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Abstract:

Lately, differential privacy (DP) has been introduced in co-
operative multiagent reinforcement learning (CMARL) to safe-
guard the agents’ privacy against adversarial inference during
knowledge sharing. Nevertheless, we argue that the noise intro-
duced by DP mechanisms may inadvertently give rise to a novel
poisoning threat, specifically in the context of private knowledge
sharing during CMARL, which remains unexplored in the lit-
erature. To address this shortcoming, we present an adaptive,
privacy-exploiting, and evasion-resilient localized poisoning at-
tack (PeLPA) that capitalizes on the inherent DP-noise to circum-
vent anomaly detection systems and hinder the optimal conver-
gence of the CMARL model. We rigorously evaluate our proposed
PeLLPA attack in diverse environments, encompassing both non-
adversarial and multiple-adversarial contexts. Our findings re-
veal that, in a medium-scale environment, the PeLPA attack with
attacker ratios of 20% and 40% can lead to an increase in average
steps to goal by 50.69% and 64.41%, respectively. Furthermore,
under similar conditions, PeLPA can resultin a 1.4x and 1.6x com-
putational time increase in optimal reward attainment and a 1.18x
and 1.38x slower convergence for attacker ratios of 20% and 40%,
respectively.

Keywords:
Differential Privacy; Adversarial Learning; Poisoning Attacks;
Cooperative Multiagent Reinforcement Learning

1. Introduction

Cooperative multiagent reinforcement learning (CMARL)
has been acknowledged for its proficiency in orchestrating
complex tasks, such as automated robotic swarming and dis-
tributed power system optimization, through multi-agent col-
laboration [1-3]. However, the inherent nature of data sharing

979-8-3503-0378-0/23/$31.00 ©2023 IEEE

in CMARL can trigger potential privacy infringements, as the
shared experiences often encompass sensitive data [4,5]. To
combat this, differential privacy (DP) mechanisms [6], which
employ stochastic noise addition to obfuscate sensitive data,
are posited as effective countermeasures [4, 7-9].

Yet, we conjecture that adversaries could exploit DP’s
noise-adding mechanism to craft their own malicious noise in
CMARL, thereby degrading the learning efficacy while remain-
ing undetected by hiding behind the DP-noise, leading to catas-
trophic implications in sectors like robotics, cyber-physical sys-
tems, automotive industries, etc. [10-13]. For example, false
advising with DP-exploited misleading knowledge from advi-
sor cars in autonomous driving may make lane-changing am-
biguous and lead to severe road accidents. Contemporary state-
of-the-art (SOTA) poisoning attacks typically focus on volu-
minous malicious data injection, which is prone to detection,
leaving the creation of subtle, stealthy adversarial instances as
a formidable challenge [14—17].

Addressing this challenge, our research proposes a novel ad-
versarial model tailored for CMARL that exploits DP-induced
noise to facilitate stealthy, localized poisoning attacks [18-20].
To our knowledge, this is the first investigation into DP-noise
exploitation for conducting local poisoning attacks while evad-
ing detection in CMARL. Our contributions are:

* Uncovering the susceptibility of DP mechanisms to adver-
sarial poisoning attacks, illustrating how adversaries can
adaptively perturb knowledge to remain undetected.

* Proposing a novel privacy-exploiting local poisoning at-
tack (PeLPA), contrasting general poisoning attacks that
overlook the importance of attack stealthiness.

* Experimentally evaluating the potential ramifications of
DP-exploited stealthy attacks in safety-critical sectors.
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The terms knowledge’, experience’, advice’, and Q-value’
are used interchangeably throughout the paper.

2. Related Works

In this section, we address the SOTA poisoning techniques.

2.1.  Application of Differential Privacy for Knowledge

Sharing

DP, a prominent method for privacy preservation, has been
extensively employed in private knowledge sharing within the
realm of CMARL [4,7-9,21,22]. The scope of its application
includes DP-guided Q-learning models to maintain the privacy
of reward data [21], privacy-centric multi-agent frameworks
leveraging federated learning (FL) and DP to obstruct illegit-
imate access to data statistics [4], and harnessing (3, ¢)-DP to
counteract offloading preference inference attacks in vehicular
ad-hoc networks (VANET) [22]. Apart from protecting user in-
formation during private knowledge sharing, DP has also been
proposed for differential advising. In particular, Ye et al. [7]
propose a DP-based advising method for CMARL that enables
agents to use the advice in a state even if the advice is cre-
ated in a slightly different state. Nevertheless, they overlook
the susceptibility of DP to poisoning attacks during knowledge
sharing [7-9].

2.2. Poisoning Attacks in Cooperative Multiagent
Learning

The infiltration of poisoning attacks in CMARL, which can
alter training datasets and consequently disrupt learning out-
comes, is a pertinent research concern [15,16,23,24]. Research
has delved into scenarios where adversarial agents can manip-
ulate network-wide policies [23], scrutinized targeted poison-
ing attacks in dual-agent frameworks where one agent’s pol-
icy is modified [16], and investigated the implications of soft
actor-critic algorithms in CMARL for executing poisoning at-
tacks [24]. For instance, Figura et al. [23] demonstrate that
an adversarial agent can persuade all other agents in the net-
work to implement policies that optimize its desired objec-
tive. Another approach for performing poisoning attacks by any
malicious advisor in multiagent Q-learning as demonstrated
in [25], is to shuffle the Q-values for all actions corresponding
to the requested state and inject false noise that is similar to the
maximum reward using reward poisoning method. However,
the ramifications of these SOTA poisoning techniques against
anomaly detection and privacy-preserving knowledge-sharing

technologies remain largely unexplored. Our work endeavors
to model a DP noise-exploiting poisoning attack that remains
resilient to detection algorithms.

2.3. Differential Privacy Exploitation Techniques

Another domain of interest focuses on the possible exploita-
tion of DP in classification challenges, even though it does not
necessarily concentrate on adversarial onslaughts on CMARL
algorithms [14,17-20,26,27]. This research trajectory involves
the systemic degradation of utility by exploiting DP noise [19],
gauging the impact of DP manipulation in smart grid networks
[27], and designing stealthy model poisoning attacks on an FL.
model [18,20]. Similarly, [27] investigates the impact of DP
exploitation in a smart grid network and introduces a corre-
lation among DP parameters to enable the system designer to
calibrate the privacy level and reduce the attack surface. To ex-
amine the effect of DP-exploiting attacks on an FL. model, [18]
proposes a stealthy model poisoning attack leveraging DP noise
added to ensure privacy. They improve their attack technique
in [20], investigating how the degree of model poisoning can
be adjusted dynamically through episodic loss memorization in
FL and demonstrating how their attack can evade some SOTA
defense techniques, such as norm, accuracy, and mix detection.
However, these attack models face constraints in multi-agent
environments or decentralized CMARL platforms. Contrarily,
Cao et al. [14] propose an attack on the Local Differential
Privacy (LDP) protocol by introducing fraudulent users. Our
research, however, targets legitimate yet compromised users
infusing false noise into shared data, also aiming to dodge
anomaly detectors - a critical objective for a successful attack.

3. Local Differentially Private Cooperative Multia-
gent Reinforcement Learning

We present a local differentially private CMARL (LDP-
CMARL) framework akin to the one adopted in [25]. How-
ever, for demonstration simplicity, instead of a generalized ran-
domized response (GRR) technique, we leverage a Bounded
Laplace (BLP) mechanism [28] to model our LDP framework
that also achieves the same £-LDP guarantee.

3.1. Cooperative Multiagent Reinforcement Learning
(CMARL)

Environment model. Our research formalizes a cooperative
reinforcement learning context with a Markov game M =
(N,S, A, ®,T',T) incorporating N robots navigating an envi-
ronment E of dimensions height (H) and width (W) towards
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a goal G. It introduces obstacles O and freeway F' with cor-
responding reward penalties and incentives, ¢ and ¢p. Dy-
namic obstacle positioning adds complexity to learning, which
concludes when the first agent reaches G.

Learning objectives. Agent p;’s objective is to take the
fewest steps, II to reach G, collect ¢, avoid hitting o, € O,
and earn as much as rewards, ¢ . In short, the objectives can
be formalized as

(a) Ip; = njz&ln II
(b) bp, = dr + ¢ + [¢po = 0] VPc.F0 € ®and oG > ¢r

(©) [ (@pis yp:) = (@65 ya)ll = 0
ey
where (zp,,Yp, ), and (zg, yg) are p;’s and G’s positions.
3.2. Integrating Local Differential Privacy (LDP) in
CMARL

LDP protocols encapsulate two main stages: perturbation
and aggregation. The Q-values domain, denoted as Q = [q],
undergoes local perturbation before being relayed to the ad-
visee, p;, ensuring p;’s inability to infer the original Q-value of
the advisor, pi. The aggregation phase facilitates p;’s estima-
tion of optimal advice utilizing the perturbed values received
from all py, with perturbation function for Q-values of all ac-
tions, a in state s represented as P(Q)(s)). Following the def-
inition of e-LDP [14], a protocol achieving LDP must ensure
the probabilistic resemblance between any pair of perturbed Q-
values.

LDP offers plausible deniability to pg, restraining p; from
determining the origin of the output confidently. This ambi-
guity is regulated by the privacy budget, ¢ [6]. To actualize
(£,0)-DP, the Laplace mechanism, a noise-addition technique,
is applied as follows [6]:

M(D) = f(D) +n~ N(0,b) 2

where the added noise, 7 is drawn from a zero-mean Laplace
distribution with scale parameter, b > %. Here, A denotes
the sensitivity of the query function. Nonetheless, the same
Laplace mechanism that satisfies (¢,0)-DP, can be deployed
in a distributed fashion for achieving e-LDP [28,29], by inte-
grating randomized Laplace noise into each state-action pair’s
Q-values of an advisor. We leverage the higher noise sensitiv-
ity offered by the Laplace mechanism to attain stronger privacy
protection as compared to Gaussian or Exponential mechanism.
The advisee, p; computes the average value from all the noisy
Q-values [29]. We utilize the following BLP technique for in-
put perturbation [28]:

Definition 1 (Bounded Laplace Mechanism (BLP)) Given
an input q¢ € [l,u] C R, and scale b > 0, the BLP technique,
M : Q — [l,u] over output G can be represented by the
following conditional probability density function (pdf):

M = {0 o agla

awe ¢ ifge(l ]

3)

where [ and u are the lower and upper range, and C; =

flu %e’ e dq is a normalization constant. The proof and
further details can be found in [28]. BLP constrains noise sam-
pling within a predefined range, avoiding values that may detri-
ment learning performance. Hence, the sensitivity of the com-
bined LDP mechanism is A = |u—1|. Similar to [7], within our
LDP-CMARL framework, the sensitivity A needs to be calcu-
lated carefully. The LDP-CMARL framework training stages
utilizing the BLP mechanism are outlined in Algorithm 1. Dur-
ing advice request dispatch, p; specifies a neighbor zone, 7,
and sends advice requests only to advisors within Z. Both p;
and py, calculate their advice requesting (o,,,) and advice giving
(op,,) probabilities as per [7]. After receiving advice from the
neighbors, p; aggregates all the advice following a weighted
linear aggregation technique, controlled by a predefined weight
parameter, w [25]. Then, p; selects and executes an optimal
action followed by a final Q-table update.

4. Privacy Exploited Localized Poisoning Attack

In this section, we dissect the DP noise exploitation mecha-
nism, formulating adversarial noise profile challenges. We also
articulate our threat model and proposed PeLPA algorithm.

4.1. How can LDP-noise be Exploited for Poisoning At-

tacks?

DP not included. Considering a non-LDP advising sce-
nario, the agents exchange Q-value knowledge, facilitating
learning. We formulate the knowledge as Q-values instead of
the recommended actions since the Q-value advising, unlike
the action advising, does not impair the performance of the
agent’s learning directly [30]. Let us assume an anomaly de-
tector at p;’s end that monitors Q-values sequences from ad-
visor agents for all actions in a specific state, s. Generally,
for a received Q-value, @, (s), from advisor py, the condition
|Qp,. (s) — Qo(s)| < 7 is consistently maintained, where 7 is
a detection threshold and Qo (s), a historical standard Q-value.
Any deviation raises an alarm, implying a potential malicious
advisor p, € [pi] with biased Q-values. Nonetheless, to evade
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Algorithm 1: LDP-CMARL Framework
Input : E, N A S, ® — (I,u)
Output: Trained LDP-CMARL model
1 Initialize Q-table, set €, v, I', and compute b =
2 for each agent, p; € N do
for each episode do

alu—I|
€

3
4 Initialize state, s for each state do
5 Send advice request to py in Z with gy,
6 Receive LDP-advice,
= = k
LDP(s,,b) = Qp,(s) = [Qi(s)]i:l
7 for each action a € A; in state, s do
8 Find weighted Q-value, Q5 (s,a) =
P
wQp, (5, a)+(1-w)(5 227, Qi(s, a))
9 Append Q5 (s,a) to Q. (s)
10 Update Q-table with @ (s)
11 Choose a* € A; for s using e-greedy policy
12 Execute action, a*, observe ¢, , s
13 Perform @, (s,a) < (1 — @)@y, (s,a) +
o [ By, + T maz Q(s', )]
14 | Set, s« 8
15 If | (zp,, Up,) — (ZG,ye) > 0] then continue
16 | else end episode and reset E

17 return Trained LDP-CMARL model
18 Function LDP (s,¢, b) :
19 fori=1,2, ...,k advisors do

20 Receive advice request for the state, s

21 With g, , for each action a € A; do

2 find Q;(s, a) and generate 7; ~ N(0,b)
23 Add LDP-noise, Q;(s,a) = Q;i(s,a) +n;
24 if Qi(s,a) ¢ (I,u) then

25 | Repeat loop until Q;(s,a) € (I,u)

26 else

27 | Append Qi(s, a) to Qi(s)

28 return Q;(s)

29 | return [Qz(s)]le

detection, the attacker can introduce a bias up to a maximum of
7 relative to the standard value, i.e., Qp, (s) < Qo(s) + 7.

DP included. With an LDP mechanism safeguarding knowl-
edge exchange, any received Q-value, Qpy(s) = Qpi(s) +
7, includes noise, n following a zero-mean Laplace distri-
bution, N (0,b), where b is the distribution scale. To pre-
vent false-positive alarms for benign differentially private Q-
values, the detector adjusts the previous detection condition to

|Qpr(s) — Qo(s)] < 7/ with 7/ = 7 x K;Vk € R, where
K 1is the tolerance multiplier. This adjustment creates a poi-
soning window of |7(1 — k)| that an attacker can exploit, en-
abling a larger bias in knowledge (i.e., Q-values) without de-
tection. Formally, the attacker shares malicious knowledge,
Qpa(s) = Qpa(S) + Na; Ve € |7(1 — k)|, where 7, denotes
the malicious noise drawn from an adversarial noise profile,
N.. Hence, an increase in noise for privacy enhancement also
expands the detection and the poisoning window.

4.2. Challenges in Formulating Adversarial Noise Pro-
file

Crafting an adversarial noise profile, 7n,, that optimizes at-
tack gain while evading anomaly detection poses a technical
conundrum. A previous methodology [15] attempted this by
maximizing utility degradation, although this leads to a para-
doxical situation in the face of an anomaly detector - more
noise aids detection but less noise diminishes the attack gain.
A sophisticated alternative, as proposed by [19], models this as
a multi-objective optimization problem, i.e., maz G(A,D) >

|Qp. (s) — Qo(s)| < 7/ where A, D,and G denote the attack,
the detect, and the gain function, respectively. The solution
of this multi-criteria optimization problem is derived in [19],
where the authors presented an attack impact, ., and an opti-
mal adversarial distribution, A*(p*, b) having the probability
density function, f; as

k2 — b2
2bc?

b2(0 — 2¢) — 6c?
b2 _ o2

_le=60] , (==0)
b + c and MZ =

falz) =

e

“)
where @ is the mean, b? is the variance, and c is the Lagrange
multiplier. ¢ can be solved numerically from [19]:

20? b?

m+ln(1—c—2):’y. ®)

Here, ~ is the degree of knowledge poisoning; a high v im-
plies a large malicious noise injection (i.e., a higher attack gain)
and vice versa. In particular, choosing a high - can lead to unre-
alistically large Q-values whereas choosing a minuscule v can
result in negligible to almost zero attack gain. Consequently,
tuning v for an optimal attack is non-trivial but challenging,
which, unfortunately, overlooked by literature so far. We ad-
dress this research gap in section 4.4. Figure 1(a) demonstrates
the influence of x and ~ on detected outliers and RMSE. By
adding LDP-noise to 100 uniform random values, non-DP Q-
values detect a steady number of outliers for a fixed 7, whereas
LDP implementation significantly increases outlier detection
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due to benign DP Q-values flagged as false positives. This can
be mitigated by setting 7/ = 7 X k. Moreover, an optimal attack
approach as per (4) allows successful detection evasion, main-
taining the baseline outlier count while inflating the system’s
RMSE, as shown in Fig. 1(b).

107 Non-DP -9+ Base outlier count
mor -3~ Base RMSE 5
W Diff. in outlier count|
| S System's RMSE
1 D 1 ||
1o
g ook T "
= P 0 = o = = e
.5 @
5 k|
5 10 =
=
5 10’
z
-1
10

o 23 45 6 7 89 i
Tolerance multiplier, k
(a)

05 L0 L5 20 40 10 100
Degree of poisoning, y
(b)

FIGURE 1. (a) Impact of tolerance multiplier, ~ over detected
outliers in both non-DP and DP settings, (b) Impact of degree
of knowledge poisoning, ~y over attack evasion (difference in out-
lier count between non-attack and attack scenario) and attack gain
(System’s RMSE).

4.3. Attacker’s Capability and Knowledge

We contemplate an attacker manipulating knowledge sub-
missions to an advisee, either by exploiting susceptible agents
(internal threats) or by compromising communication channels
(external threats) (Fig. 2a, b). The attacker, in line with SOTA
research [31], is presumed to know the publicly available e-
value and noise distribution.

4.4. Proposed PeLPA Algorithm

A malevolent advisor, p, € N, could disrupt p;’s
convergence by transmitting erroneous information dur-
ing the knowledge-sharing phase. Having knowledge of
A, S, P, (xa,yg) and p;’s state, s, p, might manipulate larger
@-values for a misleading action a.,, versus an ideal action ay,.
This would steer p; towards a malicious point. Yet, anomalous
Q-values could either invite detection or result in an insignif-
icant attack impact. The optimal attack method in section 4.2
addresses this trade-off. Our proposed PeLPA attack for LDP-
CMARL is detailed in Algorithm 2. p, continually injects ad-
versarial noises (7),) to its Q-values (Q, (s, a)) until either the
malicious Q-values drop below p;’s maximum Q-value for an
action a, or vy exceeds a predetermined poisoning threshold

vAdvisor 1 '
] [Advisor 2

E.
g
<
<

‘Advisor 2 »

5‘Advisor n o

(b) External poisoning

. Advisor n

(a) Internal poisoning

FIGURE 2. (a) Internal poisoning: Attacker compromises advi-
sors and replaces benign LDP process with adversarial LDP pro-
cess, (b) External poisoning: Attacker compromises the commu-
nication path and injects additional malicious noise.
(7). Additionally, p, ensures malicious advice stays within
the reward range @, (s, a) € [I, u] to evade detection.

Algorithm 2: Proposed PeLLPA Algorithm
Input :¢,b,a,Qp,(s),Qp, (5)
1 Initialize Q,, (s) = [ ] and set
v 0,V < True,0 < 0
2 while V¥ is True do
3 y=~v+1
4 With b and -, find ¢ numerically from (5)
5 Then, with ¢, 6 and b, find y;,  from (4)
6
7
8

for each a € A; in state, s do
while ), (s,a) ¢ (I,u) do
L Qpa (s,a) = Qpa, (s,a) +na ~ N(’LL;{J,’ b)

9 Append Q,, (s,a) to Qp, (s)
10 2 (s) =
Qp. (s) and if Qp, (s,a) < Qp,(s,a) s.t.
U « False, a for ,45@Qp, (8) or v > 7,
Continue, Otherwise until v < 7,

| Set@p,(s)=1[]

12 return Q5 (s)

5. Experimental Analysis

In this section, we implement our proposed PeLPA attack in
a modified predator-prey domain, following the environmen-
tal specifications detailed in section 3.1 [3]. The environment
consists of multiple predator agents and one prey. The environ-
ment is reset if the initial agent doesn’t achieve the goal within
a specified number of steps. Table 1 presents the experimen-
tal parameters. For comparative insight, we investigate three
environment scales: small-scale (5x5), medium-scale (10x10),
and large-scale (15x15), exploring 0%, 20%, and 40% attacker
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FIGURE 3. Average steps to goal (IT) and obtained reward (®) analysis for (a) small (H x W = 5 x 5, N = 5,0 = 1), (b) medium
(Hx W =10 x 10, N = 10,0 = 3), and (c) large-scale (H x W = 15 x 15, N = 20, O = 5) environments. The number of steps is
increased as well as the maximum reward achievement is delayed with more attacks (large attacker ratio). Also, (d) convergence is delayed

for both 20% and 40% attacks compared to the no-attack baseline.

percentages in each. Each experiment is repeated 10 times to
average results. We use a privacy budget € = 1.0 for all results
presented, even though a smaller € would indicate stronger pri-
vacy protection, albeit with larger attack gains.

Steps to Goal (T1) Analysis. The II-values represent the
average steps an agent takes to achieve the goal, with lower
values indicating efficient learning. The top three charts of
Fig. 3(a-c) reveals an increase in the required step count
to reach the goal as the attacker ratio rises and the envi-
ronment expands. For example, after 5000 episodes in a

medium-scale environment, IT = {7.52,11.332,12.364} for

{0%, 20%,40%} attackers, leading to a w ~

50.69% and w ~ 64.41% increase in average
steps to goal for 20% and 40% attackers, respectively.

Reward (®) Analysis. Similarly, the ®-values represent aver-
age rewards obtained by agents as shown in the bottom three
charts of Fig. 3(a-c). Our experiments exhibit a decrease
in the speed of obtaining optimal rewards as the attacker ra-
tio escalates. For instance, in a medium-scale environment,
{2500, 3500, 4000} episodes are requisite to attain the optimal
®, for {0%,20%,40%} attackers, respectively. This leads to
a 3508 ~ 1.4x an ~ 1.6x time increase in optimal ®
acquisition for 20% and 40% attackers, respectively.

Convergence (AQ) Analysis. To gauge the effectiveness
of our proposed attack, we conduct a convergence analysis
based on AQ values, i.e., the average of the deviation of Q-

TABLE 1. Parameter value. «: learning rate, e: exploration-
exploitation probability, I": discount factor, B: communication
budget, w: aggregation factor, T, 7, 7.,: predefined threshold, ¢:
reward, e: privacy budget.

Parameter | a | € | T | Bl | Blet | w | Ty
Value | 0.10 | 0.08 | 0.80 | 100,000 | 10,000 | 0.90 | 12
Parameter | ¢¢ | ¢r | 90 | ow |e¢ | = | 7

Value | 10.0 | 0.50 | -1.50 | -0.50 | 1.0 | 100 | 100,000

values from the optimal value (Q*). An optimal learning pro-
cess would have AQ values tending to zero, and our analy-
sis confirms this behavior is impeded as the attacker ratio in-
creases. This delay in convergence correlates with the increase
in attacker prevalence. Specifically, in a medium-scale envi-
ronment, AQ falls below 10e~° following {2360, 2800, 3280}
episodes for {0%,20%,40%} attackers. Consequently, con-
vergence is delayed by 2820 ~ 1.18x and 3280 ~ 1.38x for

i 2360 and 3360
attacker ratios of 20% and 40%, respectively.

Adaptive Degree of Knowledge Poisoning (7). Finally, we
consider the degree of knowledge poisoning, vy, demonstrating
its distribution and symmetry in various scenarios as shown in
Fig. 4. This parameter is adjusted following line 10 in Algo-
rithm 2, showing varied instances of its manipulation across
different episodes. We only present the episodes in which the
attacker adjusted the « value more than 20 times. For example,
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L

Degree of poisoning, y

1146 1721 1790 1970 2165 2230

Episode, e

2027

FIGURE 4. Distribution of the degree of knowledge poisoning,
() in some example episodes. For instance, in episode 1146, the
attacker maintained the « value under 5 for most of the steps but
increased it to more than 10 for a few steps.

in episode 1146, the attacker maintained the v value under 5
for most of the steps but increased it to more than 10 for a few
steps. Contrarily, in episode 2027, the attacker never sets 7y in
the range of [5, 10].

6. Conclusions

This paper highlights the potential security risks of using DP
in CMARL algorithms and proposes a new adaptive and local-
ized knowledge poisoning attack technique (PeLPA) to exploit
DP-noise and prevent optimal convergence of the CMARL
model. The proposed PeLPA technique is designed to evade
SOTA anomaly detection techniques and degrade the multia-
gent learning performance. The effectiveness of the proposed
attack technique is demonstrated through extensive experimen-
tal analysis in varying environment scales. The study fills a
research gap in the literature and sheds light on the need for
stronger security measures in LDP-CMARL systems.
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