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Abstract: Streamflow prediction is crucial for planning future developments and safety measures
along river basins, especially in the face of changing climate patterns. In this study, we utilized
monthly streamflow data from the United States Bureau of Reclamation and meteorological data
(snow water equivalent, temperature, and precipitation) from the various weather monitoring
stations of the Snow Telemetry Network within the Upper Colorado River Basin to forecast monthly
streamflow at Lees Ferry, a specific location along the Colorado River in the basin. Four machine
learning models—Random Forest Regression, Long short-term memory, Gated Recurrent Unit, and
Seasonal AutoRegresive Integrated Moving Average—were trained using 30 years of monthly data
(1991–2020), split into 80% for training (1991–2014) and 20% for testing (2015–2020). Initially, only
historical streamflow data were used for predictions, followed by including meteorological factors
to assess their impact on streamflow. Subsequently, sequence analysis was conducted to explore
various input-output sequence window combinations. We then evaluated the influence of each factor
on streamflow by testing all possible combinations to identify the optimal feature combination for
prediction. Our results indicate that the Random Forest Regression model consistently outperformed
others, especially after integrating all meteorological factors with historical streamflow data. The best
performance was achieved with a 24-month look-back period to predict 12 months of streamflow,
yielding a Root Mean Square Error of 2.25 and R-squared (R2) of 0.80. Finally, to assess model
generalizability, we tested the best model at other locations—Greenwood Springs (Colorado River),
Maybell (Yampa River), and Archuleta (San Juan) in the basin.

Keywords: streamflow prediction; machine learning; time series regression; upper Colorado river
basin; RFR; snow water equivalent

1. Introduction

Rivers are complex, multiattribute, and multifunctional systems [1]. Their circulation,
development, and uses are comprehensively influenced by human activities and climatic
changes [2]. The water management community has long been interested in improving
streamflow forecasts, especially for long-term planning. They also seek to refine the under-
standing of streamflow forecast accuracy and how to interpret and utilize these forecasts
effectively in reservoir operations. Ultimately, their goal is to develop operating policies
that optimize the use of hydrological forecasts [3]. Accurate forecasts substantially im-
proved reservoir operations in reservoirs that operate to meet a target water elevation [4].
This prediction plays a crucial role in various water resource applications such as optimiz-
ing hydropower generation, managing reservoirs efficiently, allocating water resources
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effectively, protecting the environment [5], and flood warning [6]. Hydrologic time se-
ries forecasting holds significant importance in operational hydrology and has garnered
considerable attention from researchers over the last few decades.

Numerous models have been proposed to enhance hydrologic forecasting, reflecting
the ongoing efforts to improve the accuracy and reliability of predictions in this field [7–9].
Streamflow prediction can be conducted in four ways: 1. Physical-based models: they
involve simulating the movement of water through a watershed using principles of physics,
hydrology, and fluid mechanics; 2. Conceptual and Semi-distributed models: they involve
employing simplified representations of hydrological processes to forecast river discharge;
3. Data-driven models: they involve utilizing historical data on factors like precipitation,
temperature, and land cover to forecast future streamflow levels; 4. Metric models, such
as IHACRES (Identification of unit Hydrographs And Component flows from Rainfall,
Evaporation, and Streamflow data) [10], do not rely on specific hydrological features or
processes but instead are built upon unit hydrograph theory [5]. Physical models require
extensive and precise data for parameter calibration, which can be challenging to obtain.
Due to these limitations, acquiring sufficient accurate data becomes difficult, resulting
in suboptimal model performance and increased uncertainty [11]. A conceptual model
focusing on the components may yield better results than a physical model [12]. However,
including too many component processes in the model can lead to overparameterization,
increasing the risk of introducing unnecessary complexity [13] and their effectiveness
may vary depending on the values of parameters and assumptions used. A primary
drawback of metric models lies in their dependency on simplifications and assumptions
regarding watershed behavior, which may not comprehensively represent the complexities
of hydrological processes. Furthermore, these models are also sensitive to parameterization
and struggle to accommodate non-stationary data, such as changing climate conditions.
Machine learning (ML) models, such as the gated recurrent unit (GRU) [14], and long
short-term memory network (LSTM) [15], are well-suited for handling highly volatile
and nonlinear data, such as monthly runoff [16]. ML models typically involve mapping
multiple input features to output targets [17]. These data-driven techniques typically
demand comparable data, as in the aforementioned models, but necessitate significantly
less development time. They are particularly beneficial for real-time applications and
demonstrate proficiency in accurately predicting streamflow [18,19].

A significant hurdle in streamflow forecasting is determining an effective approach for
predicting streamflow over timeframes, which is crucial for aiding water resource managers
and decision-makers in understanding the system and planning for future management
strategies. Forecasting streamflow at various intervals, such as hourly, daily, monthly,
and yearly, holds great importance in optimizing water usage across different applications.
Nagar et al. [20] emphasize the significance of hourly streamflow predictions over monthly
data, highlighting its importance for evacuation and flood planning. In contrast, Hossein-
zadeh et al. [21] prioritize monthly predictions for their utility in river construction and
development projects. Determining the optimal timeframe for streamflow prediction is cru-
cial and largely depends on the available data and the specific objectives of the forecasting
task. Typically, the timeframe for streamflow prediction should balance between the need
for timely information and the desire for accurate forecasts.

In recent years, ML models have gained popularity in streamflow forecasting due to
their ability to capture complex relationships within hydrological data [18,22]. Furthermore,
monthly streamflow prediction tends to yield better results in wet regions compared to dry
regions [23]. Different ML methods have been used for predicting streamflow, one of which
is Artificial Neural Networks (ANNs) [24,25]. These models are flexible and can understand
complex connections between input factors and streamflow, making them successful for
short-term predictions [26]. Support Vector Machines (SVMs) [27] are effective for handling
high-dimensional data and can provide accurate streamflow predictions, especially with
small datasets [28]. Random Forests Regression (RFR), an ensemble robust learning method,
can capture complex interactions among predictors, making it suitable for streamflow
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forecasting tasks [29]. Recurrent Neural Networks (RNNs), RNNs, including LSTM and
GRU networks, excel in capturing temporal dependencies in sequential data, making them
well-suited for streamflow time series prediction [30]. SARIMA (Seasonal AutorRgressive
Integrated Moving Average) model [31] is a time series forecasting method that extends the
ARIMA (AutoRegressive Integrated Moving Average) model [31], by including seasonal
patterns in the data. SARIMA models are useful for capturing and predicting complex
temporal patterns in data with seasonality, making them commonly applied in various
fields, including economics, finance, and hydrology, for forecasting time series data with
recurring seasonal patterns [32,33].

For time series forecasting, data need to be reshaped to utilize standard linear and
nonlinear ML algorithms. This reshaping process commonly employs the sliding window
method, where a sequence of time series data is transformed [34–38]. Here, the input
variables consist of values from previous time steps, while the output variable corresponds
to the value at the next time step. Thus, time series forecasting is reformulated as an ML
problem, leveraging the value at the previous time step to predict the value at the next time
step [39–41]. Overall, ML models offer promising opportunities for improving streamflow
forecasting accuracy and can complement traditional hydrological models in capturing
the complex dynamics of hydrological systems. However, careful model selection, feature
engineering, and validation are crucial to ensure robust and reliable predictions.

Streamflow prediction has evolved significantly with the integration of ML models
such as RFR, LSTM, and GRU networks, alongside traditional methods like SARIMA.
These advancements are crucial for hydrologists to select the most effective models for
forecasting streamflow. Research by Gao et al. [18] highlighted the superiority of LSTM
and GRU models over ANN for short-term (hourly) runoff predictions at the Yutan station
control catchment in Fujian Province, Southeast China. Hosseinzadeh et al. [21] found in
their study of the Upper Colorado River Basin that the performance order of ML models
for monthly streamflow prediction was RFR, SARIMA, and LSTM. These models utilize
historical streamflow data to forecast future streamflow values, which helps in under-
standing the streamflow variability under different climatic conditions. The time series
analysis method, SARIMA, while widely used, struggles to capture nonlinear relationships
among hydrological variables and requires stable hydrological series, limiting its practical
applicability [42]. Therefore, there is a growing interest in comparing the performance of
SARIMA with other models to understand their differences in capturing seasonality. In re-
lated research, multivariate analysis, such as snow flow prediction using hybrid models
trained with meteorological data, has proven to yield better results compared to models
that do not include such data [43]. Furthermore, studies have demonstrated improvements
in streamflow predictions by incorporating atmospheric circulations and considering Pa-
cific sea surface temperature in the Upper Colorado River Basin [44]. The Colorado River
catchment is currently experiencing significant challenges, notably a shortage of water,
which has become a contentious issue in recent years. Dry conditions over the past two
decades, compounded by global climate change, are impacting this huge catchment, which
spans several states in the United States. Studies indicate that the Colorado River basin may
experience a reduction in runoff of around 19% by the middle of the 21st century [45–47].
Moreover, prolonged rainfall events in certain seasons can lead to flooding in the area [48].
Given these circumstances, timely decision-making and proactive measures have become
crucial. Streamflow prediction in this region would be instrumental in helping water
resource managers and basin stakeholders mitigate the risks of disasters and effectively
manage water resources.

These findings highlight the importance of integrating various environmental factors
and leveraging advanced modeling techniques to enhance streamflow prediction accuracy.
Therefore, in our study, we focused on predicting monthly streamflow by considering both
flow and meteorological factors using ML models such as RFR, LSTM, GRU, and SARIMA.
Among various factors such as temperature, precipitation, snow water equivalent, snow
depth, snow density, and soil moisture level, we found that temperature, precipitation,
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and snow water equivalent are the primary contributors to streamflow, as illustrated in
Figure 1. These factors play a significant role in influencing groundwater levels and runoff,
which directly impact streamflow. We aim to advance streamflow forecasting techniques
and offer insights into the intricate relationships between climatic variables and streamflow
dynamics. We will achieve this by addressing the following three topics:

1. Developing a robust machine learning (ML) model for forecasting monthly streamflow data,
2. Examining the impact of climatic variables on monthly streamflow prediction, and
3. Assessing the effects of input and output sequences on prediction accuracies.

Temperature Precipitation
Snow
Water

Equivalent

Ground Water, Runoff

Streamflow

Figure 1. Visual Representation of Analyzed Factors (Temperature, Snow Water Equivalent, Precipi-
tation, and Streamflow) in Streamflow Prediction.

2. Study Site

The Colorado River is the most overallocated river in the world [49]. It provides water
for nearly 40 million people in the southwestern United States and northern Mexico. It
is projected to be greater than supply by approximately 4 × 109 m3 in the year 2060 [50].
High water demand, decades of national and international treaties, and over 40 major
dams make the Colorado River Basin (CRB) perhaps the most regulated watershed on
Earth [46]. Historically, management of water resources in the Colorado River Basin focused
largely on surface water [51]. It is a lifeline for the population and agricultural economy of
parts of seven U.S. states (Wyoming (WY), Utah (UT), Colorado (CO), New Mexico (NM),
Nevada (NV), Arizona (AZ), and California (CA)) and the Mexican states of Sonora and
Baja California [52]. The river basin is divided into Upper and Lower Basin, with Lees
Ferry as the dividing point. The Upper Basin serves the states of WY, CO, UT, and NM.
The Lower Basin serves the states of NV, AZ, and CA within the United States as well as
Mexico. High-elevation snowpack in the Rocky Mountains contributes about 70% of the
annual runoff, and the seasonal runoff pattern throughout most of the basin is heavily
dominated by winter snow accumulation and spring melt [49]. Roughly 90% of the river’s
flow is derived from snowmelt from precipitation in three upper basin states, Colorado,
Utah, and Wyoming. However, most of the demand and use of the flows are in the lower
basin states, Arizona, California, and Nevada [53].

In this study, we focused only on the Upper Colorado River Basin (UCRB), Figure 2.
UCRB is a snow-melt-dominated hydrologic system that covers about 280,000 km2. It ex-
tends from headwaters in the Rockies in Colorado and Wyoming to Lee’s Ferry in Northern
Arizona with elevation ranging between 3300 m and 900 m. During the winter season,
from October to the end of April, the snow cover area (SCA) for the UCRB ranges from
50,000 km2 to 280,000 km2 which plays a crucial role in energy [54] and hydrological [55]
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cycles. The primary stream in the UCRB is the Upper Colorado River, with major tributaries
including Williams Fork, Blue River, Muddy Creek, Eagle River, Roaring Fork River, Rifle
Creek, Gunnison River, Plateau Creek, and Fraser River [21].

Despite little change in precipitation in the Upper Colorado River Basin (UCRB) be-
tween 1896 and 2019, temperatures have risen [56] and water supplies in the basin have
suffered [57]. The warmer air temperatures are connected to decreases in streamflow and
shifts in snowmelt-runoff timing to earlier in the Spring, thereby depleting streamflow
during the Summer season at the peak of water demands [58–62]. Climate variables such as
regional precipitation (rainfall and snowfall) and snowpack have large impacts on stream-
flow. These variables have been applied to short-lead seasonal predictions of streamflow
and water supply for the Colorado River, including those from the Natural Resources
Conservation Service and Colorado Basin River Forecast Center. Although snow water
equivalent in April has the dominant influence on peak flow of the UCRB in April–July,
precipitation in spring can significantly influence snow melting and runoff of the UCRB,
and so influence the year-to-year variation of the UCRB streamflow [63–65].2/13/24, 3:40 PM coloradoriverbasinviausgs_0.png (678×864)

https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/thumbnails/image/coloradoriverbasinviausgs_0.png 1/1

Figure 2. Colorado River Basin by United States Geological Survey (USGS) (https://www.usgs.gov/
media/images/colorado-river-basin-map (accessed on 10 February 2024)).

3. Data

Our research hinged on two key datasets: historical streamflow records for the Col-
orado River and environmental data derived from the network of Snow Telemetry (SNO-
TEL) stations. Our investigation was particularly confined to the Upper Colorado River
Basin (UCRB), and our primary objective was to analyze the SNOTEL data comprehensively
and employ it in the prediction of streamflow within this specific region.

The streamflow dataset was meticulously compiled from the United States Bureau
of Reclamation (USBR) website, accessible at (https://www.usbr.gov/lc/region/g400
0/NaturalFlow/current.html, accessed on 19 September 2023). This dataset spanned a
considerable time frame, encompassing 115 years, starting from 1905 and concluding in
2020. Monthly measurements of river discharge were recorded at a total of 29 distinct
monitoring locations. These stations included well-known sites such as the Colorado River
At Lees Ferry, AZ, the Yampa River Near Maybell, CO, and the Colorado River Below
Parker Dam, AZ-CA. To better focus our analysis on the UCRB, we accurately delineated the
geographical boundaries of this region, using geospatial data provided by the ScienceBAse-

https://www.usgs.gov/media/images/colorado-river-basin-map
https://www.usgs.gov/media/images/colorado-river-basin-map
https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html
https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html
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Catalog of United States Geological Survey (USGS), website—(https://www.sciencebase.
gov/catalog/item/imap/4f4e4a38e4b07f02db61cebb, accessed on 19 September 2023).
This effort enabled us to identify a subset of 20 monitoring stations called USGS gauge
locations, that fell within the UCRB’s domain. For our analysis, we standardized the
streamflow values by converting them into millimeters per month (mm/month) through
a normalization process based on the UCRB’s area. This transformed representation was
used consistently in our research to facilitate comparative analysis and modeling.

In parallel, we turned our attention to the SNOTEL network, a system of automated
monitoring stations positioned throughout the United States. These stations are primar-
ily operated by government agencies, with the United States Department of Agricul-
ture’s Natural Resources Conservation Service (USDA NRCS) and the National Oceanic
and Atmospheric Administration (NOAA) playing important roles. The SNOTEL net-
work is instrumental in collecting data related to snowpack, precipitation, temperature,
and various other meteorological and hydrological parameters. Our data collection strat-
egy for SNOTEL was centered on real-time data, as these sensors had been deployed
more recently, allowing us access to data spanning 30 years leading up to December 2020.
As of December 2020, our analysis revealed the existence of 138 SNOTEL sensors within
the boundaries of the UCRB, according to data from the USDA NRCS, website acces-
sible at [66]. The USDA NRCS website also provides a report generator, accessible at
(https://wcc.sc.egov.usda.gov/reportGenerator/, accessed on 19 September 2023), allow-
ing users to retrieve various data concerning SNOTEL sensors. These sensors provided
a diverse range of data types, including measurements of snow water equivalent, snow
depth, precipitation, temperature, snow density, and soil moisture. Snow water equivalent
is how much depth water would cover the ground if the snow cover were to melt and
become a liquid. The data were available at different temporal resolutions, ranging from
hourly to daily, monthly, and even half-yearly intervals. To ensure that the SNOTEL data
were compatible with the streamflow data, we processed and aggregated the daily SNOTEL
records, which often amounted to more than 46,000 data values, into a consistent monthly
format. This alignment allowed for more effective comparative analysis and facilitated
the integration of these datasets. Figure 3 provides a clear visual representation of the
distribution of SNOTEL sensors within the UCRB and their relation to the USGS monitoring
gauges. In this paper, the terms ’streamflow’ and ’flow’ are used interchangeably and refer
to the same hydrological parameter.
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4. Data Analysis

In this section, we present an overview of the data analysis conducted for stream-
flow forecasting. This encompasses preprocessing the data acquired from both SNOTEL
and USBR sources, selecting relevant features, representing data over the specified time,
and dividing the dataset for training and testing purposes.

We extracted data from SNOTEL sensors, including Snow Water Equivalent, Snow
Depth, Precipitation Accumulation, Temperature (observed, max, min, and average), Snow
Density, and Station Name. Upon analysis, it was observed that there are numerous null
values in attributes like Snow Depth (over 16,000) and Snow Density (almost 25,000), despite
the data being collected from sensors since 1991. However, there is a lack of continuous
data for Snow Depth and Density until 2008. Consequently, these attributes, 54% missing
values for snow depth and 74% missing values for snow density were omitted from our
analysis, focusing on the available sensor data rather than prediction. For temperature-
related data, we prioritized the average temperature as the primary feature, discarding
the observed, minimum, and maximum attributes. Ultimately, our analysis concentrated
on Snow Water Equivalent (SWE), Precipitation Accumulation (Prcp_Acc), and Average
Temperature (Temp_Avg) as the main data derived from the SNOTEL sensors. Since the
streamflow data are available on a monthly basis, we aggregated the SNOTEL data on a
monthly scale while excluding stations. After monthly data aggregation, no missing values
were found for temperature, precipitation, and snow water equivalent. However, snow
depth was missing 24% of its values, and snow density was missing 47.5%. Therefore, it is
reasonable to exclude these two attributes from the analysis. Consequently, we obtained
a data frame with 360 rows, representing 30 years of data. Time series plots of these
attributes along with the moving average are plotted over the years, as illustrated in
Figure 4 while the monthly streamflow data obtained from the USBR is depicted below
in Figure 5. The time series plot of average temperature exhibits a slight positive trend,
indicative of the global warming pattern observed in the UCRB region. To facilitate model
training and evaluation, we split the 30-year dataset into 80% for training purposes and 20%
for testing. The performance of the models will be assessed by comparing their predicted
values with the actual streamflow values obtained from the USBR, using evaluation metrics.
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Figure 5. Time Series Plot of Streamflow Data from the US Bureau of Reclamation.

In our analysis, we incorporated the streamflow data from past months to predict
future months. Additionally, we explored the correlation between these attributes in
Figures 6 and 7 to illustrate the variations in streamflow corresponding to each attribute.
We used Pearson correlation in our analysis, as it is widely used in scientific research due
to its effectiveness in assessing linear relationships between variables. It measures the
strength and direction of such associations, making it ideal for datasets where linearity is
assumed. The obtained results align with expectations, revealing a high correlation between
the predicted value, streamflow, and the average temperature. Since we are analyzing
data from a large area, we cannot completely rely on the correlation between snow water
equivalent and temperature. Snow water equivalent is influenced by temperature and
precipitation at higher altitudes, but at lower levels, it is heavily affected by snow depth [67]
At higher altitudes, the high temperature leads to a decrease in snow water equivalent and
an increase in precipitation. In aggregate, these factors contribute to an overall increase
in streamflow.
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Figure 6. Temporal Variation of Streamflow in Relation to Meteorological Variables.

Notably, the removal of the streamflow value during feature selection yielded vari-
ations in the predicting percentage, as elucidated by comparing the results in Section 6,
Experimental Results.
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Figure 7. Correlation Analysis between Streamflow and Meteorological Variables.

5. Methodology

This section provides an overview of the methodologies employed for streamflow
forecasting. We delve into the mathematical expressions defining the models and discuss
the evaluation metrics. The section is structured into three subsections for clarity: (1) uni-
variate time-series prediction model, (2) multivariate time-series prediction model, and
(3) evaluation metrics.

5.1. Univariate Time-Series Prediction Model

In the univariate time series prediction model, both the input and output features are
the same, focusing on the streamflow without introducing additional variables. Specifically,
the Lees Ferry streamflow has been selected for prediction, as it serves as the boundary
between the Upper and Lower Colorado River Basin (CRB). Machine learning models
utilized for this prediction task include RFR, LSTM, SARIMA, and GRU.

The entire dataset has been partitioned into sets of look-back (past) and look-ahead
(future) sequences for training and testing purposes. Given the limited data availability,
encompassing only 30 years, with 6 years allocated for testing, various sequence lengths
have been considered, including 12, 24, 36, 48, and 60 months, summing up to a maximum
of 72 months (6 years) for any given combination of input and output sequence. Optimal
results were achieved with a configuration using 12 months of look-back and 12 months of
look-ahead data for uni-variant data. Contrary to common normalization practices such as
Z-Normalization or Min-Max Scaling, Equations (1) and (2), respectively, it was observed
that applying such transformations did not yield significant improvements when compared
to using the actual, unaltered data.

Znorm =
x − µ

σ
(1)

where x is the observed value, µ and σ are the mean and standard deviation of the data.

xscaled =
x − xmin

xmax − xmin
(2)

where x is the observed value, and xmin and xmax are the minimum and maximum values
for that particular attribute.
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Consequently, the analysis proceeded without normalization, employing the data
after preprocessing for RFR, LSTM, and GRU models. SARIMA models require the entire
dataset to estimate their parameters. Therefore, in SARIMA modeling, the entire dataset
was utilized for training the model instead of using sequences. To ensure fairness in result
comparisons and observations, the same dataset was employed for both training and
testing across all combinations of models and sequence lengths.

5.1.1. RFR

A Random Forest is a meta-estimator that involves fitting multiple decision tree
regressors on different subsets of the dataset. The algorithm utilizes averaging to enhance
predictive accuracy and mitigate the risk of overfitting. Figure 8 illustrates a simplified
structure of RFR where each tree in the ensemble has a depth of 2. In general, RFR can be
defined as the following equation:

RFR(x) =
1
N
(T1(x) + T2(x) + . . . + TN(x)), (3)

where N is the number of decision trees, Ti(x), is the prediction made by the tree i on input
x, and RFR(x) is the average prediction.

We conducted hyperparameter tuning to construct the most optimal models. Improved
outcomes for univariant RFR are achieved when using default hyperparameter values
such as 100 estimators, minimum samples split set to 2, minimum samples leaf set to 1,
and incorporating bootstrap. Various lengths of look-back windows were investigated to
identify the most effective one.

Input sequence

Stream flow Prediction 1 Stream flow Prediction NStream flow Prediction 2

Average of All Predictions

Tree 1 Tree NTree 2

Final Streamflow Prediction

Figure 8. A Simplified Structure of RFR.

5.1.2. LSTM

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) archi-
tecture designed to address the vanishing gradient problem in traditional RNNs, using
the below architecture, Figure 9. LSTMs are particularly well-suited for processing and
predicting sequences of data due to their ability to capture and remember long-term de-
pendencies. They are widely used in natural language processing, speech recognition,
time-series forecasting, and other tasks where capturing long-term dependencies is crucial.
Activation functions, such as sigmoid, tanh, Rectified Linear Unit (ReLU), and softmax, are
mathematical operations utilized in neural networks to introduce non-linearity, facilitating
the learning of complex patterns in data. Specifically within LSTM cells, sigmoid layers
regulate information flow by selectively gating input, output, and forget signals. These
layers utilize activation functions to produce outputs between 0 and 1, contributing to
the processing of input information and learning long-range dependencies in sequential
data. Specifically:
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1. The first sigmoid layer determines the extent to which the cell should discard or forget
information from the previous state.

2. The second sigmoid layer, combined with the hyperbolic tangent (tanh) nonlinearity,
helps the LSTM decide which information should be stored in the cell state. The tanh
activation function ensures that the stored information is within the range of −1 to 1.

3. The rightmost sigmoid layer determines which part of the processed input will be
returned as the output.

tanh

tanh

X(k)

C(k)

H(k)

C(k-1)

H(k-1)

Figure 9. The Structure of LSTM Memory Unit.

The cell state, represented by the straight horizontal line on top of the network,
undergoes updates at each time step, integrating the information and producing the final
output. The combination of these sigmoid and tanh operations allows the LSTM cell to
effectively capture and manage long-term dependencies in sequential data. In general,
LSTM is defined by the following equations:

i(k) = a(Wi(H(k − 1), X(k)) + bi) (4)

f (k) = a(W f (H(k − 1), X(k)) + b f ) (5)

o(k) = a(Wo(H(k − 1), X(k)) + bo) (6)

¯C(k) = tanh(Wc(H(k − 1), X(k)) + bc) (7)

C(k) = f (k) ∗ C(k − 1) + i(k) ∗ ¯C(k) (8)

H(k) = o(k) ∗ tanh(C(k)) (9)

The Equations (4)–(6) correspond to the input, forget, and output gates, respectively,
in the LSTM cell. In these equations, a(.) denotes the activation function for these gates,
X(k) represents the input vector at a time k, ¯C(k) is the memory cell candidate, C(k)
denotes the memory cell state, and H(k − 1) denotes the hidden state. The symbols W
and b represent the weight and bias parameters, respectively. Additionally, the symbol ∗
indicates element-wise multiplication. A memory cell candidate refers to the information
that is proposed to be stored in the memory cell during the processing of input data. It
undergoes a series of transformations before being potentially stored in the memory cell.
The memory cell refers to the component responsible for storing and maintaining long-term
dependencies in the sequential data.

To forecast a complete sequence of streamflow akin to the input, this model necessitates
many-to-many structures of LSTM, which involves returning the representations of hidden
states. In our examination, we employed the ReLU as the activation function for the hidden
layers, as outlined below.

ReLU(z) = max(0, z) (10)
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The LSTM model was trained with a hidden layer consisting of 50 neuron units each
and a dense layer corresponding to the look-ahead value for each sequence of input vs
output, aimed at predicting the streamflow according to the output sequence. ReLU acti-
vation functions were incorporated into the hidden layer. The training process spanned
100 epochs with a batch size of 32. Batch size refers to the number of training examples used
in one iteration of the optimization algorithm. It determines how many samples are pro-
cessed before updating the model’s parameters. The loss function utilized during training
was Mean Square Error (MSE), calculated as the discrepancy between the observations and
predictions and the optimizer is “Adam”. The optimizer is a key element in training neural
networks. It adjusts the model’s parameters to minimize the loss function, improving
overall performance. The most widely used optimizers are Adam, Stochastic Gradient
Descent (SGD), and RMSprop. It is worth noting that the input shape was configured as
(look-back value, j) to ensure compatibility with the sequence where j denotes the number
of features used for training.

5.1.3. GRU

The GRU, or Gated Recurrent Unit, is a type of RNN architecture that offers a simpler
structure compared to LSTM networks, featuring fewer gates for computational efficiency.
It comprises key components such as the update gate, responsible for regulating the flow of
new data into the current unit, and the reset gate, which determines which state variables
should be retained or forgotten. The hidden state of the GRU represents the information
propagated from the one-time step to the next. Additionally, the reset gate and update
gate in GRU are designed to capture both short-term and long-term dependencies within
sequential data. This makes GRU a versatile choice for various tasks involving sequential
data processing.

zt = σ(Wz.[Ht−1, Xt] + bz) (11)

rt = σ(Wr.[Ht−1, Xt] + br) (12)

H̄t = tanh(Wh.[rt ∗ Ht−1, Xt] + bh) (13)

Ht = (1 − zt) ∗ Ht−1 + zt ∗ H̄t (14)

The Equations (11), (12) and (14) correspond to the update, rest, and output gates,
respectively, in the GRU. H̄t refers to the candidate activation vector. It is like a suggestion
for the next memory state. It is calculated using input data and the previous memory state,
offering a potential update for the new memory state. In these equations, σ represents
the sigmoid function, Xt represents the input vector at time t, Ht−1 denotes the previous
memory state, and Ht denotes the final cell state. The symbols W and b represent the
weight matrices and bias parameters. Additionally, the symbol ∗ indicates element-wise
multiplication, the same as in the LSTM cell.

In our analysis, the GRU model was configured with the following parameters, man-
ually set to optimize performance: GRU layer with 50 neuron units and ReLU activation
function, as in Equation (10); input data shape set to look-back time steps and one feature,
that is Flow; addition of a dense layer to the model, responsible for outputting predic-
tions for the next look-ahead time steps; furthermore, the parameters for epochs, batch
size, verbose, loss function, and optimizer were set to match those used for LSTM. This
ensures consistency and facilitates comparison between the two models in terms of training
and evaluation.

5.1.4. SARIMA

The SARIMA (Seasonal Autoregressive Integrated Moving Average) model is a time
series forecasting method that incorporates both autoregressive (AR) and moving average
(MA) components, as well as seasonal differencing. It is designed to analyze past data in
order to make predictions about future values in a time series and is defined as:
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SARIMA = c +
p

∑
n=1

αnyt−n +
q

∑
n=1

θnϵt−n +
P

∑
n=1

ϕnyt−mn +
Q

∑
n=1

ηnϵt−mn + ϵt (15)

Here, p is the number of AR terms, d is the degree of differencing indicating the number
of times the series needs to be differenced to make it stationary, and q is the number of
moving average terms. Other parameters P, D, Q, and m are seasonal autoregressive order,
seasonal difference order, seasonal moving average order, and number of observations
in a single seasonal cycle respectively. The values “d” and “D” are 0 for our SARIMA
model. Setting, d = D = 0 means that no differencing is applied to the time series data,
indicating that the data are already stationary and does not require differencing to make it
stationary. We trained the SARIMA model with the optimal hyperparameters tailored for
each combination of input and output sequences. The order and seasonal parameters of
SARIMA are closely linked to the characteristics of the input and output data, necessitating
training with the entire dataset. For the specific combination of input-output sequence, the
best parameters determined were (p, d, q) for the order and (P, D, Q, m) for the seasonal
order, with the values (3, 0, 2) and (2, 0, 1, 12) respectively.

5.2. Multivariate Time-Series Model Prediction

The correlation between temperature and streamflow is stronger than that of precipita-
tion and snow water equivalent with streamflow, as depicted in Figure 7. But, the varying
patterns in streamflow, as shown in Figures 4–6, correspond closely to changes in the other
variables than the temperature. Thus, there appears to be a significant relationship be-
tween streamflow and meteorological parameters. In the multivariate time series analysis,
the introduction of SNOTEL data such as snow water equivalent, average temperature,
and precipitation has led to changes in the hyperparameter settings of the models. Here
are the updated hyperparameters for each model:

1. RFR: In contrast to the univariate RFR model, hyperparameters were fine-tuned
to optimize performance. Increased tuning, including: 500 estimators, Minimum
samples split set to 10, Minimum samples leaf set to 5, Maximum depth set to 9,
Utilization of bootstrap for resampling.

2. LSTM and GRU: No changes apart from modifying the input shape to (look-back
size, 4) to accommodate the additional three attributes from the SNOTEL data in the
input sequence.

3. SARIMA: Adjustments in order and seasonal order hyperparameters based on the
combination of input-output sequences, as discussed in the subsection SARIMA of
univariate time series analysis. No additional hyperparameters are introduced for
this model.

These changes aim to enhance the models’ ability to capture the relationships be-
tween the meteorological factors and streamflow, thereby improving the accuracy of the
predictions in the multivariate setting.

5.3. Evaluation Metrics

In this section, we outline the metrics employed for comparing the machine learning
models and conducting both univariate and multivariate analyses. The metrics utilized in
our analysis include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE),
and R-squared (R2).

For clarification, let us consider yi as the predicted value, xi as the observed value,
and n as the number of observations.

• Mean Absolute Error (MAE): It calculates the average of the absolute differences
between the predicted and actual values. It provides a measure of the average magni-
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tude of errors in the predictions, without considering their direction and it is defined
as follows:

MAE =
1
n

n

∑
i=1

|(yi − xi)| (16)

• Root Mean Square Error (RMSE): It is a commonly used metric for evaluating the
accuracy of a predictive model. RMSE is calculated by taking the square root of the
average of the squared differences between predicted and actual values and defined
as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − xi)2 (17)

• R-squared (R2): It is a statistical measure that represents the proportion of the variance
in the dependent variable (predicted values) that is explained by the independent
variable (actual values). It is also known as the coefficient of determination. R2 is
defined as follows:

R2 = 1 − ∑n
i=1(yi − xi)

2

∑n
i=1(yi − zi)2 (18)

where z represents the mean of the actual values. The closer the value of R2 to 1,
the better the model’s predictions compared to the actual values. However, it is
essential to consider other evaluation metrics alongside (R2) to gain a comprehensive
understanding of the model’s performance.

• Mean Absolute Percentage Error (MAPE): It is one of the most widely used metrics. It
calculates the average percentage difference between predicted and actual values and
is defined as:

MAPE = (
1
n
)

n

∑
i=1

|yi − xi
xi

| ∗ 100 (19)

The Mean Absolute Percentage Error (MAPE) can encounter issues when the actual
values in the dataset are close to or equal to zero, resulting in undefined or extremely
large percentage errors. This problem can distort the evaluation of model performance,
especially when dealing with datasets containing zero or near-zero values. Symmetric Mean
Absolute Percentage Error (SMAPE) addresses the issue of asymmetric errors in MAPE
by considering the average of the percentage error. It is also expressed as a percentage
as follows:

SMAPE =
1
n

n

∑
i=1

|yi − xi|
(|yi|+ |xi|)/2

∗ 100 (20)

6. Experimental Results

In this section, we will explore the detailed experimental outcomes of our analysis.
This section is organized into subsections: (1) a comparison between Univariate and
Multivariate Time Series, (2) a comparison of Four Machine Learning Models, (3) Sequence
Analysis for RFR Model, and (4) Meteorological Factors Influence on Streamflow. We will
delve into each of these areas in detail.

In our analysis, we explored various combinations of look-ahead and look-back pe-
riods to improve streamflow prediction accuracy. Through our investigation, we found
that using an RFR model with a look-back period of 24 months and a look-ahead period
of 12 months yielded the most favorable results. While our data allows for predicting
streamflow up to 60 months ahead, we observed that the accuracy diminishes for longer
forecast horizons. This is particularly noteworthy considering the potential variability
introduced by climate changes over five years. Therefore, it is imperative to strike a balance
between forecast horizon and accuracy when making long-term predictions. To evaluate
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the performance of different machine learning models and their input-output sequence
combinations, we employed five evaluation metrics as mentioned in the above section.
These metrics provided comprehensive insights into the predictive capabilities of each
model, enabling us to identify the most effective approach for streamflow prediction in
our analysis.

6.1. Comparison of Univariate and Multivariate Time-Series

We conducted a thorough analysis by exploring multiple sequences of input and
output combinations. A total of 15 possible combinations can be obtained for our data.
The (input, output) sequences are organized into sets including pairs such as (12,12), (12,24),
(12,36), (12,48), (12,60), (24,12), (24,24), (24,36), (24,48),(36,12), (36,24), (36,36), (48,12), (48,24),
(60,12). The primary aim of this analysis was to assess the potential enhancement in RMSE
achieved by integrating meteorological factors into the input sequence. Univariate models
demonstrated superior performance initially. Upon comparison with multivariate models,
the effectiveness of the univariate approach diminished. To visually depict these differences,
we generated distribution plots for the RMSE values associated with each model, as shown
in Figure 10.
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Figure 10. Comparison of RMSE Distribution between Univariate and Multivariate Models.

For multivariate LSTM models, we observed a significantly narrower range of RMSE
values compared to their univariate counterparts. The width of the univariate RMSE
range was approximately 6, whereas it reduced to nearly 2 for the multivariate models.
Similarly, the density distribution for multivariate LSTM models exhibited a single peak,
indicating a concentrated distribution of RMSE values within a specific range. Interestingly,
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the univariate LSTM model achieved a lower minimum RMSE value than the multivariate
LSTM model. For multivariate RFR models, although the minimum RMSE value decreased
from around 2.1 to 1.6 compared to univariate models, the change in the range of values
was not as significant as observed in RFR models. The density distribution showed a
single peak for both univariate and multivariate models. Conversely, for SARIMA models,
both univariate and multivariate distributions exhibited nearly identical minimum values,
while the maximum value differed by almost 1.1. In univariate models, the maximum
value was above 8, whereas in the multivariate model, it was 6.9. Additionally, in both
models, the density showed peaks at a single value, which were almost the same. In GRU
models, the range of RMSE values also decreased by approximately 0.75 in multivariate
models compared to univariate ones. The density distribution showed a single peak for
multivariate models, while for univariate models, there was a noticeable second peak.
Multivariate GRU models exhibited the highest peak density, followed by RFR and LSTM.
Univariate GRU models had a higher density for the second peak than the other.

The median R2 plot comparing univariate and multivariate models demonstrated
that all models performed better in terms of R2 values when meteorological factors were
included in the input sequence, Figure 11. Despite this difference not being so large, it still
reflects a good improvement.
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Figure 11. Comparison of Median R2 between Univariate and Multivariate Time-Series Models.

The gap between the maximum R2 values of univariate and multivariate models is
greater in SARIMA and LSTM than in the RFR and GRU. However, it is important to
highlight that there were instances in the univariate SARIMA approach where the R2

values turned negative, indicating poor model performance, Figure 12. While there was
one combination where the SARIMA model outperformed RFR, LSTM, and GRU in terms
of R2 values, this superiority was not consistent across other combinations. Adjusting
hyperparameters did not lead to improvement in cases where the R2 values were found
to be negative. This observation underscores the SARIMA model’s reliance on stream-
flow data, with limited impact from additional meteorological factors incorporated in the
multivariate approach.

Based on Figures 10 and 11, we found that integrating snow water equivalent, tem-
perature, and precipitation data from the Upper Colorado River Basin into streamflow
prediction models leads to a reduction in RMSE values and enhanced R2 values.
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From Figure 13, we can see that the MAE values for both RFR and GRU models are
quite similar, at 1.72 and 1.74 respectively, with an interquartile range of 0.18 for both. On
the other hand, LSTM and SARIMA models have larger interquartile ranges of 0.44 and
0.51 respectively, indicating more variability in their performance. In terms of RMSE, the
median values for RFR and GRU are also close, at 2.86 and 2.87 respectively, with LSTM
slightly higher at 3.05. When looking at MAPE, GRU performs the best with a value of
109, followed by LSTM with 107.67, and RFR closely resembling SARIMA at 113.3 and 114
respectively. SARIMA exhibits a minimum value of around 82 in the plot, which is notably
distant from its median. The same trend is observed in SMAPE, with a minimum of around
22 and a median of 48 for SARIMA, while RFR has a median of 32.7 with an interquartile
range of 3.75, and GRU with a smaller interquartile range of 2.89 and a median of 36.17.

Figure 12. MAE, RMSE, SMAPE, MAPE, and R2 Results of Univariate Time-Series ML Models.

6.2. Comparison of ML models

In this section, we will compare the results obtained from the 15 combinations concern-
ing the four models: RFR, LSTM, GRU, and SARIMA. We begin by examining the RMSE
of the four univariate models, as shown in Figure 13. The density plots illustrate that the
ranges of RMSE values for RFR, and GRU are quite similar, with slight variations in width.
However, the distribution of RMSE values for SARIMA is notably different, exhibiting
much greater variability and density that is distinct from the other models. Despite the den-
sity of LSTM falling within the range of RFR and GRU, its spread is comparable to SARIMA.
This difference is also apparent in the boxplot of RMSE values Figure 12, where the spread
of SARIMA’s and LSTM’s RMSE distribution is much wider compared to the other models,
with the outliers. In the presence of an outlier in the RFR RMSE plot, the median values of
RMSE for both RFR and GRU are nearly identical.
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From Figure 13, we can see that the MAE values for both RFR and GRU models are
quite similar, at 1.72 and 1.74 respectively, with an interquartile range of 0.18 for both. On
the other hand, LSTM and SARIMA models have larger interquartile ranges of 0.44 and
0.51 respectively, indicating more variability in their performance. In terms of RMSE, the
median values for RFR and GRU are also close, at 2.86 and 2.87 respectively, with LSTM
slightly higher at 3.05. When looking at MAPE, GRU performs the best with a value of
109, followed by LSTM with 107.67, and RFR closely resembling SARIMA at 113.3 and 114
respectively. SARIMA exhibits a minimum value of around 82 in the plot, which is notably
distant from its median. The same trend is observed in SMAPE, with a minimum of around
22 and a median of 48 for SARIMA, while RFR has a median of 32.7 with an interquartile
range of 3.75, and GRU with a smaller interquartile range of 2.89 and a median of 36.17.
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From Figure 13, we can see that the MAE values for both RFR and GRU models are
quite similar, at 1.72 and 1.74, respectively, with an interquartile range of 0.18 for both.
On the other hand, LSTM and SARIMA models have larger interquartile ranges of 0.44
and 0.51, respectively, indicating more variability in their performance. In terms of RMSE,
the median values for RFR and GRU are also close, at 2.86 and 2.87, respectively, with LSTM
slightly higher at 3.05. When looking at MAPE, GRU performs the best with a value of
109, followed by LSTM with 107.67, and RFR closely resembling SARIMA at 113.3 and 114,
respectively. SARIMA exhibits a minimum value of around 82 in the plot, which is notably
distant from its median. The same trend is observed in SMAPE, with a minimum of around
22 and a median of 48 for SARIMA, while RFR has a median of 32.7 with an interquartile
range of 3.75, and GRU with a smaller interquartile range of 2.89 and a median of 36.17.
Consistently, RFR shows the highest median R2 value at 0.67, followed closely by GRU at
0.65, while LSTM trails at 0.41 and SARIMA with the lowest median R2 value of 0.2. These
observations suggest that in the univariate model, RFR outperforms the other models.

In the next step, we plotted the RMSE distribution for multivariate models, Figure 14.
It is observed that the RFR RMSE values have an overall lower magnitude compared
to others. However, the spread of GRU is less dense, mainly concentrated in a certain
range. The stretch of GRU lies between that of RFR and LSTM, where GRU is less stretched
compared to its distribution in the univariate approach (as depicted in Figure 13). Similar
to the univariate distribution, SARIMA’s distribution is stretched, with density located
differently from the others. Comparatively, RFR, LSTM, and GRU exhibit narrower RMSE
error distributions compared to their univariate model.
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Figure 15. RMSE, SMAPE, MAPE, and R2 Results of Multivariate Time-Series ML Models.

Figure 14. RMSE Distribution of Multivariate Time-Series Models.

Upon examining the box plots of multivariate models in Figure 15, we did not notice
any significant increase in variability for the SARIMA model compared to its univariate
counterpart. RFR showed improvements across all metrics in the multivariate approach,
with median values of MAE, RMSE, MAPE, SMAPE, and R2 being around 1.51, 2.51, 112, 30,
and 0.78, respectively. In contrast, in the univariate approach, these values were around 1.74,
2.9, 113, 32, and 0.66, respectively. LSTM’s MAE median remained the same as its univariate
but exhibited a narrower interquartile range and better R2 values. In addition to RFR, GRU
performed well in the multivariate approach, with improved medians of MAE from 1.75
to 1.6, RMSE from 2.9 to 2.6, and R2 from 0.65 to 0.7, and overall, displayed a narrower
interquartile range for these metrics. It is worth noting that RFR, LSTM, and GRU each had
outliers for the R2 value. Indeed, across both the univariate and multivariate approaches,
RFR consistently outperformed all other models in terms of various evaluation metrics.
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A qualitative analysis of the plots indicates that incorporating additional meteorologi-
cal factors such as snow water equivalent, temperature, and precipitation from the Upper
Colorado catchment leads to enhanced streamflow predictions for the Lees Ferry River.

While assessing the errors of multivariate models in predicting 12-month streamflow
using both 24-month and 12-month input sequences, we noticed that the resulting values
were quite similar. To determine the optimal combination, we compared the predicted
streamflow values with the observed USBR values for RFR, LSTM, and GRU. SARIMA was
excluded from this comparison due to its inconsistent performance. The evaluation metric
values for the remaining models are depicted in Table 1. A comparison of the predicted
and observed USBR streamflow of these models is shown in Figure 16.
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Our analysis revealed that the predicted values for the period from May 2015 to
August 2015 exhibited greater variability for the 12-12 combination compared to the
24-12 combination when compared against the observed values. However, the stream-
flow values remained almost identical for the subsequent seven months, making the error
values for the 12-12 combination similar to those for the 24-12 combination. Upon careful
examination of both the graphs and the error values, we determined that the 24-12 combi-
nation of RFR, with MAE of 1.3, RMSE of 2.2, MAPE of 109, SMAPE of 27.3, and R2 of 0.8,
represented the superior model for this dataset. Figure 17 illustrates the predicted stream-
flow using the optimal 24-12 input-output combination compared against the observed
values for the discussed models.
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Figure 16. Comparison of Predicted and Observed USBR Streamflow Using Multivariate Time-Series
Models (RFR, LSTM, GRU) with Input-Output Combinations of 12-12 and 24-12, for the Period from
May 2015 to April 2016 over the Test Set.
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Figure 17. Comparison of Predicted vs. Observed Streamflow from Multivariate Time-Series Models
(RFR, LSTM, GRU) over the Test Set (May 2015–April 2016).

Table 1. Model Performance Metrics.

Models Metrics

MAE RMSE MAPE SMAPE R-Squared

Univariate

RFR 1.52 2.57 111.01 29.17 0.74
LSTM 2.14 3.63 108.62 47.50 0.49
GRU 1.48 2.50 103.68 32.83 0.75

Multivariate

RFR 1.34 2.25 109.34 27.33 0.80
LSTM 1.60 2.58 99.98 43.30 0.74
GRU 1.50 2.40 105.28 32.80 0.77

6.3. Sequence Analysis for RFR Model

In addition to the previous experiments, we conducted a comparison of different input
(look back) and output (look ahead) sequence combinations for the best model, RFR, both
in univariate and multivariate scenarios. This comparison aimed to observe the variations
in prediction quality resulting from different combinations of look ahead and look back
sequences. We considered a range of look back and look ahead span windows, including 12,
24, 36, 48, and 60 months. As outlined in the Methodology section, we explored all possible
combinations where the sum of the sequence lengths equaled 72 months (6 years), matching
the length of the testing set. Assigning 80% of a dataset to training is commonly regarded
as a best practice in many articles [68]. This allocation ensures an ample amount of data for
both modeling and testing. Utilizing a smaller portion of the data for training can lead to
less effective models [69,70]. The main objective of this experiment is to observe how the
predictions or errors vary with changes in the combinations of input and output sequences.

Figure 18 shows heat maps of evaluation metrics for the univariate time-series RFR
model. From the heatmap, it is evident that increasing the output sequence length with
a particular input sequence tends to result in higher errors across all metrics. However,
this trend is not consistent for the input sequence length of 12 months, where the values
do not follow a clear pattern. Notably, interesting results are observed for the input
sequences predicting 12-month and 48-month outputs, yielding similar MAE (1.6) and R2

(0.7) metrics, although RMSE (2.76 and 2.68) and SMAPE (30.67 and 31.51) values differ
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slightly. The prediction of a 24-month output sequence with a 12-month input sequence
outperforms other combinations with this input, demonstrating the lowest MAE (1.53),
RMSE (2.61), and highest R2 (0.72) values. Analyzing specific output sequence lengths
with increasing input sequence lengths reveals that the model’s performance does not
significantly improve, except for the 24-month input and 12-month output combination,
which stands out as the optimal configuration for the RFR model. This combination yields
the lowest MAE (1.52), RMSE (2.57), MAPE (111), SMAPE (29.17), and highest R2 (0.74)
values in our analysis.
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Figure 17. Comparison of Predicted vs. Observed Streamflow from Multivariate Time-Series Models
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6.3. Sequence Analysis for RFR Model

In addition to the previous experiments, we conducted a comparison of different input
(look back) and output (look ahead) sequence combinations for the best model, RFR, both
in univariate and multivariate scenarios. This comparison aimed to observe the variations
in prediction quality resulting from different combinations of look ahead and look back
sequences. We considered a range of look back and look ahead span windows, including
12, 24, 36, 48, and 60 months. As outlined in the Methodology section, we explored all
possible combinations where the sum of the sequence lengths equaled 72 months (6 years),
matching the length of the testing set. Assigning 80% dataset to training is commonly
regarded as a best practice in many articles [60]. This allocation ensures an ample amount
of data for both modeling and testing. Utilizing a smaller portion of the data for training
can lead to less effective models [61,62]. The main objective of this experiment is to observe
how the predictions or errors vary with changes in the combinations of input and output
sequences.
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Univariant RFR Model.
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model. From the heatmap, it is evident that increasing the output sequence length with a
particular input sequence tends to result in higher errors across all metrics. However, this
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The visual representation of the results, Figure 19 confirms this observation. Initially,
with a look-back of 12 months, the predicted values align with the observed values in the
first 5 months when compared with others. Subsequently, with a look-back of 24 months,
the predicted values become closer to the observed values. The patterns for 48 months and
12 months follow a similar trajectory in Figure 19 as well. However, with a look-back of
36 months, the predictions deviate significantly from the observed values, showcasing a
different graph compared to other combinations.
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Figure 19. Predictions of Univariate Time-Series RFR Models with Different Look-back Span Windows
against Ground Truth (May 2018–April 2019).

Next, we plotted the error heatmaps of the multivariate RFR models to analyze
variations in the results, similar to the univariate observations, and to compare these results
with the univariate observations. Figure 20, depicting the heat map of evaluation metrics
for the multivariate RFR models, the impact of changing input and output sequences on
error values was examined.
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In Figure 20, the trend of increasing error values with an increase in the input sequence
while keeping the output sequence constant can be clearly detected. This trend holds
for every combination of output sequences. Similarly, by maintaining a constant input
sequence and varying the output sequence from bottom to top, an increase in MAE and
RMSE values is observed. However, this trend was not observed for the univariate model
with a 12-month input sequence. Notably, in most cases, predicting the output sequence
with a 12-month input results in lower error values compared to using higher input values.
For instance, predicting 36 months with a 12-month input yields lower error values than
predicting 24 or 48 months with the same input as output. Interestingly, the MAPE of
predicting 48 months and 24 months with a 12-month input shows the same value, 100,
despite their difference in MAE (1.50 and 1.38, respectively). An increasing trend is observed
for predicting 12 months with 36, 48, and 60 months of data for MAE and RMSE, but MAPE
values for 36 and 48 are the same at 113, higher than the 110 observed for 60 months.
Interestingly, the SMAPE values deviate from this pattern, with 60 months showing the
lowest value at 28.1, followed by 30.1 for 36 months and 31 for 48 months. However, this
trend contrasts with the R2 plot, where the 36-month input sequence exhibits a higher
value of 0.77 compared to 0.75 for both 48 and 60 months. The highest R2 value is observed
for predicting 12 months of data with 12 and 24 months of input, and the other metrics for
these two combinations also show slight differences. From Figure 21, it is apparent that the
predicted flows for 36 and 60 months follow a similar trajectory for 9 out of the 12 months,
yet there is not a clear correlation between them in terms of the metrics. Similarly, there
seems to be a relationship between 48 and 12 months. Notably, the 12-month input sequence
appears to deviate further from the observed values compared to the 24-month look-back
period, although it achieves a higher R2 value of 0.8. Reducing the magnitude of the graph
in the second plot of Figure 21 facilitates a better understanding of the predicted flow across
various combinations.
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The visual representation of the results, Figure 19 confirms this observation. Initially,
with a look-back of 12 months, the predicted values align with the observed values in the
first 5 months when compared with others. Subsequently, with a look-back of 24 months,
the predicted values become closer to the observed values. The patterns for 48 months and
12 months follow a similar trajectory in Figure 19 as well. However, with a look-back of
36 months, the predictions deviate significantly from the observed values, showcasing a
different graph compared to other combinations.
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Figure 20. Heatmap Visualization of Evaluation Metrics (MAPE, SMAPE, R2, MAE, and RMSE) for
Multivariate RFR Model.

Next, we plotted the error heatmaps of the multivariate RFR models to analyze
variations in the results, similar to the univariate observations, and to compare these results

Figure 20. Heatmap Visualization of Evaluation Metrics (MAPE, SMAPE, R2, MAE, and RMSE) for
Multivariate RFR Model.

The experiment concludes that for this dataset, increasing the sequence values of the
input does not improve performance beyond a certain point, which is observed to be 24
for both univariate and multivariate RFR models. Based on these observations and as
discussed in the above section (Figure 14), predicting 12 months with a 24-month input is
considered the optimal RFR model.
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Figure 21. Predictions of Multivariate Time-Series RFR Models with Different Look-back Span
Windows against Ground Truth (May 2018–April 2019).

6.4. Ablation Analysis

In this section, we investigated the influence of meteorological factors on streamflow.
To achieve this, we systematically included various combinations of these factors alongside
streamflow in the input sequences to predict the output. Each combination of input and
output sequences resulted in seven different feature combinations, as the streamflow
remained constant while the meteorological factors varied. Subsequently, we trained
machine learning models using only meteorological factors as features to predict streamflow
values, excluding the streamflow data themselves. This approach aimed to discern the
models’ dependency on these factors in predicting streamflow. Better results are obtained
when streamflow is included in the features alongside meteorological factors. Across all
sequences, we examined both scenarios and identified the top three feature combinations for
each sequence. It is important to note that there was no consistent top feature combination
for all the sequences. These observations yielded intriguing results. We analyzed the
top three feature combinations for each sequence based on their RMSE and R2 values,
considering their importance in evaluating the model.

In Figure 22, “S” represents Snow Water Equivalent, “P” stands for Precipitation
Accumulation, and “T” denotes Average Temperature. The columns labeled as RMSE_1_F
indicate the first RMSE value with historic streamflow included in the features, while
RMSE_1 represents the first RMSE value without historic streamflow in the features. Simi-
larly, the remaining labels follow this pattern, where the suffix “F” denotes the presence of
historic streamflow in the features, while the absence of this suffix indicates the exclusion
of historic streamflow. It is noteworthy that both “P” and “SP” combinations have the
highest count for RMSE and R2 values, with only one count for all combinations, “SPT”.
Conversely, the “ST” combination has the lowest count in both scenarios. “SPT” has a
good count, but “SP” and “P” are denser in their distribution. Upon tallying all values,
we found that the highest count is for “SPT” (45), followed by “SP” (44), and then “P”
(39), while the rest have lower counts. To gain a deeper understanding of the important
combinations, we plotted the feature importance for the RFR model, Figure 23. From this
plot, it is evident that temperature is a highly important feature for predicting streamflow,
despite having only 13 counts (alone) in the top three combinations. Precipitation and snow
water equivalents exhibit almost the same importance, reflected by their combination count
of 44.

Based on all the observations from our analysis, we conclude that all three fac-
tors—precipitation, snow water equivalent, and average temperature—need to be included
in the features along with historic streamflow to obtain unbiased and optimal results.
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Based on all the observations from our analysis, we conclude that all three factors—
precipitation, snow water equivalent, and average temperature need to be included in the
features along with historic streamflow to obtain unbiased and optimal results.

7. Discussion

In our study, we found that the RFR model achieved optimal results in both univari-
ate and multivariate scenarios when all meteorological factors were included to predict
monthly streamflow data. Our findings are consistent with previous studies by Hossein-
zadeh et al. [21] and Xu et al.[35] which show that multivariate models perform better than
the univariate models. Our results also agree with Zhao et al. research [36] that including
surface temperature can improve predictions. Additionally, Figure 23 highlights how
important temperature is as a contributing factor in our models. Following RFR, the GRU
model performed better than the LSTM model. LSTM has been reported to perform well in
predicting streamflow in snowmelt regions [63] and has outperformed models like Support
Vector Regression (SVR) [64] in previous studies. Some studies stated that LSTM and GRU
can achieve good results for predicting streamflow [65] but we observed that standalone
LSTM did not yield satisfactory results in both univariate and multivariate scenarios for
our dataset. The effectiveness of the LSTM model depends on several factors, including the
volume of data available, the nature of feature relationships (whether linear or not), the op-
timization of hyperparameters, and the complexity of the model architecture. In our study,
we trained the model using monthly streamflow data spanning 24 years. However, our
analysis revealed that the predicted feature did not exhibit a strong linear correlation with
the input features, Figure 7, likely due to the basin’s extensive geographical coverage and
varying altitudes. These factors likely contributed to the model’s performance. Conversely,
the results obtained with the GRU model were comparable to those of the RFR model.

The superior performance of RFR compared to other ML models may be attributed
to its architecture, which helps in mitigating overfitting. However, it is worth noting that
there are studies where RFR has outperformed models like LSTM [66], SVM and Neural
Networks [67], while in other cases, the results have been the opposite [68]. Among the ML
models tested, SARIMA exhibited the least performance and required considerable time to
adjust hyperparameters for satisfactory results. In time series-based methods, SARIMA
has been shown to outperform other models such as ARIMA, ARMA [69], and it even
performed better than LSTM in monthly streamflow predictions [21]. However, in our
analysis using 30 years of monthly data, LSTM performed better than SARIMA. Recent

Figure 23. Feature Importance of Meteorological Factors.

7. Discussion

In our study, we found that the RFR model achieved optimal results in both univari-
ate and multivariate scenarios when all meteorological factors were included to predict
monthly streamflow data. Our findings are consistent with previous studies by Hossein-
zadeh et al. [21] and Xu et al. [43] which show that multivariate models perform better than
the univariate models. Our results also agree with Zhao et al. research [44] that including
surface temperature can improve predictions. Additionally, Figure 23 highlights how
important temperature is as a contributing factor in our models. Following RFR, the GRU
model performed better than the LSTM model. LSTM has been reported to perform well in
predicting streamflow in snowmelt regions [71] and has outperformed models like Support
Vector Regression (SVR) [72] in previous studies. Some studies stated that LSTM and GRU
can achieve good results for predicting streamflow [73] but we observed that standalone
LSTM did not yield satisfactory results in both univariate and multivariate scenarios for
our dataset. The effectiveness of the LSTM model depends on several factors, including the
volume of data available, the nature of feature relationships (whether linear or not), the op-
timization of hyperparameters, and the complexity of the model architecture. In our study,
we trained the model using monthly streamflow data spanning 24 years. However, our
analysis revealed that the predicted feature did not exhibit a strong linear correlation with
the input features, Figure 7, likely due to the basin’s extensive geographical coverage and
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varying altitudes. These factors likely contributed to the model’s performance. Conversely,
the results obtained with the GRU model were comparable to those of the RFR model.

The superior performance of RFR compared to other ML models may be attributed
to its architecture, which helps in mitigating overfitting. However, it is worth noting that
there are studies where RFR has outperformed models like LSTM [74], SVM and Neural
Networks [75], while in other cases, the results have been the opposite [76]. Among the ML
models tested, SARIMA exhibited the least performance and required considerable time to
adjust hyperparameters for satisfactory results. In time series-based methods, SARIMA
has been shown to outperform other models such as ARIMA, and ARMA [77], and it even
performed better than LSTM in monthly streamflow predictions [21]. However, in our
analysis using 30 years of monthly data, LSTM performed better than SARIMA. Recent
studies have highlighted SARIMA’s reliability for longer lead-time forecasts, although its
effectiveness may diminish when trained on short observation periods due to overfitting
issues [32,42] and they have demonstrated good performance in drought conditions [78],
which could explain their underperformance in this study. However, the performance of
SARIMA models could potentially be improved with access to larger datasets.

To evaluate the generalizability of our best-performing model, RFR, we assessed its
performance across three distinct locations in the Upper Colorado River Basin: Maybell,
along the Yampa River in Colorado; Archuleta, on the San Juan River in New Mexico;
and Greenwood, along the Colorado River in Colorado. These sites were chosen for their
diverse geographical positions within the UCRB and their significant influence on flow
dynamics at Lees Ferry, as depicted in Figure 2. Streamflow at these locations is notably
lower than at Lees Ferry, providing indications of the model’s adaptability. Our evaluation
revealed consistently smaller errors at these locations compared to Lees Ferry. In both
univariate and multivariate scenarios, Maybell consistently had the lowest MAE values,
averaging 0.12 and 0.21, respectively, while Lees Ferry had much higher MAE values,
reaching 1.74 for univariate and 1.5 for multivariate. Similarly, in terms of RMSE for both
univariate and multivariate scenarios, Lees Ferry showed higher values (2.9 and 2.51)
compared to Maybell (0.22, 0.21) and Archuleta (0.39, 0.38, respectively). The evaluation
metrics for Archuleta and Glenwood exhibit similar values. The RFR model performed
better at alternative locations than at Lees Ferry, with Maybell achieving the highest R2

values of 0.85 (single-variable) and 0.868 (multiple-variable). These results are depicted in
Figure 24. These findings underscore the model’s robust performance in regions with lower
streamflow. However, it is important to note that our analysis did not address extreme
events such as floods or droughts.

Lees…Ferry Maybell…Yampa Archuleta…SanJuanGreenwood…Colorado
Location

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

R
-s

qu
ar

ed

Multivariant…RFR…Models

Lees…Ferry Maybell…Yampa Archuleta…SanJuanGreenwood…Colorado
Location

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

R
-s

qu
ar

ed

Univariant…RFR…Models

Figure 24. Boxplot of R2 for RFR Model Across Different Streamflows.

8. Conclusions

In this study, we used machine learning models to forecast streamflow in the Upper
Colorado River Basin (UCRB), focusing on Lees Ferry, a key point for water flow into
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the Lower Colorado River Basin (LCRB). Data from 1991 to 2020 were obtained from the
United States Bureau of Reclamation (USBR) for streamflow and from SNOTEL weather
stations for meteorological data—snow water equivalent, precipitation, and temperature.
We trained four machine learning models (RFR, LSTM, GRU, and SARIMA) using monthly
data. Initially, we trained the models on past streamflow data (univariate approach) and
then incorporated meteorological factors (multivariate approach). Evaluation with metrics
like RMSE, R2, and MAE showed that the multivariate models outperformed the univariate
ones, indicating the positive influence of meteorological factors on streamflow prediction.
The RFR model yielded the best results overall, and the GRU model outperformed LSTM.
We also explored the impact of meteorological factors and input-output combination
sequences on prediction. A combination of 24 months of input data predicting 12 months
of output data yielded the best results.

Based on our investigation, this study represents the first attempt to examine the
impact of meteorological factors on streamflow prediction while incorporating sliding
window concepts for both look-back and look-ahead sequences. These findings offer
opportunities to enhance ML model performance by incorporating additional factors and
data. Our study has limitations, such as not extensively discussing certain aspects like
the influence of temperature and not exploring hybrid models. Based on these findings,
there is an opportunity to extend this study by including more meteorological variables,
enlarging the dataset, and investigating alternative graph-structured modeling techniques
like Graph Neural Networks. This could result in stronger conclusions and improved
predictive precision. Examining model performance within defined radii around chosen
SNOTEL stations as well as using diverse spatial shapes instead of all SNOTEL data, could
provide valuable insights into localized streamflow behavior.
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