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Abstract With increasing demands for precise water resource management, there is a growing need for
advanced techniques in mapping water bodies. The currently deployed satellites provide complementary data
that are either of high spatial or high temporal resolutions. As a result, there is a clear trade‐off between space
and time when considering a single data source. For the efficient monitoring of multiple environmental
resources, various Earth science applications need data at high spatial and temporal resolutions. To address this
need, many data fusion methods have been described in the literature, that rely on combining data snapshots
from multiple sources. Traditional methods face limitations due to sensitivity to atmospheric disturbances and
other environmental factors, resulting in noise, outliers, and missing data. This paper introduces Hydrological
Generative Adversarial Network (Hydro‐GAN), a novel machine learning‐based method that utilizes modified
GANs to enhance boundary accuracy when mapping low‐resolution MODIS data to high‐resolution Landsat‐8
images. We propose a new non‐saturating loss function for the Hydro‐GAN generator, which maximizes the log
of discriminator probabilities to promote stable updates and aid convergence. By focusing on reducing squared
differences between real and synthetic images, our approach enhances training stability and overall
performance. We specifically focus on mapping water bodies using MODIS and Landsat‐8 imagery due to their
relevance in water resource management tasks. Our experimental results demonstrate the effectiveness of
Hydro‐GAN in generating high‐resolution water body maps, outperforming traditional methods in terms of
boundary accuracy and overall quality.

Plain Language Summary This study addresses the imperative challenges of water resource
management, including coastal zone oversight, detecting sea border shifts due to rising waters, and erosion
tracking. Satellite data currently offers a choice between high spatial detail with infrequent updates or lower
spatial detail with more frequent updates, presenting a trade‐off between data precision and frequency. To
efficiently monitor environmental resources like water bodies, we require data with both high spatial detail and
frequent updates. To meet this need, we introduce the Hydrological Generative Adversarial Network, a novel
machine learning tool that enhances data clarity, particularly in outlining water bodies. In testing, we employed
images from the Moderate Resolution Imaging Spectroradiometer satellite, providing less detailed images, and
the Land Remote‐Sensing Satellite, offering highly detailed imagery. In essence, this study enhances water
resource management by effectively combining data from multiple sources, even in adverse conditions,
potentially advancing environmental protection and management efforts.

1. Introduction
Water bodies monitoring is essential to guide evidence‐based decision making which is necessary for hydro-
logical and ecological sustainability (Njue et al., 2019). Surface water is an irreplaceable resource for ecological
systems, human uses, industrial uses, hydro‐power generation, social development, and recreation. Reliable in-
formation about the dynamic changes of open surface water (e.g., lakes, reservoirs, and rivers) is critically
important for various scientific disciplines, such as flood prediction, coastal zone management, coast erosion,
agricultural sustainability, watershed analysis, climate models, and the assessment of present and future water
resources (Sarp & Ozcelik, 2017). Previous studies have suggested that lakes and reservoirs are good sentinels of
global climate change because they are sensitive to environmental changes (Adrian et al., 2009).

Recent advancement in satellite based‐remote sensing information with different spatial, spectral, radiometric,
and temporal resolutions has given new dimensions to the water bodies studies (Ismail et al., 2021). Following the
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increase in the availability of satellite images, and image processing techniques, numerous research studies have
attempted to extract and delineate water bodies from these images (Ouma & Tateishi, 2006). These technological
and methodological advancements, shift the analysis of surface water bodies from regional‐scale to global scale
for a better understanding of the Earth's natural processes.

Earth observation data is acquired through a large number of satellites that have unique spatiotemporal resolutions
making them complementary data sources (Amato et al., 2020). In the 50 years since the first satellite launch,
remote sensing satellites have evolved from producing low‐resolution images to daily data acquisition exceeding
10 terabytes (Campbell & Wynne, 2011). This transformation is driven by Earth observation science, with over
150 observation satellites in orbit, equipped with sensors operating at various spatial and temporal resolutions (Fu
et al., 2020).

Due to the differences in sensor designs, there is often a trade‐off in different spatiotemporal data resolutions
across the remote sensing spectrum (Khandelwal, Karpatne, & Kumar, 2017). Figure 1 illustrates the spatio-
temporal resolution of four active satellites which shows the aforementioned space and time trade‐off. It can be
noted that the highest spatial resolution satellite is compromising time resolution and vice versa. MODIS satellite
data, obtained from both TERRA and AQUA instruments, observes the entire Earth's surface every 1–2 days.
While the temporal resolution of individual MODIS observations is 8 days, due to the combined coverage from
both TERRA and AQUA satellites, data from the same location on Earth is acquired approximately every 8 days.
On the other hand, Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) sensors onboard the
Landsat satellite capture the earth's surface every 16 days but at a high spatial resolution (HSR) of 30 m (refer
Figure 1). In other words, We utilize MODIS data, which is available in various spatial resolutions, including
250 m, 500 m, and 1 km. For our study, we specifically employ MODIS data at a spatial resolution of 500 m.
Additionally, Landsat data, captured by OLI with a spatial resolution of 30 m, is used in our research. TIRS on
Landsat has a spatial resolution of 100 m. Given the limitation of individual sensors at either delivering HSR or
high temporal cadence, it is essential to create interpolation techniques that can transmit information across
spatiotemporal scales (Khandelwal, Karpatne, & Kumar, 2017). The knowledge transfer has the ability to equip
the science communities with synthetic data sets that approximate real data on the go. For the case of water bodies
interpolation, one of the desirable properties of the method is to achieve interpolated water bodies that are similar
to the ground truth data in both shape and area.

High spatiotemporal resolution data will allow timely monitoring of the surface water and dynamics which are
crucial elements for policy and decision‐makers in hydrology and geomorphology (Maiti & Bhattacharya, 2009).
Furthermore, interpolated data will facilitate the integration of remote sensing data with Geographic Information
Systems for automatic or semiautomatic water body extraction and mapping (Sarp & Ozcelik, 2017). In the light
of the aforementioned need for a flexible spatiotemporal resolution domain, in this paper, we propose a method

Figure 1. Spatial and temporal resolutions of earth's different satellites.
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that aims to learn a mapping between low spatial resolution (LSR) image instances and HSR image instances of
water bodies and reservoirs collected across a period of 7 years from MODIS and Landsat satellites. The proposed
mapping can be utilized to generate HSR data at times when only LSR data is available. Our contributions are as
follows:

• We designed an image processing pipeline that uses computer vision tools to extract target water bodies'
polygon boundaries from satellite imagery.

• We developed a new Generative Adversarial Network (GAN) for mapping the data between any LSR‐HSR
satellite pair.

• We made our source code and data open‐source in a project website (https://sites.google.com/view/hydro‐ml/)
that meets the principles of Findability, Accessibility, Interoperability, and Reusability (FAIR) (Wilkinson
et al., 2016).

Our contribution can help in extracting the precise shape and area of a water body which can further be used to
measure the expansion or shrinking of a water body over a period of time. This can be crucial as water body
extraction is an important task in different disciplines, such as lake coastal zone management, coastline change,
and erosion monitoring, flood prediction, climate and environmental change, and evaluation of water resources
(Haghnazar et al., 2024; Hosseinzadeh et al., 2023, 2024; Jiang et al., 2018). Timely monitoring of surface water
and delivering data on the dynamics of surface water are also essential for policy and decision‐making processes
(Sarp & Ozcelik, 2017). It can also help in detecting the changes in urban water bodies that make a huge dif-
ference to human lives and may cause disasters, such as surface subsidence, urban inland inundation, and health
problems (Y. Chen et al., 2018).

The rest of the paper is organized as follows: in Section 1 we review the related works; in Section 2 we define the
architecture of our proposed GAN‐based method and its different variants; in Section 3 we discuss the results and
evaluation of our experiments. We introduce a case study on Lake Thathar in Section 4. Finally, Section 5
concludes the paper and shows potential directions for future works.

1.1. Background on LSR‐HSR Image Mapping

Early efforts to learn surface water mapping between LSR and HSR images include supervised learning methods
of remote sensing images (Khandelwal, Karpatne, & Kumar, 2017). Factors such as noise, outliers, and enormous
volumes of missing data (due to clouds and sensor failures) can impact the accuracy of the aforementioned
classification systems. To overcome the latter limitations, a new approach has emerged called the Ordering Based
Information Transfer Across Space and time (ORBIT) (Khandelwal, Karpatne, & Kumar, 2017). The funda-
mental idea behind ORBIT is to take advantage of the natural ordering of instances that results from the elevation
structure and temporal context. Specifically, if an area is filled with water, it is interpreted that due to the gravity
all the regions in the basin with lower elevation than the current area are also occupied by water (Pekel
et al., 2016). One key assumption in this approach is that a water body always expands and contracts smoothly
(with the exception of floods and other natural phenomena) which suggests that the surface area of the water body
at close time steps are highly similar (Khandelwal, Karpatne, Marlier, et al., 2017). To put it another way, the
water surface extents of dates close together are likely to be highly similar.

Hence, ORBIT can map data from LSR to HSR data only at time steps when noiseless LSR data is available
(Khandelwal, Karpatne, & Kumar, 2017).

1.2. Background on Planform Change Use Case

For the use case of channel planform change analysis in river bodies, the change of a water body channel is due to
natural or human‐made fluctuations in the streamflow or sediment supply (Leonard et al., 2020). It has been found
that although recurrent images from remote sensing satellites have been widely used to measure the channel
change, these measurements are only significant if the measure of the change is more than the uncertainty
threshold (Leonard et al., 2020). To address this challenge, a generalized method was introduced by Christina M.
et al. for quantifying the uncertainty associated with measurements of channel change from remote sensing
images based on spatially varying estimates of uncertainty called the spatially distributed probabilistic (SDP)
method (Leonard et al., 2020). The SDP approach leverages image co‐registration error, interpretation uncer-
tainty, and digitization uncertainty for quantifying uncertainty. It has been established that SDP can be used to
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calculate uncertainty at specific locations of linear channel adjustment or polygons of erosion and deposition,
while also estimating the central tendency of the net planform change.

1.3. Background on Data Pre‐Processing

Prior to building the LSR to HSR data mapping, it is necessary to build a data pipeline that prepares the LSR‐HSR
corresponding data pairs. For this purpose, if the scope of the study is limited to a few water bodies, it is common
to use data maps that extract the apriori known polygons (Frazier & Page, 2000; Muster et al., 2013). Image
processing techniques have also been used recently for automatically extracting the water bodies' outlines from
satellite data without any apriori map knowledge (Rokni et al., 2014). Single‐band methods are automated
polygon extraction approaches that utilize a selected threshold value to extract water bodies' boundaries. Simi-
larly, multi‐band methods combine different reflective bands for improved surface water extraction (Rokni
et al., 2014). The weakness of using a pixel threshold is that it is prone to errors caused by the mixing of water
pixels with those of different cover types. A more sophisticated approach for automated polygon extraction is to
employ image segmentation. The latter technique is relatively more accurate compared with single‐band methods
(Rokni et al., 2014).

1.4. Background on Generative Networks

GAN models have been used in a variety of applications, including image synthesis, semantic image editing, style
transfer, and classification (Goodfellow et al., 2014). These networks not only learn the mapping from an input
image to an output image but also learn a loss function to train this mapping. This makes it possible to apply the
same generic approach to problems that traditionally would require very different loss formulations (Isola
et al., 2016). Regular GANs hypothesize the discriminator as a classifier with the sigmoid cross‐entropy loss
function (Mao et al., 2016). In this paper, we develop a machine learning‐empowered synthetic satellite that is
capable of spatiotemporal interpolation across a pair of real satellites. Our approach is built on the GAN model
that we used to accurately represent water bodies' shapes and generate realistic synthetic HSR image instances at
times when no measurements are available. Our proposed model pertains to the unsupervised learning paradigm
that is capable of learning deep representations without extensively labeled training data. The novelty of our
approach consists of deriving back‐propagation signals through a competitive training process involving a pair of
competing networks. Our GAN architecture utilizes a generator model and a discriminator model, where the first
model is used to generate new synthetic images, and the second model is used to classify the data as either real or
synthetic. The two competing models are trained concurrently in an adversarial process, where the role of the
generator is to mislead the discriminator, on the other hand, the discriminator tries to detect the generated images
(Goodfellow et al., 2014).

2. Methodology and Data Sources
An ideal LSR‐HSR image mapping method produces images that accurately describe the shape of the water
bodies' boundaries. For this purpose, we develop a machine‐learning model (i.e., a GAN model) that is specif-
ically equipped to focus on the shape and areal accuracy of the water bodies' interpolated polygons. To better

Figure 2. Images from MODIS and Landsat satellites of (1) Kariba reservoir (Zambia), (2) Lake Thathar (Iraq), (3) Lake
Argyle (Australia), and (4) Lake Nasser (Egypt).
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represent the polygon ground truth shapes, we use an optimization algorithm that minimizes the loss with respect
to the polygon shapes. Our model is trained on historical image data captured from both Landsat and MODIS
satellites that are HSR and LSR respectively (L. Yu et al., 2018). In this section, we will discuss the data pre-
processing pipeline and the proposed model.

2.1. Water Bodies Data Sources

Our data set is collected from MODIS and Landsat Earth Observation satellites. Figure 2 shows a sample of LSR
water bodies captured onboard MODIS and their corresponding HSR captured by the Landsat satellite. MODIS is
a key instrument aboard the Terra and Aqua satellites. While Terra's orbit around the Earth is timed so that it
passes from north to south across the equator in the morning, Aqua passes south to north over the equator in the
afternoon (Justice et al., 2002). Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1–
2 days, acquiring data in 36 spectral bands, or groups of wavelengths (Barnes et al., 2003). We used Terra MODIS
with bands 1‐2‐1 and 7‐2‐1 to obtain 256 by 256 pixel size images, as the bands allow the separation between the
water bodies and land surfaces (refer Figure 2a). The data collected from the MODIS sensors are merged at a
temporal resolution of 8 days and a spatial resolution of 500 m. It is important to note that although the temporal
resolution of MODIS is 1 day, the satellite acquires data from the same location on Earth approximately every
8 days. This is known as the 8‐day repeating cycle (i.e., MODIS 8‐day composite) (Y. Chen et al., 2013). Landsat
8 consists of two data collection instruments called OLI and TRIS. The two sensors collect data at a temporal
resolution of 16 days. OLI provides a spatial resolution of 30 m, capturing visible and near‐infrared bands, while
TIRS has a spatial resolution of 100 m, focusing on thermal infrared bands (Verpoorter et al., 2012). We used
bands 7‐4‐3 and 1‐5‐7 to obtain the images of water bodies (refer Figure 2b). Likewise, we used 256 by 256 pixel
size images for Landsat. The multi‐band method takes advantage of reflective differences of each involved band
and extracts water based on the analysis of signature differences between water and others (Qiao et al., 2012). Our
data set contains 20 reservoirs, across 7 years from 2015 to 2021. We have a total of 6,720 images of MODIS
sensors and 3,360 images of Landsat 8 satellite. In our study, we utilized satellite data products from both MODIS
and Landsat. For MODIS, we employed Level 1B products, which include radiometrically calibrated and geo-
located data. These Level 1B products undergo geometric correction, making them suitable for our mapping
purposes. Regarding Landsat, we utilized Level 1T products, which are terrain‐corrected and georeferenced. We
have outlined more details on the water bodies used in this study in the Appendix section. Following the FAIR
guiding principles, we have made our data sets publicly accessible on the project website.

2.2. Data Pre‐Processing

Prior to the HSR‐LSR mapping process, we curated our image data sets to obtain cleaned machine‐learning ready
data. We applied computer vision methods to extract the shapes of the water bodies' polygons. The image pro-
cessing step involves extracting useful metadata from the image. In this case, the metadata is the shape of the
water bodies' polygons. Our data curation is a four‐step process that is shown in Figure 3 and described in Al-
gorithm 1. The steps are (a) convert the input images to Hue Saturation and Value (HSV) format (lines 3–4), (b)
binarize the image into a black‐and‐white format (lines 5–8), (c) denoise the image using morphological oper-
ations (lines 9–11), and (d) apply an image mask to extract the water body polygons.

While existing methods on segmentation‐based methods for water bodies extraction are powerful techniques for
water bodies image analysis tasks, but have a limited capacity to capture fine‐grained details and nuances in water
bodies, especially in cases where the polygon boundaries are not well‐defined (Verma et al., 2021; Xia
et al., 2020). Therefore, our proposed data pre‐processing pipeline (i.e., binarization and morphological opera-
tions) offers a better approach to accurate boundary extraction. Binarizing the image and applying morphological
operators are essential steps in image processing for accurate water body detection and shape extraction. On one
hand, the binarization process simplifies the image by converting it into a binary format, where pixels are

Figure 3. Data pre‐processing pipeline.
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categorized as either foreground (object of interest) or background. On the other hand, morphological operations,
such as erosion, dilation, opening, and closing, are valuable for enhancing and refining the edges of objects in the
binary image. These operations can fill gaps, connect broken lines, and smoothen object boundaries.

The first step involved converting the colored image in Red Green Blue (RGB) into HSV color space image. This
step is crucial as the HSV color space is the most efficient image format for color‐based image segmentation (T.‐W.
Chen et al., 2008). The HSV color conversion also enables the normalization of colors across images captured from
satellites that have water bodies of different colors relative to their surroundings. The HSV color space consists of
three matrices, hue, saturation, and value whose ranges are (0–179), (0–255), and (0–255) respectively (Loesdau
et al., 2014). While the hue represents the color, saturation measures the amount to which the given color (hue) is
mixed with white. The value matrix represents the amount to which the given color (hue) is mixed with black.

Algorithm 1. Data Pre-Processing Algorithm to Extract Polygon Out of a Satellite Image

Input: Dataset D containing satellite images, θdilation dilation structuring
element, and θerosion the erosion structuring element.
Output: Set of extracted polygon images extracted.
extracted ← [];
for currentimage ∈ [D] do
hsv = convertToHSV(currentImage); ⊳ Convert RGB image to HSV format
v = extract(hsv); ⊳ Extract the gray-scale threshold
binaryIm ← binarize(v, getHistogramPartition(v));
binaryIm ← (1 − binaryIm)*255;
newImage ← erosion(binaryIm, θerosion); ⊳ Remove outliers
newImage ← dialtion(newImage, θdilation);
polygonMask = ones(size(currentImage)) ⊳ Create the polygon boundary
polygonMask(:, :, 1) ← 255 − newImage
polygonMask(:, :, 2) ← 255 − newImage
extracted ← append(polygonMask)

end for
return extracted

The second step of the data pipeline involves binarizing the converted grayscale input images by converting them
to black and white pixels. The latter step reduces the domain of colors contained in the image from 256 shades of
gray to a binary set (black or white). To achieve the binarization, we first perform a hyperparameter search for a
water body‐color pixel threshold value based on the distribution of grayscale pixels in the image. We then
establish that the pixel is converted to white (value of zero) if the grayscale value of the pixels is greater than the
threshold. Similarly, if the grayscale value of the pixel is lower than the threshold, then it is converted into black
(value of one). Both MODIS and Landsat images follow an identical pre‐processing, which involves converting
their original RGB format into grayscale and subsequently into a binarized image.

The third data processing step consists of removing the outliers and noise patches around the water body by
applying morphological operations to the binary images. The morphological operations rely on the relative
ordering of the pixel values with respect to their values in order to infer outliers (Comer & Delp, 1999). In this
operation, we probe an image with a small shape or template called a structuring element. The structuring element
is positioned at all of the possible locations in the image and it is compared with the corresponding pixel
neighborhood. We employed two groups of morphological operations. On one hand, the first operation group tests
whether the structuring element touches or intersects the neighborhood, which is governed by the θerosion

parameter in Algorithm 1. On the other hand, the second operation group test whether the structuring element fits
well within the neighborhood, which is governed by the θdilation parameter in Algorithm 1.

This is known as morphological opening, and it removes small objects (noise) from an image while preserving the
shape and size of larger objects in the image. Figure 4 shows an example of a morphological opening that removes
the noisy patches from the original image (Said et al., 2016). The resulting binary image contains a non‐zero value
only if the structuring element morphological tests are successful at a location in the input image. Finally, the last
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step consists of applying a color mask to the binary image that extracts the shape of the water body in the form of a
polygon. Figure 5 illustrates the entire data pipeline steps using two MODIS LSR images (previously shown in
Figure 2a).

2.3. Hydrological Generative Adversarial Network (Hydro‐GAN)

Our proposed Hydrological Generative Adversarial Network (Hydro‐GAN) is an image‐to‐image translation
model that transforms imagery from the LSR domain to the HSR domain by learning the non‐linear mapping
between the two. The data product will directly enrich the current HSR data sets at times when only LSR data are
available.

We used GAN frameworks as the backbone of our proposed model. Our motive for utilizing GAN is their ability
to generate crispy sharp images (C. Li et al., 2017). These networks provide a way to learn deep representations
without requiring any extensively annotated training data. GAN models are able to learn the representations by
deriving back‐propagation signals through a competitive process involving a pair of networks (Martinez &
Heiner, 2020).

Hydro‐GAN is an unsupervised learning model that automatically learns the regularities and patterns in the input
data and tries to mimic the same patterns when generating synthetic samples. The success of Hydro‐GAN is
determined by the output plausibility in comparison with the original data set. Hydro‐GAN is composed of two

Figure 4. Structuring element example applied on a noisy image.

Figure 5. Pre‐processing pipeline of (a) Kariba reservoir (Zambia) and Lake Argyle (Australia) MODIS images that are
transformed into (b) grayscale images, (c) binarized images, before the (d) water bodies polygons extraction.
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sub‐models Hydro‐GEN and Hydro‐DIS. The first sub‐model is the generator model which is trained to generate
new synthetic images. The second sub‐model is the discriminator model that tries to classify the generated water
body image as either are real (from the HSR domain) or synthetic (i.e., created by the Hydro‐GEN sub‐model).
While Hydro‐DIS learns to optimize its loss function, Hydro‐GEN learns to fool the Hydro‐DIS discriminator
model. As such, the two Hydro‐GAN sub‐models are trained simultaneously in an adversarial process where the
generator seeks to better fool the discriminator and the discriminator seeks to better identify the synthetic
generated water bodies images.

Hydro‐GEN learns a mapping from a random input x in latent space to an output y that matches the data dis-
tribution of the HSR Landsat images: G : x → y (Goodfellow et al., 2014). Hydro‐GEN utilizes a conditional
generative adversarial network (cGAN), where the output y is conditioned on some input z, resulting in a
mapping: G : (x, z) → y (Goodfellow et al., 2014). The generator is trained via adversarial loss, and an additional
soft Dynamic Time Warping (DTW) loss term, calculated between the synthetic image and the ground truth water
body images. This added loss motivates the generator to develop accurate water body shapes that match the shape
signatures of the original water bodies. In this context, randomness refers to the incorporation of unpredictable
and stochastic input values, drawn from probability distributions, to introduce variability and produce diverse and
data‐matching outputs. Equation 1 defines the objective function that a traditional GAN network is opti-
mizing for.

minmaxL(D,G) = E[log(D(z,y))] + E[log(1 − D(z,G(x,z)))] (1)

In Equation 1 D(z, y) refers to the probability that a sample image y pertains to the real data set given the condition
z. E is the expected value over all the real image data instances. G(x, z) refers to the synthetic image samples
conditioned on z. D(z, G(x, z)) is the discriminator's estimate of the probability that a synthetic instance is real.

The discriminator D attempts to maximize the function, on the other hand, the generator G attempts to do the
opposite. The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing
the loss is equivalent to minimizing log(1 − D(G(z))).

2.3.1. Hydrological Generator (Hydro‐GEN) Model

Our proposed Hydro‐GEN sub‐model is an encoder‐decoder model that uses a U‐Net design (Ronneberger
et al., 2015). The model takes a source water body pre‐processed LSR image and generates a target HSR image.

Figure 6. Architecture of Hydro‐GEN and Hydro‐DIS sub‐models of the Hydro‐GAN applied on Lake Mead (part of the Colorado River).
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The model accomplishes this by first down‐sampling the input image to the final layer, then up‐sampling this
layer's data back to the dimensions of the output image (Ronneberger et al., 2015). The most prominent patterns
from the input LSR image are learned to be retained and encoded in the bottleneck layer prior to constructing the
output HSR image representation. The U‐Net architecture contains skip‐connections that connect the corre-
sponding sampling layers. The skip connections are used to pass the low‐level data of the HSR image through the
bottleneck layer.

The generator model consists of standardized blocks of convolution layers, with batch normalization, dropout,
and activation applied to it. Figure 6 shows the skip connections used by the U‐Net network (Goodfellow
et al., 2014). While both U‐Net and Hydro‐GEN models share the same foundational structure involving an
encoder‐decoder design, Hydro‐GEN focuses on generating high‐resolution water body images from low‐
resolution inputs, making it particularly suited for remote sensing applications. Hydro‐GEN incorporates
unique loss functions, including adversarial, L1, and DTW losses, to address the challenges specific to water body
image enhancement.

The Hydro‐GEN model is trained via the Hydro‐DIS model. The weighting of the Hydro‐GEN model is updated
to reflect the discriminator loss when predicting synthetic images as either real or generated (known as the
adversarial loss). Hydro‐GEN is penalized when generating synthetic samples that are easily distinguishable by
Hydro‐DIS from the real training data distribution. The Hydro‐GEN weighting is also updated to minimize the L1
between the synthetic images and the original ground truth image, which represents the mean absolute error
between these images. The final objective function is made of a weighted sum of the combination of these losses.
The weights range between 1 and 100 in favor of the adversarial loss and vice versa. We used weighting between
the two losses to find an optimal balance between adversarial and L1 losses that can maximize the synthetic image
plausibility. A detailed summary of our Hydro‐GEN model's architecture in Appendix B1.

2.3.2. Hydrological Discriminator (Hydro‐DIS) Model

The Hydro‐DIS model is a deep convolutional neural network model that performs image classification based on
some conditions (Tran et al., 2017). Hydro‐DIS takes both the LSR source image and the target HSR image pairs
as input and classifies the target image as real of synthetic. The Hydro‐DIS model is designed using the Effective
Receptive Field, which are the regions that contain input pixels with a non‐negligible impact (Luo et al., 2017).
ERFs provide a one‐to‐many mapping between the pixels in the LSR input image and the pixels in the HSR target
image. The chance that a region in the input image is real is determined by each value of the model activation map.
The average of these values is used to generate an overall classification score for the input images. The archi-
tecture of our Hydro‐DIS model is shown in Figure 6. A detailed summary of our Hydro‐DIS model's architecture
in Appendix B2.

2.3.3. Hydro‐GAN Training Challenges

There are several challenges that perturb the training process of the Hydro‐GAN model. One of the major issues is
that the original minimax loss function can cause the Hydro‐GAN to get stuck in a local minimum at the early
stages of training when the Hydro‐DIS discriminator's job is relatively easier than Hydro‐GEN generator
(Dwivedi, 2022). Ideally, Hydro‐GAN should learn patterns represented in different water bodies' locations and
avoid building expertise only in a subset of the training data distribution (Hui, 2018). The second challenge is the
gradient vanishing problem that might occur if the Hydro‐DIS discriminator performs significantly better than the
generator (Dwivedi, 2022).

2.3.4. Hydro‐GAN Loss Functions

To overcome the two aforementioned challenges, we propose to explore a new loss function. First, we modify the
traditional GAN model defined in Equation 1 to be non‐saturating. To achieve non‐saturation, we use a variation
of the standard loss function where instead of minimizing the log(1 − D(G(z))) in Equation 1, the generator
maximizes the log of the discriminator probabilities that is, −log(D(G(z))). This change is inspired by depicting
the problem from a different outlook, where the generator is trained to maximize the likelihood of images being
real, instead of minimizing the likelihood of an image being synthetic. This avoids generator saturation through a
more stable weight update mechanism (Dwivedi, 2022).
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The second loss adjustment that we propose is to use a least‐squares loss, where the Hydro‐DIS is trained to
effectively reduce the sum of the squared difference between generated and original values for real and synthetic
images as defined in Equation 2. Similarly, the generator seeks to minimize the sum of the squared difference
between predicted and expected values as though the generated images were real as defined in Equation 3. One
advantage of using least‐squares loss is that it produces a significant adjustment to the model in case of large
errors, which helps in preventing the vanishing gradient (Mao et al., 2016).

minimize(D(z,y) − 1)
2

+ (D(z,G(x,z)))
2

(2)

minimize(D(z,G(x,z)) − 1)
2

(3)

Along with using non‐saturating and least‐squares losses, we also propose a new DTW loss term that assesses the
generator's accuracy in producing accurate boundary shapes. DTW algorithm is an elastic distance measure that
has demonstrated good performance with sequence‐based data, and in particular, time‐series data (Muller, 2007).
Our motivation for adding a DTW loss is that it emphasizes the polygon shape accuracy which equips the
generator to better fool the discriminator. Our new generator loss, defined in Equation 4, is now a weighted sum of
the cross‐entropy adversarial loss (Ladverserial) , the L1 loss (LL1) , and the DTW loss (LDTW) .

G(x,z) = Ladversarial + LL1 + LDTW (4)

where Ladversarial is the adversarial loss is the probabilistic loss which is also used in the discriminator. LL1 loss is
the mean absolute error in the synthetic and the original images. LDTW loss is our proposed loss which minimizes
the difference between the Euclidean distance of generated and expected polygons from their respective centroids
to the boundary coordinates.

We hypothesize that the traditional adversarial and L1 losses contributions are different than the DTW loss given
that they optimize the Hydro‐GEN and Hydro‐DIS losses and the shape accuracy loss respectively. Therefore we
weighted the loss terms using a β parameter than can be used to balance the terms.

G(x,z) = (100 − β) ∗ (Ladversarial + LL1) + β ∗LDTW (5)

We evaluated the synthetic polygon accuracy using the Fréchet Inception Distance (FID), which is a measure for
evaluating generative models (Y. Yu et al., 2021). The FID metric is defined as the squared Wasserstein metric
between two multidimensional Gaussian distributions of the real and synthetic data. FID uses the Inceptionv3
model to show the similarity between two groups of images by using the computer vision features of the images
(Szegedy et al., 2015). The FID is defined in Equation 6.

FID = ∥μ − μw∥2
2 + tr(Σ + Σw − 2(Σ1/2ΣwΣ1/2)

1/2
) (6)

where N(μ,Σ) is the distribution of the neural network features of the images generated by the GAN model and
N(μw,Σw) is the distribution of the same neural network features of the real images used to train the GAN model.
tr() represents the trace of a matrix. The trace of a square matrix is the sum of its diagonal elements. μ is the mean
vector of the neural network features obtained from the images generated by the GAN model and σ is the
covariance matrix of the neural network features obtained from the images generated by the GAN model. A low
FID score indicates that the two groups of images are similar, while a higher score suggests that the images have
dissimilar characteristics.

2.4. Experimental Methodology

An ideal LSR to HSR mapping should produce a water body polygon that is similar in area, shape, and distance
with respect to the original HSR polygon. To achieve this purpose, we evaluate the generated polygons against the
ground truth polygons by using three criteria: areal, shape, and distance accuracy. Jaccard and Cosine mea-
surements were chosen for assessing the areal precision. For evaluating the shape and distance measures, the
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DTW similarity metric was utilized. Each metric will be described in detail in the subsections that follow, along
with its utility and drawbacks.

2.4.1. Areal Accuracy Measures

Areal accuracy assesses the correctness of the area‐generated water bodies when compared to the area of the HSR
ground truth. Prior to generating the area of the water bodies' polygons, we first used the contour detection tool in
OpenCV that detects the boundary of the polygons. The polygon contours are considered as the curve joining all
the continuous points (along the boundary), having the same color or intensity. The process of creating the
polygon contour/boundary based on an input image is shown in the Figure 7b. The area similarity is computed
using the Jaccard and Cosine similarity indices based on the extracted polygon boundaries.

2.4.2. Jaccard Similarity Index

The Jaccard similarity index is a metric that compares the area of two polygons in Euclidean space by quantifying
the ratio of the shared area (intersection) between the two polygons with respect to their combined areas (Union):

J(Preal,P′predicted) =
Area(Preal ∩ P′predicted)

Area(Preal ∪ P′predicted)
∗ 100 (7)

This similarity metric follows the property of scale invariance, as it evaluates the size of the common area in
relation to the combined area of the two polygons (Boubrahimi, Aydin, Kempton, & Angryk, 2016; Boubrahimi
et al., 2018).

2.4.3. Cosine Similarity Index

The Cosine similarity index is a metric that compares the area of two polygons in Euclidean space by quantifying
the ratio of the shared area (intersection) between the two polygons with respect to the square root of the product
of the two areas (Boubrahimi, Aydin, Kempton, Mahajan, & Angryk, 2016; Boubrahimi et al., 2018).

C(Preal,P′predicted) =
Area(Preal ∩ P′predicted)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Area(Preal ∗ P′predicted)

√ ∗ 100 (8)

The areal similarity metrics range between zero and one hundred and the higher the metric values the better the
areal match of the real (Preal) and generated (P′predicted) polygons.

Algorithm 2. Shape Signature Derivation

Input: The polygon image image, and an image threshold value thres
Output: Distance array dist.
dist = []
binaryImage ← getBinary(image, thres) ⊳ Convert images to binary format
contourImage ← getContour(binaryImage) ⊳ Find Polygon contours

Figure 7. An input (a) water body image (Qapshaghay Bogeni Reservoir) used to extract the (b) water body polygon and
(c) the shape signature based on the centroid distances.
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M1 = getCentroidCoordinates(contourImage) ⊳ Calculate centroid points
coordinates
cx = getXCoordinate(M1)
cy = getYCoordinate(M1)
points ← getEdgeCoordinates(contourImage)
for point ∈ points do
distance ← getDistance([cx, cy], [point[0], point[1]]) ⊳ Calculating

distance from centroid
dist ← append(distance)

end for
return (dist)

2.4.4. Shape and Distance Measure

To measure the shape and distance accuracy of the ground truth and generated polygons, we created a shape
signature of the polygons. A shape signature is a sequence of time‐ordered distance values between the polygon
coordinates and a reference point in the plane. In this work, we consider the centroid of the polygon as the
reference point. We retrieved the centroids of the water body polygons and created a time series of distances by
using the Euclidean distance measure between the extracted centroid and the contour point coordinates (edge
coordinates) in a clockwise manner. This time series was used to create the polygon shape signatures. Algorithm 2
describes the shape signature derivation algorithm. Figure 7c shows an example of the distance between the
polygon centroid and its point coordinates. Finally, DTW was applied to compare the shape signatures of the
generated and the real polygons.

2.4.5. Dynamic Time Warping Metric

DTW method is defined in Algorithm 3 (Giorgino, 2009). The two input shape signatures are organized in the
form of a n × m matrix by using DTW algorithm where n and m are the lengths of the inputs. The lower left corner
of the matrix is treated as the starting point for the matrix. The value of every cell in the matrix is calculated by
measuring the distance between relative elements of the two input time series. As we move from the lower‐left
corner to the top‐right corner of the matrix, we calculate the accumulated distance. The path that gives the
minimum accumulated distance is considered as the ideal alignment between the two input time series. This path
is referred to as the warping path and the total accumulated distance on this path is known as the warping distance.
In an ideal situation, the input time series are identical and the warping path comes out to be a straight line from
the lower‐left corner to the top‐right corner of the matrix, which results in a zero warping distance.

Algorithm 3. Algorithm for Finding Minimum-Cost Path Through a DTW Matrix.

Input: DTW distance matrix (dist_mat)
Output: minimum cost path (path), cost matrix(cost_mat).
N, M = getShape(dist_mat) ⊳ Initialize the cost

matrix
cost_mat = [N, M]
traceback_mat = np.zeros((N, M))
for i ∈ range(N) do ⊳ Fill the cost matrix
for j ∈ range(M) do
penalty = getPenalty(cost_mat)
i_penalty = getIndexPenalty(penalty)
cost_mat = updateMat(dist_mat, penalty)
traceback_mat = updateTraceback(i_penalty)

end for
end for
i = N − 1, j = M − 1, path = [(i, j)]
while i > 0 OR j > 0 do ⊳ Traceback from bottom right
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traceback_type = traceback_mat[i, j]
IF(traceback_type = = 0), Then − > i = i − 1, j = j − 1
IF(traceback_type = = 1), Then − > i = i − 1
IF(traceback_type = = 2), Then − > j = j − 1
path ← append((i, j))

end while
cost_mat = updateCostMatrix(cost_mat)
return path, cost_mat

The mathematical form of DTW algorithm as accepted in the literature is shown in Equation 9. N and M are the
lengths of the input time series x and y. Initially the D matrix is initialized to D0,0 = 0 and Di,j = ∞. The square of
the differences between yj and xi is generally used as the cost function g in Equation 9.

Di,j = g(xi,yj) + min{Di,j−1,Di−1,j,Di−1,j−1}

s.t : i ∈ (1,M),j ∈ (1,N)
(9)

In addition to using DTW as a loss term, we used DTW as a dissimilarity measure by calculating the optimal
matching between the two shape signatures. We used DTW to match the points of the polygon by aligning their
centroid shape signatures. The DTW algorithm generates a warping distance between the two input time series,
which indicates the discrepancy between the two shapes. The greater the warping distance, the greater the dif-
ference between the two polygon shape signatures.

Table 1 shows the summary of the areal and shape evaluation metrics that were used in this paper, along with their
advantages and drawbacks.

2.5. Data Set Preparation

Prior to training Hydro‐GAN, we created image data pairs that map each curated MODIS image and its corre-
sponding curated Landsat image that was captured during the same day. The data set was split into a training set
and a testing set. We reserved 90% of the image data pairs from each reservoir for the training, and the remaining
10% image data pairs were used for testing. Namely, 672 out of 6,720 MODIS satellite images and 336 out of
3,360 Landsat‐8 images were included in the test set.

3. Results and Discussion
3.1. Hydro‐GAN Hyper‐Parameter Search

To identify the optimal weights that produce the highest polygon accuracy based on FID, we performed a grid
search of the weight parameters, defined in Equation 5. We trained our proposed hydro‐GAN model on different
weight ratios. Figure 8 shows a heatmap that summarizes the FID scores obtained by each model when trained on
different β weights, ranging from 1 to 100 for balancing the Ladversarial, LL1 and LDTW losses.

The result in Figure 8 reveals that when more weight is assigned to the DTW loss, the Hydro‐GAN model
generates images that are more similar to the target images. This is reflected by the low FID scores that are
approximating a value of zero. Specifically, the lowest FID scores (of 0.2) were obtained in the top right corner,

Table 1
Summary of Areal and Shape Evaluation Metrics

Evaluation measure Advantages Drawbacks Interval (%)

Jaccard similarity Effective when evaluating polygons with
comparable properties

Operates poorly with polygons that
are very large or small

[0, 100]

Cosine similarity Effective for evaluating the areal similarity
between inconsistent polygons

Does not penalize shapes that have
highly different areas

[0, 100]

DTW Effective for shape similarity when
starting point is carefully chosen

Highly dependent on staring point selection
and requires shape alignment

[0, ∞]
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where β ∈ [90 − 100], which indicates that the generated images are significantly similar to the ground truth.
Following the same line of thought, when the β weight is small, the FID scores are high which signifies that the
Hydro‐GAN loss is overpowered by the adversarial and L1 losses (refer to the bottom left corner of Figure 8).
Selecting an equal weight (β = 50) for the adversarial and distance losses does not achieve optimality. From the
aforementioned observations, we trained our Hydro‐GAN model using the β value of 100.

3.2. Hydro‐GAN Training Result

After identifying the optimal weight ratios from Figure 8, we evaluate our proposed Hydro‐GAN model based on
the generated HSR images from the LSR MODIS image inputs. We compare the HSR‐generated output with the
original HSR Landsat ground truth images. Figure 9 shows the evolution of the input LSR image after being fed to
the Hydro‐GAN model in comparison with the ground truth HSR image captured by Landsat. Figure 9a shows an
input LSR MODIS image fed to the Hydro‐GAN model and a temporary results that were learned after 30 epochs
(Figure 9b) and after 100 epochs (Figure 9c). The results indicate that the model learning curve is improving when
comparing the shape and area of the generated polygons after 30 and 100 epochs. After 100 iterations, the
generated water body polygon morphology is similar to the polygon contained in the ground truth HSR Landsat
image as shown in Figure 9d. After training our Hydro‐GAN model for 100 epochs, we measured the accuracy of
the model by conducting a quantitative analysis of the test set images based on three evaluation criteria: areal,
shape, and distance accuracy as discussed in Section 2.4.

Figure 8. Fréchet Inception Distance (FID) metric of Hydro‐GAN generated polygons with β values ranging from 0 to 100.
The lower the FID value, the better (i.e., the generated and target polygons are similar).

Figure 9. (a) Example input MODIS image from Qapshaghay Bogeni Reservoir (Kazakhstan) fed to Hydro‐GAN and
transformed into (b) an high spatial resolution after 30 training epochs (2) and (c) 100 training epochs compared to the
(d) ground truth Landsat image.
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3.2.1. Areal Accuracy Result

To measure the areal accuracy between the generated polygons (from the Hydro‐GAN model using the test data
set) and the ground truth HSR Landsat polygons, we used the Jaccard and Cosine similarity percentages as
illustrated in Figure 10. The figure shows the histogram plot of Jaccard and Cosine similarity metrics when
assessed on the entire testing data of LSR‐HSR image pairs. The results of the Jaccard distribution indicate a good
agreement between the generated and the original Landsat polygons with a high similarity percentage, ranging
approximately between 86% and 95%. A similar result was also obtained from the Cosine histogram distribution
where the values span approximately from 87% to 97%. This indicates that there is a strong correlation between
Jaccard and Cosine metrics and implies that the Hydro‐GAN model is performing well, resulting in highly ac-
curate synthetic HSR polygons. Although the two metrics are different, as outlined in Table 1, one explanation for
this correlation is that the numerators of both the areal metrics are the same (i.e., area of intersection of the two
polygons), as demonstrated in Equations 7 and 8.

3.2.2. Shape and Distance Accuracy Result

To measure the shape accuracy between the actual and the generated polygons from the test set, the polygons were
converted into their respective shape signatures by calculating the Euclidean distance from the centroid to the
coordinates of the points on the edges of the polygon and converting these distances into a time series. The result
of which was used to plot a similarity graph as shown in Figure 11a. As shown in the Figure 11a, the result
indicates that when there is a dip in the shape signature of the ground truth polygon around 300 and 700 indices,
there is a similar dip in the shape signature of the generated polygon as well. The same observation can also be
made about the rise in the shape signature of the polygons being compared around indices 0, 400, and 1,000. It can
also be seen that the shape signatures of the generated and the ground truth polygon are nearly overlapping. This
indicates that our Hydro‐GAN model is producing HSR images that are highly accurate in shape signature with
respect to the reference Landsat images.

To measure the distance accuracy, we used DTW to measure the extent of alignment between the actual and the
generated polygon shape signatures. This process was repeated for all the images in the test set. To illustrate the
result we chose a random LSR image from the test set to generate an HSR Landsat image. The generated image
was then compared with the ground truth HSR image and the DTW was applied to their respective polygons. The
result can be seen in Figure 11b which shows the DTW alignment and warping matrix that were produced when
comparing the two polygons. The graph in Figure 11b shows that the warping path (denoted by the blue line from
the lower‐left to the top‐right corner) between the generated and actual polygons is approximating a diagonal line
(which is the ideal case). This implies that the HSR images produced from our Hydro‐GAN model are highly
accurate in the distance metric as well.

We evaluate the distance metric of the entire test set by calculating the normalized alignment cost of the DTW
matrix between all the generated and actual polygons. A normalized alignment cost of 1 is considered the ideal
case. The result of this evaluation is reported in Figure 12, which shows that the distribution of the normalized

Figure 10. Distribution of area similarity measured on the test set images by plotting histogram of Jaccard and Cosine similarity percentage between real and generated
polygons in the test set images.
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alignment cost for the test set images ranges between 1.13 and 1.51, and the average alignment cost is 1.31 which
are all close to the ideal value of 1. This indicates that our Hydro‐GAN model is producing HSR images that have
lower DTW distances when compared with the actual ground truth.

To better understand how the three areal and distance measures are correlated with each other, we present their
correlation matrix which is shown in Figure 13. We note that the Jaccard and Cosine metrics have a strong positive
correlation (0.96) which reveals that when there is an increase in the values of Jaccard similarity, the Cosine
similarity also increases. This is due to the common numerator shared between Jaccard and Cosine. It can also be
inferred from Figure 13 that the DTW alignment cost generates a moderate strength negative correlation with the
Jaccard and Cosine similarities (around −0.50). This result indicates that in the cases when the Hydro‐GAN
model produces highly accurate areas, the exact shapes of the polygons are not highly accurate. Similarly,
when Hydro‐GAN produces highly underestimated (or overestimated) areas, the water body shape is relatively
more accurate. The finding of this experiment is important for fine‐tuning the model depending on the hydrology
research needs. For example, if the purpose of generating HSR images is to study the sedimentation phenomena
that require a precise polygon boundary, then Hydro‐GAN can be tuned for optimizing LL1 and LDTW losses. In
case the research needs to study the water volume change, then introducing a new areal loss Larea could be useful.

In recent years, various state‐of‐the‐art image‐to‐image translation models have been developed to address the
challenges of transforming images from one domain to another while preserving their essential features (X. Li
et al., 2021). Here, we briefly introduce three prominent models. SPA‐GAN, or Spatial Attention GAN, is a model

Figure 11. Dynamic time warping measure applied by (a) aligning two polygons shape signatures (Ground truth in blue and
generated in black) and (b) computing their warping distance by finding the optimal path along the warping matrix diagonal.
Query Index refers to the index of the shape signature in the generated polygon, while Reference Index refers to the index of
the shape signature in the ground truth (reference) polygon.

Figure 12. The normalized alignment cost for dynamic time warping matrix in test set images.
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designed to enhance image‐to‐image translation by incorporating spatial attention mechanisms (Emami
et al., 2020). It focuses on selectively attending to specific regions of the input image during the translation
process, allowing for more precise and context‐aware transformations.

Cycle‐GAN, on the other hand, is known for its ability to perform unpaired image translation. It introduces a cycle
consistency loss to ensure that the translation from one domain to another and back results in the original input,
enforcing a cycle‐consistent mapping between domains without the need for paired data during training (Zhu
et al., 2017). Pix2Pix is a conditional GAN that excels in paired image‐to‐image translation tasks (Isola
et al., 2017). It learns a mapping from input to output images by training on aligned pairs, making it particularly
effective for tasks where there is a clear correspondence between the input and output images.

In our experimental comparison, we evaluated these models alongside your proposed Hydro‐GAN using the
Jaccard Index. The Jaccard Index measures the similarity between two sets by dividing the size of their inter-
section by the size of their union. As shown in Figure 14, the results indicate that Hydro‐GAN outperformed the
other models with a Jaccard Index of 0.98, showcasing its effectiveness in image‐to‐image translation. This
comparison provides a comprehensive assessment of Hydro‐GAN's performance relative to existing state‐of‐the‐
art models, contributing to a thorough validation of the proposed approach.

4. Case Study: Lake Tharthar's
In this case study, we evaluated our proposed Hydro‐GAN model on Lake Tharthar's shrinking and expansion
behaviors. Lake Tharthar's is a focal point for hydrological research and water resource management in Iraq
(Kornijów et al., 2001). Covering an area of approximately 2,100 square kilometers (810 square miles) at its
maximum extent, it is one of the largest lakes in the country. Its seasonal dynamics, ecological significance, and
role in sustaining water supply make it a critical area of study for hydrologists and environmental scientists aiming
to address water‐related challenges in the region.

Our study area consists of Lake Tharthar's polygon area across a period of 7 years, from 2015 to 2021. We
compared the area of the lake water body from three different image sources. First, the original area of the water
body was calculated from the original HSR Landsat images. Second, the area of the water body was extracted

Figure 13. Correlation matrix of Jaccard, Cosine and dynamic time warping similarity measures used for area, shape and
distance accuracy evaluation, when measured between generated and original high spatial resolution test set images.
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from the generated Landsat images (using our Hydro‐GAN model). Third, the area of the water body was
calculated using the LSR MODIS satellite images. The three polygon areas were compared with each other as
plotted in Figure 15. The blue bar plot in Figure 15 indicates that Lake Tharthar's (one of the reservoirs from the
data set) first shrinks in surface area from 2015 to 2020 with a little increase in the year 2018, then shrinks again

Figure 14. Performance of the state‐of‐the‐art models.

Figure 15. (a–g) Snapshot of Lake Tharthar's water body for each year from 2015 to 2021, providing a visual record of
changes over time. The bar plots compare area variation of Lake Tharthar's between generated and actual polygons across
7 years from 2015 to 2021.
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until 2020. The area of the water body again increases in the year 2021. The shrinking of the water body can be
due to numerous hydrological as well as human factors, such as sedimentation as well as an increase in freshwater
consumption (Mahajan & Martinez, 2021).

The increase in the area of the water body in 2021 can be seen in Figure 15g where a small portion of the surface
boundary has increased on the top left corner and bottom compared to 2020. It can also be noticed that the images
produced by our Hydro‐GAN model also follow the same pattern of change in the real ground‐truth area of a water
body across the 7 years (shown in the green bar plot). This result indicates that our Hydro‐GAN model is pre-
dicting the shrinking or expansion of the surface area of a water body accurately. Another important observation
that can be noted from Figure 15 is that the area calculated from the LSR MODIS images (i.e., our competing
baseline), shown in the red bar plot, fails to follow the same pattern of change in the water body accurately. We
note that the LSR MODIS extracted area sometimes overestimates the actual area as reported in the years 2017,
2018, 2019, and 2020. Similarly, the LSR MODIS extracted area shows an under‐estimation for the years 2015,
2016, and 2021. Our converted LSR to HSR extracted areas, shown in the blue bar plot of Figure 15, are more
realistic area estimations that produce significantly lower errors than LSR MODIS. This result shows that our
proposed LSR to HSR conversion using Hydro‐GAN improved the prediction of the area of the Lake Tharthar's
water body. In addition, we note that our model produces generally a slight under‐estimation of the area.
Following our suggestion in Section 3.2.2, using an areal loss can correct the under‐estimation.

5. Conclusion and Future Work
In this paper, we propose Hydro‐GAN a deep learning‐based generative method that uses a cGAN for mapping
the remote sensing information available at low resolution (MODIS satellite) to high resolution (Landsat satel-
lite). In particular, we have used the case study of water bodies and reservoirs. Our proposed method uses a
weighted DTW loss function along with the adversarial and L1 loss, to generate the HSR‐LSR mapping. The
results were evaluated using areal, shape, and distance similarity measures. The evaluation shows that our
weighted Hydro‐GAN model improved the accuracy of the generated water bodies polygons compared to state‐
of‐the‐art GAN models. Since the availability of accurate data on water bodies' boundaries at high spatial and
temporal resolution is important for assessing the role it plays in multiple hydrological research tasks, our work
can provide complementary data sets for hydrological studies. Hydro‐GAN can generate high‐resolution data at
historical time steps when such data is unavailable which can be used in areas where a large amount of historical
data is required for forecasting purposes. As future work, we aim to further improve our mapping by making
enhancements to our computer vision algorithm (which extracts the polygon boundary), so that it can extract the
polygon even when the images obtained from the remote sensing satellites contain noise like clouds or other
distortions. We also aim to extend the domain of our method beyond water bodies, like forests and vegetation.
Finally, we plan to make our model generic, so that it can be used to map the images from any remote sensing
satellite to another, which can include Sentinel and Hyperion satellites as well.

Appendix A: Data
A1. Description of the Water Bodies

The remote sensing data set from the MODIS and Landsat satellites is available courtesy of Earthdata (https://
earthdata.nasa.gov/) which provides open access to the data for analysis and research purposes. The data set used
in this research consists of 20 reservoirs with a time span of 7 years from 2015 to 2021. The metadata associated
with these reservoirs can be found in the table below.

Lake ID Reservoir name Longitude, latitude (°) Country Continent Area capacity (KM2) Storage capacity (KM3)
1 Lake Nasser 32.89, 23.97 Egypt Africa 6,500 162

2 Kariba Reservoir 28.76, −16.52 Zambia Africa 5,400 180

3 Lake Zaysan 83.35, 49.66 Kazakhstan Asia 5,490 49.8

4 Cahora Bassa Reservoir 32.7, −15.58 Mozambique Africa 2,739 55.8

5 Qapshaghay Bogeni Reservoir 77.1, 43.92 Kazakhstan Asia 1,850 28.1
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Continued

6 Fort Berthold Reservoir −101.43, 47.51 United States of America North America 1,477.4 29.38

7 Okeechobee reservoir −81.1, 26.94 United States of America North America 1,536.8 5.2

8 Lake Volta 0.06, 6.3 Ghana Africa 8,502 148

9 Guri Reservoir −63, 7.77 Venezuela South America 4,250 135

10 Lake Mead (Colorado river) 36.15, −114.41 United States of America North America 659.3 32.236

11 Lake Erie 42.13, −81.28 United States of America North America 25,667 480

12 Fort Peck lake 47.82, −106.58 United States of America North America 991.47 23.05

13 Lake Tanganyika −6.42, 29.63 Tanzania Africa 32,900 189

14 Lake Argyle 128.74, −16.12 Australia Oceania 981.21 10.76

15 La Angostura 16.07, −92.48 Mexico North America 566.3 145

16 Lake Oahe (Missouri river) 45.29, −100.30 United States of America North America 1,092.6 123

17 Lake Tharthar's 43.46, 33.69 Iraq Asia 2,135.54 85.59

18 Chardarinskoye 67.96, 41.25 Kazakhstan Asia 800.66 5.7

19 Furnas −46.31, −20.67 Brazil South America 1,127.07 22.59

20 Flathead Lake −114.23, 47.68 United States of America North America 5,102 3.2
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Appendix B: Model Summaries
B1. Detailed Summary of the Hydro‐GEN

Water Resources Research 10.1029/2023WR036342

FILALI BOUBRAHIMI ET AL. 21 of 25

 19447973, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036342, W

iley O
nline Library on [24/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research 10.1029/2023WR036342

FILALI BOUBRAHIMI ET AL. 22 of 25

 19447973, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036342, W

iley O
nline Library on [24/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



B2. Detailed Summary of Hydro‐DIS
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Data Availability Statement
The Hydro‐GAN model source code and experimental evaluations are available via (https://zenodo.org/uploads/
10005635). The remote sensing data from MODIS and Landsat satellites is available via (https://earthdata.nasa.
gov/) and (https://zenodo.org/uploads/10005635).
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