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Abstract. The third Painlevé equation in its generic form, often referred to as Painlevé-
III(D6), is given by
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Starting from a generic initial solution u0(x) corresponding to parameters α, β, denoted as
the triple (u0(x), α, β), we apply an explicit Bäcklund transformation to generate a family
of solutions (un(x), α + 4n, β + 4n) indexed by n ∈ N. We study the large n behavior
of the solutions (un(x), α + 4n, β + 4n) under the scaling x = z/n in two different ways:
(a) analyzing the convergence properties of series solutions to the equation, and (b) using
a Riemann–Hilbert representation of the solution un(z/n). Our main result is a proof that
the limit of solutions un(z/n) exists and is given by a solution of the degenerate Painlevé-III
equation, known as Painlevé-III(D8),
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A notable application of our result is to rational solutions of Painlevé-III(D6), which are
constructed using the seed solution (1, 4m,−4m) where m ∈ C \

(
Z+ 1

2

)
and can be written

as a particular ratio of Umemura polynomials. We identify the limiting solution in terms
of both its initial condition at z = 0 when it is well defined, and by its monodromy data in
the general case. Furthermore, as a consequence of our analysis, we deduce the asymptotic
behavior of generic solutions of Painlevé-III, both D6 and D8 at z = 0. We also deduce the
large n behavior of the Umemura polynomials in a neighborhood of z = 0.
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1 Introduction

This paper is a study of the confluence of solutions of the generic Painlevé-III equation to
solutions of its parameter-free degeneration. The six Painlevé equations and their solutions,
often referred to as Painlevé transcendents, have been the subject of intense study. This is
largely motivated by the fact that Painlevé transcendents are generically transcendental, and
yet appear in various applications in integrable systems, integrable probability, and random
matrix theory to name a few.

1.1 Bäcklund transformations and rational solutions of Painlevé-III

All Painlevé equations but the first are actually families of differential equations indexed by
complex parameters appearing as coefficients. However, certain solutions corresponding to dif-
ferent parameters can be related via Bäcklund transformations. For example, consider our main
object of study, the generic Painlevé III equation, known as PIII(D6):

d2u

dx2
=

1

u

(
du

dx

)2

− 1

x

du

dx
+

αu2 + β

x
+ 4u3 − 4

u
, α, β ∈ C. (1.1)

In [17], Gromak discovered that the transformation

u(x) 7→ û(x) :=
2xu′(x) + 4xu(x)2 + 4x− βu(x)− 2u(x)

u(x)(2xu′(x) + 4xu(x)2 + 4x+ αu(x) + 2u(x))
(1.2)

mapped solutions of (1.1) with parameters (α, β) to solutions of (1.1) with parameters (α + 4,
β + 4). With this one can construct from a given seed solution (u0, α, β) a family of solutions
(un, α+4n, β+4n) by iterating transformation (1.2). The paper [32] contains a survey of families
of solutions of (1.1) constructed using this and other Bäcklund transformations. A notable family
of solutions constructed in this manner is a sequence of rational solutions u = un(x;m) obtained
from the seed function u0(x) ≡ 1 and parameters α = −β = 4m. This family of solutions has
been numerically and analytically explored in [5], and many conjectures were formulated there.
While some of these were later resolved in the sequel [4], some conjectures remained open, see [5,
Conjectures 4 and 5]. Conjecture 5 is concerned with the behavior of un(x;m) near the singular
point x = 0. As was done in [5], writing

z = nx, Un(z;m) := un(x;m)

and considering large n for fixed m yields the differential equation
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Formally taking the limit and denoting the limiting function U(z;m) yields the parameter-free
Painlevé-III equation, referred to as PIII(D8),
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z
. (1.3)

The content of Conjecture 5 is that this convergence holds at the level of solutions, not just
equations.
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Figure 1. Left: the rational solution u10(x; 0.25). Right: the limiting solution U(z; 0.25), where we

recall the notation z = nx for n = 10. All poles of u10(x; 0.25) are simple with residue 1
2/− 1

2 , indicated

in the plot with red/yellow circles. Likewise, all zeros of u10(x; 0.25) are simple with derivative 2/−2,

indicated in the plot with pink/green squares. On the other hand, all poles and zeros of U(z; 0.25) have

multiplicity 2 and are marked with red circles and green squares respectively.

1.2 Results

To begin with, we prove Conjecture 5 from [5] in this work; to be more precise we establish the
following theorem.

Theorem 1.1. Fix m ∈ C\
(
Z+ 1

2

)
and let un(x;m) be the family of rational solutions described

above. There exists a unique solution U(z) = U(z;m) of the Painlevé-III(D8) equation (1.3)
analytic at the origin with U(0;m) = tan

(
π
2

(
m+ 1

2

))
̸= 0 such that

lim
j→∞

u2j

(
z

2j
;m

)
= U(z;m),

lim
j→∞

u2j+1

(
z

2j + 1
;m

)
= −1/U(z;m) (1.4)

for z /∈ Σ(m), where Σ(m) denotes the union of all poles and zeros of z 7→ U(z;m). The
convergence is uniform on compact subsets of C \ Σ(m).

We illustrate this theorem in Figure 1. The pictures are made using the code from [10], which
was generously provided by the authors.

In Section 2, we study the Maclaurin series solutions of (1.1); this characterizes the limiting
solution of (1.3) via its initial conditions and produces a local version of Theorem 1.1, see
Theorem 2.1 and Corollary 2.4 below.

The rational solutions un(x;m) are related to the so-called Umemura polynomials sn(x;m)
by the formula

un(x;m) =
sn(x;m− 1)sn−1(x;m)

sn(x;m)sn−1(x;m− 1)
. (1.5)

Indeed, a sequence of rational functions x 7→ sn(x;m) is determined by the recurrence relation

sn+1(x;m)

=
(4x+ 2m+ 1)sn(x;m)2 − s′n(x;m)sn(x;m)− x

(
s′′n(x;m)sn(x;m)− s′n(x;m)2

)

2sn−1(x;m)
(1.6)

with initial conditions

s−1(x;m) = 1, s0(x;m) = 1. (1.7)
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It was shown in [8, 42] that the rational functions sn(x;m) are actually polynomials. In Sec-
tion 3, we use Corollary 2.4 to deduce asymptotics of the Umemura polynomials themselves. To
formulate our result, we need to introduce a certain Fredholm determinant; more precisely, let
Kr : L

2[0, r] → L2[0, r] denote the integral operator with the continuous Bessel kernel

K(x, y) =

√
xJ1
(√

x
)
J0
(√

y
)
− J0

(√
x
)√

yJ1
(√

y
)

2(x− y)
.

For any λ ∈ C, let Dλ(r) be the Fredholm determinant

Dλ(r) := det(1− λKr).

It is well known (see, e.g., [30, Chapter 24]) that the Fredholm determinant Dλ(r) is an entire
function of λ. Since Kr is a trace-class integral operator, one of several equivalent ways to
define Dλ (r) is via the Plemelj–Smithies formula

Dλ(r) = exp

(
−

∞∑

ℓ=1

TrKℓ
r

λℓ

ℓ

)
. (1.8)

The traces in (1.8) have explicit expressions as iterated integrals

TrKℓ
r :=

∫ r

0
K(ℓ)(t, t)dt,

where

K(1)(x, y) = K(x, y) and K(ℓ)(x, y) =

∫ r

0
K(x, t)K(ℓ−1)(t, y)dt.

By re-scaling the integrals to bring the r-dependence to the integrand and observing that
J0
(√

xy
)
and

√
xyJ1

(√
xy
)
are both entire functions with respect to both x and y, we see

that TrKℓ
r and Dλ(r) can be extended to analytic functions of r in a neighborhood of r = 0,

and in fact TrKℓ
r = O

(
rℓ
)
as r → 0, from which we obtain Dλ(0) = 1. We are now ready to

state our second theorem.

Theorem 1.2. Fix m ∈ C \
(
Z + 1

2

)
. Then, there exists a small enough neighborhood of the

origin, G, such that the Umemura polynomials admit the following limits along the even and odd
subsequences:

lim
j→∞

s2j
(

z
2j+1 ;m

)

s2j(0;m)
= e2iz

(
U(z;m)

U(0;m)

)− 1
4 √

Dλ(m) (32iz), (1.9)

and

lim
j→∞

s2j−1

(
z
2j ;m

)

s2j−1(0;m)
= e2iz

(
U(z;m)

U(0;m)

) 1
4 √

Dλ(m) (32iz), (1.10)

where λ(m) = 1/
(
1+e2πim

)
, the square root and fractional powers denote the principal branches

taking the value 1 at z = 0, and the convergence is uniform for z ∈ G. Furthermore, the values
of the Umemura polynomials at the origin have the leading asymptotics

s2j(0;m) ∼
√
2πe4ζ

′(−1) j
2j2+j+m2

2
+m

2
+ 1

24 e−3j2−j22j
2+2j(− cos(πm))j

G
(
5
4 + m

2

)
G
(
5
4 − m

2

)
G
(
7
4 + m

2

)
G
(
3
4 − m

2

) , j → ∞, (1.11)

s2j−1(0;m) ∼ e4ζ
′(−1)

√
2π

j2j
2−j+m2

2
+m

2
+ 1

24 e−3j2+j22j
2
(cos(πm))j

G
(
3
4 + m

2

)
G
(
3
4 − m

2

)
G
(
5
4 + m

2

)
G
(
1
4 − m

2

) , j → ∞, (1.12)

in which G denotes the Barnes G-function and ζ denotes the Riemann zeta function.
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In fact, one can check that the expressions on the right-hand side of (1.9) and (1.10) admit
analytic continuation from a neighborhood of z = 0 to the whole z-plane. Although it does not
follow from our proof, this suggests that the neighborhood G can be taken to be an arbitrary
bounded set.

Our analysis of series solutions in Section 2 points to a more general statement about the
coalescence of solutions of (1.1) to solutions of (1.3). The technical result leading to Theorem 1.1
by Maclaurin series (see Theorem 2.1 below) applies not only to rational solutions, but to all
sequences of solutions with initial conditions converging to finite, nonvanishing limits. This,
however, is a serious limitation since x = 0 is a singular point of Painlevé-III, and generic
solutions of (1.1) will be singular at this point and behave like u(x) ≃ axp, |Re(p)| < 1. More
specifically, based on symbolic computation we expect the asymptotic expansion for solutions
of (1.1) in the form

u(x) ∼
∞∑

k=0

k+1∑

l=0

(
bklx

2k+(2l−1)p + cklx
2k+1+2lp

)
as x → 0.

To tackle this issue, we develop a second approach that avoids series expansions and instead
relies on the isomonodromy representation of the Painlevé transcendents. It was first discov-
ered by Garnier [13] and further explicated by Jimbo and Miwa in [24] that Painlevé equations
can be formulated as monodromy-preserving, or isomonodromic, deformations of correspond-
ing 2× 2 first-order systems of differential equations. This allows one to characterize solutions
of a given Painlevé equation in terms of a 2× 2 Riemann–Hilbert problem. Such a monodromy
representation was obtained for rational solutions of Painlevé-III(D6) in [5]. From this point
of view, one can show that for fixed α, β ∈ C, the solutions of (1.1) are parametrized by
triples (x1, x2, x3) ∈ C3 on the cubic surface, known as the monodromy manifold, given by

x1x2x3 + x21 + x22 + x2
(
e−iπα/4 − e−iπβ/4

)
+ x1

(
1− e−iπ(α+β)/4

)
− e−iπ(α+β)/4 = 0. (1.13)

The exponential constants appearing as coefficients in (1.13) will appear in multiple equations,
making it convenient to introduce the notation

e0 := eiπα/8 ̸= 0 and e∞ := ie−iπβ/8 ̸= 0. (1.14)

In Section 4, we reproduce the derivation of the cubic surface (1.13) carried out in [43] and
connect the quantities xi with other invariant quantities that appear in the Riemann–Hilbert
Problem 4.1 associated with PIII(D6). In Section 5, we present an analogous parametrization
of solutions of the D8 degeneration (1.3) of PIII in terms of triples (y1, y2, y3) ∈ C3 appearing
in the Riemann–Hilbert Problem 5.1 and satisfying

y1y2y3 + y21 + y22 + 1 = 0. (1.15)

Away from its singular points, we parametrize points (x1, x2, x3) on the cubic surface (1.13)
using parameters e1, e2 appearing naturally from the point of view of the Riemann–Hilbert
problem. In fact, e21, e

−2
1 are eigenvalues of a certain monodromy matrix for a circuit about the

origin for a linear system, see (4.1). The parameter e2 appears in the connection matrix for the
same system, see (4.28). We call (e1, e2) monodromy parameters.

Definition 1.3 (see Section 4 for details). We say the monodromy parameters (e1, e2) are
generic if

(i) e41 ̸= 1,

(ii) e1e2 ̸= 0,

(iii) e21 ̸= e±2
∞ and e21 ̸= e±2

0 .

Before moving on, we pause to make a few observations.
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� Condition (ii) implies that generic monodromy parameters are nonvanishing, hence we
may write

e1 = eiπµ and e2 = eiπη. (1.16)

� Since e21, e−2
1 are the essential quantities related to the complex parameter e1 in our

parametrization, and the former are insensitive to a change in sign of e1, we may take e1
to be in the right half plane; in view of (1.16), this corresponds to −1

2 < Re(µ) ≤ 1
2 . Note

that the choice of including the upper versus the lower endpoint of this range is arbitrary.

� Due to e21, e−2
1 being eigenvalues of the same matrix (see (4.27) below), the parame-

ters µ, −µ correspond to the same solution of (1.1). While we could restrict to parameters
where Re(µ) > 0 (say), we choose not to and in turn arrive at slightly simpler formulæ;
see Remark 6.2 below.

� It turns out that the parameter e2 is determined up to a sign as well, see Remark 4.2
below. As such, we take it to be in the right half plane as well, or −1

2 < Re(η) ≤ 1
2 .

With this in mind, we can now state a more general theorem.

Theorem 1.4. Let u0 be the solution of (1.1) corresponding to monodromy data (α, β, x1, x2, x3)
parametrized by generic monodromy parameters (e1, e2) using formulæ (consistent with (1.13))

x1 =
e21
(
e20e

2
2e

2
∞
(
e21e

2
∞ − 1

)
+ e20e

2
1 − 1

)((
e20e

2
1 − 1

)2
+ e20e

2
2e

2
∞
(
e20 − e21

)(
e2∞ − e21

))

e40e
2
2e

2
∞
(
1− e20e

2
1

)(
e41 − 1

)2 , (1.17)

x2 =

(
e20e

2
2e

2
1e

2
∞
(
e21 − e2∞

)
+ 1− e20e

2
1

)((
e20e

2
1 − 1

)2
+ e20e

2
1e

2
2e

2
∞
(
e20 − e21

)(
e21e

2
∞− 1

))

e40e
2
2e

2
∞
(
1− e20e

2
1

)(
e41 − 1

)2 , (1.18)

x3 = e21 +
1

e21
, (1.19)

and let U(z) = U(z; y1, y2, y3) denote the solution of (1.3) with monodromy data (consistent
with (1.15))

y1 = i

√
e2∞ − e21
1− e20e

2
1

·
(
1− e20e

2
1 + e20e

6
1e

2
2e

2
∞
(
e21 − e2∞

))

e0e1e2e∞
(
e2∞ − e21

)(
e41 − 1

) , (1.20)

y2 = i

√
e2∞ − e21
1− e20e

2
1

· e1
(
1− e20e

2
1 + e20e

2
1e

2
2e

2
∞
(
e21 − e2∞

))

e0e2e∞
(
e2∞ − e21

)(
e41 − 1

) , (1.21)

y3 = −e21 −
1

e21
. (1.22)

If un is the nth iterate of u0 under transformation (1.2), then for z /∈ Σ(y1, y2, y3)

lim
j→∞

u2j(z/2j) = U(z; y1, y2, y3),

lim
j→∞

u2j+1(z/(2j + 1)) = −1/U(z; y1, y2, y3),

where convergence is uniform on compact subsets of C \ Σ(y1, y2, y3) slit along Arg(z) = ±π
and Σ(y1, y2, y3) is the union of all poles and zeros of z 7→ U(z; y1, y2, y3).

There is nothing fundamental about the exclusion of Arg(z) = ±π; in fact, the Riemann–
Hilbert analysis below can be continued onto the universal cover of C \ {0} with a suitable
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Figure 2. Left: the solution u10(x) of (1.1) generated by ten iterations of (1.2) with seed u0(x) cor-

responding to monodromy data µ = 0.23 + 0.39i (see (1.16)), e2 = −0.45 − 0.96i and α = 40.5 + 0.63i,

β = 40.98+ 0.59i. Right: the limiting solution U(z) of (1.3). The labeling of poles and zeros is the same

as in Figure 1. Note that both u10(x) and U(z) are branched at the origin.

extension of the set Σ(y1, y2, y3). Similar observations apply to Proposition 1.5 and Theorem 1.7
below.

We illustrate Theorem 1.4 for solutions that are not single-valued near the origin in Figure 2.
Note that while the point (x1, x2, x3) ∈ C3 on the monodromy manifold (1.13) only depends on
the squares of e1, e2, the point (y1, y2, y3) ∈ C3 on the monodromy manifold (1.15) of the limiting
solution U(z; y1, y2, y3) of (1.3) has a sign ambiguity in the coordinates y1 and y2. However, if
either e1 or e2 changes sign, then the signs of y1 and y2 change together, and it turns out that
the triples (y1, y2, y3) and (−y1,−y2, y3) both lie on the surface (1.15) together and correspond
to the same solution of (1.3); see Remark 5.2 below. Similarly, there is no need for us to specify
the sign of the square roots in (1.20)–(1.21) provided they are both taken to be the same. One
might expect a similar ambiguity to arise from the replacement of e21 7→ e−2

1 , since both are
eigenvalues of the same matrix, but it turns out that (x1, x2, x3) is invariant under this change
provided e2 is appropriately modified, and (y1, y2, y3) remains invariant up to the sign ambiguity
described above, see Remark 6.2 below.

The proof of Theorem 1.4 is given in Section 7, and relies on Riemann–Hilbert analysis. The
idea of the proof is to use parametrices constructed out of confluent hypergeometric functions
near zero and infinity to reduce the setup to a Riemann–Hilbert Problem 7.5 on the circle.
After some additional transformations, the problem allows taking a large n limit which gives us
a Riemann–Hilbert Problem 7.9 with a jump on the circle in terms of Bessel functions. Further
transformations using parametrices constructed out of Bessel functions simplify the jump and we
arrive at a Riemann–Hilbert Problem 5.1 for Painlevé-III(D8). In Section 9.1, we transform this
into another Riemann–Hilbert Problem 9.2 for (1.3) already known in the literature. It is worth
pointing out that even in the case of rational solutions, the Painlevé-III(D6) Riemann–Hilbert
Problem 4.1 exhibits Stokes phenomenon near both singular points [5] and hence requires the
use of confluent hypergeometric parametrices to desingularize the problem before passing to the
limit.

While the formulæ for yi are daunting, they drastically simplify in the case of the rational
solutions, where u0 has monodromy data parametrized by

α = −β = 4m, e20 = −e2∞ = eiπm, e21 = i, e2 =

√

e−2πim
1− ieπim

1 + ieπim
, (1.23)

see Section 4.5 for details. With parameters chosen as in (1.23), the genericity conditions in
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Definition 1.3 imply m ∈ C \
(
Z+ 1

2

)
. Then, we have

y1 =
ieiπm√
1 + e2πim

, y2 =
i√

1 + e2πim
, y3 = 0.

One can check that with these choices of α, β, e1, and e2 we have U(z; y1, y2, y3) = U(z;m), cf.
Theorems 1.1 and 1.4.

By further specializing U(z;m) to m ∈ iR + Z, we arrive at highly symmetric solutions
of PIII(D8) which have appeared in various works in nonlinear optics [40] and as a limiting
object of various families of solutions to the focusing nonlinear Schrödinger equation in different
regimes [1, 2]. Furthermore, these solutions can be identified with pure imaginary solutions of
the radial reduction of sine-Gordon equation, see, e.g., [11, Chapter 13]. It is interesting that
they are related to another limiting object appearing in the random matrix theory – the Bessel
kernel determinant. The explicit relation is described in Corollary 3.4 below.

A consequence of the analysis in Section 7 below is a description of the behavior near the
origin of solutions u(x) of (1.1) corresponding to generic monodromy parameters (e1, e2).

Proposition 1.5. Let u(x) be the solution of Painlevé-III(D6) equation associated to µ, η ∈ C
via the generic monodromy parameters given in (1.16) with −1

2 < Re(η) ≤ 1
2 . If 0 < |Re(µ)| < 1

2 ,
then it holds that

u(x) = − Γ(1− 2ϵµ)2Γ
(
ϵµ− α

8

)
Γ
(
ϵµ+ β

8 + 1
2

)

Γ(2ϵµ)2Γ
(
−ϵµ− α

8 + 1
)
Γ
(
−ϵµ+ β

8 + 1
2

)

×
(
e20e

2
2e

2
∞
(
e20 − e21

)(
e21 − e2∞

)
(
e20e

2
1 − 1

)2

)ϵ

x4ϵµ−1
(
1 +O(xδ)

)
(1.24)

as x → 0 with |Arg(x)| < π where δ = min(1, 2− 4Re(µ)) and ϵ = sgn(Re(µ)).

Proposition 1.5 appeared in [22, Theorem 3.2] and its derivation is given in [28] for an
equivalent, degenerate Painlevé-V equation. We present its proof using a Riemann–Hilbert
approach in Section 8, which follows the steps of the proof of Theorem 1.4. The case Re(µ) = 0
can be handled similarly, but we exclude it here because two distinct terms arise at the same
leading order resulting in a more complicated formula. From this formula one can see that
if Re(µ) = 0 the solution can exhibit sinusoidal oscillations with frequency diverging as x−1

consistent with an essential singularity at the origin.

To apply Proposition 1.5 to the rational solutions (1.5), or more generally to the sequence
of Bäcklund iterates starting from any seed solution of (1.1), requires knowledge of the corre-
sponding sequence of monodromy data. This is the content of the following proposition, which
we prove in Section 6.

Proposition 1.6. Let u0(x) be the solution of (1.1) with parameters (α, β) and monodromy
data (µ, η) (see (1.16)) with −1

2 < Re(µ),Re(η) ≤ 1
2 . Then, the Bäcklund iterates un(x) are

parametrized by the following monodromy data

e21,n = e2πiµn , e2,n = e2, e0,n = eiπ(α+4n)/8, e∞,n = ie−iπ(β+4n)/8,

where1

µn =

{
µ, n ∈ 2Z,
µ− ϵ

2 , n+ 1 ∈ 2Z,
and ϵ = sgn(Re(µ)).

1To ensure −1/2 < Re(µn) ≤ 1/2, we set ϵ = −1 in the case where Re(µ) = 0.
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One notable application of Propositions 1.5 and 1.6 is the case corresponding to the rational
solutions of PIII(D6) described above. In [8], the authors found a product formula for un(0;m)
(see (2.19) in Section 2). Applying Propositions 1.5 and 1.6 to this case yields the closed-form
formula

un(0;m) =
Γ
(
1
4 − m

2 − n
2

)

Γ
(
1
4 − m

2 + n
2

) Γ
(
3
4 − m

2 + n
2

)

Γ
(
3
4 − m

2 − n
2

) . (1.25)

Another observation is that the expression on the right-hand side of (1.24) in Proposition 1.5
evaluated at the n-dependent monodromy data from Proposition 1.6 and at argument x = z

n
has a finite limit along even and odd subsequences of n. The limiting expressions relate to the
behavior of U(z; y1, y2, y3), which we can take from the literature:

Theorem 1.7 ([11, 20, 33]). Let U(z; y1, y2, y3) be the solution of the Painlevé-III(D8) equa-
tion (1.3) associated to (y1, y2, y3) ∈ C3 parametrized by generic monodromy parameters (e1, e2)
using formulæ (1.20)–(1.22). Then, it holds that

U(z) = − Γ(1− 2ϵµ)2

Γ(2ϵµ)224εµ−1
z4ϵµ−1(1 +O(z))

(
e20e

2
2e

2
∞
(
e2∞ − e21

)
(
e20e

2
1 − 1

)
)ϵ

as z → 0 with |Arg(z)| < π.

We pause to note that coalescence between Painlevé equations has long been in the literature;
a coalescence diagram of all six Painlevé equations already appeared in Okamoto’s work [36],
and was later expanded on in [34]. Later, a geometric interpretation of the coalescence was given
in [6]. That being said, the above degenerations are carried out on the level of the differential
equation, so that given a solution of a Painlevé equation, one does not have a characterization
of the solution one arrives at under the coalescence procedure. Confluence on the level of
the solutions of the differential equation has also appeared in the literature; one of the most
interesting examples is the merging of regular singularities and corresponding creation of an
irregular singularity. This process was studied in the works [16, 29]. In the PhD thesis [18] the
confluence was studied in more detail in the cases Painlevé VI → Painlevé V and Painlevé V →
Painlevé III(D6). In the works [26, 27] the authors considered a transition from Painlevé II →
Painlevé I that is different in nature.

1.3 Overview of the paper

In Section 2, we describe the coalescence map u 7→ U in terms of initial conditions and prove
Theorem 1.1 using Maclaurin series of these solutions. We apply it to Umemura polynomials
in Section 3. In Sections 4 and 5, we describe the monodromy representations of PIII(D6)
and PIII(D8), respectively. In Section 6, we explain the Schlesinger transformations underlying
Gromak’s Bäcklund transformation (1.2) and prove Proposition 1.6. In Section 7, we prove
Theorem 1.4 by Riemann–Hilbert methods. We recycle the same methodology to prove Propo-
sition 1.5 in Section 8. In Section 9.1, we perform a Fabry-type2 transformation to the Painlevé-
III(D8) Riemann–Hilbert problem naturally arising from our limit process to put it in more
canonical form and justify its solvability.

2Named after Eugène Fabry for his work in [9], see also [19, Chapter 17.53].
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2 Identifying the solution of the limiting Painlevé-III(D8)
equation using Maclaurin series

The Painlevé-III(D6) equation (1.1) for un(x;α, β) implies the following equivalent differential
equation for Un(z;α, β) := un(z/n;α, β):

U ′′
n =

(U ′
n)

2

Un
− U ′

n

z
+

αnU
2
n

z
+

βn
z

+ γnU
3
n +

δn
Un

, (2.1)

where

αn := 4 +
α

n
, βn := 4 +

β

n
, γn :=

4

n2
, δn := − 4

n2
. (2.2)

Note that for arbitrary α ∈ C and β ∈ C fixed and n > 0 sufficiently large we have the following
crude inequalities:

|αn| ≤ 5, |βn| ≤ 5, |γn| ≤ 1, |δn| ≤ 1. (2.3)

We construct solutions of (2.1) analytic at z = 0 as follows. First multiply (2.1) through
by zUn(z) to obtain

−zUnU
′′
n + z(U ′

n)
2 − UnU

′
n + αnU

3
n + βnUn + γnzU

4
n + δnz = 0. (2.4)

We substitute into (2.4) a power series

Un(z) =
∞∑

k=0

υkz
k, (2.5)

and express all products through the Cauchy product formula. The left-hand side of (2.4) is
then a formal power series in z, and assuming that υ0 ̸= 0, the coefficient of z0 yields

υ1 = βn + αnυ
2
0, (2.6)

the coefficient of z1 yields

υ2 =
1

4υ0

[
3αnυ

2
0υ1 + βnυ1 + γnυ

4
0 + δn

]
, (2.7)

and for k ≥ 2, the coefficient of zk yields

υk+1 =
1

υ0(k + 1)2

[
k∑

a=0

a(k + 1− 2a)υaυk+1−a + αn

k∑

a=0

k−a∑

b=0

υaυbυk−a−b

+ βnυk + γn

k−1∑

a=0

k−1−a∑

b=0

k−1−a−b∑

c=0

υaυbυcυk−1−a−b−c

]
, k ≥ 2. (2.8)

We may omit the term with a = 0 from the first sum on the right-hand side. Using

k + 1 ≥ 1 and
a|k + 1− 2a|

(k + 1)2
≤ 1 for a = 0, . . . , k,
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along with the inequalities (2.3), the coefficients in the series (2.5) are subject to the inequalities

|υ1| ≤ 5
(
1 + |υ0|2

)
, |υ2| ≤

1

4|υ0|
[
15|υ0|2|υ1|+ 5|υ1|+ |υ0|4 + 1

]
,

|υk+1| ≤
1

|υ0|

[
k∑

a=1

|υa||υk+1−a|+ 5
k∑

a=0

k−a∑

b=0

|υa||υb||υk−a−b|

+ 5|υk|+
k−1∑

a=0

k−1−a∑

b=0

k−1−a−b∑

c=0

|υa||υb||υc||υk−1−a−b−c|
]
, k ≥ 2. (2.9)

Now we define a sequence of positive numbers {Υk}∞k=0 by taking Υ0 > 0 arbitrary and setting

Υ1 = 5
(
1 + Υ2

0

)
, (2.10)

Υ2 =
1

4Υ2
0

[
15Υ2

0Υ1 + 5Υ1 +Υ4
0 + 1

]
=

1

4Υ2
0

[
76Υ4

0 + 100Υ2
0 + 26

]
, (2.11)

Υk+1 =
1

Υ0

[
k∑

a=1

ΥaΥk+1−a + 5

k∑

a=0

k−a∑

b=0

ΥaΥbΥk−a−b

+ 5Υk +
k−1∑

a=0

k−1−a∑

b=0

k−1−a−b∑

c=0

ΥaΥbΥcΥk−1−a−b−c

]
, k ≥ 2. (2.12)

Following [21, Proposition 1.1.1, p. 261], we construct an algebraic equation formally satisfied
by the power series

U(z) =
∞∑

k=0

Υkz
k. (2.13)

We first rewrite the generic k ≥ 2 equation in (2.12) in the equivalent form

−3Υ0Υk+1 +
k+1∑

a=0

ΥaΥk+1−a + 5
k∑

a=0

k−a∑

b=0

ΥaΥbΥk−a−b

+ 5Υk +

k−1∑

a=0

k−1−a∑

b=0

k−1−a−b∑

c=0

ΥaΥbΥcΥk−1−a−b−c = 0, k ≥ 2. (2.14)

Comparing with (2.13), this is the coefficient of zk in the power series expansion about z = 0 of
the equation

−3Υ0

z
U +

1

z
U2 + 5U3 + 5U + zU4 = 0.

More generally, since k ≥ 2 holds in (2.14), these relations are consistent also with the equation

−3Υ0

z
U +

1

z
U2 + 5U3 + 5U + zU4 =

A

z
+B + Cz. (2.15)

We now pick the constants A, B, C so that (2.15) is also consistent with (2.10)–(2.11) and
U(0) = Υ0 in the series (2.13). Indeed, U(0) = Υ0 is equivalent to the following equation
obtained from the coefficient of z−1 in (2.15):

−3Υ2
0 +Υ2

0 = A =⇒ A = −2Υ2
0.
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Then taking Υ1 from (2.10), the constant term in (2.15) gives the equation

−3Υ0Υ1 + 2Υ0Υ1 + 5Υ3
0 + 5Υ0 = B =⇒ B = −5Υ0(1 + Υ2

0) + 5Υ3
0 + 5Υ0 = 0.

Finally, obtaining also Υ2 from (2.11), the coefficient of z1 in (2.15) is

−3Υ0Υ2 + 2Υ0Υ2 +Υ2
1 + 15Υ2

0Υ1 + 5Υ1 +Υ4
0 = C =⇒

C = −Υ0Υ2 +Υ2
1 + 15Υ2

0Υ1 + 5Υ1 +Υ4
0

= −1

4

[
76Υ4

0 + 100Υ2
0 + 26

]
+ 25

(
1 + Υ2

0

)2
+ 75Υ2

0

(
1 + Υ2

0

)
+ 25

(
1 + Υ2

0

)
+Υ4

0

= 82Υ4
0 + 125Υ2

0 +
87

2
.

The formal series (2.13) with the recurrence relations (2.10)–(2.12) is therefore consistent with
the algebraic equation (rewriting (2.15) with the above expressions for A, B, C):

−3Υ0U + U2 + 2Υ2
0 = z

[(
82Υ4

0 + 125Υ2
0 +

87

2

)
z − 5U3 − 5U − zU4

]
. (2.16)

However, it is a straightforward application of the implicit function theorem to observe that
equation (2.16) has a unique solution U = U(z) analytic at z = 0 with U(0) = Υ0 > 0 (this
condition guarantees that the root U = Υ0 of the quadratic on the left-hand side of (2.16) is
simple). This proves that the formal series (2.13) with coefficients determined from (2.10)–(2.12)
has a positive radius of convergence for each given value Υ0 > 0.

Theorem 2.1. Fix α ∈ C and β ∈ C and let {Un(z;α, β)}∞n=1 be a sequence of solutions of (2.1)
that are analytic at the origin z = 0 and suppose that

lim
n→∞

Un(0;α, β) = υ∞,0 = υ∞,0(α, β) ̸= 0.

Then there exists a radius ρ > 0 such that for all n sufficiently large Un(z;α, β) is ana-
lytic for |z| < ρ and such that Un(z;α, β) → U∞(z;α, β) as n → ∞ uniformly for |z| < ρ,
where U(z) = U∞(z;α, β) is the unique solution of the Painlevé-III(D8) equation (1.3) that is
analytic at the origin with U∞(0;α, β) = υ∞,0.

Proof. Let {υn,k}∞k=0 denote the power series coefficients of Un(z;α, β) as in (2.5). Define Υ0

by Υ0 > 2|υ∞,0| (say), and obtain the subsequent coefficients {Υk}∞k=1 via (2.10)–(2.12). Com-
paring (2.9)–(2.12) then shows that for all n sufficiently large, |υn,k| ≤ Υk holds for all
k = 0, 1, 2, . . .. For each fixed k = 0, 1, 2, . . . , the recurrence relations (2.6)–(2.8) together
with the limit υn,0 → υ∞,0 show that υn,k tends to a limiting value υ∞,k as n → ∞, with
|υ∞,k| ≤ Υk. The convergence of Un(z;α, β) to a limiting analytic function U∞(z;α, β) with
U∞(0;α, β) = υ∞,0(α, β) then follows by dominated convergence. That the limiting analytic
function U∞(z;α, β) is a solution of (1.3) follows from passing to the limit in each term of (2.1)
using (2.2). That this solution is the unique analytic solution of (1.3) with the specified value
at z = 0 then follows from passing to the limit in the recurrence relations (2.6)–(2.8). ■

Now we apply this result to the rational solutions un(x;m) of equation (1.1), corresponding
to α = −β = 4m. To this end, we point out that in [8], the authors studied the Umemura
polynomials sn(x;m) at x = 0, and we begin by recalling one of their results.

Lemma 2.2 ([8]). Set y := m+ 1
2 and write ϕn(y) := sn(0;m). If n = 2k is even, then

ϕ2k(y) = yk
(
y2 − 1

)k k−1∏

j=1

(
y2 − (2j)2

)k−j(
y2 − (2j + 1)2

)k−j
, k = 1, 2, 3, . . . ,
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while if n = 2k − 1 is odd, then

ϕ2k−1(y) = ϕ2k(y)

k∏

j=1

(
y2 − (2j − 1)2

)−1
, k = 1, 2, 3, . . . . (2.17)

It follows from two identities above that also

ϕ2k+1(y) = ϕ2k(y) · y ·
k∏

j=1

(
y2 − (2j)2

)
, k = 1, 2, 3, . . . . (2.18)

Using (1.5) and sn(0;m− 1) = ϕn

(
m− 1

2

)
one has

un(0;m) =
ϕn

(
m− 1

2

)
ϕn−1

(
m+ 1

2

)

ϕn

(
m+ 1

2

)
ϕn−1

(
m− 1

2

) . (2.19)

Therefore, from (2.17) one gets that

u2k(0;m) =

k∏

j=1

(
m− 1

2

)2 − (2j − 1)2
(
m+ 1

2

)2 − (2j − 1)2
=

k∏

j=1

(
1−

(
m− 1

2

2j − 1

)2
)

k∏

j=1

(
1−

(
m+ 1

2

2j − 1

)2
) . (2.20)

Similarly, from (2.18) one gets

u2k+1(0;m) =
m− 1

2

m+ 1
2

k∏

j=1

(
m− 1

2

)2 − (2j)2
(
m+ 1

2

)2 − (2j)2
=

m− 1
2

m+ 1
2

·

k∏

j=1

(
1−

(
m− 1

2

2j

)2
)

k∏

j=1

(
1−

(
m+ 1

2

2j

)2
) . (2.21)

Using the infinite product formulæ (see [38, equations (4.22.1)–(4.22.2)])

sin(x) = x

∞∏

j=1

(
1− x2

π2j2

)
, cos(x) =

∞∏

j=1

(
1− 4x2

π2(2j − 1)2

)
,

we get the following result.

Lemma 2.3. Assume that m ∈ C \
(
Z+ 1

2

)
. Then

lim
k→∞

u2k(0;m) = tan

(
π

2

(
m+

1

2

))
, lim

k→∞
u2k+1(0;m) = − cot

(
π

2

(
m+

1

2

))
.

We then apply Theorem 2.1 and obtain the following Corollary, which completes the local
proof of Theorem 1.1.

Corollary 2.4. Let m ∈ C \
(
Z + 1

2

)
, and let U = U(z;m) denote the unique solution of the

Painlevé-III(D8) equation (1.3) that is analytic at the origin with U(0;m) = tan
(
π
2

(
m + 1

2

))
.

Then for all z in a neighborhood of the origin, we have

lim
k→∞

u2k

(
z

2k
;m

)
= U(z;m), lim

k→∞
u2k+1

(
z

2k + 1
;m

)
= − 1

U(z;m)
.

Note that the equation (1.3) is invariant under the Z2-Bäcklund transformation U(z) 7→
−U(z)−1, so the even/odd subsequences of rational solutions both tend to related solutions of
the same equation.



14 A. Barhoumi, O. Lisovyy, P.D. Miller and A. Prokhorov

3 Asymptotic behavior of Umemura polynomials

In this section, we obtain asymptotic results about the Umemura polynomials sn(x;m) and, as
a consequence, particular 2j − k determinants (see (3.30) below).

3.1 Painlevé-III tau functions, the Toda lattice,
and expressing sn(x;m) in terms of un+1(x;m)

As a first step, we would like to obtain an expression of the Umemura polynomials sn(x;m) in
terms of the rational Painlevé-III solutions themselves. We follow closely the works [12, 37]. We
introduce the Hamiltonian Hn ≡ Hn(x;m) via the equation

xHn(x;m) = 2pn(x;m)2un(x;m)2 + pn(x;m)
(
2x− 2xun(x;m)2

+ (1 + 2m− 2n)un(x;m)
)
− (2m+ 1)xun(x;m), (3.1)

where the momentum, pn ≡ pn(x;m), is given by

pn =
x

4u2n

dun
dx

+
x

2
− x

2u2n
− 2m− 2n+ 1

4un
. (3.2)

In other words, the canonical system

dun
dx

=
∂Hn

∂pn
and

dpn
dx

= −∂Hn

∂un

is equivalent to the definition (3.2) of pn and the PIII(D6) equation (1.1) for u = un(x;m) where
α = 4(n+m) and β = 4(n−m).

The tau function τn(x;m) can be defined up to a constant of integration by the relation

d

dx
ln(τn(x;m)) = Hn(x;m) +

1

x
un(x;m)pn(x;m). (3.3)

We would like to fix the constant in this definition by choosing a path of integration going
to x = ∞ in the sector |Arg(x)| < π. To this end, it was shown in [5] that the rational
functions un(x;m) behave at infinity as un(x;m) = 1 + O

(
x−1

)
. In fact, using this in the

Painlevé-III(D6) equation (1.1) with α = 4(n + m) and β = 4(n − m) gives the more refined
asymptotics

un(x;m) = 1− n

2x
+

n(2m+ n)

8x2
− n

(
4m2 + 4mn+ 1

)

32x3
+O

(
x−4

)
as x → ∞,

which, together with (3.2) implies that the right-hand side of (3.3) satisfies

Hn(x;m) +
1

x
un(x;m)pn(x;m)

= −2m− 1− (2m+ 1)(2m− 4n+ 3)

8x
+

(1 + 2m)(1− n)n

8x2

+
(1 + 2m)2(n− 1)n

32x3
+O

(
x−4

)
as x → ∞. (3.4)

Now, every pole x0 ̸= 0 of un(x;m) is simple with residue ±1
2 , and moreover directly from (1.1),

we find that

un(x;m) = ±1

2
(x− x0)

−1 − 1

2x0

(
n+m± 1

2

)
+O(x− x0), x → x0.
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Similarly, all zeros x0 ̸= 0 of un(x;m) are simple, with u′n(x0;m) = ±2, and again from (1.1) we
have

un(x;m) = ±2(x− x0) +
2

x0

(
±1

2
+m− n

)
(x− x0)

2 +O
(
(x− x0)

3
)
, x → x0.

These expansions can be differentiated with respect to x to obtain corresponding expansions
of pn(x;m) via (3.2) and then of Hn(x;m) via (3.1). These expansions show that the only
possible singularities x0 ̸= 0 of the right-hand side of (3.3) are simple poles of residue 1 that
occur at simple zeros of un(x;m) with u′n(x0;m) = −2. Furthermore, if m ̸∈ Z+ 1

2 , then un(x;m)
is analytic and nonzero at x = 0, and it follows that the right-hand side of (3.3) has a simple
pole at the origin with residue −1

8

(
4(m−n+1)2−1

)
. Therefore, arbitrarily fixing an integration

constant, the tau function τn(x;m) then can be defined for m ̸∈ Z+ 1
2 and |Arg(x)| < π by

τn(x;m) = e−(2m+1)xx−
(2m+1)(2m−4n+3)

8

× exp

(
−
∫ ∞

x

(
Hn(y;m) +

un(y;m)pn(y;m)

y

+ 2m+ 1 +
(2m+ 1)(2m− 4n+ 3)

8y

)
dy

)
, (3.5)

where the power function denotes the principal branch, the path of integration lies in the sec-
tor |Arg(y)| < π avoiding all poles of the meromorphic integrand, and then the integral is
independent of path modulo 2πi. It then follows from (3.4) that τn(x;m) admits the expansion

τn(x;m) = e−(2m+1)xx−
(2m+1)(2m−4n+3)

8

×
(
1 +

(2m+ 1)(n− 1)n

8x
+

(2m+ 1)2
(
n2 − 1

)
(n− 2)n

128x2
+O

(
x−3

)
)
,

as x → ∞, |Arg(x)| < π, (3.6)

and that τn(x;m)x(4(m−n+1)2−1)/8 extends to a neighborhood of x = 0 as an analytic nonvanish-
ing function. From the point of view of the function τn(x;m) the recurrence (1.6), which defines
the Umemura polynomials, is equivalent to the Toda equation. More precisely, if we define the
function

hn(x;m) = Hn(x;m) +
un(x;m)pn(x;m)

x
− 2x+

n2

x
, (3.7)

then using Gromak’s Bäcklund transformation (1.2) with u = un(x;m), û = un+1(x;m),
and α = 4(n+m), β = 4(n−m), we can check that hn satisfies the identity

hn+1(x;m)− hn(x;m) = −2un(x;m)pn(x;m)

x
+

2n+ 1

x
. (3.8)

Similarly, using the inverse of Gromak’s transformation (1.2):

û(x) 7→ u(x) =
2xû′(x)− 4xû(x)2 − 4x+ (β + 4)û(x)− 2û(x)

û(x) ·
(
2xû′(x)− 4xû(x)2 − 4x− (α+ 4)û(x) + 2û(x)

) ,

in which u(x) solves (1.1) and û(x) solves the same equation with parameters (α, β) replaced by
(α+ 4, β + 4), one can check the identity

hn−1(x;m)− hn(x;m) = −2un(x;m)pn(x;m)

x
− 2m+ 1

x
+

1− 2n

x− pn(x;m)
. (3.9)
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Combining (3.8) and (3.9), we get

hn+1(x;m) + hn−1(x;m)− 2hn(x;m) = −4un(x;m)pn(x;m)

x
+

2(n−m)

x
+

1− 2n

x−pn(x;m)
.

Differentiating (3.7), we can notice that

d

dx
ln

(
x

d

dx

(
xhn(x;m)

))
= hn+1(x;m) + hn−1(x;m)− 2hn(x;m).

Given any Kn(m) ∈ C, if we now define the function

τ̂n(x;m) = Kn(m)e−x2
xn

2
τn(x;m),

then hn(x;m) =
d

dx
ln τ̂n(x;m) and we see that τ̂n(x;m) satisfies the Toda equation

x
d

dx
x

d

dx
ln τ̂n(x;m) = Cn(m)

τ̂n+1(x;m)τ̂n−1(x;m)

τ̂n(x;m)2
(3.10)

with some constants {Cn(m)}∞n=0 depending on the {Kn(m)}∞n=0. We now choose the con-
stants Kn(m) so as to have Cn(m) = 1. To this end, using the detailed asymptotics (3.6), one
can check that the leading term of both sides of (3.10) as x → ∞ is proportional to x2 and
equating those coefficients under the assumption that Cn(m) = 1 yields the equation

−4 =
Kn+1(m)Kn−1(m)

Kn(m)2
,

of which we choose a particular solution Kn(m) = (2i)n
2
, which yields the expression

τ̂n(x;m) = (2i)n
2
e−x2

xn
2
τn(x;m). (3.11)

Now if we put

sn(x;m) = i−(n+1)22−
(n+1)(n+2)

2 e(2m+1)x+x2
x

4m2−4n2−8mn−16n−9
8 τ̂n+1(x;m),

then it follows from (3.10) with Cn(m) = 1 that sn(x;m) satisfies the Umemura recurrence
relation (1.6). Moreover, using

u0(x;m) = 1 and u1(x;m) =
8x+ 4m− 2

8x+ 4m+ 2

shows that the integrand in the exponent of τ0(x;m) and τ1(x;m) vanishes identically, from
which it follows that the initial conditions (1.7) are satisfied as well. Since the recurrence relation
and initial conditions together have a unique solution, using (3.5) and (3.11), the Umemura
polynomials are given by

sn(x;m) = 2
n(n+1)

2 e(2m+1)xx
4(m−n)2−1

8 τn+1(x;m)

= (2x)
n(n+1)

2 exp

(
−
∫ ∞

x

(
Hn+1(y;m) +

un+1(y;m)pn+1(y;m)

y

+ 2m+ 1 +
(2m+ 1)(2m− 4n− 1)

8y

)
dy

)
. (3.12)
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This formula achieves the goal of explicitly expressing sn(x;m) in terms of un+1(x;m). Since

d

dx
ln(τn(x;m)) = Hn(x;m) +

1

x
un(x;m)pn(x;m)

= − 4(m− n+ 1)2 − 1

8x
+O(1) as x → 0,

we can also use analyticity of sn(x;m) at the origin and the first line of (3.12) to write the
alternative expression

sn(x;m) = sn(0;m)e(2m+1)x exp

(∫ x

0

(
Hn+1(y;m) +

un+1(y;m)pn+1(y;m)

y

+
4(m− n)2 − 1

8y

)
dy

)
. (3.13)

We could equally well have used (3.13) to derive the Toda equation instead of (3.12), but it is
nice to have two different formulæ for Umemura polynomials.

3.2 The ratio sn(x;m)/sn(0;m) for large n and small x

The representation (3.13) can be combined with Theorem 1.1 to obtain a limiting formula
for sn(x;m)/sn(0;m) as n → ∞ and x → 0 at related rates. First, we note that with the
notation Un(z;m) := un(z/n;m), from (3.2) we obtain

pn

(
z

n
;m

)
=

n

2Un(z;m)

×
[
1 +

(
zU ′

n(z;m)

2Un(z;m)
−m− 1

2

)
1

n
+

(
zUn(z;m)− z

Un(z;m)

)
1

n2

]
.

Next, note that by Theorem 2.1 we can differentiate the limit in Theorem 1.1 for z near the
origin, and hence for small z and n even we have Un(z;m) → U(z;m) and U ′

n(z;m) → U ′(z;m),
while for n odd we have instead Un(z;m) → −U(z;m)−1 and U ′

n(z;m) → U(z;m)−2U ′(z;m).
Therefore, we have the following limit:

lim
n→∞

1

n

(
Hn(x;m) +

2

x
un(x;m)pn(x;m) +

4(m− n+ 1)2 − 1

8x

∣∣∣∣
x=z/n

)

=
zU ′(z;m)2

8U(z;m)2
± U ′(z;m)

4U(z;m)
− U(z;m) +

1

U(z;m)
,

where we take the plus sign for n even and the minus sign for n odd, and the convergence is
uniform for |z| sufficiently small. It follows that if x = z/(n+1) in (3.13), by the corresponding
substitution y 7→ y/(n+ 1)

lim
j→∞

s2j−1

(
z
2j ;m

)

s2j−1(0;m)
= exp

(∫ z

0

(
yU ′(y;m)2

8U(y;m)2
+

U ′(y;m)

4U(y;m)
−U(y;m) +

1

U(y;m)

)
dy

)
, (3.14)

and

lim
j→∞

s2j
(

z
2j+1 ;m

)

s2j(0;m)
= exp

(∫ z

0

(
yU ′(y;m)2

8U(y;m)2
− U ′(y;m)

4U(y;m)
−U(y;m) +

1

U(y;m)

)
dy

)
, (3.15)

with the limits being uniform for |z| sufficiently small. To reduce the right-hand side in each
case to the corresponding formula presented in Theorem 1.2 we refer to Section 3.4 below.
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3.3 Asymptotic behavior of sn(0;m) for large n

We now compute the large n asymptotics of sn(0;m) = ϕn

(
m+ 1

2

)
. First we write the formula

for ϕn(y) from Lemma 2.2 in terms of Gamma functions

ϕn(y) =





n
2∏

j=1

Γ(y + 2j)

Γ(y + 1− 2j)
, n even,

n+1
2∏

j=1

Γ(y + 2j − 1)

Γ(y + 2− 2j)
, n odd.

Since we are interested in asymptotics for large n, we need to use the reflection formula for the
Gamma function [38, equation (5.5.3)] in the denominator:

ϕn(y) =





(
−sin(πy)

π

)n
2

n
2∏

j=1

Γ(2j + y)Γ(2j − y), n even,

(
sin(πy)

π

)n+1
2

n+1
2∏

j=1

Γ(2j − 1 + y)Γ(2j − 1− y), n odd.

Next, we use the Gamma duplication formula [38, equation (5.5.5)] and get

ϕn(y) =





(
−sin(πy)

π2

)n
2

2
n2

2

×
n
2∏

j=1

Γ

(
j +

y

2

)
Γ

(
j − y

2

)
Γ

(
j +

1

2
+

y

2

)
Γ

(
j +

1

2
− y

2

)
, n even,

(
sin(πy)

π2

)n+1
2

2
n2−1

2

×
n+1
2∏

j=1

Γ

(
j +

y

2

)
Γ

(
j − y

2

)
Γ

(
j − 1

2
+

y

2

)
Γ

(
j − 1

2
− y

2

)
, n odd.

Now we can rewrite ϕn(y) in terms of the Barnes G-function:

ϕn(y) =





(
−sin(πy)

π2

)n
2

2
n2

2

× G
(n+2+y

2

)
G
(n+2−y

2

)
G
(n+3+y

2

)
G
(n+3−y

2

)

G
(
1 + y

2

)
G
(
1− y

2

)
G
(
3
2 + y

2

)
G
(
3
2 − y

2

) , n even,

(
sin(πy)

π2

)n+1
2

2
n2−1

2

× G
(n+3+y

2

)
G
(n+3−y

2

)
G
(n+2+y

2

)
G
(n+2−y

2

)

G
(
1 + y

2

)
G
(
1− y

2

)
G
(
1
2 + y

2

)
G
(
1
2 − y

2

) , n odd.

Using the large argument asymptotics of the Barnes G-function [38, equation (5.17.5)], we get

ϕn(y) ∼





n
n2+n

2 e−
3n2

4
−n

2 (− sin(πy))
n
2 2

n
2 n− 1

12
+ y2

2
√
πe

1
3 2

7
12

− y2

2

A4G
(
1 + y

2

)
G
(
1− y

2

)
G
(
3
2 + y

2

)
G
(
3
2 − y

2

) , n even,

n
n2+n

2 e−
3n2

4
−n

2 (sin(πy))
n+1
2 2

n
2 n− 1

12
+ y2

2 e
1
3 2

1
12

− y2

2

√
πA4G

(
1 + y

2

)
G
(
1− y

2

)
G
(
1
2 + y

2

)
G
(
1
2 − y

2

) , n odd
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as n → ∞, where A = e
1
12

−ζ′(−1) is Glaisher’s constant [38, equation (5.17.6)]. Recalling
y = m+ 1

2 , we complete the proof of the formulæ (1.11)–(1.12).

3.4 Connection with the Fredholm determinant of the Bessel kernel

We have already seen how the PIII(D8) equation (1.3) can be obtained from the PIII(D6)
equation (1.1) by confluence. There exists another, less known relation between the two equa-
tions – namely, a quadratic transformation mapping the solutions of PIII(D8) to solutions of
PIII(D6) with special parameter values. Moreover, for precisely this parameter choice the rel-
evant PIII(D6) admits a family of transcendental analytic solutions that can be expressed in
terms of Fredholm determinants of the continuous Bessel kernel. Under quadratic transforma-
tions, they are mapped to solutions of PIII(D8) analytic at z = 0. This allows one to give yet
another characterization of the PIII(D8) transcendent describing the large-order asymptotics of
the rational PIII(D6) solutions.

Indeed, let U(z) be an arbitrary solution of the PIII(D8) equation (1.3). It is then straight-
forward to check that the function σ(r) defined by

σ(r) :=
z2U ′(z)2

4U(z)2
− 2z

(
U(z)− 1

U(z)

)
− 4iz, r = 32iz, (3.16)

satisfies the σ-form of a particular PIII(D6) equation, namely,3

(
rσ′′(r)

)2
= σ′(r)(4σ′(r) + 1)(σ(r)− rσ′(r)). (3.17)

Indeed, letting ς(t) := σ(4t) + t transforms equation (3.17) to

(tς ′′(t))2 = 4ς ′(t)(ς ′(t)− 1)(ς(t)− tς ′(t)).

The latter appears in [22, equation (3.13)] and [35, equation (EIII′)]. These relate to (1.1) via
the following transformations; letting

q(t) := − tς ′′(t)

2ς ′(t)(ς ′(t)− 1)

yields (a special case of) the so-called “prime” version of Painlevé-III

d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
+

1

t2
q3 +

1

t
− 1

q
.

Next, letting t = x2 and q(t) = xu(x) yields (1.1) with parameters α = 0 and β = 4. Combining
the transformations U(z) 7→ σ(r) 7→ ς(t) 7→ q(t) 7→ u(x) yields an explicit formula for u(x) in
terms of U(z):

u(x) =
1

2

d

dx
log

(
1 + iU

(
x2

8i

)

1− iU
(
x2

8i

)
)
.

Correcting for a typo,4 this is equivalent to [2, equation (112)]. Note that if U(z) is a solution
of (1.3) that is analytic at z = 0 with U(0) ̸= 0, and hence also from (1.3) U ′(0) = 4

(
1+U(0)2

)
,

3Observe that our definition of σ differs from that of [41] by a negative sign.
4The relevant equation in [2] should be corrected to read

u(x) := − 8

x

[
d

dX
log

(
X

W ′(X)

W (X)

) ∣∣∣∣
X=− 1

8
x2

]−1

.

Here W (X) is related to a solution U(z) of (1.3) by W (X) = iU(iX).
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then (3.16) implies that σ(r) is analytic at r = 0 with σ(0) = 0, and, in fact,

σ(r) =

(
i

16

(
U(0)− 1

U(0)

)
− 1

8

)
r +

1

256

(
U(0) +

1

U(0)

)2

r2 +O
(
r3
)
, r → 0. (3.18)

Also, differentiating (3.16) and using (1.3) to eliminate U ′′(z) yields the relation

−16iσ′(r) = U(z)− 1

U(z)
+ 2i, r = 32iz, (3.19)

which can be regarded as an algebraic equation expressing U(z) in terms of σ′(32iz).
Conversely, any solution σ(r) of (3.17) different from an affine function ar + b can be

mapped to a pair of solutions U(z) of PIII(D8) related by the Z2 Bäcklund transformation
U(z) 7→ −1/U(z) with the help of the formula (3.19). To see this, one first uses (3.17) to
explicitly express σ(r) in terms of its derivatives and r, and then differentiates the resulting ex-
pression with respect to r. Each term of the resulting equation has a common factor of rσ′′(r).
Hence if σ(r) is non-affine, one may cancel this factor, and then σ′(r), σ′′(r), and σ′′′(r) can
be eliminated from the reduced equation using (3.19) and its derivatives. This implies that
either U(z)2 + 1 = 0 or U(z) is a solution of (1.3), and the latter admits precisely the constant
solutions U(z) = ±i so we may conclude that any meromorphic function U(z) obtained from
a non-affine solution of (3.17) via (3.19) is a solution of (1.3).

Now recall a classical result of Tracy and Widom [41, equation (1.21) with α = 0].

Proposition 3.1. The logarithmic derivative

σ(r) = r
d

dr
lnDλ(r) (3.20)

satisfies the σ-PIII(D6) equation (3.17).

The Bessel kernel can be equivalently written as

K(x, y) =
1

4

∫ 1

0
J0
(√

xz
)
J0
(√

yz
)
dz =

∞∑

m=0

∞∑

n=0

(−1)m+n 2−2(m+n+1)

(m!)2 (n!)2 (m+ n+ 1)
xmyn. (3.21)

The first of these identities follows from the easily verified differentiation formula

d

dz
(zK(xz, yz)) =

1

4
J0
(√

xz
)
J0
(√

yz
)
,

whereas the second one is obtained by substituting into the integral expression the standard series
representation of J0(·) [38, equation (10.2.2)]. Using (1.8) along with representation (3.21), then
enables one to compute the traces of powers of Kr in the form of a series in r. It yields

lnDλ(r) = −
∞∑

ℓ=1

λℓrℓ

22ℓℓ

∞∑

n1=0

· · ·
∞∑

n2ℓ=0

(
−r/4

)∑2ℓ
k=1 nk

∏2ℓ
k=1 (nk!)

2 (nk + nk+1 + 1)
, n2ℓ+1 = n1. (3.22)

Expansions of such form are known for Fredholm determinants appearing in random matrix
theory, see [31, Section 20.5]. Let us record explicitly the few first terms of (3.22):

lnDλ(r) = − λr

4

(
1− r

8
+

r2

96
− 5r3

9216

)
− λ2r2

32

(
1− r

4
+

41r2

1152

)

− λ3r3

192

(
1− 3r

8

)
− λ4r4

1024
+O

(
r5
)
, r → 0,
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which implies that the Bessel determinant solution of (3.17) guaranteed by Proposition 3.1 has
the asymptotics

σ(r) = r
d

dr
lnDλ(r) =− λr

4
+

1

16

(
λ− λ2

)
r2 +

1

128

(
−2λ3 + 3λ2 − λ

)
r3

+

(
−36λ4 + 72λ3 − 41λ2 + 5λ

)
r4

9216
+O

(
r5
)
, r → 0. (3.23)

This expression is of course consistent with the differential equation (3.17).

On the other hand, if U(z) = U(z;m) is the particular solution of (1.3) relevant to Theo-
rem 1.1, which for m ∈ C \

(
Z+ 1

2

)
is analytic at the origin with

U(0;m) = tan

(
π

2

(
m+

1

2

))
∈ C,

then according to (3.18), the corresponding solution of (3.17) analytic at the origin satisfies

σ(r) = −λ(m)

4
r +

r2

64 cos2(πm)
+O

(
r3
)
, r → 0, λ(m) :=

1

1 + e2πim
. (3.24)

Note that λ(m) is necessarily finite for m ∈ C \
(
Z+ 1

2

)
and there are only two values it never

takes for any m: λ(m) ̸= 0, 1. Also, the coefficient of r2 cannot vanish for any m ∈ C. Now we
need the following result.

Proposition 3.2. Let σ1(r) and σ2(r) denote two non-affine solutions of (3.17) both analytic at
the origin and both satisfying σj(r) = −1

4λr+O
(
r2
)
as r → 0 with λ ̸= 0, 1. Then σ1(r) = σ2(r)

on a neighborhood of r = 0.

Proof. If σ(r) = σ1,2(r) is a solution of (3.17) analytic at the origin with σ′(0) = −1
4λ, then it

has a locally-convergent Taylor series

σ(r) = −λ

4
r +

∞∑

k=2

skr
k, |r| < ρ

for some ρ > 0. Using this in the differential equation (3.17), from the coefficient of r2 one
obtains

4s22 −
1

4
λ(1− λ)s2 = 0, (3.25)

whereas from the coefficient of rk for k ≥ 3,

(
4ks2 −

1

4
λ(1− λ)

)
sk

=
1

k − 1

(
k−1∑

ℓ=2

ℓ(k − ℓ)sℓsk−ℓ+1 −
k−1∑

ℓ=3

(ℓ− 1)ℓ(k − ℓ+ 1)(k − ℓ+ 2)sℓsk−ℓ+2

+

k−1∑

ℓ=2

ℓ−1∑

j=0

(j + 1)(ℓ− j)(k − ℓ)sj+1sℓ−jsk−ℓ+1

)
, k ≥ 3, (3.26)

where on the right-hand side, s1 := −1
4λ. Now, (3.25) implies that either s2 = 0 or s2 =

1
16λ(1− λ) ̸= 0.
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Suppose first that s2 = 0. Then setting k = 3 in (3.26) gives

−1

4
λ(1− λ)s3 = 0 =⇒ s3 = 0, (3.27)

since λ ̸= 0, 1. We now use (3.27) as the base case for an inductive argument. Suppose
s2 = s3 = · · · = sk = 0. Using (3.26) for the coefficient of rk+1, we obtain

−1

4
λ(1− λ)sk+1 = 0 =⇒ sk+1 = 0,

from which it follows that σ(r) = −1
4λr exactly. This is a contradiction, because σ(r) is not

affine. Therefore, s2 ̸= 0.

Taking s2 = 1
16λ(1 − λ) ̸= 0 as necessary, we note that in (3.26) for k ≥ 3, sk appears only

on the left-hand side with coefficient

4ks2 −
1

4
λ(1− λ) =

1

4
(k − 1)λ(1− λ) ̸= 0,

while the right-hand side only involves s1, . . . , sk−1. Therefore, all subsequent coefficients
sk, k≥3 are uniquely determined by the recurrence, implying that σ1(r) = σ2(r). ■

Remark 3.3. It is worth noting that D1(r) = e−r/4, for which σ(r) defined by (3.20) is an
affine function. See [41].

Since the analytic solutions with expansions given in (3.23) and (3.24) have the same leading
term if λ = λ(m) ̸= 0, 1, and neither solution is an affine function, they coincide for small |r|.
Because the function U(z;m) is then determined up to the involution U 7→ −U−1 by (3.19), we
have proved the following result.

Corollary 3.4. Let m ∈ C \
(
Z+ 1

2

)
. The function U(z;m) appearing in the asymptotics (1.4)

of Theorem 1.1 is related to the continuous Bessel kernel determinant by

U(z;m)− 1

U(z;m)
= −2i− 1

2

d

dz
z

d

dz
lnDλ(m)(32iz),

with λ(m) = 1/
(
1 + e2πim

)
. In particular, the expansion of U(z;m) in powers of z can be read

off from the series representation (3.22).

Furthermore, using (3.17) and (3.20) shows that the integrand in (3.14), (3.15) is given by

zU ′(z;m)2

8U(z;m)2
± U ′(z;m)

4U(z;m)
− U(z;m) +

1

U(z;m)

=
1

2z
σ(32iz) + 2i± U ′(z;m)

4U(z;m)
=

1

2

d

dz
lnDλ(m)(32iz) + 2i± U ′(z;m)

4U(z;m)
(3.28)

and we get Theorem 1.2.

3.5 Connection with 2j − k determinants

On the other hand, the Umemura polynomials admit the following Wronskian determinant
representation [25]:

sn(x;m) =

n∏

k=1

(2k − 1)!! det
(
L
(m+1/2−2i+j)
2i−j (−2x)

)n
i,j=1

,



Painlevé-III Monodromy Maps Under the D6 → D8 Confluence 23

where for parameter α ∈ C and index k ∈ Z, L
(α)
k (x) are generalized Laguerre polynomials

for k ≥ 0, while L
(α)
k (x) = 0 for k < 0.

Expressions like that on the right-hand side are called Wronskian Appell polynomials in [3];
similar formulæ hold for rational solutions of other Painlevé equations as well. Wronskian
determinants of generalized Laguerre polynomials were also studied in [7].

The generalized Laguerre polynomials admit the following integral representation [38, equa-
tion (18.10.8)]:

L
(α)
k (x) =

exx−α

2πi

∫

|z−x|=ε
zk

zαe−z

(z − x)k+1
dz (3.29)

for |Arg(x)| < π (analytically continuable to x ∈ C) where ε > 0 is small enough so that the
branch cut z ≤ 0 is outside the contour of integration. Making the transformation

z = x+
yx

2

in (3.29) yields

L
(α)
k (x) =

1

2α

∫

|y|=ε
y−k(y + 2)k+αe−

yx
2

dy

2πiy
.

We denote

w(y;x,m) := (y + 2)m+ 1
2 eyx and wk(x,m) :=

∫

|y|=1
y−kw(y;x,m)

dy

2πiy
.

Using this notation, we obtain

sn(x;m) =

[
n∏

ℓ=1

(2ℓ− 1)!!

]
2mn−n2

2 det(w2j−k(x,m))nj,k=1. (3.30)

Similar “2j − k” determinants have appeared in various works in the literature, see, e.g., [15].
Denoting

Dn(x;m) = det
(
w2j−k(x,m)

)n
j,k=1

,

it immediately follows from (3.15), (3.14) that in the limit j → ∞,

D2j

(
z

2j + 1
;m

)
∼ s2j(0;m)22j

2−2mj

∏2j
ℓ=1(2ℓ− 1)!!

× exp

(∫ z

0

(
yU ′(y;m)2

8U(y;m)2
− U ′(y;m)

4U(y;m)
− U(y;m) +

1

U(y;m)

)
dy

)

and

D2j−1

(
z

2j
;m

)
∼ s2j−1(0;m)22j

2−2(m+1)j+m+ 1
2

∏2j−1
ℓ=1 (2ℓ− 1)!!

× exp

(∫ z

0

(
yU ′(y;m)2

8U(y;m)2
+

U ′(y;m)

4U(y;m)
− U(y;m) +

1

U(y;m)

)
dy

)
.
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To write the analog of Theorem 1.2 for Dn(x;m) we need to compute the asymptotic behavior
of
∏n

k=1(2k − 1)!!. We use [38, equation (5.4.2)] to get

2n−1∏

ℓ=1

(2ℓ− 1)!! = π−n
2 2

n(n+1)
2

n∏

ℓ=1

Γ

(
ℓ+

1

2

)
= π−n

2 2
n(n+1)

2
G
(
n+ 3

2

)

G
(
3
2

)

∼ n
n2

2
+n

2 e−
3n2

4
−n

2 2
n2

2
+nn

1
24 2

5
24 e−

ζ′(−1)
2 , n → ∞.

Combining this with formulæ (1.11), (1.12) and using (3.28), we get

D2j

(
z

2j + 1
;m

)

∼ 2−j(2m+1)(− cos(πm))jj
m2

2
+m

2 2
1
4
√
πe

9ζ′(−1)
2

G
(
3
4 − m

2

)
G
(
5
4 − m

2

)
G
(
5
4 + m

2

)
G
(
7
4 + m

2

) e2iz
(
U(z;m)

U(0;m)

)− 1
4 √

Dλ(m) (32iz),

D2j−1

(
z

2j
;m

)

∼ 2−j(2m+1)(cos(πm))jj
m2

2
+m

2 2
1
4
+me

9ζ′(−1)
2

√
πG
(
1
4 − m

2

)
G
(
3
4 − m

2

)
G
(
3
4 + m

2

)
G
(
5
4 + m

2

)e2iz
(
U(z;m)

U(0;m)

) 1
4 √

Dλ(m) (32iz),

both in the limit j → ∞.

4 General monodromy data: Painlevé-III(D6)

4.1 Lax pair for Painlevé-III(D6)

Following Jimbo and Miwa [24], we use the fact that each Painlevé equation can be recast as an
isomonodromic deformation condition for a 2×2 system of linear ODEs with rational coefficients.
The case of Painlevé-III (D6) corresponds to the situation where the coefficient matrix for the
equation in the spectral variable, λ, has exactly two poles on the Riemann sphere leading to
irregular singularities at λ = 0 and λ = ∞, at each of which the leading term is diagonalizable.
After some normalization, the differential equation can be written in the form5

∂Ψ

∂λ
= Λ(6)(λ, x)Ψ(λ, x), (4.1)

where

Λ(6)(λ, x) =
ix

2
σ3 +

1

2λ

[
−Θ∞ 2y
2v Θ∞

]
+

1

2λ2

[
ix− 2ist 2is

−2it(st− x) −ix+ 2ist

]
, (4.2)

In this case, the deformation equation is

∂Ψ

∂x
= X(λ, x)Ψ(λ, x), (4.3)

where

X(λ, x) =
iλ

2
σ3 +

1

x

[
0 y
v 0

]
− 1

2λx

[
ix− 2ist 2is

−2it(st− x) −ix+ 2ist

]
.

5Henceforth, we use bold capital letters to denote matrices, with the only exceptions being the identity matrix,
denoted I and the Pauli matrices, denoted σk, k = 1, 2, 3.
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In the expressions for Λ(6)(λ, x) and X(λ, x), Θ∞ is a complex parameter and s = s(x), t = t(x),
v = v(x), y = y(x). The equations (4.1) and (4.3) constitute an over-determined system with
compatibility condition

∂Λ(6)

∂x
(λ, x)− ∂X

∂λ
(λ, x) +

[
Λ(6)(λ, x),X(λ, x)

]
= 0,

where
[
Λ(6),X

]
is the commutator. This boils down to the scalar equations

x
dy

dx
= −2xs+Θ∞y, x

dv

dx
= −2xt(st− x)−Θ∞,

x
ds

dx
= (1−Θ∞)s− 2xy + 4yst, x

dt

dx
= Θ∞t− 2yt2 + 2v. (4.4)

If we let

u(x) := −y(x)

s(x)
, (4.5)

then it follows from (4.4) that

x
du

dx
= 2x− (1− 2Θ∞)u+ 4stu2 − 2xu2,

which can be seen to be equivalent to (1.1) by taking another x-derivative and using (4.4) again,
after which the quantity

I(x) :=
2Θ∞
x

st−Θ∞ − 2yt

x
(st− x) +

2sv

x
,

appears. However, from (4.4) it follows that I ′(x) = 0, so denoting the constant value of I
by Θ0, we arrive at (1.1) with parameters

Θ0 =
α

4
, Θ∞ = 1− β

4
. (4.6)

The constants Θ0, Θ∞ can be naturally interpreted on the level of the 2 × 2 system (4.1),
which we now explore. For all the calculations that follow, we assume for simplicity that x > 0.
The system (4.1) admits formal solutions near the singular points6

Ψ
(∞)
formal(λ, x) =

(
I+Ξ(6)(x)λ−1 +O

(
λ−2

))
eixλσ3/2λ−Θ∞σ3/2 as λ → ∞, (4.7)

and

Ψ
(0)
formal(λ, x) =

(
∆(6)(x) +O(λ)

)
e−ixλ−1σ3/2λΘ0σ3/2 as λ → 0. (4.8)

Here ∆(6)(x) is an (invertible) eigenvector matrix of the coefficient of λ−2 in (4.2), so the leading
term of ∆(6)(x)−1Λ(6)(λ, x)∆(6)(x) at λ = 0 is diagonal.

For k = 1, 2, 3, we define the Stokes sectors,

S
(∞)
k =

{
λ ∈ C : |λ| > R, kπ − 2π < Arg(λ) < kπ

}
,

S
(0)
k =

{
λ ∈ C : |λ| < r, kπ − 2π < Arg(λ) < kπ

}
.

6Here, we use the standard notation fσ3 := diag
(
f, f−1

)
.
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It follows from the classical theory of linear systems that there exist canonical solutions Ψ
(∞)
k

and Ψ
(0)
k analytic for λ ∈ S

(∞)
k and λ ∈ S

(0)
k respectively and determined uniquely by the asymp-

totic condition

Ψ
(ν)
k (λ, x) = Ψ

(ν)
formal(λ, x), λ ∈ S

(ν)
k , ν ∈ {0,∞}, k = 1, 2, 3. (4.9)

In these asymptotic conditions, the meaning of the power functions in (4.7) and (4.8) is deter-
mined from the range of Arg(λ) in the definition of S

(ν)
k . The canonical solutions in consecutive

Stokes sectors are related to one another by multiplication on the right with Stokes matrices,
i.e.,

Ψ
(∞,0)
2 (λ, x) = Ψ

(∞,0)
1 (λ, x)S∞,0

1 , Ψ
(∞,0)
3 (λ, x) = Ψ

(∞,0)
2 (λ, x)S∞,0

2 , (4.10)

where for some Stokes multipliers s∞,0
j ∈ C, j = 1, 2,

S∞,0
1 =

[
1 s∞,0

1

0 1

]
, S∞,0

2 =

[
1 0

s∞,0
2 1

]
. (4.11)

Likewise, by uniqueness and the different interpretation of the multi-valued powers in the formal

solutions on the otherwise identical sectors S
(∞,0)
1 and S

(∞,0)
3 , we have the identities

Ψ
(∞)
3 (λ, x) = Ψ

(∞)
1

(
e−2πiλ, x

)
e−2σ3
∞ , Ψ

(0)
3 (λ, x) = Ψ

(0)
1

(
e−2πiλ, x

)
e2σ3
0 , (4.12)

where, combining (1.14) with (4.6) gives

e0 = eiπΘ0/2, e∞ = eiπΘ∞/2. (4.13)

Canonical solutions in, say S
(∞)
k admit analytic continuation into S

(0)
k and since both canoni-

cal solutions solve (4.1) in the same domain, they must be related by multiplication on the right
by a constant connection matrix, which we define using

Ψ
(0)
1 (λ, x) = Ψ

(∞)
1 (λ, x)C+

0∞, (4.14)

Ψ
(0)
2 (λ, x) = Ψ

(∞)
2 (λ, x)C−

0∞. (4.15)

The condition that the coefficients y, v, s, t in the matrix Λ(6)(λ, x) depend on x as a solution
of (4.4) implies simultaneous solvability of (4.1) and (4.3), and the latter system implies that the
Stokes matrices and connection matrices are, like Θ0 and Θ∞, independent of x. We show below
in Sections 4.3 and 4.6 that the four Stokes multipliers and the elements of the two connection
matrices are determined from just two essential monodromy parameters that we denote by e1
and e2.

4.2 Riemann–Hilbert problem for Painlevé-III(D6)

Using the canonical solutions, we define the following sectionally-analytic function

Ψ(λ, x) =





Ψ
(∞)
1 (λ, x), |λ| > 1 and Re(λ) > 0,

Ψ
(∞)
2 (λ, x), |λ| > 1 and Re(λ) < 0,

Ψ
(0)
1 (λ, x), |λ| < 1 and Re(λ) > 0,

Ψ
(0)
2 (λ, x), |λ| < 1 and Re(λ) < 0.
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b 0

S∞
1

S∞
2 e2σ3∞

S0
1

S0
2e

−2σ3
0

C+
0∞C−

0∞

Figure 3. The jump contour L(6) for Ψ(λ, x) and definition of JΨ(λ) when x > 0.

Then, it follows from the asymptotic conditions (4.9) and the relations (4.10)–(4.12) and (4.14)–
(4.15) that Ψ solves the following 2 × 2 Riemann–Hilbert problem. Let λp denote the branch
of the power function analytic in C \ iR− with argument chosen so that

−π

2
< arg (λ) <

3π

2
. (4.16)

The notation reminds us that the branch cut of these functions is the contour carrying lower
triangular Stokes matrices.

Riemann–Hilbert Problem 4.1. Fix generic monodromy parameters (e1, e2) determining the
Stokes and connection matrices, and x > 0. We seek a 2 × 2 matrix function λ 7→ Ψ(λ, x)
satisfying:

� Analyticity: Ψ(λ, x) is analytic in C\L(6), where L(6) = {|λ| = 1}∪ iR is the jump contour
shown in Figure 3.

� Jump condition: Ψ(λ, x) has continuous boundary values on L(6)\{0} from each component
of C\L(6), which satisfy Ψ+(λ, x) = Ψ−(λ, x)JΨ(λ), where JΨ(λ) is as shown in Figure 3
and where the + (resp., −) subscript denotes a boundary value taken from the left (resp.,
right) of an arc of L(6).

� Normalization: Ψ satisfies the asymptotic conditions

Ψ(λ, x) =
(
I+Ξ(6)(x)λ−1 +O

(
λ−2

))
eixλσ3/2λ

−Θ∞σ3/2 as λ → ∞, (4.17)

and

Ψ(λ, x) =
(
∆(6)(x) +O(λ)

)
e−ixλ−1σ3/2λ

Θ0σ3/2 as λ → 0, (4.18)

where ∆(6)(x) is a matrix determined from Ψ(λ, x) having unit determinant.

Observe that if Ψ solves Riemann–Hilbert Problem 4.1, then the following limit exists:

Ξ(6)(x) := lim
λ→∞

λ
[
Ψ(λ, x)e−ixλσ3/2λ

Θ∞σ3/2 − I
]
. (4.19)

Existence of a solution Ψ(λ, x) to Riemann–Hilbert Problem 4.1 which is meromorphic in x on
a covering of the plane is well established; see, e.g., [11, Theorem 5.4]. Furthermore, it follows
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from the Riemann–Hilbert problem that det(Ψ(λ;x)) = 1; hence Ξ(6)(x) defined by (4.19) has
zero trace. The solution of the Painlevé-III(D6) equation for the initial data that generated the
matrices for the inverse monodromy problem is given by

u(x) =
−iΞ

(6)
12 (x)

∆
(6)
11 (x)∆

(6)
12 (x)

, (4.20)

where ∆(6), Ξ(6) are as in (4.18), (4.19), respectively.
To study the direct monodromy problem and obtain the jump matrices given just the values

of u and u′ at an initial point x0, it is necessary to introduce artificial initial values of the
auxiliary functions s, t, v, y at x0 in way consistent with the definition (4.5) of u(x). Different
consistent choices lead to different jump matrices, but the jump matrices determine the same
function u(x) via (4.20). This symmetry is reflected at the level of Ψ(λ, x) by the conjugation
Ψ(λ, x) 7→ δ−σ3Ψ(λ, x)δσ3 for any δ ̸= 0. Another symmetry that also leaves u(x) invariant
but changes the jump matrices C±

0∞ is multiplication of Ψ(λ, x) on the right for |λ| < 1 only
by a unit-determinant diagonal matrix. Therefore, having obtained the jump matrices for the
inverse monodromy problem via a direct monodromy calculation, after the fact we may introduce
an arbitrary transformation of Ψ(λ, x) of the form

Ψ(λ, x) 7→ Ψ̃(λ, x) :=

{
δ−σ3Ψ(λ, x)γσ3 , |λ| < 1,

δ−σ3Ψ(λ, x)δσ3 , |λ| > 1
(4.21)

without changing u(x). This transformation modifies the Stokes matrices as follows:

S∞
1,2 7→ S̃∞

1,2 := δ−σ3S∞
1,2δ

σ3 and S0
1,2 7→ S̃0

1,2 := γ−σ3S0
1,2γ

σ3 (4.22)

and it modifies the connection matrices as

C±
0∞ 7→ C̃±

0∞ := δ−σ3C±
0∞γσ3 . (4.23)

4.3 Monodromy parameters (e1, e2)

The cyclic products of the jump matrices for the inverse monodromy problem about the two
non-singular self-intersection points of the jump contour λ = ±i read

about λ = +i: (C−
0∞)−1(S∞

1 )−1C+
0∞S0

1 = I,

about λ = −i : S∞
2 e2σ3

∞ C+
0∞e2σ3

0

(
S0
2

)−1
(C−

0∞)−1 = I. (4.24)

We can use the second relation to explicitly write C+
0∞ in terms of two Stokes matrices and the

other connection matrix:

C+
0∞ = e−2σ3

∞ (S∞
2 )−1C−

0∞S0
2e

−2σ3
0 . (4.25)

This identity is an analog of [22, equation (3.17)]. Under the condition that detC−
0∞ = 1, we

immediately get that detC+
0∞ = 1. Furthermore, using (4.25) we eliminate C+

0∞ from the first
equation of (4.24) to obtain the identity

(
S0
1

)−1
e2σ3
0

(
S0
2

)−1
=
(
C−

0∞
)−1(

S∞
1

)−1
e−2σ3
∞ (S∞

2 )−1C−
0∞. (4.26)

In other words, (S∞
1 )−1e−2σ3

∞ (S∞
2 )−1 and

(
S0
1

)−1
e2σ3
0

(
S0
2

)−1
are similar unit-determinant ma-

trices. Note that this is merely reflective of the fact that both products are monodromy matrices,
possibly expressed in terms of different bases of fundamental solutions, for a simple circuit about
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the origin for solutions of the system (4.1). Let us assume that they have distinct eigenvalues
that we will denote e±2

1 . Then, both products are diagonalizable, so there exist unit-determinant
eigenvector matrices E∞ and E0 such that

(S∞
1 )−1e−2σ3

∞ (S∞
2 )−1E∞ = E∞e2σ3

1 and
(
S0
1

)−1
e2σ3
0

(
S0
2

)−1
E0 = E0e2σ3

1 . (4.27)

To specify the eigenvector matrices E∞, E0 uniquely, we agree that their (2,2) entries are both
equal to 1.

Using (4.27) in (4.26) gives a homogeneous linear equation on C−
0∞ that can be written in

commutator form as
[
e2σ3
1 , (E∞)−1C−

0∞E0
]
= 0.

The diagonal matrix e2σ3
1 can be written in the form

e2σ3
1 = fI+ gσ3, f :=

1

2

(
e21 + e−2

1

)
, g :=

1

2

(
e21 − e−2

1

)
.

Under the assumption e41 ̸= 1 we already invoked to obtain diagonalizability, g ̸= 0 so the
commutator equation implies that (E∞)−1C−

0∞E0 is a diagonal unit-determinant matrix that
we may write in the form eσ3

2 . Thus we have the identity

C−
0∞ = E∞eσ3

2

(
E0
)−1

. (4.28)

Remark 4.2. Changing the sign of e2 changes the sign of the connection matrix. This corre-
sponds to multiplication of the solution of Riemann–Hilbert Problem 4.1 by −1 inside of unit
disc. Looking at formula (4.20), we see that solution u(x) does not change after such transfor-
mation. Therefore, we can assume −π

2 < Arg(e2) ≤ π
2 .

Using (4.28) in (4.25) then gives the equivalent representations

C+
0∞ = e−2σ3

∞ (S∞
2 )−1E∞eσ3

2

(
E0
)−1

S0
2e

−2σ3
0 = S∞

1 E∞eσ3
2

(
E0
)−1(

S0
1

)−1
. (4.29)

4.4 Parametrization of Stokes multipliers and connection matrix

Taking the trace of (4.26), we get

e21 +
1

e21
= e2∞ +

1

e2∞
+ s∞1 s∞2 e2∞ = e20 +

1

e20
+

s01s
0
2

e20
.

It is clear that one can solve for the products s∞1 s∞2 and s01s
0
2 in terms of

(
e21, e

2
∞
)
and

(
e21, e

2
0

)

respectively. Using the transformation (4.22), we can take a particular solution of this relation
and hence obtain the Stokes multipliers:

s∞1 =
e2∞ − e21
e21e

4
∞

, s∞2 = 1− e21e
2
∞, s01 =

e21 − e20
e21

, s02 = e21e
2
0 − 1. (4.30)

With the Stokes matrices specified in this way, the eigenvector matrices E∞ and E0 are uniquely
specified as mentioned earlier by taking the (2, 2) entry to be 1 in each case, which yields

E∞ =




e21
(
e21 − e2∞

)

e41 − 1
− 1

e21e
2
∞

e21e
2
∞
(
e21e

2
∞ − 1

)

e41 − 1
1



, (4.31)

E0 =




e21
(
e20e

2
1 − 1

)

e20
(
e41 − 1

) e21 − e20
e21
(
e20e

2
1 − 1

)

e21
(
1− e20e

2
1

)

e20
(
e41 − 1

) 1



. (4.32)
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Figure 4. The analogue of the contour L(6) in Figure 3 when |Arg(x)| ̸= 0.

After making such choices, we obtain the formulæ (1.17)–(1.19). At this point, it can be directly
checked that our choices are consistent with the full equation (4.26) with C−

0∞ given by (4.28).
One can think of fixing the (2, 2) entry in the following way: the eigenvector matrices E∞

and E0 represent “internal degrees of freedom” that have an additional symmetry, namely,
arbitrary scalings of the eigenvectors that preserve determinants. In other words, while (4.21)
induces a conjugation symmetry on the eigenvector matrices, there is an additional symmetry
for each involving multiplication on the right by an arbitrary unit-determinant diagonal matrix.
Thus, the matrices E∞ and E0 undergo the transformations

E∞ 7→ Ẽ∞ := δ−σ3E∞δσ3ϵσ3
∞ and E0 7→ Ẽ0 := γ−σ3E0γσ3ϵσ3

0

for some arbitrary nonzero quantities ϵ∞, ϵ0. Note that these transformations along with (4.23)
and eσ3

2 = (E∞)−1C−
0∞E0 imply that

e2 7→ ẽ2 :=
γϵ0
δϵ∞

e2.

By contrast, e21 7→ ẽ21 := e21 is a symmetry invariant.

Remark 4.3. In the case where one is interested in values of x ∈ C with |Arg(x)| < π, the
analogue of Figure 3 is shown in Figure 4, where the nonsingular self-intersection points are at
λ = ±ie±i Arg(x) (independent ± signs). The angles of the rays in the contour L(6) are chosen so
that iλx ∈ R on the rays extending to λ = ∞, and iλ−1x ∈ R on the rays extending to λ = 0.
Similar to Section 4.2, one can formulate a Riemann–Hilbert problem for a sectionally analytic
function λ 7→ Ψ(λ, x) off of the contour L(6) and one finds four connection matrices instead
of two, denoted C1 through C4, defined on corresponding arcs of the unit circle as shown in
Figure 4. These satisfy cyclic conditions similar to (4.24), namely,

about λ = ie−i Arg(x) : C−1
1 S∞

1 C2 = I,

about λ = −iei Arg(x) : C1

(
S0
2e

−2σ3
0

)−1
C−1

4 = I,

about λ = −ie−i Arg(x) : C−1
3 S∞

2 e2σ3
∞ C4 = I,

about λ = iei Arg(x) : C3

(
S0
1

)−1
C−1

2 = I.

Eliminating all but C3 from the above identities yields the analog of (4.26), namely,

(
S0
1

)−1
e2σ3
0

(
S0
2

)−1
= C−1

3 (S∞
1 )−1e−2σ3

∞ (S∞
2 )−1C3.

Reasoning similar to that of Section 4.3 yields

C3 = E∞eσ3
2

(
E0
)−1

, (4.33)
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which, in turn, yields

C1 = S∞
1 E∞eσ3

2

(
E0
)−1(

S0
1

)−1
, C2 = E∞eσ3

2

(
E0
)−1(

S0
1

)−1
,

C4 = e−2σ3
∞

(
S∞
2

)−1
E∞eσ3

2

(
E0
)−1

= S∞
1 E∞e2σ3

1 eσ3
2 (E0)−1. (4.34)

In this setting, we must adjust our choice of the branch λ 7→ arg (λ), and we choose a branch
which satisfies (cf. (4.16) when Arg(x) = 0)

−π

2
−Arg(x) < arg (λ) <

3π

2
−Arg(x), |λ| → ∞,

and

−π

2
+ Arg(x) < arg (λ) <

3π

2
+ Arg(x), |λ| → 0.

A concrete branch cut is chosen later, see Remark 7.1 below.

4.5 Example: rational solutions of Painlevé-III(D6)

One can check that the Painlevé-III(D6) equation with parameters related by Θ0 = Θ∞ − 1
admits the constant solution u(x) ≡ 1. Its monodromy data was calculated in [5, Section 4] by
taking advantage of the fact that the compatible x-equation (4.3) in the Lax pair has simple
coefficients. Denoting m = Θ0 = Θ∞ − 1 gives e−2

0 = e−iπm and e2∞ = −eiπm. Choosing γ, δ
in (4.21) satisfying

δ2 = e−2πim
(
1− ieπim

)Γ
(
1
2 −m

)
√
2π

and γ2 =
(
1 + ieπim

)Γ
(
1
2 −m

)
√
2π

,

one obtains

s01 =

√
2π

Γ
(
1
2 −m

) , s02 = −eiπm
√
2π

Γ
(
1
2 +m

) ,

s∞1 = −
√
2π

Γ
(
1
2 −m

) , s∞2 = e−iπm

√
2π

Γ
(
1
2 +m

) .

With this choice of γ, δ and E∞, E0 chosen as in (4.31), (4.32) (that is, we insist that the (2, 2)
entry of E∞, E0 is 1 by setting ϵ0 = ϵ∞ = 1), the connection matrices are

C+
0∞ =


1 −

√
2π

Γ
(
1
2 −m

)

0 1


 , C−

0∞ =


1

√
2π

Γ
(
1
2 −m

)

0 1


 ,

and

e21 = i and e2 = 1.

Remark 4.4. The above gauge is only needed to match our setup with that of [5]; in the sequel
we will be working with γ = δ = 1. Formula (4.28) then implies

e22 = e−2πim 1− ieπim

1 + ieπim
.

This is important to note when, for example, one tries to verify that (8.8) below reduces to (1.25).

Before beginning to study the large n behavior of un, we must first establish a similar mon-
odromy representation of the limiting solution of Painlevé-III(D8), which we do in Section 5
below.
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4.6 Monodromy manifold

It is known that the monodromy manifold for Painlevé-III(D6) can be given by a cubic equation
(see, e.g., [43]), which can be recovered from our point of view as follows. Denote

C−
0∞ =

[
ℓ1 ℓ2
ℓ3 ℓ4

]

and

S0
2e

−2σ3
0 S0

1 = e−2
0

[
1 s01
s02

(
e40 + s01s

0
2

)
]
=

[
m1 m2

m3 m4

]
.

Then, the inverse of the cyclic relation (4.26) allows us to solve for s∞1 , s∞2 in terms of parameters
mi, ℓi, and imposes the constraint

e2∞ = ℓ1ℓ4m1 − ℓ1ℓ3m2 + ℓ2ℓ4m3 − ℓ2ℓ3m4. (4.35)

Hence, we are left with these eight parameters subject to the constraint (4.35) and the unit-
determinant conditions

ℓ1ℓ4 − ℓ2ℓ3 = 1, m1m4 −m2m3 = 1. (4.36)

We may define coordinates which are invariant under the transformation (4.21):

I1 := ℓ1ℓ4, I2 := m2ℓ1ℓ3, I3 := m3ℓ2ℓ4, I4 := m4, I5 := m1.

Equations (4.35), (4.36) imply

e2∞ = e−2
0 I1 − I2 + I3 − I4(I1 − 1), I2I3 − I1

(
e−2
0 I4 − 1

)
(I1 − 1) = 0.

We eliminate I3 and get

−I1 + e−2
0 I1I4 + I21 − e−2

0 I4I
2
1 + e2∞I2 − I2I4 − e−2

0 I1I2 + I1I2I4 + I22 = 0.

Introducing new variables

x1 := I1 − 1, x2 := −e−2
0 I1 + I2, x3 := I4 + e−2

0 (4.37)

yields the following equation, which defines the monodromy manifold for the problem

x1x2x3 + x21 + x22 + x2
(
e−2
0 + e2∞

)
+ x1

(
1 + e−2

0 e2∞
)
+ e−2

0 e2∞ = 0. (4.38)

This matches (1.13) upon using (4.6) and (4.13). Using (4.37), we obtain formulæ (1.17)–(1.19).
To find the singularities of (4.38), we adjoin to (4.38) the three equations obtained by setting

to zero the components of the gradient vector of the left-hand side of (4.38) with respect to
(x1, x2, x3). There is therefore at most one singularity:

for e−2
0 = e2∞ : (x1, x2, x3) =

(
0,−e−2

0 , e20 + e−2
0

)
, (4.39)

for e20 = e2∞ : (x1, x2, x3) =
(
−1, 0, e20 + e−2

0

)
. (4.40)

In particular, if neither e−2
0 = e2∞ nor e20 = e2∞, then the monodromy manifold is a smooth

curve with no singular points. Notice that we can use (x1, x2) as parameters for the generic
collection of points on monodromy manifold (4.38) for which x1x2 ̸= 0, because x3 can be
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explicitly expressed in terms of the other coordinates. The points satisfying (4.38) with x1 = 0
form a 1-dimensional variety consisting in general of two distinct lines:

(x1, x2, x3) =
(
0,−e−2

0 , x3
)

or (x1, x2, x3) =
(
0,−e2∞, x3

)

each parametrized by x3 ∈ C. If e−2
0 = e2∞, the two lines coincide and pass through the critical

point (4.39) of (4.38). Likewise there are generally two lines on (4.38) along which x2 = 0 each
parametrized by x3 ∈ C:

(x1, x2, x3) = (−1, 0, x3) or (x1, x2, x3) =
(
−e−2

0 e2∞, 0, x3
)

and if e20 = e2∞, the two lines again coincide and pass through the critical point (4.40) of (4.38).

5 General monodromy data: Painlevé-III(D8)

5.1 Lax pair for Painlevé-III(D8)

The Painlevé-III(D8) equation (1.3) can also be formulated as an isomonodromic deformation
of a linear system. In this case we need two ramified irregular singularities at λ = 0 and λ = ∞,
i.e., we consider the system

∂Ω

∂λ
(λ, z) = Λ(8)(λ, z)Ω(λ, z), (5.1)

∂Ω

∂z
(λ, z) = Z(λ, z)Ω(λ, z), (5.2)

where

Λ(8)(λ, z) =

[
0 iz
0 0

]
+

1

4λ

[
V (z) W (z)
2 −V (z)

]
+

1

λ2

[
X(z) −2iX(z)2U(z)

−i/(2U(z)) −X(z)

]
,

Z(λ, z) = λ

[
0 i
0 0

]
+

1

4z

[
V (z) W (z)
2 −V (z)

]
− 1

zλ

[
X(z) −2iX(z)2U(z)

−i/(2U(z)) −X(z)

]
,

and functions U(z), V (z), W (z), X(z) satisfy the identities

W (z) + 4zU(z) + 4iU(z)V (z)X(z) + 8U(z)2X(z)2 = 0, (5.3)

U(z)V (z)2 − 4U(z)V (z) + 2U(z)W (z) + 3U(z) + 8z = 0. (5.4)

Note the characteristic feature that the leading terms of Λ(8)(λ, z) and of Z(λ, x) at the singular
points λ = 0,∞ are singular and nondiagonalizable matrices.

Since Ω(λ, z) is a simultaneous fundamental solution matrix of the Lax system (5.1)–(5.2),
the zero-curvature compatibility condition for that system is therefore satisfied:

∂Λ(8)

∂z
(λ, z)− ∂Z

∂λ
(λ, z) +

[
Λ(8)(λ, z),Z(λ, z)

]
= 0.

Equating to zero the coefficients of different powers of λ on the left-hand side gives a first-order
system of four differential equations on the four functions U(z), V (z), W (z), and X(z):

zU ′(z) = V (z)U(z)− U(z)− 4iX(z)U(z)2, V ′(z) =
4

U(z)
,

W ′(z) = −16iX(z), zX ′(z) = X(z) + 2iU(z)X(z)2 − iW (z)

4U(z)
. (5.5)
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It is possible to express the functions W (z), X(z), and V (z) in terms of U(z) and U ′(z) using
(5.3), (5.4), and (5.5), but since we do not use these formulæ, we do not present them here.
Using (5.5) to repeatedly eliminate all derivatives, it is straightforward to obtain the following
identity:

U ′′(z)− U ′(z)2

U(z)
+

U ′(z)

z
− 4U(z)2 + 4

z

= −U(z)

z2
[
W (z) + 4zU(z) + 4iU(z)V (z)X(z) + 8U(z)2X(z)2

]
.

Of course the right-hand side vanishes as a result of the identity (5.3). Hence U(z) is a solution
of (1.3), the Painlevé-III(D8) equation.

For all the calculations that follow, we assume for simplicity that z > 0. The system (5.1)
admits formal solutions near the singular points

Ω
(∞)
formal(λ, z) =

(
I+

Ξ(8)(z)

λ
+O

(
λ−2

))
ρσ3/2
∞

1√
2

[
i −1
1 −i

]
eiρ∞σ3 as λ → ∞, (5.6)

and

Ω
(0)
formal(λ, z) = ∆(8)(z)

(
I+Π(z)λ+O

(
λ2
))

× ρ
σ3/2
0 e−πiσ3/4 1√

2

[
i −1
1 −i

]
eρ0σ3 as λ → 0, (5.7)

where

ρ∞ =
√
−2izλ, ρ0 =

√
2izλ−1

and the square roots denote principal branches. The function ∆(8)(z) satisfies the identity

∆(8)(z)

[
0 −iz
0 0

]
∆(8)(z)−1 =

[
X(z) −2iX(z)2U(z)

−i/(2U(z)) −X(z)

]
, (5.8)

and hence the solution U(z) can be expressed as

U(z) := − 1

2z∆
(8)
21 (z)

2
. (5.9)

For k = 1, 2, we define the Stokes sectors,

S(∞)
k =

{
λ ∈ C : |λ| > R, 2πk − 7π

2
< Arg(λ) < 2πk +

π

2

}
,

S(0)
k =

{
λ ∈ C : |λ| < r, 2πk − 5π

2
< Arg(λ) < 2πk +

3π

2

}
.

It follows from the classical theory of linear systems that there exist canonical solutions
Ω

(∞)
k , Ω

(0)
k determined uniquely by the asymptotic condition

Ω
(ν)
k (λ, z) = Ω

(ν)
formal(λ, z), λ ∈ S(ν)

k , ν ∈ {0,∞}. (5.10)

The canonical solutions in consecutive Stokes sectors at λ = 0,∞ are related to one another by
multiplications on the right with Stokes matrices, i.e.,

Ω
(∞)
2 (λ, z) = Ω

(∞)
1 (λ, z)S∞

1 , λ ∈ S(∞)
1 ∩ S(∞)

2 , (5.11)

Ω
(0)
1 (λ, z) = Ω

(0)
0 (λ, z)S0

0, λ ∈ S(0)
0 ∩ S(0)

1 , (5.12)

Ω
(∞)
2 (λ, z) = Ω

(∞)
1

(
e−2πiλ, z

)
(−iσ2), (5.13)

Ω
(0)
1 (λ, z) = Ω

(0)
0

(
e−2πiλ, z

)
(iσ2), (5.14)
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where

S∞
1 =

[
1 t∞1
0 1

]
, S0

0 =

[
1 0
t00 1

]
. (5.15)

Canonical solutions in, say, S(∞)
k admit analytic continuation into S(0)

k and since both canonical
solutions solve (4.1) in the same domain, they must be related by multiplication on the right by
a constant connection matrix, which we define using

Ω
(0)
0 (λ, z) = Ω

(∞)
1 (λ, z)C0∞. (5.16)

5.2 Riemann–Hilbert problem for Painlevé-III(D8)

In a fashion similar to Section 4.2, we now formulate a 2 × 2 Riemann–Hilbert problem for
a sectionally-analytic function Ω defined by

Ω(λ, z) =





Ω
(∞)
1 (λ, z), |λ| > 1 and − π

2
< Arg(λ) <

3π

2
,

Ω
(0)
0 (λ, z), |λ| < 1 and − π

2
< Arg(λ) <

3π

2
.

Then, it follows from the asymptotic conditions (5.10) and the relations (5.11)–(5.14) and (5.16)
that Ω solves the following 2× 2 Riemann–Hilbert problem.

Riemann–Hilbert Problem 5.1. Fix monodromy data
(
t00, t

∞
1

)
and z > 0. We seek a 2 × 2

matrix function λ 7→ Ω(λ, z) satisfying:

� Analyticity: Ω(λ, z) is analytic in C \ L(8), where L(8) = {|λ| = 1} ∪ iR− is the jump
contour shown in Figure 5.

� Jump condition: Ω(λ, z) has continuous boundary values on L(8)\{0} from each component
of C \ L(8), which satisfy

Ω+(λ, z) = Ω−(λ, z)JΩ(λ),

where JΩ(λ) is as shown in Figure 5.

� Normalization: Ω(λ, z) satisfies the asymptotic conditions

Ω(λ, z) =
(
I+O

(
λ−1

))
ρσ3/2
∞

1√
2

[
i −1
1 −i

]
eiρ∞σ3 as λ → ∞,

and

Ω(λ, z) =
(
∆(8)(z) +O(λ)

)
ρ
σ3/2
0

e−
iπσ3
4√
2

[
i −1
1 −i

]
eρ0σ3 as λ → 0,

where ∆(8)(z) is a matrix determined from Ω(λ, z) having unit determinant.

Solvability of Riemann–Hilbert Problem 5.1 is discussed in Section 9.1.
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b 0

iS∞
1 σ2

−iS0
0σ2

C0∞

Figure 5. The jump contour L(8) and definition of JΩ(λ) when z > 0.

5.3 Lax pair equations for Ω(λ, z)

Since the jump matrices depend on neither λ nor z, the matrices

Λ(8)(λ, z) :=
∂Ω

∂λ
(λ, z)Ω(λ, z)−1 and Z(λ, z) :=

∂Ω

∂z
(λ, z)Ω(λ, z)−1 (5.17)

are both analytic functions of λ in the domain C\{0}. We determine these analytic functions by
computing sufficiently many terms in their asymptotic expansions as λ → ∞ and λ → 0 using
(5.6)–(5.7). We will use the identities

∂ρ∞
∂λ

= −izρ−1
∞ and

∂ρ∞
∂z

= −iλρ−1
∞ (5.18)

and

∂ρ0
∂λ

= −izλ−2ρ−1
0 and

∂ρ0
∂z

= iλ−1ρ−1
0 . (5.19)

Using (5.18) and (5.6) gives, in the limit λ → ∞, the expansions

Λ(8)(λ, z) =

[
0 iz
0 0

]
+

1

4λ


1− 4izΞ

(8)
21 (z) 4iz(Ξ

(8)
11 (z)− Ξ

(8)
22 (z))

2 −1 + 4izΞ
(8)
21 (z)


+O

(
λ−2

)
, (5.20)

Z(λ, z) = λ

[
0 i
0 0

]
+

1

4z


1− 4izΞ

(8)
21 (z) 4iz(Ξ

(8)
11 (z)− Ξ

(8)
22 (z))

2 −1 + 4izΞ
(8)
21 (z)


+O

(
λ−1

)
. (5.21)

Actually, we can also go to higher order and compute the coefficient of λ−2 in the matrix
element Λ21(λ, z), in the limit λ → ∞:

Λ
(8)
21 (λ, z) =

1

2λ
+

1

2λ2

(
−Ξ

(8)
21 (z)− 2izΞ

(8)
21 (z)

2 − Ξ
(8)
11 (z) + Ξ

(8)
22 (z)

)
+O

(
λ−3

)
. (5.22)

Likewise, using (5.19) and (5.7) gives that as λ → 0

Λ(8)(λ, z) = ∆(8)(z)

(
1

λ2

[
0 −iz
0 0

]

− 1

4λ

[
1− 4izΠ21(z) 4iz(Π11(z)−Π22(z))

2 −1 + 4izΠ21(z)

])
∆(8)(z)−1 +O(1),

Z(λ, z) =
1

λ
∆(8)(z)

[
0 i
0 0

]
∆(8)(z)−1 +O(1). (5.23)
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Applying Liouville’s theorem yields the exact expressions

Λ(8)(λ, z) =

[
0 iz
0 0

]
+

1

4λ

[
1− 4izΞ

(8)
21 (z) 4iz

(
Ξ
(8)
11 (z)− Ξ

(8)
22 (z)

)

2 −1 + 4izΞ
(8)
21 (z)

]

+
iz

λ2

[
∆

(8)
11 (z)∆

(8)
21 (z) −∆

(8)
11 (z)

2

∆
(8)
21 (z)

2 −∆
(8)
11 (z)∆

(8)
21 (z)

]
, (5.24)

and

Z(λ, z) = λ

[
0 i
0 0

]
+

1

4z

[
1− 4izΞ

(8)
21 (z) 4iz

(
Ξ
(8)
11 (z)− Ξ

(8)
22 (z)

)

2 −1 + 4izΞ
(8)
21 (z)

]

− i

λ

[
∆

(8)
11 (z)∆

(8)
21 (z) −∆

(8)
11 (z)

2

∆
(8)
21 (z)

2 −∆
(8)
11 (z)∆

(8)
21 (z)

]
.

Using the notation (5.9) and noting the structure of the coefficients of the different powers of λ,
it is convenient to reparametrize the coefficients as follows:

Λ(8)(λ, z) =

[
0 iz
0 0

]
+

1

4λ

[
V (z) W (z)
2 −V (z)

]
+

1

λ2

[
X(z) −2iX(z)2U(z)

−i/(2U(z)) −X(z)

]

and

Z(λ, z) = λ

[
0 i
0 0

]
+

1

4z

[
V (z) W (z)
2 −V (z)

]
− 1

zλ

[
X(z) −2iX(z)2U(z)

−i/(2U(z)) −X(z)

]
.

The quantities U(z), V (z), W (z), and X(z) are not independent; comparing the 21-element
of the coefficient of λ−1 in the expansion of ∆(8)(z)−1Λ(8)(λ, z)∆(8)(z) computed using (5.21)
and (5.23) gives the identity (5.3). At the same time from formula (5.22) we get identity (5.4).

Since (5.17) holds for the same matrix function Ω(λ, z), the latter satisfies the equations of
a compatible Lax system

∂Ω

∂λ
(λ, z) = Λ(8)(λ, z)Ω(λ, z) and

∂Ω

∂z
(λ, z) = Z(λ, z)Ω(λ, z), (5.25)

which coincides with the system (5.1)–(5.2).

5.4 Monodromy manifold

Introducing notation for the connection matrix elements

C0∞ =

[
n1 n2

n3 n4

]
, det(C0∞) = 1,

we have the cyclic relation around the unique nonsingular point of self-intersection of L(8)

S∞
1 iσ2 = C0∞S0

0(−iσ2)(C0∞)−1,

which implies

n1 = −n4, t∞1 = t00, n3 = n2 − n4t
∞
1 .

Denoting

y1 = n3, y2 = n4, y3 = t∞1 ,

the condition det(C0∞) = 1 implies that the coordinates (y1, y2, y3) are related by the cubic
equation (1.15).
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Remark 5.2. If the solutionΩ(λ, z) is multiplied by the scalar −1 for |λ| < 1 and left unchanged
for |λ| > 1, then the elements of the connection matrix C0∞ change sign while the Stokes
multiplier t∞1 is invariant. Therefore, this transformation changes (y1, y2, y3) to (−y1,−y2, y3),
yielding a different point on the cubic (1.15). The matrix coefficient ∆(8)(z) also changes sign,
however ∆

(8)
21 (z)

2 is invariant, so the solution U(z) of the Painlevé-III(D8) equation (1.3) is the
same for both points.

6 Schlesinger transformation and proof of Proposition 1.6

Fix generic monodromy parameters (e1, e2). In view of the parametrization of the Stokes
multipliers in (4.30) and the eigenvector matrices in (4.31), (4.32), this data determines from
Riemann–Hilbert Problem 4.1 a matrix Ψ(λ, x) which is meromorphic in x and satisfies asymp-
totic conditions (4.17) and (4.18), which we write in the form7

Ψ(λ, x)λ
Θ∞σ3/2e−ixλσ3/2 = I+Ψ∞

1 (x)λ−1 +O
(
λ−2

)
, λ → ∞,

Ψ(λ, x)λ
−Θ0σ3/2eixλ

−1σ3/2 = Ψ0
0(x) +Ψ0

1(x)λ+O
(
λ2
)
, λ → 0.

Define the matrices

σ+ =

[
1 0
0 0

]
and σ− =

[
0 0
0 1

]
.

Following [5], assuming the (1, 1) entry of Ψ0
0(x), denoted Ψ0

0,11(x), is not identically zero, we
consider the Schlesinger transformation

Ψ̂(λ, x) :=
(
σ+λ

1/2
+ Ŝ(x)λ

−1/2)
Ψ(λ, x),

where

Ŝ(x) :=

[
Ψ0

0,21(x)Ψ
∞
1,12(x)/Ψ

0
0,11(x) −Ψ∞

1,12(x)

−Ψ0
0,21(x)/Ψ

0
0,11(x) 1

]
.

Since λ
±1/2

has its branch cut along part of the curve L(6), we see that Ψ̂(λ, x) is analytic in

C \ L(6) and, by direct calculation, has the jumps on L(6) summarized by Figure 3, with the
exception of the sign changes

S0
2e

−2σ3
0 7→ −S0

2e
−2σ3
0 and S∞

2 e2σ3
∞ 7→ −S∞

2 e2σ3
∞ .

Furthermore, one can verify using the definition of Ψ̂(λ, x) that

Ψ̂(λ, x)λ
(Θ∞−1)σ3/2e−ixλσ3/2 = I+ Ψ̂∞

1 (x)λ−1 +O
(
λ−2

)
, λ → ∞, (6.1)

where

Ψ̂∞
1 (x) := σ+Ψ

∞
1 (x)σ+ + σ+Ψ

∞
2 (x)σ− + Ŝ(x)σ+ + Ŝ(x)Ψ∞

1 (x)σ−.

Similarly, one can check that

Ψ̂(λ, x)λ
−(Θ0+1)σ3/2eixλ

−1σ3/2 = Ψ̂0
0(x) + Ψ̂0

1(x)λ+O
(
λ2
)
, λ → 0, (6.2)

7The coefficients Ψ∞
j , Ψ0

j should not be confused with the fundamental solutions discussed in the previous
sections. The reader can rest assured that this notation will only appear in this section.



Painlevé-III Monodromy Maps Under the D6 → D8 Confluence 39

where

Ψ̂0
0(x) = Ŝ(x)Ψ0

0(x)σ− + Ŝ(x)Ψ0
1(x)σ+ + σ+Ψ

0
0(x)σ+.

The transformation Ψ 7→ Ψ̂ is invertible so long as Ψ̂0
0,22(x) does not identically vanish, and its

inverse is given by

Ψ(x, λ) 7→ Ψ̌(x, λ) :=
(
σ−λ

1/2
+ Š(x)λ

−1/2)
Ψ(x, λ),

where

Š(x) :=

[
1 −Ψ0

0,12(x)/Ψ
0
0,22(x)

−Ψ∞
1,21(x) Ψ0

0,12(x)Ψ
∞
1,21(x)/Ψ

0
0,22(x)

]
.

It follows that Ψ̌ satisfies conditions similar to (6.1) and (6.2) as λ approaches ∞, 0, respectively.
That these operations are inverses of one another is the content of [5, Lemma 1].

In this way, starting with Ψ and iterating the map Ψ 7→ Ψ̂ (assuming Ψ0
0,11(x), Ψ0

0,22(x)
do not identically vanish after each step), we may define the nth iterate of this Schlesinger
transformation, which we denote Ψn. This matrix, if it exists, satisfies the following Riemann–
Hilbert problem.

Riemann–Hilbert Problem 6.1. Fix generic monodromy parameters (e1, e2), n ∈ Z, and
x > 0. We seek a 2× 2 matrix function λ 7→ Ψ(λ, x) satisfying:

� Analyticity: Ψn(λ, x) is analytic in C \ L(6), where L(6) = {|λ| = 1} ∪ iR is the jump
contour shown in Figure 3.

� Jump condition: Ψn(λ, x) has continuous boundary values on L(6) \ {0} from each compo-
nent of C \ L(6), which satisfy

Ψn,+(λ, x) = Ψn,−(λ, x)JΨn(λ),

where JΨn(λ) is as shown in Figure 3 but with the modification

S0
2e

−2σ3
0 7→ (−1)nS0

2e
−2σ3
0 and S∞

2 e2σ3
∞ 7→ (−1)nS∞

2 e2σ3
∞ .

� Normalization: Ψn(λ, x) satisfies the asymptotic conditions

Ψn(λ, x) =
(
I+Ξ(6)

n (x) +O
(
λ−2

))
eixλσ3/2λ

(n−Θ∞)σ3/2 as λ → ∞, (6.3)

and

Ψn(λ, x) =
(
∆(6)

n (x) +O(λ)
)
e−ixλ−1σ3/2λ

(Θ0+n)σ3/2 as λ → 0, (6.4)

where ∆
(6)
n (x) is a matrix determined from Ψn(λ, x) having unit determinant.

That Ψn solves the above Riemann–Hilbert problem implies the existence of the limit

Ξ(6)
n (x) := lim

λ→∞
λ
[
Ψn(λ, x)e

−ixλσ3/2λ
Θ∞σ3/2 − I

]
. (6.5)

It follows that the function

un(x) =
−iΞ

(6)
n,12(x)

∆
(6)
n,11(x)∆

(6)
n,12(x)

(6.6)
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satisfies PIII(D6) in the form

u′′n =
(u′n)

2

un
− u′n

x
+

4(n+Θ0)u
2
n

x
+

4(1 + n−Θ∞)

x
+ 4u3n − 4

un
.

It was shown in [5, Lemma 2] that if for some n ∈ Z the inverse monodromy problem is solvable
for a given x ∈ D, where D is a domain in C \ {0}, then Ψn satisfies the Lax pair

∂Ψn

∂λ
(λ, x) =

(
ix

2
σ3 +

1

2λ

[
n−Θ∞ 2y

2v Θ∞ − n

]
+

1

2λ2

[
ix− 2ist 2is
2it(x− st) 2ist− ix

])
Ψn(λ, x),

∂Ψn

∂x
(λ, x) =

(
iλ

2
σ3 +

1

x

[
0 y
v 0

]
− 1

2λx

[
ix− 2ist 2is
2it(x− st) 2ist− ix

])
Ψn(λ, x),

where potentials s, t, u, v, y all depend on x and n. Furthermore, in this domain, the functions
Ψ0

0,11(x), Ψ
0
0,22(x) extracted from Ψn(λ, x) are not identically zero.8

One can check that if a solution to Riemann–Hilbert Problem 6.1 exists, it must be unique,
and we attempt to identify this solution as a solution of Riemann–Hilbert Problem 4.1 with
possibly different monodromy data. The diagonal elements of S0

2e
−2σ3
0 , S∞

2 e2σ3
∞ alternate signs

which implies the change

e20 7→ (−1)ne20, e2∞ 7→ (−1)ne2∞.

Furthermore, in view of (4.30), we can write

(−1)ns∞2 e2∞ = (−1)n
(
1− e21e

2
∞
)
e2∞ =

(
1− (−1)ne21(−1)ne2∞

)
(−1)ne2∞,

and

(−1)ns02e
−2
0 = (−1)n

(
e21e

2
0 − 1

)
e−2
0 =

(
(−1)ne21(−1)ne20 − 1

)
(−1)ne−2

0 .

Combining the above with the fact that C±
0∞ remain invariant under the iterated Schlesinger

transformations implies the change in monodromy data

e21 7→ (−1)ne21 and e2 7→ e2. (6.7)

Since e1, e2 are assumed to be nonvanishing, we may write them in the form (1.16) for some
µ, η ∈ C with −1 < Re(µ),Re(η) ≤ 1. Moreover, since the transformations e1 7→ −e1, e2 7→ −e2
preserve the monodromy data, we can assume −1

2 < Re(η) ≤ 1
2 and −1

2 < Re(µ) ≤ 1
2 . Equa-

tion (6.7) implies in turn that η does not depend on n ∈ Z, while µ is replaced with

µ 7→ µn :=

{
µ, n ∈ 2Z,
µ− 1

2 , n+ 1 ∈ 2Z,
(6.8)

This proves Proposition 1.6. We end this section with two important remarks.

Remark 6.2. It was noted in the introduction that one could restrict 0 < Re(µn) ≤ 1/2, in
which case, the above iterations interchange the roles of e21, e

−2
1 and we have to perform the

transformation µ → −µ, which corresponds to the replacements

E∞ →



√

e2∞ − e21
e21
(
e21e

2
∞ − 1

)




σ3

E∞



√

e2∞ − e21
e21
(
e21e

2
∞ − 1

)




−σ3

σ1

(
e21e

2
∞
(
1− e21e

2
∞
)

(
e41 − 1

)
)σ3

,

E0 →



√

e20 − e21
e21
(
e21e

2
0 − 1

)




σ3

E0



√

e20 − e21
e21
(
e21e

2
0 − 1

)




−σ3

σ1

(
e21
(
e20e

2
1 − 1

)

e20
(
e41 − 1

)
)σ3

.

8Lemma 2 in [5] was stated for parameters corresponding to rational solutions of Painlevé-III, but the proof
is almost exactly the same in this case.
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This gauge transformation then allows us to identify the monodromy parameter pairs

(e1, e2) ∼


 1

e1
,

1

e2e20e
2
∞

√ (
e21 − e20

)(
1− e20e

2
1

)
(
e21 − e2∞

)(
1− e21e

2
∞
)


 . (6.9)

Therefore, we alternatively can write the monodromy data for the Schlesinger transformation as

µn =

{
µ, n ∈ 2Z,
1
2 − µ, n+ 1 ∈ 2Z,

e2,n =





e2, n ∈ 2Z,
1

e2e20e
2
∞

√ (
e21 − e20

)(
1− e20e

2
1

)
(
e21 − e2∞

)(
1− e21e

2
∞
) , n+ 1 ∈ 2Z.

Furthermore, one can check that (x1, x2, x3) in (1.17)–(1.19) remain invariant under the map
described in (6.9), whereas (y1, y2, y3) 7→ (±y1,±y2, y3) where the sign depends on the choice
of the square root in (6.9) and (7.52) below. In both cases, the corresponding solution of (1.3)
remains invariant, see Remark 5.2.

Remark 6.3. Moving forward, we will slightly abuse notation by suppressing the n-dependence
in the parameters

e∞ = eπi(Θ∞−n)/2, e0 = eπi(Θ0+n)/2, e1 = eπiµn , e2 = eπiη. (6.10)

7 Asymptotics for large n and small x
and proof of Theorem 1.4

Let (e1, e2) be generic monodromy parameters, see Definition 1.3. At this point, we can see
more clearly the meaning of the genericity conditions formulated there:

(i) e41 ̸= 1; this is to guarantee diagonalizability in (4.27),

(ii) e1e2 ̸= 0; this is to guarantee the unit-determinant condition in (4.27) and (4.28),

(iii) e21 ̸= e±2
∞ and e21 ̸= e±2

0 ; this, in particular, implies that the Stokes multipliers (4.30) are
nonvanishing.

7.1 Opening the lenses

First, we define a new unknown matrix by Φn(λ, x) := Ψn(λ, x)L where L is the piece-wise
constant matrix shown in the left-hand panel of Figure 6. It follows from (4.28), (4.29) that the
resulting jump conditions satisfied by Φn(λ, x) are as shown in the right-hand panel of Figure 6.

Remark 7.1. In the general case |Arg(x)| < π, the lenses shown in Figure 6 must be ro-
tated in the manner shown in the left panel of Figure 7. The resulting jumps follow from the
identities (4.33)–(4.34) and are shown in the right panel of Figure 7.

7.2 Parametrix for Φn(λ, x) near λ = ∞

By definition, the parametrix Φ̆
(∞)
n (λ, x) satisfies the following Riemann–Hilbert problem.
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I

I

S∞
1 E∞E0 S0

1E
0E∞ b 0

S∞
1

S∞
2 e2σ3∞

S0
1

S0
2e

−2σ3
0

e−2σ3
1

e−2σ3
1

(
S0
1E

0)−1

eσ32

(E0)−1

(
S∞
1 E∞)−1

(E∞)−1

Figure 6. Left panel: the definition of the matrix L; the circles are centered at the origin and have radii
1
2 , 1, and 2. Right panel: the jump contour Γ and jump conditions for Φn(λ, x).

Riemann–Hilbert Problem 7.2. Fix generic monodromy parameters (e1, e2) determining
the Stokes and connection matrices, n ∈ Z, and x > 0. We seek a 2 × 2 matrix function

λ 7→ Φ̆
(∞)
n (λ, x) satisfying:

� Analyticity: Φ̆
(∞)
n (λ, x) is analytic in C \ Γ(∞), where

Γ(∞) = {|λ| = 2} ∪ (iR ∩ {|Imλ− 1| > 1})

is the jump contour shown in Figure 8.

� Jump condition: Φ̆
(∞)
n (λ, x) has continuous boundary values on Γ(∞) \ {0} from each

component of C \ Γ(∞), which satisfy

Φ̆
(∞)
n,+ (λ, x) = Φ̆

(∞)
n,− (λ, x)J

Φ̆
(∞)
n

(λ),

where J
Φ̆

(∞)
n

(λ) is as shown in Figure 8 and where the + (resp., −) subscript denotes
a boundary value taken from the left (resp., right) of an arc of Γ(∞).

� Normalization: Φ̆
(∞)
n (λ, x) satisfies the asymptotic conditions

Φ̆
(∞)
n (λ, x) =

(
I+

An(x)

λ
+O

(
1

λ2

))
eixλσ3/2λ

(n−Θ∞)σ3/2 as λ → ∞, (7.1)

Φ̆
(∞)
n (λ, x) = (Bn(x) +O(λ))λµnσ3 as λ → 0, (7.2)

where An(x) has zero trace and Bn(x) has unit determinant.

It is easy to see that Φ̆
(∞)
n (λ, x) necessarily has unit determinant. Furthermore, note that

the jump matrix being e−2σ3
1 across the arc terminating at the origin implies e1 = eπiµn , which

is consistent with (6.10).
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I
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S∞
1 E∞E0 S0

1E
0E∞ b

0

S∞
1

S∞
2 e2σ3∞

S0
1

S0
2e

−2σ3
0

e−2σ3
1

e−2σ3
1

(
S0
1E

0)−1

eσ32

(E0)−1

(
S∞
1 E∞)−1

(E∞)−1

e2σ31 eσ32

Figure 7. Analogue of Figure 6 when Arg(x) ̸= 0. The thick line represents the branch cut for the

argument chosen as in Remark 4.3.

b 0

S∞
1

S∞
2 e2σ3∞

e−2σ3
1

(S∞
1 E∞)−1(E∞)−1

Figure 8. The contour Γ(∞) includes the circle |λ| = 2.

7.2.1 Dependence on λ

It follows from assuming differentiability of the asymptotics in (7.1)–(7.2) that

∂Φ̆
(∞)
n

∂λ
(λ, x)Φ̆

(∞)
n (λ, x)−1

=

(
I+

An(x)

λ
+O

(
λ−2

))( ix

2
+

n−Θ∞
2λ

)
σ3

(
I+

An(x)

λ
+O

(
λ−2

))−1

+O
(
λ−2

)

=
ix

2
σ3 +

(
ix

2
[An(x), σ3] +

n−Θ∞
2

σ3

)
1

λ
+O

(
λ−2

)
as λ → ∞, (7.3)
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and

∂Φ̆
(∞)
n

∂λ
(λ, x)Φ̆

(∞)
n (λ, x)−1 =

(
Bn(x) +O(λ)

)(µn

λ
σ3

)(
Bn(x) +O(λ)

)−1
+O(1)

=
µn

λ
Bn(x)σ3Bn(x)

−1 +O(1) as λ → 0. (7.4)

Since the quantity on the left-hand side of (7.3) and (7.4) is otherwise an analytic function of λ,
it follows from Liouville’s Theorem that

∂Φ̆
(∞)
n

∂λ
(λ, x)Φ̆

(∞)
n (λ, x)−1 =

ix

2
σ3 +

µn

λ
Bn(x)σ3Bn(x)

−1 =⇒

∂Φ̆
(∞)
n

∂λ
(λ, x) =

(
ix

2
σ3 +

µn

λ
Bn(x)σ3Bn(x)

−1

)
Φ̆

(∞)
n (λ, x). (7.5)

Noting that Tr
(
Bn(x)σ3Bn(x)

−1
)
= 0 and det

(
Bn(x)σ3Bn(x)

−1
)
= −1, we may write

Bn(x)σ3Bn(x)
−1 =

[
an(x) bn(x)
cn(x) −an(x)

]
subject to an(x)

2 + bn(x)cn(x) = 1 (7.6)

and use this form in (7.5) to write a coupled scalar system of differential equations satisfied
by the elements ϕ1(λ, x) and ϕ2(λ, x) of the first and second rows, respectively, of any column

of Φ̆
(∞)
n (λ, x):

∂ϕ1

∂λ
(λ, x) =

(
ix

2
+

µnan(x)

λ

)
ϕ1(λ, x) +

µnbn(x)

λ
ϕ2(λ, x), (7.7)

∂ϕ2

∂λ
(λ, x) =

µncn(x)

λ
ϕ1(λ, x)−

(
ix

2
+

µnan(x)

λ

)
ϕ2(λ, x). (7.8)

Before beginning to solve this system, observe that equating the coefficients of λ−1 in (7.3)
and (7.4) yields the identity

µnBn(x)σ3Bn(x)
−1 =

ix

2
[An(x), σ3] +

n−Θ∞
2

σ3. (7.9)

Since [An(x), σ3] is off-diagonal, we arrive at

µnan(x) =
n−Θ∞

2
. (7.10)

Since µn and n are constants, this equation implies that an(x) is independent of x, so we will
simply write an going forward. Now, solving for ϕ1(λ, x) in (7.8) and eliminating it from (7.7)
yields (assuming cn(x) ̸= 0 and using bn(x)cn(x) = 1− a2n)

λ
∂2ϕ2

∂λ2
(λ, x) +

∂ϕ2

∂λ
(λ, x) +

[
ix

2
+

x2

4
λ− ixµnan − µ2

n

λ

]
ϕ2(λ, x) = 0.

It is easy to see that the first-order derivative term is removed by the substitution ϕ2(λ, x) =
λ−1/2w(λ, x). Indeed, w(λ, x) satisfies

∂2w

∂λ2
(λ, x) +

[
x2

4
+ ix

(
1

2
− µnan

)
1

λ
+

(
1

4
− µ2

n

)
1

λ2

]
w(λ, x) = 0.
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Finally, the explicit x-dependence in the coefficients can be removed by setting Z := ixλ and
writing w(λ, x) = W (Z). Note that the notation W (Z) here is not related to W (z) appearing
in Section 5. In this case, W (Z) satisfies the ordinary differential equation

W ′′(Z) +

[
− 1

4
+

(
1

2
− µnan

)
1

Z
+

(
1

4
− µ2

n

)
1

Z2

]
W (Z) = 0, (7.11)

which is Whittaker’s equation (see [38, Chapter 13]) with parameter

κ = κn :=
1

2
− µnan =

1 +Θ∞ − n

2
. (7.12)

Given ϕ2(λ, x) = λ−1/2W (Z) for Z = ixλ, and a solution W (Z) of (7.11), it follows from (7.8)
that the corresponding first-row entry is

ϕ1(λ, x) =
ixλ1/2

µncn(x)

(
W ′(Z) +

(
1

2
− κn

Z

)
W (Z)

)
. (7.13)

A fundamental pair of solutions of (7.11) is given by W (Z) = W±κn,µn(±Z), arg(±Z) ∈ (−π, π).
If we take the particular solution ϕ2(λ, x) = λ−1/2Wκn,µn(Z), then using the identity

W ′
κ,µn

(Z) =

(
κ

Z
− 1

2

)
Wκ,µn(Z) +

((
1

2
− κ

)2

− µ2
n

)
1

Z
Wκ−1,µn(Z)

(see [38, equation (13.15.23)]) in (7.13) gives

ϕ2(λ, x) = λ−1/2Wκn,µn(Z)

=⇒ ϕ1(λ, x) =
ixλ1/2

µncn(x)

((
1

2
− κn

)2

− µ2
n

)
Z−1Wκn−1,µn(Z).

Likewise, if we take the particular solution ϕ2(λ, x) = λ−1/2W−κn,µn(−Z), then using the identity

W ′
κ,µn

(Z) =

(
1

2
− κ

Z

)
Wκ,µn(Z)− 1

Z
Wκ+1,µn(Z)

(see [38, equation (13.15.26)]) in (7.13) yields

ϕ2(λ, x) = λ−1/2W−κn,µn(−Z) =⇒ ϕ1(λ, x) = − ixλ1/2

µncn(x)
Z−1W1−κn,µn(−Z).

Taking linear combinations with coefficients depending generally on the parameter x, the general
solution matrix for the system (7.5) can be written in the form

Φ̆
(∞)
n (λ, x) = Φ̃

(∞)

n (λ, x)K(x), Φ̃
(∞)

n (λ, x) := H(λ, x)W(iλx;κn, µn), (7.14)

where Φ̃
(∞)
n (λ, x) is a specific fundamental solution matrix of (7.5) constructed from

H(λ, x) := λσ3/2




ix

µncn(x)
0

0 1


 (7.15)

and

W(Z;κ, µn) :=

[
ακ,µnZ

−1Wκ−1,µn(Z) −Z−1W1−κ,µn(−Z)
Wκ,µn(Z) W−κ,µn(−Z)

]
,

ακ,µn
:=

(
1

2
− κ

)2

− µ2
n, (7.16)

in which κ = κn and µn are given by (7.12) and K(x) is a matrix of free coefficients.



46 A. Barhoumi, O. Lisovyy, P.D. Miller and A. Prokhorov

7.2.2 Dependence on x

Going back to (7.1)–(7.2) and now assuming that the asymptotics are differentiable with respect
to x,

∂Φ̆
(∞)
n

∂x
(λ, x)Φ̆

(∞)
n (λ, x)−1

=

(
I+

An(x)

λ
+O

(
λ−2

))( iλ

2
σ3

)(
I+

An(x)

λ
+O

(
λ−2

))−1

+O
(
λ−1

)

=
iλ

2
σ3 +

i

2
[An(x), σ3] +O

(
λ−1

)
as λ → ∞,

and

∂Φ̆
(∞)
n

∂x
(λ, x)Φ̆

(∞)
n (λ, x)−1 = B′

n(x)Bn(x)
−1 +O(λ) as λ → 0.

So, applying Liouville’s theorem yields

∂Φ̆
(∞)
n

∂x
(λ, x) =

(
iλ

2
σ3 +

i

2
[An(x), σ3]

)
Φ̆

(∞)
n (λ, x), (7.17)

and it follows from (7.9) that

i

2
[An(x), σ3] =

1

x

(
µnBn(x)σ3Bn(x)

−1 +

(
κn − 1

2

)
σ3

)

=
1

x


 0

µn

(
1− a2n

)

cn(x)
µncn(x) 0


 , (7.18)

where µn, an are independent of λ, x. To determine the x-dependence of cn(x), we use (7.18)
to assemble (7.5) (using also (7.9) and (7.12)) and (7.17) to give the Lax system

∂Φ̆
(∞)
n

∂λ
(λ, x) = Λ̆(λ, x)Φ̆

(∞)
n (λ, x),

Λ̆(λ, x) :=
ix

2
σ3 +

1

λ


−

1
2(Θ∞ − n)

µn

(
1− a2n

)

cn(x)
µncn(x)

1
2(Θ∞ − n)


 , (7.19)

∂Φ̆
(∞)
n

∂x
(λ, x) = X̆(λ, x)Φ̆

(∞)
n (λ, x),

X̆(λ, x) :=
iλ

2
σ3 +

1

x


 0

µn

(
1− a2n

)

cn(x)
µncn(x) 0


 . (7.20)

Since Φ̆
(∞)
n (λ, x) is a simultaneous fundamental solution matrix for these equations, the Lax

system is compatible. The compatibility condition reads

Λ̆x(λ, x)− X̆λ(λ, x) +
[
Λ̆(λ, x), X̆(λ, x)

]
= 0,

which is equivalent to

xc′n(x) = (1− 2κn)cn(x) =⇒ cn(x) = γnx
1−2κn , (7.21)
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for some constant γn ̸= 0. Thus, the coefficient cn(x) is determined up to the choice of the
constant γn. Note also that the coefficient matrices Λ̆(λ, x) and X̆(λ, x) are obviously related
by the simple identity

X̆(λ, x)− λ

x
Λ̆(λ, x) =

1

x

(
κn − 1

2

)
σ3. (7.22)

Since the fundamental matrix Φ̃
(∞)

n (λ, x) defined by (7.14) satisfies (7.19), then so does

Φ̆
(∞)
n (λ, x) = Φ̃

(∞)

n (λ, x)K(x),

and K(x) must now be chosen so that (7.20) is satisfied. Substituting into (7.20), we obtain an
ordinary differential equation on K(x):

K′(x) =

(
Φ̃

(∞)

n (λ, x)−1X(λ, x)Φ̃
(∞)

n (λ, x)− Φ̃
(∞)

n (λ, x)−1∂Φ̃
(∞)

n

∂x
(λ, x)

)
K(x). (7.23)

Now, from the form of Φ̃
(∞)

n (λ, x) written in (7.14), we have both

Φ̃
(∞)

n (λ, x)−1∂Φ̃
(∞)

n

∂x
(λ, x) = Φ̃

(∞)

n (λ, x)−1∂H

∂x
(λ, x)H(λ, x)−1Φ̃

(∞)

n (λ, x)

+ iλΦ̃
(∞)

n (λ, x)−1H(λ, x)W′(Z;κn, µn),

Φ̃
(∞)

n (λ, x)−1∂Φ̃
(∞)

n

∂λ
(λ, x) = Φ̃

(∞)

n (λ, x)−1∂H

∂λ
(λ, x)H(λ, x)−1Φ̃

(∞)

n (λ, x)

+ ixΦ̃
(∞)

n (λ, x)−1H(λ, x)W′(Z;κn, µn),

so it follows that

Φ̃
(∞)

n (λ, x)−1∂Φ̃
(∞)

n

∂x
(λ, x)

=
λ

x
Φ̃

(∞)

n (λ, x)−1∂Φ̃
(∞)

n

∂λ
(λ, x)

+ Φ̃
(∞)

n (λ, x)−1

[
∂H

∂x
(λ, x)H(λ, x)−1 − λ

x

∂H

∂λ
(λ, x)H(λ, x)−1

]
Φ̃

(∞)

n (λ, x)

= Φ̃
(∞)

n (λ, x)−1

[
λ

x
Λ̆(λ, x) +

∂H

∂x
(λ, x)H(λ, x)−1 − λ

x

∂H

∂λ
(λ, x)H(λ, x)−1

]
Φ̃

(∞)

n (λ, x),

where we also used (7.19). Using this in (7.23) along with the explicit definition (7.15) of H(λ, x)
and the identities (7.21) and (7.22) gives

K′(x)K(x)−1

= Φ̃
(∞)

n (λ, x)−1

[
X̆(λ, x)− λ

x
Λ̆(λ, x)

+
λ

x

∂H

∂λ
(λ, x)H(λ, x)−1 − ∂H

∂x
(λ, x)H(λ, x)−1

]
Φ̃

(∞)

n (λ, x)

= Φ̃
(∞)

n (λ, x)−1

[
1

x

(
κn − 1

2

)
σ3 +

1

2x
σ3 +

d

dx
log

(
cn(x)

x

)[
1 0
0 0

]]
Φ̃

(∞)

n (λ, x)

=
κn
x
Φ̃

(∞)

n (λ, x)−1

[
σ3 − 2

[
1 0
0 0

]]
Φ̃

(∞)

n (λ, x) = −κn
x
I.
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Therefore, the x-dependence of the matrix K(x) is explicitly given by

K(x) = x−κnK,

whereK is now independent of both λ and x. However, as the domain of analyticity of Φ̆
(∞)
n (λ, x)

in the λ-plane consists of three disjoint regions, we expect to have to specify a different matrix K
for each. Note also that the constant γn remains to be determined.

7.2.3 The parametrix Φ̆(∞)
n (λ, x) on the two regions with |λ| > 2

To fully specify the parametrix Φ̆
(∞)
n (λ, x) for |λ| > 2, we concretely take the jump contours

for |λ| > 2 to lie along the real axis in the Z-plane, corresponding to R+ and R−, respectively.

Thus, the part of the domain of analyticity of Φ̆
(∞)
n (λ, x) with |λ| > 2 has two components,

corresponding to the upper and lower half Z-planes. To properly define Φ̆
(∞)
n (λ, x) in these two

exterior domains, we firstly take the matrix factor H(λ, x) defined in (7.15) in the precise form

H(λ, x) = λ
σ3/2



ix2κn

µnγn
0

0 1


 = xκnλ

σ3/2xκnσ3Dn, Dn :=




i

µnγn
0

0 1


 . (7.24)

Then, we assume different constant matrices K = K±
n in the two domains by writing the

parametrix for |λ| > 2 and ± Im(Z) > 0 as

Φ̆
(∞)
n (λ, x) = Φ̆

(∞)±
n (λ, x) = x−κnH(λ, x)W(ixλ;κn, µn)K

±
n

= λ
σ3/2xκnσ3DnW(ixλ;κn, µn)K

±
n . (7.25)

We now express the matrices K±
n in terms of the remaining constants µn and γn by enforcing

the asymptotic condition (7.1) in each of the two sectors with |λ| > 2. According to [38,
equation (13.19.3)],

Wκ,µn(Z) = e−Z/2Zκ
(
1 +O

(
Z−1

))
, Z → ∞, |arg(Z)| ≤ 3π

2
− δ

holds for each δ > 0. Hence also

W(Z;κ, µn) =

[
ακ,µnZ

κ−2
(
1 +O

(
Z−1

))
(−Z)−κ

(
1 +O

(
Z−1

))

Zκ
(
1 +O

(
Z−1

))
(−Z)−κ

(
1 +O

(
Z−1

))
]
e−Zσ3/2,

Z → ∞, |arg(Z)| ≤ 3π

2
− δ.

Under the condition given on arg(Z), we have

(−Z)−κ = Z−κ

{
eiπκ, Im(Z) > 0 (i.e., 0 < Arg(Z) < π),

e−iπκ, Im(Z) < 0 (i.e., −π < Arg(Z) < 0).

To calculate Z±κ, we recall Z = ixλ and use [5, equation (49)]:

−π

2
−Arg(x) < arg (λ) <

3π

2
−Arg(x), |λ| → ∞.

Next,

Im(Z) > 0 =⇒ 0 < Arg(Z) < π =⇒ −π

2
−Arg(x) < arg (λ) <

π

2
−Arg(x),

Im(Z) < 0 =⇒ −π < Arg(Z) < 0 =⇒ −3π

2
−Arg(x) < arg (λ)− 2π < −π

2
−Arg(x)
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�∞

Im(Z) < 0

Im(Z) > 0

<> Z ∈ R+Z ∈ R−

Figure 9. Jump contour for Φ̆
(∞)

n (λ, x) near λ = ∞.

and hence, for any x ∈ C \ {0} such that |Arg(x)| < π,

Z±κ = x±κλ±κ

{
e±iπκ/2, Im(Z) > 0,

e∓3iπκ/2, Im(Z) < 0.

Therefore, for λ large such that Im(Z) > 0,

λ
σ3/2xκnσ3DnW(ixλ;κn, µn)

= Dn

[
O(λ−1) eiπκn/2

(
1 +O

(
λ−1

))

eiπκn/2
(
1 +O

(
λ−1

))
O
(
λ−1

)
]
λ
(κn− 1

2
)σ3

e−ixλσ3/2,

so choosing K+
n so that (7.25) is consistent with (7.1) in the sector Im(Z) > 0 requires that K+

n

is an off-diagonal matrix, namely,

K+
n :=

[
0 e−iπκn/2

−ie−iπκn/2µnγn 0

]
.

Similarly, for λ large such that Im(Z) < 0,

λ
σ3/2xκnσ3DnW(ixλ;κn, µn)

= Dn

[
O(λ−1) eiπκn/2

(
1 +O

(
λ−1

))

e−3iπκn/2
(
1 +O

(
λ−1

))
O
(
λ−1

)
]
λ
(κn− 1

2
)σ3

e−ixλσ3/2,

so consistency of (7.25) with (7.1) in the sector Im(Z) < 0 requires

K−
n :=

[
0 e3iπκn/2

−ie−iπκn/2µnγn 0

]
.

Some additional useful information can be gleaned by enforcing on Φ̆
(∞)
n (λ, x) the jump

conditions for |λ| > 2. The jump rays are illustrated in the Z-plane with their orientations in
Figure 9. The Whittaker function Wκ,µn(Z) can be viewed as an analytic function on the cut
plane |Arg(Z)| < π, and it follows from the connection formula [38, equation (13.14.13)] that
the boundary values on the negative real axis are related by

Wκ,µn(−Z + i0) = e2πiκWκ,µn(−Z − i0)

+
2πieiπκ

Γ
(
1
2 + µn − κ

)
Γ
(
1
2 − µn − κ

)W−κ,µn(Z), Z > 0. (7.26)

Note that the denominators in the second term on the right-hand side of (7.26) are finite due to
condition (iii) in the definition of generic data; see the beginning of Section 7. Indeed, it follows
from (6.10) and (7.12) that

e±2
1 = e2∞ ⇔ 1

2
− κn ± µn ∈ Z.
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On Z ∈ R− the left (+) and right (−) boundary values correspond to limits from Im(Z) < 0
and Im(Z) > 0, respectively. Therefore, the second column of W(Z;κ, µn) is continuous
across R−, and from (7.26) (replacing Z with −Z),

W−(Z;κ, µn) =

[
ακ,µnZ

−1Wκ−1,µn(Z + i0) −Z−1W1−κ,µn(−Z)

Wκ,µn(Z + i0) W−κ,µn(−Z)

]

=




e2πiκακ,µnZ
−1Wκ−1,µn(Z − i0)− 2πieiπκZ−1W1−κ,µn(−Z)

Γ
(
1
2 + µn − κ

)
Γ
(
1
2 − µn − κ

) −Z−1W1−κ,µn(−Z)

e2πiκWκ,µn(Z − i0) +
2πieiπκW−κ,µn(−Z)

Γ
(
1
2 + µn − κ

)
Γ
(
1
2 − µn − κ

) W−κ,µn(−Z)




= W+(Z;κ, µn)




e2πiκ 0

2πieiπκ

Γ
(
1
2 + µn − κ

)
Γ
(
1
2 − µn − κ

) 1


 , Z < 0.

Here, on the third line we used the definition (7.16) of ακ,µn and the factorial identity Γ(⋄+1) =
⋄Γ(⋄). Since H(λ, x) is analytic across iR+, it follows that Φ̆(∞)(λ) = Φ̆

(∞)
n (λ, x) satisfies the

jump condition

Φ̆
(∞)
+ (λ) = Φ̆

(∞)
− (λ)

[
W−(ixλ;κn, µn)K

+
n

]−1
W+(ixλ;κn, µn)K

−
n

= Φ̆
(∞)
− (λ)

(
K+

n

)−1




e2πiκn 0

2πieiπκn

Γ
(
1
2 + µn − κn

)
Γ
(
1
2 − µn − κn

) 1




−1

K−
n

= Φ̆
(∞)
− (λ)


1

2πeiπκn

µnγnΓ
(
1
2 + µn − κn

)
Γ
(
1
2 − µn − κn

)

0 1


 , λ ∈ iR+.

Requiring that this matches with the corresponding jump condition in Figure 8 gives the con-
dition

2πeiπκn

µnγnΓ
(
1
2 + µn − κn

)
Γ
(
1
2 − µn − κn

) =
e2∞ − e21
e21e

4
∞

.

For Z ∈ R+ the ± boundary values correspond to the limit from Im(Z) ≷ 0. Therefore, now
the first column of W(Z;κ, µn) is continuous across R+, and from (7.26),

W−(Z;κ, µn) =

[
ακ,µnZ

−1Wκ−1,µn(Z) −Z−1W1−κ,µn(−Z + i0)

Wκ,µn(Z) W−κ,µn(−Z + i0)

]

=




ακ,µnZ
−1Wκ−1,µn(Z) −e−2πiκZ−1W1−κ,µn(−Z− i0) +

2πie−iπκακ,µnZ
−1Wκ−1,µn(Z)

Γ
(
1
2 + µn + κ

)
Γ
(
1
2 − µn + κ

)

Wκ,µn(Z) e−2πiκW−κ,µn(−Z− i0) +
2πie−iπκWκ,µn(Z)

Γ
(
1
2 + µn + κ

)
Γ
(
1
2 − µn + κ

)




= W+(Z;κ, µn)



1

2πie−iπκ

Γ
(
1
2 + µn + κ

)
Γ
(
1
2 − µn + κ

)

0 e−2πiκ


 , Z > 0.

Again here, the finiteness of the denominators is guaranteed by condition (iii) at the beginning
of Section 7. Since H(λ, x) changes sign across iR−, we get that Φ̆(∞)(λ) = Φ̆

(∞)
n (λ, x) satisfies
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the jump condition

Φ̆
(∞)
+ (λ) = −Φ̆

(∞)
− (λ)[W−(ixλ;κn, µn)K

−
n ]

−1W+(ixλ;κn, µn)K
+
n

= Φ̆
(∞)
− (λ)(K−

n )
−1



−1 − 2πie−iπκn

Γ
(
1
2 + µn + κn

)
Γ
(
1
2 − µn + κn

)

0 −e−2πiκn




−1

K+
n

= Φ̆
(∞)
− (λ)




−e2πiκn 0

2πe−iπκnµnγn

Γ
(
1
2 + µn + κn

)
Γ
(
1
2 − µn + κn

) −e−2πiκn




= Φ̆
(∞)
− (λ)

[
e2∞ 0

e2∞s∞2 e−2
∞

]
= Φ̆

(∞)
− (λ)S∞

2 e2σ3
∞ , λ ∈ iR−.

The last two equalities follow by a direct calculation using the definitions of s∞2 , κn, e1, and e∞
in (4.30), (7.12), and (6.10), respectively, along with the expression

µnγn =
2πeπiκn

Γ
(
1
2 + µn − κn

)
Γ
(
1
2 − µn − κn

) · e21e
4
∞

e2∞ − e21
, (7.27)

and the classical identity

Γ

(
1

2
− z

)
Γ

(
1

2
+ z

)
=

π

cos(πz)
. (7.28)

7.2.4 The parametrix Φ̆
(∞)

n (λ, x) in the region |λ| < 2

We use the identity [38, equation (13.14.33)] to express the elements of W(Z;κ, µ) in terms of
the alternative basis of solutions M−κ,±µ(−Z) of Whittaker’s equation with parameters (κ, µ)
that form a numerically satisfactory pair in a neighborhood of the origin and that are analytic
for Arg(−Z) ∈ (−π, π). Moreover, these functions are the Maclaurin series associated with the
regular singular point at Z = 0, so they have the property that

Mκ,µ(−Z)(−Z)−
1
2
−µ = 1 +O(Z) as Z → 0, (7.29)

where the power function denotes the principal branch and where the error term represents an
analytic function of Z vanishing at the origin. To deal with the first column of W(Z;κ, µ) we also

use the corresponding identity Mκ,µ(Z) = e±iπ( 1
2
+µ)M−κ,µ(−Z) which holds for ± Im(Z) > 0

(see also [38, equation (13.14.10)]). Using the above identities, and under the condition 2µ ̸∈ Z
(which follows from the condition (i) at the beginning of Section 7 in our case), we can write
the elements of W(Z;κ, µ) in the form

W11(Z;κ, µ) = −Z−1 Γ(−2µ)Γ
(
1
2 − µ+ κ

)

Γ
(
1
2 − µ− κ

)
Γ
(
−1

2 − µ+ κ
)e±iπ( 1

2
+µ)M1−κ,µ(−Z)

− Z−1 Γ(2µ)Γ
(
1
2 + µ+ κ

)

Γ
(
1
2 + µ− κ

)
Γ
(
−1

2 + µ+ κ
)e±iπ( 1

2
−µ)M1−κ,−µ(−Z), ± Im(Z) > 0,

W12(Z;κ, µ) = −Z−1 Γ(−2µ)

Γ
(
−1

2 − µ+ κ
)M1−κ,µ(−Z)− Z−1 Γ(2µ)

Γ
(
−1

2 + µ+ κ
)M1−κ,−µ(−Z),

W21(Z;κ, µ) =
Γ(−2µ)

Γ
(
1
2 − µ− κ

)e±iπ( 1
2
+µ)M−κ,µ(−Z)

+
Γ(2µ)

Γ
(
1
2 + µ− κ

)e±iπ( 1
2
−µ)M−κ,−µ(−Z), ± Im(Z) > 0,
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and

W22(Z;κ, µ) =
Γ(−2µ)

Γ
(
1
2 − µ+ κ

)M−κ,µ(−Z) +
Γ(2µ)

Γ
(
1
2 + µ+ κ

)M−κ,−µ(−Z).

These expressions can be usefully combined into a matrix identity:

W(Z;κ, µ) = M(Z;κ, µ)G±
κ,µ, ± Im(Z) > 0, (7.30)

where

M(Z;κ, µ) :=

[(
1
2 − κ+ µ

)
Z−1M1−κ,µ(−Z)

(
1
2 − κ− µ

)
Z−1M1−κ,−µ(−Z)

M−κ,µ(−Z) M−κ,−µ(−Z)

]
,

Arg(−Z) ∈ (−π, π), (7.31)

and

G±
κ,µ :=




Γ(−2µ)e±iπ( 1
2
+µ)

Γ
(
1
2 − µ− κ

) Γ(−2µ)

Γ
(
1
2 − µ+ κ

)

Γ(2µ)e±iπ( 1
2
−µ)

Γ
(
1
2 + µ− κ

) Γ(2µ)

Γ
(
1
2 + µ+ κ

)



.

To define the parametrix Φ̆
(∞)
n (λ, x) for |λ| < 2, we first introduce a constant matrix by

Jn := G+
κn,µn

K+
nS

∞
1 E∞ = G−

κn,µn
K−

nE
∞. (7.32)

The equality of these two expressions can be seen as follows. First, combining (7.25) and (7.30),
and using the fact that the matrix M(ixλ;κ, µn) is analytic in a neighborhood of λ = 2i, the
jump condition for Φ̆

(∞)
n (λ, x) across the positive imaginary axis for |λ| > 2 shown in Figure 8

implies the identity G+
κn,µn

K+
nS

∞
1 = G−

κn,µn
K−

n , which yields the desired equality.
Then, we set

Φ̆
(∞)
n (λ, x) := λ

σ3/2xκnσ3DnM(ixλ;κn, µn)Jn, for |λ| < 2. (7.33)

It is straightforward to then check that, regardless of the choice of µn, the matrix Jn de-
fined by (7.32) is diagonal. Comparing (7.25) and (7.33) shows that the jump conditions
for Φ̆

(∞)
n (λ, x) across the arcs of the circle |λ| = 2 shown in Figure 8 are satisfied. Using (7.29)

then proves that Φ̆
(∞)
n (λ, x) satisfies the simple jump condition across the negative imaginary

axis with |λ| < 2 shown in Figure 8 and that an expansion of the form shown in (7.2) holds. To
check that the matrix Jn is diagonal and arrive at its final form below, we use the identity (7.28)
to get

Γ

(
1

2
+ κn − µn

)
Γ

(
1

2
− κn + µn

)
=

π

cos
(
π(κn − µn)

) =
2πie1e∞
e21 − e2∞

,

Γ

(
1

2
+ κn + µn

)
Γ

(
1

2
− κn − µn

)
=

π

cos
(
π(κn + µn)

) =
2πie1e∞
1− e21e

2
∞
. (7.34)

The result is that the diagonal matrix Jn from (7.32) is given by

Jn =




eiπ/4e1e
7/2
∞ Γ(−2µn)

Γ
(
1
2 − κn − µn

) 0

0
eiπ/4

(
e41 − 1

)
e
3/2
∞ Γ(2µn)

e1
(
e21 − e2∞

)
Γ
(
1
2 − κn + µn

)



. (7.35)
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b 0

S0
1

S0
2e

−2σ3
0

e−2σ3
1

(S0
1E0)

−1E−1
0

Figure 10. The contour Γ(0), which includes the circle |λ| = 1
2 .

7.3 Parametrix for Φn(λ, x) near λ = 0

By definition, the parametrix Φ̆
(0)
n (λ, x) satisfies the following Riemann–Hilbert problem.

Riemann–Hilbert Problem 7.3. Fix generic monodromy parameters (e1, e2) determining
the Stokes and connection matrices, n ∈ Z, and x > 0. We seek a 2 × 2 matrix function

λ 7→ Φ̆
(0)
n (λ, x) satisfying:

� Analyticity: Φ̆
(0)
n (λ, x) is analytic in C \Γ(0), where Γ(0) =

{
|λ| = 1

2

}
∪
(
iR∩

{
Imλ < 1

2

})

is the jump contour shown in Figure 10.

� Jump condition: Φ̆
(0)
n (λ, x) has continuous boundary values on Γ(0) \ {0} from each com-

ponent of C \ Γ(0), which satisfy

Φ̆
(0)
n,+(λ, x) = Φ̆

(0)
n,−(λ, x)JΦ̆

(0)
n

(λ),

where J
Φ̆

(0)
n

(λ) is as shown in Figure 10 and where the + (resp., −) subscript denotes a
boundary value taken from the left (resp., right) of an arc of Γ(0).

� Normalization: Φ̆
(0)
n (λ, x) satisfies the asymptotic conditions

Φ̆
(0)
n (λ, x) = O(1)λµnσ3 as λ → ∞, (7.36)

where O(1) refers to a function analytic and bounded in a neighborhood of λ = ∞ and

Φ̆
(0)
n (λ, x) = (I+O(λ))e−ixλ−1σ3/2λ

(n+Θ0)σ3/2 as λ → 0. (7.37)

We can write down the unique solution Φ̆
(0)
n (λ, x) explicitly in terms of the parametrix

Φ̆
(∞)
n (λ, x) obtained in Section 7.2, but taken with the index 1−n instead of n and Θ∞ replaced

by Θ0. If we indicate the dependence of Φ̆
(∞)
n (λ, x) and Φ̆

(0)
n (λ, x) on Θ∞ and Θ0 respectively

with the notation Φ̆
(∞)
n (λ, x) = Φ̆

(∞)
n (λ, x,Θ∞) and Φ̆

(0)
n (λ, x) = Φ̆

(0)
n (λ, x,Θ0), then we have

the following.

Proposition 7.4. Fix Θ∞,Θ0 ∈ C and generic monodromy parameters (e1, e2). Then

Φ̆(0)
n (λ, x,Θ0) =





e3σ3
0 Φ̆

(∞)
−n

(
−λ−1, x,Θ0

)
e−2σ3
0 , |λ| < 1

2 ,

e3σ3
0 Φ̆

(∞)
−n

(
−λ−1, x,Θ0

)
[

0 βn

−β−1
n 0

]
, |λ| > 1

2 ,
(7.38)



54 A. Barhoumi, O. Lisovyy, P.D. Miller and A. Prokhorov

where

βn :=
1− e41

e21
(
1− e20e

2
1

) . (7.39)

Proof. The mapping λ 7→ −λ−1 takes the contour Γ(0) onto the contour Γ(∞) up to the reversal
of orientation of certain arcs, and swaps the circles centered at the origin of radii 1

2 and 2.
Therefore, the domain of analyticity of Φ̆

(0)
n (λ, x,Θ0) is as desired.

Under the map n 7→ −n, Θ∞ 7→ Θ0, the exponentials defined in (6.10) satisfy e20 7→ e2∞,
whereas µn = µ−n since this quantity depends only on the parity of n. This implies that the
Stokes matrices defined in (4.11)–(5.15) satisfy the corresponding identities

S∞
1 7→ e−2σ3

0

(
S0
1

)−1
e2σ3
0 and S∞

2 e2σ3
∞ 7→ e−2σ3

0

(
S0
2e

−2σ3
0

)−1
e2σ3
0 .

Comparing Figures 8 and 10 then shows that the function defined by (7.38) satisfied the required
jump conditions across the imaginary axis for |λ| < 1

2 . Likewise, the jump condition on the
negative imaginary axis for |λ| > 1

2 is easily verified due to the identity valid for any a ̸= 0:

e−2σ3
1

[
0 a

−a−1 0

]
+

[
0 a

−a−1 0

]
e2σ3
1 = 0.

Finally, the fact that Φ̆
(0)
n (λ, x,Θ0) defined by (7.38) satisfies the required jump conditions across

the circle |λ| = 1
2 follows from the corresponding jump conditions for Φ̆

(∞)
1−n(λ, x,Θ0) for |λ| = 2

and the identities

(E∞)−1 7→
[

0 βn
−β−1

n 0

]
(
S0
1E

0
)−1

e2σ3
0 , (S∞

1 E∞)−1 7→
[

0 βn
−β−1

n 0

]
(
E0
)−1

e2σ3
0

among the matrices E∞, E0 defined in (4.31)–(4.32), which hold for the value of βn indicated
in (7.39).

It only remains to verify the asymptotics in (7.36)–(7.37). However, these follow from the
corresponding formulæ in (7.1)–(7.2) with the help of the identity

λp = eiπpζ−p, ζ := −λ−1,

which holds for all λ not on the negative imaginary axis.

Since the matrix function Φ̆
(0)
n (λ, x,Θ0) defined by (7.38)–(7.39) satisfies all the required

Riemann–Hilbert conditions, and there is at most one solution of those conditions, as is easily
confirmed by a Liouville argument, the proof is finished. ■

7.4 An equivalent Riemann–Hilbert problem on the unit circle

The parametrix for Φn(λ, x) is by definition the following matrix function:

Φ̆n(λ, x) :=




Φ̆

(∞)
n (λ, x,Θ∞), |λ| > 1,

Φ̆
(0)
n (λ, x,Θ0), |λ| < 1.

This matrix function satisfies exactly the same jump conditions in the domains |λ| > 1
and |λ| < 1 as does Φn(λ, x) itself, and it is also consistent with the asymptotics given in
(6.3)–(6.4) (note that Ψn(λ, x) = Φn(λ, x) for |λ| sufficiently large or small). The parametrix
has unit determinant, so the matrix quotient

Qn(λ, x) := Φn(λ, x)Φ̆n(λ, x)
−1



Painlevé-III Monodromy Maps Under the D6 → D8 Confluence 55

is an analytic function of λ except possibly on the jump contour Γ shown in Figure 6 and on
the unit circle, where there is a discontinuity in the definition of Φ̆n(λ, x). However, since the
jumps of Φ̆n(λ, x) and Φn(λ, x) agree on Γ, a Morera argument shows that Qn(λ, x) is actually
analytic both for |λ| > 1 and for 0 < |λ| < 1. The asymptotic behavior of the factors in Qn(λ, x)
as λ → 0 then shows that any singularity of Qn(λ, x) at the origin λ = 0 is removable, and the
asymptotic behavior of the same factors in the limit λ → ∞ shows that Qn(λ, x) → I as λ → ∞.

Qn(λ, x) is therefore characterized by its jump condition across the unit circle |λ| = 1. Taking
counterclockwise orientation for the circle, the jump condition for Qn(λ, x) reads

Qn,+(λ, x) = Qn,−(λ, x)Φ̆
(∞)
n (λ, x,Θ∞)eσ3

2 Φ̆(0)
n (λ, x,Θ0)

−1, |λ| = 1.

Using Proposition 7.4, the jump matrix can be written as

Φ̆(∞)
n (λ, x,Θ∞)eσ3

2 Φ̆(0)
n (λ, x,Θ0)

−1

= Φ̆(∞)
n (λ, x,Θ∞)eσ3

2

[
0 −βn

β−1
n 0

]
Φ̆

(∞)
−n (−λ−1, x,Θ0)

−1e−3σ3
0 , |λ| = 1. (7.40)

We summarize by writing the Riemann–Hilbert problem for Qn(λ, x).

Riemann–Hilbert Problem 7.5. Fix generic monodromy parameters (e1, e2), n ∈ Z, and
x ∈ C. Seek a 2× 2 matrix function λ 7→ Qn(λ, x) with the following properties:

� Analyticity: Qn(λ, x) is an analytic function of λ for |λ| ̸= 1.

� Jump condition: Qn(λ, x) takes analytic boundary values on the unit circle from the inte-
rior and exterior, denoted Qn,+(λ, x) and Qn,−(λ, x) for |λ| = 1 respectively, and they are
related by

Qn,+(λ, x) = Qn,−(λ, x)Φ̆
(∞)
n (λ, x,Θ∞)eσ3

2

[
0 −βn

β−1
n 0

]
Φ̆

(∞)
−n

(
−λ−1, x,Θ0

)−1
e−3σ3
0 .

� Normalization: Qn(λ, x) → I as λ → ∞.

Henceforth, to avoid the notation becoming unwieldy, we understand that all quantities
appearing with subscript n are evaluated at parameter Θ∞ while quantities appearing with
subscript −n are evaluated at parameter Θ0.

7.5 The limit n → +∞

Having succeeded in removing the problematic jump conditions along rays emanating from 0, ∞
in the λ plane by defining Qn(λ, x), we would next like to consider the limiting behavior of this
problem as n → +∞ with x = z/n and z fixed. It is convenient to first renormalize Qn(λ, x),
essentially by a transformation that diagonalizes the coefficient µnBn(x)σ3Bn(x)

−1 of λ−1 in
the matrix of the Lax equation (7.5). In other words, in the jump condition for Qn(λ, x)
we prefer to replace Φ̆

(∞)
n (λ, x) with a suitable left-diagonal multiple of Bn(x)

−1Φ̆
(∞)
n (λ, x).

Observe that the coefficient Bn(x) is determined up to right-multiplication by a diago-
nal matrix by (7.6), in which the second row of the matrix on the right-hand side is
(cn(x),−an) =

(
γnx

1−2κn , µ−1
n

(
κn − 1

2

))
, where we used (7.12) and (7.21). Indeed, the first col-

umn b
(1)
n (x) satisfies

(
γnx

1−2κn , µ−1
n

(
κn − 1

2

)
− 1
)
b
(1)
n (x) = 0 while the second column b

(2)
n (x)

satisfies
(
γnx

1−2κn , µ−1
n

(
κn − 1

2

)
+ 1
)
b
(2)
n (x) = 0. By selecting specific constant factors for each

column, we obtain a matrix Pn(x) differing from Bn(x) by right-multiplication by a diagonal
matrix, and given explicitly by

Pn(x) :=

[
1
2 − κn + µn

1
2 − κn − µn

µnγnx
1−2κn µnγnx

1−2κn

]
,
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in which the dependence on the index n enters via (7.12) and (7.27). Then to get the desired
modification of the jump matrix we set

Rn(λ, x) :=

{
Pn(x)

−1Qn(λ, x)Pn(x), |λ| > 1,

Pn(x)
−1Qn(λ, x)e

3σ3
0 P−n(x)dn(x), |λ| < 1,

where dn(x) is a scalar satisfying

dn(x)
2 =

det(Pn(x))

det(P−n(x))
. (7.41)

Then, Rn(λ, x) solves the following Riemann–Hilbert problem.

Riemann–Hilbert Problem 7.6. Fix generic monodromy parameters (e1, e2), n ∈ Z, and
x ∈ C. Seek a 2× 2 matrix function λ 7→ Rn(λ, x) with the following properties:

� Analyticity: Rn(λ, x) is an analytic function of λ for |λ| ̸= 1.

� Jump condition: Rn(λ, x) takes analytic boundary values on the unit circle from the inte-
rior and exterior, denoted Rn,+(λ, x) and Rn,−(λ, x) for |λ| = 1 respectively, and they are
related by

Rn,+(λ, x) = Rn,−(λ, x)Pn(x)
−1Φ̆(∞)

n (λ, x)eσ3
2

[
0 −βn

β−1
n 0

]

× Φ̆
(∞)
−n

(
−λ−1, x

)−1
P−n(x)dn(x) (7.42)

� Normalization: Rn(λ, x) → I as λ → ∞.

The matrices Ξ
(6)
n (x) and ∆

(6)
n (x) defined in (6.5) and (6.4), respectively, can be expressed

in terms of Rn(λ, x) as follows:

Ξ(6)
n (x) = An(x) +Pn(x)

[
lim
λ→∞

λ(Rn(λ, x)− I)
]
Pn(x)

−1 − 1

2
ixσ3,

∆(6)
n (x) = Pn(x)Rn(0, x)P−n(x)

−1dn(x)
−1e−3σ3

0 . (7.43)

Here, An(x) is the matrix coefficient defined in (7.1).
We now show that the jump matrix in (7.42) has explicit limits as n → +∞ along even or odd

subsequences, with the convergence being uniform for |λ| = 1 and bounded z where x = z/n.
To this end, we compute the asymptotic behavior of Pn

(
n−1z

)−1
Φ̆

(∞)
n

(
λ, n−1z

)
assuming that

|λ| = 1. The relevant formula for Φ̆
(∞)
n (λ, x) in this setting is (7.33). When |λ| = 1,

Pn(x)
−1Φ̆(∞)

n (λ, x)

=
1

2µ2
nγnx

1−2κn

[
µnγnx

1−2κn −1
2 + µn + κn

−µnγnx
1−2κn 1

2 + µn − κn

]
Dnx

κnσ3λ
σ3/2M(ixλ;κn, µn)Jn.

Using (7.24), we see that

Pn(x)
−1Φ̆(∞)

n (λ, x) =
1

2µ2
nγn

xκn− 1
2

[
i −1

2 + µn + κn

−i 1
2 + µn − κn

]
xσ3/2λ

σ3/2M(ixλ;κn, µn)Jn.

Now, for x > 0, the principal branch power (−ixλ)σ3/2 has the same domain of analyticity
as λ

σ3/2, and these two analytic functions are related by the identity

λ
σ3/2 = x−σ3/2eiπσ3/4(−ixλ)σ3/2.
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Therefore,

Pn(x)
−1Φ̆(∞)

n (λ, x)

=
1

2µ2
nγn

xκn− 1
2

[
i −1

2 + µn + κn
−i 1

2 + µn − κn

]
eiπσ3/4(−ixλ)σ3/2M(ixλ;κn, µn)Jn

=
e−iπ/4

2µ2
nγn

xκn− 1
2

[
−1 −1

2 + µn + κn
1 1

2 + µn − κn

]
(−Z)σ3/2M(Z;κn, µn)Jn, Z = ixλ. (7.44)

Now using (7.31), we have

(−Z)σ3/2M(Z;κn, µn)

=



(
−1

2 − µn + κn
)
(−Z)−

1
2M1−κn,µn(−Z)

(
−1

2 + µn + κn
)
(−Z)−

1
2M1−κn,−µn(−Z)

(−Z)−
1
2M−κn,µn(−Z) (−Z)−

1
2M−κn,−µn(−Z)


 .

The diagonal elements in (7.44) can be simplified using the identity (see [38, equation (13.15.3)])

(
κ− µ− 1

2

)
Mκ− 1

2
,µ+ 1

2
(⋄) + (1 + 2µ) ⋄ 1

2 Mκ,µ(⋄)−
(
κ+ µ+ 1

2

)
Mκ+ 1

2
,µ+ 1

2
(⋄) = 0

replacing κ → 1
2 − κn and µ → µn − 1

2 for the (1, 1) entry and µ → −1
2 − µn for the (2, 2) entry,

and the off-diagonal elements can be simplified using the identity (see [38, equation (13.15.4)])

2µMκ− 1
2
,µ− 1

2
(⋄)− 2µMκ+ 1

2
,µ− 1

2
(⋄)− ⋄ 1

2Mκ,µ(⋄) = 0

replacing κ → 1
2 − κn and µ → 1

2 − µn for the (1, 2) entry and µ → 1
2 + µn for the (2, 1) entry.

The result is that

Pn(x)
−1Φ̆(∞)

n (λ, x) =
e−iπ/4

2µ2
nγn

xκn− 1
2

×




2µnM 1
2
−κn,µn− 1

2
(−Z)

(
κn + µn − 1

2

1− 2µn

)
M 1

2
−κn,

1
2
−µn

(−Z)

(
1
2 − κn + µn

1 + 2µn

)
M 1

2
−κn,

1
2
+µn

(−Z) 2µnM 1
2
−κn,− 1

2
−µn

(−Z)



Jn,

Z = ixλ. (7.45)

We will need the following result for the large n limit of Whittaker functions appearing here,
cf. [38, equation (13.21.1)].

Lemma 7.7. Assume that µ is fixed with 2µ ̸= −1,−2,−3, . . . , and let f(ζ;µ) denote the entire
function

f(ζ;µ) :=
∞∑

s=0

(−ζ)s

Γ(1 + 2µ+ s)s!
. (7.46)

Then the asymptotic formula

Mκ,µ

(
ζ

κ

)
= Γ(1 + 2µ)

(
ζ

κ

)µ+1/2 [
f(ζ;µ) +O

(
κ−2

)]

holds uniformly in the limit κ → ∞ in any (possibly complex) direction under the assump-
tion ζ = O(1).
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Proof. We start from the formula [38, equation (13.14.6)] which holds under the indicated
condition on µ:

Mκ,µ

(
ζ

κ

)
= Γ(1 + 2µ)

(
ζ

κ

)µ+1/2

e−ζ/(2κ)
∞∑

s=0

(−ζ)s

Γ(1 + 2µ+ s)s!

s−1∏

j=0

(
1− µ+ 1/2 + j

κ

)
.

Clearly, e−ζ/(2κ) = 1−ζ/(2κ)+O
(
κ−2

)
as κ → ∞ for ζ = O(1), and the product in the summand

has the expansion

s−1∏

j=0

(
1− µ+ 1/2 + j

κ

)
= 1− 1

κ

[(
µ+

1

2

)
s+

1

2
s(s− 1)

]
+O

(
κ−2ss

)
, κ → ∞ (7.47)

uniformly for all indices s. This follows from the Fredholm expansion formula

s−1∏

j=0

(1 + rj) = 1 +
s−1∑

j=0

rj +
s∑

k=2

∑

S⊂Zs

|S|=k

∏

l∈S
rl

and the estimate
∣∣∣∣∣
∑

S⊂Zs
|S|=k

∏

l∈S
rl

∣∣∣∣∣ ≤
(
s

k

)
Rk

s , Rs := max
0≤l≤s−1

{|rl|}.

Indeed, with rj = −κ−1(µ+ 1
2 + j), we have

s−1∑

j=0

rj = −1

κ

s−1∑

j=0

(
µ+

1

2
+ j

)
= −1

κ

[(
µ+

1

2

)
s+

1

2
s(s− 1)

]
,

and Rs ≤ |κ|−1
(∣∣µ+ 1

2

∣∣+ (s− 1)
)
. Therefore, Rk

s ≤ |κ|−2
(∣∣µ+ 1

2

∣∣+ (s− 1)
)k

holds for all k ≥ 2
whenever |κ| ≥ 1. Consequently,

∣∣∣∣∣∣

s−1∏

j=0

(
1− µ+ 1/2 + j

κ

)
− 1+

1

κ

[(
µ+

1

2

)
s+

1

2
s(s− 1)

]∣∣∣∣∣∣

=

∣∣∣∣∣
s∑

k=2

∑

S⊂Zs

|S|=k

∏

l∈S
rl

∣∣∣∣∣ ≤
1

|κ|2
s∑

k=2

(
s

k

)(∣∣∣∣µ+
1

2

∣∣∣∣+ (s− 1)

)k

1s−k

≤ 1

|κ|2
s∑

k=0

(
s

k

)(∣∣∣∣µ+
1

2

∣∣∣∣+ (s− 1)

)k

1s−k =

(∣∣µ+ 1
2

∣∣+ s
)s

|κ|2 ,

which proves (7.47). Since the series

∞∑

s=0

(−ζ)sss

Γ(1 + 2µn + s)s!

converges uniformly for |ζ| bounded, it follows that

Mκ,µ

(
ζ

κ

)
= Γ(1 + 2µ)

(
ζ

κ

)µ+1/2 [
f(ζ;µ)− 1

κ
g(ζ;µ) +O

(
κ−2

)]
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holds as κ → ∞ in C with ζ = O(1), where

g(ζ;µ) :=
1

2
ζf(ζ;µ) +

(
µ+

1

2

)
ζf ′(ζ;µ) +

1

2
ζ2f ′′(ζ;µ).

Now using the series (7.46) one checks that for all indicated values of µ, g(ζ;µ) vanishes identi-
cally, so the proof is complete. ■

The series in (7.46) defines an entire function of ζ related to Bessel functions (see [38, Chap-
ter 10]) in the following way:

f(ζ, µ) = ζ−µJ2µ
(
2
√
ζ
)
. (7.48)

We apply Lemma 7.7 to (7.45) by taking ζ = −
(
1
2 − κn

)
Z = −

(
1
2 − κn

)
ixλ. If x = z/n

and z = O(1), then using (7.12), we see that ζ = −1
2 izλ + O

(
n−1

)
holds for |λ| = 1. So,

(7.45) becomes the statement that

Pn(x)
−1Φ̆(∞)

n (λ, x)

=
e−iπ/4

2µ2
nγn

xκn− 1
2

(
ρ∞
2

[
Γ(2µn + 1)J2µn−1(ρ∞) −Γ(1− 2µn)J1−2µn(ρ∞)

Γ(2µn + 1)J2µn+1(ρ∞) −Γ(1− 2µn)J−1−2µn(ρ∞)

]
+O

(
n−1

)
)

×
(
n

2

)−µnσ3

Jn

with

ρ∞ = ρ∞(λ, z) := (−2izλ)1/2 (principal branch) (7.49)

holds in the limit n → ∞ with x = n−1z uniformly for z = O(1) and |λ| = 1. Similarly, to
study the parametrix near 0, it will be convenient to rewrite formula (7.48) in terms of modified
Bessel functions:

f(ζ, µ) = (−ζ)−µI2µ
(
2
√
−ζ
)
.

Replacing n with −n, Θ∞ with Θ0, and λ with −λ−1 and recalling that µ−n = µn, gives in
the same limit,

P−n(x)
−1Φ̆

(∞)
−n

(
−λ−1, x

)

=
e−iπ/4

2µ2
nγ−n

xκ−n− 1
2

(
ρ0
2

[
Γ(2µn + 1)I2µn−1(ρ0) Γ(1− 2µn)I1−2µn(ρ0)

−Γ(2µn + 1)I2µn+1(ρ0) −Γ(1− 2µn)I−2µn−1(ρ0)

]
+O

(
n−1

)
)

×
(
n

2

)−µnσ3

J−n

with

ρ0 = ρ0(λ, z) :=
(
2izλ−1

)1/2
(principal branch). (7.50)

The jump matrix in (7.42) therefore reads

Rn,−
(
λ, n−1z

)−1
Rn,+

(
λ, n−1z

)

=
ρ∞
2

[
Γ(2µn + 1)J2µn−1(ρ∞) +O

(
n−1

)
−Γ(1− 2µn)J1−2µn(ρ∞) +O

(
n−1

)

Γ(2µn + 1)J2µn+1(ρ∞) +O
(
n−1

)
−Γ(1− 2µn)J−1−2µn(ρ∞) +O

(
n−1

)
]

× γ−n

γn
xκn−κ−ndn(x)

(
n

2

)−µnσ3

Jne
σ3
2

[
0 −βn

β−1
n 0

]
J−1
−n

(
n

2

)µnσ3 2

ρ0

×
[
Γ(2µn + 1)I2µn−1(ρ0) +O

(
n−1

)
Γ(1− 2µn)I1−2µn(ρ0) +O

(
n−1

)

−Γ(2µn + 1)I2µn+1(ρ0) +O
(
n−1

)
−Γ(1− 2µn)I−2µn−1(ρ0) +O

(
n−1

)
]−1

. (7.51)
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Expanding (7.41) for large n > 0 gives

dn(x)
2 =

γn
γ−n

x2κ−n−2κn =
e5∞
e50

e20 − e21
e2∞ − e21

Γ
(
1
2 − κ−n − µn

)
Γ
(
1
2 − κ−n + µn

)

Γ
(
1
2 − κn − µn

)
Γ
(
1
2 − κn + µn

) x2κ−n−2κn

=
e5∞e21

e30
(
1− e21e

2
0

)(
e2∞ − e21

)

× 4π2x2κ−n−2κn

Γ
(
1
2 + κ−n − µn

)
Γ
(
1
2 + κ−n + µn

)
Γ
(
1
2 − κn + µn

)
Γ
(
1
2 − κn − µn

)

= 4
e4∞
e40

e0e∞e21(
1− e21e

2
0

)(
e2∞ − e21

)x2κ−n−2κnn−2n−Θ0+Θ∞e2n22n+Θ0−Θ∞−2
(
1 +O

(
n−1

))
,

n → +∞.

We now properly define dn(x) for large n by selecting a definite value for the square root of

√
1− e21e

2
0

e2∞ − e21
(7.52)

after which dn(x) has the asymptotic expansion

dn(x) =
e1e

5/2
∞

e
3/2
0

1(
1− e21e

2
0

)
√

1− e21e
2
0

e2∞ − e21
xκ−n−κnn−n+ 1

2
(−Θ0+Θ∞)en2n+

1
2
(Θ0−Θ∞)

×
(
1 +O

(
n−1

))
, n → +∞.

Then, by definition, we have

γ−n

γn
dn(x)x

κn−κ−n =
e
3/2
0

e1e
5/2
∞

(
1− e21e

2
0

)


√

1− e21e
2
0

e2∞ − e21




−1

nn− 1
2
(−Θ0+Θ∞)e−n

× 2−n− 1
2
(Θ0−Θ∞)

(
1 +O

(
n−1

))
, n → +∞.

Furthermore, using identities (7.28), (7.34), and Stirling’s formula yields

−
(
2

n

)2µn

βn
Jn,11
J−n,22

= −
(
2

n

)2µn e
7/2
∞
(
e21 − e20

)
Γ(−2µn)Γ

(
1
2 − κ−n + µn

)

e
3/2
0

(
e20e

2
1 − 1

)
Γ(2µn)Γ

(
1
2 − κn − µn

)

=
e
7/2
∞

e
3/2
0

ie0e1(
1− e20e

2
1

) Γ(−2µn)

Γ(2µn)
n−n+ 1

2
(−Θ0+Θ∞)en

× 2n+
1
2
(Θ0−Θ∞)

(
1 +O

(
n−1

))
, n → +∞,

and similarly,

(
n

2

)2µn Jn,22
βnJ−n,11

=

(
n

2

)2µn e
3/2
∞
(
e20e

2
1 − 1

)
Γ(2µn)Γ

(
1
2 − κ−n − µn

)

e
7/2
0

(
e21 − e2∞

)
Γ(−2µn)Γ

(
1
2 − κn + µn

)

=
e
3/2
∞

e
7/2
0

ie0e1(
e2∞ − e21

) Γ(2µn)

Γ(−2µn)
n−n+ 1

2
(−Θ0+Θ∞)en

× 2n+
1
2
(Θ0−Θ∞)

(
1 +O

(
n−1

))
, n → +∞.
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Therefore, the central factor on the right-hand side of (7.51) satisfies

γ−n

γn
xκn−κ−ndn(x)

(
n

2

)−µnσ3

Jne
σ3
2

[
0 −βn

β−1
n 0

]
J−1
−n

(
n

2

)µnσ3

=




0 −e0e2e∞
i

Γ(−2µn)

Γ(2µn)



√

1− e20e
2
1

e2∞ − e21




−1

i

e0e2e∞

Γ(2µn)

Γ(−2µn)

√
1− e20e

2
1

e2∞ − e21
0



+O

(
n−1

)
.

The leading term is independent of n (mod 2) and has unit determinant. This proves the
following.

Proposition 7.8. Define the constant matrix which depends only on the even/odd parity of n
via µn, e1, e

2
0, and e2∞:

Veven/odd :=




0 −e0e2e∞
i



√

1− e20e
2
1

e2∞ − e21




−1

i

e0e2e∞

√
1− e20e

2
1

e2∞ − e21
0



. (7.53)

Then the following asymptotic formula holds uniformly for |λ| = 1 and z bounded:

Rn,−(λ, z/n)
−1Rn,+(λ, z/n) = ρ∞

[
J2µn−1(ρ∞) −J1−2µn(ρ∞)
J2µn+1(ρ∞) −J−1−2µn(ρ∞)

]
·Veven/odd

× 1

ρ0

[
I2µn−1(ρ0) I1−2µn(ρ0)
−I2µn+1(ρ0) −I−1−2µn(ρ0)

]−1

+O
(
n−1

)
,

as n → ∞ along even/odd subsequences.

Proposition 7.8 suggests defining the following limiting Riemann–Hilbert problem.

Riemann–Hilbert Problem 7.9 (limiting problem, even/odd subsequences of n). Fix generic
monodromy parameters (e1, e2), and z ∈ C with |Arg(z)| < π. Seek a 2 × 2 matrix function
λ 7→ R̂even/odd(λ, z) with the following properties:

� Analyticity: R̂even/odd(λ, z) is an analytic function of λ for |λ| ̸= 1.

� Jump condition: R̂even/odd(λ, z) takes analytic boundary values on the unit circle from the

interior and exterior, denoted R̂
even/odd
+ (λ, z) and R̂

even/odd
− (λ, z) for |λ| = 1 respectively,

and they are related by

R̂
even/odd
+ (λ, z) = R̂

even/odd
− (λ, z)ρ∞

[
J2µn−1(ρ∞) −J1−2µn(ρ∞)
J2µn+1(ρ∞) −J−1−2µn(ρ∞)

]

×Veven/odd · 1

ρ0

[
I2µn−1(ρ0) I1−2µn(ρ0)
−I2µn+1(ρ0) −I−1−2µn(ρ0)

]−1

. (7.54)

� Normalization: R̂even/odd(λ, z) → I as λ → ∞.
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Note that the Bessel functions Jν(ρ∞) and Iν(ρ0) appearing in the jump matrix in (7.54) are
analytic on the unit circle |λ| = 1 except at the point λ = λc := −ie−i Arg(z). However, from the
identities

Jν(ρ∞)
∣∣
λ=λce−i0 = eiπν Jν(ρ∞)

∣∣
λ=λcei0

and Iν(ρ0)
∣∣
λ=λce−i0 = e−iπν Iν(ρ0)

∣∣
λ=λcei0

and the fact that the indices ν in each column of the Bessel matrix factors in (7.54) differ by 2,
combined with the fact that Veven/odd is an off-diagonal matrix, one sees easily that

[
J2µn−1(ρ∞) −J1−2µn(ρ∞)
J2µn+1(ρ∞) −J−1−2µn(ρ∞)

]
·Veven/odd ·

[
I2µn−1(ρ0) I1−2µn(ρ0)
−I2µn+1(ρ0) −I−1−2µn(ρ0)

]−1

is continuous at λ = λc and hence is an analytic function of λ on the unit circle. The scalar
factor ρ∞/ρ0 is also analytic for |λ| = 1, and therefore the jump matrix in (7.54) is an analytic
function of λ when |λ| = 1. At this stage, the existence of a matrix function R̂even/odd(λ, z)
satisfying Riemann–Hilbert Problem 7.9 is not clear. However, it turns out that there exists
a discrete set Σeven/odd ⊂ C such that for z ∈ C \ Σeven/odd, such a matrix does exist and is in
fact a meromorphic function of z, see Section 9.1 below.

Lemma 7.10. Let (e1, e2) be generic monodromy parameters and take z ∈ C \Σeven/odd. Then,

lim
n→∞

n even/odd

un
(
n−1z;m

)
= − 8µ2

n

z

[
R̂

even/odd
11 (0, z) + R̂

even/odd
21 (0, z)

− R̂
even/odd
12 (0, z) + R̂

even/odd
22 (0, z)

]−2
. (7.55)

Proof. Noting that R̂even/odd(λ, z) necessarily has unit determinant, we form the matrix quo-
tient

En(λ, z) := Rn

(
λ, n−1z

)
R̂even/odd(λ, z)−1, |λ| ̸= 1.

Clearly, En(λ, z) is analytic as a function of λ in the domain of definition, and for each fixed n
it tends to I as λ → ∞ as this is true for both Rn

(
λ, n−1z

)
and R̂even/odd(λ, z). Across the unit

circle, the boundary values of En(λ, z) are related by

En,+(λ, z) = En,−(λ, z)R̂
even/odd
− (λ, z)

[
Rn,−

(
λ, n−1z

)−1
Rn,+

(
λ, n−1z

)]

×
[
R̂

even/odd
− (λ, z)−1R̂

even/odd
+ (λ, z)

]−1
R̂

even/odd
− (λ, z)−1, |λ| = 1.

Thus, the jump matrix for En(λ, z) is the conjugation, by a unit-determinant matrix func-
tion of λ independent of n, of the matrix ratio of the jump matrices for Rn

(
λ, n−1z

)
and

for R̂even/odd(λ, z). But by Proposition 7.8, the latter ratio is I + O
(
n−1

)
uniformly on the

unit circle as n → ∞ along even or odd subsequences. The conjugating factors exist and
are uniformly bounded for z in compact subsets of C \ Σ(y1, y2, y3). It follows that in this
limit, En,+(λ, z) = En,−(λ, z)

(
I + O

(
n−1

))
uniformly for |λ| = 1 and z in compact subsets

of C \ Σ(y1, y2, y3) as n → ∞. By standard small-norm theory, En(λ, z) exists for large enough
even or odd n, and tends to the identity as n → ∞, in particular in the sense that

lim
λ→∞

λ(En(λ, z)− I) → 0 and En(0, z) → I

as n → ∞ along even/odd subsequences. By the definition of En(λ, z) it follows that in the
same limit

lim
λ→∞

λ
(
Rn

(
λ, n−1z

)
− I
)
→ lim

λ→∞
λ
(
R̂even/odd(λ, z)− I

)
, and

Rn

(
0, n−1z

)
→ R̂even/odd(0, z).

Combining (6.6) with (7.43) then shows (7.55). Partly, this works because the dominant term

in Ξ
(6)
n,12

(
n−1z;m

)
is An,12

(
n−1z

)
. ■
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7.6 Transformations of the limiting Riemann–Hilbert problem

In this section we transform Riemann–Hilbert Problem 7.9 to match the form of Riemann–
Hilbert Problem 5.1. To this end, using [38, equations (10.4.4) and (10.4.6)] to express the
Bessel function Jν(⋄) in terms of the Hankel functions H

(1)
ν (⋄), H(2)

ν (⋄) and the relations [38,
equation (10.4.4) and (10.4.6)],

H
(1)
−ν (⋄) = eπiνH(1)

ν (⋄), H
(2)
−ν (⋄) = e−πiνH(2)

ν (⋄),

we arrive at the identity:

ρ∞

[
J2µn−1(ρ∞) −J1−2µn(ρ∞)
J2µn+1(ρ∞) −J−1−2µn(ρ∞)

]

=
ρ∞
2


H

(1)
2µn−1(ρ∞) H

(2)
1−2µn

(ρ∞)

H
(1)
2µn+1(ρ∞) H

(2)
−1−2µn

(ρ∞)



[

1 e2πiµn

−e2πiµn −1

]
. (7.56)

To obtain appropriate asymptotic formulæ for the matrix on the right-hand side of (7.56), we
first apply the identity [38, equation (10.6.1)]

H
(k)
ν−1(⋄) +H

(k)
ν+1(⋄) =

2ν

⋄ H(k)
ν (⋄), k = 1, 2,

which gives

ρ−σ3/2
∞

[
1 0
1 1

]
ρ∞
2


H

(1)
2µn−1(ρ∞) H

(2)
1−2µn

(ρ∞)

H
(1)
2µn+1(ρ∞) H

(2)
−1−2µn

(ρ∞)




=

√
ρ∞

2


 H

(1)
2µn−1(ρ∞) H

(2)
1−2µn

(ρ∞)

4µnH
(1)
2µn

(ρ∞) −4µnH
(2)
−2µn

(ρ∞)


 . (7.57)

The matrix on the right-hand side is amenable to asymptotic analysis as ρ∞ → ∞; using the
asymptotics of Hankel functions [38, equations (10.17.5) and (10.17.6)] and (7.57) yields

ρ∞
2


H

(1)
2µn−1(ρ∞) H

(2)
1−2µn

(ρ∞)

H
(1)
2µn+1(ρ∞) H

(2)
−1−2µn

(ρ∞)




=




1
1

2
− µn

2
− 3

32µn

−1
1

2
+

µn

2
+

3

32µn




(
I+

1

128ρ2∞

×



(
16µ2

n − 9
)(
16µ2

n − 1
) (

16µ2
n − 13

)(
16µ2

n − 9
)(
16µ2

n − 1
)

48µn

64µn

(
16µ2

n − 1
)

−
(
16µ2

n − 9
)(
16µ2

n − 1
)


+O

(
ρ−4
∞
)
)
ρσ3/2
∞

× (2
√
µn)

I−σ3
e−πiµn

√
2π

eπiσ3/4

[
1 i
1 −i

]
eiρ∞σ3 , Arg(ρ∞) ∈ (−π, π). (7.58)
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We turn to analogously treating the final factor of the jump of R̂even/odd(λ, z); using [38, equa-
tion (10.27.7)] and the above relations, we have

ρ0

[
I2µn−1(ρ0) I1−2µn(ρ0)

−I2µn+1(ρ0) −I−1−2µn(ρ0)

]

=
e−πi/2ρ0

2


H

(1)
2µn−1

(
e−πi/2ρ0

)
H

(2)
1−2µn

(
e−πi/2ρ0

)

H
(1)
1+2µn

(
e−πi/2ρ0

)
H

(2)
−1−2µn

(
e−πi/2ρ0

)



[

eπiµn eπiµn

−e3πiµn −e−πiµn

]
.

This allows us to find the following large-ρ0 asymptotics:

e−πi/2ρ0
2


H

(1)
2µn−1

(
e−πi/2ρ0

)
H

(2)
1−2µn

(
e−πi/2ρ0

)

H
(1)
2µn+1

(
e−πi/2ρ0

)
H

(2)
−1−2µn

(
e−πi/2ρ0

)




=




1
1

2
− µn

2
− 3

32µn

−1
1

2
+

µn

2
+

3

32µn




(
I− 1

128ρ20

×



(
16µ2

n − 9
)(
16µ2

n − 1
) (

16µ2
n − 13

)(
16µ2

n − 9
)(
16µ2

n − 1
)

48µn

64µn

(
16µ2

n − 1
)

−
(
16µ2

n − 9
)(
16µ2

n − 1
)


+O

(
ρ−4
0

)
)
ρ
σ3/2
0

×
(
2
√
µn

)I−σ3 e
−πiµn

√
2π

[
1 i
1 −i

]
eρ0σ3 , Arg(ρ0) ∈

(
−π

2
,
3π

2

)
. (7.59)

For convenience, we introduce the notation

Hn(⋄) :=
√

π

4µn
eπi/4eπiµn · ⋄

2


H

(1)
2µn−1(⋄) H

(2)
1−2µn

(⋄)
H

(1)
1+2µn

(⋄) H
(2)
−1−2µn

(⋄)


 , (7.60)

with a fixed determination of the square root; this choice of prefactor guarantees that we
have det(Hn) = 1 identically. Using the identity [38, equation (10.11.4)], we note that Hn

satisfies

Hn(e
πi⋄) = Hn(⋄)

[
0 −1
1 2 cos(2πµn)

]
. (7.61)

We can now rewrite the jump condition (7.54) as

R̂
even/odd
+ (λ, z) = R̂

even/odd
− (λ, z)Hn(ρ∞)

[
1 e2πiµn

−e2πiµn −1

]
Veven/odd

×
[

eπiµn eπiµn

−e3πiµn −e−πiµn

]−1

H−1
n

(
e−πi/2ρ0

)
.

Next, define

Ωeven/odd(λ, z) :=




1
1

2
− µn

2
− 3

32µn

−1
1

2
+

µn

2
+

3

32µn




−1

(
2
√
µn

)σ3

× R̂even/odd(λ, z)

{
Hn(ρ∞), |λ| > 1,

Hn

(
e−πi/2ρ0

)
, |λ| < 1.

(7.62)
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Then, Ωeven/odd satisfies

Ω
even/odd
+ (λ, z) = Ω

even/odd
− (λ, z)

[
1 e2πiµn

−e2πiµn −1

]
·Veven/odd

×
[

eπiµn eπiµn

−e3πiµn −e−πiµn

]−1

, |λ| = 1, (7.63)

where the jump depends only on the parity of n. Furthermore, since ρ∞ and ρ0 change signs
across the negative imaginary axis, we may use (7.61) to find

Ω
even/odd
+ (λ, z) = Ω

even/odd
− (λ, z)

[
0 −1
1 2 cos(2πµn)

]
, (7.64)

for λ on the negative imaginary axis with |λ| > 1, oriented towards the origin and

Ω
even/odd
+ (λ, z) = Ω

even/odd
− (λ, z)

[
0 −1
1 2 cos(2πµn)

]
, (7.65)

for λ on the negative imaginary axis with |λ| < 1, oriented away from the origin.
It follows from Riemann–Hilbert Problem 7.9, (7.62), and (7.58) that Ωeven/odd has the

following asymptotic behavior as λ → ∞:

Ωeven/odd(λ, z) =
(
I+Ξeven/odd(z)λ−1 +O

(
λ−2

))
ρσ3/2
∞

1√
2

[
i −1
1 −i

]
eiρ∞σ3 , (7.66)

where the O
(
λ−2

)
represents an asymptotic series that is differentiable term-by-term with re-

spect to both λ and z. Analogously, we have

Ωeven/odd(λ, z) = ∆even/odd(z)
(
I+Πeven/odd(z)λ+O

(
λ2
))
ρ
σ3/2
0 e−πiσ3/4

× 1√
2

[
i −1
1 −i

]
eρ0σ3 , λ → 0, (7.67)

where O
(
λ2
)
represents an asymptotic series at the origin λ = 0 which is similarly term-by-term

differentiable. Notice that we can now relate the limiting formula from Lemma 7.10 to Ωeven/odd

using definitions (7.62) and (7.60) to find that

R̂
even/odd
11 (0, z) + R̂

even/odd
21 (0, z)− R̂

even/odd
12 (0, z)− R̂

even/odd
22 (0, z)

=

√
π

4µn
eπi/4eπiµn

e−πi/2ρ0
2

[(
H

(2)
−1−2µn

(
e−πi/2ρ0

)
+H

(2)
1−2µn

(
e−πi/2ρ0

))
Ω
even/odd
21 (λ, z)

−
(
H

(1)
2µn−1

(
e−πi/2ρ0

)
+H

(1)
2µn+1

(
e−πi/2ρ0

))
Ω
even/odd
22 (λ, z)

]
λ=0

.

Then, using (7.67) and (7.59) yields

lim
n→∞

n even/odd

un
(
n−1z

)
= U even/odd(z) := − 1

2z∆
even/odd
21 (z)2

.

To extract the monodromy parameters of U(z) from Ω(λ, z), we notice that it solves
Riemann–Hilbert Problem 5.1 with

t∞1 = t00 = −2 cos(2πµn) = −
(
e21 +

1

e21

)
, (7.68)
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and

C0∞ =

[
1 e2πiµn

−e2πiµn −1

]
·Veven/odd ·

[
eπiµn eπiµn

−e3πiµn −e−πiµn

]−1

. (7.69)

Since µn and Veven/odd depend only on the parity of n (see (6.8), (7.53), respectively), and
e1 = e1,n = eπiµn (see Remark 6.3), it follows that (7.68)–(7.69) depend only on the parity of n.
Recalling the formulæ for yi in Section 5.4, one immediately arrives at formulæ (1.20)–(1.22).

8 Small x asymptotics and proof of Proposition 1.5

Inspired by [33], see also [22, Theorem 3.2], the goal of this section is to compute the asymptotics
as x → 0 of the Bäcklund iterates un(x) for fixed n and, by evaluating at n = 0, arriving
at the asymptotic behavior of a generic solution of PIII(D6) in this limit. Observe that the
matrices Ξ

(6)
n (x) and ∆

(6)
n (x) defined in (6.5) and (6.4), respectively, can be expressed in terms

of Qn(λ, x) as follows:

Ξ(6)
n (x) = An(x) + lim

λ→∞
λ(Qn(λ, x)− I)− 1

2
ixσ3, ∆(6)

n (x) = Qn(0, x).

Using (6.6) then gives

un(x) =
−iAn,12(x)− i lim

λ→∞
λQn,12(λ, x)

Qn,11(0, x)Qn,12(0, x)
. (8.1)

Also, combining (7.18) and (7.21), we have

An,12(x) =
iµn

(
1− a2n

)

γnx2−2κn
(8.2)

in which all x-dependence is explicit. To analyze un(x) for small x it therefore remains to obtain
asymptotics of Qn(λ, x) as x → 0. To do this, let VQ denote the jump matrix (7.40). Then,
denoting the off-diagonal constant matrix

On := Jne
σ3
2

[
0 −βn

β−1
n 0

]
J−1
−n, (8.3)

we arrive at

VQ(λ, x) = λ
σ3/2xκnσ3DnM(ixλ;κn, µn)OnM

(
−ixλ−1;κ−n, µn

)−1

×D−1
−nx

−κ−nσ3

(
− 1

λ

)−σ3/2

e−3σ3
0 , |λ| = 1,

where matrices Dn, M are defined in (7.24) and (7.31), respectively. To consider the limit
x → 0, we start with the Whittaker matrix M(ixλ;κn, µn). Using [38, equation (13.14.6)], we
obtain

Mκ,µ(z) = z
1
2
+µ

(
1− κ

1 + 2µ
z +O

(
z2
))

, z → 0.

Therefore, using the definition (7.31) of M(Z;κ, µ) we have

(−ixλ)σ3/2M(ixλ;κn, µn)(−ixλ)−µnσ3

=


κn − 1

2 − µn κn − 1
2 + µn

1 1


+O(λx) =: M∞(λx),
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in the limit x → 0 uniformly for |λ| = 1. Similarly, in the same limit,
(
ixλ−1

)σ3/2M
(
−ixλ−1;κ−n, µ−n

)(
ixλ−1

)−µ−nσ3

=

[
κ−n − 1

2 − µ−n κ−n − 1
2 + µ−n

1 1

]
+O

(
xλ−1

)

=: M0

(
xλ−1

)
= M0(0) +O

(
xλ−1

)
.

For x > 0, the functions λp ,
(
−λ−1

)p
, (−ixλ)p, and

(
ixλ−1

)p
(the latter two being principal

branches) all have the same branch cut, namely iR−. One has the following identities:

(−ixλ)p = e−iπp/2xpλp ,
(
ixλ−1

)p
= eiπp/2xpλ−p,

(
− λ−1

)p
= eiπpλ−p.

It follows that

λ
σ3/2xκnσ3DnM(ixλ;κn, µn) = x(κn− 1

2
)σ3eiπσ3/4DnM∞(λx)xµnσ3e−iπµnσ3/2λµnσ3 ,

and

M
(
−ixλ−1;κ−n, µ−n

)−1
D−1

−nx
−κ−nσ3

(
− 1

λ

)−σ3/2

= e−iπµ−nσ3/2x−µ−nσ3λ
µ−nσ3M0

(
xλ−1

)−1
e−iπσ3/4D−1

−nx
( 1
2
−κ−n)σ3 .

Because On is off-diagonal, the central factors in VQ(λ, x) simplify as follows:

xµnσ3e−
1
2
iπµnσ3λµnσ3One

− 1
2
iπµnσ3x−µnσ3λµnσ3 = Onx

−2µnσ3 .

Consequently, we have

VQ(λ, x) = x(κn− 1
2
)σ3eiπσ3/4Dn ·M∞(λx) ·Onx

−2µnσ3

×M0

(
xλ−1

)−1
e−iπσ3/4D−1

−nx
( 1
2
−κ−n)σ3e−3σ3

0 . (8.4)

The matrix VQ(λ, x) does not possess a finite limit as x → 0 due to the factors x(κn− 1
2
)σ3 ,

x(
1
2
−κ−n)σ3 ; this can be handled by introducing the following transformation. Let ς := λx and

Q̃n(ς, x) := D−1
n e−

1
4
iπσ3x(

1
2
−κn)σ3

×





Qn(
ς
x , x)x

(− 1
2
+κn)σ3e

1
4
iπσ3Dn, |ς| > 1,

Qn(
ς
x , x)VQ( ςx , x)e

3σ3
0 x(κ−n− 1

2
)σ3D−ne

1
4
iπσ3

×M0(0)x
2µnσ3O−1

n M∞(ς)−1, |x| < |ς| < 1,

Qn(
ς
x , x)e

3σ3
0 x(κ−n− 1

2
)σ3D−ne

1
4
iπσ3M0(0)x

2µnσ3O−1
n M∞(ς)−1, |ς| < |x|.

(8.5)

It follows that Q̃n is analytic as a function of ς for ς ∈ C \ {|ς| = 1} and satisfies

lim
ς→∞

Q̃n(ς, x) = I.

Furthermore, on the circle |ς| = 1, the jump condition Q̃n,+(ς, x) = Q̃n,−(ς, x)VQ̃
(ς, x) holds,

where the jump contour has counterclockwise orientation, and

V
Q̃
(ς, x) := D−1

n e−πiσ3/4x(
1
2
−κn)σ3VQ

(
ς

x
, x

)
e3σ3
0 x(κ−n− 1

2
)σ3eπiσ3/4

×D−nM0(0)x
2µnσ3O−1

n M−1
∞ (ς).

Using (8.4) immediately yields

V
Q̃
(ς, x) = M∞(ς)Onx

−2µnσ3M0

(
x2ς−1

)−1
M0(0)x

2µnσ3O−1
n M∞(ς)−1.

Therefore, Q̃n(ς, x) solves the following Riemann–Hilbert problem.
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Riemann–Hilbert Problem 8.1. Fix generic monodromy parameters (e1, e2), and x ∈ C.
Seek a 2× 2 matrix function ς 7→ Q̃n(ς, x) with the following properties:

� Analyticity: Q̃n(ς, x) is an analytic function of ς for |ς| ̸= 1.

� Jump condition: Q̃n(ς, x) takes analytic boundary values on the unit circle from the interior
and exterior, denoted Q̃n,+(ς, x) and Q̃n,−(ς, x) for |ς| = 1 respectively, and they are related
by

Q̃n,+(ς, x) = Q̃n,−(ς, x)M∞(ς)Onx
−2µnσ3M0

(
x2ς−1

)−1
M0(0)x

2µnσ3O−1
n M∞(ς)−1.

� Normalization: Q̃n(ς, x) → I as ς → ∞.

The jump V
Q̃

has a limit as x → 0, uniformly for |λ| = 1 for |Reµn| < 1
2 , and satisfies the

estimate

V
Q̃
(ς, x) = I+O

(
x2−|4Reµn|).

By the standard theory of small-norm Riemann–Hilbert problems, we arrive at

Q̃n(ς, x) = I+O
(
x2−|4Reµn|) as x → 0

uniformly for ς sufficiently small, and

lim
ς→∞

ς
(
Q̃n(ς, x)− I

)
= lim

ς→∞
ς
(
Q̃n(ς, 0)− I

)
+O

(
x2−|4Reµn|) = O

(
x2−|4Reµn|).

We can now use the above estimate and expressions (8.1) and (8.2) to compute the asymptotic
behavior of un(x) as x → 0. To this end, note that by (8.5) and the definition of Dn and ς,

lim
λ→∞

λQn,12(λ, x) = − 1

µnγn
x2κn−2 lim

ς→∞
ςQ̃n,12(ς, x), |ς| > 1,

and so

lim
λ→∞

λQn,12(λ, x) = O
(
x2κn−|4Reµn|), x → 0. (8.6)

Likewise, (8.5) gives

Qn,11(0, x)Qn,12(0, x)

= −i
D2

n,11

4µ2
nD−n,11D−n,22





O2
n,21

(
κn − 1

2 + µn

)2(
κ−n − 1

2 + µn

)
x2κn−1−4µn

+O
(
x2κn−|4Reµn|

)
, Reµn > 0,

O2
n,12

(
κn − 1

2 − µn

)2(
κ−n − 1

2 − µn

)
x2κn−1+4µn

+O
(
x2κn−|4Reµn|

)
, Reµn < 0.

(8.7)

Using (8.6), (8.7) in (8.1) yields

un(x) =
4iµ3

n

(
1− a2n

)
D−n,11D−n,22

γnD2
n,11O

2
n,21

(
κn − 1

2 + µn

)2(
κ−n − 1

2 + µn

)x4µn−1
(
1 +O

(
xδ
))

as x → 0,

when Reµn > 0 and

un(x) =
4iµ3

n

(
1− a2n

)
D−n,11D−n,22

γnD2
n,11O

2
n,12

(
κn − 1

2 − µn

)2(
κ−n − 1

2 − µn

)x−4µn−1
(
1 +O

(
xδ
))

as x → 0,
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when Reµn < 0, where δ = min(1, 2 − |4Re(µn)|) in both cases. Using (8.3), (7.39), (7.35),
(7.27), (7.24), and (7.10) gives the expression9

un(x) = −Γ(1− 2ϵnµn)
2Γ
(
−n

2 + ϵnµn − Θ0
2

)
Γ
(
n
2 + ϵnµn − Θ∞

2 + 1
)

Γ(2ϵnµn)2Γ
(
−n

2 − ϵnµn − Θ0
2 + 1

)
Γ
(
n
2 − ϵnµn − Θ∞

2 + 1
)x4ϵnµn−1

×
(
1 +O(xδ)

)





e20e
2
2e

2
∞
(
e20 − e21

)(
e21 − e2∞

)
(
e20e

2
1 − 1

)2 , Reµn > 0,

(
e20e

2
1 − 1

)2

e20e
2
2e

2
∞
(
e20 − e21

)(
e21 − e2∞

) , Reµn < 0,

(8.8)

where ϵn = sgn(Reµn). The concerned reader may note that the leading coefficient in (8.8)
is finite due to the genericity conditions on (e1, e2) (see the beginning of Section 7). Indeed,
assumption (i) guarantees that 2µn ̸∈ Z, condition (ii) requires e1e2 ̸= 0, and condition (iii)
guarantees that

n

2
± µn +

Θ0

2
̸∈ Z and

n

2
± µn +

Θ∞
2

̸∈ Z.

Evaluating the above at n = 0 yields (1.24) and finishes the proof of Proposition 1.5.
One notable application of this is to the family of rational solutions of Painlevé-III already dis-

cussed at the end of Section 4.2. This corresponds to the choice m = Θ0 = Θ∞−1 and µ0 = 1/4.
It follows from (8.8) that un(x;m) has a well-defined value at x = 0 which is given by (2.20),
(2.21) in the case where n is even or odd, respectively. We can verify that these values are con-
sistent with (8.8) by noting that e1, e2, e

2
0, e

2
∞ are invariant under an even increment n 7→ n+2,

and so we have the general formulæ

u2k+2(0)

u2k(0)
=

(2k + 2µ2k+2 +Θ0)(2k + 2µ2k+2 + 1−Θ∞)

(2 + 2k − 2µ2k +Θ0)(2 + 2k − 2µ2k −Θ∞)
,

u2k+1(0)

u2k−1(0)
=

(2k − 1 + 2µ2k+1 +Θ0)(2k + 1 + 2µ2k+1 −Θ∞)

(2k + 1− 2µ2k−1 +Θ0)(+2k + 1− 2µ2k−1 −Θ∞)
.

Plugging in the specialized values of the parameters and using the known values of u0(0;m),
u1(0;m) yields the equality of the expression in (8.8) with the product formulæ (2.20)–(2.21).

9 Alternative Riemann–Hilbert problem for Painlevé-III(D8)

9.1 Fabry-type transformation and existence of R̂even/odd(λ, z)

The Lax pair (5.25) is unusual in that its coefficient matrices have non-diagonalizable leading
terms at both of its singular points λ = 0 and λ = ∞, i.e., the coefficients of λ0 and λ−2

in (5.24) are not diagonalizable. To deduce the existence of the matrix functions Ωeven/odd(λ, z)
and R̂even/odd(λ, z), we identify this Lax pair with ones appearing in the literature by considering
the following Fabry-type transformation

S(ξ, z) :=
1√
2

[
−i 1
−1 i

]
(2z)−σ3/4ξ−σ3/2

×





Ω
(
ξ2e

iπ
2 , z
)
, −π

2 < Arg(ξ) < π
2 ,

Ω
(
ξ2e−

3πi
2 , z

)
(−iσ2),

π
2 < Arg(ξ) < π,

Ω
(
ξ2e

5πi
2 , z

)
iσ2, −π < Arg(ξ) < −π

2 ,

(9.1)

9The case Re(µn) = 0 can be treated similarly, and produces a leading term that is a combination of both
leading terms, which we omit for brevity.
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b 0

S∞
1

(
S0
0
)−1

S0
0

(
S∞
1
)−1

C0∞

−σ2C0∞σ2

Figure 11. The jump contour and matrices for S̃, where S∞
1 , S0

0 are as in (5.15) and C0∞ is in (7.69).

when |ξ| > 1, and

S(ξ, z) :=
1√
2

[
−i 1
−1 i

]
(2z)−σ3/4ξ−σ3/2 ·





Ω
(
ξ2e

iπ
2 , z
)
, −π

2 < Arg(ξ) < π
2 ,

Ω
(
ξ2e−

3πi
2 , z

)
iσ2,

π
2 < Arg(ξ) < π,

Ω
(
ξ2e

5πi
2 , z

)
(−iσ2), −π < Arg(ξ) < −π

2 ,

(9.2)

when |ξ| < 1. Denoting

K :=
1√
2

[
i −1
1 −i

]
(9.3)

and using expansions (7.66), (7.67) (note the branch choices in (7.49), (7.50)) one can directly
check that

S(ξ, z) = K−1

(
I+

[
0 0

(2z)1/2Ξ
(8)
21 (z) 0

]
1

iξ
+

[
Ξ
(8)
11 (z) 0

0 Ξ
(8)
22 (z)

]
1

iξ2
+O

(
ξ−3
)
)
Kei(2z)

1/2ξσ3 ,

as ξ → ∞, and

S(ξ, z) = K−1




[
∆

(8)
11 (z) 0
0 0

]
1

ξ
+


 0

∆
(8)
12 (z)

(2z)1/2

(2z)1/2∆
(8)
21 (z) 0




+

[
f(z) 0

0 ∆
(8)
22 (z)

]
ξ +O

(
ξ2
)

 e−

iπ
4
σ3Ke(2z)

1/2ξ−1σ3 ,

as ξ → 0, where f(z) := i
(
(∆11Π11)(z) + (∆12Π21)(z)

)
; this partly works due to the identity

Kσ2 = −σ3K. (9.4)

Furthermore, one can directly verify that the jump relations (7.63)–(7.65) translate to the jumps
shown in Figure 11, where C0∞ is as in (7.69). The jump matrices satisfy two cyclic relations
about the nonsingular self-intersection points of the jump contour, namely,

about ξ = +i: C−1
0∞S∞

1 (iσ2)C0∞(iσ2)
(
S0
0

)−1
= I,

about ξ = −i :
[
(iσ2)C0∞(iσ2)

]−1 (
S0
0

)−1
C0∞S∞

1 = I.
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Observe that the matrix S(ξ, z) possesses the following useful symmetry:

S(ξ, z) = σ2

{
−S(−ξ, z)σ2, |ξ| < 1,

S(−ξ, z)σ2, |ξ| > 1.
(9.5)

This result also uses the identity (9.4). Using this symmetry, it can be checked that the Fabry
transformation (9.1)–(9.2) is invertible with

Ω(λ) = ρσ3/2
∞ (λ, z)KS

(√
−iλ

)
, (9.6)

where all roots are principal branches.
While the singular behavior of S(ξ, z) at ξ = 0 is concerning, the fact that the leading

coefficient is a singular matrix allows us to handle this problem by letting

S̃(ξ, z) =

(
I− 1

ξ
T(z)

)
S(ξ, z), (9.7)

where

T(z) = K−1



0

∆
(8)
11 (z)

(2z)1/2∆
(8)
21 (z)

0 0


K. (9.8)

Since the prefactor is analytic in C \ {0}, the jumps of S̃ are unchanged. As for the asymptotic
behavior, as ξ → ∞

S̃(ξ, z) =


I+K−1




0 − ∆
(8)
11 (z)

(2z)1/2∆
(8)
21 (z)

−i(2z)1/2Ξ
(8)
21 (z) 0


K

1

ξ
+O

(
ξ−2
)


 ei(2z)

1/2ξσ3 ,

and as ξ → 0

S̃(ξ, z) =


K−1




0 − 1

(2z)1/2∆
(8)
21 (z)

(2z)1/2∆
(8)
21 (z) 0


 e−

iπ
4
σ3K+O(ξ)


 e(2z)

1/2ξ−1σ3 .

Remark 9.1. Noting that

det


K−1




0 − 1

(2z)1/2∆
(8)
21 (z)

(2z)1/2∆
(8)
21 (z) 0


 e−

iπ
4
σ3K


 = 1,

one can carry out a computation similar to the one in Section 5.3 to arrive at a pair of differential
equations analogous to (5.25), but with diagonalizable leading matrices at the two singular points
at ξ = 0,∞; this system appears in [33, Chapter 2] and [14], for example. Since we do not make
use of this Lax pair, we omit the calculation.

Using (9.4), it follows that

I− 1

ξ
T(z) = σ2

(
I+

1

ξ
T(z)

)
σ2,
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b 0

Ŝ∞
1

Ŝ0
0

Ŝ0
0

Ŝ∞
1

Ĉ0∞σ1Ĉ0∞σ1

Figure 12. The jump contour and matrices for Ŝ, where the jump matrices are as in (9.10).

which implies that matrix S̃(ξ, z) also satisfies the symmetry (9.5). To simplify this symmetry,
let

Ŝ(ξ, z) := e−πiσ3/4

{
S̃(ξ, z)eπiσ3/4, |ξ| > 1,

S̃(ξ, z)e−πiσ3/4, |ξ| < 1.
(9.9)

Then, Ŝ(ξ, z) solves the following Riemann–Hilbert problem.

Riemann–Hilbert Problem 9.2. Let (y1, y2, y3) ∈ C3 be the monodromy data corresponding
to U(z) given in (1.20)–(1.22), and fix z ∈ C. Seek a 2×2 matrix function ξ 7→ Ŝ(ξ, z) satisfying
the following properties:

� Analyticity: Ŝ(ξ, z) is an analytic function of ξ for |ξ| ̸= 1.

� Jump condition: Ŝ(ξ, z) takes analytic boundary values on the unit circle from the interior
and exterior, denoted Ŝ+(ξ, z) and Ŝ−(ξ, z) for |ξ| = 1 respectively, and they are related
by

Ŝ+(ξ, z) = Ŝ−(ξ, z)JŜ
(ξ),

where J
Ŝ
(ξ) is shown in Figure 12 and

Ĉ0∞ := eπiσ3/4C0∞eπiσ3/4, Ŝ∞
1 := e−πiσ3/4S∞

1 eπiσ3/4 = eπiσ3/4(S∞
1 )−1e−πiσ3/4,

Ŝ0
0 := eπiσ3/4S0

0e
−πiσ3/4 = e−πiσ3/4

(
S0
0

)−1
eπiσ3/4. (9.10)

� Normalization:

Ŝ(ξ, z) =
(
I+ Ξ̂(8)(z)ξ−1 +O

(
ξ−2
))
ei(2z)

1/2ξσ3 as ξ → ∞, (9.11)

and

Ŝ(ξ, z) = ∆̂(8)(z)
(
I+ Π̂(z)ξ +O

(
ξ2
))
e(2z)

1/2ξ−1σ3 as ξ → 0, (9.12)

where ∆̂(8)(z) may be written in terms of entries of ∆(8)(z) and K.
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Now, the matrix Ŝ(ξ, z) satisfies the symmetry

σ1Ŝ(−ξ, z)σ1 = Ŝ(ξ, z).

Furthermore, it was shown in [33, Theorem 4] that matrix Ŝ(ξ, z) exists for all z outside of
a discrete set Σ and is a meromorphic function of z in C \ Σ. Since the transformations used
to arrive to Ŝ(ξ, z) from R̂(λ, z) and Ω(λ, z) are invertible, we deduce the existence of matrix
functions satisfying Riemann–Hilbert Problems 7.9 and 5.1.

It was shown in [39] that Σ coincides with the set of zeros of the τ -function associated to
the Riemann–Hilbert problem. According to [23] the expression for the logarithmic derivative
of the τ -function associated to Riemann–Hilbert Problem 9.2 is given by

d

dz
ln(τ(z)) = − 1√

2z

(
Tr
(
Π̂(z)σ3

)
+ iTr

(
Ξ̂(8)(z)σ3

))
. (9.13)

After a long symbolic computation using the transformations (9.1), (9.2), (9.7), and (9.9), we
get the following result. The Lax pair (5.1)–(5.2) is gauge equivalent to

∂Ŝ

∂ξ
(ξ, z) = Λ̂(8)(ξ, z)Ŝ(ξ, z),

∂Ŝ

∂z
(ξ, z) = Ẑ(ξ, z)Ŝ(ξ, z),

where

Λ̂(8)(ξ, z) = i(2z)1/2σ3 +
1

ξ

zU ′(z)

2U(z)
σ1 +

i

ξ2

(
z

2

)1/2(
U(z)− 1

U(z)

)
σ3

+
1

ξ2

(
z

2

)1/2(
U(z) +

1

U(z)

)
σ2,

and

Ẑ(ξ, z) =
iξ

(2z)1/2
σ3 +

U ′(z)

4U(z)
σ1 −

i

2ξ

1

(2z)1/2

(
U(z)− 1

U(z)

)
σ3

− 1

2ξ

1

(2z)1/2

(
U(z) +

1

U(z)

)
σ2.

Similarly, the coefficients in (9.11)–(9.12) have the following expressions

∆̂(8)(z) =
(
e−iπ/4U(z)1/2

)σ1 ,

Ξ̂(8)(z) = i

(
z

2

)1/2
(
zU ′(z)2

8U(z)2
− U(z) +

1

U(z)

)
σ3 −

(
z

2

)1/2 U ′(z)

4U(z)
σ2,

Π̂(z) = −
(
z

2

)1/2
(
zU ′(z)2

8U(z)2
− U(z) +

1

U(z)

)
σ3 + i

(
z

2

)1/2 U ′(z)

4U(z)
σ2. (9.14)

In our computation we expressed W (z), X(z), and V (z) in terms of U(z) and U ′(z) using the
identities (5.3)–(5.4) and the first equation in (5.5). Plugging (9.14) into (9.13) we get

d

dz
ln(τ(z)) =

zU ′(z)2

4U(z)2
− 2U(z) +

2

U(z)
.

Differentiating once again, we have

d2

dz2
ln(τ(z)) = −1

4

(
d

dz
ln(U(z))

)2

. (9.15)

Now we see from (9.15) that the set Σ of zeros of the τ -function coincides precisely with the
union of poles and zeros of the function U(z).
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9.2 Relationship between U even, Uodd

To complete the proof of Theorem 1.4, we must show that Uodd(z) = −1/U even(z). One can
already observe that this should be the case by checking that the leading behavior predicted
in Theorem 1.7 satisfies the involution, but we now present a proof on the level of Riemann–
Hilbert problems. First, note that if one chooses the square root in (7.53) in such a way
that Veven = iσ3V

odd, it follows from (7.69) that10

Codd
0∞ = σ3C

even
0∞ σ3.

This, in particular, implies the symmetry

S̃odd(λ, z) = σ3S̃
even(λ, z)σ3,

and, in view of (9.6), we have

Ωodd(λ, z) = ρσ3/2
∞ (λ, z)K

(
I+

1√
−iλ

Teven(z)

)
σ3S̃

even
(√

−iλ, z
)
σ3. (9.16)

Recalling (7.49), (9.3), (9.8), and the identity 2iU(z)X(z) = ∆
(8)
11 (z)/∆

(8)
21 (z), see (5.8), we

have Ωodd(λ, z) = G(λ, z)Ωeven(λ, z), where

G(λ, z) := ρσ3/2
∞ (λ, z)K

(
I+

1√
−iλ

Teven(z)

)
σ3

(
I+

1√
−iλ

Teven(z)

)
ρ−σ3/2
∞ (λ, z)

=
1

ρ∞(λ, z)

[
2U even(z)Xeven(z) −4i(U even(z)Xeven(z))2

−i −2U even(z)Xeven(z)

]

+ ρ∞(λ, z)

[
0 i
0 0

]
. (9.17)

To deduce the relationship between U even, Uodd, we now recall that Ωeven/odd satisfy the Lax
pair (5.25). Transforming Ωeven as in the right-hand side of (9.16) induces a gauge transfor-
mation of the λ-equation and we have that Ωodd satisfies two equations; the first is the one in
(5.25) and the second is

∂Ωodd

∂λ
(λ, z) = Λ̃(λ, z)Ωodd(λ, z),

where

Λ̃(λ, z) =
∂G

∂λ
(λ, z)G−1(λ, z) +G(λ, z)Λeven(λ, z)G−1(λ, z).

Using (9.17) and (5.3), we see that

Λ̃(λ, z) =

[
0 iz
0 0

]

+
1

4λ

[
2− V even(z) + 8iU even(z)Xeven(z) F even(z)

2 −2 + V even(z)− 8iU even(z)Xeven(z)

]

− 1

λ2

[
(U even(z))2Xeven(z) 2i(U even(z))3(Xeven(z))2

iU even(z)/2 −(U even(z))2Xeven(z)

]
,

10One can check that making the other choice of the square root yields the same connection matrix but with
the opposite sign, and so it follows from Remark 5.2 that this choice is immaterial.
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where

F even(z) := 4iU even(z)Xeven(z)
(
V even(z) + 6U even(z)Xeven(z)− 2iU even(z)

)
− 4z

U even(z)
.

Since det(Ωodd) = 1, it follows that Λ̃(λ, z) = Λodd(λ, z) and we arrive at identities relating
all the potentials U even/odd(z), V even/odd(z), W even/odd(z), Xeven/odd(z); comparing the (2,1)
entries of the coefficient of λ−2 yields the desired relation

U even/odd(z) = −1/Uodd/even(z).

9.3 Solutions of Suleimanov

Considering the limit of even Bäcklund iterates when µ = 1/4 yields a particularly symmetric
solution of Painlevé-III(D8). The corresponding monodromy data are the following:

S0
0 = S∞

1 = I, and C0∞ = (iσ2)C0∞(iσ2) =

[
−y2 y1
y1 y2

]
.

In this case, we have that y3 = 0. This is, for example, the situation when considering rational
solutions of Painlevé-III as outlined in Section 4.5.

Remark 9.3. In this setting and up to a rescaling of the z and ξ variables, Riemann–Hilbert
Problem 9.2 is the same Riemann–Hilbert problem as in [11, Section 13.1], which corresponds
to solutions of the sine-Gordon reduction of Painlevé-III

d2w

dt2
+

1

t

dw

dt
+ sinw(t) = 0. (9.18)

This is partly due to the parameters y1, y2 satisfying the condition y21 + y22 + 1 = 0 (i.e.,
detC0∞ = 1), and is to be expected since equation (9.18) is equivalent to (1.3) and their solutions
are related via the formula

U(z) = ie−iw(±e3πi/44
√
2z). (9.19)

We can also mention that real-valued (for real z) solutions of (9.18) are singled out by condi-
tion (9.20) below. We use identity (9.19) taking the minus sign to formulate Theorem 1.7. Since
this connection will not be used further, we do not elaborate on it.

We end this discussion by noting yet another interesting connection to certain highly sym-
metric solutions of PIII(D8) which appear in the work of Suleimanov [40] on nonlinear optics,
and later were found in the context of the focusing nonlinear Schrödinger equation [1, 2]. More
precisely, note that Riemann–Hilbert Problem 9.2 (and the Riemann–Hilbert problem satisfied
by S̃(ξ, z)) agrees with [1, Riemann–Hilbert Problem 4] up to an appropriate rescaling of z, ξ
in the special case when y1, y2 are chosen such that

σ2

[
−y2 y1
y1 y2

]
σ2 =

[
−y2 y1
y1 y2

]
⇔ y1 = −y1 and y2 = −y2. (9.20)

This imposes conditions on e0, e2, e∞, which can be written out explicitly in the case of the
rational solutions of Painlevé-III. Namely, in this case

y1 =
ieiπm√
1 + e2πim

, y2 =
i√

1 + e2πim
, y3 = 0.

These satisfy the symmetry conditions above exactly when m ∈ iR+ Z.
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