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Abstract: A balance between model complexity, accuracy, and computational cost is a central concern

in numerical simulations. In particular, for stochastic fiber networks, the non-affine deformation of

fibers, related non-linear geometric features due to large global deformation, and size effects can

significantly affect the accuracy of the computer experiment outputs and increase the computational

cost. In this work, we systematically investigate methodological aspects of fiber network simulations

with a focus on the output accuracy and computational cost in models with cellular (Voronoi) and

fibrous (Mikado) network architecture. We study both p and h-refinement of the discretizations in

finite element solution procedure, with uniform and length-based adaptive h-refinement strategies.

The analysis is conducted for linear elastic and viscoelastic constitutive behavior of the fibers, as well

as for networks with initially straight and crimped fibers. With relative error as the determining

criterion, we provide recommendations for mesh refinement, comment on the necessity of multiple

realizations, and give an overview of associated computational cost that will serve as guidance

toward minimizing the computational cost while maintaining a desired level of solution accuracy.

Keywords: fiber network materials; numerical analysis; finite element method; mesh convergence;

computational cost

1. Introduction

Stochasticity is a fundamental feature of most naturally occurring and engineered
materials across the length scales [1,2]. Particularly for biological materials and tissue, a
network-like stochastic arrangement and interconnection of sub-scale fibers are characteriz-
ing features [1,3±5]. Many engineered materials such as paper, non-wovens, and polymeric
materials share similar structural features, leading to the generalized notion of network
materials. Under most conditions, these are highly extensible and traditionally have been
modeled as hyperelastic materials using strain energy functions such as Neo±Hookean,
Mooney±Rivilin, Grasser±Holzapfel±Ogden [6±9] to name a few. However, the continuum
models rely on simplifying assumptions regarding the details of micro-architecture and
mechanical deformations [9,10]. For instance, deformation in many network materials is
non-affine, contrary to network scale continuum predictions [11±13]. The dynamic realign-
ment of fibers is overlooked in most continuum models as well. Non-local elasticity-based
methods [14±16] that circumvent several of these issues are not yet readily applicable to
generalized analyses of network materials. To counter, discrete numerical modeling and
simulations of network materials have been gaining traction in recent times [11,13,17]. Here,
the fibers are modeled individually, and they may interact with nearby fibers through their
shared points, i.e., the crosslinks, or via other types of interactions such as contacts and
inter-fiber adhesion [18±21]. Although computationally expensive, this approach preserves
the rich details of mechanics and is generally in excellent agreement with experimental
results. Addressing a few methodological aspects associated with this paradigm is the
overarching goal of the present work.
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Broadly speaking, network materials are categorized as athermal and thermal de-
pending on the effect of thermal fluctuations on the deformation of the material [1]. Many
network materials such as collagen-based networks fall under the first category, while
entangled polymer networks above glass-transition temperature are examples of the second
kind. The current study is limited to the athermal type where the characteristic diameter
of the fiber cross-section is large enough so that thermal fluctuations have a negligible
effect on their deformation. Such fibers may be modeled as trusses or beams in discrete
simulations. The network architecture, i.e., geometry, placement, and interconnection of
the fibers is such that general features of target materials are captured at the length scale of
interest. The peculiarities of the network material deformation are then deciphered from the
individual or collective motion of fibers. The constitutive behavior of individual fibers may
be linear or non-linear, along with the geometric non-linearity of deformation addressed in
the numerical procedure. These proxy models are described by a few parameters such as
density, volume fraction, connectivity, and persistence length in the reference configuration.
The effect of these parameters on the mechanical behavior of the network has been explored
extensively in the past [22±26].

For numerical simulations of athermal fiber networks, two major solution procedures
can be identified: structural relaxation [27,28] and finite element procedure [29,30]. The
structural relaxation procedure seeks the equilibrium state of a deformed configuration
by minimizing the global energy functional of the numerical model. In the majority of
such works, the fibers are modeled as linear springs (trusses), often alongside torsional
springs as a first-order approximation of the bending rigidity of fibers or/and crosslinks.
In the finite element procedure, the solution of a boundary value problem is obtained
from a numerical representation of the variational form of equilibrium equations, with
interpolating polynomials being used to approximate the field variables. Both approaches
provide the solution only at the mesh points or nodes. Still, discrete network models that
can be solved using available technology in a reasonable time frame are at best a fraction
of the size of geometries of practical interest. The discrete nature of the models, pertinent
material, and geometric non-linearities are the factors limiting the scope. At the same
time, the model geometry must be large enough relative to the smallest characteristic
length scales, e.g., the mean fiber length, to obtain a solution representative of stochastic
materials of interest. As a result, a trade-off becomes necessary between the desired level
of resolution, solution accuracy, and resulting computational cost. Surprisingly, this is far
less described in the literature for network materials, with the exceptions of a few scattered
results aimed to justify the modeling choice in selected cases [18,31±33]. In this work, we
address this knowledge gap in the context of finite element-based simulations of discrete
fiber networks.

The primary objective of this article is to provide guidelines for the modeling and
simulation of network materials using discrete models. To this end, we investigate the
elastic response of two idealized network architectures: cellular [26,34,35] and fibrous
networks [21,25] with initially straight and crimped fibers [19,36±38] for varying levels
of mesh refinements. We additionally consider the effect of the discretization on the
viscoelastic relaxation of network models [39±41], following a recent study on this topic [42].
Viscoelasticity at the network scale can arise due to non-Coulombic friction between fibers
and/or the viscoelastic nature of individual fibers. Here, we focus on the latter origin only.
In the absence of an analytical solution, we discuss the numerical convergence behaviors
with relative error as the determining criterion, computed by treating the results of the most
computationally intensive discretization as a reference. In the proceeding discussions, we
first outline the general features of discrete network models and define relevant parameters
common to all network types. Next, we provide a brief discussion of network generation,
modeling, and meshing procedure. We then present the effects of finite element mesh
discretization on linear analyses under small strain assumption, followed by a discussion
of the finite strain analysis for both non-affine and affine network models. We conclude
the study with remarks on meshing strategies, the necessity of multiple realizations, and
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associated computational costs. The picture that emerges suggests that individual fibers
modeled as quadratic elements and discretized adaptively based on their length provide
the optimum balance between numerical accuracy and computational cost in fiber network
simulations.

2. Materials and Methods

In athermal fiber network models, fibers are typically idealized by one-dimensional
structural elements such as beams. They are dispersed in the model domain either following
some topological orders to represent periodic networks (e.g., woven textiles) or randomly
to model stochastic micro-architectures (e.g., paper, collagen networks). The present work
focuses on the stochastic network type. Here, the intersection points of the fibers are the
crosslinks which we treat as welded joints, i.e., they transmit both forces and moments. A
fiber may persist over multiple such crosslinks, for example, in papers. Further, the fiber
may be straight or crimped (wavy) in the initial configuration. The latter may be quantified
through the crimp parameter defined as the ratio of the end-to-end length to the contour
length for an individual fiber or by the persistence length [43,44]. For numerical modeling
purposes, the fibers are represented using one or multiple straight-line segments in series.
We model these segments as beams of circular cross-section with diameter d throughout this
work. Other parameters of interest related to individual fibers are the cross-section shape,
dimensions, and the fiber material properties. Developing models of fibers of different
cross-section shapes/dimensions and/or made from different material properties brings
no additional complexity.

At the network scale, we denote the material density as ρ = ∑ l/V which represents
the total fiber length per unit volume of network material. The average number of fiber
segments merging at the crosslinks is denoted by Åz. The network behaves similarly to
a mechanism with local or global floppy modes up to a critical Åz [22,45]. The models
discussed in this work are unconditionally stable (have non-zero stiffness under small
perturbations), irrespective of the value of Åz, due to the fact that fibers have non-zero
bending stiffness and the crosslinks transmit bending moments [24]. Finally, since the
network may deform non-affinely, we use a non-dimensional parameter w computed at
reference configuration to indicate the expected level of non-affinity. For a smaller value of
w, we expect the network deformation to be more non-affine. This parameter is defined for
each model in the section in which the respective model is discussed.

In the next few sections, we discuss the numerical modeling of network materials in
three steps: first, we provide a brief overview of methods used to generate network models;
next, we elaborate on the numerical model and relevant boundary conditions; and finally,
we discuss potential approaches to mesh discretization.

2.1. Cellular (Voronoi) Network Generation

Network materials of cellular type consist of fibers crosslinked only at their ends.
Typical examples of network materials of this kind are open cellular foams [46] and many
biological collagen networks with Åz ≈ 4. Therefore, these networks can be modeled using
the traditional Voronoi tessellation procedure in 3D. For this purpose, a 3D cubic space of
edge length 2Lo is populated with random seed points following a uniform distribution.
The edges of the Voronoi tessellation [47] generated from these seeds are treated as fibers
and their merging points are retained as crosslinks. Thus, the fibers are initially straight
with Åz = 4. The model is then trimmed to the desired cubic shape of edge length Lo. This
final step reduces the boundary effects associated with the tessellation procedure. An
example of the final model, along with a magnified fiber, is shown in Figure 1a.
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(a) (b) (c)

Figure 1. Example of fiber network models considered in this work: (a) cellular (Voronoi), (b) fibrous
(Mikado), and (c) crimped fibrous network (CFN) with single fiber highlighted. The 3D CFN and
Voronoi networks are visualized in 2D. The Mikado network in (b) is 2D. All network models are
represented in cubic/square domains of edge length Lo with planar boundaries applied to selected
cases.

The length of the fibers in this architecture is Poisson distributed, thus the mean
length, lc, fully characterizes the distribution. To improve the computational efficiency
in explicit dynamic simulations, we remove fibers with length l < lc/25 by merging the
associated crosslinks. Typically, fibers shorter than this limit are quite stiff in bending, so
this modification does not alter the mechanics of the network. The procedure also increases
the connectivity of a small subset of the crosslinks but does not affect Åz significantly. Finally,
any dangling fibers created up to this point that are not at the boundary do not contribute
to the strain energy and are removed from the model.

Due to the uniform distribution of the seed points, the network does not have any
preferential alignment of fibers in the initial configuration. The number of these seed
points and the model size are thus the primary parameters for the model generation.
The characteristic non-dimensional parameter of the network is wv = log10 ρd2, with line
density, ρ, measured in the reference configuration. For wv < 0, the deformation of the
network is controlled by the bending deformation modes of fibers and shows increasing
degrees of non-affinity as wv decreases [24].

2.2. Fibrous (Mikado) Network Generation

Fibrous networks concern network material where fibers of pre-specified lengths are
embedded in space with crosslinks at their initial contact points. We model this in 2D using
a Mikado-type architecture that closely resembles the micro-architecture of paper [1,18,48].
The model is generated by depositing straight fibers of fixed length l f oriented at random
angles in a target square domain of edge length, Lo. The location and orientation of the
deposited fibers are controlled by two parameters: the centroid of the fiber and the angle
it makes with a reference axis. The values for both of these parameters are drawn from
a uniform random distribution. The intersections of the deposited fibers are treated as
crosslinks. Thus, a fiber can form crosslinks with multiple neighbors. The fiber segments
protruding out of the model domain are then trimmed to obtain the desired model. Finally,
we remove dangling segments of the fiber that are not part of boundary faces to reduce
computational cost and dynamic effects. These segments are the fundamental components
of this network in subsequent numerical procedures. The segment lengths are Poisson
distributed. An example of such a model is provided in Figure 1b with a single fiber
highlighted.

This network has average connectivity Åz = 4 and no preferential alignment in the
undeformed configuration. We characterize the non-affinity of the model using a non-
dimensional parameter, wm = log10[(ρl f )

7(d/(4l f ))
2], with the transition from non-affine
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to affine deformation mode occurring at wm ≈ 4.5. The overall generation process is
therefore controlled by two parameters: length and number density of fibers. Finally, here
we consider two types of constitutive behavior of the fibers for this architecture: linear
elastic and time-dependent linear viscoelastic. This provides us with the opportunity to
investigate the effect of mesh refinement on the viscoelastic response of the overall network.

2.3. Crimped Fiber Network (CFN) Generation

Most naturally occurring fibers are wavy. Although the mechanical behaviors of the
network with crimped fibers are qualitatively comparable to those with straight fibers [26],
the presence of crimps affects the microscopic details of the deformation. Hence, in special
cases, the waviness of the individual fibers needs to be modeled explicitly. The crimped fiber
network model we present here consists of many such initially crimped fibers generated
using random walk following the procedure described in [19]. A starting point is selected
on one of the model boundaries and steps of the same length are taken inward of the
domain. The direction of each step is selected at random within a cone of axis defined by
the previous step’s direction. The apex angle of the cone controls the degree of directionality
of the walk and its persistence length, Lp. This process continues until the random walk
reaches a boundary. The number of fibers generated, step length, and the minimum fiber
length are part of the model generation parameters.

After the fiber generation process, the model is trimmed to the desired size Lo and then
crosslinks are added based on a proximity criterion while avoiding crosslinking a fiber with
itself. One such fiber is shown highlighted in Figure 1c. This crosslinking approach ensures
adequate crosslinking between the fibers and also dictates the maximum length of the
crosslinking connector elements. The crosslinks are modeled as stiff linear springs. Finally,
fibers with no crosslinks and fibers’ dangling ends are removed to avoid unnecessary
segments that do not store strain energy. The nodal connectivity z is nominally 4, although
a small fraction of crosslinks with z = 3 exists after dangling ends are removed.

2.4. Simulation Procedure and Boundary Conditions

For networks with linear elastic fibers that we study, the relevant material param-
eters are Young’s modulus, E f , shear modulus, G f , and fiber material density, ρ f . We
also investigate the effect of time-dependent viscoelastic relaxation in selected cases. In
all cases, the fiber segments are modeled as initially straight beams and are discretized
using Timoshenko beam elements of first or second order [30]. Thus, all nodes have 6
degrees of freedom: 3 translational and 3 rotational. Due to the Poisson-distributed fiber
segment length, we expect beams with a large range of aspect ratios, so this formulation
is preferred over the Euler±Bernoulli one. One may, however, also consider higher-order
beam models such as in Refs. [49,50]. The beam cross-section is assumed to be constant
during deformation. We also do not consider inter-fiber contacts or frictions, as their effects
are negligible in tension due to the large free volume of network materials [34].

All the results presented here are based on finite element simulations solved using the
ABAQUS finite element software package [51]. We seek the static solution for the network
deformation as a function of applied stretch. We employ a linear perturbation procedure to
obtain small strain responses. An implicit method does not apply to finite strain analysis
of the network model since network deformation beyond a few percent strain entails
microstructural reorganizations (large local deformations and rotations) that cannot be
resolved using such methods. Consequently, we use an explicit forward marching technique
(ABAQUS/Explicit) to obtain the quasi-static solution. The numerical formulation accounts
for the effects of geometric non-linearities of the deformation. To assert the validity of the
quasi-static assumption, we monitor the kinetic and strain energy of the model so that the
kinetic-to-strain energy ratio stays below 5% following recommendations from [51]. This
is typically not maintained at the early stage of simulation (up to approx. 2% nominal
strain) due to start-up effects. To improve the energy balance and subsequent stability, we
introduce an otherwise negligible viscous damping to the system. The energy associated
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with viscous damping is also monitored to ensure it is negligible compared to the overall
strain energy.

The dynamic explicit simulation procedure utilizes a central difference-based forward
time marching algorithm. The applicable stable time increment is defined in terms of the
highest frequency in the system, which can be approximated as the ratio of the characteristic
length of the elements and wave speed in the fiber material [51]. The characteristic length
equals the length of the element for first-order and half-length for second-order beam
element formulation. The longitudinal wave speed, on the other hand, is computed from

fiber material property as
√

E f /ρ f . This, in general, leads to a quite small step time in the

numerical integration schemes due to Poisson-distributed fiber lengths and/or constraints
on material parameters. Specifically, the length of shorter fibers determines the time step
at which the integration scheme can proceed. To improve computational efficiency, we
artificially increase the mass density of the short elements in addition to the element
removal described earlier, while ensuring that the inertia forces are much smaller than the
forces transmitted between elements. This is acceptable within the quasi-static solution
sought here. Finally, the simulation outputs also depend on the nature and magnitude of
the strain rate (i.e., load amplitude curve) but it is not critical as long as the quasi-static
condition is maintained. We choose these simulation parameters at a balance between
computational efficiency and accuracy.

For uniaxial tension tests, we load the network model in tension under displacement
control and with a constant engineering strain rate. To this end, displacement boundary
conditions are prescribed to all nodes belonging to one of the boundaries while the nodes
of the opposite boundary are constrained in translation along that direction. To prohibit
rigid body motions, a single node on this ‘fixed’ boundary is constrained in all available
translational and rotational degrees of freedom. For boundaries perpendicular to the
loading direction, we consider two possibilities. (i) Free: the boundary nodes are traction-
free (strong-free), or (ii) planar: the nodes are kinematically tied such that the boundary
plane remains planar (weak-free). In the second scenario, the relevant boundaries are still
free to move in their direction to their normal. As a result, the reaction force at the respective
boundaries is zero in the average sense. Planar boundaries provide two advantages: they
stabilize the deformation by removing spurious network kinematics that may appear
close to the boundaries, particularly in small models, and allow facile estimation of the
deformation gradient (and Poisson contraction) at all strains. The deformation gradient
is useful, for example, when computing the incremental non-affinity of the network. The
boundary conditions are shown schematically in Figure 1 for the three network architectures
discussed.

To investigate the linear viscoelastic behavior in the relaxation mode, a fibrous Mikado
network (wm ≈ 3.63, non-affine) is subjected to uniaxial tension up to a stretch value of
λ = 1.03. Following this, the overall strain is maintained at a constant level while observing
the stress, σ(t) in the loading direction as a function of time, t. Forces acting in directions
perpendicular to the loading direction are maintained at zero. The network behavior during
loading is restricted to being elastic with no relaxation, although non-affine, to facilitate the
interpretation of the subsequent relaxation response. Subsequently, the constitutive model
transitions to a viscoelastic representation to capture the ensuing relaxation phenomenon.
The viscoelastic material is described using a Maxwell model [52] incorporating a relaxation
time constant τf .

2.5. Mesh Refinement Strategies

In this section, we elaborate on the p and h-refinement of the finite element meshes.
Here, p-refinement refers to increasing the order of interpolating polynomials in finite
elements. We focus on two flavors of Timoshenko beam element formulation available in
ABAQUS: 2-noded linear and 3-noded quadratic elements denoting first and second-order
polynomials used to approximate the displacement field, respectively. The details of their
analytical formulation can be found elsewhere, e.g., [30,51,53].
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The h-refinement concerns the discretization of the geometry. The h-refinement for
Mikado and Voronoi network is discussed in terms of fiber segment length, i.e., the span of
the fiber between two adjacent crosslinks, denoted by l. This is equal to the fiber length for
the Voronoi network. To begin, all fiber segments are represented by a single element of
specified order. We refine the mesh by uniformly splitting all segments into a fixed number
of elements, s. The new elements are created by introducing nodes in-between the terminal
crosslinks through linear interpolation such that all elements belonging to a segment are of
equal length, le = l/s. Thus, the element length distribution is the same as the segment
length distribution, scaled by s.

For the Voronoi network, we further consider mesh refinement based on the ratio
of fiber segment length to their mean value, i.e., r = l/lc, to selectively discretize the
longer slender fibers only. We define this refinement strategy by two parameters: rl as the
minimum r beyond which a segment may be refined, and ru as the maximum number of
elements per segment after said refinement. For a fiber, if the r ≡ l/lc > rl condition is met,
the number of elements after refinement is determined by rounding r to the nearest integer.
Thus, a long fiber may be discretized into at most ru elements while those shorter than rl lc
will be represented by a single element. Note that the rounding operation and Poisson-
like fiber length distribution tend to limit the impact of rl and ru on the discretization.
Similar to the previous strategy, discretization is accomplished by introducing additional
nodes such that all elements belonging to a fiber have equal length, here computed as
le = l/ min(ru, round(r)) if round(r) > rl is satisfied, otherwise le = l. Thus, the element
length distribution is similar to the fiber length distribution at the low end of l/lc but
truncated at the other end.

In the discussion to follow, we denote the uniform mesh refinements with the notation
(element order, number of elements/segment, condition on the boundary perpendicular to loading
direction). We use the letter ‘L’ for linear and ‘Q’ for quadratic elements. The number of
elements per segment is a positive integer. The planar and free boundaries are indicated by
‘p’ and ‘f’, respectively. Thus, mesh[Q3p] indicates each fiber segment is discretized using 3
quadratic beam elements and the boundaries perpendicular to the loading direction remain
planar. For length-based adaptive discretization, we replace number of elements/segment
with (rl , ru). In this notation, mesh[L(1.5, 3) f ], for example, indicates fibers are modeled
using linear beam elements with segments longer than 1.5lc discretized into at most 3
elements (otherwise 1 element/fiber segment) and the boundaries are traction-free. Among
all the refinements considered, the mesh[Q5 f ] is the most computationally intensive with
11 nodes/segment, hence it is taken here as the reference solution for the subsequent
discussions unless otherwise specified.

For CFN, the fibers start and end from/to the model boundaries. Therefore, each fiber
has multiple crosslinks with other fibers, and using multiple elements per fiber becomes an
obvious necessity. Due to the generation procedure and computational considerations, the
smoothness of the crimps is generally limited. This directly relates to the wavelength of the
waviness of the fibers. Here, we design a refinement protocol to investigate this aspect of
the model. To this end, the fibers are generated with fine step sizes, ls, in the constrained
random-walk process. We then merge adjacent elements to create progressively coarser
meshes. Here, we present four levels of coarsening in which nc = 2, 4, 8, and 16 steps of
the random walk are bunched together in separate models and represented with a single
element of length equal to the end-to-end vector of the respective nc segments. All elements
are represented using quadratic beams in the simulation.

3. Results and Discussions

3.1. Small Strain Analysis

The small strain stiffness, Eo, measures the linear response of the network material
under an uniaxial perturbation. This stiffness normalized by the affine prediction, e.g.,
E∗

o = Eo/ρA f E f , is generally presented relative to a structural parameter such as w, the
so-called master curve [25]. For non-affine networks of small w, E∗

o is proportional to the
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bending rigidity of the fibers, E f I f , and to axial rigidity, E f A f for affine networks of large
w. Here, A f and I f denote the cross-sectional area and axial moment of inertia of the fibers
respectively. Thus, the master curve has two distinct regimes of small and large w separated
by a threshold, wA-NA, denoting the affine to non-affine transition. To start the discussion,
we first look at the effect of mesh refinement on this master curve.

The master curve for Voronoi networks is shown in Figure 2a with respect to the
relevant non-affinity measure, wv = log10 ρd2, for a variety of mesh discretizations. We
find that all levels of mesh refinement recover the expected behavior. However, the relative
differences between the discretizations are hard to distinguish due to the logarithmic scale
of the vertical axis. To verify the mesh convergence, we compute the relative errors of E∗

o

with 5 quadratic element/fiber segments, i.e., mesh[Q5 f ] (11 nodes/segment) taken as
reference, and show the results in Figure 2b. We choose arbitrary thresholds of ±5% and
±10% to be the desired and acceptable bounds. These thresholds are marked in the figure
with shaded regions. The results indicate that using meshes with one linear element per
segment, mesh[L1 f ] leads to an overestimation of the model stiffness by as much as 30%
in the non-affine regime. Interestingly, the discrepancy is limited to this mesh only, and
all other free boundary cases fall within a ±5% relative error margin. Finer mesh leads to
better agreement with the reference result for both linear and quadratic elements. We also
note that the effect of the planar boundary is to increase the stiffness of the model in the
non-affine range of wv. The equivalent data for Mikado networks is shown in Figure 2c
with respect to wm. Here too, using a mesh with a single linear element per fiber segment
leads to larger errors. In this case, however, h-refinement beyond three nodes per fiber
segment, e.g., mesh[Q1 f ], does not bring any noticeable improvement.

(a) (b) (c)

Figure 2. (a) Small strain stiffness normalized by the affine prediction of the stiffness, ρA f E f ,
presented as a master curve for 3D Voronoi network. (b) The relative error in normalized network
stiffness, E∗

o for Voronoi with results from fiber segments modeled with five quadratic elements,
i.e., mesh[Q5 f ] taken as the reference (denoted as E∗

o,ref). The markers in panel (b) have the same
meaning as panel (a). The pink and gray shaded regions correspond to ±5% and ±10% relative
errors, respectively. (c) The relative error in normalized stiffness for fibrous Mikado network with
respect to mesh[Q5 f ].

The cause of the aforementioned deviations can be traced to the effective stiffness
of the elements. In finite element analysis, coarser meshes tend to produce stiffer model
responses due to a smaller number of degrees of freedom. As a result, the energy partition
in the fibers is skewed away from the softer bending mode in progressively coarser meshes.
Figure 3a shows the fraction of axial energy in the Voronoi networks for several mesh
refinements. The results indicate that mesh[L1 f ] stores a larger fraction of the strain energy
in the axial mode than all other cases considered. An important implication of this result
is the estimation of the affine to non-affine transition point, wA-NA. A model may be
considered affine if the energy is stored predominantly in the axial mode at small strains,
i.e., SEaxial/SEtotal > 0.5 with wA-NA corresponding to SEaxial/SEtotal = 0.5. The mesh[L1 f ]
predicts wv, A-NA ≈ −1 while mesh[L3 f ] and beyond indicates wv, A-NA ≈ 0 for the Voronoi
network.
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(a) (b)
Figure 3. (a) The fraction of the axial component of the strain energy in the small strain regime of
Voronoi network as a function of wv and (b) the respective relative errors for various discretization
considered. The fraction of the axial strain energy computed with the mesh[Q5 f ] is taken as reference
in panel (b). Note, the relative error associated with mesh[L1 f ] is larger than 25% for all wv considered
here. The legends from (a) apply to both panels.

The relative error computed with mesh[Q5 f ] as a reference in Figure 3b better shows
the effects of mesh refinement on the fraction of axial strain energy stored in the network.
Not surprisingly, mesh[L1 f ] falls outside the range of relative error shown in the figure,
underscoring the overwhelmingly axial deformation mode prevalent in this case. Further,
mesh[L1 f ] tends to overestimate shear and torsional deformation mode contributions. We
find similar distortion of energy balance for mesh[L3 f ] and mesh[Q1 f ] as well, though
within ±10% bound. These deviations in the non-affine portion of the master curve are
generally at the cost of the softer bending energy of the model, leading to a larger model
stiffness. The same argument also explains the stiffer response associated with planar
boundary conditions.

Since non-affinity is an integral feature of fiber network deformation, we advise
avoiding meshes with a single linear element per fiber segment in the numerical simulation
of discrete fiber networks, especially for non-affine models. Based on the data presented
here, we recommend finite element meshes with at least three nodes per segment in linear
analyses.

3.2. Finite Strain Analysis

In the absence of dissipation, fiber network materials often exhibit hyper-elastic
behavior with respect to applied stretch, λ. In such athermal systems, the nominal stress,
S, and tangent stiffness Et = dS/dλ are derived from the strain energy. Thus, we expect
the relative errors and numerical noise to be elevated for tangent stiffness compared to
nominal stress and energy. Further, the non-linear behavior of network materials is w
dependent [1,26,34]. For example, Voronoi networks with w < wA-NA exhibit three distinct
stiffening regimes under finite strain. In Regime I, the material response is approximately
linear elastic, followed by exponential stiffening in Regime II (Et ∝ nominal stress, S) and
Regime III (Et ∝

√
S). We, however, note that Regime III is not observed when the Cauchy

(true) stress is used to evaluate the stiffness-stress plot; in this case, Et is proportional to
the Cauchy stress beyond Regime I [54]. For affine networks (large w), the exponential
Regime II is nonexistent. We found mesh refinement to be most critical in Regime II of
non-affine networks. In this section, we present the results for the non-affine Voronoi
network (wv ≈ −2.7), followed by fibrous Mikado architecture (wm ≈ 2, non-affine). We
briefly discuss affine models in Section 3.8.

The stress productions in Voronoi networks for various levels of uniform mesh refine-
ment are shown in Figure 4a. Similar to the small strain analyses, we observe a significant
deviation when a single element is used to model a fiber segment, i.e., mesh[L1 f ]. To
further investigate small to moderately large strain response, we report in Figure 4b the
relative errors computed with mesh[Q5 f ] as reference. Clearly, mesh[L1 f ] over-estimates
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the nominal stress by at least 25% compared to the reference. The refined linear meshes
also tend to over-estimate the nominal stress at smaller strains (Regime I and II), and
under-estimate at larger strains (Regime III), but remain within an acceptable margin.
Interestingly, the quadratic mesh[Q1 f ] shows a large deviation from the reference result,
especially in Regime II. Such deviation is due to a combination of (i) the availability of the
first bending mode and (ii) the large reorientation of fibers in the loading direction. This
result highlights the importance of the flexibility of fibers in the numerical convergence of
network analyses.

(a) (b) (c)

Figure 4. (a) The nominal stress-stretch response of a 3D non-affine Voronoi network under uniaxial
tension test with various levels of mesh refinements. The inset shows the tangent stiffness vs. stress
for all curves in the main figure. The stiffening regimes shown in the main figure are identified based
on changes in the tangent of stiffness vs. stress data. The relative errors in (b) nominal stress and (c)
average element orientation are computed with respect to the result of a model with five quadratic
elements per fiber, mesh[Q5 f ]. The legends from (a) apply to all panels.

The relative errors in the predicted tangent stiffness show trends comparable to those
observed for stress from Figure 4b for various discretizations considered. The magnitude of
the relative error, however, increases by approximately 10±20% depending on the level of
refinements. Regardless, all meshes produced comparable functional forms of the stiffening
behavior. This is shown in the inset to Figure 4a where the tangent stiffness vs. stress is
plotted for the discretizations considered here.

One of the primary motivations behind discrete fiber network simulation is access to
the micromechanical details of the deformation process. Here, we comment on the effect
of mesh refinement on the mean reorientation of the fibers. This is quantified through
P3d

2 = 1/2(3⟨cos2 θ⟩ − 1) for a 3D Voronoi network [1,55]. In the expression, θ denotes
the angle between the tangent to a fiber direction and the global loading direction. We
compute this quantity at the length scale of elements to reduce computational complexity.
The tangent vectors are thus approximated using the terminal nodes of the individual
elements, with the average performed over all available elements in the model. The
relative errors computed with mesh[Q5 f ] as reference are presented in Figure 4c. We find
that all mesh refinements provide results within an acceptable error margin. However,
predictions obtained with meshes with a single element per fiber segment (e.g., mesh[Q1 f ]
and mesh[L1 f ]) diverge near the middle of Regime II and on a trend outward of the ±10%
bound. The stiffer response of the fiber segment and error associated with approximation of
tangent in mesh[Q1 f ] are the contributing factors for these deviations. Still, the kinematic
variables are less affected by discretization levels in an average sense than the energetic
quantities discussed earlier.

A similar set of results from the large strain analysis of the fibrous Mikado network
indicates a more strict mesh refinement requirement. The constitutive responses for a
Mikado network with wm = 2 are shown in Figure 5a. The stress response for mesh[Q1 f ]
diverges noticeably from all other cases. The relative errors in stress computed in Figure 5b
with respect to mesh[Q5 f ] indicates a maximum of 90% deviation at early stages of Regime
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II for this mesh, rendering the results unacceptable. A similarly large deviation for this
mesh is observed in P2d

2 as well, here computed as P2d
2 = 2(⟨cos2 θ⟩ − 1) at the element

scale (Figure 5c). Finally, the planar boundary conditions led to a significant level of error
until mid of Regime II, regardless of the discretization.

(a) (b) (c)

Figure 5. (a) The nominal stress±stretch response of a 2D non-affine Mikado network under uniaxial
tension test for various discretizations with the stiffening regimes shown. The relative errors in (b)
nominal stress and (c) average element orientation are computed with respect to a model with five
quadratic elements per fiber, i.e., mesh[Q5 f ]. The legends from (a) apply to all panels.

Based on these results, we recommend using finite element meshes with at least
six nodes per segment for non-affine fibrous network simulations if the uniform mesh
refinement strategy is employed. Planar boundary conditions should be avoided unless
essential. We provide a mesh recommendation for the cellular Voronoi network model in
Section 3.7.

3.3. Viscoelastic Relaxation

In a prior investigation, a connection between the structural parameters of the network
material and its viscoelastic relaxation characteristics was established [42]. The analysis
was conducted for both 2D Mikado Networks and 3D Voronoi Networks. Nonetheless, the
concept of mesh refinement was never explored in that study. As in [42] and to facilitate
the interpretation of the network scale response, here we consider Mikado networks of
fibers made from a linear viscoelastic material with a single time constant, τf . The model
is stretched uniaxially up to 3% strain after which the strain is kept constant, and stress
relaxation is monitored. The variation in the stress in time, σ(t), is plotted in Figure 6 after
normalization with the stress at the onset of relaxation (at the end of the loading period of
3% strain), σo, and rearranging as log[− log (σ(t)/σ0)] vs. log (t/τf ). In this representation,
an exponential relaxation with a single time constant would appear as a straight line of
Slope 1 and the intercept equals the log of the network scale relaxation time. Figure 6 shows
the stress during the relaxation regime for various mesh refinement levels. It is seen that
using a single linear element per fiber segment leads to erroneous results, while any other
higher level of mesh refinement provides converged curves. For similar analyses with
larger strain at the end of the loading phase, we recommend following the best practices
for the underlying Mikado network architectures discussed in the previous section.
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Figure 6. The normalized linear viscoelastic relaxation of the 2D Mikado network for the various
levels of discretizations.

3.4. Crimped Fiber Network (CFN)

The models with crimped fibers discussed in Section 2.3 belong to the class of fibrous
networks. Fibers are defined by directed random walks in 3D which begin from one model
surface and end on another surface, with the restriction that the endpoint of a fiber should
not be on the model face directly opposite to the face from which the walk began. Let ls be
the length of the random walk step. The directed walk is characterized by the persistence
length, Lp. The persistence length defines the rate of decay of the tangent vector auto-
correlation function measured along a fiber [1]. Fibers are crosslinked based on a proximity
criterion, and the crosslink density is adjusted by controlling the threshold distance below
which two segments are connected. The contour length between crosslinks measured along
a fiber, lc, is another characteristic length of the structure. These three characteristic lengths
largely control the stiffness and overall mechanics of the network. Specifically, ls must be
about one order of magnitude smaller than Lp for the walk to resolve the desired tortuosity.
Further, if lc << Lp, segments are approximately straight on length scales defined by the
crosslink to crosslink distance (mesh size) and the situation becomes comparable to the
Voronoi networks discussed earlier.

If lc >> Lp, the network is very soft if entanglements (topological constraints associ-
ated with the condition that fibers should not cross) are not enforced. The situation of more
interest is that in which lc is larger, but comparable with Lp. This is the case considered
here and, for this scenario, we study the effect of mesh refinement. We consider systems
with Lp equal to 10 steps of the random walk and crosslink the walks (fibers) such that
lc is equal to 30 steps. Hence, Lp = lc/3. In the reference configuration, each step of the
walk is represented with a single quadratic finite element and, in this case, le = ls and
le/Lp = 0.10, with le being the element length. The discretization is gradually coarsened
such that le/LP = 0.10, 0.20, 0.34, 0.54, 0.68, in separate models. This coarsening is per-
formed by representing nc = 2, 4, 8, and 16 steps of the random walk with one straight
element, respectively, while maintaining Lp constant. In this process, the fine-scale features
of the walk are gradually eliminated.

Figure 7 shows the nominal stress vs. stretch for several models with various le/LP.
The response becomes stiffer as the degree of coarsening increases. However, the functional
form of stiffening does not change and remains exponential. The first level of coarsening,
nc = 2, provides a curve that is within 10% from the reference curve (le/Lp = 0.10 in
Figure 7) up to a strain of 20%. The 10% error range is shown as a shaded band around
the reference curve. nc = 2 is within 25% of the reference up to 40% strain. All coarser
meshes provide gradually less accurate solutions for specified Lp. For further discretization
of walk steps, the microstructure becomes comparable to the Voronoi network model, and
conclusions from Section 3.2 apply.
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Figure 7. Finite strain response of 3D crimped fiber network for four levels of mesh refinement,
defined by the ratio of the element length, le, to the persistence length, Lp. In the most refined case
taken as the reference here, the response is softest (lowest curve) and le/LP = 0.10. The shaded
region corresponds to 10% deviation from this reference result. Curves corresponding to increasing
degrees of coarsening and increasing le/Lp values are gradually stiffer.

Based on these observations, we recommend that, as long as the fiber is generated
as a directed random walk, one quadratic element per walk step should be used. If the
fiber is generated as a smooth contour in space (e.g., analytically), as a starting point of the
evaluation of the effect of discretization, we recommend 10 elements per Lp.

3.5. Adaptive Meshing

So far, we have shown that discrete fiber network simulation results tend to converge
as the finite element mesh becomes more refined or the order of the element increases.
This, however, comes with an increasing computational burden due to the large number
of degrees of freedom introduced. Further, uniform mesh refinement discussed in the
previous sections creates elements with progressively shorter lengths, leading to smaller
time steps in explicit integration schemes. At the same time, we also identified the flexibility
of fibers as an important factor for numerical accuracy in the discussion of Figure 4b. As
an alternative, here we explore the length-based adaptive meshing techniques mentioned
in Section 2.5. The following discussion pertains to a non-affine Voronoi network, but we
expect the conclusions and recommendations to be equally applicable to other network
architectures.

The adaptive meshing is well suited for network materials due to the Poisson-distributed
fiber segment lengths. Since the algorithm selectively discretizes the longer (slender) fibers,
the quality of the solution improves with little to no change in the time step used in the
integration scheme The relative errors in stress response of a non-affine Voronoi network
are shown in Figure 8a for a few selected adaptive discretization strategies with the results
of mesh[Q3p] taken as reference. Here, fibers with length l > 1.5lc (mesh[Q(1.5, 3)p],
mesh[L(1.5, 3)p]) or l > 2lc (mesh[Q(2, 3)p]) are discretized into at most three elements
per fiber following the procedure described in Section 2.5. The output of mesh[Q(1.5, 3)p]
is comparable to the more computationally intensive reference discretization. The more
interesting case, however, is the mesh[L(1.5, 3)p] given the large relative error we observed
for mesh[L1 f ] in Figure 4. This clearly shows that it is the slender fibers that control the
accuracy of the solution in non-affine networks.
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(a) (b) (c)

Figure 8. (a) The relative error in stress for several length-based adaptive mesh refinements computed
with respect to mesh[Q3p]. The notation mesh[Q(1.5, 3)p] indicates that fiber segments longer than
1.5lc are discretized into at most 3 elements, and the boundaries remain planar during deformation.
A complete description of the notations is provided in Section 2.5. (b) The average stress response
and corresponding min/max range from 6 realizations of network models with mesh[Q(1.5, 3)p]
discretization. The coefficient of variation (CV) is shown as inset with 5% CV marked with a dotted
line. All results in (a,b) are for non-affine Voronoi networks subjected to large deformations (up to
stretch, λ = 1.35). (c) The approximate computational cost incurred for dynamic explicit simulations.
The available degrees of freedom (horizontal axis) and the cost (vertical axis) are normalized by the
corresponding values pertaining to mesh[L1 f ].

For the discretizations considered in Figure 8a, the largest errors are observed in the
small strain regime. This is a consequence of the initially straight fiber assumption and
may be safely overlooked, especially for mesh[Q(1.5, 3)p]. To the authors’ best knowledge,
all available meshing packages include some form of length-aware adaptive h-refinement
capability, so this technique is recommended for general discrete fiber network simulations.
Alternatively, the basic adaptive meshing techniques described in Section 2.5 may be easily
implemented using freely available programming languages such as Python [56].

3.6. Ensemble Averaging and Size Effect

Studies on fiber networks of finite size generally demand averaging over many re-
alizations (embedding and connectivity generated from different random seed points)
due to the underlying stochasticity. This becomes especially important if the ratio of the
model size to a characteristic length scale of the network is below a model-dependent
threshold. The characteristic length scale of the network may be the smallest length of
interest (mean fiber length, for example) or the characteristic length of embedded defects
(e.g., pre-existing cracks). If fiber damage is considered, the size effect controls the failure
mechanism to a great extent [57,58]. For pure elastic analyses, the effect of boundary nodes
may have an undue influence on the deformation of interior fibers, hence rendering the
material response overly sensitive to the model parameters. A plethora of published works
discusses these issues under the umbrella term boundary and size effects. We follow the
recommendations in [25,59] for all network architectures considered. For example, the
characteristic length scale in our Voronoi network model is the mean fiber length, lc and
we maintain Lo/lc ≈ 31.75 following the results of [59].

To further investigate the necessity of multiple realizations, we consider six realiza-
tions of a non-affine Voronoi network with mesh[Q(1.5, 3)p] and Lo/lc ≈ 31.75. The line
density, ρ (thus wv) changes with the realizations but remains within a very tight tolerance
(coefficient of variation: 0.01). Consequently, the stress response remains very close, as
shown in Figure 8b. The coefficient of variation in the stress response is shown as an inset
of Figure 8b which has a maximum of approximately 5% beyond the start-up effect and ap-
pears near the transition between Regimes II and III (λ ≈ 1.25 this model). When we reduce
the model size to Lo/lc ≈ 16.75, the coefficient of variation increases to a maximum of 14%
at the same stretch, underscoring the necessity of large models in numerical simulations.
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Therefore, to investigate the asymptotic response of fiber network materials, we
recommend larger models so that the size effect is as small as feasible, thus eliminating the
need for multiple replicas and associated computational costs.

3.7. Computational Cost

A recurring theme in this work is the balance between computational cost and solution
accuracy. To provide further guidance, we estimate the total computational cost the product
of the number of CPU cores used in the simulation and the total compute time. In an explicit
integration scheme, a linear relation between degrees of freedom and computational cost is
expected. However, algorithm/hardware architecture dependency and parallel overheads
will lead to significant variations across computing environments. With the specifics of our
approach (see Section 2.4) in mind, we plot the computational cost incurred with respect
to available degrees of freedom in the Voronoi network models in Figure 8c. Here, the
quantities are normalized by the corresponding values from a model discretized with a
single linear element per fiber, i.e., mesh[L1 f ]. A linear regression line based on the data
points pertaining to quadratic elements is shown in the figure for reference. The difference
in the trend for linear elements stems from the element characteristic length approximation
method used in our analysis package.

Due to the aforementioned particularities and assumptions, this result should be
considered only as an initial guidance. Still, we can draw several important conclusions
based on this data. First, we find the planar boundary conditions add to the computational
cost due to additional constraint equations introduced. We expect this to increase with the
number of relevant boundary nodes and model size. Second, the affine models (discussed
in the next section) are less computationally intensive, here due to the method of stable
time increment selection. Third and most importantly, the length-based adaptive meshing
technique produces reasonably accurate results at a fraction of the computational cost of
the uniform meshing procedure, e.g., compare mesh[Q(1.5, 3)p] data shown in Figure 8c
to Figure 8a. We thus recommend mesh[Q(1.5, 3)p] or mesh[Q(1.5, 3) f ] for finite strain
analysis of general cellular (Voronoi) networks.

3.8. Other Modeling Aspects

Many properties of fiber networks are related to non-affine deformation. A fiber
network may become more affine due to increased fiber volume fraction (implemented by
increasing fiber diameter, d, or line density, ρ) or the persistence of fibers across multiple
crosslinks (in fibrous networks, for example). While the affine models are associated with
fibers that store energy mostly in their axial deformation mode, non-affine models deal
with large deformations controlled by bending. Not surprisingly, the convergence criteria
are far less demanding for affine models. The relative error in stress responses for near-
affine Voronoi (wv ≈ −1.3) and Mikado (wm ≈ 3.63) networks are shown in Figure 9a,b,
respectively. Compared to Figures 4b and 5b, we find the affine model outputs to be
acceptable with minimum refinement: mesh[L1 f ] for Voronoi and mesh[Q1 f ] for Mikado.
The stability of the numerical models improved with increasing affinity as well, especially
for the Mikado architecture. We also note that the network line density, ρ, has a negligible
effect on the elastic response as long as w is held constant, and so we expect the conclusions
from mesh refinement analyses to be independent of ρ.
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(a) (b)
Figure 9. Relative error in the stress response for near-affine (a) Voronoi (wv ≈ −1.3) and (b) Mikado
network (wm ≈ 3.63) models. The relative errors are computed in reference to results obtained using
mesh[Q5 f ].

All finite strain results presented here maintained a kinetic-to-strain energy ratio of
less than 0.05 up to the maximum strain explored. The ratio was maximum for mesh[Q1 f ],
approximately 0.02 near the Regime II±III transition. However, the quasi-static assumption
was invalidated briefly for this mesh due to large viscous dissipation, as high as 20% of
strain energy after said transition. This is related to the availability of the first bending
mode in the single element used to model the fiber. At large deformation, fibers realign
in the loading direction through significant bending and rotation of crosslinks. Especially
for slender elements (equivalent to fibers in mesh[Q1 f ]), this may cause buckling-type
instabilities, leading to the observed peak in viscous energy. Reducing or modifying
the strain rate (e.g., using a graded/quadratic ramp in place of a linear load amplitude
curve) helps but does not fully eliminate this issue. For higher levels of mesh refinements,
however, the probability of such element-level instabilities decreases, thus fully resolving
this problem. Therefore, mesh refinement improves both the accuracy and stability of
numerical simulations involving discrete fiber networks. Finally, as with convergence,
affine models tend to be more stable except when wv ⪆ wv,A-NA. In such cases, inter-fiber
contact and fine-tuning model/simulation parameters are generally necessary from our
experience.

4. Recommendations and Conclusions

The finite element method is a versatile tool for numerical experiments of discrete fiber
network models with complex microstructural features. Through a systematic investigation,
this work explored the effects of finite element meshes on the accuracy and acceptability of
the results, both for purely elastic and viscoelastic responses. Our recommendations for
obtaining accurate and efficient solutions are summarized below:

• Single linear element per fiber segment is a poor choice for both small and finite strain
analysis of network materials. This mesh tends to overestimate both the nominal
stress and tangent stiffness.

• A single quadratic element per segment is acceptable for small strain approximation,
but a higher level of refinements is recommended for finite strain analyses.

• Shorter fiber segments control the applicable time steps in the integration schemes
while longer fibers control the overall solution accuracy. Thus, a significant com-
putational effort can be spared by using a segment length-based adaptive meshing
strategy.

• Finer meshes tend to improve both the accuracy and stability of numerical models.

The finite element discretization recommendations are provided in Table 1. We expect
this report will help future researchers to estimate the necessary model parameters in
numerical experiments involving fiber network materials.
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Table 1. Mesh recommendations for finite strain analysis of several discrete numerical models.
For perturbation analysis, mesh[Q1 f ] is adequate for most purposes. Planar boundary conditions
are recommended if effective deformation gradients and related quantities are of primary interest.
Guidelines for crimped fiber networks are provided in Section 3.4.

Network Model Recommended Mesh
Avg. Error with

Recommended Mesh
Minimum Recommendation

Voronoi (3D) Q(1.5, 3) or Q3 (non-affine) Q1 (affine) Less than 5% Q1 (non-affine) L1 (affine)

Mikdao (2D) L5 or Q3 (non-affine) L3 (affine) Less than 3% L3 (non-affine) Q1 (affine)
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