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Abstract. The third Painlevé equation in its generic form, often referred to as Painlevé-
III(Dg), is given by
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Starting from a generic initial solution ug(z) corresponding to parameters «, 3, denoted as
the triple (uo(z), a, 8), we apply an explicit Backlund transformation to generate a family
of solutions (un(x), + 4n, 8 + 4n) indexed by n € N. We study the large n behavior
of the solutions (un (), + 4n, + 4n) under the scaling z = z/n in two different ways:
(a) analyzing the convergence properties of series solutions to the equation, and (b) using
a Riemann-Hilbert representation of the solution u,(z/n). Our main result is a proof that
the limit of solutions w, (z/n) exists and is given by a solution of the degenerate Painlevé-I11
equation, known as Painlevé-III(Dyg),
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A notable application of our result is to rational solutions of Painlevé-III(Dg), which are
constructed using the seed solution (1,4m, —4m) where m € C\ (Z + %) and can be written
as a particular ratio of Umemura polynomials. We identify the limiting solution in terms
of both its initial condition at z = 0 when it is well defined, and by its monodromy data in
the general case. Furthermore, as a consequence of our analysis, we deduce the asymptotic
behavior of generic solutions of Painlevé-III, both Dg and Dg at z = 0. We also deduce the
large n behavior of the Umemura polynomials in a neighborhood of z = 0.

Key words: Painlevé-IIT equation; Riemann—Hilbert analysis; Umemura polynomials; large-
parameter asymptotics
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1 Introduction

This paper is a study of the confluence of solutions of the generic Painlevé-III equation to
solutions of its parameter-free degeneration. The six Painlevé equations and their solutions,
often referred to as Painlevé transcendents, have been the subject of intense study. This is
largely motivated by the fact that Painlevé transcendents are generically transcendental, and
yet appear in various applications in integrable systems, integrable probability, and random
matrix theory to name a few.

1.1 Backlund transformations and rational solutions of Painlevé-111

All Painlevé equations but the first are actually families of differential equations indexed by
complex parameters appearing as coefficients. However, certain solutions corresponding to dif-
ferent parameters can be related via Bdcklund transformations. For example, consider our main
object of study, the generic Painlevé III equation, known as PIII(Dg):

2
d%_l(du) 1du+au2+6+43
x dx

4
- === — . 1.1
dx? o \dz W *feC (1.1)

In [17], Gromak discovered that the transformation

2zu/ () + dzu(r)? + 4o — Bu(x) — 2u(x)
uw(z)(2zu/ (z) + dzu(x)? 4+ 4o + au(z) + 2u(x))

u(x) — a(x) = (1.2)

mapped solutions of (1.1) with parameters (o, 3) to solutions of (1.1) with parameters (« + 4,
B +4). With this one can construct from a given seed solution (ug, , 3) a family of solutions
(un, a+4n, f+4n) by iterating transformation (1.2). The paper [32] contains a survey of families
of solutions of (1.1) constructed using this and other Béacklund transformations. A notable family
of solutions constructed in this manner is a sequence of rational solutions u = u, (z; m) obtained
from the seed function ug(z) = 1 and parameters & = —f = 4m. This family of solutions has
been numerically and analytically explored in [5], and many conjectures were formulated there.
While some of these were later resolved in the sequel [4], some conjectures remained open, see [5,
Conjectures 4 and 5]. Conjecture 5 is concerned with the behavior of u,(z;m) near the singular
point z = 0. As was done in [5], writing

z = nz, Un(z;m) :== up(x;m)

and considering large n for fixed m yields the differential equation

(’)(n_l).

dz2 U,

2, 1 (dU,\? 1dU, 4U2+4
= e +

dz z dz z
Formally taking the limit and denoting the limiting function U(z;m) yields the parameter-free
Painlevé-III equation, referred to as PIII(Ds),

dz

(1.3)
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The content of Conjecture 5 is that this convergence holds at the level of solutions, not just
equations.
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Figure 1. Left: the rational solution wjg(x;0.25). Right: the limiting solution U(z;0.25), where we
recall the notation z = nz for n = 10. All poles of u1o(z;0.25) are simple with residue 1/—1, indicated
in the plot with red/yellow circles. Likewise, all zeros of uig(x;0.25) are simple with derivative 2/—2,
indicated in the plot with pink/green squares. On the other hand, all poles and zeros of U(z;0.25) have
multiplicity 2 and are marked with red circles and green squares respectively.

1.2 Results

To begin with, we prove Conjecture 5 from [5] in this work; to be more precise we establish the
following theorem.

Theorem 1.1. Fizm € C\ (Z+ %) and let uy,(xz;m) be the family of rational solutions described
above. There exists a unique solution U(z) = U(z;m) of the Painlevé-III(Dg) equation (1.3)
analytic at the origin with U(0;m) = tan (%(m + %)) =% 0 such that

. z
jlggouzj <2_j;m> =U(z;m),
. z
jli)lglou2j+1 <m,m> =—1/U(z;m) (1.4)

for z ¢ ¥(m), where ¥(m) denotes the union of all poles and zeros of z — U(z;m). The
convergence is uniform on compact subsets of C\ X(m).

We illustrate this theorem in Figure 1. The pictures are made using the code from [10], which
was generously provided by the authors.

In Section 2, we study the Maclaurin series solutions of (1.1); this characterizes the limiting
solution of (1.3) via its initial conditions and produces a local version of Theorem 1.1, see
Theorem 2.1 and Corollary 2.4 below.

The rational solutions u,(x;m) are related to the so-called Umemura polynomials s, (z;m)
by the formula

Sn(zym — 1)sp—1(x;m)

up(z;m) = (1.5)

sn(xym)sp—1(z;m —1)
Indeed, a sequence of rational functions x — s, (x;m) is determined by the recurrence relation
Sn+1 (LIJ; m)
(42 + 2m + 1)sp(z;m)? — 8], (z;m)sp(x;m) — (s} (x5 m)sp(@;m) — s, (x;m)?)

- 25p—1(xT;m) (1.6)

with initial conditions

s—i(z;m) =1, so(x;m) = 1. (1.7)
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It was shown in [8, 42] that the rational functions s,(z;m) are actually polynomials. In Sec-
tion 3, we use Corollary 2.4 to deduce asymptotics of the Umemura polynomials themselves. To
formulate our result, we need to introduce a certain Fredholm determinant; more precisely, let
K,: L?[0,7] — L?[0,7] denote the integral operator with the continuous Bessel kernel

_ VEn(ve)h(vy) = J(ve) Vil (Vi)
2(z —y)
For any A € C, let D)(r) be the Fredholm determinant

Dy(r) :=det(1 — AK,).

It is well known (see, e.g., [30, Chapter 24]) that the Fredholm determinant D) (r) is an entire
function of A. Since K, is a trace-class integral operator, one of several equivalent ways to
define D) (r) is via the Plemelj—Smithies formula

Di( —exp< ZTrKM) (1.8)

The traces in (1.8) have explicit expressions as iterated integrals
TrK! = /T KO, t)dt,
0
where
KW (z,y) = K(z,y) and KO (2,y) = /07" K (z, ) KD (¢, y)dt.

By re-scaling the integrals to bring the r-dependence to the integrand and observing that
Jo (\/:Ty) and /ryJ; (\/@) are both entire functions with respect to both z and y, we see
that Tr K¢ and Dy (r) can be extended to analytic functions of r in a neighborhood of r = 0,
and in fact Tr K% = O(r*) as r — 0, from which we obtain D,(0) = 1. We are now ready to
state our second theorem.

Theorem 1.2. Fiz m € C\ (Z + %) Then, there exists a small enough neighborhood of the
origin, G, such that the Umemura polynomials admit the following limits along the even and odd
subsequences:

. 52§ (2311 ;m) gz (Ulz;m)\ ™~ .
lim J2ATFD T e D 2 1.
faed $25(0;m) ¢ U(0;m) Am) (3212), (1.9)

N

and

] 82j—1(2ij§m)_ 9. (U(z;m) .
B ity ~ ) VP 999 Y

where A(m) = 1/(1 +e2”im), the square root and fractional powers denote the principal branches
taking the value 1 at z = 0, and the convergence is uniform for z € G. Furthermore, the values
of the Umemura polynomials at the origin have the leading asymptotics

232+J+ 2 pm 3 +a1 031219252 +2j

(Ceostmm)y
G(%+%)G(%—m)( mGE @) (L
4¢'(-1) ]2] —j+ 2ym +24e 3j2+j924? (cos(xm ))

o G+ P00 -HeC rHa(- )

in which G denotes the Barnes G-function and ¢ denotes the Riemann zeta function.

525(0;m) ~ V2me’

s2i—1(0;m Jj — 00, (1.12)
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In fact, one can check that the expressions on the right-hand side of (1.9) and (1.10) admit
analytic continuation from a neighborhood of z = 0 to the whole z-plane. Although it does not
follow from our proof, this suggests that the neighborhood G can be taken to be an arbitrary
bounded set.

Our analysis of series solutions in Section 2 points to a more general statement about the
coalescence of solutions of (1.1) to solutions of (1.3). The technical result leading to Theorem 1.1
by Maclaurin series (see Theorem 2.1 below) applies not only to rational solutions, but to all
sequences of solutions with initial conditions converging to finite, nonvanishing limits. This,
however, is a serious limitation since x = 0 is a singular point of Painlevé-111, and generic
solutions of (1.1) will be singular at this point and behave like u(x) ~ az?, |Re(p)| < 1. More
specifically, based on symbolic computation we expect the asymptotic expansion for solutions
of (1.1) in the form

oo k+1
u(x) ~ Z Z (bklx%ﬂm*l)p + ckl$2k+1+2lp) as x — 0.

k=0 [=0
To tackle this issue, we develop a second approach that avoids series expansions and instead
relies on the isomonodromy representation of the Painlevé transcendents. It was first discov-
ered by Garnier [13] and further explicated by Jimbo and Miwa in [24] that Painlevé equations
can be formulated as monodromy-preserving, or isomonodromic, deformations of correspond-
ing 2 x 2 first-order systems of differential equations. This allows one to characterize solutions
of a given Painlevé equation in terms of a 2 x 2 Riemann—Hilbert problem. Such a monodromy
representation was obtained for rational solutions of Painlevé-III(Dg) in [5]. From this point
of view, one can show that for fixed «a, € C, the solutions of (1.1) are parametrized by
triples (21,72, 23) € C3 on the cubic surface, known as the monodromy manifold, given by

T1To3 + T3 4+ T3 4 2o (e_im/4 - e_i”5/4) +z1(1— e_i“(o‘+ﬁ)/4) —eTmatA/A — 0. (1.13)

The exponential constants appearing as coefficients in (1.13) will appear in multiple equations,
making it convenient to introduce the notation

e i=e™/E L0 and ey i=ie ™8 L0 (1.14)

In Section 4, we reproduce the derivation of the cubic surface (1.13) carried out in [43] and
connect the quantities x; with other invariant quantities that appear in the Riemann—Hilbert
Problem 4.1 associated with PIII(Dg). In Section 5, we present an analogous parametrization
of solutions of the Dg degeneration (1.3) of PIII in terms of triples (y1,y2,y3) € C3 appearing
in the Riemann—Hilbert Problem 5.1 and satisfying

yiyays +yi + 45 +1=0. (1.15)

Away from its singular points, we parametrize points (x1,x2,x3) on the cubic surface (1.13)
using parameters ej, eg appearing naturally from the point of view of the Riemann—Hilbert
problem. In fact, e%, 61_2 are eigenvalues of a certain monodromy matrix for a circuit about the
origin for a linear system, see (4.1). The parameter e; appears in the connection matrix for the
same system, see (4.28). We call (ej, e2) monodromy parameters.

Definition 1.3 (see Section 4 for details). We say the monodromy parameters (e, es) are
generic if

(i) er # 1,
(ii) €1€92 7& 0,
(i) €? # eX? and € # eF2

Before moving on, we pause to make a few observations.
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e Condition (ii) implies that generic monodromy parameters are nonvanishing, hence we
may write

ep = ™ and ey = e, (1.16)

e Since e, efz are the essential quantities related to the complex parameter e; in our
parametrization, and the former are insensitive to a change in sign of e;, we may take e;
to be in the right half plane; in view of (1.16), this corresponds to —3 < Re(u) < 1. Note
that the choice of including the upper versus the lower endpoint of this range is arbitrary.

e Due to €2, e;? being eigenvalues of the same matrix (see (4.27) below), the parame-
ters p, —p correspond to the same solution of (1.1). While we could restrict to parameters
where Re(u) > 0 (say), we choose not to and in turn arrive at slightly simpler formulae;
see Remark 6.2 below.

e [t turns out that the parameter ez is determined up to a sign as well, see Remark 4.2
below. As such, we take it to be in the right half plane as well, or —% < Re(n) < %

With this in mind, we can now state a more general theorem.

Theorem 1.4. Let ug be the solution of (1.1) corresponding to monodromy data (o, 8, x1, %2, x3)
parametrized by generic monodromy parameters (e1, e2) using formule (consistent with (1.13))

e} (efese (efe, — 1) +edef — 1) ((edef — 1)2 + egese? (ef — i) (e2, — €3))

e edesel (1 - eded) (ef —1)° -

oy  \cicBedelo (ef — eb) + 1= efed) ((efef - 1)+ eededed (ef — ef) (efed— 1) (1.18)
ededed, (1 - 3ed) (ef — 1)’ |

v el 4 61% (1.19)

and let U(z) = U(z;y1,v2,y3) denote the solution of (1.3) with monodromy data (consistent
with (1.15))

. [ed — e% (1 — e%e% + e%e?e%ego (e% — ego))
— . 1.2
=1 \/ 1-— e%e% €0€1€2€00 (ego — 6%) (6‘1l 1) ’ (1.20)

2 2 1 — e2e2 2,222 (.2 _ 2
ey alladrgdasin o) 21
eger eoegeoo(eoo el)(el 1)

1
ys = —€f — —. (1.22)
€1

If uy, is the nth iterate of ug under transformation (1.2), then for z ¢ ¥(y1, y2,y3)
lim u2j(Z/2j) = U(Z; Y1, Y2, y3>7
j*)OO

Jll)lllo U2j+1(2/(2j + 1)) = —1/U(Z, y17y2>y3)7

where convergence is uniform on compact subsets of C\ X(y1,y2,ys) slit along Arg(z) = +=
and 3(y1,y2,y3) is the union of all poles and zeros of z — U(z;y1,Y2,Y3).

There is nothing fundamental about the exclusion of Arg(z) = +m; in fact, the Riemann—
Hilbert analysis below can be continued onto the universal cover of C\ {0} with a suitable
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Figure 2. Left: the solution uig(z) of (1.1) generated by ten iterations of (1.2) with seed wug(x) cor-
responding to monodromy data p = 0.23 + 0.39i (see (1.16)), e = —0.45 — 0.96i and o = 40.5 4 0.63i,
B = 40.98 4+ 0.591. Right: the limiting solution U(z) of (1.3). The labeling of poles and zeros is the same
as in Figure 1. Note that both u19(z) and U(z) are branched at the origin.

extension of the set X(y1,y2,ys3). Similar observations apply to Proposition 1.5 and Theorem 1.7
below.

We illustrate Theorem 1.4 for solutions that are not single-valued near the origin in Figure 2.
Note that while the point (21, x2,23) € C* on the monodromy manifold (1.13) only depends on
the squares of e1, ez, the point (y1, 72, y3) € C3 on the monodromy manifold (1.15) of the limiting
solution U(z;y1,y2,ys3) of (1.3) has a sign ambiguity in the coordinates y; and yo. However, if
either e; or ey changes sign, then the signs of y; and y» change together, and it turns out that
the triples (y1,¥2,y3) and (—y1, —y2,y3) both lie on the surface (1.15) together and correspond
to the same solution of (1.3); see Remark 5.2 below. Similarly, there is no need for us to specify
the sign of the square roots in (1.20)—(1.21) provided they are both taken to be the same. One
might expect a similar ambiguity to arise from the replacement of e} 61_2, since both are
eigenvalues of the same matrix, but it turns out that (1,22, x3) is invariant under this change
provided eg is appropriately modified, and (y1, 2, y3) remains invariant up to the sign ambiguity
described above, see Remark 6.2 below.

The proof of Theorem 1.4 is given in Section 7, and relies on Riemann—Hilbert analysis. The
idea of the proof is to use parametrices constructed out of confluent hypergeometric functions
near zero and infinity to reduce the setup to a Riemann-Hilbert Problem 7.5 on the circle.
After some additional transformations, the problem allows taking a large n limit which gives us
a Riemann-Hilbert Problem 7.9 with a jump on the circle in terms of Bessel functions. Further
transformations using parametrices constructed out of Bessel functions simplify the jump and we
arrive at a Riemann-Hilbert Problem 5.1 for Painlevé-III(Dg). In Section 9.1, we transform this
into another Riemann—Hilbert Problem 9.2 for (1.3) already known in the literature. It is worth
pointing out that even in the case of rational solutions, the Painlevé-III(Dg) Riemann-Hilbert
Problem 4.1 exhibits Stokes phenomenon near both singular points [5] and hence requires the
use of confluent hypergeometric parametrices to desingularize the problem before passing to the
limit.

While the formulee for y; are daunting, they drastically simplify in the case of the rational
solutions, where ug has monodromy data parametrized by

. 1— ieﬂim
a=—f3=4m, et = —e =™, el =1, eg = (/e 2mm__

1+ iemim’ (1.23)

see Section 4.5 for details. With parameters chosen as in (1.23), the genericity conditions in
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Definition 1.3 imply m € C\ (Z + 3). Then, we have
ieiﬂm i

Y= V1 1 o2mim T oo Y2 = V1 1 o2mm oI Y3

One can check that with these choices of «, 3, e1, and ey we have U(z;y1,y2,y3) = U(z;m), cf.
Theorems 1.1 and 1.4.

By further specializing U(z;m) to m € iR + Z, we arrive at highly symmetric solutions
of PIII(Dg) which have appeared in various works in nonlinear optics [40] and as a limiting
object of various families of solutions to the focusing nonlinear Schrodinger equation in different
regimes [1, 2]. Furthermore, these solutions can be identified with pure imaginary solutions of
the radial reduction of sine-Gordon equation, see, e.g., [11, Chapter 13]. It is interesting that
they are related to another limiting object appearing in the random matrix theory — the Bessel
kernel determinant. The explicit relation is described in Corollary 3.4 below.

=0.

A consequence of the analysis in Section 7 below is a description of the behavior near the
origin of solutions u(z) of (1.1) corresponding to generic monodromy parameters (ej, e2).

Proposition 1.5. Let u(x) be the solution of Painlevé-II1(Dg) equation associated to p,n € C
via the generic monodromy parameters given in (1.16) with —3 < Re(n) < 3. If0 < |Re(p)| < 3,
then it holds that

299 (.2  9N(.2 .2 €
y 6062600(60 61)(621 eoo) x45“_1(1+0(1‘5)) (1.24)
(eget —1)

as x — 0 with |Arg(z)| < m where § = min(1,2 — 4Re(p)) and € = sgn(Re(p)).

Proposition 1.5 appeared in [22, Theorem 3.2] and its derivation is given in [28] for an
equivalent, degenerate Painlevé-V equation. We present its proof using a Riemann—Hilbert
approach in Section 8, which follows the steps of the proof of Theorem 1.4. The case Re(u) =0
can be handled similarly, but we exclude it here because two distinct terms arise at the same
leading order resulting in a more complicated formula. From this formula one can see that
if Re(i1) = 0 the solution can exhibit sinusoidal oscillations with frequency diverging as z !
consistent with an essential singularity at the origin.

To apply Proposition 1.5 to the rational solutions (1.5), or more generally to the sequence
of Bécklund iterates starting from any seed solution of (1.1), requires knowledge of the corre-
sponding sequence of monodromy data. This is the content of the following proposition, which
we prove in Section 6.

Proposition 1.6. Let ug(x) be the solution of (1.1) with parameters (o, 8) and monodromy
data (p,n) (see (1.16)) with —% < Re(n),Re(n) < 3. Then, the Bicklund iterates un(z) are
parametrized by the following monodromy data

e%n _ o 2mitn ean = €2, eo.p = elT(atin)/8, eoop = ie~ITB+IN)/8,
where'
u, n € 27,
o, = . and e = sgn(Re(p)).
=5, N +1€ 2Z,

'To ensure —1/2 < Re(un) < 1/2, we set € = —1 in the case where Re(u) = 0.
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One notable application of Propositions 1.5 and 1.6 is the case corresponding to the rational
solutions of PIII(Dg) described above. In [8], the authors found a product formula for w,(0;m)
(see (2.19) in Section 2). Applying Propositions 1.5 and 1.6 to this case yields the closed-form
formula

(1.25)

Another observation is that the expression on the right-hand side of (1.24) in Proposition 1.5
evaluated at the n-dependent monodromy data from Proposition 1.6 and at argument z = =
has a finite limit along even and odd subsequences of n. The limiting expressions relate to the

behavior of U(z;y1,y2,y3), which we can take from the literature:

Theorem 1.7 ([11, 20, 33]). Let U(z;y1,y2,y3) be the solution of the Painlevé-111(Dg) equa-
tion (1.3) associated to (y1,y2,y3) € C* parametrized by generic monodromy parameters (ey, e2)
using formule (1.20)—(1.22). Then, it holds that

VI ) e (ch — )\
R 77 N

as z — 0 with |Arg(z)| < 7.

We pause to note that coalescence between Painlevé equations has long been in the literature;
a coalescence diagram of all six Painlevé equations already appeared in Okamoto’s work [36],
and was later expanded on in [34]. Later, a geometric interpretation of the coalescence was given
in [6]. That being said, the above degenerations are carried out on the level of the differential
equation, so that given a solution of a Painlevé equation, one does not have a characterization
of the solution one arrives at under the coalescence procedure. Confluence on the level of
the solutions of the differential equation has also appeared in the literature; one of the most
interesting examples is the merging of regular singularities and corresponding creation of an
irregular singularity. This process was studied in the works [16, 29]. In the PhD thesis [18] the
confluence was studied in more detail in the cases Painlevé VI — Painlevé V and Painlevé V —
Painlevé II1(Dg). In the works [26, 27] the authors considered a transition from Painlevé 1T —
Painlevé I that is different in nature.

1.3 Overview of the paper

In Section 2, we describe the coalescence map u +> U in terms of initial conditions and prove
Theorem 1.1 using Maclaurin series of these solutions. We apply it to Umemura polynomials
in Section 3. In Sections 4 and 5, we describe the monodromy representations of PIII(Dg)
and PIII(Dg), respectively. In Section 6, we explain the Schlesinger transformations underlying
Gromak’s Bécklund transformation (1.2) and prove Proposition 1.6. In Section 7, we prove
Theorem 1.4 by Riemann—Hilbert methods. We recycle the same methodology to prove Propo-
sition 1.5 in Section 8. In Section 9.1, we perform a Fabry-type? transformation to the Painlevé-
III(Dg) Riemann—Hilbert problem naturally arising from our limit process to put it in more
canonical form and justify its solvability.

*Named after Eugene Fabry for his work in [9], see also [19, Chapter 17.53].
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2 Identifying the solution of the limiting Painlevé-III(Dg)
equation using Maclaurin series

The Painlevé-111(Dg) equation (1.1) for u,(z;a, ) implies the following equivalent differential
equation for Uy, (z; o, B) := un(z/n; a, B):

U UL o U2 B 5
U’ = (L _Zn, “Mm¥n 4 0 U3 n 21
n Un 2 + P + P +7”Z n + Unv ( )
where
« 4 4
Oy ::4+77 /BTL ::4+é7 'Yn = 725 671 = _72 (22)
n n n n

Note that for arbitrary @ € C and § € C fixed and n > 0 sufficiently large we have the following
crude inequalities:

lan| <5, |Bal <5, wml <1, 6] <1 (2.3)

We construct solutions of (2.1) analytic at z = 0 as follows. First multiply (2.1) through
by zUp,(z) to obtain

—2U U + 2(U)? = U UL + anUS + BuUp + Yn2Ut + 6,2 = 0. (2.4)

We substitute into (2.4) a power series

[e.9]
_ Z vp2, (2.5)
k=0

and express all products through the Cauchy product formula. The left-hand side of (2.4) is
then a formal power series in z, and assuming that vy # 0, the coefficient of 29 yields

U1 = /Bn + anvgv (26)

the coefficient of 2! yields

1
Vg = 1o [3anvgv1 + Bpur + 'ynvé + 5@, (2.7)

and for k > 2, the coefficient of z* yields

k k k—a
Uyl = k:+1 Z (k+1—2a)vqVpy1- a+anzzvavbvk a—b
a=0 b=0
k=1 k—1—a k—l—a—
+ Buvk + T Z z Vg UpUcVk—1—a—b—c | > k> 2. (2~8)
a=0 b=0 =0

We may omit the term with ¢ = 0 from the first sum on the right-hand side. Using

M<1 for a=0 k

E+1>1 d
Tz an (k+1)2 —
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along with the inequalities (2.3), the coefficients in the series (2.5) are subject to the inequalities

1
lo1] < 5(1+ [vol?), lva| < T |[15|U0| lu1] + 5lv1| + |vo|* + 1],
k k—a
[Ugs1] < Zlvallvkﬂ ol +5> ) " vallvpl[vk—a-s|
a=0 b=0
k—-1k—1—ak—1—a—b
+ 5|vg| + S Y lvallosllvellvr-1—a—b—l |, k>2. (2.9)

a=0 b=0 c=0

Now we define a sequence of positive numbers {Y}}7°, by taking Yo > 0 arbitrary and setting

T = 5(1 + %), (2.10)
Ty = 4T2 (15T + 5T+ Yo+ 1] = ’r2 (767G + 1007 + 26], (2.11)
k k—a
Tri1 = ZT Y- a+5ZZT oL h—ab
b=0

a=0
k—1k—1—ak—1—a—b
+5Tk+ ) YT Y htaboel,  k>2. (2.12)

Following [21, Proposition 1.1.1, p. 261], we construct an algebraic equation formally satisfied
by the power series

o
2)=> T (2.13)
k=0
We first rewrite the generic k£ > 2 equation in (2.12) in the equivalent form
kt1 k k—a
—3YoYpy1 + Z ToTpi1—a+5 Z Z ToTpYk—a—b
a=0 0 b=0
k—1k—1—ak—1—a—b
FETE Y Y D> TN eiabe=0, k>2. (2.14)
a=0 b=0 c=0

Comparing with (2.13), this is the coefficient of z* in the power series expansion about z = 0 of
the equation

T
3 °u+ u2+5u3+5u+zu4—0

More generally, since k > 2 holds in (2.14), these relations are consistent also with the equation

37,

A
U+ u2+5u3+5u+zu4 ~+B+Cz (2.15)

We now pick the constants A, B, C so that (2.15) is also consistent with (2.10)—(2.11) and
U0) = Ty in the series (2.13). Indeed, U(0) = Yy is equivalent to the following equation
obtained from the coefficient of z~! in (2.15):

Y3+ YE=A = A=-273.
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Then taking Y from (2.10), the constant term in (2.15) gives the equation
—3YoY 1 + 2T 1 + 5T + 59 =B = B = —5To(1+Y3) +5Y5+ 5T =0.
Finally, obtaining also Yo from (2.11), the coefficient of 2! in (2.15) is

=30 Yo + 2T Yo + T2 + 15 2T, + 571 + Vg =C —
C=—-"oY o+ YT+ 15T + 571 + Y

= —i (7674 + 100773 +26] +25(1 + T2)* + 7573(1 + T2) +25(1 + T3) + T}

87
= 824 + 12577 + -
The formal series (2.13) with the recurrence relations (2.10)—(2.12) is therefore consistent with

the algebraic equation (rewriting (2.15) with the above expressions for A, B, C):
87
—3Told +U* + 203 = z[ <82T3 + 12572 + 2) 2 — 55U — 5U — U, (2.16)

However, it is a straightforward application of the implicit function theorem to observe that
equation (2.16) has a unique solution & = U(z) analytic at z = 0 with #(0) = Yo > 0 (this
condition guarantees that the root & = Y of the quadratic on the left-hand side of (2.16) is
simple). This proves that the formal series (2.13) with coefficients determined from (2.10)—(2.12)
has a positive radius of convergence for each given value Yo > 0.

Theorem 2.1. Fiz o € C and 5 € C and let {Uy(z; o, B)}22, be a sequence of solutions of (2.1)
that are analytic at the origin z = 0 and suppose that

lim U (0; v, ) = voo0 = Veo 0, ) # 0.

Then there exists a radius p > 0 such that for all n sufficiently large Uy(z;«, 8) is ana-
lytic for |z| < p and such that U,(z;a, ) = Uso(z;0, ) as n — oo uniformly for |z| < p,
where U(z) = U (z; i, B) is the unique solution of the Painlevé-1I1(Dg) equation (1.3) that is
analytic at the origin with Us(0; o, 8) = Voo 0-

Proof. Let {v,}72, denote the power series coefficients of U, (z;a, 3) as in (2.5). Define Ty
by Yo > 2|vs0| (say), and obtain the subsequent coefficients {Y}}2, via (2.10)-(2.12). Com-
paring (2.9)-(2.12) then shows that for all n sufficiently large, |v, x| < Yj holds for all
k=0,1,2,.... For each fixed k¥ = 0,1,2,..., the recurrence relations (2.6)—(2.8) together
with the limit v, 0 — Voo,0 show that v, tends to a limiting value vy} as n — oo, with
|Usoe| < YTk. The convergence of Uy,(z;a, ) to a limiting analytic function U (z;r, ) with
Uso(0; @, B) = Uoo0(cx, B) then follows by dominated convergence. That the limiting analytic
function U (z; cv, B) is a solution of (1.3) follows from passing to the limit in each term of (2.1)
using (2.2). That this solution is the unique analytic solution of (1.3) with the specified value
at z = 0 then follows from passing to the limit in the recurrence relations (2.6)—(2.8). [

Now we apply this result to the rational solutions w,(x;m) of equation (1.1), corresponding
to « = —f =4m. To this end, we point out that in [8], the authors studied the Umemura
polynomials s, (z;m) at x = 0, and we begin by recalling one of their results.

Lemma 2.2 ([8]). Set y :=m+ 3 and write ¢, (y) := s,(0;m). If n = 2k is even, then

por(y) =y (y* — 1) H y? — (24) ‘(y2—(2j+1)2)k_j, k=1,2,3,...,
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while if n = 2k — 1 s odd, then
k

ooe1(y) = o) [ 0° — 25 - 1?7, k=1,2,3,.... (2.17)

j=1

It follows from two identities above that also
Gori1(y) = dok(y) -y - H y* = (24)? k=1,2,3,.... (2.18)

Using (1.5) and s,(0;m — 1) = ¢, (m — %) one has

®n (m - %)¢n—1 (m +
®n (m + %)¢n—1 (m -
Therefore, from (2.17) one gets that

un,(0;m) =

1
2
%). (2.19)
2)

k m_% 2
k 12 27 _1)2 [{(1_(2]—1>>
—(2j ) J
u2k0m:H ——— =5 — (2.20)
]:1 (27 1) 1 m+§
}1 _<2j—1>
Similarly, from (2.18) one gets
k 1\ 2
m=—3
mm(o-m)m%ﬁ(mé)?(wmiH( 5 >> (221)
T e )T s ﬁ( ()
—1 2j

Using the infinite product formulae (see [38, equations (4.22.1)—(4.22.2)])

00 22 22
sin(z) = le_[l (1 - W) , cos(x 1;[ ( 2]‘”)

we get the following result.

Lemma 2.3. Assume that m € C\ (Z+ 3). Then

s 1 s 1
klm u2k(0,m)—tan<2 <m—|—2>>, klm uok+1(0;m) cot(2 <m+2>>

We then apply Theorem 2.1 and obtain the following Corollary, which completes the local
proof of Theorem 1.1.

Corollary 2.4. Let m € C\ (Z + §), and let U = U(z;m) denote the unique solution of the
Painlevé-1II(Ds) equation (1.3) that is analytic at the origin with U(0;m) = tan (3 (m + 3)).
Then for all z in a neighborhood of the origin, we have

I - U(z;m) I : !

im ug | =—;m ) =U(z;m im wu ——m | =— .

koo 20\ 2k T e M\ 2k 1 U(z;m)

Note that the equation (1.3) is invariant under the Zg-Bécklund transformation U(z) +—

—U(2)7 Y, so the even/odd subsequences of rational solutions both tend to related solutions of
the same equation.
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3 Asymptotic behavior of Umemura polynomials

In this section, we obtain asymptotic results about the Umemura polynomials s, (x;m) and, as
a consequence, particular 2j — k determinants (see (3.30) below).

3.1 Painlevé-III tau functions, the Toda lattice,
and expressing s, (x;m) in terms of w,1(x;m)

As a first step, we would like to obtain an expression of the Umemura polynomials s, (x;m) in
terms of the rational Painlevé-III solutions themselves. We follow closely the works [12, 37]. We
introduce the Hamiltonian H,, = H,(x;m) via the equation

2 Hy (w;m) = 2pp (25m) 1w (;m)? + po(2;m) (22 — 22y (2;m)?
+ (14 2m = 2n)un(z;m)) — (2m + 1)zu,(z;m), (3.1)

where the momentum, p, = p,(z;m), is given by

z du, = T 2m —2n+1

St L I S 3.2
Pn 2 de 2 2u2 duy, (3:2)
In other words, the canonical system
—_— = and —_— ==
dz Opy, dx Ou,

is equivalent to the definition (3.2) of p,, and the PIII(Dg) equation (1.1) for u = u,(x; m) where
a=4(n+m) and g = 4(n —m).
The tau function 7, (z;m) can be defined up to a constant of integration by the relation

d 1

(i esm)) = Hoasm) 4 Sz m)pn (i m). (33)
We would like to fix the constant in this definition by choosing a path of integration going
to x = oo in the sector |Arg(z)| < m. To this end, it was shown in [5] that the rational
functions w,(z;m) behave at infinity as w,(z;m) = 1+ O(z™!). In fact, using this in the
Painlevé-111(Dg) equation (1.1) with a = 4(n + m) and 8 = 4(n — m) gives the more refined
asymptotics

n n@2m+n) n(4m?®+4mn+1)

. =1 — _
tn(;m) 2 82 323

+ (’)(x74) as T — 00,
which, together with (3.2) implies that the right-hand side of (3.3) satisfies

1
Hy(x;m) + Eun(a:, m)pn(z;m)

2 1)(2m —4 142 1-—
:_2m_1_(m+ )(2m n+3)+( +2m)(1 —n)n
8 82

(142m)3(n—1)n
3213

+0(z™%) as & — 00. (3.4)

Now, every pole zg # 0 of u,(z;m) is simple with residue 43, and moreover directly from (1.1),
we find that

1 1 1
un(z;m) = +-(x —20) ' = =— (n+m=* =) + Oz — x0), T — Tp.
2 2z0 2
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Similarly, all zeros zo # 0 of u,(x; m) are simple, with u),(xo;m) = £2, and again from (1.1) we
have

un(x;m) = £2(x — 29) + ;0 <:|:; +m — n> (z — 20)® + O((z — 20)?), T — Tp.
These expansions can be differentiated with respect to x to obtain corresponding expansions
of pn(x;m) via (3.2) and then of Hy,(x;m) via (3.1). These expansions show that the only
possible singularities 29 # 0 of the right-hand side of (3.3) are simple poles of residue 1 that
occur at simple zeros of u,, (z; m) with u/,(zo; m) = —2. Furthermore, if m ¢ Z+2, then u, (z; m)
is analytic and nonzero at z = 0, and it follows that the right-hand side of (3.3) has a simple
pole at the origin with residue —% (4(m—n+1)?—1). Therefore, arbitrarily fixing an integration
constant, the tau function 7,,(z;m) then can be defined for m € Z + § and |Arg(z)| < 7 by

_ _ (2m+1)(2m—4n+3)
To(z;m) =e @mA+Dz,, 8

X exp <— /:O (Hn(y;m) n Un (Y; mLPn(y;M)
(2m + 1)(2872—4n+3)>dy>’ s

+2m+1+

where the power function denotes the principal branch, the path of integration lies in the sec-
tor |Arg(y)| < 7 avoiding all poles of the meromorphic integrand, and then the integral is
independent of path modulo 27i. It then follows from (3.4) that 7,,(z;m) admits the expansion

o _ (@m+1)(2m—4n+3)
To(z;m) =e @m+1)z 5. 8

m n—1)n 2m +1)%2(n? —1)(n — 2)n
X<1+(2 #00=n @m0 - e -2) w(x_g))’

as x — 00, |Arg(z)| <, (3.6)

and that 7, (x; m)x(4(m_"+1)2_1)/8 extends to a neighborhood of x = 0 as an analytic nonvanish-
ing function. From the point of view of the function 7, (x; m) the recurrence (1.6), which defines
the Umemura polynomials, is equivalent to the Toda equation. More precisely, if we define the
function

2

ho(2;m) = Hy(z:m) + Un(@m)palzim) o, 1 (3.7)
x x
then using Gromak’s Bécklund transformation (1.2) with u = up(z;m), @ = upyi(x;m),

and a = 4(n +m), f = 4(n —m), we can check that h,, satisfies the identity

2up (3 m)pr(x;m) N 2n+1

hps1(z;m) — hyp(x;m) = — (3.8)

x x
Similarly, using the inverse of Gromak’s transformation (1.2):

220 (z) — 4zi(z)? — 4o + (B + 4)i(z) — 24(z)
a(x) - (200 (z) — dza(z)? — 4z — (o + 4)a(z) + 24a(z))’

w(z) = u(z) =

in which u(z) solves (1.1) and @(x) solves the same equation with parameters («, 3) replaced by
(44,8 +4), one can check the identity

2up(x;m)pr(z;m)  2m+1 1—2n
hp—1(xz;m) — hyp(x;m) = — " - + P g (3.9)
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Combining (3.8) and (3.9), we get

4u, (x; n (] 2(n — 1-2
B (z;m) + hp—1(x;m) — 2hy, (z;m) = — n (3 )P (3 1) + (n—m) + n

x T T —pp(z;m)’
Differentiating (3.7), we can notice that
ot (4 (hlim) ) = a5 70) + o1 (53 ) — 2o 0)
o @ g @hal@im)) | = hoga(wim n—1(z;m n(z;m).

Given any K, (m) € C, if we now define the function

—T

Tn(z;m) = K,(m)e 2aU"QTn(x;m),

d
then h,(x;m) = P In 7, (z;m) and we see that 7,,(x; m) satisfies the Toda equation
T

d a4 . Tot1(x;m)Tp_1(z;m)
Tt In 7, (z;m) = Cp(m)

3.10
Fu(;m)? (3.10)
with some constants {Cy(m)}52, depending on the {K,(m)} 2 ,. We now choose the con-
stants K, (m) so as to have Cy,(m) = 1. To this end, using the detailed asymptotics (3.6), one
can check that the leading term of both sides of (3.10) as x — oo is proportional to 22 and
equating those coefficients under the assumption that C,(m) = 1 yields the equation

Kny1(m)Kn—1(m)
K, (m)? ’

4 =

of which we choose a particular solution K, (m) = (2i)"*, which yields the expression

Tn(z;m) = (2i)”26712$”27'n(x;m). (3.11)

Now if we put

. 2__ (n+1)(n+2) 2 4m?—4n’—8mn—16n—9 ,
) = iy ) et ity

Sn(x;m

then it follows from (3.10) with C,(m) = 1 that s,(x;m) satisfies the Umemura recurrence
relation (1.6). Moreover, using

_8:U+4m—2

ug(z;m) =1 and ui(x;m) = Sz L dm 2

shows that the integrand in the exponent of 7o(z;m) and 71 (z;m) vanishes identically, from
which it follows that the initial conditions (1.7) are satisfied as well. Since the recurrence relation
and initial conditions together have a unique solution, using (3.5) and (3.11), the Umemura
polynomials are given by

n(n+1) 4(m7n)271
Sp(z;m) =2 o e(Zmt1)z . 8 Tnt1(z;m)
o0 . .
— (20)"% exp <_ / (Hn+1 () 4 UL m)Pn s (yi )
Y
X

+om+ 1+ (2m+1)(28ﬂ;_4n_1)>dy>. (3.12)
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This formula achieves the goal of explicitly expressing s, (z;m) in terms of w,(x;m). Since

() = Ho )+~ (s m)p ()

Alm—n+1)2 -1
= — (m n8+ ) +0(1) as x — 0,
x

we can also use analyticity of s,(z;m) at the origin and the first line of (3.12) to write the
alternative expression

sn(z;m) = 5,(0;m)e® DT exp </ <Hn+1(y; m) + Un+1(y; mLan(y; m)
0
4(m—n)? -1

+ 8y>dy>. (3.13)

We could equally well have used (3.13) to derive the Toda equation instead of (3.12), but it is
nice to have two different formulse for Umemura polynomials.

3.2 The ratio s,(x;m)/s,(0;m) for large n and small =

The representation (3.13) can be combined with Theorem 1.1 to obtain a limiting formula
for sp(x;m)/sp(0;m) as n — oo and x — 0 at related rates. First, we note that with the
notation Uy, (z;m) := u,(z/n;m), from (3.2) we obtain

Zom) = "
Pr © 2U,(z;m)
2U] (z;m) 1\ 1 z 1
14 (Ze\mm) 1) 2 (zm) — ——— ) |
<l ot ) (e - i) )
Next, note that by Theorem 2.1 we can differentiate the limit in Theorem 1.1 for z near the
origin, and hence for small z and n even we have Uy, (z;m) — U(z;m) and U/ (z;m) — U'(z;m),
while for n odd we have instead U, (z;m) — —U(z;m)~! and U} (z;m) — U(z;m)~2U"(z;m).
Therefore, we have the following limit:
x:z/n)

4m—n+1)2 -1
8z

1 2
lim — <Hn(x,m) + —up(x;m)py(z;m) +
X

n—o0o N
2U' (z;m)?

- 8U (z;m)? * 4U (z;m)

U'(z;m) CU(zm) + U(Zl; ot

where we take the plus sign for n even and the minus sign for n odd, and the convergence is
uniform for |z| sufficiently small. It follows that if x = z/(n+1) in (3.13), by the corresponding
substitution y — y/(n + 1)

s2-1(553m) 2 (YU (ym)® | U'(y;m) , 1
oo o (0m) </0 <8U(y; mE T m) YT T m))dy>’ (314

Sos #;m z 1(n)- 2 1(n)-
lim 23(2]+1 ) — exp (/ <yU (y;m) B U'(y;m) _Uyim) +
0

1
j=ee 52j(0;m) 8U(y;m)?>  4U(y;m) U(y;m)>dy>7 (3.15)

with the limits being uniform for |z| sufficiently small. To reduce the right-hand side in each
case to the corresponding formula presented in Theorem 1.2 we refer to Section 3.4 below.
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3.3 Asymptotic behavior of s,,(0; m) for large n

We now compute the large n asymptotics of s, (0;m) = ¢, (m + %) First we write the formula
for ¢ (y) from Lemma 2.2 in terms of Gamma functions

ﬁ I'(y + 25)
————, neven,
o My +1-2j)
r -
Tly+2-1)
i F(y+2—2 )

Since we are interested in asymptotics for large n, we need to use the reflection formula for the
Gamma function [38, equation (5.5.3)] in the denominator:

'Ew\:

<_m§jy)> ' L2j+y)T(25 —v), n eve,
¢n(y) = . L‘H];jl
<Sm§rﬂy)> 2 [[T@i—1+yr@i-1-y), nodd

\ Jj=1

Next, we use the Gamma duplication formula [38, equation (5.5.5)] and get

(sm ﬁ
2
Y 1y 1y
T ry;—= )0 —+= )T - — =
1 ( 2) (] 2) (j+2+2) (]+2 2), n even,

n+tl

()-8 (-32) (-2 v

Now we can rewrite ¢, (y) in terms of the Barnes G-function:

_sin(my) \ 2 2%
2

G ( n+2+y)G ( n+gfy)G(n+3+y)G(n+gfy)

,:M

7N\
)
.
B
—~
S oo,
l\')
[\]
3
V]
L

T even,

Pn(y) = . (ni HE1-4GE+HG(E-Y)
<51n(7ry)> 2 ) n? 1
2
GGG () G(Y)

G+ PG~ e+ DEH-)

Using the large argument asymptotics of the Barnes G-function [38, equation (5.17.5)], we get

no 2 efT*f(—sin(ﬁy))%2%n7%+%ﬁe%2%7%
Ay pe-neGrpaE-n
¢n(y)N n24n 302 n ntl n 1 ,v2 11 42
n_ 2 e_T_E(sin(wy))TQEn_ﬁ"‘TeéZﬁ_T dd
no
VRAG(L+ )G - DG+ DE(]

\
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as n — oo, where A = e12¢'(=1) ig Glaisher’s constant [38, equation (5.17.6)]. Recalling
y =m+ %, we complete the proof of the formulae (1.11)—(1.12).

3.4 Connection with the Fredholm determinant of the Bessel kernel

We have already seen how the PIII(Dg) equation (1.3) can be obtained from the PIII(Dg)
equation (1.1) by confluence. There exists another, less known relation between the two equa-
tions — namely, a quadratic transformation mapping the solutions of PIII(Dg) to solutions of
PIII(Dg) with special parameter values. Moreover, for precisely this parameter choice the rel-
evant PIII(Dg) admits a family of transcendental analytic solutions that can be expressed in
terms of Fredholm determinants of the continuous Bessel kernel. Under quadratic transforma-
tions, they are mapped to solutions of PIII(Dg) analytic at z = 0. This allows one to give yet
another characterization of the PIII(Dg) transcendent describing the large-order asymptotics of
the rational PIII(Dg) solutions.
Indeed, let U(z) be an arbitrary solution of the PIII(Dg) equation (1.3). It is then straight-
forward to check that the function o(r) defined by
2771 ( N2
o(r) = Z(U](gl — 2z (U(z) - U@) —diz, =32z, (3.16)

satisfies the o-form of a particular PIII(Dg) equation, namely,?
" 2 / / /
(ro”(r))” = o'(r)(4d’(r) + 1) (o (r) — ra’(r)). (3.17)
Indeed, letting ¢(t) := o(4t) 4 t transforms equation (3.17) to

(t"(£))* = 4/ (O) (' (1) = D(s(t) — /(1))

The latter appears in [22, equation (3.13)] and [35, equation (Eyy)]. These relate to (1.1) via
the following transformations; letting

tg”(t)
2 (t)(<' () = 1)

yields (a special case of) the so-called “prime” version of Painlevé-II1

dg _1(dg)* 1dg 1, 1
Atz ¢ \ dt t

q(t) == —

Next, letting t = 22 and ¢(t) = zu(z) yields (1.1) with parameters o = 0 and 3 = 4. Combining
the transformations U(z) — o(r) — ¢(t) — q(t) — u(x) yields an explicit formula for u(x) in
terms of U(z):

1d 1+iU(%)

Correcting for a typo,* this is equivalent to [2, equation (112)]. Note that if U(2) is a solution
of (1.3) that is analytic at z = 0 with U(0) # 0, and hence also from (1.3) U’(0) = 4(1+U(0)?),

30Observe that our definition of ¢ differs from that of [41] by a negative sign.
“The relevant equation in [2] should be corrected to read

o [dif g (X757 L—w] _1

Here W(X) is related to a solution U(z) of (1.3) by W(X) = iU (iX).
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then (3.16) implies that o(r) is analytic at 7 = 0 with ¢(0) = 0, and, in fact,

am=<%<wm—U%Q ;>+Q;<wm+U%Jaﬂ+owm r— 0. (3.18)

Also, differentiating (3.16) and using (1.3) to eliminate U”(z) yields the relation

—16i0’(r) = U(z) —

ng) r = 32iz, (3.19)
which can be regarded as an algebraic equation expressing U(z) in terms of o’(32iz).

Conversely, any solution o(r) of (3.17) different from an affine function ar + b can be
mapped to a pair of solutions U(z) of PIII(Dg) related by the Zo Bécklund transformation
U(z) — —1/U(z) with the help of the formula (3.19). To see this, one first uses (3.17) to
explicitly express o(r) in terms of its derivatives and r, and then differentiates the resulting ex-
pression with respect to r. Each term of the resulting equation has a common factor of ro”(r).
Hence if o(r) is non-affine, one may cancel this factor, and then o’(r), ¢”(r), and ¢”'(r) can
be eliminated from the reduced equation using (3.19) and its derivatives. This implies that
either U(2)? 4+ 1 =0 or U(z) is a solution of (1.3), and the latter admits precisely the constant
solutions U(z) = +i so we may conclude that any meromorphic function U(z) obtained from
a non-affine solution of (3.17) via (3.19) is a solution of (1.3).

Now recall a classical result of Tracy and Widom [41, equation (1.21) with a = 0].

Proposition 3.1. The logarithmic derivative

o(ry=r (%“ In D) (r) (3.20)

satisfies the o-PIII(Dg) equation (3.17).
The Bessel kernel can be equivalently written as
m+n 2 2(m+n-+1)

1
K(z,y) :‘11/0 Jo(Vzz)Jo(y/yz)dz = Z Z x™y". (3.21)

*(m+n+1)

mOnO

The first of these identities follows from the easily verified differentiation formula

(f—z (2K (zz,yz2)) = iJO(\/JE)JO(\/?TZ)’

whereas the second one is obtained by substituting into the integral expression the standard series
representation of Jy(-) [38, equation (10.2.2)]. Using (1.8) along with representation (3.21), then
enables one to compute the traces of powers of K, in the form of a series in r. It yields

)\e { T/4)Zk 1Mk

In Dy (r Z 530 Z Z , nogr1 =n1.  (3.22)

n1=0 Nop= O (nk + N1 + 1)

Expansions of such form are known for Fredholm determinants appearing in random matrix
theory, see [31, Section 20.5]. Let us record explicitly the few first terms of (3.22):

AT r r2 573 A2r2 r 4172
mD\(r) = — [T 1- "
n DA(r) 4( s 06 9m0 32 1 1152

)\33 )\44
! (1—&“)— . +0(r?), r—0,

192 8 1024
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which implies that the Bessel determinant solution of (3.17) guaranteed by Proposition 3.1 has
the asymptotics

o(r) =T InD)(r) = 1 + 16()\ A)r? + 128( 2X° +3X° = \)r
—36A% 4+ 723 — 41)2 + 5))r4
+ ( )r +0(r®), r—0o. (3.23)

9216

This expression is of course consistent with the differential equation (3.17).
On the other hand, if U(z) = U(z;m) is the particular solution of (1.3) relevant to Theo-
rem 1.1, which for m € C\ (Z + 1) is analytic at the origin with

U(0;m) = tan (g (m—i—;)) e,

then according to (3.18), the corresponding solution of (3.17) analytic at the origin satisfies

_ A(m) r? 3 = !
o(r) = — 4r+640082(m)+0(r), r= 00 Am) = o

(3.24)

Note that A(m) is necessarily finite for m € C\ (Z + 3) and there are only two values it never
takes for any m: A\(m) # 0,1. Also, the coefficient of 7? cannot vanish for any m € C. Now we
need the following result.

Proposition 3.2. Let 01(r) and o2(r) denote two non-affine solutions of (3.17) both analytic at
the origin and both satisfying oj(r) = —3Ar+O(r?) asr — 0 with A # 0,1. Then o1(r) = o2(r)
on a neighborhood of r = 0.

Proof. If o(r) = o12(r) is a solution of (3.17) analytic at the origin with o/(0) = —1 ), then it
has a locally-convergent Taylor series

)\ [o¢]
o(r) = " + Zskrk, Ir| < p
k=2

for some p > 0. Using this in the differential equation (3.17), from the coefficient of 72 one
obtains

1
453 — M= V)2 =0, (3.25)

whereas from the coefficient of r* for k > 3,

<4k52 - im - )\)> o

k—1 k—1
1
= Uk = O)spsp—rer — D (0= 1)k — L+ 1)(k — £+ 2)spsp—p12
kE—1
(=2 /=3
k—1£—1
S G D)k —e>sj+1se_jsk-z+l), k>3, (3.26)
=2 j=0
where on the right-hand side, s1 := —i)\. Now, (3.25) implies that either s, = 0 or so =

X1 = N) #0.
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Suppose first that so = 0. Then setting k¥ = 3 in (3.26) gives
1
—Z)\(l — )\)53 =0 = s3=0, (3.27)

since A # 0,1. We now use (3.27) as the base case for an inductive argument. Suppose
89 =83 =--- = s, = 0. Using (3.26) for the coefficient of 7**!, we obtain

1
—ZA(l —A)sg41 =0 = sp41 =0,

from which it follows that o(r) = —3Ar exactly. This is a contradiction, because o(r) is not
affine. Therefore, sy # 0.

Taking sg = 16)\(1 — A) # 0 as necessary, we note that in (3.26) for k > 3, s; appears only
on the left-hand side with coefficient

Ak — im N = %(k DA =) £0,

while the right-hand side only involves si,...,s;_1. Therefore, all subsequent coefficients
Sk, k>3 are uniquely determined by the recurrence, implying that o1(r) = oa(r). |

Remark 3.3. It is worth noting that Di(r) = e~"/4, for which o(r) defined by (3.20) is an
affine function. See [41].

Since the analytic solutions with expansions given in (3.23) and (3.24) have the same leading
term if A = A(m) # 0,1, and neither solution is an affine function, they coincide for small |r|.
Because the function U(z;m) is then determined up to the involution U — —U~! by (3.19), we
have proved the following result.

Corollary 3.4. Let m € C\ (Z + %) The function U(z;m) appearing in the asymptotics (1.4)
of Theorem 1.1 is related to the continuous Bessel kernel determinant by

1 1d d
Ulzzm)— ——=-2i—-—2z—1InD 2i
(z;m) 0Cem) i-s LA Am) (3212),

with A(m) = 1/(1 4 e*™™). In particular, the ezpansion of U(z;m) in powers of z can be read
off from the series representation (3.22).

Furthermore, using (3.17) and (3.20) shows that the integrand in (3.14), (3.15) is given by

U (z;m)? | U'(z;m)

8U (z;m)? * 4U(z;m) Ulzm) + U(z;m)
1 . . U(z;m) 1d . . U(z;m)
= —o(32 2it ——~=—-—1InD 2 21+ ———= 2
20(3 iz) + 2i W(em) ~ 2ds n Dy (m)(32i2) + 21 10 (2 m) (3.28)

and we get Theorem 1.2.

3.5 Connection with 25 — k determinants

On the other hand, the Umemura polynomials admit the following Wronskian determinant
representation [25]:

= 2k - pnae (175 2
k=1
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where for parameter a € C and index k € Z, L,E:a) (z) are generalized Laguerre polynomials

for k > 0, while L,(CO‘) (x) =0 for k < 0.

Expressions like that on the right-hand side are called Wronskian Appell polynomials in [3];
similar formulse hold for rational solutions of other Painlevé equations as well. Wronskian
determinants of generalized Laguerre polynomials were also studied in [7].

The generalized Laguerre polynomials admit the following integral representation [38, equa-
tion (18.10.8)]:

L~ —Zz

(@) _ €% ko 2%e d 2
L, (x) 5 /lzx:sz 2 z (3.29)

for |Arg(z)| < m (analytically continuable to z € C) where ¢ > 0 is small enough so that the
branch cut z < 0 is outside the contour of integration. Making the transformation
yT

Z:ZII‘F?

in (3.29) yields

1 yz dy

L (x) = % /I | y iy +2)f e
y|l=e

2miy

We denote

d
w(y;z,m) = (y + 2)m+%eyx and wg(z,m) = / Yy *w(y; z,m) v
ly=1 27y

Using this notation, we obtain
n n2
Sp(z;m) = [H(% - 1)!!] 2 det(waj—k (2, m))] k- (3.30)
(=1

Similar “2j — k” determinants have appeared in various works in the literature, see, e.g., [15].
Denoting

D, (z;m) = det (w2jfk(x7 m))Zkzl )

it immediately follows from (3.15), (3.14) that in the limit 7 — oo,

(0: ) 2257 —2mj
D2j( ‘Z ;m>~82j(2.’m)
2j+1 (20— 1)

F(yU'ym)? Uy m) m 1
e </0 (8U(y;7n)2 4U(y;m) Ulsm) + U(y;m)> dy)

and

. 52j-1(0; m)22j2—2(m+1)j+m+%
@2]',1 (,m) ~ 251
L (20 =1l

FyUlym)? | Ullyim) 1
“Xp</o (8U<y;m>2+4U<y;m> vl ”U@;m))dy)‘
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To write the analog of Theorem 1.2 for D,,(x; m) we need to compute the asymptotic behavior
of [Tr_;(2k — 1)!Il. We use [38, equation (5.4.2)] to get

2n—1 n 3
n _n(n+l) 1 n_ n(n 1>G n4 3
[T -1 =n 225 Hr(£+2>:w—22 5 ¥
(=1 (=1 G(E)
2 2 2 1o
~nE R Rt agsie 1), n — 0.

Combining this with formulae (1.11), (1.12) and using (3.28), we get

z
> (g77)

both in the limit j — oco.

4 General monodromy data: Painlevé-I1I(Dg)

4.1 Lax pair for Painlevé-I11(Dg)

Following Jimbo and Miwa [24], we use the fact that each Painlevé equation can be recast as an
isomonodromic deformation condition for a 2 x 2 system of linear ODEs with rational coefficients.
The case of Painlevé-IIT (Dg) corresponds to the situation where the coefficient matrix for the
equation in the spectral variable, A, has exactly two poles on the Riemann sphere leading to
irregular singularities at A = 0 and A = 0o, at each of which the leading term is diagonalizable.
After some normalization, the differential equation can be written in the form?®

0w

where
(6) w1 -0k 2y | 1| iz 2ist 2is
AT 2) 9 73 + 2\ | 2v Oy 202 | —2it(st —x) —ix + 2ist|’ (4.2)

In this case, the deformation equation is

ow
where
A 110 g 1 iz — 2ist 2is
X(\w)=Zos+ 2|, 0] 2 [—2it(st —x) —iz+ 2ist|

SHenceforth, we use bold capital letters to denote matrices, with the only exceptions being the identity matrix,
denoted I and the Pauli matrices, denoted ox, k = 1,2, 3.
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In the expressions for A® () z) and X (), z), O is a complex parameter and s = s(z), t = t(z),
v =wv(x), y = y(x). The equations (4.1) and (4.3) constitute an over-determined system with
compatibility condition

oA 0X
_ (6) =
5 (A z) N (A z)+ [AY (N z),X(\, 2)] =0,

where [A(ﬁ), X] is the commutator. This boils down to the scalar equations

dy dv

— =2 o0y — = —2xt(st — - oo}

v s+ Oy T xt(st —x) — O

ds dt

— =(1-Ox)s —2ry +4 — = Ot — 2yt + 20. 4.4

z 7 (1 — Ox)s — 2zy + 4yst, T Ooct — 2yt* + 2v (4.4)
If we let

u(z) = — &) (4.5)

then it follows from (4.4) that

d
x d—u =22 — (1 — 204 )u + 4stu? — 2zu?,
x

which can be seen to be equivalent to (1.1) by taking another z-derivative and using (4.4) again,
after which the quantity

20 2yt 2
= 0t - O — L (st — ) + 2,
xr xr Xz

I(z) :

appears. However, from (4.4) it follows that I’(z) = 0, so denoting the constant value of I
by ©g, we arrive at (1.1) with parameters
o B

Oy =— Op=1-"=. 4.6

0 4’ 00 4 ( )

The constants O, O, can be naturally interpreted on the level of the 2 x 2 system (4.1),

which we now explore. For all the calculations that follow, we assume for simplicity that = > 0.
The system (4.1) admits formal solutions near the singular points®

W) 0 2) = (T+ EO (@)A1 + O(A72))e™o9/2)70=o/2 a5 A o0, (47)
and
O g ) = (A0 () + O(N))e T T w/2\00%/2ag \ 0, (4.8)

Here A(®)(z) is an (invertible) eigenvector matrix of the coefficient of A2 in (4.2), so the leading
term of A©)(2)"TAO) (X, 2)A©)(z) at X\ = 0 is diagonal.
For k = 1,2, 3, we define the Stokes sectors,
S — {XxeC: A > R, kr — 27 < Arg(\) < kr},
S,go) ={NeC: |\ <r, kr—2m < Arg()\) < kr}.

SHere, we use the standard notation f°3 := diag(f, fﬁl).
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It follows from the classical theory of linear systems that there exist canonical solutions \I!,(fO)
and \Il,(go) analytic for A € S ,(;o) and A € § ,io) respectively and determined uniquely by the asymp-
totic condition

vV =Y (Na),  aesY, ve{0,0}, k=123 (4.9)

formal

In these asymptotic conditions, the meaning of the power functions in (4.7) and (4.8) is deter-
mined from the range of Arg(\) in the definition of S ,(: . The canonical solutions in consecutive
Stokes sectors are related to one another by multiplication on the right with Stokes matrices,
ie.,

w0\ ) = 00 280, eV (0 2) = B0 2)S5, (4.10)

where for some Stokes multipliers s;)o’o eC,j=1,2,

00,0 1 STo’O 0,0 1 0

Likewise, by uniqueness and the different interpretation of the multi-valued powers in the formal
solutions on the otherwise identical sectors SYX)’O) and Séoo’o), we have the identities

(A 2) = B () e, WP () = w0 (e ), (412)
where, combining (1.14) with (4.6) gives

eg = eTO/2 ey, = elmO=/2, (4.13)

Canonical solutions in, say S,(COO) admit analytic continuation into S ,(€0) and since both canoni-
cal solutions solve (4.1) in the same domain, they must be related by multiplication on the right
by a constant connection matriz, which we define using

o0 2) = 1 (\2)CF,. (4.14)
TP (A, z) = B (A, 2)Cp,. (4.15)

The condition that the coefficients y, v, s, t in the matrix A (%) (A, x) depend on z as a solution
of (4.4) implies simultaneous solvability of (4.1) and (4.3), and the latter system implies that the
Stokes matrices and connection matrices are, like ©y and O, independent of . We show below
in Sections 4.3 and 4.6 that the four Stokes multipliers and the elements of the two connection
matrices are determined from just two essential monodromy parameters that we denote by ey
and es.

4.2 Riemann—Hilbert problem for Painlevé-I11(Dg)

Using the canonical solutions, we define the following sectionally-analytic function

‘Ijgoo)()\al‘)a [A| > 1 and Re(\) >0

U\, z) = ‘I’;OO)()\ax)a |A| > 1 and Re(\) <0,
’ ‘I’go)(A7x), Al <1 and Re(\) > 0,
‘IlgO)O‘ax)? ‘)\‘ <1 and Re()\) <0
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C-

(1%

s;°e?,§3

Figure 3. The jump contour L(® for ¥(\,z) and definition of Jg()\) when z > 0.

Then, it follows from the asymptotic conditions (4.9) and the relations (4.10)—(4.12) and (4.14)—
(4.15) that ¥ solves the following 2 x 2 Riemann-Hilbert problem. Let A, denote the branch
of the power function analytic in C \ iR_ with argument chosen so that

3
—g <argg(A) < % (4.16)

The notation reminds us that the branch cut of these functions is the contour carrying lower
triangular Stokes matrices.

Riemann—Hilbert Problem 4.1. Fix generic monodromy parameters (e1,es) determining the
Stokes and connection matrices, and x > 0. We seek a 2 x 2 matriz function X\ — ¥(\, )
satisfying:

o Analyticity: W(\, z) is analytic in C\ L®), where L) = {|\| = 1}UiR is the jump contour
shown in Figure 3.

o Jump condition: ®(\,z) has continuous boundary values on L'O\{0} from each component
of C\ LO) | which satisfy ® (X, z) = ®¥_(\, 2)Jg(N), where Ty () is as shown in Figure 3
and where the + (resp., —) subscript denotes a boundary value taken from the left (resp.,
right) of an arc of L(®),

o Normalization: ¥ satisfies the asymptotic conditions
(N z)=(I+ =20 (2)A 7 + (’)()\_2))eig‘/”\”i‘/2/\26("’03/2 as A — oo, (4.17)
and

T\ z) = (AO (@) + O(N))e A Toa/2)00%/2yg X 0, (4.18)

where A©) () is a matriz determined from ¥ (X, z) having unit determinant.

Observe that if ¥ solves Riemann—Hilbert Problem 4.1, then the following limit exists:

E(G) (IL‘) — lim )\[\Il()\, x)e—ix)\ag/Q)\goom/Q o ]I] ) (4.19)

A—00

Existence of a solution (A, z) to Riemann—Hilbert Problem 4.1 which is meromorphic in z on
a covering of the plane is well established; see, e.g., [11, Theorem 5.4]. Furthermore, it follows
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from the Riemann-Hilbert problem that det(¥(\;z)) = 1; hence £ (z) defined by (4.19) has
zero trace. The solution of the Painlevé-III( Dg) equation for the initial data that generated the
matrices for the inverse monodromy problem is given by

_ _1~§2)( ) 4.9
) T a0 420

where A(®), =) are as in (4.18), (4.19), respectively.

To study the direct monodromy problem and obtain the jump matrices given just the values
of u and v« at an initial point xg, it is necessary to introduce artificial initial values of the
auxiliary functions s, t, v, y at xp in way consistent with the definition (4.5) of u(z). Different
consistent choices lead to different jump matrices, but the jump matrices determine the same
function u(z) via (4.20). This symmetry is reflected at the level of W(\, z) by the conjugation
WA\ x) — 6773¥(\ x)0% for any 6 # 0. Another symmetry that also leaves w(z) invariant
but changes the jump matrices CZ_ is multiplication of W(\,z) on the right for [\| < 1 only
by a unit-determinant diagonal matrix. Therefore, having obtained the jump matrices for the
inverse monodromy problem via a direct monodromy calculation, after the fact we may introduce
an arbitrary transformation of W(\, z) of the form

WO\ z) = B, 2) = {g_ii;iggj lil o (4.21)
without changing u(x). This transformation modifies the Stokes matrices as follows:

S5 > 855 = 077085907 and  SY, > SY, 1= 47728 )y (4.22)
and it modifies the connection matrices as

ct — C 1= 67 73CE A5 (4.23)

4.3 Monodromy parameters (e, €2)

The cyclic products of the jump matrices for the inverse monodromy problem about the two
non-singular self-intersection points of the jump contour A = +i read

about A = +i: (Cy,) H(ST°) 1CL. . S) =
about A = —i: SFe273C{ €27 (89) ! (Cp) ' = L. (4.24)

We can use the second relation to explicitly write C - in terms of two Stokes matrices and the
other connection matrix:

Cl,, = ex273(S5°) 1 Cy S9ey 272 (4.25)

This identity is an analog of [22, equation (3.17)]. Under the condition that det C; = 1, we
immediately get that det CJ__ = 1. Furthermore, using (4.25) we eliminate C{_ from the first
equation of (4.24) to obtain the identity

(81)e6™ (85) " = (Co) ™ (ST) e (SF) ' Cone (4.26)
In other words, (S°)~te;273(S3°)~! and (S(l))_lega3 (Sg)_1 are similar unit-determinant ma-

trices. Note that this is merely reflective of the fact that both products are monodromy matrices,
possibly expressed in terms of different bases of fundamental solutions, for a simple circuit about
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the origin for solutions of the system (4.1). Let us assume that they have distinct eigenvalues
that we will denote efz. Then, both products are diagonalizable, so there exist unit-determinant

eigenvector matrices E* and E° such that

(S°)1ez273(SF)'E® = E®¢2™®  and  (S9) 'e2(SY) 'E0 = B0, (4.27)

o0

To specify the eigenvector matrices E>, E uniquely, we agree that their (2,2) entries are both
equal to 1.

Using (4.27) in (4.26) gives a homogeneous linear equation on C;__ that can be written in
commutator form as

(€77, (B%) 7' Ci.E"] = 0.

3

The diagonal matrix €2’ can be written in the form

1 _ 1 _
e%"?’:fﬂ—i—gag, f::i(e%—kelQ), g::i(e%—eﬂ).
Under the assumption e} # 1 we already invoked to obtain diagonalizability, g # 0 so the
commutator equation implies that (E*)~1C,, E is a diagonal unit-determinant matrix that
we may write in the form eJ°. Thus we have the identity

oo = E®e33 (E0) . (4.28)
Remark 4.2. Changing the sign of ey changes the sign of the connection matrix. This corre-
sponds to multiplication of the solution of Riemann—Hilbert Problem 4.1 by —1 inside of unit

disc. Looking at formula (4.20), we see that solution u(x) does not change after such transfor-
mation. Therefore, we can assume —%5 < Arg(ez) < 3.

Using (4.28) in (4.25) then gives the equivalent representations
Cl = €5273(S5°) T E™e5? (E°) 'S9ey 270 = SFPE®eg* (E0) ' (S9) . (4.29)

o0

4.4 Parametrization of Stokes multipliers and connection matrix

Taking the trace of (4.26), we get

1 1 1 899
2 2 00 (00,2 2 152
el + 5 =€t 5 tsisr e =€+ 5+ —5.

e] €5 €5 €5

It is clear that one can solve for the products s3°s3° and s{s) in terms of (e?,e%) and (ef,€e?)

respectively. Using the transformation (4.22), we can take a particular solution of this relation
and hence obtain the Stokes multipliers:

2 —e% 2 2 i 5
e8] oo —
—5 S5 =1—ejes, $] =
ef€5e €1

e

—O
8}

—

|
I}

=)

=)

570 = 59 =eed — 1. (4.30)

With the Stokes matrices specified in this way, the eigenvector matrices E* and E® are uniquely
specified as mentioned earlier by taking the (2,2) entry to be 1 in each case, which yields

e? (e% - ego) 1
ef—1 - e2e2
E>* = ! e 4.31
A1) | 3y
ef—1
cilegei—1)  ef—ef
E° — 6% (6411 - 1) 6% (6%6% B 1) (4.32)

ei(1 — efei)

1
co(et —1)
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Figure 4. The analogue of the contour L(®) in Figure 3 when |Arg(z)| # 0.

After making such choices, we obtain the formulse (1.17)—(1.19). At this point, it can be directly
checked that our choices are consistent with the full equation (4.26) with C,_ given by (4.28).

One can think of fixing the (2,2) entry in the following way: the eigenvector matrices E*
and E° represent “internal degrees of freedom” that have an additional symmetry, namely,
arbitrary scalings of the eigenvectors that preserve determinants. In other words, while (4.21)
induces a conjugation symmetry on the eigenvector matrices, there is an additional symmetry
for each involving multiplication on the right by an arbitrary unit-determinant diagonal matrix.
Thus, the matrices E* and E° undergo the transformations

E® — E® := 0 BE®6%%€2? and E’ — E° := 77”3E0703eg3
for some arbitrary nonzero quantities €., €9. Note that these transformations along with (4.23)
and €3® = (E*)~1C;E° imply that

~ €0
€y > €9 = %62'
00

By contrast, €3 — €3 := e7 is a symmetry invariant.

Remark 4.3. In the case where one is interested in values of z € C with |Arg(x)| < 7, the
analogue of Figure 3 is shown in Figure 4, where the nonsingular self-intersection points are at
\ = +iet412(®) (independent + signs). The angles of the rays in the contour L(®) are chosen so
that iAz € R on the rays extending to A = oo, and iA™'2z € R on the rays extending to A = 0.
Similar to Section 4.2, one can formulate a Riemann—Hilbert problem for a sectionally analytic
function A\ — W(\, x) off of the contour L) and one finds four connection matrices instead
of two, denoted C; through C,4, defined on corresponding arcs of the unit circle as shown in
Figure 4. These satisfy cyclic conditions similar to (4.24), namely,

about A = e 1418@) ;. CTISPC, =1,
about A = —ietA8(@) . Oy (Sgea%‘"’)_lCZl =1,
about A = —je 1 AT8(@). C;'8%e23C, =1,
about A = ie' 4@ Cy(SY)T'Cy =1L
Eliminating all but C3 from the above identities yields the analog of (4.26), namely,
(89) e (85) " = G5 (ST) el (85) 1 C
Reasoning similar to that of Section 4.3 yields

Cs = E®e5? (E°) 7, (4.33)
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which, in turn, yields
C = SPE®e3? (E?) 71(S)) ™!, Co=E>eg?(E?)H(SY)
Cy = 273 (S3°) B (B0) ' = SPE®e27 g3 (E0) 1. (4.34)

In this setting, we must adjust our choice of the branch \ — argy(\), and we choose a branch
which satisfies (cf. (4.16) when Arg(x) = 0)

—g — Arg(z) < argy(A) < 3% — Arg(x), |A| = oo,
and
3
—g + Arg(z) < argg(A) < ?ﬂ + Arg(x), Al = 0.

A concrete branch cut is chosen later, see Remark 7.1 below.

4.5 Example: rational solutions of Painlevé-I1I(Dg)

One can check that the Painlevé-1I11(Dg) equation with parameters related by ©g = O, — 1
admits the constant solution u(xz) = 1. Its monodromy data was calculated in [5, Section 4] by
taking advantage of the fact that the compatible z-equation (4.3) in the Lax pair has simple
coefficients. Denoting m = ©g = Oy — 1 gives 662 = e ™ and €2, = —e™. Choosing v, J

in (4.21) satisfying

—_

I f—m)

1 .
52 — e—27rim(1 s Trim) F(Q m) and 72 — (1 + iemm) (2

ie —s_Z
V2T

one obtains

0 __ V27T 0_ __imm V27T
S1 = 1 ’ Sg = 1 )
r T
(3—m) (5 +m)
m—_i o __ —imm V&I V2T
31 = T 1 _ s 82 =€ T 1 .
(3 —m) (3 +m)

With this choice of v, § and E®, E° chosen as in (4.31), (4.32) (that is, we insist that the (2,2)
entry of E®, EY is 1 by setting €y = €5, = 1), the connection matrices are

1 - V2T V2T
Cio=|" T-m| Co=| TE-m|.
0 1 0 1
and
el =1 and ez = 1.
Remark 4.4. The above gauge is only needed to match our setup with that of [5]; in the sequel
we will be working with v = § = 1. Formula (4.28) then implies
i 1 — 1€™7
2 _ —2mim
€2=¢€ 1 + jemim”

This is important to note when, for example, one tries to verify that (8.8) below reduces to (1.25).

Before beginning to study the large n behavior of u,,, we must first establish a similar mon-
odromy representation of the limiting solution of Painlevé-1I1(Dg), which we do in Section 5
below.
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4.6 Monodromy manifold

It is known that the monodromy manifold for Painlevé-III(Dg) can be given by a cubic equation
(see, e.g., [43]), which can be recovered from our point of view as follows. Denote

N VAR
COoo_ [€3 54]
and

_ 2|1 9 mp M2
Soe 20‘380 —e 2 1 — .
20 P70 4s) (g + s9s9) ms  my
Then, the inverse of the cyclic relation (4.26) allows us to solve for s7°, s3° in terms of parameters
m;, £;, and imposes the constraint
2, = l1lymy — b1lzmy + Lalymg — Lalamy. (4.35)

Hence, we are left with these eight parameters subject to the constraint (4.35) and the unit-
determinant conditions

b1ly — lof3 =1, mima — mams = 1. (4.36)
We may define coordinates which are invariant under the transformation (4.21):

Iy =014y, Iy := molyls, I3 := mgloly, Iy := gy, I5 :=mjq.
Equations (4.35), (4.36) imply

et =eg’li — I+ 13— Ii(Iy — 1),  Ils—Ii(eg?ls — 1)(1 — 1) = 0.
We eliminate I3 and get

~I 4 eg? Iy + I — ey 207 + €2 1o — LIy — eg T1 Iy + I Iy + I3 = 0.
Introducing new variables

x1 =1 —1, Ty 1= —60_211 + I, x3 = Iy + 662 (4.37)
yields the following equation, which defines the monodromy manifold for the problem

T1T223 + x% + 22 + 9 (662 + ego) + 1 (1 + eEQego) + 662620 =0. (4.38)

This matches (1.13) upon using (4.6) and (4.13). Using (4.37), we obtain formulee (1.17)—(1.19).

To find the singularities of (4.38), we adjoin to (4.38) the three equations obtained by setting
to zero the components of the gradient vector of the left-hand side of (4.38) with respect to
(1,2, 23). There is therefore at most one singularity:

for eg? = €2t (21,22,23) = (0, —ey . ef + €52, (4.39)
for e3 = €2 :  (x1,x9,23) = (-1,0, e + 662). (4.40)
In particular, if neither ey 2 = ¢2 nor e2 = €2, then the monodromy manifold is a smooth

curve with no singular points. Notice that we can use (z1,z2) as parameters for the generic
collection of points on monodromy manifold (4.38) for which z1z2 # 0, because z3 can be
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explicitly expressed in terms of the other coordinates. The points satisfying (4.38) with 23 =0
form a 1-dimensional variety consisting in general of two distinct lines:

(xla x2, x3) = (07 _6627 $3) or (xla x2, LL'3) = (07 _ezoa $3)

each parametrized by x3 € C. If eO = 2, the two lines coincide and pass through the critical
point (4.39) of (4.38). Likewise there are generally two lines on (4.38) along which x93 = 0 each
parametrized by z3 € C:

(r1,22,23) = (—1,0,x3) or (r1,29,23) = ( ey e ,0 xg)

and if e = €2, the two lines again coincide and pass through the critical point (4.40) of (4.38).

5 General monodromy data: Painlevé-II1(Dsg)

5.1 Lax pair for Painlevé-IT1(Dyg)

The Painlevé-II1(Dg) equation (1.3) can also be formulated as an isomonodromic deformation
of a linear system. In this case we need two ramified irregular singularities at A = 0 and A = oo,
i.e., we consider the system

o

oy (A 2) = AP0, 2), (5.1)

%Q()\ 2) = 20\, 2)Q, 2), (5.2)
where

|0 iz 1 |V(z) W(2) 1 X(z) —2iX(2)%U(2)
AP0 2) = [0 ol Taxn| 2 vyl T [—i/(2U(z)) _X(2) |
|0 i 1 |V(z) W(z) 1 X (2) —2iX(2)2U(2)

Z(Az) = A [0 ol "1z | 2 V()| 22 [—i/(ZU(z)) —X(2) '
and functions U(z), V(z), W(z), X(z) satisfy the identities

W(2) + 42U (2) + 4U (2)V (2) X (2) + 8U (2)*X (2)* = 0, (5.3)

U(2)V(2)? —4U(2)V(2) + 2U (2)W (2) + 3U(2) + 82 = 0. (5.4)

Note the characteristic feature that the leading terms of A®) (), 2) and of Z(\, x) at the singular
points A = 0, oo are singular and nondiagonalizable matrices.

Since (A, z) is a simultaneous fundamental solution matrix of the Lax system (5.1)—(5.2),
the zero-curvature compatibility condition for that system is therefore satisfied:

OA®) OZ
52 (A 2) — B\ 1 (

Equating to zero the coefficients of different powers of A on the left-hand side gives a first-order
system of four differential equations on the four functions U(z), V(z), W(z), and X (z):

A 2) + [A®(N 2),Z(), 2)] = 0.

2U'(2) = V(2)U(2) = U(z) — 4iX (2)U(2)?, V'(2) =

W'(z) = —161X (z), 2X'(2) = X(2) 4+ 2iU(2) X (2)? —
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It is possible to express the functions W(z), X(z), and V(z) in terms of U(z) and U’(z) using
(5.3), (5.4), and (5.5), but since we do not use these formulae, we do not present them here.
Using (5.5) to repeatedly eliminate all derivatives, it is straightforward to obtain the following

identity:
/2,2 (4 2,2
U,,(Z)_[g((z)) _I_Ui )_4U(i +4
U(z)

= [W(z) +42U(2) + 4iU(2)V(2) X (2) + 8U(z)2X(z)2].

Of course the right-hand side vanishes as a result of the identity (5.3). Hence U(z) is a solution
of (1.3), the Painlevé-III(Dg) equation.

For all the calculations that follow, we assume for simplicity that z > 0. The system (5.1)
admits formal solutions near the singular points

=(8) :
(00) _ = (Z) -2 0'3/2i i -1 ipoc03

Qi (X 2) = (]H- v T O(A ))poo AT e as A — oo, (5.6)
and

Q¥ (A 2) = A® ) (I +T(2)A+ O(\?))

03/2 77ri03/4i i -1 P003
X py* e 7 |1 —i] e as A —0, (5.7)

where

Poo = V —2iz), po = V2izA~1

and the square roots denote principal branches. The function A(S)(z) satisfies the identity

—iz z —2iX (2)2U (2
A®G) [8 0 ] AP = L/&@)) b Atr 8
and hence the solution U(z) can be expressed as
1
U(z):= —m. (5.9)

For k = 1,2, we define the Stokes sectors,

S = {A €C: |\ >R, 2k — 77” < Arg()\) < 2wk+g},

S = {)\ €C: |\ <r 2mk — 57” < Arg(\) < 27k + 32”}

It follows from the classical theory of linear systems that there exist canonical solutions
Qg’o), ngo) determined uniquely by the asymptotic condition

Q=0 (n2), res”, ve{0}. (5.10)

formal

The canonical solutions in consecutive Stokes sectors at A = 0, oo are related to one another by
multiplications on the right with Stokes matrices, i.e.,

(N 2) =2l 28, Ae s nsi), (5.11)
Q%02 =00 28l resPns?, (5.12)
Q5 (N, 2) = QP (727N, 2) (—io), (5.13)
QP (0, 2) = Q) (727N, 2) (i02), (5.14)
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where

o |1t 10
S3 :[0 i] ngltg 1]. (5.15)

Canonical solutions in, say, S,goo) admit analytic continuation into 8}50) and since both canonical

solutions solve (4.1) in the same domain, they must be related by multiplication on the right by
a constant connection matrix, which we define using

2P\, 2) = QP (A, 2)Cooe. (5.16)

5.2 Riemann-Hilbert problem for Painlevé-I1I(Dg)

In a fashion similar to Section 4.2, we now formulate a 2 x 2 Riemann—-Hilbert problem for
a sectionally-analytic function €2 defined by

3
2 Y
Q) (1, 2), Al <land - <Arg()) < 3?”

QP 2), [Al>1and — g < Arg(\) <
QN z) =

Then, it follows from the asymptotic conditions (5.10) and the relations (5.11)—(5.14) and (5.16)
that € solves the following 2 x 2 Riemann—Hilbert problem.

Riemann—Hilbert Problem 5.1. Fix monodromy data (to,tfo) and z > 0. We seek a 2 x 2
matriz function A — Q(\, z) satisfying:

o Analyticity: QN z) is analytic in C\ L®, where L® = {|\| = 1} UiR_ is the jump
contour shown in Figure 5.

o Jump condition: (N, z) has continuous boundary values on L®\{0} from each component
of C\ L®) | which satisfy

Q. z2) = Q_(\ 2)Ta(N),

where Jq(A) is as shown in Figure 5.

e Normalization: Q(\, z) satisfies the asymptotic conditions

QN z) = (I+ O(A‘l))pggﬂ\}é [i :1] elPoe0s as A — o0,

and

i -1
1 —i

Q\, 2) = (A® (2) + O)) p/ [

ePoo3 as A—0

where A®)(2) is a matriz determined from Q(\, z) having unit determinant.

Solvability of Riemann—Hilbert Problem 5.1 is discussed in Section 9.1.
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COoo

iSTOO’z

Figure 5. The jump contour L® and definition of Jo(\) when z > 0.

5.3 Lax pair equations for ©2(A, z)

Since the jump matrices depend on neither A nor z, the matrices

Q Q
A®(N 2) = ‘l(x, QN2 and  Z(\z) = i(A, 2)Q(\, 2) 7! (5.17)

oA 0z
are both analytic functions of A in the domain C\ {0}. We determine these analytic functions by
computing sufficiently many terms in their asymptotic expansions as A — oo and A — 0 using

(5.6)—(5.7). We will use the identities

Ipso a1 9pso oy -1

W = lzpoo and W = lApOO (518)
and

Opo N9 Opo .. _

Y —izA"2p, ! and 5 = XLt (5.19)

Using (5.18) and (5.6) gives, in the limit A — oo, the expansions

, . (8) . (8) —(8)
1 [1—4iz= 4iz(Z/(2) — E
AB® (N 2) = 8 lg + o 2By (2) 4iz(Ey)( ) ~(8)22 (2)) +0(A2), (5.20)
2 —1+44izE5) (2)
. ;o =(8) o (=(®) =®)
1 |1—4izZ 4iz(=2 —-=
Z(\ z) = A 8 ol + 5 255 () 4iz(En (Z? & ED) o). (5.21)
2 —1 4 4izE5) (%)

Actually, we can also go to higher order and compute the coefficient of A™2 in the matrix
element Ay (A, z), in the limit A — oo:

1 1 — .- - _ _

Ag)()\, z) = 2 + e (—:gﬁ) (2) — 21z:§81) (2)% — :ﬁ)(z) + :ég)(z)) +0(X7?). (5.22)
Likewise, using (5.19) and (5.7) gives that as A — 0
110 —iz
(8) —A® il

AN\ z)=A (z)()\2 0 0]

. i 1-— 4iZH21(Z) 4iZ(H11(Z) — ng(z)) (8) -1

I3} [ 2 “1 4 dizlly (2) ATz +0Q),

Z(\, 2) = %A(S)( ) [8 6] A® ()71 0). (5.23)



Painlevé-II1 Monodromy Maps Under the Dg — Dg Confluence 37

Applying Liouville’s theorem yields the exact expressions

A® L = [0 ] 1 [1-4i228(2) 4i2(E7(2) - 25 (2))
’ 0 0 4\ 2 —1+412Hg§)(z)
i JARE@AY () AR (5.24)
MARE? —afleade)
and
2= |0 i L[4 4G E) - 25)
0 0 4z 2 —1—|—4lz~(8)(2)
—21
i [aPeAYE —aler
A Agl)(z)Z Agl)(z)Agl)(Z)

Using the notation (5.9) and noting the structure of the coefficients of the different powers of A,
it is convenient to reparametrize the coefficients as follows:

10 iz 1 |V(z) W(z) 1 X (2) —21X( )2U(2)
AP 2) = [o o] Tl 2 vt [—i/(2U(z)) X(2)
and
L]0 i 1 |V(z) W(z) 1 X (2) —21X( )2U(2)
Z(Az) = A [0 o| T4 2 v [—i/(2U(z)) X(2)

The quantities U(z), V(2), W(z), and X (z) are not independent; comparing the 21-element
of the coefficient of A~! in the expansion of A®)(2)~1A®) (X, 2)A®)(2) computed using (5.21)
and (5.23) gives the identity (5.3). At the same time from formula (5.22) we get identity (5.4).

Since (5.17) holds for the same matrix function €2(J, z), the latter satisfies the equations of
a compatible Lax system

oN ULy
O
which coincides with the system (5.1)—(5.2).

o0

A z)=A®N 2)Q(N,2) and 5 (

A z) =Z(N\, 2)QN, 2), (5.25)

5.4 Monodromy manifold

Introducing notation for the connection matrix elements

ny n2
n3 ng

Coo = [ ] ) det(COOo) =1,

we have the cyclic relation around the unique nonsingular point of self-intersection of L(®)
S(l)oiO'Q = Cooosg(—iag)(COOo)_l,

which implies

0o 0 00
ny = —ng, 7 =ty n3 = ng — naty .
Denoting
(o.¢]
Y1 = ng, Y2 = Ny, ys =ty ,

the condition det(Cps) = 1 implies that the coordinates (y1,y2,y3) are related by the cubic
equation (1.15).
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Remark 5.2. If the solution Q(), z) is multiplied by the scalar —1 for |A| < 1 and left unchanged
for |A] > 1, then the elements of the connection matrix Cpo, change sign while the Stokes
multiplier ¢3° is invariant. Therefore, this transformation changes (y1,y2,¥y3) to (—y1, —y2,¥3),
yielding a different point on the cubic (1.15). The matrix coefficient A®)(z) also changes sign,
however Agi)(z)z is invariant, so the solution U(z) of the Painlevé-III(Dsg) equation (1.3) is the
same for both points.

6 Schlesinger transformation and proof of Proposition 1.6

Fix generic monodromy parameters (ej,e2). In view of the parametrization of the Stokes
multipliers in (4.30) and the eigenvector matrices in (4.31), (4.32), this data determines from
Riemann—Hilbert Problem 4.1 a matrix W (A, z) which is meromorphic in x and satisfies asymp-
totic conditions (4.17) and (4.18), which we write in the form”

TN, 2)Ag= " 2B 2 [ SR HO(A?), Ao,
(O, 2)\S 07 82 = Wl (2) + WY ()N + O(A2), A 0.

Define the matrices

1o nd fo o
= o 0 == lo 1|

Following [5], assuming the (1,1) entry of ¥Q(x), denoted \118711(:13), is not identically zero, we
consider the Schlesinger transformation

B\ 2) = (AL + SN TN, 2),

where
$(2) = U3 oy () U35 (2) /W 4, () _xpfu(x)]
_\118,21 (93)/‘1’8,11(96) 1 ’

Since )\él/ % has its branch cut along part of the curve L, we see that \il()\, x) is analytic in

C\ L) and, by direct calculation, has the jumps on L(®) summarized by Figure 3, with the
exception of the sign changes

Shep 27 > —89¢y?*  and  S3eXT — —83°e2,
Furthermore, one can verify using the definition of (), z) that

U\, :U)A(n®°°_1)03/2e_iw)“’3/2 =T+ &P@)A + (’)()\_2), A — 00, (6.1)
where

() 1= 0 U (2)oy + 04 U5 ()0 + S(x)oy + S(2) U (x)o—.
Similarly, one can check that

B, o)\ QI 2N 08/2 — G0y + B ()N + O (M), A =0, (6.2)

"The coefficients v, \Ilg should not be confused with the fundamental solutions discussed in the previous
sections. The reader can rest assured that this notation will only appear in this section.
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where

i(x) = S(x)Wi(x)o— + S(2) ¥ (x)ot + 04 ¥h(z)o

The transformation ¥ — ¥ is invertible so long as @8722(35) does not identically vanish, and its
inverse is given by

Oz, \) > Uz, A) = (0 AL+ S(@)A?) T (x,N),
where

S(m) = 1 _\1’8,12(30)/\1’8,22(93)
—‘If‘f?21(;c) \1}8,12(x)‘1'i>?21($)/\1’8722(x)

It follows that ¥ satisfies conditions similar to (6.1) and (6.2) as A approaches oo, 0, respectively.
That these operations are inverses of one another is the content of [5, Lemma 1].

In this way, starting with ¥ and iterating the map ¥ — ¥ (assuming 11 (x), U go(x)
do not identically vanish after each step), we may define the nth iterate of this Schlesinger
transformation, which we denote W,,. This matrix, if it exists, satisfies the following Riemann—
Hilbert problem.

Riemann—Hilbert Problem 6.1. Fiz generic monodromy parameters (e1,e2), n € Z, and
x> 0. We seek a 2 x 2 matrix function A — ¥(\, x) satisfying:

o Analyticity: W, (\,z) is analytic in C\ L), where L) = {|\| = 1} UiR is the jump
contour shown in Figure 3.

o Jump condition: W, (\, ) has continuous boundary values on L)\ {0} from each compo-
nent of C\ L®), which satisfy

U, (\z)=¥,_(\z)Jg, (),

where Jw, (A) is as shown in Figure 3 but with the modification

8866203 — (*1)”8366203 and SsCe 2‘73 — (71)"S§°egg3.
e Normalization: W, (\, x) satisfies the asymptotic conditions
@, 2) = (1+EO () + O(A72))elAs/2)[170=)7/2 e\ 1 oo, (6.3)
and
T, (A7) = (AD () + O(\))e ioA Toa/2)\oFmas/2 gy g, (6.4)

where ALY (x) is a matriz determined from W, (X, x) having unit determinant.

That W, solves the above Riemann—Hilbert problem implies the existence of the limit

2O (2) = lim A[®, (A, z)e 2278/2)\ 2=/ 1], (6.5)

n
A—00

It follows that the function

() = iE (@) (6.6)
' Ai?h(scmff 2(@) |

)
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satisfies PIII(Dg) in the form

732 oy Oo)uz  4(1 -0 4
Up, x x T U,

It was shown in [5, Lemma 2] that if for some n € Z the inverse monodromy problem is solvable
for a given € D, where D is a domain in C\ {0}, then ¥, satisfies the Lax pair

ov, (i 1 |n—04 2y 1 ix — 2ist 2is
1)) (A @) = (Ug Tox 2v O — n] o [21t(a; —st) 2ist — ix] )\pn()\’ %)

ov, A 110 gy 1 ix — 2ist 2is
Oz (A @) = (203 T [v 0] 2 [21t(az —st) 2ist — ia:] )\pn()\’x%

where potentials s, t, u, v, y all depend on z and n. Furthermore, in this domain, the functions
\118711(33), \118’22(:[:) extracted from W, (A, ) are not identically zero.®

One can check that if a solution to Riemann—Hilbert Problem 6.1 exists, it must be unique,
and we attempt to identify this solution as a solution of Riemann—Hilbert Problem 4.1 with

possibly different monodromy data. The diagonal elements of Sgea 203 S5°e293 alternate signs
which implies the change
ey (1), el (—1)ek.

Furthermore, in view of (4.30), we can write

(—1)"s5%ed, = (=)™ (1 —efed ) el = (1= (=) ef(=1)"eZ, ) (—1)"€2

oo o7
and
(—1)"s9eg? = (—1)"(efeg — 1)eg? = ((—1)"ef(—1)"ef — 1) (—1)"ey>.
Combining the above with the fact that C()ioo remain invariant under the iterated Schlesinger

transformations implies the change in monodromy data

e~ (—1)"e? and €9 > €. (6.7)

Since ep, ey are assumed to be nonvanishing, we may write them in the form (1.16) for some
wu,m € C with —1 < Re(u), Re(n) < 1. Moreover, since the transformations e; — —eq, eg — —eo
preserve the monodromy data, we can assume —i < Re() < 3 and —% < Re(p) < 1. Equa-
tion (6.7) implies in turn that 7 does not depend on n € Z, while pu is replaced with

73 n € 27,
— = 6.8

e in {,u—%, n+1e€ 27, (6.8)
This proves Proposition 1.6. We end this section with two important remarks.

Remark 6.2. It was noted in the introduction that one could restrict 0 < Re(uy) < 1/2, in
which case, the above iterations interchange the roles of €2, 61_2 and we have to perform the
transformation y — —u, which corresponds to the replacements

78 - 2 2 221\ 73
E*® — ec2>0 — 6% E>® ego — 6% o1 eleoo(l _ 61600)
ef(efed, — 1) ef(efed, — 1) (1 —1) ’
2 2 7 2 2 w7 2( 2,2 1) 73
ez —e el —e es(esed —
E’ - 2022_11 E’ 2022_11 ‘7<12041_1 ) :
€1 (6160 ) €1 (6160 ) €o (61 )

8Lemma 2 in [5] was stated for parameters corresponding to rational solutions of Painlevé-III, but the proof
is almost exactly the same in this case.
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This gauge transformation then allows us to identify the monodromy parameter pairs

11 \/((e%—eﬁ)(l—ege%)

e eredel \| (e — ) (1 ehed,)

(61,62) ~ (6.9)

Therefore, we alternatively can write the monodromy data for the Schlesinger transformation as

€2, n e 2Z7
€2,n = 1 (e% — e%) (1 - e%e%)
esede?, (e% — ego) (1 — e%ego) ’

Furthermore, one can check that (z1,x2,23) in (1.17)—(1.19) remain invariant under the map
described in (6.9), whereas (y1,y2,y3) — (£y1,+y2,y3) where the sign depends on the choice
of the square root in (6.9) and (7.52) below. In both cases, the corresponding solution of (1.3)
remains invariant, see Remark 5.2.

n+1 e 27.

Remark 6.3. Moving forward, we will slightly abuse notation by suppressing the n-dependence
in the parameters

oo = e7ri(@oo7n)/27 eo = e

”i(@°+”)/2, e = eMiHn eg = €™, (6.10)
7 Asymptotics for large n and small x
and proof of Theorem 1.4

Let (e1,e2) be generic monodromy parameters, see Definition 1.3. At this point, we can see
more clearly the meaning of the genericity conditions formulated there:

(i) e} # 1; this is to guarantee diagonalizability in (4.27),
(ii) ejeg # 0; this is to guarantee the unit-determinant condition in (4.27) and (4.28),

(iii) €? # eX? and e? # egﬁ; this, in particular, implies that the Stokes multipliers (4.30) are
nonvanishing.

7.1 Opening the lenses

First, we define a new unknown matrix by ®,(\ z) := ¥, (A, z)L where L is the piece-wise
constant matrix shown in the left-hand panel of Figure 6. It follows from (4.28), (4.29) that the
resulting jump conditions satisfied by ®,,(\, ) are as shown in the right-hand panel of Figure 6.

Remark 7.1. In the general case |Arg(x)| < m, the lenses shown in Figure 6 must be ro-
tated in the manner shown in the left panel of Figure 7. The resulting jumps follow from the
identities (4.33)—(4.34) and are shown in the right panel of Figure 7.

7.2 Parametrix for ®,(\,x) near A\ = oo

(c0)

n

By definition, the parametrix @ (A, x) satisfies the following Riemann—Hilbert problem.
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Figure 6. Left panel: the definition of the matrix L; the circles are centered at the origin and have radii
%, 1, and 2. Right panel: the jump contour I and jump conditions for ®,, (A, z).

Riemann—Hilbert Problem 7.2. Fiz generic monodromy parameters (e1,e2) determining
the Stokes and connection matrices, n € Z, and x > 0. We seek a 2 X 2 matriz function

A

n

(A, x) satisfying:
e Analyticity: <i>,(100)()\,x) is analytic in C\ T(>) where
() = {|\| = 2} U (RN {[Tm X — 1| > 1})

is the jump contour shown in Figure 8.

e Jump condition: i;w)()\,:c) has continuous boundary values on ')\ {0} from each

component of C\ () which satisfy

2 (c0) . ()

fIln’_i_ A\ x) = q)n’_ (A, x)in)(oo) (M),

where J . («)(A\) is as shown in Figure 8 and where the + (resp., —) subscript denotes
a boundary value taken from the left (resp., right) of an arc of INCON

o Normalization: iﬁm)()\,x) satisfies the asymptotic conditions

'\ z) = (11+ A”A(“’) +0 (;2) )eims/ag—@w)“/z as A— oo, (T.1)

(A ) = (Bu(z) + ON)AT” as A —0, (7.2)

% (0)

‘I’n

where Ay, (x) has zero trace and B, (x) has unit determinant.

It is easy to see that i’%oo)(Aw) necessarily has unit determinant. Furthermore, note that
the jump matrix being ef%:” across the arc terminating at the origin implies e; = ¢™#», which

is consistent with (6.10).
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SPE®

Figure 7. Analogue of Figure 6 when Arg(z) # 0. The thick line represents the branch cut for the
argument chosen as in Remark 4.3.

(E*)~

2
Y S§°eog3

Figure 8. The contour T'(®) includes the circle |\| = 2.

7.2.1 Dependence on A\

It follows from assuming differentiability of the asymptotics in (7.1)—(7.2) that

08> . ()
5y (A7) @, (A z)™t
— <]1+ A”/\(“T) - O(/\‘2)> (1; + ;S‘”) o3 <]I+ A")\(‘T) - O(A‘2))—1 +0(X7?)
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and
2 (00)
8‘?;\ ()\,x)ti);oo)(/\,a:)_l = (Bn(x) + (9()\)) (TU;),) (Bn(x) + O(}\))fl + o)
= %Bn(x)ﬂan(x)fl +0O(1) as A—0. (7.4)

Since the quantity on the left-hand side of (7.3) and (7.4) is otherwise an analytic function of A,
it follows from Liouville’s Theorem that

Bi’ffo) . (c0) iz Lin .
I Nz)®, (N\z) = 503 + TBn(m)aan(m) =
2 (00) .

0®,, _ (iz Un, —1\ s (00)

Noting that Tr (B, (2)03By(z)~!) = 0 and det (B, (2)03B,(z) ) = —1, we may write

an(z)  bp(x)

_1_
By (z)o3By(z)" = cn(r)  —an(x)

] subject to  an(z)? + by(x)cn(z) =1 (7.6)

and use this form in (7.5) to write a coupled scalar system of differential equations satisfied

by the elements ¢1 (A, x) and ¢2(A, ) of the first and second rows, respectively, of any column
(c0)

of &, (N, z):
%(A,w) = (1; + “"a;(x)> P1(\z) + “"b;(x)@(A,x), (7.7)
) = 5, 0.) - <§ +E @)) b200, ). (7.8)

Before beginning to solve this system, observe that equating the coefficients of A~! in (7.3)
and (7.4) yields the identity

n — O

2

1B (2)75B(2) ) = %[An(m),gg] +

o3. (7.9)

Since [Ay(z), 03] is off-diagonal, we arrive at

n — O
tnan(z) = 5 (7.10)

Since p, and n are constants, this equation implies that a,(z) is independent of x, so we will

simply write a,, going forward. Now, solving for ¢1(\, x) in (7.8) and eliminating it from (7.7)

yields (assuming c,(x) # 0 and using b, (z)c,(z) = 1 — a?)

2 i 2 ;
0”¢2 25 %)\ — izpnan — M;] $2(A, z) = 0.

ON?

(o) + 920, 2) +

A 2

It is easy to see that the first-order derivative term is removed by the substitution ¢o(\,x) =
A12w(\, z). Indeed, w()\, z) satisfies

0w 2 . (1 1 1 1
W()\Jf) + [4 + iz (2 - Mn%) T <4 - Mi) )\Q]UJ(/\,HT) =0.
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Finally, the explicit z-dependence in the coefficients can be removed by setting Z := iz and
writing w(A,x) = W(Z). Note that the notation W (Z) here is not related to W(z) appearing
in Section 5. In this case, W(Z) satisfies the ordinary differential equation

W"(Z) + [— % - (; - unan> % + Cl - ui) ZIQ} W(Z) =0, (7.11)

which is Whittaker’s equation (see [38, Chapter 13]) with parameter
o1 _1+6,-—n
K= fin 1= 5 = fnln =~

Given ¢o(X\, z) = A"V/2W(Z) for Z = iz, and a solution W (Z) of (7.11), it follows from (7.8)
that the corresponding first-row entry is

(7.12)

ana) = 2 (Wi (352 ) W), (713)

A fundamental pair of solutions of (7.11) is given by W(Z) = Wy, 4, (£2), arg(+£2) € (—m, 7).
If we take the particular solution ¢o(\,z) = A"Y2W,, , (Z), then using the identity

ko1 1 2\ 1
Wliiyﬂn(Z) = <Z - 2> WK,Mn(Z) + < <2 - K) - Nn) ZWK_LNn(Z)
(see [38, equation (13.15.23)]) in (7.13) gives

¢2(>\7$) = A_1/2WHTL7NTL (Z)
A2 /1 2
Na)= | = —kn) —p2 2 W1, (2).

= (bl( ,(L’) Mncn<x) ( (2 K > :u’n> n 11Hn( )

Likewise, if we take the particular solution ¢o (X, z) = A71/2W_’€n7#n (—Z), then using the identity
1 K 1

Wé,un(z) = <2 - Z) Wmun(z) - ZW&H,M(Z)
(see [38, equation (13.15.26)]) in (7.13) yields
iz\1/2
Mncn(x)

Taking linear combinations with coefficients depending generally on the parameter x, the general
solution matrix for the system (7.5) can be written in the form

- S

d)Q(A?':U) = A_l/zw_ﬂn“un(_z) — ¢1()\7x> = - Z_lwl_ﬂn,#n(_z)'

(c0)

(c0)

Az)=®, (A\o)Kz), @, (\z):=HN\z)WGAT; kn, ftn), (7.14)

where EIV>7(1°O)()\, x) is a specific fundamental solution matrix of (7.5) constructed from

ir
H(\, ) := X2 | pcn(2) 0 (7.15)
0 1
and
Qi 2 W1, (Z2) —Z7 W1, (—2)
W(Z; K, i) i= | ©Hn "= obin Foabin 7
S Wi (2) W (-2)
1 2
= (5 ) i (7.16)

in which k = k,, and p, are given by (7.12) and K(z) is a matrix of free coefficients.
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7.2.2 Dependence on x

Going back to (7.1)—(7.2) and now assuming that the asymptotics are differentiable with respect
to z,

2 (00)
0®, < (c0) -1
(0, 2) 8, (0, 2)
—1
= (]I+ ”A( ), O(/\2)> (1/\03> <H+ A")\(x) + O(A2)> +0(x 1)
= %03 + %[An(a:),ag] + (’)()\71) as A — 0o,
and
0% (o)

= )@, (A x) L =B, (2)Bu(x) L+ O\ as A —0.

So, applying Liouville’s theorem yields
2 (00) .
i

aq;; (A ) = <12)\O'3 + 2[An(z),03]> &> (o), (7.17)

and it follows from (7.9) that

%[An(l‘),dgg] = % (,uan(x)aan(:U)_l + (/—@n — ;) 03>
(1 a2)
_ é O = | (7.18)
o Cr () 0

where (i, a, are independent of A\, . To determine the z-dependence of ¢,(z), we use (7.18)
to assemble (7.5) (using also (7.9) and (7.12)) and (7.17) to give the Lax system

2 (00)
O () = A 2) 8T (0 ),
. [ 1-— a2)
1|1 oy He(l—an)
Ava)i=gog+ |20 o (7.19)
i fncn () %(@oo —n)
2 (00)
O () = X0 (0,2,
. [ ,un(l — a2)
y A 1 HnlL = An)
X()\, .’L’) = 150'3 + g 0 cn(x) . (720)
HnCn () 0

Since ‘i’floo)()\,m) is a simultaneous fundamental solution matrix for these equations, the Lax
system is compatible. The compatibility condition reads

A\ z) =X\ z) + [AN 2), X\, 2)] =0,
which is equivalent to

xc, (1) = (1 = 2k,)en(r) = cp(x) = pa! ™2, (7.21)
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for some constant 7, # 0. Thus, the coefficient ¢,(z) is determined up to the choice of the
constant 7,. Note also that the coefficient matrices A(A, z) and X (A, z) are obviously related
by the simple identity

X(\, z) - %A(A, ) = % (ml - ;) o5, (7.22)

Since the fundamental matrix iiw)(A, x) defined by (7.14) satisfies (7.19), then so does

87\ 2) = 8 (0, 2)K (2),

and K(z) must now be chosen so that (7.20) is satisfied. Substituting into (7.20), we obtain an
ordinary differential equation on K(z):

5 (o

80 2) = 8™\, ) 1980 ()\ x)) (). (7.23)

X

K'(z) = < 3> )()\ ) IX(\, z)®,

Now, from the form of &)(OO)()\, x) written in (7.14), we have both
= (00)

= (00) 102, _ z(0) _10H _15,(00)
F A (O 1) TH O, 2) W (Z: ko, i),
= (0)
= (o0) -1 @q)n - =~ (00) 1a 71~(0<>)
P, () 2x) o\ Nz)=®, "(\zx)” o\ N HN z)" @, (A x)
412 (0 2) T TH O )W (Z: ko ),

so it follows that

62“)<A,x>-1&i;;<x,x>
- 2«’137(1“)@,9@)—1(%’(?@,@
+ 350 2) ! [ZH()\ ©H, 2)"! - Agl(x a;)H()\,a:)l} 3™ (\ 2)
— 300! D A\ ) + %H(/\ 2HO,2)" - 2?91;@ 2)H(\, x)_l} 0\, 2),

where we also used (7.19). Using this in (7.23) along with the explicit definition (7.15) of H(A, x)
and the identities (7.21) and (7.22) gives

K'(2)K(z)™"

— 30! [Xu, ) - 2R\ )
X

OH
Ox

AOH

e —(\)H\2) ! -

Caid B} a;)H()\,a:)l] 3\ 2)

_ =(o0) 1|1 1 d en()\ |1 0| | x(c0)
=® "(\) [IL‘ (Kn 2) o3 + 03+—d log . 0 0 ®, "(\x)
_@N(Oo) —1 g 10 = (00) __@

= ®, () ) [03 [0 0 ®, (\zx)= . I
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Therefore, the z-dependence of the matrix K(z) is explicitly given by
K(z) =27 "K,

where K is now independent of both A and z. However, as the domain of analyticity of i)%m) (A x)
in the A-plane consists of three disjoint regions, we expect to have to specify a different matrix K
for each. Note also that the constant ~, remains to be determined.

7.2.3 The parametrix ®(>) (), z) on the two regions with |A| > 2

To fully specify the parametrix ‘ffloo)()\,x) for |[A\| > 2, we concretely take the jump contours
for |A\| > 2 to lie along the real axis in the Z-plane, corresponding to R} and R_, respectively.
Thus, the part of the domain of analyticity of <i>;oo)()\,x) with |A| > 2 has two components,

(c0)

corresponding to the upper and lower half Z-planes. To properly define <i>n (A, z) in these two
exterior domains, we firstly take the matrix factor H(\, z) defined in (7.15) in the precise form

ix%" i

HO,2) = X o 0| = 2222 5D, Dy = | o1 (7.24)
0 1 0 1
Then, we assume different constant matrices K = K in the two domains by writing the

parametrix for |A\| > 2 and £Im(Z) > 0 as
(00)%

= NP2 D W (s o, i) K (7.25)

We now express the matrices K= in terms of the remaining constants s, and +, by enforcing
the asymptotic condition (7.1) in each of the two sectors with |A] > 2. According to [38,
equation (13.19.3)],

3T

Wi (Z) =e 22281+ 0(Z27Y), Z—o0,  |arg(Z)| < & 90
holds for each § > 0. Hence also
e 25214+ 0(271 —Z) 1+ 0(z71
Wiy [P0 OUD) 710N
2(1+0(z7) (-2 1+ 0(z )
Z 00, |arg(Z)] < 37” )

Under the condition given on arg(Z), we have

(—Z)" = 77" ™  Im(Z)>0 (ie,0< Arg(Z) <),
e ™ Im(Z) <0 (ie., —7 < Arg(Z) < 0).

To calculate Z**, we recall Z = iz and use [5, equation (49)]:
- — Arg(z) < argg (M) < ST _ Arg(z), |A| = oo.
Next,
m(Z)>0 = 0<Arg(Z) <7 = —g — Arg(z) < argg()) < g — Arg(),
Im(Z) <0 = —n<Arg(2)<0 = —%T — Arg(z) < argg (M) — 27 < —g — Arg(z)
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Im(Z) <0

Z eR_

Z€R+

o0

Im(Z) >0
Figure 9. Jump contour for 'i’ifo)(/\,:c) near A = co.

and hence, for any x € C\ {0} such that |Arg(z)| < ,

Zili — .’L'iNA:tH eiiﬂ%/2) Im(Z) > O)
N eFm/2 Im(Z) < 0.

Therefore, for A large such that Im(Z) > 0,
)\%3/233“"”3 D, W (iz\; kn, iin)

. o) eimn/Q(l + @()rl)) (kn—=3)03__izhos/2
=D, [ei“”"/Q(l —i—(’)()\_l)) (’)()\_1) /\KI e 3/2

so choosing K so that (7.25) is consistent with (7.1) in the sector Im(Z) > 0 requires that K;
is an off-diagonal matrix, namely,

0 efim-;n/2
K= : .
n [_ie—mmn/2un,yn 0 ]

Similarly, for A large such that Im(Z) < 0,

)\%3/2xl‘fna'3DnW(il')\; Rn, /‘Ln)

D O()\_l) eiwnn/Z(l + O()\_l)) )\(mn—%)age_ixAgg/g
= n e—3i7mn/2(1_|_0(>\—1)) O()\_l) N )
so consistency of (7.25) with (7.1) in the sector Im(Z) < 0 requires
o 0 e3i7mn/2
Kn = [_ie—iﬂ'ﬁn/2unry’n 0

Some additional useful information can be gleaned by enforcing on éioo)()\,w) the jump
conditions for |A| > 2. The jump rays are illustrated in the Z-plane with their orientations in
Figure 9. The Whittaker function Wy, (Z) can be viewed as an analytic function on the cut
plane |Arg(Z)| < m, and it follows from the connection formula [38, equation (13.14.13)] that
the boundary values on the negative real axis are related by

Wi (—Z +10) = 2™ W, (—Z — 10)

2miel™
D (3 + pn = K)T (5 — o — K)
Note that the denominators in the second term on the right-hand side of (7.26) are finite due to

condition (iii) in the definition of generic data; see the beginning of Section 7. Indeed, it follows
from (6.10) and (7.12) that

+ W_pu(Z),  Z>0. (7.26)

1
6?2262 & — —kp X upn € 7.

o 2
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On Z € R_ the left (+) and right (—) boundary values correspond to limits from Im(Z) < 0
and Im(Z) > 0, respectively. Therefore, the second column of W(Z;k, uy,) is continuous
across R_, and from (7.26) (replacing Z with —Z),

Unin 2" W1 (Z +10) —Z7 Wiy, (—2)
Wi pn (Z +10) W_ o (—2)
2mie ™ Z AWy e (—2)
Tt I 0
2™ W (—Z)
L(3 + pn = K)T (5 — ptn — )
e2min 0
=W_o(Z;k, ) 2miel™F e Z < 0.
(5 + = R)T(5 = pn = K)
Here, on the third line we used the definition (7.16) of . ,, and the factorial identity I'(0+1) =

o'(¢). Since H(A,z) is analytic across iR, it follows that ®(°)(\) = <i>$loo)()\,x) satisfies the
jump condition

W*(Za 'V”'v:un) =

e27rif§amun Zian—l,un(Z _ iO) _ —Z_lwl—m,/m (_Z)

T, (Z — 10) +

W_“:/»"n (_Z)

870 = 8 () [W_ (1A ks 1) K| T W (s 1)K,
eQwimn 0 -1
- <i>(,°°)(>\) (K;)‘1 2iel™rn K,
r(i — (l_, — 1
(2 + tin Kn) (2 Hn K;n)
(c0) 1 2melmhn
=N | vl G A pn — k) TR = pn — k) |+ AEIRy.
0 1

Requiring that this matches with the corresponding jump condition in Figure 8 gives the con-
dition
IThn 2 2
2mel™r es, —ef

oS

,un%zr(% + Hn — ”n)r<% — Hn — Kln) B efego

For Z € Ry the £+ boundary values correspond to the limit from Im(Z) = 0. Therefore, now
the first column of W(Z; k, piy,) is continuous across R4, and from (7.26),

QipinZ W1, (Z)  —Z Wi (—Z +10)

W_ Z; sy Mn) =
( o ) Wnuufn(Z) Wi“»,u‘n(_Z—i_iO)

omie a2 Wy 1, (Z)
1 1
2mie ™ "™ W, . (Z)

Copn 2 IWi—1, (Z) —e 2527 Wy (—Z —10) +

W (2) e 2R (= Z—10) +
o o DG+ s+ AT (= o+ 1)
2mie~ime
1 1 1
=W (Z;k, ) P(3+un+6)T(5—pn+r)|, Z>0.
0 efzﬂili

Again here, the finiteness of the denominators is guaranteed by condition (iii) at the beginning
of Section 7. Since H(),z) changes sign across iR_, we get that ®(>)()\) = @%OO)()\, x) satisfies
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the jump condition

' (\) = & ()W _ (12X K,y 1) K )T YW 4 (A oy 1) K
L e~ imhn !
=™K, TS+ fin + )T — pin i) | K
0 _e—Qﬂ'ilin
B 7627Tilin 0
— () 2me ™ ™ iy, Corin,
) I —¢
| T (5 + tin+ 50T (5 = i+ i)
2
~ (00 00 0 v (o0
—a™0y | > Dl =™ ysEe,  aeir.
€052 €0

The last two equalities follow by a direct calculation using the definitions of s5°, Ky, €1, and e
in (4.30), (7.12), and (6.10), respectively, along with the expression

i it (7.27)
D(3+pn — 6n)T(5 — pin — 5n) €2 —el’ '

2me

HnYn =

and the classical identity
1 1 T
rfz—z\r(:= = ) 7.28
<2 Z) <2 + Z) cos(mz) (7.28)

7.2.4 The parametrix tfiboo)()\, x) in the region |A\| < 2

We use the identity [38, equation (13.14.33)] to express the elements of W(Z; k, 1) in terms of
the alternative basis of solutions M_, +,(—Z) of Whittaker’s equation with parameters (x, yt)
that form a numerically satisfactory pair in a neighborhood of the origin and that are analytic
for Arg(—Z2) € (—n,m). Moreover, these functions are the Maclaurin series associated with the
regular singular point at Z = 0, so they have the property that

M, (~Z)(-Z) 2" =14+0(Z) as Z—0, (7.29)

where the power function denotes the principal branch and where the error term represents an
analytic function of Z vanishing at the origin. To deal with the first column of W (Z; k, i) we also
use the corresponding identity M, ,(Z) = eii”(%‘L“)M,,{,M(—Z) which holds for £Im(Z) > 0
(see also [38, equation (13.14.10)]). Using the above identities, and under the condition 2u ¢ Z
(which follows from the condition (i) at the beginning of Section 7 in our case), we can write
the elements of W(Z; k, ) in the form

D200 (5 =1+ K)  sin(iom gy

Wi(Z;k,p) =—-2"" (=2
ntzires T3 —n—rm)D(=§ —p+r) =2
I'(2u)(L .
_ g1 - (2up) (2 ‘|‘,u1+/i) eim(%iu)Ml_n,_M(—Z), +Im(Z) >0,
L(3+p—r)D(—5+p+k)
1 T(=2p) o P@p)
Wia(Zik,p) = -2 ' — 0 Ap o (—2) -z (=2,
12(Z; K, 1) e w(=2) N E —u(=2)
D(=2p)  4in(iqp
Wor(Z; ki p) = ———t—e "GN (= 2)
(5 —u—r) 8
I'(2p)

L) (i) o
e 2 M Z), +Im(Z) > 0,
F(%—HL—F@) wn(=2) (2)
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and

I'(=2p)
D(3—p+k)

I'(2p)

Was(Z; k, 1) = M_u(=2) + mM—n,—u(—Z)-
2

These expressions can be usefully combined into a matrix identity:

W(Z;k,p) = M(Z; 5, 1)Gj; ., +Im(Z) > 0, (7.30)
where
M(Z; I{,'LL) = (% —RT 'u)Z_lMl_’W”(_Z) (% — R H)Z_lMl—&—u(_Z) 7
M (~2) My u(~2)
Arg(—-Z2) € (—m,m), (7.31)
and

D(—2u)e=m 010 T(—2p)
. _ | Pa-p-r) T(-pts)

| TEpetit e T(2u)
T(A+p-—x) TE+p+k)

To define the parametrix <i>7(loo)()\, x) for || < 2, we first introduce a constant matrix by

J, =G/  K/SFE® =G, , K E%. (7.32)

Kn,,Un Kn,Hn

The equality of these two expressions can be seen as follows. First, combining (7.25) and (7.30),
and using the fact that the matrix M(izA; K, pi,) is analytic in a neighborhood of A = 2i, the
jump condition for <i>,(1°o)(>\, x) across the positive imaginary axis for |A| > 2 shown in Figure 8
implies the identity G} |, K'S® = G, , K, , which yields the desired equality.

Kn,Hn Kn,ln
Then, we set
v (00) . \73/2 knos : .
@, (A x) = A0 2D Mz A; Ky fin) I, for |\ < 2. (7.33)

It is straightforward to then check that, regardless of the choice of u,, the matrix J, de-
fined by (7.32) is diagonal. Comparing (7.25) and (7.33) shows that the jump conditions
for <i>£loo)()\, x) across the arcs of the circle |A\| = 2 shown in Figure 8 are satisfied. Using (7.29)
then proves that &:&”)(A, x) satisfies the simple jump condition across the negative imaginary
axis with [A\| < 2 shown in Figure 8 and that an expansion of the form shown in (7.2) holds. To
check that the matrix J,, is diagonal and arrive at its final form below, we use the identity (7.28)
to get

1 1 T 2miereso
I'(=-+kp— I'(=-—kn+ = = ,
<2 " “") <2 " “”) cos (n(kn — pm)) 6 — €&

T 2mieleso

1 1
=+ + - — — = = . 7.34
<2 Kn Un) <2 Kn P’n) COS (W(/in T Hn)) 1— e%ego ( )

The result is that the diagonal matrix J,, from (7.32) is given by

ei”/4elez<<2f(—2un) 0

F(l — kn — Mn)
J, = 2 . . 7.35
0 eim/4 (el — 1)6‘242F(2,un) (7.35)

(€~ ZT(} — it o)
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Figure 10. The contour I'®), which includes the circle [A| = 3.

7.3 Parametrix for ®,(\,x) near A =0

By definition, the parametrix ‘i';o)()\, x) satisfies the following Riemann-Hilbert problem.

Riemann—Hilbert Problem 7.3. Fix generic monodromy parameters (e1,es) determining
the Stokes and connection matrices, n € Z, and x > 0. We seek a 2 X 2 matrix function

A iﬁo)()\, x) satisfying:

o Analyticity: éflo)()\, ) is analytic in C\T'©) where T(©) = {IAl=3}U(iRN{ImA < 3})
is the jump contour shown in Figure 10.

e Jump condition: ‘iflo)()\,x) has continuous boundary values on T\ {0} from each com-
ponent of C\ T which satisfy

2 (0) < (0)
‘I’n,—i-()‘v .’E) = (I)m—()‘a w)Jé(O) ()‘)7

where J . ©)(\) is as shown in Figure 10 and where the + (resp., —) subscript denotes a
boundary value taken from the left (resp., right) of an arc of o,

. . < (0 . . .
e Normalization: <I'£L )()\,:L‘) satisfies the asymptotic conditions

&V (\z) = ON2"  as A o0, (7.36)
where O(1) refers to a function analytic and bounded in a neighborhood of A = oo and
8\ (A 2) = ([+O(\)e ™ 17/ 2[F00/2 gy g, (7.37)

We can write down the unique solution @%O)(/\,x) explicitly in terms of the parametrix
‘i?'ffo)()\, x) obtained in Section 7.2, but taken with the index 1 —n instead of n and O« replaced
by ©. If we indicate the dependence of <i>7(1°°)()\,x) and @%O)(/\,x) on Oy and Og respectively
with the notation <i>§,,°°)(/\,x) = 'i’%oo)(/\,x,@oo) and ‘i%o)()\,:x) = i’%o)()\,w, ©p), then we have
the following.

Proposition 7.4. Fiz ©,0¢ € C and generic monodromy parameters (e1,e2). Then

630352)(_02)(—)\_1,.%,@0)60_203 , Al < %,

V() z,00) = (7.38)

5@ (A1 2, 0))
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where
1—ef
et (1 —eged)

Proof. The mapping A — —A~! takes the contour I'¥) onto the contour ') up to the reversal
of orientation of certain arcs, and swaps the circles centered at the origin of radii i 5 and 2.
Therefore, the domain of analyticity of 3 )()\ x,0p) is as desired.

Under the map n — —n, Oy — O, the exponentials defined in (6.10) satisfy €3 — €2
whereas i, = p_, since this quantity depends only on the parity of n. This implies that the
Stokes matrices defined in (4.11)—(5.15) satisfy the corresponding identities

By = (7.39)

0o —203 0 1 203 0o 20’3 —203 0 _—203 1 203
ST — (S ) €y and S5 — eq (S ) €y -

Comparing Figures 8 and 10 then shows that the function defined by (7.38) satisfied the required
jump conditions across the imaginary axis for |A| < % Likewise, the jump condition on the

negative imaginary axis for |A| >  is easily verified due to the identity valid for any a # 0:

—2 0 a 0 al 24
€1 78 [—a—l 0 T [—a_l O] 6103 =0.

Finally, the fact that i%o) (A, z, ©p) defined by (7.38) satisfies the required jump conditions across
the circle [A| = 1 follows from the corresponding jump conditions for @go_ozl()\, x,0q) for |A| =2
and the identities

(E®)! [ 0_ Bn (EO)*legcm

-8, 0
among the matrices E>, E° defined in (4.31)—(4.32), which hold for the value of 3, indicated
1 (7.39).

It only remains to verify the asymptotics in (7.36)—(7.37). However, these follow from the
corresponding formulee in (7.1)—(7.2) with the help of the identity

-1 20 COTRO0\ — 0 n
) s e

MNo=e™eP, (=AY

which holds for all A not on the negative imaginary axis.

Since the matrix function <i>7(10)(>\,$,®0) defined by (7.38)—(7.39) satisfies all the required
Riemann-Hilbert conditions, and there is at most one solution of those conditions, as is easily
confirmed by a Liouville argument, the proof is finished. |

7.4 An equivalent Riemann—Hilbert problem on the unit circle

The parametrix for ®,,(\, z) is by definition the following matrix function:

()
b, (\ ) ?)(AZC@ ), A >1,

@,/ (\z,00), |A<L1
This matrix function satisfies exactly the same jump conditions in the domains |A| > 1
and |[A| <1 as does ®,(\, x) itself, and it is also consistent with the asymptotics given in
(6.3)-(6.4) (note that ¥, (\,x) = ®,(A, x) for |A| sufficiently large or small). The parametrix
has unit determinant, so the matrix quotient

Q.(\,z) := ®,(\,2)®,(\,z)"!
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is an analytic function of A except possibly on the jump contour I' shown in Figure 6 and on
the unit circle, where there is a discontinuity in the definition of 'i>n()\, x). However, since the
jumps of ®,,(\, z) and ®, (), z) agree on I, a Morera argument shows that Q, (), z) is actually
analytic both for [A\| > 1 and for 0 < |A| < 1. The asymptotic behavior of the factors in Q, (), x)
as A — 0 then shows that any singularity of Q, (A, z) at the origin A = 0 is removable, and the
asymptotic behavior of the same factors in the limit A — oo shows that Q, (A, z) — T as A — oo.
Q.. (A, z) is therefore characterized by its jump condition across the unit circle |A| = 1. Taking
counterclockwise orientation for the circle, the jump condition for Q, (A, x) reads

Qo+ (A7) = Qu-(A2) LI (N, 2,00)e5* @ (\,2,00) ', A = 1.
Using Proposition 7.4, the jump matrix can be written as
O (A, 2, 000)e5" @Y (A, 2,00)

0 _ﬁn
Byt 0

We summarize by writing the Riemann—Hilbert problem for Q,, (A, x).

= (N, 3,04)eT (A1 2,00) gt A =1 (7.40)

Riemann—Hilbert Problem 7.5. Fiz generic monodromy parameters (e1,e2), n € Z, and
x € C. Seek a 2 x 2 matriz function A — Qu (X, x) with the following properties:

o Analyticity: Qn(\, x) is an analytic function of X for |A| # 1.
e Jump condition: Qu(\,x) takes analytic boundary values on the unit circle from the inte-

rior and exterior, denoted Qy, + (X, x) and Qp —(\, z) for |\| = 1 respectively, and they are
related by

0 _/Bn

510 ,i,(_oz)(_)\—l’ z, @0)_166303.

Qi+ (N 7) = Qu (A, 2) B (N, 2, 00 )5 [

e Normalization: Qp(A,z) = 1 as A — oo.

Henceforth, to avoid the notation becoming unwieldy, we understand that all quantities
appearing with subscript n are evaluated at parameter ©,, while quantities appearing with
subscript —n are evaluated at parameter ©g.

7.5 The limit n — 400

Having succeeded in removing the problematic jump conditions along rays emanating from 0, oo
in the A plane by defining Q,,(\, z), we would next like to consider the limiting behavior of this
problem as n — +oo with = z/n and z fixed. It is convenient to first renormalize Q, (), x),
essentially by a transformation that diagonalizes the coefficient p, B, (2)03B,(x)~! of A71 in
the matrix of the Lax equation (7.5). In other words, in the jump condition for Q. (X, x)
we prefer to replace ®'™° (A, z) with a suitable left-diagonal multiple of Bn(:n)*légfo)()\,x).
Observe that the coefficient B, (x) is determined up to right-multiplication by a diago-
nal matrix by (7.6), in which the second row of the matrix on the right-hand side is
(cn(®), —an) = (v =2, pot (ky — 1)), where we used (7.12) and (7.21). Indeed, the first col-
umn by’ (z) satisfies (v, =2, ot (K, — 1) — 1)bg)(x) = 0 while the second column b{? (z)
satisfies (’ynxl_%", ot (/in — %) + 1)b$b2) (z) = 0. By selecting specific constant factors for each
column, we obtain a matrix P, (z) differing from B, (z) by right-multiplication by a diagonal
matrix, and given explicitly by
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in which the dependence on the index n enters via (7.12) and (7.27). Then to get the desired
modification of the jump matrix we set

{Pn<x>—1Qn<A,x>Pn<x>, NES?

B2 = B () 1Quh )Py ()2, A < 1.

where d, () is a scalar satisfying

det(Pp(z))
dy(2)? = —Ae ) 41
)" = Ger(P (@) (7.41)
Then, R, (A, z) solves the following Riemann-Hilbert problem.

Riemann—Hilbert Problem 7.6. Fiz generic monodromy parameters (e1,e2), n € Z, and
x € C. Seek a 2 x 2 matriz function A — Ry, (X, x) with the following properties:

e Analyticity: Ry (A, x) is an analytic function of X for |A| # 1.

e Jump condition: R, (A, x) takes analytic boundary values on the unit circle from the inte-
rior and exterior, denoted Ry, (X, z) and Ry, —(\, ) for |\| =1 respectively, and they are
related by

R (A @) = R~ (X 2) P (@) ' @17 (0, 0)ef? [B(L K ]

x @) (AT ) TP (2)dy () (7.42)
e Normalization: R, (A, z) = 1 as A — oo.

The matrices 2\ () and A@(w) defined in (6.5) and (6.4), respectively, can be expressed
in terms of R,,(\, ) as follows:

20)(z) = A, (z) + Py () [Alggo AR\, z) = D)]Py(z) " - %il’a’g,,

) (2) = Pp(2) R (0, 2)P_ () "' dp () “teg?78. (7.43)

>

Here, A, (z) is the matrix coefficient defined in (7.1).

We now show that the jump matrix in (7.42) has explicit limits as n — +o0 along even or odd
subsequences, with the convergence being uniform for |A\| = 1 and bounded z where 2 = z/n.
To this end, we compute the asymptotic behavior of P, (n_lz)_ligoo) ()\, n_lz) assuming that

|A| = 1. The relevant formula for <i>,(1°°)()\,a:) in this setting is (7.33). When |A\| =1,

Py (2) '@ (A x)

1-2k 1
) [
2 K O 0’3/2 .
D273 A "M (LA kg, Jn.
1-2knp %—l-un — Knp n N ( n ,Ufn) n

_ 1 Hn YT
203 2 | —

Using (7.24), we see that

Py (2) '@ (A 2) =

x”3/2)\a3/2M(ix)\; Ky o) I -

1 wo— L i _%‘i',un“‘/@n
PV N
2Mn7n —1 §+Mn_"<ﬂn

Now, for z > 0, the principal branch power (—i:1;x\)"3/ 2 has the same domain of analyticity
as ){3/ 2, and these two analytic functions are related by the identity

)\%3/2 _ x7‘73/2ei”‘73/4(—ix)\)03/2.
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Therefore,
P, (x) 18 () 7)

1 N | .
nnf% [ 1 5 T Un + Kn e171'03/4(_ix)\)0'3/2M(ix)\; ’Qnuﬂn)Jn

= —F— .
2013 —i 5+ fn = #n

—ir/4 _ _1
eI [ Lo—gttmtfnl o\ (Z e VD, Z—izh (7.44)

=—__ ¢
2042 ¥ 1 S+ pn — b

Now using (7.31), we have
(=2)7*M(Z; fin pin)

(=% = ftn + Kn) (= 2) T My (=2) (=3 4 i+ ) (—2) 2 M1y (—2)
(~2)"3 My 0, (—2Z) (~Z)"2M_p, —y,(~2)

The diagonal elements in (7.44) can be simplified using the identity (see [38, equation (13.15.3)])

1
(k—p— %)Mﬁ_%#%(o) + (1 +2p) 02 My y(0) — (K +p+ %)Mn%,u%(o) =0

replacing k — % — kn and p — pp — % for the (1,1) entry and p — —% — py, for the (2,2) entry,
and the off-diagonal elements can be simplified using the identity (see [38, equation (13.15.4)])
1
QMM,{,%#,%(O) - 2MM/{+%,#*%(<>) — 02 M () =0
replacing kK — % — kp and p — % — py, for the (1,2) entry and p — % + up, for the (2,1) entry.
The result is that

P, (z) '@ () ) = T
T 2uRm
1
2 M =3 (2 2) (W) My =2)
g % — Kn + fin In,
< REST ) Myt =2 UMy 4, (22)
7 =inh (7.45)

We will need the following result for the large n limit of Whittaker functions appearing here,
cf. [38, equation (13.21.1)].

Lemma 7.7. Assume that p is fized with 2u # —1,—2,—-3, ..., and let f((;p) denote the entire
function

HENESY 0 JEQZ)+ Sar (7.46)

s=0

Then the asymptotic formula

M, ,, (,i) =T(1+2u) (i)wm [F(Gm) +0(r7?)]

holds uniformly in the limit k — oo in any (possibly complex) direction under the assump-

tion ¢ = O(1).
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Proof. We start from the formula [38, equation (13.14.6)] which holds under the indicated
condition on yu:

¢ S\ o M+1/2+]
() (5 (e

Clearly, e=¢/(%) = 1—(/(2k)+O(k72) as k — oo for ¢ = O(1), and the product in the summand
has the expansion

H < lH_l/QH) =1 —i[<u+;> 8+%S(S— 1)] + O(k72%s%), Kk — oo (7.47)

uniformly for all indices s. This follows from the Fredholm expansion formula

]1_[ 147)) —1—}—27“]4-2 Z Hrl

k=2 SCZsleS
|S|=k

and the estimate

2 ]In

SCZs leS
|S|=k

<(P)m R e O

0<I<s—

Indeed, with r; = —x~!(u+ 3 + ), we have

s—1 s—1 1
o=y X (nrg i) =
Jj=

7=0

(M—l—i)s—f—is(s—l)

and Ry < [w|71 (| + %‘ + (s —1)). Therefore, R¥ < |r|72(|pu+ %} +(s— 1))k holds for all & > 2
whenever || > 1. Consequently,
g p+1/24 5 1 1 1
R Nt S R I - Zs(s—1
H( . > —i—ﬁ (u+2>s+2s(s )]
7=0
1< 1 ¥
ZZHT g— p+ |+ (s=1)) 1*7F
|k|? /~c 2
k=2 SCZs leS =2
|S|=k
1 (s 1 oo (lpti+s)’
< — - -1 15—k = MET 21 T/
S () (b)) WE

which proves (7.47). Since the series

- (=¢)°s*
(1 +2p, + s)s!

s=0

converges uniformly for |(| bounded, it follows that

My, (i) =TI (1+2p) (i)lm/z [f(c; /) — %g(C;u) +0(rk7%)
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holds as kK — oo in C with ( = O(1), where
9(Gip) = %Cf((s ft) + <u + ;) Cf(Gu) + %CQf”(C;u)-

Now using the series (7.46) one checks that for all indicated values of u, g({; ) vanishes identi-
cally, so the proof is complete. |

The series in (7.46) defines an entire function of ¢ related to Bessel functions (see [38, Chap-
ter 10]) in the following way:

F(Cm) = CH T2 (2V/€). (7.48)
We apply Lemma 7.7 to (7.45) by taking ¢ = —(3 — k,)Z = —(3 — kn)izA. If 2 = z/n
and z = O(1), then using (7.12), we see that ( = —iizA + O(n™1) holds for [A| = 1. So,
(7.45) becomes the statement that
Py (z) '@ (A, )
—in/4 I'Cun +1)J2y,—1(poc)  —T(1 —2p,)J1— 00
_ e i prn—t [ P (2pn + 1) J2p,—1(poc) (1 = 2pn) J1-2p1,, (Poc) Lo
2p5m 2 | T(2pn + 1)J2un+1(P00) -1 - 2Mn)<]flf2un(p00)
n —Hn03
X <2> Jn
with
Poo = Poo(A, 2) 1= (—2iz\) /2 (principal branch) (7.49)

holds in the limit n — oo with # = n~!z uniformly for z = O(1) and |A\| = 1. Similarly, to

study the parametrix near 0, it will be convenient to rewrite formula (7.48) in terms of modified
Bessel functions:

FGm) = (O Du(2v/ ().
Replacing n with —n, O with ©g, and A with —A~! and recalling that j_, = p,, gives in
the same limit,

P (2) 185 (-1 2)

_ e—i7r/4 xﬁ—n_% @ F(Qﬂn + 1)12;“171(90) F(l - Q,Un)llfmm (pO) + (’)(n_l)
203 Y—n 2 | =P@un + Dz, +1(p0)  —T'(1 = 2p0)1-2p,-1(p0)
n —HnO3
it J .
(3)
with
po = po(A, 2) == (21,2)\_1)1/2 (principal branch). (7.50)

The jump matrix in (7.42) therefore reads
R, - ()\, nilz)_anﬂL ()\, nilz)

o Pﬁ F(2ﬂn + 1)J2un—1(poo) + O(nil) _P(l - 2ﬂn)J1—2un (poo) + O(nil)
2 T 2un 4+ 1) Jops1(poo) + O(n7) =T(1 = 2pn)J—1-2p1, (poo) + O(n71)

—HUn0O3 Hn03
r}/*n Ko — K — n o 0 _Bn —1 <n> 2
X ——gfn rdy () | = Jnedd | _ Jo | = —
Tn ( ) <2> 2 [ﬁnl 0 ] 2 £0

[ L(2pn + DIz, -1(p0) + O(n™h)  T(1 = 2pn) 112, (p0) + O(n ) ] o

L+ Dloprpo) + O(0) L1~ 2) Loy a(po) + O[]+ T
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Expanding (7.41) for large n > 0 gives

d(z)? = 2k =2k _ @ ey — el F(% — Ken — NH)P(% — K-+ /‘n) £ 2—n—2kn
Y—n 68 6%0—6% F(%_Hn_ﬂn)r(%_’in+ﬂn)
e? e?

— oo™l

e%(l — e%e%) (ego — e%)

47.[.23325,”—2/{”
X
F(% + K op— ,un)F(% + K_n+ Mn)r(% — Kp + ,U/n)l_‘(% — Rn — Nn)

_ 4§ €0€o0C] xzn,n—znnn—m—@ﬁewe2n22n+®0—@w—2(1 + O(n_l))

co (1 —etef) (€% —ei)

n — +00.

We now properly define d,(x) for large n by selecting a definite value for the square root of

1— 2.2
. 616’3 (7.52)
€5, — €7

after which d,,(x) has the asymptotic expansion

5/2 2.2

dp(2) = €160 1 1- €10 )k —n—knyy—n+ 5 (—O0+O00) gnon+ 5 (B0 —Osx)
3/2 2.2 2 2
60/ (1 - 6160) € — €1

X (1—1—(’)(7@*1)), n — 400.

Then, by definition, we have

Y— _
Pl (x)x -
Tn €1€00 € €1

X 2_"_%(90_900)(1 + (’)(n_l)), n — 400.

Furthermore, using identities (7.28), (7.34), and Stirling’s formula yields

n

() e (3 - e
J—n,22 ed/? (e2e? — )T (2un)T (& = Ko — i)
7/2

n
_ e deger  T(=2pn) _ni1Cegte.)
2 (- 3 T

x 2" F3(©0—6xx) (1 + O(nil)), n — +00,

e?’L

and similarly,

<n>2“” Jnp2 (71)2“" 6%2(636% — DT(2p0)T (5 — Kimn — ftn)
2 Brnd—n11 el/? (€2 — €2)D(=24n)T (5 — K + fin)
3/2

2
_ e deoer  D(2pn) o _nil(-@0+60u0)gn
ed/? (€3 — ef) T'(=2pn)

x 2" F3(©0—6cx) (1 + O(nil)), n — —+oo.
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Therefore, the central factor on the right-hand side of (7.51) satisfies

—Uno3 Hno3
Y—n Kn—K—n n o 0 _5n — n
@) (2) T [ﬁgl 0 ] T (2)

| €0€2€00 I'(—2un) 1-— e%e%
i 2 e2 —e?
_ (241n) ) 1 + O(n_l).

| Tew) [1-44 0
eoe2600 I'(—2py) \| €2, — €2

The leading term is independent of n (mod 2) and has unit determinant. This proves the
following.

Proposition 7.8. Define the constant matriz which depends only on the even/odd parity of n

Via Uy, €1, e%, and €2 :

- 0
2,2
0 _ €0€2€c0 1 — efjey
Veven/odd o i ego N e% (7 53)
: 2,2
i 1 —ege] 0
e 2 _ o2
0€2€0 €50 €1

Then the following asymptotic formula holds uniformly for |A\| =1 and z bounded:

_ Ja —1(/)00) —J1-2 (poo) ven/odd
R,_(\z/n) 'Ry (A, 2/n) = poo | 7H" fin - yeven/o
O 3/) MR (0, 2/) = 5 [ i) )

-1

+ (’)(n_l),

xi Iy, —1(po) I 24, (po)
po | —I2pn+1(p0) —I-1-24,(po)

as n — oo along even/odd subsequences.
Proposition 7.8 suggests defining the following limiting Riemann—Hilbert problem.

Riemann—Hilbert Problem 7.9 (limiting problem, even/odd subsequences of n). Fiz generic
monodromy parameters (e1,es), and z € C with |Arg(z)| < w. Seek a 2 x 2 matriz function
A= Reven/Odd()\, z) with the following properties:

o Analyticity: R0 (X 2) is an analytic function of X for |A| # 1.
e Jump condition: Re"en/Odd()\, z) takes analytic boundary values on the unit circle from the

interior and exterior, denoted Riven/Odd(/\, z) and Re_ven/Odd()\, z) for |A| = 1 respectively,

and they are related by

]__:{even/oddo\7 2) = Re_ven/odd()\’ 2)poc [JQNn—l(Poo) —J1-24, (Poo) ]

+ J2un+1 (poo) _J—1—2un (pOO)
-1
x Veven/odd . i IZ,un—l(pO) I1_2N" (pO) . (754)
00 —12,un+1(90) —I_1-2p, (o)

e Normalization: R®V°dd()\ 2) 5T as A — oo.
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Note that the Bessel functions J,(ps) and I, (pg) appearing in the jump matrix in (7.54) are

analytic on the unit circle |A\| = 1 except at the point A = \; := —ie~1418(2)  However, from the
identities
Jy(Poo)‘A:ACefio =™ JV(pOO)‘)\:)\CeiO and Iv(po)h:%e—io =e ™ Iu(ﬂO)‘A:ACeio

and the fact that the indices v in each column of the Bessel matrix factors in (7.54) differ by 2,
combined with the fact that Vever/edd ig ap off-diagonal matrix, one sees easily that
~1

JQ#nfl(pOO) _JI*Q#n (:000) . Veven/odd . IQ,LLnfl(pO) 1172Hn (pO)
J2M7L+1(p00) _J—1—2Mn (pOO) _I2MVL+1(/)O) _I_1_2/1/n (po)

is continuous at A = A and hence is an analytic function of A on the unit circle. The scalar
factor poo/po is also analytic for |A| = 1, and therefore the jump matrix in (7.54) is an analytic
function of A\ when |A\| = 1. At this stage, the existence of a matrix function Rever/edd() )
satisfying Riemann—Hilbert Problem 7.9 is not clear. However, it turns out that there exists
a discrete set X¢ven/°dd © C such that for z € C\ 2/ such a matrix does exist and is in
fact a meromorphic function of z, see Section 9.1 below.

Lemma 7.10. Let (e1,ez) be generic monodromy parameters and take z € C\ ¥Ve/°dd  Thep,

: - 8tin 1 7 dd A dd

1 Ve Vi
Dim (0 zm) = = 2[R0, 2) + R0, 2)
n even/odd

—2

Aeven /odd Aeven /odd
— RSO0, 2) + R0, 2)] (7.55)

Proof. Noting that Rever/ odd (), 2) necessarily has unit determinant, we form the matrix quo-
tient

E.(\,z2) =R, ()\,n_lz)ﬁeven/(’dd()\, 2)7L, |\ # 1.

Clearly, E,, (), z) is analytic as a function of A in the domain of definition, and for each fixed n
it tends to I as A — oo as this is true for both R, ()\, nilz) and Reven/"dd()\, z). Across the unit
circle, the boundary values of E, (), z) are related by

E, (A z)=E,_(\ z)fliven/()dd()\, z) [Rn,— (A, n_lz)*anHr (A, n_lz)]
% [Re_ven/Odd()\’ Z)—l]_f{(i/en/odd()\7 Z)] —IRe_ven/Odd()\’ Z)_l, |>\| =1.

Thus, the jump matrix for E, (), 2) is the conjugation, by a unit-determinant matrix func-
tion of X\ independent of n, of the matrix ratio of the jump matrices for R, ()\,n_lz) and
for Reven/"dd()\,z). But by Proposition 7.8, the latter ratio is I + (’)(nfl) uniformly on the
unit circle as n — oo along even or odd subsequences. The conjugating factors exist and
are uniformly bounded for z in compact subsets of C \ 3(y1,y2,y3). It follows that in this
limit, E, +(\,2) = Ep—(A,2)(I+ O(n™!)) uniformly for [A\| = 1 and z in compact subsets
of C\ X(y1,¥2,y3) as n — oco. By standard small-norm theory, E,, (), z) exists for large enough
even or odd n, and tends to the identity as n — oo, in particular in the sense that

)\lim ME,(\2z)—1)—0 and E,(0,z) =1
—00

as n — oo along even/odd subsequences. By the definition of E,(}\, z) it follows that in the
same limit

lim AR, (A, n7'2) = 1) — lim A(R®/°4(\ 2) ~T),  and

A—00 A—00

R, (0, 'rflz) —y Reven/odd (0, 2).

Combining (6.6) with (7.43) then shows (7.55). Partly, this works because the dominant term
in =% (ntz;m) is Ap12(n! [
Ep12 ; ni2(n71z).



Painlevé-II1 Monodromy Maps Under the Dg — Dg Confluence 63

7.6 Transformations of the limiting Riemann—Hilbert problem

In this section we transform Riemann-Hilbert Problem 7.9 to match the form of Riemann-—
Hilbert Problem 5.1. To this end, using [38, equations Q10.4.4) and (10.4.6)] to express the
Bessel function J,(¢) in terms of the Hankel functions H,,l)(o), o (¢) and the relations [38,
equation (10.4.4) and (10.4.6)],

HO)(e) =e™HM(e),  HE)(0) =™ HP (o),

v

we arrive at the identity:

- JZunfl(POO) _J172un(p00)
J20,+1(Poc)  —J-1-2p, (o)

1 9 _

_pﬁ Héu)n_l(poo) Hl(—)Z,un(pOO) 1 e27r1,un g

9 (1) (2) —e2mipn 1 . ( . )
Hy, 1(psc) HI 5, (Poo)

To obtain appropriate asymptotic formulee for the matrix on the right-hand side of (7.56), we
first apply the identity [38, equation (10.6.1)]

2
2 0) + B ) = THP @), k=12,

which gives
1 2
p—03/2 [1 0] Poo Héu)n—l(pOO) Hl(—)Q,un(poo)

L2 Hé;lﬁ)n—i-l(pw) H(—zl)—zun(POO)

(1) (2)
_ VP Hyppp 1 (Poo) Hy 2oy, (o) _ (7.57)

2 4NnH2(;1¢)n (Poo) _4ﬂnH£22)yn (Poo)

The matrix on the right-hand side is amenable to asymptotic analysis as po, — 00; using the
asymptotics of Hankel functions [38, equations (10.17.5) and (10.17.6)] and (7.57) yields

poo |HSD _1(ps)  HZ,, (poc)

2 Hélll)n-i-l (Poo) H(—21)—2un (Pso)
1 pun 3
1 R A —
_ 202 32| (g, 1
22 32u,
5 - (16p2 — 13) (16p2 — 9) (16p2 — 1)
(1642 —9) (1612 — 1) 150, n O(poo4)>pg§/2

6441 (1612 — 1) —(16p2 —9) (162 — 1)

) H—age_ﬂ-iun miog /4 1 i iPo003 A
X (2y/in) N 1 _il® ; rg(poo) € (—m, ). (7.58)
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We turn to analogously treating the final factor of the jump of Rever/ odd()\ 2); using [38, equa-
tion (10.27.7)] and the above relations, we have

Doy,—1(po)  Ti—2u,(po)
—Ioy,+1(p0) —I-1-24,(p0)

_eT™/2p, Hz(;lz)n—l(efmmm) Hfz—)zun (e7™2po) [ emikn emitn ]

- 1 — i 2 i _ A3Tipn o —Tipn
2 Hl(-i-)Qun (e 1/2P0) H(—l)—Qun (e 1/200) ¢ ¢
This allows us to find the following large-pg asymptotics:

o i/2py [HS,) y(e7™2p0)  H{?,, (e77/2py)

2 Héilﬂ(e—wi/?po) H£21)—2un (e_ﬁiﬂpO)
1 pn 3
1 - -
22 32| [y 1
2 2 32u,
162 — 13) (16p2 — 9) (16p2 — 1)

1612 —9) (16p2 — 1 (1645 n L _ -

( Hn )( Uy ) 48Nn +O(PO4)>[303/2
644p (1602 — 1) —(16p2 —9) (1602 — 1)

g€ T | " 3
X (2y/fim) 3‘3\/% [1 _li] P75 Arg(pg) € (_22”) . (7.59)

For convenience, we introduce the notation
i . . H(l) o H(2) o
Hn(o) — 4L67T1/4eﬂ'llin . % 2(‘;)”1( ) (;)2/1%( ) , (760)
Hn H1+2un(<>) H7172un(<>)

with a fixed determination of the square root; this choice of prefactor guarantees that we
have det(H,) = 1 identically. Using the identity [38, equation (10.11.4)], we note that H,,
satisfies

H,(e™o) = Hy (o) [‘1) 2COSZ217%)] . (7.61)

We can now rewrite the jump condition (7.54) as

1 e27ri,un

A even/odd A even/odd
R+ / ()\, Z) = R_ / ()\, Z)Hn(poo) [_ezﬂiﬂn -1

] Veven/odd

N R —1
x [_eﬁ " _ew MTL ] H_l(e_’riﬂpo).

Next, define
Lo 377
Qeven/odd(\ oy = i MQ 32;,1 (20/fin)"
gt 7n 324,
H, (o), Al > 1,

x Reven/odd () 2) { (7.62)

H,(c~™/2p0), |A| < 1.
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Then, Qever/edd gatisfies

n/odd ven /odd 1 e2minn odd
QTN 2) = 2N ) [_ O ]V /°
eTikn eTikn -t
X _e37ri,u,n _e—wiun 9 ’A| = 17 (763)

where the jump depends only on the parity of n. Furthermore, since p» and pg change signs
across the negative imaginary axis, we may use (7.61) to find

even/odd _ Oeven/odd 0 -1
Q+ (Aa Z) = ()‘7 Z) 1 2 COS(27TNn) ) (764)
for A on the negative imaginary axis with |A| > 1, oriented towards the origin and
Qeven/odd(A Z) _ Qeven/odd()\ Z) 0 -1 (7 65)
+ ’ - " 2cos(2mpg) | '

for A on the negative imaginary axis with |A| < 1, oriented away from the origin.
It follows from Riemann-Hilbert Problem 7.9, (7.62), and (7.58) that Qeven/°dd has the
following asymptotic behavior as A — oo:

o A1 i

where the (’)(/\_2) represents an asymptotic series that is differentiable term-by-term with re-
spect to both A and z. Analogously, we have

1 (i -1
Qeven/odd()\vz) _ (]1 + Eeven/odd(z))\—l + O()\_2))p03/2— [1 1] elpooO'B, (7‘66)

S)even/odd()\7 Z) — Aeven/odd(z) (H + Heven/odd(z))\ + O()\2))p83/2e—7r103/4

1 |1 -1
= P03
X 7 [1 —i] ef073, A — 0, (7.67)
where (’)()\2) represents an asymptotic series at the origin A = 0 which is similarly term-by-term
differentiable. Notice that we can now relate the limiting formula from Lemma 7.10 to Qever/odd
using definitions (7.62) and (7.60) to find that
Ri\{en/odd(o’ Z) + R;\llen/odd(o’ Z) . Ri;en/odd(o’ Z) . R;\Q/en/odd(o’ Z)
—7i/2
T 7i/4 i, © £0 2 —i 2 —ri even/odd
= %e [Amin g [(H(—1)—2un (e /2/’0) + Hl(—)Qun (e /2/)0))921 / (A 2)
1 —7i 1 —i ven/odd
- (Héli)n—l(e /QF’O) + Héﬂ)n-i—l(e /QPO))QE; /o ()‘72)],\:0'
Then, using (7.67) and (7.59) yields
1
lim  up,(ntz) = Ueven/odd(z) = .
nosoo ( ) ZZAS\IIen/Odd(Z)Q

n even/odd

To extract the monodromy parameters of U(z) from (), z), we notice that it solves
Riemann-Hilbert Problem 5.1 with

1
® =10 = —2cos(2mpy) = — (e% + 2) , (7.68)
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and

: . _ -1
1 627r1p,n ven eTikn eTitn
COoo = [_e2wipn -1 ] S Ve fodd.. [_egﬂ-i#n _eﬂ-iun] . (769)
Since u, and Ve®/°dd depend only on the parity of n (see (6.8), (7.53), respectively), and
e1 = e1, = €™#n (see Remark 6.3), it follows that (7.68)—(7.69) depend only on the parity of n.
Recalling the formulee for y; in Section 5.4, one immediately arrives at formulee (1.20)-(1.22).

8 Small x asymptotics and proof of Proposition 1.5

Inspired by [33], see also [22, Theorem 3.2], the goal of this section is to compute the asymptotics
as * — 0 of the Béacklund iterates uy,(x) for fixed n and, by evaluating at n = 0, arriving
at the asymptotic behavior of a generic solution of PIII(Dg) in this limit. Observe that the
matrices E%G (z) and A%G) (z) defined in (6.5) and (6.4), respectively, can be expressed in terms

of Q, (A, z) as follows:

20)(2) = An(z) + Jim MQn(\,z) —1) — %ixag, A9 (z) = Qn(0,2).

Using (6.6) then gives
—iAnylg(x) —1i lim )\Qn,lg()\,l‘)
A—00

Un () = 8.1
() Qn,11(0,2)Qn,12(0, 7) 5
Also, combining (7.18) and (7.21), we have
iftn (1 — a%)
An,l?(x) = ,Ynxg_z,in (82)

in which all z-dependence is explicit. To analyze wu,(x) for small z it therefore remains to obtain
asymptotics of Qu(A,x) as  — 0. To do this, let Vq denote the jump matrix (7.40). Then,
denoting the off-diagonal constant matrix

0, == J.e3? [ 0 _ﬁn] J!

,8771 0 —n> (83)

we arrive at

Va(h ) = A 227D MGEA; ki, 11n) O M (1A 6, 1)

1 —03/2

x D=Ly =r-nos (—A> ey 27, I\ =1,
A

where matrices D,,, M are defined in (7.24) and (7.31), respectively. To consider the limit

x — 0, we start with the Whittaker matrix M(ixA; £n, ttr,). Using [38, equation (13.14.6)], we

obtain

Mmll(z) = Z%—HL (1 -

-1

1f2uz+0(z2)) , z — 0.
Therefore, using the definition (7.31) of M(Z; &, 1) we have
(—iz\)P32M(ZA; Fop, i) (—izX) THRo3
Kn—3%—ln Kn—3+Hn

= 1 . + O(\z) =t M (Az),
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in the limit x — 0 uniformly for |A\| = 1. Similarly, in the same limit,

(1A ™) P M (=A™ 5, i) (fmA1) T4

1 1
Kep— 5 —Mhen K_p— 5+ [— -1

=: Mo (zA71) = Mg(0) + O(zA~1).

For x > 0, the functions )\%, (—)\_1):', (—izA)P, and (ia:)\_l)p (the latter two being principal
branches) all have the same branch cut, namely iR_. One has the following identities:

(—izAyP = e PPN (iwATh) = RPN, (= AT = @A
It follows that
)\g/zaz”"‘” D, M(@(z\; ki, fin) = x(“"*%)‘”eim”/lenMoo()\x)x“"@e*i”“”‘”p)\%"m,
and
L 11 1) 73/
M(—l:c/\ Lok, u_n) D_}La: K-nd3 (—)\>i
= e_i”“*"‘m/%_“*"“)\%‘”031\/[0(:U)\_ ) ! _””’3/4D (’_” n)os.
Because O, is off-diagonal, the central factors in Vg (A, x) simplify as follows:
a:“""‘"’e*%i”“"US)\é"%One*%i”“"”%*“""?’)\%"% = Q,z 23,
Consequently, we have
VoA ) = x(“"_%)"3ei”"3/4Dn - Moo (M) - O,,x 203
x My (zA~!) e s/ AD L g (Gren)s 3o, (8.4)

The matrix Vq(A, ) does not possess a finite limit as z — 0 due to the factors glFn— 2)"3
g3 =r=n)os, ; this can be handled by introducing the following transformation. Let ¢ := Az and

Qn(ga ) Dnl 17r03x(é—nn)03

(i x)a: —H-:n U3eZI7rUSD |g‘ > 1,
QG mVals mieato b el 55
X Mo (0)z*#773 O "Moo (¢) |z <] <1,

3

Qn (s, z)eg >zl ”_5)"3D ”“’31\/10(0)5172“””30511\/100(0_1, o] < fl.
It follows that Q,, is analytic as a function of ¢ for ¢ € C\ {|¢| = 1} and satisfies
lim Q,(s,z) = L.
¢—>00

Furthermore, on the circle || = 1, the jump condition Qn,Jr(g,:n) = Qnﬁ(g,m)vé(g,x) holds,
where the jump contour has counterclockwise orientation, and

VQ(g,x) = D;le_”i“3/4m(%_’“")”3VQ <;,x> 630356(’“”_%)"Z‘e“i‘m/4
x D_,Mg(0)z?730, M1 (s).
Using (8.4) immediately yields
Vg (6:2) = Mac(6)Ona ™27 Mo %) ™ Mo ()220, M ).

Therefore, Qn(g, x) solves the following Riemann—Hilbert problem.
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Riemann—Hilbert Problem 8.1. Fiz generic monodromy parameters (e1,ez), and z € C.
Seek a 2 x 2 matrixz function ¢ — Q, (s, x) with the following properties:

o Analyticity: Qn(g x) is an analytic function of ¢ for |s| # 1.

e Jump condition: Qn(g, ) takes analytic boundary values on the unit circle from the interior
and exterior, denoted Q. (s, z) and Qn,—(s,z) for|s| = 1 respectively, and they are related
by

Q.+ (5,7) = Qu— (5, 2) Moo (6) Oz 227 M (wzg_l)_lMo(O)x2“””30;1Moo(<)_1

o Normalization: Qu(s,z) — I as ¢ — oco.

The jump Vg has a limit as = — 0, uniformly for Al =1 for [Repun| < %, and satisfies the
estimate

VQ(C,a?) =1+ O(x27\4Reun|).

By the standard theory of small-norm Riemann—Hilbert problems, we arrive at
Qu(s, ) =1+ O(a? [4Rennl) as = —0
uniformly for ¢ sufficiently small, and

Jim <(Qu(s,) ~ 1) = lim ¢(Qu(s,0) — 1) + O(a?Rerl) — O(z2-Rer).

We can now use the above estimate and expressions (8.1) and (8.2) to compute the asymptotic
behavior of u,(z) as x — 0. To this end, note that by (8.5) and the definition of D,, and g,

1 ~
lim AQp12(\, 2) = ———2® 7% lim <Qn12(s,2), || > 1,
A—00 HnYn §—r00
and so
Jim AQn12(), %) = O(a?m-1ARemly =g 0. (8.6)
—00

Likewise, (8.5) gives
Qn,11(07 x)Qn,lQ(O’ x)

07 o1 (i — 5 + Mn) (Kon — & 4 ) g2in =1 4pm
_ Dg,n + (’)( 2fin—|4Re in| ), Reun > 0, ®.7)
ApD—n11D_pn2z | OZ 15 (kn — ) (Fm — L — piy) 2201+ 4n .
+O( an |4Reun )’ ReMn <0.

Using (8.6), (8.7) in (8.1) yields

4ipd (1 —a )D—n 1D _p 22
VnDTQL,nOn,zl (“n - 5 + :“n) (’Ln - § + “n)

up(x) = g1+ 0(1:5)) as x — 0,

when Re i, > 0 and

4ipd (1 —a )D—n 11D—n 22

un<$) = 2 1
W’nDn,nOn,lz ("fn - 5 - Mn) (“—n 9~ /‘n)

1‘_4“"_1(1 + (’)(m(s)) as x — 0,



Painlevé-II1 Monodromy Maps Under the Dg — Dg Confluence 69

when Rep,, < 0, where § = min(1,2 — |[4Re(uy,)|) in both cases. Using (8.3), (7.39), (7.35),
(7.27), (7.24), and (7.10) gives the expression”

D0 = 205 + o = P+ ean = % +1)
F(QGnMn)QF(—% — Enfn — @ + 1)F(% — €nlln — 6% + 1)
edeze?, (eo - 61) (e% €2 )
G-
(eget —1)
636%62 (eg — e%) (e% — ego) ’

up(x) = —

Re pn, > 0,

x (1+0(2?)) (8.8)

Re puy, <0,

where €, = sgn(Reuy). The concerned reader may note that the leading coefficient in (8.8)
is finite due to the genericity conditions on (e1,e2) (see the beginning of Section 7). Indeed,
assumption (i) guarantees that 2u, ¢ Z, condition (ii) requires ejes # 0, and condition (iii)
guarantees that

gj:/,tn—i-%gZ and gj:,un—i-@TOOQZ.
Evaluating the above at n = 0 yields (1.24) and finishes the proof of Proposition 1.5.

One notable application of this is to the family of rational solutions of Painlevé-III already dis-
cussed at the end of Section 4.2. This corresponds to the choice m = ©yp = O —1 and g = 1/4.
It follows from (8.8) that u,(z;m) has a well-defined value at = 0 which is given by (2.20),
(2.21) in the case where n is even or odd, respectively. We can verify that these values are con-
sistent with (8.8) by noting that e, e, e%, €2, are invariant under an even increment n +— n + 2,
and so we have the general formulse

uor42(0) (2K + 2pop 40 4+ O0) (2K + 2pop 40 + 1 — O)
usk(0) (24 2k — 2p9p + Og) (2 + 2k — 249 — Os0) |
ur41(0)  (2k — 14 2pop41 + O0)(2k + 1 + 2p0p 11 — Ooo)
Upp—1(0)  (2k 41— 2051 + O0)(+2k + 1 — 2401 — Oog)’
Plugging in the specialized values of the parameters and using the known values of ug(0;m),
u1(0;m) yields the equality of the expression in (8.8) with the product formulee (2.20)-(2.21).

9 Alternative Riemann—Hilbert problem for Painlevé-I11(Dsg)

9.1 Fabry-type transformation and existence of Reven/ odd ()| 2)

The Lax pair (5.25) is unusual in that its coefficient matrices have non-diagonalizable leading
terms at both of its singular points A = 0 and A = oo, i.e., the coefficients of \° and A2
in (5.24) are not diagonalizable. To deduce the existence of the matrix functions Qever/odd() )
and Reven/ Odd()\, z), we identify this Lax pair with ones appearing in the literature by considering
the following Fabry-type transformation

s(€.9)= = | 1) }] (22) s/ g
9(526%7?)7 _g < Arg(g) < ga
X Qe 2)(—ioy), < Arg(€) <, (9.1)
9(526%,2’)102, -1 < Arg(§) < -3,

9The case Re(n) = 0 can be treated similarly, and produces a leading term that is a combination of both
leading terms, which we omit for brevity.
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—02Cpo 02

Figure 11. The jump contour and matrices for S, where $°, S are as in (5.15) and Cos is in (7.69).

when |£] > 1, and

DT g (¢, 2), ~3 <A <3,
S(i, Z) = E !_1 i] (22’)*03/45703/2 . Q(g%;?,z)iag, % < Arg({) <, (92)
Q(erT,z)(—iag), —m < Arg(§) < —3

when [£| < 1. Denoting

K= ¢1§ [1 _1] (9.3)

and using expansions (7.66), (7.67) (note the branch choices in (7.49), (7.50)) one can directly

check that
0 o)1 120k 0
2225 (2) olie | o =D

—~

S(¢,z) =K' <H+ _;2+(9(§_3)> Kel(29)'/*tos,
1

as £ — 0o, and

A(B)(z)
(8) 12
s(e,z) =K | [0 §+ 0 (22)172
(22)'285)(z) 0
f(z) 2 _im 22)1/2¢-1
10) 3R (22) /7 o3
+[ 0 AP E+O(E) |77 Ke ’

as £ — 0, where f(z) =1 ((A111111)(2) + (A121121)(2)); this partly works due to the identity
KO’Q == —O‘3K. (94)

Furthermore, one can directly verify that the jump relations (7.63)—(7.65) translate to the jumps
shown in Figure 11, where Cyo, is as in (7.69). The jump matrices satisfy two cyclic relations
about the nonsingular self-intersection points of the jump contour, namely,

about & = +i: Cyl 8% (i09) oo (i02) (S]) ' =1,
about £ = —i: [(iag)Cgm(iag)}_l (Sg)_lCOOO =1L
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Observe that the matrix S(&, z) possesses the following useful symmetry:

_S(_€72)027 ‘£| <1,

(9.5)
S(—€,2)0, €] > 1.

S(§7 Z) =02 {

This result also uses the identity (9.4). Using this symmetry, it can be checked that the Fabry
transformation (9.1)—(9.2) is invertible with

Q) = pZ/2(\, 2)KS (V—i)), (9.6)

where all roots are principal branches.
While the singular behavior of S(§,z) at £ = 0 is concerning, the fact that the leading
coefficient is a singular matrix allows us to handle this problem by letting

§@J%:@—éT@OS@&% 0.7)

where
N PO
T(z) =K (2z)1/2Ag§)(z) K. (9.8)
0 0

Since the prefactor is analytic in C\ {0}, the jumps of S are unchanged. As for the asymptotic
behavior, as £ — oo

8
~ 0 _M 1 ) 12
S(g5) = [T+K™ o Al | K o) eI,
_1(22)1/2521 (2) 0
and as £ — 0
1
Q 0 T o A8, ir _
8(¢,2) = [ K™ (3) (22)12A0(2) | e THK + O(¢) | @)% s,
(22)12A457 (2) 0
Remark 9.1. Noting that
0 v
det [ K™ (2z)1/2Ag§)(z) e TBK | =1,
(2)'/225)(2) 0

one can carry out a computation similar to the one in Section 5.3 to arrive at a pair of differential
equations analogous to (5.25), but with diagonalizable leading matrices at the two singular points
at £ = 0, 0o; this system appears in [33, Chapter 2] and [14], for example. Since we do not make
use of this Lax pair, we omit the calculation.

Using (9.4), it follows that

- 2T(z) — 0 <]1 + iT(z)) o2,
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Figure 12. The jump contour and matrices for S, where the jump matrices are as in (9.10).

which implies that matrix §(§ ,z) also satisfies the symmetry (9.5). To simplify this symmetry,
let

§(§ Z) — e—w103/4 {§(§’2)6w103/47 ‘§| > 1,

S(6, 2)e o1, ¢ < 1. (59)

Then, §(£ , z) solves the following Riemann—Hilbert problem.

Riemann—Hilbert Problem 9.2. Let (y1,%2,y3) € C? be the monodromy data corresponding
to U(z) given in (1.20)~(1.22), and fix z € C. Seek a 2 x 2 matriz function & — S(&, z) satisfying
the following properties:

o Analyticity: §(£, z) is an analytic function of £ for |§| # 1.

o Jump condition: §(£ , zl takes analytic boundary values on the unit circle from the interior
and exterior, denoted Sy (&, z) and S_(&, z) for |§| = 1 respectively, and they are related

by
S4(¢,2) =8-(¢,2)I5(9),
where Jg(§) is shown in Figure 12 and
Con := e™93/4C emi8/4, §o0 1= o mios/AgeogmiTa/d _ mios/4(geoy~lg=mios/4.

§8 — eﬂio’3/4sge—7ri0'3/4 — e—7TiO'3/4(Sg)*le7ri0'3/4‘ (910)

o Normalization:
§(§72’) = (H + E(S)(Zﬁ’l + 0(5—2))ei(2z)1/2503 as 5 — 00, (9'11)
and

S(¢,2) = 3(8)(2)(}1 +I0(2)¢ + 0(52))8(22)1/267103 as £ —0, (9.12)

where A®)(2) may be written in terms of entries of A®(2) and K.
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Now, the matrix §(§ , z) satisfies the symmetry
Ul/S\(_§7 Z)Ul = /S\(§7 Z)‘

Furthermore, it was shown in [33, Theorem 4] that matrix §(§, z) exists for all z outside of
a discrete set ¥ and is a meromorphic function of z in C \ ¥. Since the transformations used
to arrive to S(&, z) from R(), z) and Q(A, z) are invertible, we deduce the existence of matrix
functions satisfying Riemann—Hilbert Problems 7.9 and 5.1.

It was shown in [39] that ¥ coincides with the set of zeros of the 7-function associated to
the Riemann—Hilbert problem. According to [23] the expression for the logarithmic derivative
of the 7-function associated to Riemann—Hilbert Problem 9.2 is given by

d 1 ~ -

—In(7(2)) = ———(Tr (II(2)03) +iTr (E®) (2)03)). 9.13

£ OE) =~ (T ([l(z)oy) +1T: (B ()0)) (913)
After a long symbolic computation using the transformations (9.1), (9.2), (9.7), and (9.9), we
get the following result. The Lax pair (5.1)—(5.2) is gauge equivalent to

~

oS - ~ oS ~ ~
875(57 Z) = A(S) (57 z)S(£7 Z), &(57 Z) = Z(§7 Z)S(‘Ea Z)a
where
R / . 1/2
A® (€, 2) =i(22) %03 + i;g((j)) o1+ 5—12 <;) (U(z) — Uzz)) 03
1 [\ 2 1
2 (z) (o)
and

_ i¢ U'(2) 1 1 !
Z(€,2) = 2% + 10027 2% @2 <U(z) - U(z)> o3
11 1
~ 2 (V0 o)

Similarly, the coefficients in (9.11)—(9.12) have the following expressions
(8)(2) _ (e—iw/4U(Z)1/2)<71’

2\ Y2 2U'(2)? 1 2\ V2 U'(z2)
v =i(3) (8U<z>2 U(z”mz)) 5= (3) we

1/2 7 2 1/2 7
z 2U'(2) 1 [z U'(z)

——_(Zz -U — — . 9.14
@=-(3) <8U<z>2 &) U(z)) wti(3) e 911
In our computation we expressed W (z), X(z), and V(z) in terms of U(z) and U’(z) using the
identities (5.3)—(5.4) and the first equation in (5.5). Plugging (9.14) into (9.13) we get

d 2U'(2)?

&hl(T(Z)) = 10(2)? —2U(z) +

P>

[

=

U(z)
Differentiating once again, we have

d? 1(d 2

2 In(7(z)) = —- (ln(U(z))) . (9.15)

Now we see from (9.15) that the set ¥ of zeros of the 7-function coincides precisely with the
union of poles and zeros of the function U(z).
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9.2 Relationship between Ue®ver, y°dd

To complete the proof of Theorem 1.4, we must show that U°dd(z) = —1/U*"(z). One can
already observe that this should be the case by checking that the leading behavior predicted
in Theorem 1.7 satisfies the involution, but we now present a proof on the level of Riemann—
Hilbert problems. First, note that if one chooses the square root in (7.53) in such a way
that VVer = ig3Vodd it follows from (7.69) that!”

odd
COoo

= Ugcg‘égndg.
This, in particular, implies the symmetry
S\ 2) = 38V (), 2)o,

and, in view of (9.6), we have

1 -
Q0N 2) = pZ/2(\, 2)K (H + mT‘“’“(z)) 038V (V—iA, 2)o3. (9.16)

Recalling (7.49), (9.3), (9.8), and the identity 2iU(z)X(z) = Agﬁ)(z)/Aggl)(z), see (5.8), we
have Q044 (), 2) = G(\, 2)QV" (), 2), where

G\, 2) = pB3/2(\, 2)K <11+ \/%Teven(zo o3 (H + iMTeven(z)> P72 (N, 2)

_ 1 2UeVen(Z)XeVen(Z) _4i<UeVen(Z)XeVen(Z))2
poo()\a Z) —i _2Ueven(z)Xeven(Z)
+ peo(N2) 8 (1)] . (9.17)

To deduce the relationship between U™, U4 we now recall that Qeven/edd satisfy the Lax
pair (5.25). Transforming Q" as in the right-hand side of (9.16) induces a gauge transfor-
mation of the M\-equation and we have that 9°9¢ satisfies two equations; the first is the one in
(5.25) and the second is

ogedd A odd
a)\ (>‘7Z) _A()‘a Z)Q ()‘72)7
where
A oG -1 even -1
AN z2) = N A 2)GTH (N 2) + G, 2) AT (N 2)GT (), 2).
Using (9.17) and (5.3), we see that
~ 0 iz
AN z) = 0 0]
N l 9 _ Veven(z) + SiUeven(Z)Xeven(Z) Feven(z)
A\ ) —2 4+ Veven(z) _ 8iUeven(Z)Xeven(Z)
B i (Ueven(z))QXeven(z) 2i(Ueven(z))3(Xeven(2))2
22 iUeven(Z)/2 _(Ueven(z))2Xeven(Z) )

%0One can check that making the other choice of the square root yields the same connection matrix but with
the opposite sign, and so it follows from Remark 5.2 that this choice is immaterial.
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where

4
Feven(z) e 4iUeven(Z)Xeven(Z) (Veven(z) + 6Ueven(Z)Xeven(Z) _ 2iUeven(z)) _ Uevei(z) .
Since det(€2°9) = 1, it follows that A(),z) = A°Y(X 2) and we arrive at identities relating
all the potentials [ever/odd(y) yreven/odd () yjyeven/odd ) = xeven/odd (). comparing the (2,1)
entries of the coefficient of A~2 yields the desired relation

Ueven/odd(z) _ 71/U0dd/even(z)‘

9.3 Solutions of Suleimanov

Considering the limit of even Bécklund iterates when p = 1/4 yields a particularly symmetric
solution of Painlevé-III(Dg). The corresponding monodromy data are the following:

S0=8®=I  and Cou = (i02)Cooolics) = [‘” 91].
Y1 Y2

In this case, we have that y3 = 0. This is, for example, the situation when considering rational
solutions of Painlevé-III as outlined in Section 4.5.

Remark 9.3. In this setting and up to a rescaling of the z and ¢ variables, Riemann—Hilbert
Problem 9.2 is the same Riemann-Hilbert problem as in [11, Section 13.1], which corresponds
to solutions of the sine-Gordon reduction of Painlevé-II1

2w 1 dw .

W + E E 4+ sin w(t) = 0. (918)
This is partly due to the parameters y;, yo satisfying the condition y? + 32 +1 = 0 (i.e.,
det Cpoo = 1), and is to be expected since equation (9.18) is equivalent to (1.3) and their solutions
are related via the formula

U(z) = je~tw(Fe"™/14v2z) (9.19)

We can also mention that real-valued (for real z) solutions of (9.18) are singled out by condi-
tion (9.20) below. We use identity (9.19) taking the minus sign to formulate Theorem 1.7. Since
this connection will not be used further, we do not elaborate on it.

We end this discussion by noting yet another interesting connection to certain highly sym-
metric solutions of PIII(Dg) which appear in the work of Suleimanov [40] on nonlinear optics,
and later were found in the context of the focusing nonlinear Schréodinger equation [1, 2]. More
precisely, note that Riemann—Hilbert Problem 9.2 (and the Riemann—Hilbert problem satisfied
by g(f ,z)) agrees with [1, Riemann—Hilbert Problem 4] up to an appropriate rescaling of z, £
in the special case when y;, yo are chosen such that

oo —Y2 Y1 oy = —Y2 U1
Yy Y2 Yy ¥
This imposes conditions on ey, €3, €, Which can be written out explicitly in the case of the
rational solutions of Painlevé-III. Namely, in this case

Sy =-7 and Yo = —3. (9.20)

ielﬂ'm 1

1= —(FF7/— 2 = T I/
Yy q/1_|_627r1m Yy 1/1_i_e27r1m

These satisfy the symmetry conditions above exactly when m € iR + Z.

y3 = 0.
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