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Emergence of an apparent yield phenomenon in
the mechanics of stochastic networks with
inter-fiber cohesiont

S. N. Amjad® and R. C. Picu ‘2 *

In this work we investigate the contribution of inter-fiber cohesion to defining the mechanical behavior
of stochastic crosslinked fiber networks. Fibers are athermal and store energy primarily in their bending
and axial deformation modes. Cohesion between fibers is defined by an interaction potential. These
structures are in equilibrium with the inter-fiber cohesive forces before external load is applied and their
mechanical behavior is probed in uniaxial tension. Two types of configurations are considered: a state
with high initial free volume in which contacts between fibers are scarce, and a state with low free
volume and large number of fiber contacts. While in the absence of cohesion the response is
hyperelastic, we observe that a yield point-like phenomenon develops as the strength of cohesion
increases in both network types considered; we refer to this as an ‘unlocking phenomenon’. The small
strain stiffness increases as cohesion becomes more pronounced. The stiffness and unlocking stress are
expressed in terms of network parameters and cohesion strength through a product of two functions,
one dependent on network parameters only, and the other is a function of the cohesion strength. While
the small strain response is controlled by cohesion, the large strain behavior is shown to be largely
controlled by the network. Therefore, varying the strength of cohesion has no effect on strain stiffening.
These observations provide a physical basis for the unlocking observed in both athermal and thermal
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1. Introduction

The broad class of network materials includes materials whose
mechanical behavior is controlled by an underlying network of
fibers." Examples are abundant: the extracellular matrix,” the
dermis,” various collagen-based membranes within the human/
animal body®® are biological network materials, while paper
and nanopapers,®” nonwovens and textiles®® are examples of
man-made network materials. In all these cases, fibers are
randomly oriented, and the network is stochastic. Further,
fibers forming these materials are large enough for thermal
fluctuations to be irrelevant for their mechanics and hence are
athermal. Thermal networks, which include gels, elastomers,
and entangled thermoplastics, form a distinct class of network
materials.

The interactions of fibers within the network are of bonded
and non-bonded type. Bonded interactions include those
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network materials and are expected to facilitate the design of soft materials with novel properties.

taking place at crosslinks. In athermal networks, where fibers
store energy primarily in the bending and axial modes, the
crosslinks transmit both forces and moments. Non-bonded
interactions take place at contacts. In a dense network in which
many contacts are established, not all contacts transmit load,
and some may open and reform elsewhere during deformation.
Cohesive interactions are also of non-bonded type and may be
caused by hydrogen bonding, hydrophobic interactions, electro-
static interactions, etc.'® Such energetic interactions as well as
entropic interactions tend to align fibers and cause bundling,"*
leading to an isotropic to nematic transition.'” In general, since
cohesion forces are short-ranged, fibers of diameter in the
micron range and larger must be brought into proximity by
other means for cohesion to be effective. Capillarity causes
various effects in soft materials composed from athermal fibers
and may induce large deformations, stiffening, and preferential
fiber alignment."® Nonwovens may be ‘mechanically activated’ -
a procedure which aligns fibers and increases the stiffness and
strength in the direction of alignment.'* If fibers are not cross-
linked, such as in the case of suspensions, cohesion leads to
bundling.">'® Carbon nanotubes that grow in a furnace in the
presence of carbonaceous species and catalysts develop strong
adhesive forces as they come in contact and form bundles that
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sediment to form buckypaper.'” Nanoscale filaments, including
individual molecules, develop strong adhesive forces. Such
interactions provide the cohesive strength of polymeric melts
and produce the glass transition as temperature is reduced. This
brief overview indicates that cohesive forces may become the
dominant type of interactions in certain network materials.

Network materials are studied by various communities in
connection with diverse applications. The mechanical behavior
of various athermal material systems is described in ref. 1.
Fibers typically represent only a few percent of the total volume
of the material, which mandates that contact formation is a
rare event in tension and shear; however, it becomes essential
in compression.'® In the absence of cohesive interactions and
inter-fiber contacts, the behavior is controlled by the network
structure and fiber properties."'*" Dense networks (the den-
sity, p, is defined as the total length of fiber per unit volume) of
relatively thick fibers (d is the fiber diameter), deform affinely,
i.e. the strain experienced by individual fibers is identical to the
macroscopic applied strain. In this case, the small strain net-
work stiffness, Eq, is E, ~ pd”. In most practical cases networks
are sparse and/or are made of fibers of large aspect ratio. In
such situations, deformation is non-affine, and E, ~ p*d*, with
x being a function of the network architecture. In 3D, x = 2 for
cellular networks such as Voronoi, x = 3 for fibrous networks
and takes larger values in 2D.*” The affine-non-affine transition
is controlled by the non-dimensional parameter w = log;, pd>,
with low w values corresponding to non-affine behavior.
Networks of this type exhibit hyperelastic behavior under large
deformation, characterized by exponential stiffening.**">

Networks with lower free volume, in which non-bonded
interactions become important, exhibit a somewhat different
behavior, with a concave segment of the stress-stretch curve
observed at small strains. Specifically, the stress reaches a peak,
followed by softening. If fracture does not occur, the softening
regime may be followed by a stiffening regime similar to the
hyperelastic behavior of networks of high free volume. This is
observed in dense nonwovens,>* % in thermoplastics above the
glass transition and some thermosets.>*° The behavior of a
sparsely crosslinked thermoset may exhibit a concave segment,
followed by softening and then stiffening, while the same
material may be fully brittle when densely crosslinked. In this
work we show that inter-fiber cohesion leads to the emergence
of this type of behavior.

In the context of network materials, cohesion may be quanti-
fied using the elastocapillarity length,"*?" Lgc = /E;I/y, where
E¢is the fiber material Young’s modulus,  is the axial moment of
inertia of the fiber cross-section (I ~ d* for circular cross-
sections) and y is the work of cohesion per unit length of contact
between two parallel fibers. Cohesion has a significant effect on
the mechanics of the network provided Lgc is smaller or equal to
one of the length scales of the network, particularly the mean
segment length, ., or d. Parameter Lyc was used to quantify the
self-organization of carbon nanotubes in buckypaper and other
fiber bundling processes.>* For example, Ly = 10 nm for single-
walled CNT (10,10) of diameter 1.4 nm, while for microtubules
Lyc = 7 to 20 pm.*®
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While the mechanical behavior of networks without cohe-
sion has been studied extensively, the effect of cohesion
received much less attention. The self-organization of non-
bonded fibers under the action of cohesive forces was
discussed in ref. 16 in terms of the non-dimensional parameter
¥ = (Lo/Lgc)’, where L, is the fiber length. It was observed that
the network self-organizes into a cellular network of fiber
bundles provided ¥ > a(pLo)’, where a is a numerical para-
meter which depends on the friction between fibers.** Friction
increases a, which then requires larger values of ¥ to drive
network self-organization. The resulting cellular network has
interesting, ¥ - dependent mechanical behavior, as discussed.*
The mechanics of cross-linked networks with cohesion was stu-
died using two-dimensional models.*® It was observed that net-
works which are sub-isostatic in the absence of cohesion become
isostatic and their stiffness increases as cohesion is enabled and
then increased. It was also observed that the small strain behavior
is primarily controlled by cohesion and less by the network
structure. Despite the limitations of the work reported in ref. 34
(2D models and only the small strain regime was investigated), the
results indicate that exceptional behaviors, difficult or impossible
to obtain without cohesion, can be achieved in such systems.

The present work reconsiders the effect of inter-fiber cohe-
sion on the mechanical behavior of crosslinked networks by
using 3D networks of fibers with various tortuosity and by using
a different modeling technology than in previous studies.**
This allows reaching the large strain regime and imposes no
limitations on the structure of the network used which, in turn,
produces results with broader applicability. The central result
reported is the emergence of a yield point as cohesion is
enabled. However, since the present system is intrinsically
elastic, the peak of the stress-strain curve is not a yield point
(terminology implies association with plasticity) and as such,
we refer to it as an ‘unlocking phenomenon’ with a corres-
ponding unlocking stress, g,. The stress o, and the small strain
stiffness increase as cohesion becomes stronger. It is shown
that the response at strains beyond the unlocking point is
controlled by the network and is largely unaffected by cohesion.
The emergence of this unlocking phenomenon is a manifesta-
tion of the non-convexity of the energy surface over which the
system with cohesion evolves.

2. Models and methods
2.1 Models

To generate the network models used in this study we start with
periodic 3D Voronoi constructs. A cubic domain of edge length
L is considered and a set of randomly distributed points, which
act as seeds for the Voronoi procedure, are generated. Periodic
images of the seed points are replicated in the 26 cubic
domains of edge length L surrounding the reference cube.
The entire 3L x 3L x 3L domain is then Voronoi tessellated
and the edges of the resulting cells are taken as fibers, while the
vertices represent crosslinks. Further, nodes are placed at each
site where a fiber crosses the boundary of the central cube and
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Fig. 1 Representation of the network in the initial, Voronoi, State |, and in
States Il of the two types of structures considered. The schematics below
the network images show the central concept behind the two types:
cohesion deforms the fibers leading to some degree of structural collapse,
which is smaller in type | compared to type II; contacts stabilize structures
of type Il, while only a small number of contacts are present in type I.

only this reference domain is retained. This procedure pro-
duces a Voronoi structure which allows the application of
periodic boundary conditions. This configuration of the net-
work is here referred to as State 1, Fig. 1. We note that, since the
present simulations are computationally expensive, working
with the smallest possible models is highly desirable. However,
as discussed in the literature,®*” the mechanics of fiber net-
works is highly affected by size effects, which can be mitigated
to some extent using periodic boundary conditions. This argu-
ment guided us towards considering a model that represents an
infinite network structure which is periodic at length scales
larger than L and stochastic at smaller length scales. This
compromise is needed to render simulations tractable.

The fibers are modeled as Timoshenko beams and store
energy in the axial, bending, torsion and shear modes.’® As
discussed in the literature, the bending mode dominates at
relatively small strains, provided w is sufficiently small.’*® The
beams cross-sections are considered circular, of diameter d.
In any given model, all fibers are made from the same linear
elastic material, of stiffness Ef, and have the same diameter, d.
Parameter w, which controls the degree of non-affinity of the
network behavior'?®® is adjusted by varying d. The values of
parameter w reported below refer to State 1 of the network.

The crosslinks are rigid, ie transmit both forces and
moments, and the angle between fibers merging into a cross-
link does not change during deformation. The connectivity
number, which represents the number of fibers connected at
each crosslink is z = 4. Based on the Maxwell criterion,*’ three-
dimensional structures of trusses (hinged crosslinks) with z < 6
are sub-isostatic and have vanishing stiffness. In this case, the
network is stabilized by the bending mode of fibers and the type
of crosslinks considered, and the small strain stiffness is non-
zero. The pre-stress introduced by the cohesion forces further
stabilizes the structure.*® Stabilization of sub-isostatic networks
by pre-stress was also observed before in other contexts.*™*?

Cohesion between fibers is modeled by considering an
attractive potential, #, which varies inversely with the distance
R between two infinitesimal fiber segments. The resulting
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attractive force acting on a segment of infinitesimal length
ds; interacting with a segment of length ds, located at a
distance R is computed as df ~ ds;ds,R/|R|?, where R is the
position vector of segment 2 relative to 1. The total force
between two fiber segments of finite length is computed as a
double integral of this expression along the two segments. The
interaction is truncated at an outside cut-off radius RS™ =
1.03l.9, where I, is the mean segment length of the Voronoi
network in State 1, before cohesion forces are applied. This
range was selected to ensure enough fiber segments in inter-
action with any reference fiber segment; note that the distribu-
tion of fiber lengths is Poisson, and hence a large number of
fibers have length smaller than [, The interaction is also
truncated at an inner cut-off radius of RI" = d. Periodic boundary
conditions are applied while computing cohesive interactions.

The strength of the interaction is controlled by the constant
of proportionality in the df ~ ds;ds,R/|R|® relation. However,
as discussed in the Introduction, the relevant parameter of the
problem is ¥ = yl.*/E¢l. The work of cohesion, 7, is computed
by considering two parallel and infinite fibers and computing
the work per unit length required to separate the fibers from
R =R to R = RS, The results are reported here in terms of V.

This model implies that ‘centers of interaction’ are located
along the centerline of each fiber and that two centerlines may
only approach up to a distance d. This is adequate because the
interaction forces considered are long ranged. If much shorter
ranged interactions are considered, e.g. van der Waals, with the
interaction force scaling as 1/R", n > 2, it is necessary to
consider that centers of interaction are uniformly distributed
over the surface of cylindrical fibers and that the surface-to-
surface interaction becomes important. Effective potentials for
this situation have been developed,** but are dependent on the
local details of the geometry and are much more computation-
ally expensive. It was determined that the ‘large separation
approximation’ made in the present work is valid provided the
wall-to-wall distance between fibers is larger than approxi-
mately d/2."*> Since in the present case R2""/d ranges from 10
to 21 and hence much larger than 1, the large separation
approximation is adequate. The case considered here, with
n = 2 corresponds to Coulomb interactions between fibers
due to distributed charge; cohesion due to dispersive interac-
tions would require considering n >» 2.

Contacts between fibers are allowed to form to ensure that
fibers do not interpenetrate and cross during the simulation.
The non-crossing condition is imposed by a constraint force
proportional to the overlap of the fibers at the contact site
acting in the direction normal to the contact (normal to the
plane defined by the centerlines of the contacting fibers at the
contact site). All contacts in the present models are frictionless.

Contacts also prevent the excessive collapse of the network
under the action of cohesion forces. The distance between
neighboring fibers is small in the vicinity of the crosslinks.
To avoid computational complexity and resolving unphysical
interactions in the close vicinity of the crosslinks, we ignore
cohesion forces acting within a distance of 1.5d from given
crosslink along each fiber.
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Two types of networks are considered which are referred to as
type I and type II, respectively. A model of type I is generated by
subjecting a Voronoi network to volume reduction corresponding
to 20% reduction of the edge length of the initially cubic model in
State 1. This is performed by directly simulating the hydrostatic
compression of the State 1 Voronoi network without cohesion
to the desired volume, followed by removing the stored strain
energy. This defines a new configuration of the network, of edge
length L' = 0.8L, in which fibers are crimped, but carry zero strain
energy. This structure is then subjected to adhesive forces defined
by the target ¥ parameter and the system is allowed to relax until
a static equilibrium state is reached. The model volume in this
state is somewhat smaller than L'?, but the cohesion is not strong
enough to produce excessive network collapse. This state of
the network is referred to as State 2, Fig. 1. For example, for the
network with w = —3.94 and the largest ¥ applied, ¥ = 0.101, the
volume in State 2 is V, = 0.953L"* = 0.488L°. No fiber-to-fiber
contacts exist in State 1 and virtually no contacts form in State 2;
the cohesive interactions are entirely balanced by the elasticity of
the structure. State 2 is considered the reference state for the
subsequent deformation of networks of type I.

Type II networks are excessively collapsed. To generate such
structures, large cohesive forces are applied to the initial
Voronoi network in State 1 and the evolution of the model is
simulated until equilibrium is reached and the kinetic energy is
eliminated by damping (algorithmic friction with a fictitious
background). These forces produce collapse of the structure
and a large reduction of the unit cell volume. The structure is
stabilized by inter-fiber contacts. Further, the strain energy of
the resulting structure is eliminated and the large cohesion
forces that produced the collapse are replaced with forces
corresponding to the desired value of the ¥ parameter, fol-
lowed by mechanical equilibration. Since the strain energy
resulting from network collapse is removed, there is no driving
force for elastic rebound. Although some of the contacts
formed during collapse are not engaged once the magnitude
of the adhesive forces is modified, the resulting model is
equilibrated primarily by contacts and less by the deformation
of fibers. This is referred to as State 2 of the network of type II
and is taken as reference for subsequent analysis of the
mechanical response. The volume in State 2 is approximately
Vo &~ 0.245L°, essentially independent of .

As a side product of model development, we investigated the
critical pressure required to produce the collapse of Voronoi
networks of various w parameters. This is discussed in the ESI.{
It is shown that the cohesive forces produce a hydrostatic stress
state and the network collapses at a value of this stress which is
identical to the pressure required to produce the same instability
in the same network without cohesion. Further, this critical
pressure scales as p./Ef ~ (d/lco)4, which is reminiscent of the
Euler buckling formula with an effective beam shape factor of
0.16 (see Section S1 of ESIt for further discussion).

2.2 Implementation

Fibers are discretized using Timoshenko beam elements (B31
in Abaqus). The discretization is based on the contour length of
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the fibers. Specifically, fibers shorter than /.o/4 are represented
with a single element, while those longer than this threshold
are discretized with up to 4 elements. This discretization was
shown to lead to the optimal balance between accuracy (in both
energy and network-scale stress) and computational cost.*®

For each element, the interaction force with all other ele-
ments within the cut-off radius of the potential, R2", is com-
puted analytically based on the current relative position of the
fiber centerlines and approximating the elements to be straight
line segments defined by their end nodes. The resulting force is
applied as a distributed force along the respective element.
Adhesive interactions also produce moments, which are com-
puted analytically and applied as equivalent force dipoles on
the respective element.

In the equilibration phase, the model is evolved until
equilibrium is reached, while maintaining traction free bound-
aries. In the deformation phase, displacements are imposed in
one direction (via controlling the size of the period unit cell in
the respective direction) and traction free conditions are
imposed in the two directions orthogonal to the loading direc-
tion. The cohesion forces are updated at every 2% global strain.
Tests have been performed with various frequencies of cohesion
force updating (from 0.1% to 3% strain) and it was concluded
that the specified frequency leads to adequate results.

The solution is obtained using the commercial finite ele-
ment software Abaqus/Explicit (version 62.5) under fully non-
linear conditions. Quasistatic loading conditions are ensured
by using a sufficiently low value for the density of the fiber
material to effectively eliminate the effect of inertia forces,
using alpha damping, in which damping proportional to the
velocity is applied, and keeping the total kinetic energy of the
model below 5% of the total energy.

The stress reported here, g, is the nominal stress evaluated
based on the reaction forces computed at the moving boundary
and the cross-sectional area of the model in the initial,
unloaded State 2. The tangent stiffness, E, = dg/d /4, is computed
based on the nominal stress. The Young’s modulus of the fiber
material, E, is used to normalize both stress and stiffness.

3. Results

Fig. 2a shows nominal stress-stretch curves for networks of
type I, with w = —3.94 and increasing values of the ¥ parameter.
These networks are loaded in uniaxial tension starting from
State 2. The network without cohesion, ¥ = 0, exhibit the
hyperelastic behavior reported in the literature for structures
of this type."*® Specifically, an initial linear elastic regime
can be identified, in which the small strain stiffness is con-
stant, E; = E,, followed by a stiffening regime. These regimes are
better visible in the tangent stiffness vs. stress representation of
the data in Fig. 2a, shown in Fig. 3a. The stiffening regime is
characterized by a slope of approximately 1, which corresponds
to exponential stiffening. Most biological network materials,*”
which are athermal, and fibrin gels,*” which are thermal, strain
stiffen exponentially.

This journal is © The Royal Society of Chemistry 2023
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Fig. 2 Nominal stress—stretch curves for (a) type | and (b) type Il networks with w = —3.94, without cohesion (¥ = 0) and with various levels of cohesion.
The bars show the standard error computed with 3 realizations for each case.

Cohesion has a significant effect on the stress-stretch
curves. The small strain stiffness increases with increasing V.
Softening is observed immediately after the linear elastic
regime and a maximum, which we refer to here as an unlocking
phenomenon, emerges. As ¥ increases, the magnitude of the
unlocking stress, g, increases and the softening observed at
larger strains becomes better defined. This is easily visible in
Fig. 3a. Interestingly, the functional form of strain stiffening
observed at even larger stretches is not affected by V7.

Fig. 2b shows similar data for networks of type II, with w =
—3.94, and with increasing values of the ¥ parameter, while
Fig. 3b shows the corresponding tangent stiffness-stress data.
The phenomenology observed in this case is similar to that
reported for type I networks, although the stress and stiffness
values are larger. Unlocking is observed in this case too, with g,
increasing as ¥ increases.

A major difference between the two types of networks
considered is related to the formation of contacts between
fibers. The variation of the number of contacts during the
deformation is shown in Fig. S2 of the ESI,{ for networks of
types I and II and for ¥ = 0 and ¥ = 0.101. There are no contacts

1074 . .
=0
-——-=0.0316

Et/Ef

(a)
Type |

1077 :
. 10-7 10-6

U/Ef

1078

in State 2 for networks of type I and a negligible number of
contacts form during loading. As discussed in Section 2.1, this
network preserves an open structure with large free volume and
the cohesive forces are balanced by the elasticity of the struc-
ture. The opposite is true for the networks of type II. These are
stabilized by the formation of many contacts in State 2. Since
these are reminiscent of the network collapse procedure used
to create the structure, contacts exist in the network without
cohesion. Note that at 4 = 1, in State 2, no contacts are
activated/loaded when ¥ = 0. Some re-emerge immediately as
A increases above 1 and their number remains constant during
the deformation, Fig. S2 (ESIt). Many contacts form when ¥ >
0 and these are loaded in State 2, when . = 0, as well as
throughout the deformation. Fig. S2 (ESIt) indicates that their
number remains approximately constant during deformation.

Interestingly, the presence of contacts does not change the
functional form of strain stiffening. This is likely because the
total number of contacts does not change significantly during
the deformation. The strain at which stiffening becomes pro-
nounced is larger in type II compared with type I networks,
Fig. 2. This is attributed to the different crimp of the two types
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Fig. 3 Tangent stiffness—stress curves for (a) type | and (b) type Il networks with w = —3.94, without cohesion (¥ = 0) and with various levels of cohesion

corresponding to the curves in Fig. 2.
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of networks in the unloaded State 2. The crimp parameter is
computed here as the average of the ratio of the end-to-end
length of fibers to the average contour length, and results ¢; =
0.957 and ¢y = 0.847 for State 2 networks of type I and II,
respectively.

The above discussion
response, including the unlocking point, are defined by the
network structure and the cohesion. However, the large strain
response is controlled by the network structure.

This behavior is observed in networks of different w. Fig. 4
shows nominal stress-stretch curves obtained with models of
type II and with w = —3.28, —3.55, —3.94. Several values of ¥ are
considered for each w, with ¥ increasing as w increases
(becomes smaller in absolute value) and the degree of non-
affinity decreases. In all cases, the unlocking phenomenon
emerges when ¥ > 0, while the softening response after
unlocking becomes less pronounced at larger w due to the
more rapid network-mediated strain stiffening.

It is of interest to determine the dependence of the small
strain stiffness, Eq/Ef, and of ¢,/Ef, on w and ¥. Based on the
literature data, Eo/Ef ~ p>d* in the bending dominated, non-
affine deformation regime of cellular networks without
cohesion.*®*® With w = logy, pd?, it results that Eo/Er ~ 10°”.
Fig. 5a collects all data for networks of types I and II, all values
of ¥ and w considered, and shows E,/f(w)E¢ vs. ¥, where f(w) =
10*. It is seen that data for various w collapses, which
indicates that the w dependence of E, for Voronoi networks
without cohesion in State 1, ie. flw), applies to the present
networks with crimp and with cohesion. The fact that the effect
of crimp factors out from that of w in the definition of the small
strain stiffness was also observed in networks without
cohesion.’®" Hence, it results that a separable form such as:

Eo ~ Eif (w)ge(*) (1)

applies. The function gg(¥) is provided by the data in Fig. 5a
and is approximated as linear, gg(¥) = ag + bg¥V. A linear fit
leads to ag = 46.3 and bg = 3435.4 for type I and to ag = 66.2 and

indicates that the small strain

(1

Fig. 4 Stress—stretch curves for networks of type Il of different w and ¥
values. Each group of curves corresponds to a w value, as indicated. Within
each group, the curves move up as ¥ increases. The ¥ values considered
forw =—-3.94are 0, 0.031, 0.063 and 0.101, for w = —3.55 are 0, 0.014 and
0.036, and for w = —3.28 are 0, 0.037 are 0.093.
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bg = 8063.1 for type II networks. In ref. 34, the small strain
stiffness of sub-isostatic 2D networks stabilized by cohesion
was also seen to increase approximately linearly with V. The
stiffness of isostatic 2D networks was reported in the same
reference to decrease with increasing cohesion, although the
reference state was taken to be State 1 of the present discus-
sion. In other works, it was reported that pre-stress leads to an
increase of the network stiffness and this dependence is
approximately linear.*"*>

Fig. 5b shows the unlocking stress as a function of ¥, for all
w values considered. The vertical axis is normalized by f(w) =
10", similar to Fig. 5a. The observations made in relation to Eo/
E; can be also made regarding o,/E: upon normalization of the
vertical axis with f(w), the data collapses, which indicates that
oy ~ E; f(w)g,(P). The function f(w) is defined as f(w) = 10",
while g,(7) is defined by the data in Fig. 5b as being a linear
function of ¥, g,(¥) =a, + b,¥. A linear fit provides a, = 0.351
and b, = 36.092 for type I and to a, = 0.735 and b, = 79.510 for
type II networks. Noting that the coefficient of ¥ is essentially
identical in the two linear functions g, and gg, i.e. b,/a, & bg/
ag, it implies that the unlocking strain, ¢,, is approximately
identical in all these networks.

Increasing the crosslink density or/and the connectivity
number, z, increases the small strain stiffness, E,. While the
effect of adhesive interactions is expected to remain qualita-
tively unchanged, it should become less prominent as E,
increases. This is seen in Fig. 4 where unlocking becomes less
visible as E, increases due to the increase of w, and at constant
adhesion strength (constant ¥).

To further clarify the nature of the unlocking, it is instructive
to perform unloading and reloading. Fig. 6a shows stress—
stretch curves of a network of type I with ¥ = 0.101 subjected
to continuous loading and to loading and unloading from two
different maximum strains. Unlocking is observed during
unloading as well, after which the system unloads in a linear
elastic manner to (approximately) zero stress and strain. This is
consistent with a modification of the energy surface caused by
the cohesive interactions (emergence of local minima) which
favors trapping in the current state. A hysteresis loop emerges,
with the associated dissipation being caused by the multi-
stability of the structure. Fig. 6b shows a loading, unloading
and reloading cycle overlapped to the continuous loading curve
showing no history dependence of the loading path.

An additional observation is that the cohesive forces pro-
duce a compressive hydrostatic system-level stress, p(¥), which
scales linearly with Y. The stress components are computed
using the virial formula based on the cohesive pair interactions
between elements (fiber segments) and are shown in Fig. 7a for
networks of type I with w = —3.94. The shear stress components
are close to zero and the normal stress components are equal.
The pressure is approximately constant as the network is
stretched. The curves represent the average of three realiza-
tions. Fig. 7b shows the associated variation of the volume for
the same systems and loading history. The volume increases
slightly with the applied strain and, for the range of strains
considered, the variation is approximately linear. We note that

This journal is © The Royal Society of Chemistry 2023
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the volume of a linear elastic continuum subjected to uniaxial
deformation increases as dV/V = (1 — 2v)e, where v is the
Poisson ratio of the respective material; the value of v results
weakly dependent of ¥ and equal to ~0.05 in this case.
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Furthermore, as discussed in the literature, volumetric increase
is expected in networks of crimped fibers in the early stage of
deformation, while large volume reduction is expected at
later stages.>®”° It results that cohesion works as an energy
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This journal is © The Royal Society of Chemistry 2023

Soft Matter, 2023,19, 9215-9223 |

1.15

1.20

(a) Stress components produced by cohesion, ¢§°", in type | networks with w = —3.94, and (b) variation of the volume in the same models and in

9221



Paper

sink, such that part of the work performed is spent to increase
the volume against the hydrostatic cohesion stress.

In closure, it is necessary to place these observations, made
using a model system, in relation with experimental observa-
tions of network behavior. The response of athermal network
materials in uniaxial tension is of two general types: (i) purely
hyperelastic behavior (convex stress—stretch curve), as observed
in most collagen and elastin-based biological connective
tissue,> " and (ii) a response that combines a concave seg-
ment (generically referred to as a yield point due to the visual
similarity with the plastic yield point in metals) with a hyper-
elastic branch at larger strains (convex segment).**>* Molecular
networks also exhibit a yield point, which in elastomers is
followed by softening.>>>*> If rupture does not occur, a stiffen-
ing branch is observed in elastomers at larger strains.

A concave stress-strain curve is typical for nonwovens and
networks of nanofibers (e.g. buckypaper’®). On the other hand,
network models, which generally do not account for interfiber
interactions such as cohesion and friction, predict a purely hyper-
elastic response. Hence, it results that interactions between fibers
taking place at sites other than the crosslinks may cause the concave
stress-stretch segment. The present work demonstrates that adhe-
sive interactions may produce this effect. We conjecture that, in the
absence of cohesion, friction taking place at fiber-fiber contacts in
crimped networks of low free volume may produce a similar
phenomenon, which is expected to be the case in nonwovens. Since
cohesion is short ranged, it is expected to play a minor role in
networks composed of fibers of large diameter (e.g. >1 pm), where
friction may become the controlling mechanism. Cohesion is
expected to be the dominant cause of the unlocking phenomenon
in networks of nanofibers, both thermal (polymeric networks with-
out solvent and above the glass transition temperature) and ather-
mal (e.g. carbon nanotube, chitin, nanocellulose networks).

While the discussion above focuses on the emergence of the
unlocking phenomenon in networks with elastic fibers, it is
necessary to evaluate the likelihood for this behavior to be caused
in realistic network materials by the yielding of elastic-plastic
fibers.>® This issue is discussed in ref. 1, where it is shown that for
non-affine networks composed from elastic-plastic fibers having
yield strain 8>f,, the network scale strain at which yield should be
observed scales as s§lc/d. This amplification of the network-scale
yield strain relative to the fiber material yield strain by the
segment aspect ratio, [./d, implies that fibers may not yield in
low w networks with large I./d even at large strains. The physical
origin of the amplification is related to the fact that thin fibers
subjected to bending experience smaller maximum stress and
strain as their diameter decreases and may remain in the elastic
range even at large curvatures. This discussion implies that the
unlocking phenomenon observed in network materials with low w
is more likely to be caused by the mechanisms discussed in this
article than by the onset of plastic deformation of fibers.

56,57

4. Conclusions

This work demonstrates the emergence of an unlocking phe-
nomenon causing the stress-stretch curve of stochastic
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crosslinked networks to be concave at relatively small strains
which is induced by inter-fiber cohesion. These networks are
isostatic and hyperelastic in the absence of cohesive forces.
Cohesion leads to increased small strain stiffness and the
emergence of an unlocking stress which increases as the
cohesion strength increases. Softening follows unlocking, after
which strain stiffening is observed. Cohesion has little effect on
strain stiffening, which is controlled by the network architec-
ture. The small strain stiffness and the unlocking stress may be
expressed as the product of two functions of network para-
meters (w) and of the cohesion strength (¥), respectively. The
present work also leads to the observation that a stochastic
network subjected to compression due to hydrostatic boundary
tractions or internal, inter-fiber attractive forces, loses stability
at a critical pressure proportional to (d/l)*, which is a relation
similar to the Euler buckling formula for single fibers subjected
to axial compression. The study sheds light on the physical
mechanism behind the unlocking (often referred to as a yield
point) phenomenon observed in many network materials.
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