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ABSTRACT

Intrinsically disordered regions (IDRs) are critical for cellular function, yet often appear to lack
sequence conservation when assessed by multiple sequence alignments. This raises the question of
if and how function can be encoded and preserved in these regions despite massive sequence
variation. To address this question, we have applied coarse-grained molecular dynamics simulations
to investigate non-specific RNA binding of coronavirus nucleocapsid proteins. Coronavirus
nucleocapsid proteins consist of multiple interspersed disordered and folded domains that bind
RNA. We focussed here on the first two domains of coronavirus nucleocapsid proteins, the
disordered N-terminal domain (NTD) followed by the folded RNA binding domain (RBD). While
the N'TD is highly variable across evolution, the RBD is structurally conserved. This combination
makes the NTD-RBD a convenient model system to explore the interplay between an IDR adjacent
to a folded domain, and how changes in IDR sequence can influence molecular recognition of a
partner. Our results reveal a surprising degree of sequence-specificity encoded by both the
composition and the precise order of the amino acids in the NTD. The presence of an NTD can —
depending on the sequence — either suppress or enhance RNA binding. Despite this sensitivity,
large-scale variation in NTD sequences is possible while certain sequence features are retained.
Consequently, a conformationally-conserved fuzzy RNA:protein complex is found across
nucleocapsid protein orthologs, despite large-scale changes in both NTD sequence and RBD surface
chemistry. Taken together, these insights shed light on the ability of disordered regions to preserve
functional characteristics despite their sequence variability.
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Introduction

The classical structure-function paradigm states that sequence dictates structure, and structure
dictates function(l). This understanding has driven extensive study of protein structure and
dynamics. Understanding the 3D structures that proteins adopt provides insight into their normal
function. It also allows us to interpret how and why mutations that disrupt those structures and/or
dynamics impair function(2—4). However, in recent years, there has been a growing focus on
understanding "unstructured" or disordered protein regions(5-8). Intrinsically disordered regions
(IDRs) are pootly described by a single 3D structure; instead, they exist as a collection of structurally
distinct interconverting conformations known as an ensemble (9, 10). Despite lacking a defined 3D
structure, IDRs play critical roles in many aspects of cellular function. Consequently, emerging work
suggests that just as folded domains follow a sequence-structure-function relationship, IDRs can
follow an analogous sequence-ensemble-function relationship (11). Given the importance that
structure-function analysis has played in understanding the molecular basis for cellular function,
there is a promising and analogous opportunity to understand IDR function through the lens of
ensembles (12-16).

A major goal of modern molecular biology is to accurately predict protein function directly from
amino acid sequence. Rooted in the general assumption that similar protein sequences will exhibit
similar molecular behavior, one strategy is to compare the sequence of a protein of interest to those
of other known proteins (17-20). In many cases, multiple sequence alignment of orthologous folded
domains reveals high sequence conservation and, therefore, conserved protein function. (17, 21, 22).
This relationship enables us to predict structures of previously unsolved protein structures and infer
function by aligning the sequences of an uncharacterized protein against sequences of
functionally-characterized folded domains (23-25). In sum, applying evolutionary information,
directly and indirectly, is a central pillar in our modern toolkit for protein sequence analysis.

While IDR sequences can be aligned, their conservation at the residue level is typically lower than
their structured counterparts(26—28). However, even without strict sequence conservation, the
presence of disorder in a given protein domain is often conserved across orthologs(12, 13, 28-31).
Assuming orthologous proteins provide equivalent functions, this presents an intriguing question:
"Can apparently divergent IDRs confer the same molecular functions?”". For some IDRs, the only
feature that matters may be the existence of Short Linear Motifs (SLiMs), such that a large IDR may
appear pootly conserved, yet functional conservation is maintained as long as a few short (5-15
residue) regions are present(32-34). Recent work suggests that retaining specific physicochemical
properties in a disordered region is sufficient to preserve function(13, 26, 28-30, 35-37). Some of
the conformations disordered proteins may adopt can be structured. This transient structure
formation can underlie conservation in some IDRs, where specific interactions are needed to
maintain proper folds for protein-protein and protein-nucleic acid interactions(14, 38). Ultimately,
the absence of a specific 3D structure loosens the relationship between sequence and function.
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Viruses provide good test systems for exploring evolutionary conservation in IDRs. Viruses use
IDRs extensively, and their rapid evolutionary rates — driven by a combination of fast replication
times, massive numbers, and strong fitness selection — mean that even between serotypes of the
same virus, substantial divergence in IDRs is often observed (39-44). For viruses that infect the
same host, it is reasonable to expect equivalent selective pressures and equivalent protein function.
Taken together, viral IDRs offer a convenient opportunity to explore how large-scale variation in
IDR sequence enables similar functional output.

In this work, we investigated the relationship between IDR sequence and RNA interaction by
performing coarse-grained molecular dynamics simulations of coronavirus nucleocapsid (N)
proteins(45, 46). Coronaviruses are positive-sense single-stranded RNA viruses with relatively large
(~30 Kb) genomes (46—49). They typically consist of 4 major structural proteins: spike (S), envelope
(E), membrane (M), and the N protein. The N protein is the most abundant viral protein and drives
genomic RNA condensation and packaging during virion assembly, but has also been implicated in
the evasion of the host immune system(50-53). Given its abundance and importance, the N protein
is a tractable model system for exploring variation in sequence and function.

Coronavirus N proteins consist of five domains; two folded domains and three IDRs (Fig. 1A) (54).
Our prior work systematically characterized full-length SARS-CoV-2 N protein using a combination
of all-atom simulations, single-molecule Forster Resonance Energy Transfer (smFRET)
spectroscopy, and nanosecond Fluorescence Correlation Spectroscopy (ns-FCS) (51). This work
confirmed the disordered nature of the three IDRs and characterized their ensemble behavior in the
context of the full-length protein. The two N-terminal domains (the N-terminal domain, NTD, and
RNA-binding domain, RBD) are disordered and folded, respectively. In addition to characterization
in the absence of RNA, our more recent experimental and computational work showed that these
domains work together to enable high-affinity RNA binding (52). While the RBD alone binds (tU),s
with a binding affinity of ~0.6 uM", the addition of the NTD enhances this affinity around 30-fold.
This enhancement in binding affinity is facilitated by a fuzzy complex that forms between the
NTD-RBD and RNA, where the NTD remains fully disordered in the bound and unbound states.
While we cannot exclude other potential roles for the NTD, our work to date suggests that one of its
functions is to enhance N-protein:RNA interactions, presumably to facilitate genome packaging,

In this work, we focussed on the NTD and RBD as a model system for understanding the sequence
constraints on molecular function. While the NTD sequence is variable across N protein orthologs,
the presence of a disordered NTD is highly conserved in coronaviruses (Fig. 1B) (51). In contrast,
the RBD is highly conserved among orthologs, and, despite some variation in sequence leading to
changes in surface chemistry, it harbors a nearly identical fold across experimentally resolved and
computationally predicted structures (Fig. 1C).

Given the structurally similar RBDs but differing NTDs, we wondered whether different
coronavirus NTD-RBDs bind single-stranded RNA (ssRNA) in the same way, or whether they have
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distinct modes of interaction. Naively, given the large variation in N'TD sequence, one might expect
fundamentally different modes of recognition. However, recent work has shown that the
conservation of IDR ensemble properties is possible despite large changes in IDR sequence(12).

To address this question, we performed coarse-grained molecular dynamics (MD) simulations of
NTD-RBD constructs with poly-(rU),; to assess how changes in NTD sequence influence molecular
function, i.e., RNA binding. Using this approach, we sought to understand how the sequence
properties of an RNA binding domain and flanking disordered region enable them to cooperate to
bind nucleic acids and achieve specific binding affinities. Our findings demonstrate that the ability of
the SARS-CoV-2 nucleocapsid protein NTD to bind ssRNA is determined by a combination of
sequence composition and the specific positioning of positively charged amino acids within its linear
sequence. We identified critical 'hotspots' of protein-nucleic acid interaction in the SARS-CoV-2
NTD, where maintaining positive charge allows retention of wild-type binding affinity. These
'hotspots' result in a distinctive mode of ssRNA binding in the SARS-CoV-2 NTD-RBD complex,
which we observed to be conserved across several coronavirus orthologs, despite significant
variations in the NTD sequence. Our study highlights that disordered regions can exhibit conserved
interaction mechanisms, even in the absence of exact sequence conservation.

Results

“Inert” Intrinsically Disordered Regions Suppress RNA Binding

Our previous work used coarse-grained MD simulations paired with smFRET-based RNA binding
experiments to characterize the ability of the SCO2 NTD-RBD to bind ssRNA (52). Simulations
and experiments showed that the addition of the disordered NTDgc(, to the folded RBD resulted in
a 30-fold increase in the binding affinity for (rU),s compared to the RBD alone. We hypothesized
that specific residues in the NTDgco, formed favorable interactions with RNA, driving the enhanced
binding affinity observed. We further speculated that substituting the NTDgco, with an inert IDR
that interacts negligibly with RNA would result in a binding affinity similar to that of the RBD alone.

To our surprise, our simulations showed this was not the case.

In the Mpipi model, glycine and serine residues have negligible interactions with RNA or other
amino acids. This is in good agreement with prior experimental work that suggests GS-repeat
sequences behave as relatively inert Gaussian chains (55, 56). Therefore, we replaced the NTDgco,
with a length-matched GS repeat — (GS),s — and performed simulations with this (GS),5-RBDgco,
chimera (Fig. 2A). (23, 24, 57). Our simulations revealed repeated association and dissociation
events between (rU),s and the (GS),5-RBD constructs (Fig. 2B), enabling us to calculate an apparent
binding association constant, K, (see Methods for details).

To our surprise, the (GS);-RBD suppressed RNA binding compared to the RBD alone
((GS),5-RBD K, * = (2.0 + 0.3) x 107, whereas RBD K * = (3.7 + 0.4) x 10?) (Fig. 2D). This
result is driven by an entropic effect, whereby the (GS),s impedes the ability of RNA molecules to
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interact with the RBD. The NTD, in contrast, possesses sequence features that enable direct
interaction with RNA, notably residues 30-50, which enhance the macroscopic binding affinity (52,
58).

To investigate the contribution of a smaller and targeted inert region, we next replaced the NTDgcq,
30-50 residue region with a (GS);, linker. While we anticipated a decrease in binding affinity, we
expected it to still be stronger than that of the RBD alone. In actuality, we again observed a
suppression of RNA binding affinity, with the (GS),, demonstrating weaker binding affinity than the
RBD alone, with a K,* = (2.1 £ 0.3) x 10? (Fig. 2D), but similar to the (GS),5 replaced NTDgc(,.

It is widely known that sequence composition and patterning govern the properties adopted by
intrinsically disordered regions. However, for IDRs adjacent to RNA binding domains and their
binding interfaces, our results suggest that sequence properties can either enhance or suppress RNA
binding affinity, depending on the specific IDR sequence. Taken together, our results suggest that
the sequence of the N-terminal IDR adjacent to coronavirus RBDs needs to be relatively specific
and is most likely conserved, albeit not in the traditional sense of direct sequence alignment;
otherwise, without specific residues, the IDR could interfere with RNA binding to the extent of
suppressing binding affinity.

Coronavirus Nucleocapsid Protein NTDs have Conserved Sequence Composition

While NTD’s in coronavirus nucleocapsid proteins appear to always be disordered, their absolute
sequence conservation is poor (Fig. 1B, Supplementary Fig. 3). If NTDs exist to enhance RNA
binding affinity, and disordered N'TDs can suppress RNA binding if the ‘wrong’ sequence is present,
then how do coronavirus NTDs ensure tight RNA binding is conserved despite largescale variation
in sequence?

The decrease in binding affinity caused by (GS),, and (GS),; mutant NTDs indicates that any
enhancement in RNA binding provided by the NTDgco, is sequence dependent. This conclusion is
consistent with our prior work, in which small changes in NTD sequence had measurable effects on
RNA binding affinity as measured both by single-molecule experiments and by simulations (52).

Operating under the assumption that the NTDgco, has a role in enhancing RNA binding affinity of
the RBD (Supplementary Fig. 4), we reasoned there may be some selective pressure towards N'TD
sequences that result in a consistent macroscopic RNA binding affinity for the NTD-RBD.
Additionally, while RBD structures are highly conserved across coronaviruses, their charged surface
residues vary (Fig. 1D) (59). As such, we also wondered if there may be a co-evolutionary coupling
between the NTD sequence and the RBD surface. Thus despite diverging surface charge of the
RBDs, conserved interactions between the NTDs and their respective RBDs could lead to a
consistent macroscopic RNA binding affinity.
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To investigate this hypothesis, in addition to the NTD-RBD taken from SARS-CoV-2 (SCO2)), we
examined NTD-RBD constructs from five other coronaviruses: human coronaviruses OC43,
HKUI1, and 229E, the Middle East Respiratory Syndrome Coronavirus (MERS), and the Mouse
Hepatitis Virus (MHV1). We reasoned that focusing on coronaviruses that predominantly infect the
same host would ensure host selective pressures are consistent, thereby minimizing this as a
confounding factor to explain differences in RNA binding affinities.

We first examined NTD physicochemical properties that are routinely used to describe IDRs
(Supplementary Table S3-S6). Despite the large variation in NTD length, all NTDs possess a net
positive charge, with the least positive NTD possessing a net charge per residue of +0.050.
Expanding this analysis to 45 different coronavirus NTDs, we found no examples in which the net
charge was lower than +0.056 (Supplementary Fig. 5). This is consistent with RNA binding
proteins typically binding RNA through positive electrostatic surfaces that interact with negatively
charged RNA (60).

Next, we examined solvent-accessible residues on the RBD surface. We generated five RBD
structures for each of the coronaviruses using AlphaFold2, and then took the average of our
calculated properties across the five structures (57). The net charge per residue (NCPR) of the RBD
surface residues stratified into three categories: relatively positively charged (229E = 0.126, SCO2
=0.066, MERS = 0.052,) neutral (HKU1 = 0.0, MHV1 = -0.011), and negatively charged (OC43 =
-0.053).

In summary, while the surface charge of the RBD domains appears more variable, our analysis
suggests an extremely strong bias for coronavirus NTDs to retain a net positive charge, in line with
our expectation that these IDRs facilitate enhanced RNA binding. Compositional conservation in
the NTD, or the retention of specific physicochemical features (such as net charge), could enable
conserved interactions, despite lack of absolute sequence conservation.

Sequence Composition Alone Does Not Determine NTD Contribution to Binding Affinity

Since NTD composition is relatively consistent across orthologs, we wondered if sequence
composition alone was sufficient to dictate RNA binding affinity. To test this, we performed a tiling
experiment. Here, we repositioned the previously identified 30-50 residue positive charge block
region of the SCO2 NTD (NTDscq,) that we and others showed to be involved in single-stranded
RNA binding (52, 58). We placed this charge block at positions 1, 6, 11, 16, 21, 26 (referred to as
mutants T1, T6, T11, T16, T21, T26) and 31 (wild type) of the NTDgc, (Fig. 3A). Finally, we
calculated apparent binding affinities of each of these variants with (rU),s. These sequences maintain
the same sequence composition but rearrange the amino acids, which allows us to determine
whether there are positional contributions to RNA binding or if sequence composition alone is
sufficient to achieve RNA binding;
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To our surprise, the relative position of positive tiles has a significant impact on the apparent binding
affinity (Fig. 3B). Two mutants showed wild type-like binding affinities, yet the others bound RNA
more weakly. This suggests that the relative location of positive charge with respect to the RBD
tunes RNA binding affinity. Simultaneously, this result lends credence to a model in which mere
sequence composition is not sufficient to achieve ‘adequate’ (wild type) binding affinity.

To further test how sequence composition impacts RNA binding, we generated 386 scrambled
NTDsco, sequences in which the sequence composition is identical, yet the order of the amino acids
has been changed. An initial set of 172 scrambles were generated in four ways: The first by randomly
shuffling the NTDgco,; the second by shuftling the NTDgcp, while also making each amino acid
change be as chemically different from the wild-type sequence as possible in terms of charge and
aromaticity; third, by shuffling the NTDgcn, while forcing positively charged residues from falling in
the 30-50 residue region; and fourth, by shuffling the N'TDgcn, while restricting the majority of
charged residues to the 30-50 region or a region spanning residues 4-17. Using these scrambled
sequences, we performed coarse-grained MD simulations to measure K, with (tU),s.

Binding affinities were calculated for each of the scrambled sequences and compared with one
another (Fig 3D, Supp. Table 7). The dynamic range of K,  observed here spans five orders of
magnitude, demonstrating the dramatic impact relative amino acid position can have on binding
affinity. However, for the majority of the scrambled sequences, the binding affinity is fairly similar,
and, importantly, this “average” binding affinity is almost an order of magnitude weaker than the
wild-type NTD-RBD.

Taken together with our tiling simulations, these results suggest composition is not the sole
determinant of how the NTDgq, influences RNA binding. While 172 scrambled sequences is only a
fraction of the total number of possible sequence compositions that could be generated for the
NTDgcop, the observation that the wild-type NTDgco, sequence is among those with the highest
apparent affinity suggests that the ordering of the residues in the NTDgcq, is specific.

Disordered Region Residue Sequence Positioning Dictates RNA Binding Capacity

While most scrambled sequences had similar binding affinities that were much weaker than the
wild-type sequence, we identified a subset of sequences that had binding affinities equal to or greater
than that of the wild-type sequence. Based on our tiling simulations, we reasoned that the relative
position of positively charged residues might underlie the increased binding affinity of these select
sequences, highlighting regions of the NTD that are more binding-competent.

To assess how the position of positively charged residues correlates with binding affinity, we plotted
binding affinity versus the average position of all positively charged residues in each scrambled
sequence that we initially tested (Fig 3E, blue circles are the binned means of the first 172
sequence). The average position is calculated as the mean of the location of the arginine and lysine
residues in the linear sequence of the NTDgcp,. This analysis revealed a correlation between strong
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binders and the average position of positively charged residues. When the average position of
positive residues is around residues 30-40, binding affinity is drastically increased in comparison to
the other regions. This same region is relatively positively charged in the wild-type NTDgcqp,.

The importance of the position of positively charged residues offers a ‘structural’ explanation for the
enhanced binding affinity afforded by the wild-type NTD. Charged residues within this region
enable the formation of a ‘fuzzy groove’. One half of this groove is made of the positively-charged
RBD, while the other half comes from the NTD. This fuzzy groove enables simultaneous
interactions between the NTDgco, and the RBDgco, with RNA and, thus, tight RNA binding (Fig
30).

Curiously, we observed a relationship between the average positioning of positively charged residues
and binding affinity with similarities to our tiling simulations. We binned the scrambled sequences by
average positive charge positioning and compared their binding affinities. The two bins that spanned
residues 5-10 and 10-15, had binding affinities on average equal to the bin that contained the
wild-type sequence. Bins that spanned residues 15-20 and 20-25 were each significantly different
from the wild type bin (p = 0.00013 and 0.016, respectively ), and both were weaker on average than
the wild type bin. Regions that clustered their charge between residues 30-35 and 35-40 had
significantly higher binding affinities in comparison to the wild type bin. This supports our
hypothesis that the relative positioning of positive residues greatly influences the binding affinity and
that certain NTD regions are more binding-competent than others.

We next investigated how the arrangement of positively charged residues impacts the variability of
binding affinities within each region. Despite observing variations in binding competence among
different regions on average, there was still a wide range of affinities within each region. We
hypothesized that the clustering of charged residues, which is not captured by averaging their linear
positions, influences binding affinity.

To visualize this, we used an inverse weighted distance IWD+) metric to calculate the charge
clustering of the positive residues arginine and lysine. When plotting the IWD+ values over our
binned data (Fig 3E), we observed relatively consistent positive clustering for most sequences we
generated. However, we noticed that the bins spanning residues 5-15 exhibited higher positive
clustering due to the N-terminal positioning of the average positive residues. Even within these bins,
there were sequences with lower clustering and weaker binding affinities compared to highly
clustered sequences. Additionally, the wild-type sequence showed higher positive clustering and had
an increased binding affinity compared to sequences with less clustering within the region
encompassing residues 25-30.

We noticed several sequences in different regions that exhibited significantly increased clustering of
charged residues and binding affinities. We then created a second set of sequences. Our aim was to
enhance the average binding affinity in each region by clustering the charged residues. Given the
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generally higher binding affinities for sequences with positively charged residues clustered closer to
the 30-50 amino acid region, we expected to observe a response where highly clustered sequences
would have increased binding affinities in comparison to lower clustered sequences. We also
expected that the average positioning of positively charged amino acids, when closer to the
C-terminal end of the NTD, would have higher binding affinities than sequences with charged
residues positioned closer to the N-terminal portion of the NTD.

To test this hypothesis, we generated sequences by scrambling and then constraining the final
sequences to have all seven positively charged residues within *2 residues of their respective bin
boundaries. This resulted in sequences with increased positive clustering, as indicated by the IWD+
metric. We calculated the binding affinity of these sequences, using the same methodology as the
initial scrambled sequences, plotted them alongside their IWD+ values, and compared them to the
original sequences (Fig 3F). As anticipated, the highly clustered sequences exhibited, on average,
increased binding affinities in each region. We classified the sequences based on either their
clustering similarity to the wild-type sequence or significantly higher clustering, Sequences with
clustering similar to the wild type followed the previous tiling experiments in terms of how sequence
location affected binding affinity. On the other hand, sequences with increased clustered charge
showed higher binding affinities, often comparable to the wild-type sequence. Further, the clustered
positively charged sequences displayed an exponential relationship between the proximity to the
C-terminal region and their apparent binding affinity, highlighting how the positioning of charge
impacts NTD-RBD ssRNA binding,

Analysis of the bound-state trajectories revealed a dynamic or “fuzzy” complex in which specific
subregions of the NTDgcp, contact the RNA. From the simulations of scrambled NTDgcq,, we
observed that particular regions of charge are sufficient to increase binding affinity. Thus, we
hypothesized that we would find such charged patches within orthologous NTD sequences that
exhibited increased binding affinity. Here we propose a model for conserved disorder without
conserved linear sequence. Similar to how IDRs that contain SLiMs can exhibit sequence
heterogeneity as long as short motifs are maintained(61), regions that contain conserved charge
clustering can also have high sequence dissimilarity but still maintain sufficiently strong binding
affinity for ssSRNA.

NTD-RBD:RNA Behavior in the Bound State ts Conserved Across Orthologs

Our scrambles confirm that the NTD sequence has a substantial impact on NTD-RBD RNA
binding affinity. We therefore asked if natural NTD sequences encode a similar “fuzzy groove”
binding mode, despite seemingly large-scale variation in NTD sequence and RBD surface chemistry.
In this model, specific subregions of the NTD come into closer proximity to the RBD driven by
favorable NTD-RNA interactions on one side and RBD-RNA interactions on the other (Fig. 3C).
To test this, we performed simulations of each of the six ortholog NTD-RBD constructs with (rU),;s
and assessed the bound-state conformational ensemble of the NTD.
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Bound-state ensembles were visualized using scaling maps. Scaling maps capture the average
inter-residue distance between all pairs of residues for RNA-bound conformers. We normalized the
scaling maps by the inter-residue distance of sequence-matched NTD-RBD simulations performed
in the absence of RNA (Fig. 4A). Shades of blue reflect distances that are closer together in the
bound state, while shades of red denote regions that are further apart in the bound state. For SCO?2,
this analysis identified two regions in the NTD that are closer to the RBD in the bound state
ensemble centered around residues 10-20 and residues 30-50, similar to our tiling simulations and as
reported previously(52). This analysis can be done selectively for one of the residues in the NTD to
visualize where it increases RBD interactions when bound to RNA by mapping its distances across
the entire NTD-RBD construct with RBD residues colored with respect to NTD distance (Fig. 4B).
Doing so shows that in the bound state, the NTD moves closer to the positively charged RBD 83
extension, highlighting the formation of a fuzzy positive groove between the positive 33 extension
and positive subregions in the NTDgco,.

We repeated this analysis for the remaining five orthologs to determine if these NTDs also move
closer to the RBD. In line with our expectations, this analysis reveals that in all cases, two specific
subregions within the NTD come closer to the RBD. Despite large-scale variation in both
folded-domain surface charge and NTD sequence, the mode of RNA binding appears to be largely
conserved across the six coronavirus NTD-RBD constructs examined.

Discussion and Conclusion

Intrinsically disordered proteins and protein regions are prevalent across eukaryotic, prokaryotic, and
viral proteomes. They play a wide variety of essential roles yet — perhaps paradoxically — often
appear to be relatively pootly conserved sequences by alignment. In this study, we sought to
understand how a specific molecular function (RNA binding) could be conserved despite large-scale
changes in amino acid sequence. We utilized two domains of various coronavirus nucleocapsid
protein orthologs as a convenient model that contains both a disordered region (NTD) and a folded
domain (RBD) that binds RNA. Despite poor sequence conservation assessed by alignhment across
NTDs, we found that the orthologs were compositionally conserved. That is, the orthologs have
similar charge properties in both the NTD and portions of the RBD. Specifically, NTDs harbor a
net positive charge, while RBDs retain specific positively charged regions on their surface. Despite
this conservation, the length and sequence of N protein NTDs vary dramatically, and while RBDs
maintain the same 3D structure, orthologous RBDs showed a diverse set of surface properties, from

highly negatively charged to highly positively charged.

To assess how the sequence composition of the disordered NTDs influences interactions with the
RBDs and impacts RNA binding, we performed various coarse-grained molecular dynamics
simulations of coronavirus nucleocapsid proteins with single-stranded RNA. These simulations
enabled us to interrogate the role of sequence composition and residue positioning in coronavirus
NTDs ability to increase binding affinity of the NTD-RBD. We first showed, that replacing the
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NTD with a glycine-serine repeat sequence suppresses RNA binding, illustrating the impact that
IDR sequence can have on intermolecular interactions. By testing hundreds of different sequences
with the same overall composition, we determined that composition alone does not dictate RNA
binding affinity. Instead, our simulations highlight the importance of clusters of positively charged
residues, and that the relative position of positive clusters along the NTD also matter. Taken
together, our use of rationally designed synthetic sequences illustrates that, at least in simulations, the
absolute linear sequence can have a profound impact on IDR-mediated molecular interactions, even
for simple systems using simple physics-based models.

Finally, we performed simulations of five orthologous NTD-RBD constructs, noting that despite
dramatic changes in both the charge properties of the RBDs and the NTD sequence, the
bound-state ensemble conformational properties were conserved, with the NTD wrapping against
the positively charged beta-extension, forming a so-called “fuzzy groove” that can accommodate
RNA. Despite differing sequences, we uncovered a similar mode of interaction between the NTDs
and their RBDs, with each NTD having two ‘hotspots’ of interaction that coordinate to interact
more often in the bound state with their RBD’s positively charged 3 extension. Curiously, the
ortholog for which these hotspots are least prominent (229E) also has the most positively charged
RBD, pointing to a potential mechanism to compensate for a ‘weaker’ (less positively charged) NTD.
Both our tiling simulations and scramble simulations of the NTDgcy,, showed positional
contributions to RNA binding affinity, which corroborated the role of the ‘hotspots’ in increasing
binding affinity and supported a model where proper positioning of specific residues, in this case
positively charged, is the important factor for a flanking disordered NTDs ability to increase RNA
binding affinity. While they lack absolute sequence conservation, the conserved nature of these
hotspots and their interactions with the RBD B3 extension opens up the possibility of developing
inhibitors that can interact preferentially with the B3 extension to modulate the nucleocapsid
proteins ability to bind ssRNA. The conservation of ensemble conformational properties in the
absence of sequence conservation highlights how IDRs can simultaneously facilitate functional
conservation despite supporting highly variable sequences.

While this study focused on the NTD-RBD from coronavirus nucleocapsid proteins, we expect that
the information learned here will be widely applicable to a range of disordered nucleic acid-binding
proteins. While absolute sequence conservation may not be present, there is still the possibility of
conserved behavior encoded into diverging sequences. Rather than solely focusing on sequence
alignments to provide information on conservation and important residues, quantitatively describing
the ensemble that a disordered region takes on and assessing how it behaves with and without its
ligand(s) may provide better insight into the residues that are important and sequence features that
need to be maintained to ensure proper biological function.

Methods

Molecular Dynamsics Stmulations
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All simulations were performed using the LAMMPS simulation engine(62). We performed molecular
dynamics simulations in the NVT ensemble using the default parameters of the physics-driven
coarse-grained force-field Mpipi developed by Joseph et al. (63) The model represents both amino
acid residues and nucleotides as chemically unique singular beads and was parameterized to
recapitulate the behavior of disordered proteins in isolation as well as their ability to undergo phase
separation with and without RNA. Inter-bead interactions consist of a combination of short-range
contributions from a Wang-Frenkel potential, which captures a combination of Van der Waals,
cation-pi, and pi-pi interactions, and a long-range Coulombic potential for amino acids with net
charge and RNA nucleotides. The ability of the Mpipi force field to recapitulate disordered protein
dimensions has been previously shown (63, 64). Simulations were performed under an effective
ionic strength of 50 mM NaCl, conditions we previously found to engender good agreement
between simulation and experiment when comparing with experimentally-measured RNA binding
affinities using single-molecule experiments (52).

We also assessed the ability of the Mpipi forcefield to recapitulate single-stranded RNA (ssRNA)
dimensions by comparing simulations of (tU),, with scattering data from small-angle X-ray (SAXS)
experiments for the same construct(65). This comparison revealed excellent agreement across the
full scattering curve and in terms of the scattering-derived radius of gyration; using the Molecular
Form Factor approach of Riback et al, R,/™ = 30.9 £ 0.1 A while R = 302 + 0.3 A)
(Supplementary Fig. 1) (60).

Simulations were performed in a 30 nm’ simulation box with periodic boundary conditions. Protein
and RNA are allowed to diffuse freely throughout the box. Disordered regions and ssRNA behave
as dynamic flexible polymers, sampling an ensemble of conformations (63). However, as done
previously, folded domains were made rigid, and residues buried within folded domains experienced
downscaled non-bonded interactions(52, 63). Unless otherwise specified, all simulations were run
for 300 million steps per replicate. The exceptions are the ‘scrambled’ simulations, which were run
for 100 million steps per replicate. Protein and RNA configurations were saved every 10,000 steps,
and the first 0.2% was removed for equilibration. Visualization of protein-RNA complexes was done
with Protein Imager and VMD (67, 68). Simulations were analyzed using SOURSOP and MDTraj
(69, 70). Small angle X-ray scattering was analyzed using the Molecular Form Factor (MFF)
(http://sosnick.uchicago.edu/SAXSonlDPs), while synthetic scattering data for simulations were
generated using FOXS default settings(66, 71).

We performed simulations of the NTD-RBD, NTD, and RBD of six coronavirus orthologs.
Specifically, we examined five coronaviruses that infect humans: SARS-CoV-2 (SCO2), Middle
Eastern Respiratory Syndrome virus (MERS), Human Coronaviruses OC43, Human Coronavirus
HKU1, and Human Coronavirus 229E, as well as Murine Hepatitis Virus (MHV1). Sequence
alignments were compared to determine a region of the RBD that was well conserved between all
orthologs to delineate the start and end positions of the NTD and RBD’s of each ortholog (54,
72-T74). For simulations with ssSRNA, all simulations were done using (rU),;
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To capture conformational heterogeneity in an artificially rigid structure, we utilized Colabfold to
generate five different starting structures for each coronavirus orthologous RBD (23, 57). For
simulations of wild-type versions of each ortholog's NTD-RBD all five starting structutes are used,
to enable conclusions to be less biased by a specific starting conformation. As expected, certain
RBD conformers bind RNA better than others, but in all cases where different NTDs are
compared, the same sets of RBD conformers are used, such that any RBD conformation-specific
biases are consistent across the set (Supplementary Fig. 2). For the large scrambled library, 1
conformation for the SCO2 RBD is used. All simulations were run with multiple replicates per
starting RBD structure, with a minimum of five replicates per RBD conformation.

Limitations of Coarse-Grained Stmulations

Our use of the Mpipi model should not be taken to imply that RNA or proteins are faithfully
represented at one bead per residue/nucleotide resolution. Both proteins and RNA are complex
biomolecules with many degrees of freedom, a chemically heterogeneous structure, and can engage
in a variety of sequence and structure-specific interactions that are not captured by a simplified
coarse-grain model. Our goal in using a simplified coarse-grain model is to enable high-throughput
biophysical assessment in a system that, based on prior work, we have good reason to believe is
semi-quantitative in terms of relative accuracy (52, 63). While we refer to the molecules in our
simulations as protein and RNA, in reality, they are better thought of as RNA- and protein-flavored
polymers. The simplicity of this model enables us to address questions that would be intractable
using either higher-resolution simulation approaches or experiments. Despite this, we are under no
illusion regarding the simplifying assumptions made for a coarse-grain model.

Calculating Apparent Association Constants From Simulations

We determined apparent association constants (K,) by using an updated version of our previous
center of mass (COM) calculations that were able to qualitatively recapitulate SARS-CoV-2
NTD-RBD single-stranded RNA binding (52). To do this, post-equilibration simulation frames were
divided into bound and unbound states. This delineation was achieved by first taking the
intermolecular center-of-mass distances between the protein and the RNA and plotting the
distribution of distances. The histogram of intermolecular distances follows a bimodal distribution
that reports on the bound and unbound states, and can be fit with two Gaussians (Fig. 2C). We then
determined the intersection that minimizes the overlap of the two distributions to define a cutoff
distance. The cutoff distance varies based on the size of the protein and RNA. Finally, as done
previously, we classify frames as bound or unbound by assessing the linear intermolecular COM
distance trajectory and delineating frames as bound when five or more frames are below the cutoff
distance. This minimum number of consecutive frames allows us to distinguish between transient
random interactions between protein and RNA vs. encounters with a reasonable “lifetime”, implying
direct and continuous interaction. The distributions and distance cutoffs are calculated for every set
of NTD,-RBD,, + (rU), simulations, where @ and & represent specific NTD or RBD sequences and #
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the length of the single-stranded (tU), allowing us to determine protein-RNA specific distance
thresholds for each simulation.

The resultant fraction of bound frames is used to calculate an apparent Ky, with the equation:

_ (l_fbound)z
b = —NAVf (Eq. 1)

bound

Here f bound refers to the fraction of frames where the protein and RNA are determined to be in the
bound state from our COM-COM distribution analysis. NArefers to Avagodro’s constant, and V is
the simulation box volume in liters, which returns a K b in mol/L. K A is then calculated using the
expression K = 1/K D While we determine if two molecules are bound or unbound in a different

mannet, this approach is analogous to that of Tesei ¢f al. (75).

It is important to note that the K,s determined from these simulations are not meant to represent
absolute values that would be comparable to those determined from experiment. Our prior work has
shown that K,s calculated from Mpipi simulations for this system lack absolute agreement with
experimentally measured values. Despite this, when experiment and simulation-derived K, values are
normalized by an internally consistent reference (i.e., the K, obtained from NTD-RBD binding
(tU),s), we see good agreement between simulations and experiment, both as a function of RNA
length and as a function of the presence/absence of the N'TD (52). To that end, binding affinity here
is reported as K,*, a normalized binding affinity we define as the ratio of the apparent K, of a
given protein + RNA simulation divided by the corresponding K, for the analogous SCO2
NTD-RBD binding to (tU),s. This enables the SCO2 NTD-RBD + (tU),s simulations binding
affinity to be a reference point with which to understand the strength of interactions of other
orthologs. All K * values are thus greater than 1 (stronger binding than the SCO2 NTD-RBD +
(tU),s) or less than 1 (weaker binding than the SCO2 NTD-RBD + (rU),,).

Error is propagated for our ratio (K,*) using:

Rerror A\/ Aerror 2 Berror 2
R - ( A ) +( B ) (Eq 2)

R and R, here represent the ratio and the error of the ratio. 4 and B represent the numerator and

denominator of our ratios, respectively, and A, and B, are their associated errors (standard error

error error

of the mean).

Calculating Charge Clustering tn Disordered Regions

Charge clustering is quantified by the inverse weighted distance IWD), a metric that has been
applied to study amino acid clustering in several systems (76—79). Unlike the patterning parameters x
(“kappa”) or sequence charge decoration (SCD), which quantify the patterning of oppositely
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charged residues with respect to one another, here our interest is on the clustering of positive
residues only(80, 81). The IWD score allows us to quantify the clustering of a specific subset of
residues. When residues are clustered together, the IWD score is high, whereas when residues are
evenly distributed, the IWD score is low. IWD scores were calculated using sparrow

(https://github.com/idptools/sparrow).

Statistical Analysis

Every simulation has a minimum of five independent replicates, and calculated values are presented
as 95% confidence intervals (box plots, with medians marked), mean and standard error of the
mean, or geometric mean and geometric standard deviation (clarified in text below figures). Fitting
of Gaussian distributions was done in Python using scipy.optimize.curve_fit (82).

Data Availability and Software
Analysis code and data (calculated distance distributions and contact map information) are deposited
at https://oithub.com/holehouse-lab/supportingdata/tree/master/2023 /alston 2023. For further

information on the use of code, please refer to the deposited Jupyter notebooks.
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Figure 1. Coronavirus nucleocapsid proteins possess a disordered, poorly-conserved
N-terminal domain (NTD) and a more well-conserved folded RNA binding domain (RBD).
A. Schematic showing full-length nucleocapsid protein architectures from coronaviruses. The
nucleocapsid protein contains three IDRs (NTD, Linker, CTD) and two folded domains (RBD, and
Dimerization domains). B. Per-residue conservation calculated over 45 orthologous NTR-RBD
constructs, including SCO2, MERS, OC43, HKU1, 229E, and MHV1. Conservation is calculated
based on the positional Shannon entropy, with values shown only for residues where 80% or more
of orthologous possess a residue. The NTD contains many gaps in a relatively poor alighment, while
the RBD is almost uniformly populated with relatively highly conserved residues. C. Overlay of
RBD structures for SCO2, MERS, OC43, HKU1, 229E, and MHV1, revealing a high degree of
structural conservation in the RBD fold. D. Surface charge properties of the six RBD structures
overlaid in panel C, highlighting differences in surface charge properties despite the conservation of
the overall fold.
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Figure 2. An inert disordered region can suppress a folded domain’s RNA binding ability. A.
A snapshot of the bound state from a (GS),5-RBD + (tU),s simulation trajectory. Simulations utilize
the Mpipi forcefield (63). The model represents both amino acids and nucleotides as single beads
with specific amino acid-amino acid and amino acid-nucleotide interactions. Folded domains are
rigid, and both disordered regions and nucleic acids are dynamic. B. The distances between the
COM of the (GS),;5-RBD and (tU),s are plotted over the course of the simulation. A distance
threshold (black line) is determined in C (see also Methods) and plotted to delineate the bound and
unbound frames. C. COM-COM distances from B are plotted as a histogram and show a bimodal
distribution that correlates with the bound and unbound states of the protein. The distributions are
fitted with dual Gaussians. A distance threshold, which separates bound and unbound frames, is
determined by minimizing the overlap of the two populations. D. Schematic of the four constructs
shown in current “D” + (rU),s. E. An apparent binding affinity (K,) is calculated by utilizing the
fraction of bound and unbound frames and Eq. 1. This is then converted to a relative apparent
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binding affinity (K,*) by normalizing all values by dividing by the K, calculated from the SCO2
NTD-RBD + (rU),s simulations. Blue points represent each individual simulation K,*, while the red
point is the mean of all of the replicate simulations for a given construct. The error bars are the ratio
propagated standard error of the mean calculated using Eq. 2. Significance is determined by a
Mann-Whitney-Wilcoxon test two-sided with Bonferroni correction. p-value annotation legend: (ns:
5.00e-02 < p <= 1.00e+00), (*: 1.00e-02 < p <= 5.00e-02), (**: 1.00e-03 < p <= 1.00e-02), (***:
1.00e-04 < p <= 1.00e-03), (****: p <= 1.00e-04)
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Figure 3. Clusters of positively charged residues determine the affinity enhancement
provided by the NTD on RNA binding A. Schematic showing the wild type and tiling mutants
that systematically reposition residues 30-50 from the wild-type sequence. B. Binding affinity for
tiling mutants schematized in panel A. Tiling mutant T6 and T11 show wildtype-like binding affinity,
whereas all other variants show binding affinity less than the wild type. C. Graphical schematic
highlighting the positively-charged “fuzzy groove” that can form upon RNA binding between the
positively-charged beta extension on the RBD and the cluster of positively charged residues on the
NTD. In the RBD positively charged surfaces are colored blue, negatively charged surfaces are
colored red, and neutral surfaces are colored white. A representative NTD is drawn with the blue
circles representing the relative positions of the positively charged residues. D. Binding affinities for
172 scramble variants. Each variant reports on the binding affinity for an NTD-RBD construct,
where for each variant the NTD sequence was randomly scrambled. Despite having an identical

amino acid composition, sequence order enables a four-order-of-magnitude change in binding
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affinity, highlighting the importance of sequence in dictating binding affinity. E. Scramble sequences
plotted with binding affinity vs. the average position of positively charged residues distributed across
the sequence. For positional bins, average binding affinity is shown as a blue circle. Individual points
are colored based on the IWD+ score, which reports on the clustering of positively charged residues
(darker colors = more highly clustered). F. Same data as shown in E, with an additional set of
scrambles designed to cluster positively charged residues. The average binding affinity of this second

set is shown as black circles.
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Figure 4. Orthologous nucleocapsid proteins show similar bound-state ensembles despite
variations in RBD surface charge residues and NTD sequence. A. Scaling maps quantify the
average inter-residue distance between NTD residues (X-axis, colored pink) and NTD or RBD
residues (Y-axis, colored pink and light blue respectively) in the bound state. Heatmap values are
calculated by calculating the average inter-residue distance in the RNA-bound state and dividing that
distance by the average inter-residue distance in the RNA-unbound state. Purple colors report on
inter-residue distances that are closer together in the bound state while green colors report on
inter-residue distances that are further apart in the unbound state. In all six orthologs, the NTD is
closer to the B-extension in the bound state, reporting on the formation of a positive fuzzy groove
in the bound state. B. Regions closer to the NTD in the RNA-bound state are highlighted on the
SCO2 RBD structure in shades of purple with more intense purple signifying closer on average.
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