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Abstract—Incorrect circuit timing often leads to errors in the
field, including silent data corruption. Once a circuit violates
timing, recovery can be difficult even when the violation is
detected. Canary flip-flops have previously been proposed to
identify when the desired slack of a path has first been violated
in functional mode even before failure occurs. We show how such
flip-flops can be combined in a MISR to also provide enhanced
coverage during manufacturing test and scan-based field test.

Index Terms—Canary Flip-flops, Design for Test, Fault Cov-
erage, Silent Data Corruption (SDC)

I. INTRODUCTION

DFT (Design for Testability) circuitry is often added to
designs to enhance the controllability and observability of
a circuit during test. Common examples of such circuitry
include scan flip-flops, scan chains, on-chip decompressors,
and MISRs (multiple input signature registers), among others.

Although adding circuit logic to implement scan costs area,
power, and routing, the overhead cost is overshadowed by
significant benefits in fault coverage and the ability to perform
combinational, as opposed to sequential, ATPG (automatic test
pattern generation). Similarly, the overhead cost of on-chip
decompressors is offset by the great benefits in reduced test
data volume that can be achieved. Circuits used to implement
memory and logic BIST (built-in-self test) are also commonly
included in SoCs (System on Chips) to enable automatic
testing of logic and memory without requiring the use of
an external tester [1], [2]. Such circuitry is especially useful
when tests must be performed at regular intervals and/or upon
power up or power down in the field to detect new, developing
problems due to aging and latent defects. Test-per-scan, used
in LBIST, is one approach that shifts the entire pseudo-random
pattern into a circuit-under-test using scan chains before the
test is applied. An alternate approach, test-per-clock feeds the
outputs of the test pattern generator to the circuit under test
on each clock and collects the results from the outputs of the
circuit under test with a signature analyzer [3], [4].

While in-field tests may be used for detecting problems that
have already arisen, they are not used for detecting erroneous
operation of a device in functional mode. For example, it is
possible for environmental factors, such as temperature, to
interact with increased delays due to aging to cause timing
failures in functional mode that may not have been detected

This work was supported by NSF CCF1812777 and CCF1814928.

during an initial in-field test session (e.g. when the circuit tem-
perature was lower). Other approaches are needed to detect,
and sometimes correct errors that occur during normal op-
eration. Some previously proposed approaches included triple
modular redundancy [5], RAZOR [6], [7], re-executing code in
alternative threads [8], parity [9], and hardware assertions [10],
among others.

However, while detecting errors is important, being able to
predict that errors are likely to occur soon is potentially even
more useful. Canary flip-flops [11]-[13] are one approach that
has previously been proposed to identify when the delay of a
circuit path has exceeded a predetermined slack. If that slack
is well-designed, and if the delay increase is relatively gradual,
then a canary flip-flop may be able to identify that a future
timing failure may happen soon, and appropriate responses,
such as increasing the clock period or increasing the voltage,
may be employed to reduce the likelihood of such a failure
before it occurs.

In the past, the use of MISRs composed of flip-flops that
can capture data during scan shift to increase coverage without
requiring an increase in test time have been proposed. For
example, in [14] the authors proposed the use of a MISR
for the detection of static cell-aware faults during scan shift
that would otherwise be missed by a stuck-at test set. They
showed that a high percentage of the otherwise missed cell-
aware faults could be detected fortuitously during scan shift.
In subsequent work, the authors of [15], [16] showed that the
number of detections of the otherwise least detected stuck-at
faults could also be significantly increased if a MISR were
used to detect defects during scan shift. These results gave
further evidence for the usefulness of such a DFT structure
for fortuitous detection of defects.

However, while the MISR structure proposed in [14] and
further analyzed in [16] provides significant benefits during
test—including potentially during field test—the added flip-
flops remain unused in the functional mode of operation. Thus,
in this paper, we consider an approach that allows those added
flip-flops to be used as canary flip-flops during functional
mode while serving as MISR flip-flops during scan shift. Such
an approach may help to reduce silent data corruption (SDC)
by increasing the effectiveness of any scan-based field tests
that are applied while also helping to prevent some timing
related failures in functional mode.



Of course, doubling the number of flip-flops in the circuit by
including all of them in the set of flip-flops used to implement
a canary structure and/or whose data will be fed into the MISR
is much too expensive. As a result, we will show how the
regular functional flip-flops can be selected to provide good
coverage of critical paths for detection of delays by the canary
structure while overall spatial coverage of the circuit (and thus
coverage of the corresponding stuck-at faults) can be enhanced
with the MISR. In addition, lumped delays that develop along
paths that were predicted to be non-critical but that become
critical in a particular chip instance due to defects and/or
significant process variations are more likely to be detected
with this selection of canary flip-flops as well.

II. DFT ARCHITECTURE

The proposed DFT and fault tolerance architecture aims to
combine canary flip-flops with a MISR that be used to detect
defects during scan shift. In this section, a brief overview of
the two types of components and how they can be combined
in a dual use fashion is presented.

A. Canary Flip-Flops
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Fig. 1. Canary flip-flop design previously proposed to detect increasing delay
or increase performance

Canary flip-flops, such as the flip-flop arrangement shown
in Figure 1, have previously been proposed to identify that
increasing delay is close to causing a timing violation. In the
figure, the functional flip-flop captures the data that will be
used by the circuit on the next clock cycle. The canary flip-flop
captures data that travels through some extra delay elements
(in this case two inverters). Ideally, it will always capture the
same value as the functional flip-flop as long as the critical
path delay for the path arriving at the functional flip-flop has
a slack greater than the added delay element.

This is accomplished because the delay to the canary flip-
flop is designed to be greater than the delay to the functional
flip-flop. Unless there is a defect in the functional flip-flop
itself or in the branch directly leading to the functional flip-
flop, gradually increasing excessive delay should cause a
failure in the canary flip-flop before the functional flip-flop
experiences a failure. When the delay gets too large to meet the
timing needed for correct data arrival at the canary flip-flop,
but while the delay to the functional flip-flop is still acceptable,
the XOR gate used to indicate that a timing failure may be
imminent will be set equal to a logic one.

Canary flip-flops have previously been used for performance
enhancement. In particular, they can allow the voltage applied
to the circuit to be lowered (reducing power) or the clock
frequency increased (increasing performance) without causing
timing issues. They can also be used to detect imminent

failures due to increases in temperature or due to aging [17]-
[20].

Fig. 2. 3-bit Multiple Input Signature Register (MISR)

B. Multiple Input Signature Registers

Another type of structure that is used for test and fault
tolerance is a MISR. A 3-bit MISR is shown in Figure 2.
Like a linear feedback shift register (LFSR), a MISR consists
of a shift register composed of D flip-flops, where the output
of the shift register is fed back around to the input. Selected
flip-flop inputs are also connected to the feedback signal
through XOR gates, where the tap points for the flip-flops
connected to the feedback are selected based upon well-known
primitive polynomials [21]. The primitive polynomial used is
determined by the number of bits (i.e. flip-flops) in the MISR.
A MISR contains additional XOR gates that allow external
input data to be used to determine the values captured in
the flip-flops on the next clock edge. Over multiple clock
cycles, the input values coming into the MISR combine with
the current MISR values to create a distinctive signature
characteristic of the input value history. Ideally, a change in
the input values coming into the MISR will be reflected in a
different signature being stored in the MISR.

A MISR is valuable during test because the outputs of a
circuit can be fed into the MISR’s parallel inputs. For example,
it is possible to feed the outputs of multiple scan chains into a
MISR during BIST so that a single signature can be collected
for the entire scan out sequence. This signature can then be
compared to a good circuit signature to determine if the circuit
has passed the test.

C. Using a MISR to Detect Defects during Scan Shift
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Fig. 3. Scan Chain with MISR used to detect defects during scan shift

In [14], the authors proposed connecting a MISR not only
to the scan out signals of the scan chains, but to the data
inputs of individual scan cells, as shown in Figure 3. The
advantage of this arrangement is that it allows for the capture
of data from the circuit during scan shift without overwriting
the contents of the scan chain that are being shifted in or
shifted out. As a result, the structure was able to fortuitously
detect defects during scan shift without requiring any change
in the ATPG algorithm or pattern set. The approach also can
be implemented in the presence of an on-chip decompressor.

The power of their approach lies in the fact that the number
of test patterns that can be applied during test can increase
by a factor corresponding to the length of the scan chain
because each “intermediate” state during scan shift becomes



a test pattern. As long as the changes in the circuit that arise
from the “intermediate” patterns are propagated to the MISR,
defective behavior may be caught.

The authors of [14] also showed that a significant fraction of
the static cell-aware faults that would otherwise be missed by a
stuck-at test set can be fortuitously detected during scan shift.
95% of the static cell-aware faults that would have otherwise
been missed were caught fortuitously in an industrial circuit
—reducing the number of “top-off” patterns that had to be
added for cell-aware fault detection.

In [16], the authors explored the number of times that stuck-
at faults are detected by the “intermediate” patterns. As the
number of stuck-at fault detections increases, the probability
of detecting whatever untargeted faults or unmodeled defects
may be present at that site increases as well. However, the
probability of detecting an as yet undetected defect with
an additional stuck-at fault detection decreases exponentially
as the number of previous detections of that stuck-at fault
increases [22]. Thus, it is most critical to detect the faults
that have been detected the least number of times again. In
[16] the authors showed that flip-flops selected for stuck-
at fault detections with a greedy algorithm could lead to
high percentages of these low-detected stuck-at faults having
additional detections.

D. Combining Canary Flip-Flops with the Scan Shift MISR
to Create a Dual Use DFT Structure

Both the canary flip-flop approach and the previously pro-
posed scan shift MISR require the use of additional flip-flops
connected to the same circuit signals as the functional flip-
flops (possibly through some additional gates). However, while
the canary flip-flops may achieve their most important use in
functional mode, the MISR is used primarily in test mode.
By creating a single structure that performs both functions,
we can amortize the cost of the additional flip-flops over the
entire lifetime of the circuit—including functional mode and
test. One possible implementation of such a structure is shown
in Figure 4.
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Fig. 4. Dual Use Structure in which Flip-Flops are shared between Canary
FF use in Functional Mode and MISR during Scan Shift

In this figure, a Mux-D Scan Flip-Flop is shown as a
functional flip-flop connected to a Multiplexer. The select line
of the multiplexer is connected to the “Scan Enable” signal.
The dual use flip-flop is shown below the functional flip-flop.
This flip-flop will serve as a MISR flip-flop when “Test Mode”
is equal to 1. It will serve as a Canary flip-flop when “Test
Mode” is equal to O.

The Canary Flip-Flop circuitry consists of the dual use flip-
flop, the delay element (whose desired delay will be dependent
upon the relative delay to both flip-flops in the structure and

the desired slack) and the XOR gate that compares the values
captured in the functional flip-flop and in the dual use flip-flop.

The MISR circuitry in this figure consists of the Dual Use
Flip-Flop and the XOR gate feeding into the D input of the
Dual Use Flip-Flop. The full MISR will also contain additional
XORs for the taps in the feedback.

The AND gate on the left side of the figure is used to
determine whether the dual-use circuitry is in Canary Flip-
Flop (functional) or MISR (test) mode. When “Test Mode” is
equal to a logic 1, the value of the previous flip-flop or XOR
gate in the MISR will be XOR’ed with the data coming from
the circuit logic—allowing the circuitry to behave as a MISR
component. However, when “Test Mode” is equal to O, the
output of the AND gate will be 0, and the subsequent XOR
will merely add delay to the Canary Flip-Flop path. The value
captured in the Dual Use Flip-Flop should be the same as the
value captured in the Functional Flip-Flop provided that the
two paths are sufficiently fast. Thus, when “Test Mode” is
equal to 0O, the circuitry will operate in Canary Mode.

Note that because the Dual-Use Flip-Flop does not need
the multiplexer required by the Scan Functional Flip-Flop,
the relative delay added by the XOR in the Canary path is
minimized. Thus, the desired slack difference between the
canary and functional paths can be kept very small.

III. FLIP-FLOP SELECTION

While both canary flip-flops and the MISR used to capture
data during scan shift are useful, they are unacceptably costly
if every functional flip-flop is paired with a dual use flip-
flop. In [14] and [16], the authors selected a subset of the
functional flip-flops to have corresponding flip-flops inserted
in the MISR. This selection was based on maximizing the
detection of otherwise missed cell-aware faults or maximizing
the additional detections of stuck-at faults. However, there is
no guarantee that these flip-flops are the correct subset to use
when excessive delay detection with canary flip-flops is part of
the goal. Thus, in this section, we explore different approaches
for identifying a set of flip-flops that could be used effectively
as both canary flip-flops and as parts of a MISR.

Our analysis studied the effects of different approaches to
flip-flop selection, analyzing the relative benefit of privileging
slack length, fault detection, or a balance between the two. The
nature of the circuit, its purpose, and the acceptable overhead
will determine the weighing of slack and fault detection for
future implementations of this approach.

A. MISR Flip-Flop Selection Using Stuck-at Fault Cones

In [14], to detect faults during scan shift, flip-flops were
selected based upon maximizing the number of desired fault
detections with the intermediate patterns that arise with a
specific test set. Each intermediate pattern corresponded to
a combination of the pattern being shifted in and the circuit
responses to the last test pattern being shifted out. The number
of faults detected at each scan flip-flop was recorded, and a
greedy selection approach was used to maximize the detections
up to a predefined flip-flop overhead. This approach produced



good results, but the simulation of the intermediate patterns
to each flip-flop was resource-intensive, and the results were
optimized for a specific pattern set.

As an alternative approach, the authors of [16] subsequently
used fault cone analysis to identify which faults were in the
fault cone of each flip-flop. Such faults were assumed to be
potentially detectable at a given flip-flop, but the likelihood of
that detection was not evaluated. A greedy approach was then
used to select the flip-flops to be included in the MISR.

In particular, the flip-flops were initially ordered from
largest to smallest fault cone, and the flip-flop with the largest
number of targeted faults (in this case stuck-at faults) in its
fault cone was selected for inclusion in the MISR. At that
point, the faults that were potentially detectable by the selected
flip-flop were removed from consideration in the other fault
cones, and the flip-flops were resorted based upon their new
fault cone counts. This process continued until the flip-flop
overhead reached the user-defined maximum. We will use this
greedy fault cone-based selection approach (Algorithm A) to
compare to two other methods in this paper.

B. Canary Flip-Flop Selection Based on Critical Paths

In contrast, our first flip-flop selection approach that targeted
canary behavior, here called Algorithm B, focused entirely on
selecting the flip-flops based upon slack. Specifically, the slack
of the longest path terminating at each flip-flop was identified,
and the flip-flops were ordered in terms of increasing slack.
The flip-flops with the smallest slack were then selected up to
a pre-selected flip-flop overhead.

The assumption here is that, because we are proposing to
use the canary flip-flops as an early warning of unacceptable
path delay increases, the paths that start out with the smallest
slack are likely to see an unacceptable increase first.

However, the flip-flops, ranked by least amount of slack,
had critical paths that had significant overlap in their gates
in our experiments. This seemed to indicate that we were not
getting good spatial coverage of the circuit overall. This is
potentially problematic if we want to use those same flip-
flops for a MISR to detect defects during scan shift. However,
it is also potentially problematic even for detecting increasing
delays as a warning of failures.

Clearly, the capture of the longest path(s) is important
because, if the timing issue is the result of an even aging of the
chip, it will likely be detectable along the longest path(s) first.
However, the actual path lengths for a particular chip may not
perfectly match the lengths predicted by timing analysis tools.
For example, process variations may make different parts of a
chip slower or faster than expected. Aging may not be uniform
across the chip, and latent defects could cause an unexpectedly
large delay in a part of the chip not covered by the predicted
longest paths. To address this issue, a new flip-flop selection
algorithm was devised specifically for the proposed dual use
approach.

C. Dual Purpose Flip-Flop Selection Based on Fault Cones
and Critical Paths — Greedy Slack

This algorithm targets having a diverse set of gates along the
paths ending at selected flip-flops to not only increase the fault
coverage for the flip-flops in the MISR during test, but also
to improve the benefit derived in functional mode by having
the selected canaries cover a larger area of the chip. We will
refer to this Greedy Slack algorithm as Algorithm C.

Algorithm C: Greedy Slack

1: Run timing analysis on circuit to generate 10 longest paths that
terminate at each of the circuit’s flip-flops

2: Add {Flip-flop, Slack amount, and Gates in Path} to Path Array

3: Pop the first State (longest path) off of Path Array and add to a
Results Array

4: Add the path’s gates to a Visited Gates array

5: Remove the other paths terminating at the selected flip-flop from
the Path Array

6: Score the remaining flip-flops in the Path Array by adding one
point for each unvisited gate along the path

7: Order the path array by score to find the path that visits the most
new gates

8: If two paths visit the same number of new gates, the longer path
will be chosen

9: Pull this State off the Path Array and add to the Results Array

10: If the number of flip-flops does not equal the maximum number,
go to step 4

To maximize our coverage, we ran static timing analysis on
our circuits, but this time we generated the 10 longest paths
that terminated at each of the circuit’s flip-flops. These paths
were processed by the Greedy Slack Algorithm shown here.
This greedy algorithm assessed not only the slack length of
each path but also the number of previously unvisited gates
along that path.

Beginning by choosing the longest path from the timing
report, the algorithm recorded each gate along this path. Each
subsequent path in the report was scored based on how many
new gates it traverses, a point for each. The path with the
highest score was selected, its gates were recorded, and the
paths were scored again, each time against the expanded
list of visited gates. We select the top flip-flops using this
combination of coverage and slack, which we called the
Greedy Slack flip-flops, up to a predefined flip-flop overhead.

The steps of the algorithm can be illustrated with a brief
example. Figure 5 shows the path array as it arrives from the
timing analysis, with the 10 paths to each flip flop arranged in
ascending order of slack amount. The greedy slack algorithm
takes the longest path (shortest slack) from the top of the array,
in this case FF1. Adding the flip-flop to the selection list (the
selected FFs array), the algorithm takes the gates visited on
this path to FF1 and adds them to an array of visited gates,
here {A,B,C,.D}. We remove the other paths that share FF1 as
an endpoint.

After passing the first flip-flop to the results array, the
algorithm scores each of the paths in the array according to
how many new gates are visited on the way to the endpoint
(Part 2). The path ending at FF2 with slack 2.4, while it is
longer than FF3, visits only one new gate and thus receives



Part 1: Initial Visited Gates={ }

Selected FFs ={ }
Flip-Flop Endpoint | Score | Slack Path Gates
FF1 - 2.0 A,B,C,D
FF1 - 22 A, B,C X
FF2 - 2.4 A,B,C E
FF3 - 2.5 B,E,F,G
FF2 - 2.7 C,D,H, 1

Visited Gates={A, B,C, D }

Part 2: Score
Selected FFs ={FF1 }
Flip-Flop Endpoint | Score | Slack Path Gates
FF2 1 24 A,B,C,E
FF3 3 2.5 B,E.F,G
FF2 2 2.7

C,D,H, I

Part 3: Sort Visited Gates={A, B,C, D }
Selected FFs ={FF1 }
Flip-Flop Endpoint | Score | Slack Path Gates
FF3 3 2.5 B,EF,G
FF2 2 2.7 C,D,H, 1

FF2 1 2.4 A,B,C E

Visited Gates={A, B,C, D, E, F, G }
Selected FFs ={FF1, FF3 }

Part 4: Rescore

Flip-Flop Endpoint | Score | Slack Path Gates
FF2 2 2.7 C,D,H,1
FF2 0 2.4

A,B,C.E

Fig. 5. Example of Algorithm C (Greedy Slack)
a score of 1. FF3 visits 3 new gates, so when the Path Array
is ordered by score (Part 3), FF3 is pulled off of the Path
Array and its gates are added to the Visited Gates array, now
{A,B.C.D.EFG}. Part 4 shows how the remaining paths in
the Path Array are re-scored according to the expanded array
of visited gates. Although it had a score of 1 in the previous
iteration of the algorithm’s loop, the path to FF2 along gates
A,B,C.E now has a score of 0 because these gates are already
contained in the Visited Gates array. FF2 is chosen for the
selected flip-flop list, the gates {H,I} are added to the Visited
Gates, and the other paths to FF2 are removed from the Path
Array. The process repeats, updating the scores of the paths
against the expanding Visited Gates array, until the desired
number of flip-flops has been collected in the Results Array.

As the Greedy Slack algorithm begins with the longest path
provided by the static timing analysis tool, the most critical
path identified in the timing report will always be included
in the selected flip-flops. The capture of the longest path or
paths is important because, if the developing timing issue is the
result of an even aging of the chip, it will likely be detectable
along the one of the longest paths first. At the same time, we
may not need to detect it along the absolute longest path as
long as enough extra delay is present in the canary flip-flop
structure to account for the fact that the first canary flip-flop
to fail may not necessarily correspond to the first functional
flip-flop whose arrival time begins to enter its slack region.
To address this, different canary flip-flops could be created
with their different delay elements designed to account for the
different expected slacks along their respective critical paths.

IV. EXPERIMENTAL SETUP

Our experiments were carried out on five circuits obtained
from opencores.org. Some characteristics of these circuits are

shown in Table I.
TABLE 1

CHARACTERISTICS OF CIRCUITS

Circuit # Flip | # Stuck-at | # ATPG | # Intermediate
-Flops Faults Patterns Patterns
Quadratic 120 8166 36 1044
Des56 193 13788 119 2856
Fm_rec 501 19888 406 10962
Colorconv 584 38518 98 3136
Fpu 5231 297358 538 17216

Previous results on cell-aware and stuck-at fault detection
during scan shift indicate that circuit size is not a reliable
indicator of the applicability of the approach to a circuit.
Instead, structural and functional characteristics of the circuit
are considerably more important, and these circuits were
selected because they do a good job of spanning some of
those characteristics.

In particular, the overlap of the fault cones is very important.
For example, Des56 has many gates that are in the fault cones
of only one or a few flip-flops with limited overlap. As a result,
the percentage of flip-flops that need to be included in a MISR
to get very high additional fault coverage is large. In contrast,
Fm_rec has a small number of flip-flops that include a very
high percentage of the faults in their fault cones. As a result,
a relatively small percentage of flip-flops need to be included
in a MISR to get high fault coverage for Fm_rec.

Another important characteristic of the circuit is the inherent
observability of the circuit sites. Although, Des56 has fault
cones with smaller overlap, the circuit sites in that fault cone
generally appear to be highly observable at the corresponding
flip-flop. This helps to improve coverage provided that the
corresponding flip-flop is selected for inclusion. In contrast,
Fpu appears to have some circuit sites that are significantly less
observable at the selected flip-flops. This reduces the coverage
that can be achieved. While this observability may be related
to circuit depth, it is also related to functionality, and it is not
automatically related to circuit size.

These circuits were synthesized using a NanGate 45nm
library. Using a commercial static timing analysis tool, we
gathered data on the path to each flip-flop in the circuit
with the least amount of slack. With the greatest distance to
travel within a clock cycle, these critical paths are the most
likely routes along which one would first see timing errors. A
commercial software tool was also used to obtain fault cone
analysis data for flip flop selection.

In each case, a maximum flip-flop overhead of 8% was set
as the predetermined limit. This overhead was selected based
on the work in [23], which proposed the replacement of 7%
and 21% of flip-flops for two circuits, respectively. We chose
8% to remain closer to the lower replacement rate found in the
paper in an attempt to maximize the timing and fault-detection
efficacy with a reasonably small overhead.



The Greedy Flip-flop selection based only on fault cones
as described in Section III-A used all stuck-at faults as the
target fault model. The flip-flop selection methods described
in Section III-B and III-C were based upon the timing analysis
report from a static timing analysis tool.

To reveal the effect of these flip-flops on the detection
of low-detected stuck-at faults, fault simulation was done
with intermediate patterns. First, a commercial software tool
was used to generate stuck-at ATPG patterns. Then, the scan
shift intermediate patterns were identified. Each intermediate
pattern is a combination of the current pattern being shifted
in and the results from the previous pattern being shifted out.
The number of stuck-at faults, the number of stuck-at ATPG
patterns, and the number of intermediate patterns for each
circuit are shown in Table I.

To identify which fault would be considered to have a “low”
number of detections if a MISR were not used, first all the
stuck-at faults were simulated with the stuck-at ATPG patterns
in normal mode (without MISR). The number of times each
stuck-at fault was detected by the ATPG test set was then
obtained. We define low-detected faults as being stuck-at faults
whose original detection count was 1 to 15. The number 15
was selected because the authors of [24] showed that, for their
experiments, detecting all faults at least 15 times at-speed led
to no missed defect detections.

Then, the intermediate patterns were simulated to determine
how many extra detections could potentially be obtained with
a MISR for these low-detected faults. (We did not determine
how much aliasing would have occurred in the MISR, but in
our previous MISR work, aliasing was reasonably small). Note
that these simulations were performed with all the flip-flops
that were not selected to be included in the MISR masked.

V. RESULTS

A. Detection of the Otherwise Least Detected Stuck-at Faults
During Scan Shift

Figure 6 shows what percentage of the low-detected stuck-
at faults (i.e. those that originally had 1 to 15 detections by
the stuck-at test set) could achieve additional detections in the
MISR during scan shift, where the flip-flops included in the
MISR corresponded to those selected by one of the three pre-
viously described algorithms: A, B, and C. On the x-axis, each
cluster of bars shows the results for the three different groups
of flip-flops of each circuit, chosen by the three algorithms.
The legend indicates the algorithm that corresponds to each bar
of each cluster. The y-axis, by percentage, shows the percent of
low-detected stuck-at faults that gained extra detections with
the MISR and intermediate patterns (i.e. detections during scan
chain shifting).

In Figure 6, we can see that Algorithm A was the best
choice for maximizing the detection of the low-detected stuck-
at faults in three of the five circuits. Choosing flip-flops solely
on the criterion of the longest path, as Algorithm B did,
entailed a significant drop in the detection of low-detected
stuck-at faults for Quadratic, Des56, and Fpu. Our Greedy
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Fig. 6. Percent of low-detected stuck-at faults that gained extra detections
with flip-flops chosen by the three Algorithms A, B, and C

Slack algorithm, proposed here as Algorithm C, worked ef-
fectively as a compromise between the two: in three of the
five circuits, it detected only a somewhat lower percentage of
the otherwise low-detected stuck-at faults when compared to
Algorithm A. Furthermore, even in the case of FPU, which had
a more significant drop versus Algorithm A, over 50% of the
otherwise least-detected stuck-at faults still obtained additional
detections during scan shift. Finally, in the case of Colorconv,
Algorithm C actually obtained better fault detection results
than Algorithm A.

We were surprised to find that Algorithm B had very good
fault coverage for two circuits, Fm_rec and Colorconv. We
believe that this may be due to a correspondence between
why a stuck-at fault is hard to detect and its location relative
to a critical path. In particular, if the least detected stuck-at
faults were hard to detect because they were hard to observe
along long paths, then there would naturally be overlap in
the flip-flops required for both purposes. In contrast, because
Algorithms A and C looked at fault cones and gates without
regard to the difficulty of detection/observation, they didn’t
focus on the least-detected faults.

B. Critical Path Length of Paths Ending at Selected Flip-Flops

TABLE II
Z-SCORE OF MEAN SLACK LENGTH FOR SELECTED PATHS

Circuit Algorithm A | Algorithm B | Algorithm C
Quadratic -0.4 -2.2 -1.3
Des56 -1.2 -1.8 -1.2
Fm_rec -1.4 2.7 -1.9
Colorconv 0.1 -1.7 -0.8
Fpu -0.7 -2.8 -0.8

Table II provides summary information regarding the slacks
of the paths ending at the flip-flops selected by each of the
three algorithms. Specifically, it shows the Z-score of the mean
slack length for the paths selected by each algorithm for each
circuit. The Z-score, also known as the standard score, is a
statistical measure that indicates how many standard deviations
a data point is from the mean of a population. A positive Z-
score indicates that the observation is above the mean, while
a negative Z-score indicates that the observation is below the
mean. A Z-score of 0 indicates that the observation is equal
to the mean. For the three different algorithms, we found
the mean slack length for each of the paths selected by the
algorithms and calculated the Z-score of that mean relative to
the total distribution of slack lengths.



Note that because a larger slack indicates that the path is
less critical, the slacks of the most critical paths in a circuit
will be below the mean slack for that circuit, and their Z-
scores will be negative. A more negative Z-score will indicate
that the paths are farther from the mean and therefore more
critical.

The slacks for the paths selected by Algorithm B were the
smallest of the three algorithms we tested, and its Z-scores
were the most negative. Each path was technically unique
because it terminated at a different flip-flop; however, the top
paths, ranked by least amount of slack, had significant overlap,
traversing many of the same gates. As already stated, this can
adversely affect the spatial coverage achieved by the canary
flip-flops and MISR.

The Z-scores of the mean slack lengths of Algorithm A
tended to be closest to the overall mean of O (i.e. the Z-
scores were the least negative), when compared to the other
two algorithms. This is unsurprising given that these flip-flops
were not chosen with consideration of their effectiveness in a
canary structure for catching timing problems.

Algorithm C, the Greedy Slack algorithm, as with the
detection of stuck-at faults, tended to work as a compromise
between the two algorithms, choosing many of the longest
paths in the circuits while still trying to get good spatial
coverage. This is indicated by the fact that the Z-scores from
the paths selected by Algorithm C generally lay between
Algorithm A’s and Algorithm B’s.

However, while the summary statistics provided by the Z-
scores are useful, even better intuition can be obtained by
looking at the distribution of the slacks at each flip-flop
selected by one of the three algorithms.

In Figure 7, we see a line graph of the smallest slack
per path to each of the selected flip-flops, with each line
representing a different algorithm. The x-axis corresponds to
the flip-flop/path ID sorted from lowest to highest slack. The
y-axis corresponds to the slack of each path. (Note that we
didn’t attempt to scale the slack for a fast clock for these
circuits. As a result, the slack numbers are large. However,
we are not interested in the raw numbers, but in the relative
slacks of the paths. Changing the clock periods would merely
shift these curves up and down the y-axis.)

In general, the paths chosen by Algorithm C have slack
lengths between those of Algorithms A and B, Except in the
case of Des56, the smallest slack paths of Algorithm C overlap
well with those of Algorithm B, the latter choosing flip-flops
solely based on the smallest slack, or longest path. This means
that in most cases, Algorithm C, our Greedy Slack algorithm,
shares not only the absolute longest path with the slack-only
Algorithm B, but it also selects flip-flops corresponding to
many of the other longest paths of the circuit. This overlap is
important because the timing analysis tool’s estimate of path
length may not perfectly match the results of physical tests
of the circuit once it is manufactured, as has been shown in
[25]. Thus, it is good to include multiple long paths, any one
of which could actually be the longest in a particular instance
of the circuit.

The results here on Fpu are especially good for all three
algorithms. There is a big discrepancy in the path lengths
between the longest paths and the majority of the paths.
All three algorithms consistently selected the flip-flops at
the ends of the very longest paths. Also, note that because
obtaining flip-flops for Algorithm B is so simple, it is very
easy to compare Algorithm C’s path length results to those of
Algorithm B’s. Thus, for circuits such as Des56, if the flip-
flops selected by Algorithm C do not have enough overlap with
the longest paths, it is easy to swap out some of the flip-flops
selected last by Algorithm C with flip-flops corresponding to
the first paths selected by Algorithm B.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explored three approaches for selecting
dual use flip-flops to detect timing violations via a canary
structure and stuck-at faults as part of a MISR. We introduced
a Greedy Slack algorithm that is an effective compromise
between these two functions, capturing flip-flops at the ends
of critical paths that also deliver decent additional fault detec-
tion for stuck-at faults. We chose as a maximum overhead
approximately 8% of a circuit’s total flip-flops, in keeping
with previous research by other authors, although the specific
overhead tolerance will vary based on the specific circuit and
its application. Regardless of the algorithm chosen, our dual-
use circuitry combining the MISR and the canary structure has
a compelling benefit for the detection of both timing failure
and stuck-at faults: even selecting only 8% of the flip-flops
while solely considering the longest paths (i.e. Algorithm B)
detects 22-88% of the low-detected stuck-at faults additional
times during scan shift as shown in Figure 6.

Future work will study the flip-flops’ efficacy in achieving
other types of fault coverage (e.g. cell-aware and transition
faults). We will also investigate refinements to the Greedy
Slack algorithm in order to improve its fault detection and area
coverage. For example, when targeting stuck-at faults, we can
also consider altering the scoring in the algorithm to give more
value to gates that correspond to the least detected faults. We
can also consider looking at the distribution of the slacks in
the circuit overall when selecting or optimizing a particular
algorithm. For example, because Fpu contains a small number
of paths with a much smaller slack than most of the paths in
the circuit, we can make sure that those paths are included in
the flip-flop selection.

We can also consider modifications to the dual-purpose
structure itself, including considering what benefits may be
obtained and costs incurred by designing the delay element in
the canary portion of the circuit to better match the expected
path lengths so that larger increases in delay even along shorter
paths can be detected in real time.
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