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Emergence of an apparent yield phenomenon in
the mechanics of stochastic networks with
inter-fiber cohesion†

S. N. Amjad and R. C. Picu *

In this work we investigate the contribution of inter-fiber cohesion to defining the mechanical behavior

of stochastic crosslinked fiber networks. Fibers are athermal and store energy primarily in their bending

and axial deformation modes. Cohesion between fibers is defined by an interaction potential. These

structures are in equilibrium with the inter-fiber cohesive forces before external load is applied and their

mechanical behavior is probed in uniaxial tension. Two types of configurations are considered: a state

with high initial free volume in which contacts between fibers are scarce, and a state with low free

volume and large number of fiber contacts. While in the absence of cohesion the response is

hyperelastic, we observe that a yield point-like phenomenon develops as the strength of cohesion

increases in both network types considered; we refer to this as an ‘unlocking phenomenon’. The small

strain stiffness increases as cohesion becomes more pronounced. The stiffness and unlocking stress are

expressed in terms of network parameters and cohesion strength through a product of two functions,

one dependent on network parameters only, and the other is a function of the cohesion strength. While

the small strain response is controlled by cohesion, the large strain behavior is shown to be largely

controlled by the network. Therefore, varying the strength of cohesion has no effect on strain stiffening.

These observations provide a physical basis for the unlocking observed in both athermal and thermal

network materials and are expected to facilitate the design of soft materials with novel properties.

1. Introduction

The broad class of network materials includes materials whose

mechanical behavior is controlled by an underlying network of

fibers.1 Examples are abundant: the extracellular matrix,2 the

dermis,3 various collagen-based membranes within the human/

animal body4,5 are biological network materials, while paper

and nanopapers,6,7 nonwovens and textiles8,9 are examples of

man-made network materials. In all these cases, fibers are

randomly oriented, and the network is stochastic. Further,

fibers forming these materials are large enough for thermal

fluctuations to be irrelevant for their mechanics and hence are

athermal. Thermal networks, which include gels, elastomers,

and entangled thermoplastics, form a distinct class of network

materials.

The interactions of fibers within the network are of bonded

and non-bonded type. Bonded interactions include those

taking place at crosslinks. In athermal networks, where fibers

store energy primarily in the bending and axial modes, the

crosslinks transmit both forces and moments. Non-bonded

interactions take place at contacts. In a dense network in which

many contacts are established, not all contacts transmit load,

and some may open and reform elsewhere during deformation.

Cohesive interactions are also of non-bonded type and may be

caused by hydrogen bonding, hydrophobic interactions, electro-

static interactions, etc.10 Such energetic interactions as well as

entropic interactions tend to align fibers and cause bundling,11

leading to an isotropic to nematic transition.12 In general, since

cohesion forces are short-ranged, fibers of diameter in the

micron range and larger must be brought into proximity by

other means for cohesion to be effective. Capillarity causes

various effects in soft materials composed from athermal fibers

and may induce large deformations, stiffening, and preferential

fiber alignment.13 Nonwovens may be ‘mechanically activated’ –

a procedure which aligns fibers and increases the stiffness and

strength in the direction of alignment.14 If fibers are not cross-

linked, such as in the case of suspensions, cohesion leads to

bundling.15,16 Carbon nanotubes that grow in a furnace in the

presence of carbonaceous species and catalysts develop strong

adhesive forces as they come in contact and form bundles that
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sediment to form buckypaper.17 Nanoscale filaments, including

individual molecules, develop strong adhesive forces. Such

interactions provide the cohesive strength of polymeric melts

and produce the glass transition as temperature is reduced. This

brief overview indicates that cohesive forces may become the

dominant type of interactions in certain network materials.

Network materials are studied by various communities in

connection with diverse applications. The mechanical behavior

of various athermal material systems is described in ref. 1.

Fibers typically represent only a few percent of the total volume

of the material, which mandates that contact formation is a

rare event in tension and shear; however, it becomes essential

in compression.18 In the absence of cohesive interactions and

inter-fiber contacts, the behavior is controlled by the network

structure and fiber properties.1,19–21 Dense networks (the den-

sity, r, is defined as the total length of fiber per unit volume) of

relatively thick fibers (d is the fiber diameter), deform affinely,

i.e. the strain experienced by individual fibers is identical to the

macroscopic applied strain. In this case, the small strain net-

work stiffness, E0, is E0 B rd2. In most practical cases networks

are sparse and/or are made of fibers of large aspect ratio. In

such situations, deformation is non-affine, and E0 B rxd4, with

x being a function of the network architecture. In 3D, x = 2 for

cellular networks such as Voronoi, x = 3 for fibrous networks

and takes larger values in 2D.22 The affine-non-affine transition

is controlled by the non-dimensional parameter w = log10 rd
2,

with low w values corresponding to non-affine behavior.

Networks of this type exhibit hyperelastic behavior under large

deformation, characterized by exponential stiffening.1,23–25

Networks with lower free volume, in which non-bonded

interactions become important, exhibit a somewhat different

behavior, with a concave segment of the stress–stretch curve

observed at small strains. Specifically, the stress reaches a peak,

followed by softening. If fracture does not occur, the softening

regime may be followed by a stiffening regime similar to the

hyperelastic behavior of networks of high free volume. This is

observed in dense nonwovens,26–28 in thermoplastics above the

glass transition and some thermosets.29,30 The behavior of a

sparsely crosslinked thermoset may exhibit a concave segment,

followed by softening and then stiffening, while the same

material may be fully brittle when densely crosslinked. In this

work we show that inter-fiber cohesion leads to the emergence

of this type of behavior.

In the context of network materials, cohesion may be quanti-

fied using the elastocapillarity length,15,31 LEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

EfI=g
p

, where

Ef is the fiber material Young’s modulus, I is the axial moment of

inertia of the fiber cross-section (I B d4 for circular cross-

sections) and g is the work of cohesion per unit length of contact

between two parallel fibers. Cohesion has a significant effect on

the mechanics of the network provided LEC is smaller or equal to

one of the length scales of the network, particularly the mean

segment length, lc, or d. Parameter LEC was used to quantify the

self-organization of carbon nanotubes in buckypaper and other

fiber bundling processes.31 For example, LEC = 10 nm for single-

walled CNT (10,10) of diameter 1.4 nm, while for microtubules

LEC = 7 to 20 mm.16

While the mechanical behavior of networks without cohe-

sion has been studied extensively, the effect of cohesion

received much less attention. The self-organization of non-

bonded fibers under the action of cohesive forces was

discussed in ref. 16 in terms of the non-dimensional parameter

C = (L0/LEC)
2, where L0 is the fiber length. It was observed that

the network self-organizes into a cellular network of fiber

bundles provided C 4 a(rL0)
2, where a is a numerical para-

meter which depends on the friction between fibers.32 Friction

increases a, which then requires larger values of C to drive

network self-organization. The resulting cellular network has

interesting, C – dependent mechanical behavior, as discussed.33

The mechanics of cross-linked networks with cohesion was stu-

died using two-dimensional models.34 It was observed that net-

works which are sub-isostatic in the absence of cohesion become

isostatic and their stiffness increases as cohesion is enabled and

then increased. It was also observed that the small strain behavior

is primarily controlled by cohesion and less by the network

structure. Despite the limitations of the work reported in ref. 34

(2Dmodels and only the small strain regime was investigated), the

results indicate that exceptional behaviors, difficult or impossible

to obtain without cohesion, can be achieved in such systems.

The present work reconsiders the effect of inter-fiber cohe-

sion on the mechanical behavior of crosslinked networks by

using 3D networks of fibers with various tortuosity and by using

a different modeling technology than in previous studies.34

This allows reaching the large strain regime and imposes no

limitations on the structure of the network used which, in turn,

produces results with broader applicability. The central result

reported is the emergence of a yield point as cohesion is

enabled. However, since the present system is intrinsically

elastic, the peak of the stress–strain curve is not a yield point

(terminology implies association with plasticity) and as such,

we refer to it as an ‘unlocking phenomenon’ with a corres-

ponding unlocking stress, su. The stress su and the small strain

stiffness increase as cohesion becomes stronger. It is shown

that the response at strains beyond the unlocking point is

controlled by the network and is largely unaffected by cohesion.

The emergence of this unlocking phenomenon is a manifesta-

tion of the non-convexity of the energy surface over which the

system with cohesion evolves.

2. Models and methods
2.1 Models

To generate the network models used in this study we start with

periodic 3D Voronoi constructs. A cubic domain of edge length

L is considered and a set of randomly distributed points, which

act as seeds for the Voronoi procedure, are generated. Periodic

images of the seed points are replicated in the 26 cubic

domains of edge length L surrounding the reference cube.

The entire 3L � 3L � 3L domain is then Voronoi tessellated

and the edges of the resulting cells are taken as fibers, while the

vertices represent crosslinks. Further, nodes are placed at each

site where a fiber crosses the boundary of the central cube and
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only this reference domain is retained. This procedure pro-

duces a Voronoi structure which allows the application of

periodic boundary conditions. This configuration of the net-

work is here referred to as State 1, Fig. 1. We note that, since the

present simulations are computationally expensive, working

with the smallest possible models is highly desirable. However,

as discussed in the literature,35–37 the mechanics of fiber net-

works is highly affected by size effects, which can be mitigated

to some extent using periodic boundary conditions. This argu-

ment guided us towards considering a model that represents an

infinite network structure which is periodic at length scales

larger than L and stochastic at smaller length scales. This

compromise is needed to render simulations tractable.

The fibers are modeled as Timoshenko beams and store

energy in the axial, bending, torsion and shear modes.38 As

discussed in the literature, the bending mode dominates at

relatively small strains, provided w is sufficiently small.1,39 The

beams cross-sections are considered circular, of diameter d.

In any given model, all fibers are made from the same linear

elastic material, of stiffness Ef, and have the same diameter, d.

Parameter w, which controls the degree of non-affinity of the

network behavior1,39 is adjusted by varying d. The values of

parameter w reported below refer to State 1 of the network.

The crosslinks are rigid, i.e. transmit both forces and

moments, and the angle between fibers merging into a cross-

link does not change during deformation. The connectivity

number, which represents the number of fibers connected at

each crosslink is z = 4. Based on the Maxwell criterion,40 three-

dimensional structures of trusses (hinged crosslinks) with zo 6

are sub-isostatic and have vanishing stiffness. In this case, the

network is stabilized by the bending mode of fibers and the type

of crosslinks considered, and the small strain stiffness is non-

zero. The pre-stress introduced by the cohesion forces further

stabilizes the structure.34 Stabilization of sub-isostatic networks

by pre-stress was also observed before in other contexts.41–43

Cohesion between fibers is modeled by considering an

attractive potential, u, which varies inversely with the distance

R between two infinitesimal fiber segments. The resulting

attractive force acting on a segment of infinitesimal length

ds1 interacting with a segment of length ds2 located at a

distance R is computed as df B ds1ds2R/|R|
3, where R is the

position vector of segment 2 relative to 1. The total force

between two fiber segments of finite length is computed as a

double integral of this expression along the two segments. The

interaction is truncated at an outside cut-off radius Rout
c =

1.03lc0, where lc0 is the mean segment length of the Voronoi

network in State 1, before cohesion forces are applied. This

range was selected to ensure enough fiber segments in inter-

action with any reference fiber segment; note that the distribu-

tion of fiber lengths is Poisson, and hence a large number of

fibers have length smaller than lc0. The interaction is also

truncated at an inner cut-off radius of Rinc = d. Periodic boundary

conditions are applied while computing cohesive interactions.

The strength of the interaction is controlled by the constant

of proportionality in the df B ds1ds2R/|R|
3 relation. However,

as discussed in the Introduction, the relevant parameter of the

problem is C = glc0
2/EfI. The work of cohesion, g, is computed

by considering two parallel and infinite fibers and computing

the work per unit length required to separate the fibers from

R = Rinc to R = Rout
c . The results are reported here in terms of C.

This model implies that ‘centers of interaction’ are located

along the centerline of each fiber and that two centerlines may

only approach up to a distance d. This is adequate because the

interaction forces considered are long ranged. If much shorter

ranged interactions are considered, e.g. van der Waals, with the

interaction force scaling as 1/Rn, n c 2, it is necessary to

consider that centers of interaction are uniformly distributed

over the surface of cylindrical fibers and that the surface-to-

surface interaction becomes important. Effective potentials for

this situation have been developed,44 but are dependent on the

local details of the geometry and are much more computation-

ally expensive. It was determined that the ‘large separation

approximation’ made in the present work is valid provided the

wall-to-wall distance between fibers is larger than approxi-

mately d/2.45 Since in the present case Rout
c /d ranges from 10

to 21 and hence much larger than 1, the large separation

approximation is adequate. The case considered here, with

n = 2 corresponds to Coulomb interactions between fibers

due to distributed charge; cohesion due to dispersive interac-

tions would require considering n c 2.

Contacts between fibers are allowed to form to ensure that

fibers do not interpenetrate and cross during the simulation.

The non-crossing condition is imposed by a constraint force

proportional to the overlap of the fibers at the contact site

acting in the direction normal to the contact (normal to the

plane defined by the centerlines of the contacting fibers at the

contact site). All contacts in the present models are frictionless.

Contacts also prevent the excessive collapse of the network

under the action of cohesion forces. The distance between

neighboring fibers is small in the vicinity of the crosslinks.

To avoid computational complexity and resolving unphysical

interactions in the close vicinity of the crosslinks, we ignore

cohesion forces acting within a distance of 1.5d from given

crosslink along each fiber.

Fig. 1 Representation of the network in the initial, Voronoi, State I, and in

States II of the two types of structures considered. The schematics below

the network images show the central concept behind the two types:

cohesion deforms the fibers leading to some degree of structural collapse,

which is smaller in type I compared to type II; contacts stabilize structures

of type II, while only a small number of contacts are present in type I.
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Two types of networks are considered which are referred to as

type I and type II, respectively. A model of type I is generated by

subjecting a Voronoi network to volume reduction corresponding

to 20% reduction of the edge length of the initially cubic model in

State 1. This is performed by directly simulating the hydrostatic

compression of the State 1 Voronoi network without cohesion

to the desired volume, followed by removing the stored strain

energy. This defines a new configuration of the network, of edge

length L0 = 0.8L, in which fibers are crimped, but carry zero strain

energy. This structure is then subjected to adhesive forces defined

by the target C parameter and the system is allowed to relax until

a static equilibrium state is reached. The model volume in this

state is somewhat smaller than L03, but the cohesion is not strong

enough to produce excessive network collapse. This state of

the network is referred to as State 2, Fig. 1. For example, for the

network with w = �3.94 and the largest C applied, C = 0.101, the

volume in State 2 is V0 = 0.953L03 = 0.488L3. No fiber-to-fiber

contacts exist in State 1 and virtually no contacts form in State 2;

the cohesive interactions are entirely balanced by the elasticity of

the structure. State 2 is considered the reference state for the

subsequent deformation of networks of type I.

Type II networks are excessively collapsed. To generate such

structures, large cohesive forces are applied to the initial

Voronoi network in State 1 and the evolution of the model is

simulated until equilibrium is reached and the kinetic energy is

eliminated by damping (algorithmic friction with a fictitious

background). These forces produce collapse of the structure

and a large reduction of the unit cell volume. The structure is

stabilized by inter-fiber contacts. Further, the strain energy of

the resulting structure is eliminated and the large cohesion

forces that produced the collapse are replaced with forces

corresponding to the desired value of the C parameter, fol-

lowed by mechanical equilibration. Since the strain energy

resulting from network collapse is removed, there is no driving

force for elastic rebound. Although some of the contacts

formed during collapse are not engaged once the magnitude

of the adhesive forces is modified, the resulting model is

equilibrated primarily by contacts and less by the deformation

of fibers. This is referred to as State 2 of the network of type II

and is taken as reference for subsequent analysis of the

mechanical response. The volume in State 2 is approximately

V0 E 0.245L3, essentially independent of C.

As a side product of model development, we investigated the

critical pressure required to produce the collapse of Voronoi

networks of various w parameters. This is discussed in the ESI.†

It is shown that the cohesive forces produce a hydrostatic stress

state and the network collapses at a value of this stress which is

identical to the pressure required to produce the same instability

in the same network without cohesion. Further, this critical

pressure scales as pc/Ef B (d/lc0)
4, which is reminiscent of the

Euler buckling formula with an effective beam shape factor of

0.16 (see Section S1 of ESI† for further discussion).

2.2 Implementation

Fibers are discretized using Timoshenko beam elements (B31

in Abaqus). The discretization is based on the contour length of

the fibers. Specifically, fibers shorter than lc0/4 are represented

with a single element, while those longer than this threshold

are discretized with up to 4 elements. This discretization was

shown to lead to the optimal balance between accuracy (in both

energy and network-scale stress) and computational cost.46

For each element, the interaction force with all other ele-

ments within the cut-off radius of the potential, Rout
c , is com-

puted analytically based on the current relative position of the

fiber centerlines and approximating the elements to be straight

line segments defined by their end nodes. The resulting force is

applied as a distributed force along the respective element.

Adhesive interactions also produce moments, which are com-

puted analytically and applied as equivalent force dipoles on

the respective element.

In the equilibration phase, the model is evolved until

equilibrium is reached, while maintaining traction free bound-

aries. In the deformation phase, displacements are imposed in

one direction (via controlling the size of the period unit cell in

the respective direction) and traction free conditions are

imposed in the two directions orthogonal to the loading direc-

tion. The cohesion forces are updated at every 2% global strain.

Tests have been performed with various frequencies of cohesion

force updating (from 0.1% to 3% strain) and it was concluded

that the specified frequency leads to adequate results.

The solution is obtained using the commercial finite ele-

ment software Abaqus/Explicit (version 62.5) under fully non-

linear conditions. Quasistatic loading conditions are ensured

by using a sufficiently low value for the density of the fiber

material to effectively eliminate the effect of inertia forces,

using alpha damping, in which damping proportional to the

velocity is applied, and keeping the total kinetic energy of the

model below 5% of the total energy.

The stress reported here, s, is the nominal stress evaluated

based on the reaction forces computed at the moving boundary

and the cross-sectional area of the model in the initial,

unloaded State 2. The tangent stiffness, Et = ds/dl, is computed

based on the nominal stress. The Young’s modulus of the fiber

material, Ef, is used to normalize both stress and stiffness.

3. Results

Fig. 2a shows nominal stress–stretch curves for networks of

type I, with w = �3.94 and increasing values of theC parameter.

These networks are loaded in uniaxial tension starting from

State 2. The network without cohesion, C = 0, exhibit the

hyperelastic behavior reported in the literature for structures

of this type.1,23–25 Specifically, an initial linear elastic regime

can be identified, in which the small strain stiffness is con-

stant, Et = E0, followed by a stiffening regime. These regimes are

better visible in the tangent stiffness vs. stress representation of

the data in Fig. 2a, shown in Fig. 3a. The stiffening regime is

characterized by a slope of approximately 1, which corresponds

to exponential stiffening. Most biological network materials,3–5

which are athermal, and fibrin gels,47 which are thermal, strain

stiffen exponentially.

Paper Soft Matter



This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 9215–9223 |  9219

Cohesion has a significant effect on the stress–stretch

curves. The small strain stiffness increases with increasing C.

Softening is observed immediately after the linear elastic

regime and a maximum, which we refer to here as an unlocking

phenomenon, emerges. As C increases, the magnitude of the

unlocking stress, su, increases and the softening observed at

larger strains becomes better defined. This is easily visible in

Fig. 3a. Interestingly, the functional form of strain stiffening

observed at even larger stretches is not affected by C.

Fig. 2b shows similar data for networks of type II, with w =

�3.94, and with increasing values of the C parameter, while

Fig. 3b shows the corresponding tangent stiffness–stress data.

The phenomenology observed in this case is similar to that

reported for type I networks, although the stress and stiffness

values are larger. Unlocking is observed in this case too, with su

increasing as C increases.

A major difference between the two types of networks

considered is related to the formation of contacts between

fibers. The variation of the number of contacts during the

deformation is shown in Fig. S2 of the ESI,† for networks of

types I and II and forC = 0 andC = 0.101. There are no contacts

in State 2 for networks of type I and a negligible number of

contacts form during loading. As discussed in Section 2.1, this

network preserves an open structure with large free volume and

the cohesive forces are balanced by the elasticity of the struc-

ture. The opposite is true for the networks of type II. These are

stabilized by the formation of many contacts in State 2. Since

these are reminiscent of the network collapse procedure used

to create the structure, contacts exist in the network without

cohesion. Note that at l = 1, in State 2, no contacts are

activated/loaded when C = 0. Some re-emerge immediately as

l increases above 1 and their number remains constant during

the deformation, Fig. S2 (ESI†). Many contacts form when C 4

0 and these are loaded in State 2, when l = 0, as well as

throughout the deformation. Fig. S2 (ESI†) indicates that their

number remains approximately constant during deformation.

Interestingly, the presence of contacts does not change the

functional form of strain stiffening. This is likely because the

total number of contacts does not change significantly during

the deformation. The strain at which stiffening becomes pro-

nounced is larger in type II compared with type I networks,

Fig. 2. This is attributed to the different crimp of the two types

Fig. 2 Nominal stress–stretch curves for (a) type I and (b) type II networks with w = �3.94, without cohesion (C = 0) and with various levels of cohesion.

The bars show the standard error computed with 3 realizations for each case.

Fig. 3 Tangent stiffness–stress curves for (a) type I and (b) type II networks withw = �3.94, without cohesion (C = 0) and with various levels of cohesion

corresponding to the curves in Fig. 2.
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of networks in the unloaded State 2. The crimp parameter is

computed here as the average of the ratio of the end-to-end

length of fibers to the average contour length, and results cI =

0.957 and cII = 0.847 for State 2 networks of type I and II,

respectively.

The above discussion indicates that the small strain

response, including the unlocking point, are defined by the

network structure and the cohesion. However, the large strain

response is controlled by the network structure.

This behavior is observed in networks of different w. Fig. 4

shows nominal stress–stretch curves obtained with models of

type II and with w =�3.28, �3.55, �3.94. Several values of C are

considered for each w, with C increasing as w increases

(becomes smaller in absolute value) and the degree of non-

affinity decreases. In all cases, the unlocking phenomenon

emerges when C 4 0, while the softening response after

unlocking becomes less pronounced at larger w due to the

more rapid network-mediated strain stiffening.

It is of interest to determine the dependence of the small

strain stiffness, E0/Ef, and of su/Ef, on w and C. Based on the

literature data, E0/Ef B r2d4 in the bending dominated, non-

affine deformation regime of cellular networks without

cohesion.48,49 With w = log10 rd
2, it results that E0/Ef B 102w.

Fig. 5a collects all data for networks of types I and II, all values

of C and w considered, and shows E0/f (w)Ef vs. C, where f (w) =

102w. It is seen that data for various w collapses, which

indicates that the w dependence of E0 for Voronoi networks

without cohesion in State 1, i.e. f(w), applies to the present

networks with crimp and with cohesion. The fact that the effect

of crimp factors out from that of w in the definition of the small

strain stiffness was also observed in networks without

cohesion.50,51 Hence, it results that a separable form such as:

E0 B Eff (w)gE(C) (1)

applies. The function gE(C) is provided by the data in Fig. 5a

and is approximated as linear, gE(C) = aE + bEC. A linear fit

leads to aE = 46.3 and bE = 3435.4 for type I and to aE = 66.2 and

bE = 8063.1 for type II networks. In ref. 34, the small strain

stiffness of sub-isostatic 2D networks stabilized by cohesion

was also seen to increase approximately linearly with C. The

stiffness of isostatic 2D networks was reported in the same

reference to decrease with increasing cohesion, although the

reference state was taken to be State 1 of the present discus-

sion. In other works, it was reported that pre-stress leads to an

increase of the network stiffness and this dependence is

approximately linear.41,52

Fig. 5b shows the unlocking stress as a function of C, for all

w values considered. The vertical axis is normalized by f (w) =

102w, similar to Fig. 5a. The observations made in relation to E0/

Ef can be also made regarding su/Ef: upon normalization of the

vertical axis with f (w), the data collapses, which indicates that

su B Ef f (w)gs(C). The function f (w) is defined as f (w) = 102w,

while gs(C) is defined by the data in Fig. 5b as being a linear

function of C, gs(C) =as + bsC. A linear fit provides as = 0.351

and bs = 36.092 for type I and to as = 0.735 and bs = 79.510 for

type II networks. Noting that the coefficient of C is essentially

identical in the two linear functions gs and gE, i.e. bs/as E bE/

aE, it implies that the unlocking strain, es, is approximately

identical in all these networks.

Increasing the crosslink density or/and the connectivity

number, z, increases the small strain stiffness, E0. While the

effect of adhesive interactions is expected to remain qualita-

tively unchanged, it should become less prominent as E0
increases. This is seen in Fig. 4 where unlocking becomes less

visible as E0 increases due to the increase of w, and at constant

adhesion strength (constant C).

To further clarify the nature of the unlocking, it is instructive

to perform unloading and reloading. Fig. 6a shows stress–

stretch curves of a network of type I with C = 0.101 subjected

to continuous loading and to loading and unloading from two

different maximum strains. Unlocking is observed during

unloading as well, after which the system unloads in a linear

elastic manner to (approximately) zero stress and strain. This is

consistent with a modification of the energy surface caused by

the cohesive interactions (emergence of local minima) which

favors trapping in the current state. A hysteresis loop emerges,

with the associated dissipation being caused by the multi-

stability of the structure. Fig. 6b shows a loading, unloading

and reloading cycle overlapped to the continuous loading curve

showing no history dependence of the loading path.

An additional observation is that the cohesive forces pro-

duce a compressive hydrostatic system-level stress, p(C), which

scales linearly with C. The stress components are computed

using the virial formula based on the cohesive pair interactions

between elements (fiber segments) and are shown in Fig. 7a for

networks of type I with w = �3.94. The shear stress components

are close to zero and the normal stress components are equal.

The pressure is approximately constant as the network is

stretched. The curves represent the average of three realiza-

tions. Fig. 7b shows the associated variation of the volume for

the same systems and loading history. The volume increases

slightly with the applied strain and, for the range of strains

considered, the variation is approximately linear. We note that

Fig. 4 Stress–stretch curves for networks of type II of different w and C

values. Each group of curves corresponds to a w value, as indicated. Within

each group, the curves move up as C increases. The C values considered

for w = �3.94 are 0, 0.031, 0.063 and 0.101, for w = �3.55 are 0, 0.014 and

0.036, and for w = �3.28 are 0, 0.037 are 0.093.
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the volume of a linear elastic continuum subjected to uniaxial

deformation increases as dV/V = (1 � 2n)e, where n is the

Poisson ratio of the respective material; the value of n results

weakly dependent of C and equal to B0.05 in this case.

Furthermore, as discussed in the literature, volumetric increase

is expected in networks of crimped fibers in the early stage of

deformation,53 while large volume reduction is expected at

later stages.25,50 It results that cohesion works as an energy

Fig. 5 Variation of the normalized (a) small strain stiffness and (b) unlocking stress withC for networks of types I and II (as T-I and T-II) and variousw. The

linear fits to the type I and type II data sets are shown.

Fig. 6 (a) Stress–stretch curves of a type I network subjected to continuous loading and to unloading from two levels of strain. (b) Stress–stretch curves

of the same network subjected to loading, unloading and reloading.

Fig. 7 (a) Stress components produced by cohesion, scohij , in type I networks with w = �3.94, and (b) variation of the volume in the same models and in

the equivalent model without cohesion. Curves represent averages of three realizations.
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sink, such that part of the work performed is spent to increase

the volume against the hydrostatic cohesion stress.

In closure, it is necessary to place these observations, made

using a model system, in relation with experimental observa-

tions of network behavior. The response of athermal network

materials in uniaxial tension is of two general types: (i) purely

hyperelastic behavior (convex stress–stretch curve), as observed

in most collagen and elastin-based biological connective

tissue,3–5,51 and (ii) a response that combines a concave seg-

ment (generically referred to as a yield point due to the visual

similarity with the plastic yield point in metals) with a hyper-

elastic branch at larger strains (convex segment).30,54 Molecular

networks also exhibit a yield point, which in elastomers is

followed by softening.30,54,55 If rupture does not occur, a stiffen-

ing branch is observed in elastomers at larger strains.

A concave stress–strain curve is typical for nonwovens56,57 and

networks of nanofibers (e.g. buckypaper58). On the other hand,

network models, which generally do not account for inter-fiber

interactions such as cohesion and friction, predict a purely hyper-

elastic response. Hence, it results that interactions between fibers

taking place at sites other than the crosslinksmay cause the concave

stress–stretch segment. The present work demonstrates that adhe-

sive interactions may produce this effect. We conjecture that, in the

absence of cohesion, friction taking place at fiber-fiber contacts in

crimped networks of low free volume may produce a similar

phenomenon, which is expected to be the case in nonwovens. Since

cohesion is short ranged, it is expected to play a minor role in

networks composed of fibers of large diameter (e.g.41 mm), where

friction may become the controlling mechanism. Cohesion is

expected to be the dominant cause of the unlocking phenomenon

in networks of nanofibers, both thermal (polymeric networks with-

out solvent and above the glass transition temperature) and ather-

mal (e.g. carbon nanotube, chitin, nanocellulose networks).

While the discussion above focuses on the emergence of the

unlocking phenomenon in networks with elastic fibers, it is

necessary to evaluate the likelihood for this behavior to be caused

in realistic network materials by the yielding of elastic–plastic

fibers.59 This issue is discussed in ref. 1, where it is shown that for

non-affine networks composed from elastic–plastic fibers having

yield strain efy, the network scale strain at which yield should be

observed scales as efylc/d. This amplification of the network-scale

yield strain relative to the fiber material yield strain by the

segment aspect ratio, lc/d, implies that fibers may not yield in

low w networks with large lc/d even at large strains. The physical

origin of the amplification is related to the fact that thin fibers

subjected to bending experience smaller maximum stress and

strain as their diameter decreases and may remain in the elastic

range even at large curvatures. This discussion implies that the

unlocking phenomenon observed in networkmaterials with low w

is more likely to be caused by the mechanisms discussed in this

article than by the onset of plastic deformation of fibers.

4. Conclusions

This work demonstrates the emergence of an unlocking phe-

nomenon causing the stress–stretch curve of stochastic

crosslinked networks to be concave at relatively small strains

which is induced by inter-fiber cohesion. These networks are

isostatic and hyperelastic in the absence of cohesive forces.

Cohesion leads to increased small strain stiffness and the

emergence of an unlocking stress which increases as the

cohesion strength increases. Softening follows unlocking, after

which strain stiffening is observed. Cohesion has little effect on

strain stiffening, which is controlled by the network architec-

ture. The small strain stiffness and the unlocking stress may be

expressed as the product of two functions of network para-

meters (w) and of the cohesion strength (C), respectively. The

present work also leads to the observation that a stochastic

network subjected to compression due to hydrostatic boundary

tractions or internal, inter-fiber attractive forces, loses stability

at a critical pressure proportional to (d/lc0)
4, which is a relation

similar to the Euler buckling formula for single fibers subjected

to axial compression. The study sheds light on the physical

mechanism behind the unlocking (often referred to as a yield

point) phenomenon observed in many network materials.
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59 V. I. Räisänen, M. J. Alava, R. M. Nieminen and K. J.

Niskanen, Nord. Pulp Pap. Res. J., 1996, 11, 243–248.

Soft Matter Paper


