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Abstract. A sub-component of dark matter with a short collision length compared to a
planetary size leads to efficient accumulation of dark matter in astrophysical bodies. We
analyze possible neutrino signals from the annihilation of such dark matter and conclude that
in the optically thick regime for dark matter capture, the Earth provides the largest neutrino
flux. Using the results of the existing searches, we consider two scenarios for the neutrino
flux, from stopped mesons and prompt higher-energy neutrinos. In both cases we exclude
some previously unexplored parts of the parameter space (dark matter mass, its abundance,
and the scattering cross section on nuclei) by recasting the existing neutrino searches.
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1 Introduction

Unambiguous evidence of a non-baryonic form of matter that seeds cosmic structures, com-
monly known as dark matter (DM), constituting ~ 27% of the total energy density of the
Universe. Its existence finds plenty of evidence through cosmological and astrophysical obser-
vations [1]. Despite extensive searches over the last few decades of its non-gravitational man-
ifestations, DM remains mysterious. In the absence of an irrefutable signal, these terrestrial
and astrophysical searches are placing stringent exclusions on non-gravitational interactions
of DM with the ordinary baryonic matter over a wide mass range [2-4].

DM accumulation in stellar objects is yet another promising astrophysical probe of
DM interactions [5-7]. Because of the non-gravitational interaction of dark matter with the
baryonic matter, DM particles from the galactic halo can down-scatter to energies below
the local escape energy, and become gravitationally bound to the stellar objects. These
bound DM particles lose more energy via repetitive scatterings with the stellar material, and
eventually thermalize inside the stellar volume. Such bound thermalized DM particles can
be copiously present inside the stellar volume, and they have interesting phenomenological
signatures (see e.g., refs. [8-13]).

Of particular importance is the signal of the DM annihilation to the Standard Model
(SM) states in the Sun and the Earth, that may manifest itself in a variety of different ways.
In particular, annihilation may result in the flux of energetic neutrinos associated with the
direction to the center of the Sun/Earth [14, 15]. In some models, the existence of meta-stable
non-SM intermediate mediator states may take the products of annihilation to astronomical
distances before mediators decay producing visible SM particles [16, 17]. Finally, it has been
recently pointed out that in some models with efficient trapping of the O(GeV) scale DM
particles, the annihilation directly into the SM states inside the active volumes of the neutrino
detector also represent a viable option [18].

In this work, we primarily consider DM particles that are efficiently trapped by the
Earth, which occurs when the collision length is small compared to the Earth’s size, ., <
Rg. This in turn results from the DM cross section on ordinary atoms being much larger
than benchmark values due to e.g. electroweak force. Due to the existing constraints, large
cross section implies that such DM particles have to be a sub-component of DM, i.e. not fully
saturating the DM abundance. We define x as a DM sub-species that makes up a fraction
fx (fx = px/ppm < 1) of the present day dark matter density, and has a sizeable scattering
cross-section o, with the nucleons. Efficient trapping causes x particles to be enormously
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Figure 1. Annihilation of Earth-bound DM into neutrinos is schematically illustrated. In the left
panel, low energy neutrinos are produced via stopped pion decay, whereas, in the right panel, high
energy neutrinos are produced via direct annihilation of Earth-bound DM particles.

abundant inside the Earth volume, even if their cosmological abundance is tiny (f, < 1). In
fact, it is well appreciated that owing to the enormous size of the Earth and cosmologically
long lifetime, their terrestrial density may be enhanced O(15) orders of magnitude over the
local Galactic DM density [19-21]. Furthermore, if the x particles are sufficiently light, they
distribute over the entire Earth volume, rather than concentrating towards the core, making
their surface-density tantalizingly large, up to fy x 101 c¢m™ for DM mass of 1 GeV. How-
ever, since these x particles carry a minuscule amount of kinetic energy ~ kT = 0.03¢eV,
they are almost impossible to detect in the traditional direct detection experiments as these
experiments primarily rely on elastic scattering signatures. A few recent studies have pro-
posed their detection via up-scattering them through collisions [22], by utilizing low threshold
quantum sensors [23-25], and more importantly, via searching their annihilation signatures
inside large-volume neutrino detectors, such as, Super-Kamiokande (SK) [18].

Here, we examine the detection of y particles via their annihilation into neutrinos.
Despite the fact that the rate of neutrino interaction is rather small at sub-electroweak scale
energies, the neutrinos have an obvious advantage of taking the signal to a long distance. We
consider two phenomenological scenarios: x annihilation to light mesons (pions) that stop
and decay at rest that limits neutrino energies to 50 MeV, and direct annihilation of x to
neutrinos (or to other intermediate particles that decay directly to neutrinos before stopping),
that creates neutrino flux with energies of O(m, ). We find that in the first case, that current
generation of neutrino experiments (mostly Super-Kamiokande) can constrain f, down to
~ 107* with sub-electoweak masses for my. The second case, direct annihilation to energetic
neutrinos, followed by their detection at IceCube DeepCore can provide sensitivity to very
small fy, (fy ~ 1078). We provide a schematic diagram of these two scenarios in figure 1.

It is important to note that in ref. [18], local annihilation of x particles inside the
fiducial volume of large neutrino detectors, such as Super-Kamiokande, has been utilized
to provide world-leading exclusions on DM interactions. However, this method is not well-
suited for probing interactions of relatively heavy DM particles with m, >5GeV. This is
simply because, with increase in DM mass, x particles shrink more towards the Earth-core,
resulting in a negligible number of dark matter particles inside the fiducial volume of Super-
Kamiokande. Therefore, in order to probe the interactions of heavier dark matter particles,
analyzing the neutrino signals from Earth-bound DM annihilation appears promising.
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Figure 2. Capture fraction for the Earth is shown for our parameter range of interest. For DM mass
of 1-10 GeV, we obtain feap by using the recent numerical simulation results [26], whereas, for heavier
DM (m,, > 10 GeV), we use the results from ref. [27].

The rest of the paper is organized as follows. In section 2, we estimate the flux of
neutrinos from Earth-bound DM annihilation, demonstrating that Earth as the most opti-
mal detector for this purpose. In section 3, we present our results for two phenomenological
scenarios: low energy neutrinos from stopped pion decay as well as direct annihilation to ener-
getic neutrinos and their detection at Super-Kamiokande & IceCube DeepCore, respectively.
We summarize and conclude in section 4.

2 Flux of neutrinos from Earth-bound DM annihilation

The total number of x particles inside the Earth volume is given by
dNy
dt
where 'cap, Levap, and Iynn denotes the capture, evaporation, and annihilation rate. In the
following, we briefly discuss each of these rates.

Beginning with I'c,,, we define the maximal capture rate as geometric capture rate
(Pgeo), which occurs when all of the x particles that transit through the Earth get captured.
Depending on the DM-nucleon scattering cross-section and DM mass, only a certain fraction
(feap) of the geometric capture rate (I'ge0) gets trapped, and we quote it as capture fraction.
In the following, we briefly discuss about capture fraction for the Earth (for clarity, in figure 2,
we show feap for our parameter range of interest). For large DM-nucleon scattering cross-
section, which is of primary interest here, fc.p, behaves differently for heavier and lighter DM.

— I‘cap - NXFevap - Nirann 5 (21)



For lighter DM (m, < mg, where m4 is a typical atomic mass), the probability of reflection
is quite significant and hence, the capture fraction never reaches unity, i.e., I'cap < I'geo [26].
Whereas, for heavier DM, capture fraction can reach unity if the DM-nucleon scattering
cross-section is significantly large, i.e., I'cap & I'geo. Of course, this occurs when the available
number of scatterings, which is dictated by the DM-nucleon scattering cross-section, is larger
than the required number of scatterings to stop the DM particles. On the other hand,
for small DM-nucleon scattering cross-section (optically thin regime), capture fraction is
sufficiently small (feap < 1), and the capture rate is always much less than the geometric
capture rate. We use the recent numerical simulations [26] to estimate the value of feap,, which
agrees reasonably well with the previous analytical estimate in ref. [19]. Quantitatively, it
suggests that for DM-nucleon scattering cross-section of [1073*,10726] cm?, and for DM mass
of 1GeV, feap ~ 0.1, reducing further as ,/m, with lower DM masses. For heavier DM
capture, i.e., my > 10 GeV, we use the capture fraction from ref. [27]. To summarize, we use
the following capture rate for the optically thick regime

/8 v
1_wcap = fcap X I‘geom = fcap X STrf)(pI;LI\:I(gal X 7T'R2 s (2.2)

where Rg is the radius of the Earth, ppy = 0.4 GeVem ™ denotes the local Galactic DM
density, and vga = 220km/s denotes the typical velocity of the x particles in the Galac-
tic halo.

In order to determine the evaporation and annihilation rates, we need to estimate the
spatial distribution of the y particles inside the Earth-volume. The number density of bound
X particles inside the Earth-volume, n, (r), is essentially governed by the Boltzmann equation
that combines the effects of gravity, concentration diffusion, and thermal diffusion [8, 28]

Vn"’éi? ) YO mgl) (2:3)

T(r) kgT(r)
In the above equation, we have used the hydrostatic equilibrium criterion as the diffusion
timescales for the x particles are short as compared to the other relevant timescales. x ~
-1/ {2(1 + mx/mA)3/2} denotes the thermal diffusion co-efficient [28] and 7'(r) denotes the
temperature profile of the Earth. For the temperature and density profiles of the Earth,
we follow refs. [29, 30]. We also define a dimensionless radial profile function, G,(r) =

Vany(r)/ frli% 47r?n, (r)dr, such that, for uniform distribution of x particles, the profile
function is trivial, i.e., Gy (r) = 1. Distribution function G (r) does not depend on the total
number of trapped particles N, and therefore can be evaluated separately from eq. (2.1).

By solving eq. (2.3) for n,(r), we find that for light DM masses the density profile is
relatively constant and mildly increases toward the Earth-core. For heavier m,, x particles
shrink toward the Earth-core, leading to a substantial depletion of the surface density, and
approaches a Dirac-delta distribution at the center of the Earth for m, — oo.

As is well known, thermal fluctuations can bring light DM particles above the escape
velocity from the FEarth and open the loss channel commonly referred to as thermal evap-
oration of dark matter particles. If the collision length of dark matter particles is small,
the evaporation will effectively occur from the “last scattering surface”, and we estimate the
evaporation of y particles by adopting the Jeans’ expression [19]

2 2 2
3RLSS % ULss + Vesc

R3 27r1/2ULSS eXp(_veQSC/UI%SS)a (2.4)
2]

I‘evap = Gx(RLSS) X




where Rpgss and wvpgs denotes the radius and DM thermal velocity at the last scattering
surface, respectively. We obtain the “last scattering surface” via

/OO erUXjnj(r) =1, (2.5)
J

Ryss

where o,; denotes the scattering cross-section between DM and the j-th nuclei and n;(r)
denotes the number density of the j-th nuclei. We use Preliminary Reference Earth Model
for the density profile of the Earth [29], and for the chemical compositional profile, we use
table I of ref. [31]. For the density, temperature, and compositional profile of the Earth’s
atmosphere, we use NRLMSISE-00 model [32]. We note that, for large scattering cross
sections, of primary interest here, last scattering surface lies near the Earth-surface or in the
atmosphere, i.e., Rrsg ~ Rg. Quantitatively, the effect of evaporation is always negligible
for x particles heavier than 10 GeV, and is significant for m, 2 1GeV irrespective of the
DM-nucleon scattering cross-section [26, 33-35].

Finally, the annihilation rate of x particles (for energy-independent s-wave annihilation)
is given by

4
N

Fann =

Reg Reg
/0 Tzdrni(rﬂawann = 47F<C‘7/:%>am/0 7“2er§<(7”) . (2.6)
Combining each of these rates, we can integrate eq. (2.1) to solve for N,. We note that
for most of the parameter space relevant to our problem, dynamical equilibrium is achieved
(dN, /dt = 0), implying either the annihilation or the evaporation rate counter-balances the
capture rate. In this scenario, it is straightforward to solve eq. (2.1) to obtain [18]

) 1/2
2Ny = {(Tann/Tevap) + 4Fcap7-ann} o TaHH/Tevap : (2.7)

When the DM is heavy, all annihilations occur close to the center, and the flux of neu-
trinos at Earth’s surface, resulting from the annihilation events can be calculated by dividing
the total annihilation rate by 471}%. Lighter dark matter gives spatial extent to the region
where annihilations occur, that can be comparable to Earth’s size. In other words, spatial
distribution of annihilation creates a correction to the total flux of annihilation products (i.e.
neutrinos) reaching a detector. If evaporation can be neglected, one can define the total flux
of the neutrinos from annihilation of x particles. Assuming that single annihilation event
produces N, neutrinos, we obtain the expression for the neutrino flux as

b0 — N, x / Fcapni(r)TerdQ 1
e 4 (RZ + r? — 2Rgr cos ) fR® Amr2n2 (r)dr ’

(2.8)
r=0

where df) = 2msin 0df with the angular integral runs from # = 0 to # = w. Note that, in
the limit of m, — oo, x particles concentrate at the center of the Earth, and we recover the
familiar expression of ¢oo /Ny = Leap/(4mR%) from eq. (2.8). In figure 3, we show that with
increase in m,, ¢g gradually approaches ¢, whereas, for light DM masses ¢g > ¢oo.

Earth as the most optimal detector. In most of the WIMP dark matter models, the
indirect dark matter detection via annihilation to neutrinos is dominated by annihilations
inside the Sun. This is typically the case for the optically thin regime, as larger number of
target nuclei lead to a far greater accumulation rate of dark matter, scaling with the mass of



1.8

1.6}
1.4}
Sl 1.2
10l T
0.8 . .
1 10 100 1000
my [GeV]

Figure 3. Flux of neutrinos from annihilation of Earth-bound DM particles (¢g) as compared to
the scenario when all the Earth-bound particles reside exactly at the center of the Earth (¢oo). With
increase in mass, (¢g) gradually approaches to ¢u.

an astronomical body. It is important to stress that, in the optically thick regime (large DM-
nucleon scattering cross-section), Earth is the most optimal “collector” of DM interactions
resulting to a comparatively larger neutrino annihilation signal. As compared to the Sun,
Earth accumulates significantly fewer number of y particles, but in this case the capture of
particles is proportional to the surface area of a planet/star. Together with the much larger
Earth-Sun distance, this makes the flux of the Earth-bound DM considerably larger than
that from the Solar-bound DM. Quantitatively, for a DM mass of 10 GeV, we find that flux
of the Earth-bound DM is ~ 4000 times larger than the flux of Solar-bound DM particles.
As compared to the Jupiter-bound DM, the flux enhancement is even larger; by a factor of
~ 108. Therefore, our focus on the annihilation to neutrinos in the center of the Earth is
well justified.

3 Results

3.1 Low energy neutrinos from stopped meson decay

DM annihilation may result in neutrino fluxes of vastly different energies. In this subsection,
we concentrate on sub-electroweak scale dark matter that annihilates into light meson states
(e.g. pions) that mostly stop due to Coulomb and hadronic interactions and then decay at
rest [48, 49]. Such scenario is especially relevant if the DM-nucleon interaction is mediated by
a dark photon with 2m,, < mu < few GeV, and the DM annihilation proceeds via creation
of a pair of A’ particles [50]. Thus, we assume the stopped pion/muon source in Earth’s
interior to be a likely source of neutrinos. The most sensitive experiment in this energy
range, I, < m, /2, is Super-Kamiokande, by virtue of its large size, low threshold and deep



underground location. In this energy range, the most “advantageous” neutrino species is 7,
as it has the largest cross section and a more readily detectable inverse beta-decay signature.
Moreover, since the Earth’s dimensions are larger than the typical neutrino oscillation length
at these energies, we need to consider the production of both 7, and 7,,. We compute the event
rate at Super-Kamiokande by using the neutrino flux from eq. (2.8). We consider detection
of 7. at Super-K via the inverse beta decay (. +p — n + ¢e). The production of neutrinos
occurs mainly through the following channel: 7+ — % 4 v, followed by ut — et + e + 1,
where ), oscillates to 7.. We use the Michel spectrum of v, along with the neutrino-nucleon
scattering cross-section from ref. [51] for calculating the event-rate, which is given by

FSK = /¢€Bfﬁu(E> Pf’u_me UDeP(E) 6<E) Np dE’ (31)

where o5_,(E.) = 9.52 x 10~ cm? Doy Peme W denotes the scattering cross-section of electron

anti-neutrinos with protons [51], and Py, 5, =~ 1/6 is the oscillation probability. ¢(E) ~ 30%
denotes the signal efficiency and N, = % (2275:“
proton targets in the fiducial volume of the Super-Kamiokande detector. We compare the
event rate with the upper limit from the diffuse supernovae neutrino background searches,
that cover the same range of energies, to derive the exclusion limits in figure 4.

In the top panels, we use the SK result with pure-water (22.5 x 2970 kton-day) [36],
whereas, in the bottom panels, we use the SK result with 0.01 wt% gadolinium loaded water
(22.5x552.2 kton-day) [37]. We probe dark matter fraction of f, > 0.1% with the gadolinium
loaded water result and f, > 0.01% with pure-water result. The existing exclusions from
several surface and underground direct detection searches are also shown for comparison. To
adjust the experimental exclusions given for f, = 1 to the smaller fractions of interest here,
we have applied a simplified method (by re-scaling the lower limits accordingly with keeping
the ceilings fixed) as described in [22]. We note, however, this approach gives a reasonable

approximation to more computationally intensive calculations in refs. [52-54].

) denotes the total number of free (hydrogen)

3.2 High energy neutrinos from direct DM annihilation

Earth’s capture of dark matter in the optically-thick regime imply the existence of a light
mediator that causes the scattering cross section to be large. The annihilation of dark matter
may result in the stopped meson source of neutrinos, as described in the previous subsection,
but may also give rise to prompt higher-energy neutrinos. For example, high-energy neutrinos
can come from a few annihilation products that decay promptly, giving continuum spectra up
to E, = m,, such as yxy - WHtW~, bb, 7. Tt is also possible that the annihilation proceeds
via an intermediate step of light mediators, e.g. xx — A’A’, with direct prompt decay of
mediators to neutrinos, A’ — vv. This would be the case in the model of gauged lepton
number (such as B — L or L, — L, gauge symmetries). In addition, a virtual Z or A" may
lead to the direct annihilation of dark matter to monochromatic neutrinos, yy — A" — vv.
Searches for prompt higher-energy neutrinos arising from DM annihilation in the Sun by
Super-Kamiokande [55], ANTARES [56], and IceCube [44, 57] yield stringent constraints
on DM interactions. Apart from these solar searches, high energy neutrinos arising from
the center of the Earth has also been used to set constraints/projections on DM-nucleon
scattering cross-section [58-62].

Direct annihilation to neutrino pairs produces a line at F, = m,, which represents an
interesting signature as discussed in [44, 63, 64]. In this work we aim to place a constraint
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Figure 4. Constraints on DM-nucleon scattering cross-section (red shaded regions) from Earth-bound
DM annihilation. We use the flux upper limits inferred from non-detection of diffuse supernovae
background searches at Super-Kamiokande detector to derive the constraints. In the top panels,
we use the SK result with pure-water (22.5 x 2970 kton-day) [36], whereas, in the bottom panels,
we use the SK result with 0.01 wt% gadolinium loaded water (22.5 x 552.2 kton-day) [37]. The
existing exclusion limits from underground as well as surface detectors (gray shaded regions) including
CRESST-III [38], CRESST surface [39], XENON-1T [40], CDMS-I [41], and high-altitude detectors
(RRS [42], XQC [43]) are also shown for comparison.

on such a line signature from the Earth-bound DM annihilation by recasting the existing
searches. We use the IceCube DeepCore data with a total live-time of 6.75 years for this
purpose. More specifically, IceCube collaboration has searched this neutrino line in their data
with a total live-time of 6.75 years with the direction of the Sun. Given non-detection, it leads
to a upper limit on dark matter annihilation rate in the mass range of m, = [10, 100] GeV [44].
We use the corresponding upper limit to derive the exclusion limits in figure 5. The exclusion
limits are simply derived from the fact that flux of Earth-bound DM particles can not exceed
the flux upper limit: ¢g < T2 /(47D?), where D = 1.5 x 108km denotes the Earth-Sun
distance and I'?Y  denotes the annihilation rate upper limit at 90% C.L.

We use the tabulated values of DM annihilation rate upper limit (90% C.L.) for the DM
mass range of m, = [10,100] GeV [44], and extrapolate it upto m, = 10% GeV by scaling the
neutrino-nucleon scattering cross-section. We did not consider m, > 105 GeV as the trapping
of x particles becomes more and more inefficient with larger m, and as a consequence, it
does not cover any additional parameter space as compared to the underground detectors.
We show the existing constraints from underground, surface as well as the high-altitude
detectors for comparison. We found that in the regime of relatively small f,, f, < 1074,
direct annihilation of Earth-bound DM into neutrinos covers a part of the parameter space
with oy, € [10726-1072%] cm?, which is otherwise unexplored.
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Figure 5. Constraints on DM-nucleon scattering cross-section (red shaded regions) from direct anni-
hilation of x particles (xx — vv) from the center of the Earth. We use the IceCube DeepCore upper
limits on DM annihilation rate for xx — vv, which is obtained by using a 6.75 years data [44]. Exist-
ing constraints from underground as well as surface detectors (which includes XENON-1T, CDMS-
I, CRESST-III, and CRESST-surface; collected in [45-47]) and high-altitude detectors (RRS [42],
XQC [43]) are also shown for comparison.

4 Conclusions

A subdominant component of dark matter with large scattering cross section on nucleons
represents a realistic possibility in several classes of dark sector models. In this work, we
investigate generic consequences of such a scenario on the neutrino signals from annihilating
dark matter. We find that in the optically think regime, i.e. when the scattering length is
much shorter than the Earth’s dimensions, the accumulation inside the Earth would provide a
larger neutrino flux than the Sun or other planets. If the annihilation proceeds primarily into
the light mesons, one should expect a new neutrino source from stopped mesons. The neutrino
signals are expected to be dominated by 7., that mostly originate from v, — 7, oscillations.

To limit the strength of the source, one can use existing searches of the diffuse supernova
neutrino background, where record sensitivity has been achieved with the Super Kamiokande
neutrino detector. The results show that neutrinos from the stopped meson source can probe
abundances of strongly interacting fraction down to f, ~ 10~*. This is not as sensitive as
direct annihilation to visible modes in the volume of the SK detector, as the probability of
detecting a neutrino passing through the volume of a detector is quite low at these energies.
At the same time, the sensitivity extends to higher range of masses, as the depletion of the
surface abundance of dark matter does not affect the neutrino flux. We have also shown
that if the direct annihilation to neutrinos is allowed, or a significant flux of the neutrino can
be obtained from mediators decaying in flight, the sensitivity extends to higher masses of
dark matter, and smaller abundances due to the rapid growth of the neutrino cross section
with energy.
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