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Pressure-induced insulator-to-metal transition

in the quantum spin liquid candidate

lithium ytterbium diselenide

Haozhe Wang,'-? Lifen Shi,?>? Shuyuan Huyan,*> Greeshma C. Jose,® Barbara Lavina,’”®
Sergey L. Bud'ko,*> Wenli Bi,® Paul C. Canfield,** Jinguang Cheng,?** and Weiwei Xie'10.*

SUMMARY

Metallization of quantum spin liquid (QSL) materials has long been
considered as a potential route toward unconventional supercon-
ductivity. Here, we investigate the pressurization of lithium ytter-
bium diselenide (LiYbSe,), a three-dimensional QSL candidate with
a pyrochlore structure. High-pressure X-ray diffraction (up to 15
GPa) and Raman spectroscopy (up to 48 GPa) reveal no significant
structural changes within this pressure range. Remarkably insu-
lating, LiYbSe, exhibits a resistance below 10° Q only at pressures
exceeding 25 GPa, accompanied by a gradual reduction of band
gap upon compression. Interestingly, an insulator-to-metal transi-
tion occurs around 68 GPa, and the metallic behavior persists up
to 123.5 GPa, the highest pressure achieved in this study. A possible
sign of magnetic transitions is also observed. The insulator-to-metal
transition in LiYbSe, under high pressure presents an ideal platform
to explore the pressure effects on QSL candidates of spin-1/2 Yb**
systems with various lattice patterns.

INTRODUCTION

The quantum spin liquid (QSL) state, a highly entangled superposition state of all the
possible configurations of valence-bond spin singlets and the spin excitation contin-
uum, has been proposed to understand unconventional superconductivity in high-Tc
(high transition temperature) superconductors.' ™ Geometrically frustrated spin-1/2
(S = 1/2) systems, such as two-dimensional Kagome, triangular, and three-dimen-
sional pyrochlore lattices, are ideal structural platforms to host QSL states.”™® Rare
earth-based frustrated magnetic systems, for example, YoMgGaO, with an S = 1/2
Yb3* triangular lattice, have been proposed and studied recently as promising QSL
candidates.””"" However, the intrinsic structural disorder with a random distribution
of Mg?* and Ga** on one atomic site in YboMgGaQO,4 may generate a spin-liquid-like
state at low temperatures.m Thus, NaYbCh, (Ch = O, S, and Se), which contains a per-
fect Yb®* triangular lattice, has been proposed and widely explored as an S = 1/2 rare
earth-based system without inherent atomic disorders in crystals."*'> Our recent
work reported that LiYbSey, an isoelectronic analog of NaYbSe,, suggests a QSL state
in which Yb3* adopts an effective S = 1/2 pyrochlore lattice."®

High-pressure techniques have been used as a clean tool to induce unconventional
superconductivity in QSL candidates."’'® For example, an approximate triangular
lattice of S = 1/2 Cu?* ions in the organic compound k-(BEDT-TTF),Cux(CN); has
been proposed theoretically and experimentally examined to host a QSL state.'”
The electron spin resonance measurements down to 50 mK indicated an absence
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Figure 1. High-pressure powder XRD of LiYbSe, at room temperature up to 15.3 GPa
(A) Stacked powder XRD pattern at various pressures.
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(B) Pressure evolution of unit cell volume and second-order Birch-Murnaghan EOS fit. The crystal structure is also shown.

of magnetic ordering.”” By applying a very small pressure (~0.35 GPa), the insulator-
to-metal transition was observed at around 13 K and followed by a superconducting
transition at around 4 K.?'**? Recently, a high-pressure study was reported on
another QSL candidate, NaYbSe,.?>?* A structural study using X-ray diffraction
(XRD) and Raman scattering up to 30 GPa indicates a subtle and collapse-like struc-
tural change or valent change on Yb®* without symmetry change at around 12 GPa.
The electrical resistance is gradually reduced by applying pressure with a supercon-
ducting phase transition occurring at ~5.8 Kand ~20 GPa. The metallization trend is
confirmed by further high-pressure measurements. These studies inspired us to
investigate the resistance changes and possible superconductivity under high pres-
sure in other QSL candidates.?®

Here, we present the high-pressure studies, including synchrotron XRD, Raman
spectroscopy, electrical resistance measurements, and electronic band structure
calculations, on LiYbSe,. There are no structural changes in LiYbSe, observed up
to 48 GPa. Interestingly, the electrical resistance measurements confirm that the
insulator-to-metal transition occurs around 68 GPa, and a possible sign of a mag-
netic transition is observed above 90 GPa.

RESULTS AND DISCUSSION

Robust crystal structure at high pressure

Single crystals of LiYbSe, were grown using the salt flux method (refer to the Supple-
mental experimental procedures for detailed information). The crystal structure evo-
lution of LiYbSe; under hydrostatic pressure was studied by performing XRD exper-
iments at room temperature up to 15.3 GPa. As shown in Figure 1A, the cubic
pyrochlore structure with the space group Fd-3m is maintained under pressure.
The volume of the unit cell obtained from Rietveld refinements is plotted as the func-
tion of pressure in Figure 1B, which shows a smooth contraction upon compression
with the lattice parameter a changing from 11.242(1) A at ambient pressure to
10.656(1) A at 15.3 GPa, further confirming the absence of any structural transition

2 Cell Reports Physical Science 5, 101989, June 19, 2024



Please cite this article in press as: Wang et al., Pressure-induced insulator-to-metal transition in the quantum spin liquid candidate lithium ytter-
bium diselenide, Cell Reports Physical Science (2024), https://doi.org/10.1016/j.xcrp.2024.101989

Cell Rer_;orts .
Physical Science ¢? CelPress

A T T T T T B 280 T T T T
Pressure (GPa)
A back to AP
7’7 240 Mode 1 1
Mode 3 c LIS
&
£ *
/ < 200 el *, SEF 7
*
é *ox ¥
>
= © * Mode 3
2 o 160 it .
c
r) *
= *

back to AP

<

X i g . ! 100 pm
100 150 200 250 300 —
Raman shift (cm™1)

Figure 2. High-pressure Raman spectra of LiYbSe, up to 48.3 GPa

(A) Stacked Raman spectra at various pressures.

(B) Pressure evolution of Raman vibration modes.

(C) Optical image of the sample under pressure. Scale bar, 100 pm. The color of the crystal becomes darker under pressurization and partially goes back
under depressurization.

in the studied pressure range. A least-square fitting to the volume vs. pressure data
using the second-order Birch-Murnaghan equation of state (Equation 1) yields the
isothermal bulk modulus K7, = 61(2) GPa and the volume at zero pressure Vp =
1445(5) A3.25 |t should be noted that the standard deviation of the volumes is
~0.4 A% and not visible in Figure 1B.

P(V) = ;KTO [(é) - (%)} (Equation 1)

Crystal electric field excitation observed from Raman spectroscopy

To investigate the bond vibration under high pressure, the Raman spectra under high
pressure were taken and summarized in Figure 2A. There are three Raman active modes
observed at ~235 cm™' (mode 1), ~175 cm™" (mode 2), and ~128 (mode 3) cm™" at
ambient pressure, which is consistent with the Raman active modes of a cubic Fd-3m
structure (origin choice 2) with the 16c¢, 16d, and 32e sites occupied (A4, Eg, and Tog).
Modes 2 and 3 exhibit a smooth blueshift as the pressure increases. The pressure evo-
lution of Raman modes is summarized in Figure 2B. At ~5.6 GPa, a small peak at
207 cm™" appears. It exhibits a redshift upon pressurization, merging with mode 2 at
~200 cm™" and 8.6 GPa. According to our high-pressure XRD results, no structural tran-
sition is observed up to 15.3 GPa; thus, the newly appearing mode is not from the struc-
tural distortion and more likely attributable to crystal electric field (CEF) excitation. At
about 11.2 GPa, it becomes significantly observable, which may also be considered
as the continuous excitation peak from mode 1 crossing mode 2. The intensity of this
peak is enhanced at a higher pressure and exhibits a continuous redshift until merged
with the peaks of mode 3 at around 180 cm™" and 19.3 GPa. On the other hand, the
very weak peak at the higher pressure range (~260 cm ™" at 15.8 GPa) can be considered
as the extension of mode 1, shown in Figure S1. As another possibility, it might also be
caused by spin-phonon coupling, as reported in many rare earth oxides with pyrochlore
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Figure 3. High-pressure electrical resistance of LiYbSe, up to 58.2 GPa

(A) Temperature dependence of electrical resistance under various pressures. The semiconducting behavior was observed between 22.2 GPa and 58.2
GPa.

(B) The logarithm of electrical resistance plotted as a function of 103/T.

(C) Pressure evolution of the band gap derived from the activation model.

structures.?® The broad and strong peak of mode 2 is considerably larger in magnitude
when compared to the exchange coupling. The broadening of this mode is attributed to
resonance and overlaps with phonon frequencies, particularly under high-pressure con-
ditions.”® As the pressure increases, the peaks in Raman spectra become broader and
weaker in intensity as the crystallinity decreases, without the emergence of any other
additional peaks up to 48.3 GPa. As shown in Figure 2C, the crystal looks transparent
red and turns darker and darker with pressure applied. Once the system was back to
ambient pressure, there was only one remaining Raman peak, further confirming the
decreased crystallinity. This could also explain the irreversible color change.

Insulator-to-metal transition

To study the electrical transport properties and explore potential superconductivity
in LiYbSe,, high-pressure electrical resistance measurements up to 58.2 GPa were
performed. The results are shown in Figures 3A and S2. At lower pressure range
(<22 GPa), the resistance is too large to be measured in the PPMS. Starting from
22.2 GPa, the resistance can be detected. From 22.2 to 58.2 GPa, LiYbSe; shows
semiconductor-like behavior in the whole temperature range. The resistivity can
be described with the Arrhenius activation model, expressed as Equation 2, in which
A is a parameter related to the system, A4 is the semiconductor band gap, T is
temperature, and kg is Boltzmann constant:

p = Aeﬁ (Equation 2)

To evaluate the band-gap changes under pressure, the resistance in the tempera-
ture range of 165-250 K was fitted accordingly. As shown in Figures 3B and S3,
the resistance of the system is roughly described by the activation model, presented
as the near-linear correlation between the logarithm of resistance and 103/ T within
the range of temperatures under examination. The band gap A,, under different
pressures, inferred from these data, is presented in Figure 3C. In general, the
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Figure 4. High-pressure electrical resistance of LiYbSe, up to 94.2 GPa

(A) Temperature dependence of electrical resistance under various pressures. The system becomes metallic around 68.0 GPa. Inset: optical image of the

sample at 86.6 GPa. Scale bar, 40 pm.
(B) Electrical resistance at 94.2 GPa with a 0.6-T magnetic field applied.

band gap monotonically decreases with pressure; however, a sudden drop was
observed at around 30 GPa, where it decreased from 0.26 eV to below 0.10 eV.
This could also be indicated by a dramatic slope change in Figure 3C between
28.4 GPa and 31.6 GPa. Together with the disappearance of Raman active mode
3in Figure 2, it may indicate that there is a subtle phase transition, such as magnetic
transition, in the system at this pressure. As the pressure increases further, the band
gap decreases slightly to ~0.02 eV at 58.2 GPa.

To investigate the electrical resistance changes under higher pressure, further measure-
ments were conducted, as shown in Figure 4A. At 68.0 GPa, a metallic behavior was
observed with a minimum of around 25 K, which may be caused by a weak localization
effect originating from the presence of disorder potentials and incoherent Kondo effect
due to the presence of the Yb** mixture on Li* site.'®?* As the pressure increases to 80
GPa, the minimum disappears, and a complete metallic behavior in the whole temper-
ature range (1.8-300 K) is achieved. When the experiments were repeated without the
pressure-transmitting medium (PTM), the minimum in resistivity was found to be absent.
Instead, only a transition from an insulator to a metallic state was observed, as depicted
in Figure S4. Such progressive changes at low temperatures and high pressures were
also observed in other Yb-series heavy-fermion compounds.”’ LiYbSe, shows metallic
behavior up to 94.2 GPa. The metallization under pressure is also confirmed by the crys-
tal color changes under pressure (Figure 4A, inset). Similar to Figure 2C, the crystal color
starts transparent red and becomes darker and darker with pressure, indicating the
gradual increase of metallicity. Surprisingly, at 94.2 GPa, a very weak but sudden resis-
tance drop was observed around 5.0 K; in addition, this drop can be eliminated by the
application ofa 0.6-T magneticfield (Figure 4B). Given the very small size of this drop, the
most likely explanation is magnetic transition, but it is also possible that a tiny amount of
the second phase (possibly Se) becomes superconducting. Of course, a more enticing
option would be the onset of a bulk transition that needed high temperatures to com-
plete. These results motivated us to conduct higher-pressure measurements to explore
the potential superconducting or magnetic transition that exists in LiYbSe,.

Potential phase transition observed above 96.0 GPa

The resistance was measured again in another run without PTM, with pressure
applied from 68.4 GPa to 123.5 GPa. The results are presented in Figure 5A. As
the pressure increased, a very weak drop in resistance was observed, starting at
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Figure 5. High-pressure electrical resistance of LiYbSe, up to 123.5 GPa
(A) Temperature dependence of electrical resistance under various pressures. Inset: optical image of the sample at 123.5 GPa. Scale bar, 20 pm.
(B)
(@)
(
(

Normalized electrical resistance at low temperatures under various pressures.

Electrical resistance at 123.5 GPa with a magnetic field applied.

D) Power-law fitting of electrical resistance under various pressures in the range of 10-100 K.
E) Pressure dependence of fitted n in the metallic state using the power-law equation.

around 3.0 K from 96.0 GPa, as shown in Figure 5B. The potential phase transition
temperature is slightly suppressed with pressure from 3.0 K at 96.0 GPa to around
2.5 K at 116.7 GPa. Nevertheless, the size of the anomaly is insufficient to draw
any definitive conclusion. At 123.5 GPa, the field-dependent resistance shows that
the resistance drop is gradually suppressed, as presented in Figure 5C. At 0.1 T,
the transition is completely suppressed, indicating that the drop on the resistance
curve at around 3.0 K may originate from the magnetic (antiferromagnetic or
some short-range magnetic order) transition. These results strongly suggest that
the feature we see is, at best, a very small second phase that might have a supercon-
ducting transition and does not represent a bulk phase. It has been observed that the
data exhibit discrepancies in the overlapping pressure range, as shown in Figure S4,
which can be attributed to variations in the levels of non-hydrostaticity between the
two experiment runs. Despite this observation, it is noteworthy that these deviations
do not compromise the validity or integrity of the insulator-to-metal transition in
LiYbSe,.

In order to understand the metallic state and potential phase transition under pres-
sure, we fitted the resistance data with the power-law equation (Equation 3), where
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Ry is the residual resistance, and the pre-factor A is a parameter related to electron-
electron interactions and electron-phonon coupling. Figure 5D shows that the po-
wer-law formula fits the experimental data well in the temperature range between
10 Kand 100 K. The pressure dependence of the exponent n is plotted in Figure 5E.
At the boundary of the insulator-to-metal transition, the metallic state of LiYbSe,
apparently shows a Fermi liquid (FL) ground-state behavior with n ~2. With pressure
increasing, n decreases gradually and approaches n = 1.68(4) at P = 123.5 GPa.
Therefore, there might be a crossover from FL to non-FL behavior with the increase
in pressure approaching the boundary of possible magnetic transition:

R(T) = Ro+AT" (Equation 3)

In conclusion, we presented high-pressure studies on crystal structure, electrical resis-
tance, and electronic structure (see details in Note S1 and Figure S5) on LiYbSe; with a
cubic pyrochlore lattice. High-pressure powder XRD and Raman spectroscopy reveal
no significant structural changes up to 48.3 GPa, confirming that the peak that
appeared around 5.6 GPa in Raman spectra originates from CEF excitation. The insu-
lator-to-metal transition was observed around 68.0 GPa in our electrical resistance
measurements. The metallic behavior persists up to 123.5 GPa. A low-temperature
field-dependent anomaly was detected in the resistance measurements at and above
94.2 GPa, which is most likely related to a magnetic transition. However, under pressure
up to 123.5 GPa, no complete structural or even magnetic transition was observed.
LiYbSe; provides an opportunity to study the structure-property relationship and pres-
sure effects in QSL candidates, particularly spin-1/2 Yb3* systems with various lattice
patterns.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information and resources should be directed to the lead con-
tact, Weiwei Xie (xieweiwe@msu.edu).

Materials availability

The materials used in this study may be available from Weiwei Xie (xieweiwe@msu.
edu) with a completed materials transfer agreement. Availability is subject to the cur-
rent stock in the laboratory.

Data and code availability
The raw data of high-pressure measurements reported in this work are available at
https://doi.org/10.5281/zenodo.10988853.

High-pressure synchrotron XRD

The synchrotron powder XRD experiments were carried out up to 15.3 GPa at the
Beamline 3ID of the Advanced Photon Source, Argonne National Laboratory. X-rays
with a wavelength of 0.4833 A were focused to 15-um size. A powder sample ground
from single crystals was loaded in a BX90 DAC (Diamond Anvil Cell) with anvils of
400-um-diameter culet size.?® Neon was loaded as PTM, and ruby was used to mea-
sure pressure in situ.”” The 2D diffraction images were integrated using DIOPTAS soft-
ware,’? and Rietveld refinements on the XRD data were performed in GSAS-I1.%1

High-pressure Raman spectrum

To monitor the crystal phase information and bonding interactions in LiYbSe,, the
Raman spectra were collected by using a Raman system (spectroscopy and imaging)
with 633-nm laser excitation. 4:1 methanol:ethanol was used as the PTM, and the
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pressure in DAC was monitored by the R1 fluorescence line of ruby up to 48.3
GPa32,33

High-pressure electrical resistance measurements

Ambient pressure to 58.2 GPa pressure range measured at Ames National
Laboratory

Electrical resistivity measurement by Van der Pauw method was performed in a com-
mercial diamond anvil cell that fits the Quantum Design Physical Property Measure-
ment System (PPMS). 300-pum culet-size standard-cut diamonds were used as anvils.
An LiYbSe; single crystal of dimensions close to 45 X 45 um? was directly picked out
from the sample batch and polished into thin flakes with a thickness of about 15 pm.
The sample was loaded together with a tiny piece of ruby ball into the 250-um-thick,
apertured, stainless-steel gasket, which was pre-indented to ~35 um, covered by c-
BN. The sample chamber was about 120 pm in diameter. Platinum foil was used as
the electrodes to connect the sample. Mineral oil was used as PTM to provide a bet-
ter hydrostatic environment at low pressure range. Pressure was determined by the
R1 line of the ruby florescent spectrum. Low-temperature resistance measurements
down to 1.8 K were conducted in the Quantum Design PPMS.

68.0 GPa-123.5 GPa pressure range measured at the Institute of Physics, Chinese
Academy of Sciences

To measure resistance to higher pressure, diamond anvil cells manufactured by
HMD with anvils of smaller culet sizes of 200 um and 100 um were used. In the first
run from 68.0 to 94.2 GPa, the rhenium gasket was pre-indented to ~34 pm, and
then a 60 pm-diameter hole was drilled in the center using a laser drilling system.
The rhenium gasket was covered with a c-BN epoxy insulating layer. A piece of
LiYbSe; single crystal with dimensions of about 58 x 29 x 12 um?® was placed at
the center of the sample chamber filled with a KBr PTM.** In the second run from
68.4 to 123.5 GPa, the sample with a size of 29 x 29 x 5 um?® was placed directly
on the ¢-BN epoxy insulating layer at the center of the pre-indented gasket culet
without PTM used at all. The pressure was determined by the Raman spectrum of
diamond in the whole pressure range.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.
2024.101989.
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