

ment is reset if the initial agent doesn’t achieve the goal within

a specied number of steps. Table 1 presents the experimen-

tal parameters. For comparative insight, we investigate three

environment scales: small-scale (5x5), medium-scale (10x10),

and large-scale (15x15), exploring 0%, 20%, and 40% attacker
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FIGURE 3. Average steps to goal (Π̄) and obtained reward (Φ̄) analysis for (a) small (H × W = 5 × 5, N = 5, O = 1), (b) medium

(H ×W = 10 × 10, N = 10, O = 3), and (c) large-scale (H ×W = 15 × 15, N = 20, O = 5) environments. The number of steps is

increased as well as the maximum reward achievement is delayed with more attacks (large attacker ratio). Also, (d) convergence is delayed

for both 20% and 40% attacks compared to the no-attack baseline.

percentages in each. Each experiment is repeated 10 times to

average results. We use a privacy budget ε = 1.0 for all results

presented, even though a smaller ε would indicate stronger pri-

vacy protection, albeit with larger attack gains.

Steps to Goal (Π) Analysis. The Π̄-values represent the

average steps an agent takes to achieve the goal, with lower

values indicating efcient learning. The top three charts of

Fig. 3(a-c) reveals an increase in the required step count

to reach the goal as the attacker ratio rises and the envi-

ronment expands. For example, after 5000 episodes in a

medium-scale environment, Π̄ = {7.52, 11.332, 12.364} for

{0%, 20%, 40%} attackers, leading to a
(11.332−7.52)×100

7.52 ≈

50.69% and
(12.364−7.52)×100

7.52 ≈ 64.41% increase in average

steps to goal for 20% and 40% attackers, respectively.

Reward (Φ) Analysis. Similarly, the Φ̄-values represent aver-

age rewards obtained by agents as shown in the bottom three

charts of Fig. 3(a-c). Our experiments exhibit a decrease

in the speed of obtaining optimal rewards as the attacker ra-

tio escalates. For instance, in a medium-scale environment,

{2500, 3500, 4000} episodes are requisite to attain the optimal

Φ̄, for {0%, 20%, 40%} attackers, respectively. This leads to

a 3500
2500 ≈ 1.4x and 4000

2500 ≈ 1.6x time increase in optimal Φ̄

acquisition for 20% and 40% attackers, respectively.

Convergence (∆Q) Analysis. To gauge the effectiveness

of our proposed attack, we conduct a convergence analysis

based on ∆Q values, i.e., the average of the deviation of Q-

TABLE 1. Parameter value. α: learning rate, ϵ: exploration-

exploitation probability, Γ: discount factor, B: communication

budget, w: aggregation factor, τ, τ ′, τγ : predened threshold, ϕ:

reward, ε: privacy budget.

Parameter α ϵ Γ Btot
pi

Btot
pa

w τγ

Value 0.10 0.08 0.80 100,000 10,000 0.90 12

Parameter ϕG ϕF ϕO ϕW ε τ τ ′

Value 10.0 0.50 -1.50 -0.50 1.0 100 100,000

values from the optimal value (Q∗). An optimal learning pro-

cess would have ∆Q values tending to zero, and our analy-

sis conrms this behavior is impeded as the attacker ratio in-

creases. This delay in convergence correlates with the increase

in attacker prevalence. Specically, in a medium-scale envi-

ronment,∆Q falls below 10e−6 following {2360, 2800, 3280}
episodes for {0%, 20%, 40%} attackers. Consequently, con-

vergence is delayed by 2800
2360 ≈ 1.18x and 3280

2360 ≈ 1.38x for

attacker ratios of 20% and 40%, respectively.

Adaptive Degree of Knowledge Poisoning (γ). Finally, we

consider the degree of knowledge poisoning, γ, demonstrating

its distribution and symmetry in various scenarios as shown in

Fig. 4. This parameter is adjusted following line 10 in Algo-

rithm 2, showing varied instances of its manipulation across

different episodes. We only present the episodes in which the

attacker adjusted the γ value more than 20 times. For example,
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FIGURE 4. Distribution of the degree of knowledge poisoning,

(γ) in some example episodes. For instance, in episode 1146, the

attacker maintained the γ value under 5 for most of the steps but

increased it to more than 10 for a few steps.

in episode 1146, the attacker maintained the γ value under 5
for most of the steps but increased it to more than 10 for a few

steps. Contrarily, in episode 2027, the attacker never sets γ in

the range of [5, 10].

6. Conclusions

This paper highlights the potential security risks of using DP

in CMARL algorithms and proposes a new adaptive and local-

ized knowledge poisoning attack technique (PeLPA) to exploit

DP-noise and prevent optimal convergence of the CMARL

model. The proposed PeLPA technique is designed to evade

SOTA anomaly detection techniques and degrade the multia-

gent learning performance. The effectiveness of the proposed

attack technique is demonstrated through extensive experimen-

tal analysis in varying environment scales. The study lls a

research gap in the literature and sheds light on the need for

stronger security measures in LDP-CMARL systems.
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