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other authors in terms of the PIII self-similar solutions.
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results identify a precise generic condition on an optical
pulse incident on an initially-unstable medium sufficient
for the pulse to stimulate the decay of the medium to its
stable state.
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1 | INTRODUCTION
1.1 | The Maxwell-Bloch equations and their self-similar solutions

The scalar Maxwell-Bloch system of equations (MBEs), first derived in 1965 [4], describes light-
matter interactions in a two-level active medium, and is completely integrable in certain limits [2,
3]. The system has attracted great interest since then, due to its important role in the success-
ful explanation of self-induced transparency [42-44] and the closely-related phenomenon of
superfluorescence [29-31, 57].

The Cauchy problem of the system models the injection of a known incident optical pulse
through a boundary point z = 0 into a finite or semi-infinitely long medium with a known initial
state. The modeling assumes that atoms in the medium have two states: a ground state and an
excited state. Macroscopically, the medium can be initially in a pure ground state (the initially-
stable case), a pure excited state (the initially-unstable case) or a mixed state. Assuming the incident
pulse vanishes in the distant past and future, the Cauchy problem of an initially-stable medium
was among the first few systems analyzed by the inverse scattering transform (IST) in the 1970s [1],
and the initially-unstable case was studied via IST a few years later [31]. There are many recent
works formulating ISTs for the MBE and other related systems, and using the transforms to study
the behavior of solutions; a sampling of these works (not intended to be exhaustive) includes [6,
15, 16, 25, 39, 41, 48, 52]. The case of a medium initially in a mixed state requires a compatible non-
vanishing optical pulse in the distant past (t > —o0). Further assuming a nonvanishing pulse
as t - +oo, the mixed-state case was studied recently by IST methods [10, 37]. In general, as
assumed in the aforementioned works, the medium exhibits inhomogeneous broadening due to
the Doppler effect or other physical phenomena (e.g., static crystalline electric and magnetic fields
in solids) [43]. The distribution of atoms is characterized by the spectral line shape function g(4)
where 1 is the difference between the atomic transition frequency and the resonant frequency.
Mathematically, g(4) can be an arbitrary probability density function (or distribution).
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This paper concerns the aftereffect in an active medium of the passage of an optical pulse as
modeled by the MBEs. Physically, one is interested in the form of any residual optical pulse and
the remaining state after a long time at any given point in the active medium. This problem is
addressed by calculating the asymptotic behavior of solutions as ¢ — +oo for a fixed position z > 0.
We take a reasonably large function space for the incident optical pulse and consider propagation
in media both initially stable and initially unstable, but neglecting inhomogeneous broadening.
A simple part of our study that is nonetheless crucial from the point of view of uniqueness is the
analysis of the solution outside of the light cone, that is, for t < 0, but more interesting phenom-
ena appear within the light cone, as t — +o0. Our analysis is based on applying the Deift-Zhou
steepest descent method [20, 21] and the J approach [24, 45, 47] to a suitable Riemann-Hilbert
problem (RHP) encoding a particular solution of the Cauchy problem that is most relevant for
physical applications, assuming no discrete eigenvalues or spectral singularities are present. The
combination of the Deift-Zhou nonlinear steepest descent method and the d approach allows one
to avoid assuming any analyticity of the reflection coefficient, without the need to use complicated
rational approximations. Our results are novel, applicable to a wide variety of incident pulses, pro-
vide rigorous proofs (in some cases of results obtained at a physical level of rigor in other papers),
and come with precise error estimates.

In terms of results obtained earlier by other authors, in a series of works [29-31, 40, 57], formal
asymptotic analysis of solutions of the MBEs suggested the importance of self-similar solutions,
and such solutions also appear in our rigorous analysis. Later, the Deift-Zhou nonlinear steep-
est descent method was applied to a related problem [27], but only initially-stable media were
considered and the results were somewhat incomplete in the sense that (i) error estimates were
omitted (although in principle they are accessible via the methodology employed) and (ii) the
leading-order term was given implicitly in terms of the solution of a singular integral equation that
is difficult to compare with the Riemann-Hilbert characterization we offer below. Very recently,
assuming periodic incident pulses injected into an initially-stable medium, the large-t asymptotic
problem was revisited and analyzed by the nonlinear steepest descent method [26].

In the setting that inhomogeneous broadening is absent from the system (equivalently taking
the spectral line shape to be the Dirac delta) and that the optical pulse vanishes in the distant past
(so the initial state of the medium is one of the two pure states, stable or unstable), the Cauchy
problem for the MBEs takes the form

q; =—-P, P, =-2qD, D,=2R(gP),

q(t,0) = qo(t), teR,
limg=0, D_:=limD=+1, P_:=1limP=0, z>0. (1.1)

t—=—o0 t—>—o0 t—>—o0

where g = q(¢t,z), P = P(t,z) and D = D(t, z), the subscripts t and z denote partial derivatives, and
g denotes the complex conjugate of q. The variables z = z,;, and t = t},, — 2,/ are the propa-
gation distance and retarded time, respectively, with ¢ denoting the speed of light in the vacuum
((Z1ap» t1ap) denote space and time coordinates in a fixed laboratory frame). The unknowns are the
optical pulse q(t, z) € C, the population inversion D(t, z) € R of the medium, and its polarization
P(t,z) € C. We refer to the evolution equation on g in (1.1) as the Maxwell equation, and to the two
equations on P and D as the Bloch subsystem. Even though the MBEs are completely integrable,
there is only one global conservation law [2], namely that D? + |P|2 is independent of ¢, and for
the given values of D_ and P_ in (1.1) we have D? + |P|2 = 1forallt € R and z > 0. The quantity
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D_ is the initial population inversion, with D_ = —1 (resp., D_ = 1) denoting an initially-pure
stable (resp., unstable) medium.

Although we think of ¢ and z as mathematical spatial and temporal variables respectively, the
asymptotic behavior of D(¢, z) as t — +oco need not be specified. In fact, because of the first-order
nature of the Bloch subsystem in MBEs (1.1) one cannot arbitrarily specify the behavior of D(¢, z) in
both limits t — +oc0. An influential early work [57] considers the IST and solutions of the MBEs, in
the hope of analyzing the physical phenomenon of superfluorescence. In that paper, it is assumed
that both D_ = 1and D(¢t,z) — —1 ast — +oo, that is, that the medium is initially in the unstable
excited state and decays to the stable ground state in the future. Although such an assumption
is natural from the physical perspective, it is not clear mathematically how one can enforce two
asymptotic values for D(¢, z) at t = +o00 simultaneously due to the first-order nature of the Bloch
subsystem. In fact, it is recognized in [57] that imposing two asymptotic conditions on D(t, z)
may be mathematically incorrect, but the resolution proposed—a causality requirement—is also
not fully justified. In this paper, we prove that under the causality requirement and other mild
assumptions on the incident optical pulse, an unstable excited medium indeed decays naturally to
the stable ground state as t — +oc0. Hence, by fully rigorous arguments we validate the causality
requirement originally proposed in [57].

If solutions to the MBEs are restricted to real-valued functions, under the substitutions P =
sin(®), D = cos(®) and g = —©, /2 the system (1.1) becomes the sine-Gordon equation in char-
acteristic coordinates: ®,, = 2sin(®). The asymptotic behavior of solutions of the sine-Gordon
equation for large values of the independent variables was studied in 1999 [18] and again quite
recently [17, 32]. However, even if real solutions of the MBEs are considered, our work goes in
quite a different direction for two related reasons:

* The Cauchy problem considered in [17, 18, 32] is the second-order initial-value problem for the
sine-Gordon equation in the form ©,; — @, + sin(®) = 0 with two initial conditions given at
7 = 0. In this setting, the reflection coefficient r(1) comes from the Faddeev-Takhtajan scatter-
ing problem, which automatically yields »(0) = 0. However, no such condition is guaranteed
for a given incident pulse qy(t) in the context of the MBEs (or the characteristic sine-Gordon
equation). This is because for the latter system the reflection coefficient comes instead from the
non-selfadjoint Zakharov-Shabat problem, which gives r(0) # 0 in general.

* The analysis of sine-Gordon given in [17, 18, 32] concerns the limit 7 — oo in which y = vt. The
hyperbolic nature of the sine-Gordon equation is exhibited in the asymptotic confinement of the
solution to the light cone |v]| < 1. As |v| T 1, the solution decays, a result that is mathematically
a direct consequence of the condition r(0) = 0. Since we cannot generally assume r(0) = 0 for
the MBEs, the boundary of the light cone becomes the most interesting regime for the asymp-
totic behavior, and hence we assume exclusively in this paper that z/t - 0ast — +oo0 and we
show that the generally-nonzero quantity 7(0) plays a crucial role in this regime.

In this paper, we show that in the aforementioned regime a boundary layer phenomenon occurs
for the MBESs: for a variety of incident pulses gy(t), the solutions exhibit a sudden transition
between the boundary of the medium z = 0 and the interior z > 0. Roughly speaking, no matter
how fast the incident pulse q,(t) decays as t — +o0, after an infinitesimal propagation distance
the optical pulse q(t, z) always decays at a fixed slow rate as t — +o0. Physically, the residual pulse
remains in the active medium for a long time, due to strong nonlinear interactions between light
and the active medium. The decay rate is slowest when r(0), a spectral quantity we call below the
“moment” of the incident pulse gy(t) (see Definition 1.9), is nonzero.
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The slow decay of the optical pulse within the boundary layer is resolved at the leading order by
afamily of universal profiles expressible in terms of a family of certain Painlevé-III (PIII) solutions.
This resolution occurs most clearly in the limit ¢ — +oco0 with tz = const. The PIII solutions that
occur are closely related to PIII solutions appearing in some other recent works:

* A particular PIII solution was uncovered by Suleimanov [53] (along with its dilations by a scal-
ing transformation) through a formal analysis of weakly-dispersive corrections to a self-similar
singular solution (Talanov pulse) of the dispersionless focusing NLS (nonlinear Schrédinger)
equation. In work in progress, Buckingham, Jenkins, and Miller [13] are proving Suleimanov’s
observation rigorously and also generalizing its applicability to the whole family of Talanov
pulses that are not necessarily self-similar.

* The Suleimanov solution was shown by Bilman, Ling, and Miller [9] to describe the near-
field/high-order limit of fundamental rogue-wave solutions of the focusing NLS with a nonzero
background, in which context it was called the rogue wave of infinite order.

* A one-parameter family of PIII solutions generalizing the Suleimanov solution was shown by
Bilman and Buckingham [8] to describe the near-field high-order limit of multiple-pole soliton
solutions of focusing NLS with a zero background.

The solutions of PIII that arise in this problem are determined from spectral properties of the
incident pulse gy(t) and from the initial state of the medium, and unlike in some earlier works
we provide asymptotic formule for the Bloch (medium) fields D and P, as well as for the optical
pulse g. Although the PIII solutions appear just in the leading terms of an asymptotic expansion,
these terms alone constitute an exact self-similar solution of the MBEs; hence, such self-similar
solutions appear naturally and universally just inside the light cone in media both initially stable
and initially unstable. Self-similar solutions of the MBEs are known to be connected with the PIII
equation, having been derived via asymptotic analysis at various levels of rigor in several earlier
papers [14, 27, 29-31, 36, 57]. For z > 0 and t > 0, a natural similarity variable is x = \/Z_tz and
it is straightforward to see that the MBEs (1.1) admit exact solutions for which tq, P, and D are
real-valued functions of x > 0 alone. Writing x = X and assuming

2 2
— 1 —— =1-2
qg=t""yX), P= XS(X), D=1 XU(X), (1.2)
one easily obtains the coupled ordinary differential equations

Y'(X) = -25(X)
Xs'(X) = s(X) = 2Xp(X) + 4y(X)OU(X)

XU'(X) = UX) — 4y(X)s(X). (1.3)

If one analytically continues a real-valued solution of the coupled system (1.3) from the positive X -
axis to the negative imaginary axis, then replacing X = x with X = —ix and (P, D) with (—P, —D)
in (1.2), one obtains another similarity solution of the MBEs provided that the fields g, P, and D
remain real under this continuation. From either of these, complex-valued self-similar solutions
can be obtained by the symmetry (q, P, D) = (£q,£~'P, D) of the original MBEs, where £ is any
complex constant of unit modulus: |§| = 1.
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Another system is closely related to (1.3), namely

Y'(X) = -2s(X)

Xs'(X) = s(X) — 2Xy(X) + 4y(X)U(X)

oy — YOUX) |, yeOUX)’
XU'(X) = UX) — 4X 00 + 4= e (1.4)
Indeed, the latter system has the first integral
g = JOUE - X) (1.5)

s(X)?

and for the specific value J = —1 the systems (1.3) and (1.4) coincide. Regardless of the value of J,
it is straightforward to deduce from (1.4) that the quantity u(X) := —y(X)/s(X) satisfies

4
u(x)’

’ 2 ’
WO WO s

wx) = X)X X

1.6)

which is a form of the Painlevé-III equation. Generally, solutions of these equations exhibit
branch-point type singularities at X = 0, but they also admit solutions that are analytic at the
origin and are determined by the first few Taylor coefficients. If one assumes without justifica-
tion that these are the solutions of interest (such as in [29]) then it becomes possible to match
the self-similar solutions with other information such as experimental data or assumed asymp-
totic behavior of solutions in another regime and determine the solutions uniquely. One of the
aims of our paper is to provide the rigorous justification behind such assumptions. We prove the
desired properties of the self-similar solutions by deducing a Riemann-Hilbert representation for
the solutions. This “spectral” representation both allows us to explicitly relate the relevant ini-
tial values to the incident pulse profile generating the self-similar response and to simultaneously
clarify the connection with the family of PIII solutions obtained in [8]. The Riemann-Hilbert rep-
resentation is also preferable to a purely local one (like specifying initial conditions), in that it
allows us to obtain the asymptotic behavior of the self-similar solution for large X. Again making
contact with the literature, the PIII solution obtained for a related problem in [27] is also speci-
fied spectrally, via a system of singular integral equations. However that system is equivalent to a
Riemann-Hilbert problem with the real line as a jump contour, and we do not see how it can be
identified or compared with the one we formulate below, which instead has the unit circle as the
jump contour. Indeed, from the isomonodromy point of view, our solutions of PIII correspond to
trivial Stokes phenomenon and nontrivial connection between solutions near two irregular sin-
gular points whereas the solutions in [27] appear to instead have trivial connection and nontrivial
Stokes phenomenon.

Remark 1.1 (On notation). In the rest of this paper, we use boldface fonts to denote 2 X 2 matrices,
with the exception of the identity matrix | and the Pauli matrices

(01 G A NN S B
g, .= 1 0 , gy .= i 0 , g3 .= 0 —1 .
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The imaginary unit is denoted i, and complex conjugation is indicated with a bar: 1. We denote
the characteristic function of a set S by ys.

1.2 | Assumptions and causality

We now start to make our assumptions more precise to lay the groundwork for us to present our
results. The causality requirement imposed in some earlier works [29-31, 57] is that the optical
pulse g(t, z) should vanish identically in the past outside of the light cone in order to obtain a
unique solution from the Gel’fand-Levitan-Marchenko equation of inverse scattering. In particu-
lar upon taking z = 0, it should hold that g,(¢) is supported on a positive half-line which we may
take without loss of generality to be t > 0. Combining causality with a level of smoothness and
decay that is both convenient and natural from the point of view of the IST, we make the following
basic assumption on the incident optical pulse gy(-).

Assumption 1 (Basic condition on q). The incident optical pulse g, : R — C satisfies g, € S(R)
with go(t) =0for t < 0.

Here S(R) denotes the Schwartz class.

Definition 1.2 (Causal solutions). A solution of the Cauchy problem (1.1) for a given incident
pulse g, satisfying Assumption 1 is called causal if g(z,t) = 0 holds for all t < 0 and z > 0. From
the Bloch subsystem in (1.1) it is clear that for a causal solution it holds that D(z,t) = D_ and
P(z,t)=0forallt <0Oandz > 0.

Many of the most familiar solutions of the MBEs are non-causal, for instance the soliton
solutions. However, a key result is the following.

Theorem 1.3. Given an incident pulse q, satisfying Assumption 1, there exists at most one causal
solution of the MBE Cauchy problem (1.1).

The proof does not rely on integrability and is given in Appendix A. It is equally important
to note that in general the Cauchy problem (1.1) is ill-posed in the sense that it admits multiple

non-causal solutions for the same data. This point will be discussed in more detail later (see
Corollary 1.20 below), as it follows from our asymptotic results.

1.3 | Integrability and Riemann-Hilbert representation of causal
solutions

The MBEs (1.1) can be equivalently written in matrix form,

pe=1Qpl, Q. =—5lospl,
Q(t,z) := ( 0 q(t’z)> olt,2) = <D(t,Z) P(t,z) ) 1.7)

—q(t,z) 0 P(t,z) —-D(t,z)
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where [-, -] is the matrix commutator. The matrix p is called the density matrix, and it satisfies the
identities o' = p, tr(p) = 0 and det(p) = —1, where the superscript T denotes conjugate transpose.
The Lax pair for the MBEs in the form (1.7) is given by

8 =0+ Q$, .= —p9, a®)

where ¢ = ¢(¢, z; 1); in other words, the system (1.7) is the compatibility condition under which
there exists a basis of simultaneous solutions of the two equations (1.8) for all 1 € C \ {0}. Since ¢
plays the mathematical role of a spatial variable, the differential equation with respect to ¢ in (1.8)
is called the scattering problem (here, the well-known non-selfadjoint Zakharov-Shabat prob-
lem), whose scattering data evolves in mathematical “time” z according to the other equation in
the Lax pair (1.8). The IST for the system (1.7) is therefore based on the direct and inverse prob-
lems for the Zakharov-Shabat equation, which has been systematically and rigorously studied in
several papers such as [7, 12, 59]. For the direct problem, one takes Q = Q(¢,0) in terms of the
incident pulse g, (¢) and defines the scattering matrix S(1) := ¢_(t;/l)_1¢+(t; A) (independent of
t € R)for 1 € Rin terms of ¢, (¢; 1), the Jost eigenfunctions of the Zakharov-Shabat equation for
z = 0 normalized at t — +o0, that is, ¢, (t; 1) = €49 4+ 0(1) as t — +o0. It is worth noting that
due to go(t) = 0 for t < 0, we have ¢_(t; 1) = e419 for t < 0 and ¢_(0; 1) = I, so by taking t = 0
without loss of generality, the scattering matrix is simply S(1) = ¢,(0; 1). It satisfies the basic
identities

det(S(1)) =1 and S) = 0,5(1)0>. (1.9)
The reflection coefficient r(A) defined by

521 ¢421(0;4)

A) = =
W=D T SR

(1.10)

plays a crucial role in the IST and consequently the long-time asymptotics. In general (i.e., without
the cutoff assumption for ¢t < 0in Assumption 1), r(1) is only defined on the continuous spectrum
R, but S; (1) admits continuation into the upper half A plane as an analytic function continuous
up to the real line. The zeros of S; ;(4) in the open upper half plane are the discrete eigenvalues
corresponding to solitons, whereas real zeros are called spectral singularities, that is, poles of the
reflection coefficient. Under some assumptions that are difficult to justify fully, the z-equation in
the Lax pair (1.8) then defines an explicit evolution of the scattering data in z, and for the inverse
problem one constructs Q = Q(¢, z) from the z-evolved scattering data. It is well known that under
some additional conditions the incident pulse g,(t) is encoded completely in the reflection coef-
ficient (1), which subsequently determines the solution for all z > 0. In this direction, we have
the following result.

Lemma 1.4 (Properties of the reflection coefficient). Suppose that the incident pulse q satisfies
Assumption 1, and that there exist no discrete eigenvalues, that is, S, 1(1) # 0 for A in the upper half-
plane. Then, the reflection coefficient r(1) for the non-selfadjoint Zakharov-Shabat equation admits
continuation to the open upper half-plane as an analytic function. If also q, generates no spectral
singularities (i.e., S11(1) # 0 for A € R), thenr(-) € S(R).

3
2
5
2
S
B
L
5
S
=
g
z
g
g
£
5
z
=
g
E]
=
)
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FIGURE 1 Thejump contour Xy, for RHP 1, consisting of the circle [A| = y > 0 and the real intervals
|A] > v, oriented as shown. The jump matrix on each arc of X is as indicated.

Proof. The statement that g,(-) € S(R)and S; ;(1) # 0for A € Rimplies r(-) € S(R) is a standard
result, so one only needs to prove the analyticity of 7(1) in the upper half plane. Using the cutoff
condition in Assumption 1, the expression in (1.10) in terms of the Jost matrix ¢, (¢; ) evaluated
at the finite point t = 0 immediately gives this result. Indeed, since the first column of ¢, (¢; 1)
is analytic in the open upper half-plane and continuous in the closed upper half-plane for each
fixed ¢t € R as is well known (see Lemma B.1 and its proof in Appendix B below), in particular
upon evaluation at ¢ = 0 the desired analyticity follows provided that ¢, ; 1(0;1) = S;;(4) #0,a
condition that is guaranteed for S(4) > 0 by hypothesis. O

Remark1.5. Assumption 1is quite strong, but the reader will see that our asymptotic results require
far less, just the existence of sufficiently many continuous and absolutely integrable derivatives
of the reflection coefficient associated with g, along with some auxiliary conditions related to
discrete spectrum. It is difficult to give simple conditions on g sufficient to control a given number
of derivatives of the reflection coefficient in the L' sense, although a weighted L?-Sobolev bijection
result has been proven by Zhou [59].

A derivation of an IST for the MBEs based on the direct/inverse scattering theory for the non-
selfadjoint Zakharov-Shabat equation can be found in numerous papers going back to [1]. This
derivation is fundamentally problematic, because it presumes that q(-, z) € L}(R) for all z > 0 to
define the relevant eigenfunctions and scattering data; however, after the fact it can be shown that
even if this condition holds at z = 0 (as is guaranteed by Assumption 1) it is generically violated for
all z > 0 (see Corollary 1.19 below). Rather than repeat these arguments, we will simply postulate
a well-posed RHP whose solution, by a dressing-method argument, encodes the unique causal
solution of the Cauchy problem.

Riemann-Hilbert Problem 1. Lety > 0 be fixed and consider the contour Xy, shown in Figure 1. For
a given Schwartz-class function r(1) that is the boundary value of a function analytic for (1) > 0
(denoted also by r(1)), for a given sign D_ := +1, and for given (¢,z) € R?, seek a 2 X 2 matrix-
valued function A » M(1) = M(4;t, z) thatis analyticfor 1 € C \ Zy; thatsatisfiesM — las1 —
oo; and that takes continuous boundary values on Xy, from each component of the complement
related by the following jump conditions

M*() = M- (DWW DOW@), 121>y, S@W) =0,
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M*(A) =M~ (DHW@R), |il=y, SA) >0,
M*(1) = M~ (DHW' (1), Al=y, S@ <o,
where a matrix W(1) = W(A; ¢, z) is defined for S(4) > 0 by

D_z
24

W(/l) = <r(l)e1—2i6(l) (1)> ’ e(ﬂ’) = 6(/1’ [:Z) =At—

(1.11)
S
and where W'(1;t, z) denotes the Schwarz reflection W(A;t,z) .

Remark 1.6. The jump matrix satisfies the conditions of Zhou’s vanishing lemma [58], implying
that RHP 1 is uniquely solvable for all (¢, z) € R2.

Remark 1.7. Here, and in the rest of the paper, we use the convention that a superscript “+”
(resp., “—”) denotes a boundary value taken from the left (resp., right) by orientation. There
is an essential singularity at 1 = 0 in the exponential factors e*?®:t2) that is avoided by the
jump contour |A| = y with arbitrary radius y > 0. We observe that if the medium is initially sta-
ble (D_ = —1) we can pass to the limit y = 0, because these factors decay as 4 — 0 from within
in the respective half-disks. This yields an equivalent RHP with the real line as the only jump
contour. In [57] the inverse problem was formulated instead as a system of Gel’fand-Levitan-
Marchenko equations corresponding to a RHP on the real line, and it was suggested that the
essential singularity at A = 0 which appears to require careful interpretation is responsible for
the observed slow decay of the optical pulse as t — +oo and leading to a loss of L' (R) integrabil-
ity. However, this phenomenon is also generated from RHP 1 whose contour completely avoids the
origin.

We then have the following result, on which the rest of our paper is based.

Theorem 1.8. Let q, be an incident pulse satisfying Assumption I, and suppose further that q
generates no discrete eigenvalues or spectral singularities under the direct transform associated with
the Zakharov-Shabat equation. Then the unique causal solution to the Cauchy problem (1.1) can be
reconstructed from the solution of RHP 1 in which r(4) denotes the reflection coefficient for q by the
following formulce:

q(t,z) = =2ilim AM; ,(4;¢,2)
{ TR teR, z>0. (1.12)

plt,z) = D_M(0; £, z)as M(0; £, )"

Theorem 1.8 is proved in Appendix B. The solution generated from RHP 1 is necessarily causal
because this problem can be solved exactly and trivially when ¢t < 0, which is a direct consequence
of the analyticity of the reflection coefficient r(1) resulting from the cutoff condition for gy(-) in
Assumption 1. The argument applies regardless of the initial state of the medium because for large
A the phase 6(4; t, z) becomes independent of D_ = +1; the fact that the contour Xy, avoids the
origin then allows one to “bypass” the fact that 8(4; ¢, z) is strongly dependent on D_ for small 4.

In order to present our results, we now introduce the notion of the “moments” of the incident
optical pulse.
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Definition 1.9 (Nonlinear moments). The nonlinear moment with index m > 0 of an incident
optical pulse g, (¢) is defined via the reflection coefficient,

Sm) L d"r(1)

m>0.
O . b iy
dam |,

If the index m is unspecified, the term “moment” refers to the zeroth moment which we denote for

brevity by ry = r(()o). We also denote the index of the first nonzero moment by M, that is, r(()M) #0

and r(()m) =0forallm=0,1,..,M —1.

Remark 1.10. The moment r, cannot be calculated explicitly for a generic incident pulse g, (t) €
S(R). However, if gy (¢) is real-valued and supported on R, , when A = 0 the Jost solution ¢, (¢; 1)
is given explicitly by

o {cos(I(t)) —sin(I(t)) e
¢+<""°)—<5mam> cos(I(t)))’ I(t) = /t (1) dr, (113)

so from (1.10) we have:

ro = tan(I(0)) = tan </ qo(t) dt> . (1.14)
0

In particular, this shows that when the total integral of a real-valued q, is an odd half-integer
multiple of 7, a spectral singularity appears at the origin. One can also calculate higher derivatives
of r(1) at 1 = 0 assuming sufficient decay of q,. For instance, letting ¢, (¢; 1) denote the partial
derivative of the Jost solution with respect to 4, differentiation of (1.10) gives

45+,2,1(0; 0)¢+11(0;0) — ¢ 51(0; 0)45+,1,1(0§ 0)
$1.1.1(0;0)°

_ cos(I(0).. 2,1(0;0) — sin(1(0))¢.,. 1 1(0;0)
B cos2(1(0))

r'(0) =

and differentiation of the Zakharov-Shabat equation for ¢, (¢t; 1) with respect to 4 at 1 = 0 gives

9S+,t(t;0) = qo(t) <_01 (1)> ¢.(t;0) + ios¢,(t;0).

Assuming for simplicity that supp(q,) = [0, T] for some T > 0, we can use ¢, (¢; 0) given by (1.13)
as a fundamental solution matrix for the homogeneous equation and, since ¢,(¢;0) =1 and
¢.(t;0) = ito; both hold for t > T, we get by variation of parameters:

T
¢+(t;0) =¢,(;0) liTJ3 —i/ ¢+(S;O)_1O'3¢+(S;0) ds] ,
t
so that when ¢t = 0,

i . cos(I(0)) —sin(J (0))) _ T . |
+ 0,0 = . T _ N ’0 . ’0 d .
P00 <Sm(1(0)) cos(1(0)) ll 93 —1 /O $.(5;0) 03¢,(s5;0) S]
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From (1.13) we obtain

| o [ cos(2I(s))  —sin(2I(s))
$+(5:0) 03,(5:0) = <—sin(2[(s)) —cos(zl(s))>'

It then follows that if g, is real-valued and supported on [0, T],

T
' (0) = isec?(1(0)) / sin(2I(s)) ds
0

T T T
= isec? (/ qo(t) dt> / sin <2/ qo(s) ds> dt. (1.15)
0 0 ¢

The compact support assumption can then be dropped due to rapid decay of qy(t) as t — +oo for
qo € S(R); one simply sets T = +o0 in (1.15).

Another quantity we need that is related to the reflection coefficient is the following.

Definition 1.11 (Phase R). A real phase X is defined by the principal value integral
1 5 da
N = - ]{an(1+ [r(A)] )/1 . (1.16)

Note that X is finite when r(-) € §(R) as guaranteed under some conditions by Lemma 1.4. Corre-
spondingly, the following combined phase with the index M denoting the first nonzero moment
appears in our main result,

N, :=arg <r(()M)) + N,

Remark 1.12. The quantity N vanishes when the incident pulse gy(¢) is a real function. This is
because for a real potential, the corresponding non-selfadjoint Zakharov-Shabat reflection coef-
ficient (1) enjoys an additional symmetry, namely that m = r(—A), making the integrand in
(1.16) an odd function.

When z = 0, the density matrix p(t,0) satisfying the Bloch subsystem p, = [Q, p] for ¢ >
0 with initial condition p(0,0) = D_o3 can be expressed explicitly in terms of the Jost solu-
tions of the Zakharov-Shabat system with potential g,(¢), evaluated at the origin 4 = 0. Indeed,
defining

o(t,0) 1= D_¢_(£;0)05¢_(£;0) ", >0, (1.17)

one checks easily that for z = 0,

d¢_ 0 go(®) do _ 0 go(®)
Tar (—qo(t) 0 >¢‘=” ar K—qo(t) 0 >"°]’
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and p(0,0) = D_o; because ¢_(0;0) = [. The formula (1.17) allows one to determine the asymp-
totic behavior of p(t,0) as t — +oo. For this purpose, we recall the defining identity ¢, (t;1) =
@_(t; 1)S(A) for the scattering matrix to obtain the equivalent representation

p(t,0) = D_¢, (£;0)S(0) ' 538(0)¢,.(1;0) ', > 0.

Since ¢, (t;0) - [ ast —» +o0, the following limit evidently exists:
lim p(t,0) = D_S(0)"'558(0).

Using the identities (1.9), and looking at the first-row elements then gives

2rg  S5,(0) 1—|ry|?
0 722 lim D(t,0) = p 1= Inl”
t—>+o0 1+ |r0|2

lim P I,O =_D_— 5
t=too ®0) 1+ |rgl? S11(0)

The fraction S, ,(0)/S; 1(0) has unit modulus, and under the assumptions of Theorem 1.8 (absence
of eigenvalues or spectral singularities) this fraction can be expressed via a trace identity, which we
now recall. Because S; ;(4) is analytic for J(4) > 0, continuous for (1) > 0, bounded away from
zero for §(1) > 0, and satisfies S; ; (1) —» 1as A — oo, one can write S} ; (1) = ef *@), where F+(1)
denotes the boundary value of a function analytic for S(1) > 0 and continuous for (1) > 0 that
vanishes as 4 — oo. Likewise S, ,(1) = e 7" where F~(1) is the boundary value of a function
analytic for (1) < 0 and continuous for (1) < 0thatvanishesas 1 — oo. The identities (1.9) and
the definition (1.10) of the reflection coefficient r(1) then imply that for real A, F*(1) — F~(1) =
—In(1 + |r(/1)|2). From the Plemelj formula it then follows that F*(4) are the boundary values of
the following function analytic for A € C \ R:

FQA) =-—

L [0 Ons ooy 118)
R

27i s—2 ’

Evaluating the sum of the boundary values at A = 0 and comparing with Definition 1.11 gives
F*(0) + F~(0) = iX. Therefore, under the assumptions of Theorem 1.8 we obtain

2|role™™o 1—|rol?

lim P(t,0) = —D_ and lim D(t,0)=D_—— 1.19
t—>+00 (t,0) 1+ |ryl? t—+o0 (t,0) 1+ |ryl? (1.19)

for the final state of the active medium induced by the incident optical pulse g,(-) exactly at the
edge z = 0. Obviously, the medium is not in a pure state as t - +oo0 for z = 0, unless ry = 0, in
which case the medium returns to its initial pure state (which could be stable or unstable). This is
the clearest demonstration so far that for the medium to decay to the stable state asymptotically as
t - +oo for all z > 0, a certain boundary layer is generally needed to resolve the transition near
the edge.

1.4 | Precise definition of self-similar solutions

The differential equation (1.6) is a special case of the general four-parameter family of Painlevé-
III equations for which (in the notation of [49, Chapter 32]) a = 0,3 =4,y =4 and 6§ = —4. It
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also fits into the isomonodromy scheme of Jimbo and Miwa (described for instance in [28]) with
parameters ©, = 0, = 0. Most solutions have a branch point at the origin, which is the unique
fixed singular point for (1.6). However, there are two one-parameter families of solutions that are
analytic at X = 0. Indeed, given any nonzero complex number u, € C \ {0}, there is a unique solu-
tion analytic at X = 0 with u(0) = u,. A second family consists of analytic solutions vanishing at
X = 0. Here, the equation (1.6) determines u’(0) = 1 and u”(0) = 0, but u’”’(0) = w € C is arbi-
trary, after which all subsequent Taylor coefficients are uniquely determined in terms of w. The
latter solutions are the ones relevant here, with w restricted to the open interval (—3, 3), and we
denote them by u = u(X; w). These solutions are all odd functions of X € C analytic at the origin
and globally meromorphic, with Taylor expansion

X3 Xx°
uX;w) =X + w3+ 405 +0X7), X-o. (1.20)

For w € (—3,3) and X on the real (resp., imaginary) axis in the complex plane, these solutions
are real-valued (resp., purely imaginary). The family of solutions u(X; w) of the PIII equation (1.6)
for w € (-3, 3) coincides with that appearing in [8, Theorem 2].

Given such a solution u = u(X; w) of (1.6), we consider the auxiliary functions y(X), U(X), and
s(X) satisfying the related first-order system (1.4). Using the relation u = —y/s, the latter system
can be written in the form

% = %y , X% = 5 + 2Xus — 4usU, X% = —4uU? + (4uX + DU. (1.21)
From (1.20), upon substituting power series for y(X), s(X), and U(X), one easily sees that solu-
tions of these equations analytic at the origin necessarily vanish there: y(0) = U(0) = s(0) =0,
and y’(0) = 0 must also hold. The values y”’(0) = y,, U'(0) = U;, and s’(0) = s; are free, and
then all subsequent Taylor coefficients are determined in terms of y,, s;, U;, and w (via the Tay-
lor coefficients of u(X;w)) by (1.20) and (1.21). For instance, from the first equation in (1.21) and
the expansion (1.20), one finds that the solution with y(0) = y’(0) = 0 and y"’(0) = y, has the
series

X? x4
yX) = V257~ ZwaT + 0%, X -o. 1.22)

In fact, the values y,, s;, and U; are not independent. Indeed, since s = —y/u, we can combine
the series (1.20) and (1.22) to find that s, is not actually arbitrary:

y(X)

&) = _u(X; ) -

1 X3
—zsz + Y030 + Ox°), X -—o0. (1.23)
Likewise, using the series (1.20) and (1.23) in the second equation in (1.21) shows that Uj is also
not arbitrary:

S(X) + 2Xu(X; w)s(X) — Xs'(X) _

v = 4u(X; 0)s(X)

<%co + %) X +0(x3), X - 0. (1.24)

Finally, to ensure that the functions y(X), s(X), and U(X) solve not only the system (1.4) but also
the self-similar MBEs in the form (1.3), we need to impose the condition J = —1 (see (1.5)), which
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in light of the series (1.23)—(1.24) yields

y;=1- (%)2 (1.25)

For w € (-3, 3), selecting the positive square root in (1.25) uniquely determines a one-parameter
family of solutions of (1.3) that we denote by y(X; w), s(X;w), and U(X;w). These three func-
tions are also globally meromorphic for X € C, but they are analytic on the real and imaginary
axes, and y(X;w) is even while U(X;w) and s(X;w) are both odd functions (as is u(X;w)).
All four of the functions are real-valued for real X; y(X;w) is also real for imaginary X
while s(X;w), UX;w), and u(X;w) are purely imaginary there. An additional symmetry is
that

V(-iX;w) = —y(X; —w),

s(—iX;w) = —is(X; —w),

U(-iX;w) = iUX; —w) — iX, (1.26)
implying that also u(—iX;w) = —y(—iX; w)/s(—iX; w) = —iu(X; —w). All of the properties of the
functions u(X;w), y(X; w), s(X;w), and U(X;w) described above are proved rigorously in Sec-

tion 2.3 below. With this setup, we may now define two families of self-similar solutions of the
MBEs.

Definition 1.13 (Particular self-similar solutions). Let w € (=3,3)and £ = e*, x € R (mod 27).

Let y(X; w), s(X; w), and U(X; w) be the unique solutions of (1.3) analytic at X = 0 and satisfying
the initial conditions

y(0;0) =0, Y (0;w)=0, »'(0;w)=14/1 )

I
—
w|e

\S]

1 w\?
. —_ / . —_ — | —
s(0;w) =0, s'(0;w)= 3 1 (3>
, 11
UO;w)=0, U'(0;w)= i + 5 (1.27)
Then with x = 4/2tz > 0, one real-valued self-similar solution of the MBEs is q(t,z) =
qu(t,z;w,8), P(t,z) = Py(t,z;w, &), and D(t, z) = D(t, z; w) where

qu(t, z;0,8) = 7 Ey(x; w)
Py(t,z;, &) := 2Ex71s(x; ) (1.28)
Dy(t,z;w) :=1-2x"1U(x; w),

and another is q(t, z) = q,(t, z; w, &), P(t, z) = P(t,z; w, £), and D(t, z) = D4(t, z; w) where

1 Ey(—ix; w)
—2iéxs(—ix; w) (1.29)
—1 4 2ix"1U(—ix; w).

qs(t, z;0,§)
P(t,z;w, %) :
Dy(t,z;w) :
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— tqu
— Py
— Dy

— tqy
- Pu

— Dy

FIGURE 2 The PIII functions y(x; w), s(x; w) and U(x; w) from Definition 1.13 evaluated for x > 0 (left
column) and the corresponding self-similar solutions tq,, P, and D, plotted as functions of x for & = 1 (right
column). The parameter w is w = 0 (top row) and w = i—i (bottom row), corresponding tor, = 1andry = 5
respectively.

! — y(-ixw)
> X — J(s(—ix;w))
1 — J(U(—ix;w))

-2
w0

2 13 — y(—ix;w)
x — J(s(—iv;w))
— J(U(—ix;w))

FIGURE 3 The “rotated” PIII functions y(—ix; w), s(—ix; w) and U(—ix; ) from Definition 1.13 evaluated
for x > 0 (left column) and the corresponding self-similar solutions tg, P, and D plotted as functions of x for

& =1 (right column). The parameter w is w = 0 (top row) and w = % (bottom row), corresponding to r, = 1 and
ro = 5, respectively.

Although for given w € (—3,3) and ¢ = e* these two self-similar solutions are derived from
exactly the same solution of the system (1.3), the fact that that solution is sampled along two
orthogonal axes in the complex plane leads in general to very different behavior. Plots of these
solutions are shown for representative values of w and & = 1 in Figures 2-3. Note that the plots
for w = 0 in the two cases are comparable due to (1.26).

1.5 | Asymptotic regimes within the light cone
Finally, we describe the portion of the light cone z > 0, ¢ > 0 in which our asymptotic results are

valid (by causality asserted in Theorem 1.8, all solutions to the Cauchy problem (1.1) considered
in this paper are trivial outside of the light cone).

:sd1Y) SUONIPUOD) puE SuLo T, a1 298 “[£707/11/€1] U0 AIrIqrT QIO A9THA “AIeAqrT UESIYOIA JO ANSIATUN Aq 95 127°6d9/Z001°01/10p/w09" KoM ATeIqrouIuoy/:sdy woxy ppeofumod 1 “bZ0¢ TIE0L60T

o Kopa

puE-suLIO),/

25U0DIT SUOWIION) 2ANEI) A[qEat]ddE 3y Aq PAUIPAOT ATE SAITE VO 15T JO ST 10] ATRIQIT AUIUQ ADTIA UO (SUOT



ON THE MAXWELL-BLOCH SYSTEM IN THE SHARP-LINE LIMIT WITHOUT SOLITONS 473

a < —1

FIGURE 4 With (¢, z) related by (1.30), the asymptotic regimes within the light cone are indicated as
follows: (i) light gray shading denotes the medium-edge regime with o < —1; (ii) the red solid curve denotes the
transition regime with o = —1; (iii) dark gray shading denotes the medium-bulk regime with -1 < o < 1.

Definition 1.14 (Asymptotic regimes within the light cone). For a < 1, consider the relation
between the coordinates (¢, z) given by

z =Ct%, C > 0 fixed. (1.30)
Three asymptotic regimes within the light cone z > 0, t > 0 are defined as follows:
* the medium-edge regime corresponds to t — +oo subject to (1.30) with o < —1;
* the transition regime corresponds to t — +oo subject to (1.30) with o = —1;
* the medium-bulk regime corresponds to t — +oo subject to (1.30) with |a| < 1.
Since « < 1, the condition z = o(f) as t — +oo is met in all three regimes; this is the principal
condition under which our analysis is valid. Note that in the medium-edge regime tz — O as ¢t —

+00, in the transition regime ¢z is fixed, and in the medium-bulk regime tz - +o0 as t — +oo.
The three asymptotic regimes within the light cone are illustrated in Figure 4.

1.6 | Results
Our main result is the following.

Theorem 1.15 (Global asymptotics — generic case). Suppose that the incident pulse qq satisfies the
hypotheses of Theorem 1.8, that M = 0, that is, ry # 0, and that w is defined by

P -1

= W € (—3, 3) (131)

Then, forevery N € Z, the causal solution of the Cauchy problem (1.1) in an initially stable medium
(D_ = —1) satisfies

q(t,z) = gs(t, z; 0, e70) + O(z /1) + O@'™N),
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P(t,z) = Py(t, z;0,67) + O <(z/t)%> +0 <t§_N> ,

D(t,z) = Dy(t,z;w) + O ((z/tﬁ) +0 <z§‘N> , (1.32)

ast — +oo forz > 0 with z = o(t). In the same limit, the causal solution of the Cauchy problem (1.1)
in an initially unstable medium (D_ = 1) satisfies

q(t,z) = qu(t, z; 0,e7%0) + O(z/t) + O ~N),

P(t,z) = Py(t,z;0,e70) + O <(z/t)%> Lo <t§_N> ’

D(t,z) = Dy(t, z;0) + © ((z/tﬁ) +0 <t§‘N> . (1.33)

In these formulce, the phase W, is given in Definition 1.11 and the explicit terms are the self-similar
solutions from Definition 1.13.

Remark 1.16. The index N > 2 is an artifact of our method of proof, which, roughly speaking,
exploits a finite level of smoothness and decay of g, via the reflection coefficient r(4). We leave
this index in the statements of our results for readers interested to see what can be proved if weaker
assumptions are taken on g.

The explicit terms in the asymptotic formule of Theorem 1.15 are, aside from a factor of t~! in
the optical field q(¢, z), functions of the similarity variable x = 4/2tz. This variable becomes fixed
exactly in the transition regime of Definition 1.14, and when z = Ct~! the error terms simplify as
follows:

* in the asymptotic formulza for q(t, z), the error terms take the form O(t=2) + O(t'~N);
3

* in the asymptotic formula for P(t, z) and D(t, z), the error terms are O(t~!) + O(IE_N).
Hence in this regime there is barely any dependence in the size of the error terms on the index N,
being of a different form for N = 2 than for N > 3.

The self-similar solutions in turn simplify when x — 0 and when x — +o0, which correspond
to the medium-edge and medium-bulk regimes respectively. We have the following corollaries of
Theorem 1.15.

Corollary 1.17 (Medium-edge asymptotics — generic case). Under the assumptions of Theo-
rem 1.15, the causal solution of the Cauchy problem (1.1) in an initially stable (D_ = —1) or unstable
(D_ = 1) medium satisfies, for every N € Z,,

2|rgle™™0 2041 a-1 1-N
q(t,Z) = D_TIFPZ + (9(t ) + O(t ) + (9(t ),
0
2|rgle ™o L 3_
P(t,z) = —D—% + 0“1+ 0 <t2(a D) +0 (tz N) ,
o
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1— |ry)? Lige 3_
D(t,z)=D_ﬂ+(9(t“+1)+(9 ) ro(e™),
1+ |rol?

ast — +oo with z related to t by (1.30) with a < —1.

Proof. Since y(X; w) is even while s(X; w) and U(X; w) are odd analytic functions of X, using (1.27)
to expand the leading terms in (1.32)—(1.33) as given in Definition 1.13 and using (1.30) in the error
terms proves this result. O

Comparing with (1.19) and taking into account the Maxwell equation g, = —P, this result is
satisfying because it is consistent with the state of the active medium for large t > 0 exactly at the
edge z = 0, as computed directly from the given incident optical pulse g,(-).

Corollary 1.18 (Medium-bulk asymptotics—generic case). Under the assumptions of Theorem 1.15,
the causal solution of the Cauchy problem (1.1) in an initially stable (D_ = —1) or unstable (D_ = 1)
medium satisfies

1
) 7 _3 Lo 3_
P(t,z) = —D_e‘mO(t—Z) 4Acos(go(\/21.‘z)) +0 <t 4(““)) +0 <t2(“ 1)> +0 <t2 N> ,

N

L

1
q(t,z) = D_e—i‘%% <5z Asin(p(y/212)) + O (t_i(“”)) + O™ + o),

[\8)

1
1/tz\ 2 La— 3_
D(t,z) = -1 + 5(;) * A2cos?(p(V/212)) + Ot~ + @ <tz<°‘ ”) +0 <t2 N> . (134)
as t — +oo with z related to t by (1.30) with a € (—1, 1), where ¥ is given in Definition 1.11, and
where we define

1
= —1In(1 —2D_y 5,
€ oy n(1 + |rol )

2 T(1 + ie
A:=1/2 ¢ ) > 0, (1.35)

Ip 1
[rol 27~ (1 + |ro|2P-)4

o(x) = 2x — £ In(8x) — % + arg(D(1 + i€)).

Although it follows from Theorem 1.15, the proof will be given later after large-x asymptotic
formule for the PIII functions appearing in the leading terms are derived. In particular, Corol-
lary 1.18 applies to the limit t — +o0 with z > 0 fixed, which corresponds to a = 0 in (1.30). In
this case, the error terms simplify as follows, taking also into account that the index N satisfies
N > 2:

* in the asymptotic formula for g(t, z), the error terms simplify to O(t~1);

1
* in the asymptotic formula for P(t, z) and D(t, z), the error terms simplify to O(¢t™ 2), and the
explicit term in D(¢, z) + 1 is also of this order.

This result therefore shows that, unlike the situation near the edge of the active medium z =
0, for every fixed z > 0, the active medium decays as t — +oo to the stable pure state (P = 0 and
D = —1), regardless of whether the initial state was stable or unstable. In the unstable case, this
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may be regarded as a decay process stimulated by the incident optical pulse. In the stable case
it instead provides mathematical justification for the heuristic terminology of “stability” for the
active medium with D_ = —1. The decay to the stable pure state is quite slow, with explicit leading
terms, a fact that leads to two insights that are important enough to state explicitly as corollaries.

Corollary 1.19. Under the assumptions of Theorem 1.15, for every z > 0 the optical pulse function
t — q(t, z) does not lie in L'(R). However, the following limit (improper integral) exists:

T
Tgrfw/o q(t,z)dt. (1.36)

Proof. The lack of absolute integrability of t — q(t, z) is obvious because the leading term in (1.34)
1 3

is a sinusoidal oscillation of frequency proportional to ¢t 2 and amplitude proportional to t 4 (so
in fact the optical pulse is in L2(R)).

The existence of the improper integral (1.36) is proved by applying the Fundamental Theorem
of Calculus to the differential equation P, = —2¢D. Fixing z > 0, we have

T T
P(T,z)—P(0,z) = / P,(t,z)dt = —2/ q(t,z)D(t,z)dt
0 0

T

T
= 2/0 q(t,z)dt — 2/0 q(t,z)[D(t,z) + 1]dt.

By causality, P(0, z) = 0. Applymg Corollary 1.18 with z > 0 ﬁxed then implies that P(T,z) — 0 as

T — +o0, and that q(t,z) = O(t 4) and D(t,z) +1=0( 2) ast — +oo. Hence q(-, z)[D(-, z) +
1] € LY(R.), so we deduce that

T +00
lim / q(t,z)dt = / q(t,z)[D(t,z) + 1] dt
T—+o00 0 0

where the integral on the right-hand side is absolutely convergent. O

This result is important because it proves that the most important assumption in IST theory is
violated under the evolution in z, even if it is assumed to hold at z = 0 (or, for that matter, even if g,
has compact support); however, using the existence of the improper integral (1.36) or other related
interpretations of divergent integrals it may indeed be possible to recover the existence of Jost
solutions for almost all A € R through rigorous analysis. The next result proves the ill-posedness
of the Cauchy problem (1.1) in the initially-unstable case if causality is not imposed.

Corollary 1.20. There exist incident pulses q satisfying the hypotheses of Theorem 1.8 for which the
Cauchy problem (1.1) for the Maxwell-Bloch equations with an initially-unstable medium D_ = 1
has (other) solutions that are not causal and that decay to both stable and unstable pure states as
{ —> +o0.

Proof. Let gy be an incident pulse satisfying the hypotheses and the following additional
properties: supp(qy) = [0, T] for some T > 0, ry # 0, and qu(t) = qo(T —¢t) for all t € R. First
consider propagation in an initially-unstable medium, D_ = 1, and let g(¢, z) denote the causal
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optical pulse for t € R and z > 0 corresponding to the incident pulse g,. We apply an elemen-
tary symmetry of the MBEs to generate another solution, namely S : (q(t, z), P(t, z), D(¢t, 2)) —
(Sq(t,z), SP(t,z),SD(t,2)) :=(q(T —t,z),P(T —t,z),—D(T —t,z)). Then Sq(t, z) is an optical
pulse for a noncausal solution with the same incident pulse g, in an initially-unstable medium.
Indeed, according to Corollary 1.18 we have D(t,z) — —1 ast — +o0 and hence also SD(t,z) - 1
as t » —oo for all z > 0, so it is also a solution of the same Cauchy problem. However by the
same result, q(t, z) is definitely not supported on the half-line t < T, so Sq(t, z) is not supported
on t > 0, proving that the solution is not causal. This noncausal solution also has the property
that SD(t,z) = —1 holds for all t > T, so like the causal solution it exhibits decay to the stable
state as t — +o0. Now let (§, P, D) denote the causal solution for the same g, now incident on
an initially-stable medium with D_ = —1. Again applying the symmetry S, we see that Sq(t, z)
is an optical pulse for a solution with the same incident pulse g, in an unstable medium because
Corollary 1.18 gives D(t,z) - —1 as t — +oco and so also SD(t,z) - 1 as t - —oo for all z > 0.
However since (¢, z) is not supported on the half-line t < T, S§(¢, z) is not supported on ¢t > 0,
so the solution is again noncausal. Unlike the previously constructed noncausal solution, this one
satisfies SD(t,z) = 1 for all t > T, so it exhibits decay to the unstable state as t — +oo. O

Remark 1.21 (On time translation symmetry). If g, (-) satisfies the assumptions of Theorem 1.15,
then so does the time translate §y(-) := qo(- — At) for every At > 0. If ¢,.(¢; A1) are the Jost solu-
tion matrices for qo(-), then @ (t; 1) = ¢.,(t; 1)e*293 are those corresponding to g (-), from which
it follows that the reflection coefficients are related by #(1) = e**2r(1). Hence, both r, and R
are completely insensitive to time translation, and these are the only quantities on which Theo-
rem 1.15 and its corollaries depend (via an intermediate quantity X,). We conclude that exactly the
same asymptotic formulae describe the causal solutions for both incident pulses g, (-) and §y(-).
The apparent paradox is resolved upon noting that the results all require the limit ¢ — +o0, in

1
which case t — At = t(1 + O(t™1)) and, for fixed z > 0, p(1/2(t — At)z) = p(1/21z) + Ot 2), so
time-translation of the leading terms can always be absorbed into the error terms.

Our final results concern incident pulses that are not generic in that the first moment r( van-
ishes. The first result applies to the case of propagation in an initially-stable medium (D_ = —1),
and it displays an interesting dependence at the leading order on the index M > 1 of the first
nonzero moment of the reflection coefficient.

Theorem 1.22 (Global asymptotics—nongeneric case for a stable medium). Suppose that the inci-
dent pulse q satisfies the hypotheses of Theorem 1.8 and that ry = 0, so that the index M of the
first nonzero moment of the reflection coefficient is strictly positive. For every integer N > M + 2, the
causal solution of the Cauchy problem (1.1) in an initially stable medium (D_ = —1) satisfies

Lo+

q(t,z) = —z— [ e —w(;)z T (2V22) + O <<z/r)z(M“)> +O(N),

P(t, Z)—Z | e ‘INM(%)E JM(Z\/Z_tZ)+(9<(Z/t)2(M+1)> +(9<t§‘N),

2
P9 L e

D(t,z) = —1 +2 (;4) (23)

IVIR) +0 <(z/t)2(M+])> +0O <z3‘N> , (1.37)
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ast — +oo for z > 0 with z = o(t). Here, the moment réM) is given in Definition 1.9, 8, is given in

Definition 1.11, and J,(-) denotes the Bessel function of the first kind of order n [49, Section 10.2].

The leading terms are easily seen to be consistent with the conservation law |P|2 +D? =1and,
via the identity [49, Eqn. 10.6.2], the Maxwell equation q, = —P. Analogues of Corollaries 1.17 and
1.18 are easily extracted from this result by expansion of the Bessel functions for small and large
positive x, respectively. Indeed, from [49, Eqn. 10.2.2] we get

J,(2x) = );—7(1 +0(x?), x-0. (1.38)

This implies that in the regime that t — +co while z = o(t™!) the optical field q(t, z) is propor-
tional to zM*1, a result consistent with Corollary 1.17 applying for M = 0. Likewise, from [49, Eqn.
10.17.3] we get

J,2x) = . (cos <2x - 1n7r - 171') + (9(x_1)> , X — 4oo. (1.39)
X 2 4

1
Applying this formula in the situation that z > 0 is fixed shows that q(t,z) = o Myast -
+00, so L(R) integrability of the optical pulse is recovered for each z > 0 under the nongeneric
condition thatry = 0. Therefore, in some sense, a nongeneric incident pulse g, produces a smaller
optical field within the active medium than does a generic pulse; since a generic incident pulse
returns an initially-stable medium to its stable state, it is not surprising that the same occurs for
the weaker pulse since D(¢t,z) > —1 ast — +oo0.

Passing now to the case of an initially-unstable medium, it would be very interesting to deter-
mine if a nongeneric incident pulse is strong enough to stimulate the decay of an unstable active
medium to its stable state. Indeed, the trivial incident pulse g,(t) = 0 satisfies the hypotheses of
Theorem 1.8 and clearly the corresponding unique causal solution yields D(t,z) =1 for all t > 0
and z > 0 if D_ =1, so at least one (trivial) pulse with ry = 0 fails to stimulate the decay of an
initially-unstable medium! Moreover, for an initially-unstable medium a result qualitatively dif-
ferent from that given in Corollary 1.18 might be expected if r, = 0, since one can verify using
[49, Egn. 5.11.9] that the amplitude A > 0 defined in (1.34) is proportional to y/In(|ry|~1) for small
|ro| when D_ = 1 and hence blows up as r, — 0. We can give a version of Theorem 1.22 appli-
cable to an initially-unstable medium but we have to restrict to the medium-edge and transition
regimes.

Theorem 1.23 (Medium-edge and transition regime asymptotics—nongeneric case for an unsta-
ble medium). Suppose that the incident pulse qq satisfies the hypotheses of Theorem 1.8 and that
ro = 0, so that the index M of the first nonzero moment is strictly positive. For every integer N >
M + 2, the causal solution of the Cauchy problem (1.1) in an initially unstable medium (D_ = 1)
satisfies

1

i 1)M+1 o 2
_H=D)  |w —iNM<_>2
q(t,2) =2=—n |r0 |e 2t

(M+1) 1

T (2iV212) + O (t‘E(M“)(l_“)) + O,

DM ol L 2 ™M ~L M) (1-a) PN
p([,z):2T|ro |e—lNM<2—t) IyQiV2)+0 (2 >+(9 27 ),
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2
)
r M 2 1 3
D(t,z)=1+ 2(_1)M+1M(%> TyQiV2) +0 <t‘E(M“)(1“")> +0 <t5_N> , (1.40)
M)

ast — +oo with z related to t by (1.30) with o« < —1.

Again, the leading terms are consistent with |P|2 + D? =1 (here we may use the identity
.In(zix)2 = (—1)n|.ln(2ix)|2 for x > 0) and q, = —P. An analogue of Corollary 1.17 is available for
the medium-edge regime, by means of the formula (1.38) which is valid for complex x. How-
ever unlike for the stable case, there is no analogue of Corollary 1.18 since Theorem 1.23 is not
valid in the medium-bulk regime. This is more than a mere technical difficulty, since the Bessel
functions grow exponentially along the imaginary axis, implying that the formule (1.40) must
become invalid as the similarity variable x = \/Z_tz becomes large. The dynamics in the latter
regime would resolve the interesting question of whether the medium decays to the stable state
ast — +oo for fixed z > 0, but their description remains out of reach by the methods used in this
paper.

The proofs of these results are somewhat different for an initially-unstable medium than for an
initially-stable one. The results concerning an initially-stable medium will be proved in Section 2,
and the modifications necessary to handle the initially-unstable case will be described in Section 3.

1.7 | Numerical verification

We compared the numerical solution of the Cauchy problem (1.1) with the explicit leading terms
in the approximate formule in order to verify and illustrate our analytic results. We used a numer-
ical method that enforces the causality of the solution, which is briefly described along with the
numerical method used to construct the Painlevé-III solutions in Appendix D. We show the results
for several choices of the incident pulse g, (-) as given along with the auxiliary data M, réM), w (for
M = 0 only), and N in Table 1. For making a strong comparison with our analytical results, an
important property of the incident pulses that is clear from Table 1 is that the value of rgM) is not

too small. The four pulses are plotted in Figure 5.

1.71 | Generic pulses

Pulses (a) and (b) are consistent with the assumptions of Theorem 1.8, and they are generic, that
is, rq # 0 and hence the index of the first nonzero moment is M = 0. Since pulse (a) is real-valued,
the explicit formula (1.14) can be used to compute the nonzero value of r indicated in Table 1. For
the same reason we obtain X = 0 for this pulse (see Remark 1.12). Numerical integration of the
Zakharov-Shabat problem was used to compute the nonzero value of r, indicated in Table 1 for
the complex pulse (b). Both pulses (a) and (b) are actually infinitely continuously differentiable
for all t € R (the apparent sharp corners on the respective plots in Figure 5 actually disappear
upon closer scrutiny). To verify the hypothesis that pulse (a) does not generate any discrete spec-
trum or spectral singularities for the Zakharov-Shabat problem, note that this pulse satisfies the
criteria of the Klaus-Shaw theory [35], allowing us to simply compute the L'(R)-norm of g, and
confirm that it lies below the threshold value of %71'. To do the same for pulse (b), we relied on
numerical computations.
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TABLE 1 Threeincident pulses for numerical experiments and associated data.
Pulse qo(t) M rf)M) @ N
(a) 0.5e 1o~ 10650 x5 51(£) 0 4.7157 2.7418 0
(b) 0.5¢" i WG Xi03.5(6) 0 —0.50723 — 0.47903i —1.03564 1.26854
1 1
(c) 0.5¢ 1 we-o tanh(t — 3)x(o6(f) 1 4.26238i N/A 0
d % X0/ () 0 —0.076833 — 0.269224i —2.56388 0.691048
oy Al
Pulse (a) Pulse (b)
0.6 — %(q0)
0.4 q0 — 3(q0)
o2y | 02N\ e |90l
0
-0.2
_04 L
-0.6"
0 5 10 15 20 0 5 10 15 20
t t
Pulse (c) Pulse (d)
0.6 0.6 b —— %)
0.4 70 0.4} 3(40)
0.2} 02- Ak e |90l
0 0 o~
-0.2 -02}
0.4} 0.4}
-0.6 -0.6
0 5 10 15 20 0 5 15 20
t t
FIGURE 5 The four incident pulses from Table 1.

As pulses (a) and (b) are generic and satisfy the hypotheses of Theorem 1.8, Theorem 1.15
applies. We first illustrate the accuracy of this result by examining the numerical causal solutions
of the Cauchy problem (1.1) for each pulse in the transition regime that z is inversely proportional
to t, where self-similar behavior is predicted. In Figures 6 and 7 the results are shown for pulses

(a) and (b), respectively.

In each of these figures, the left-hand (resp., right-hand) column corresponds to the case

that the pulse is incident on an initially-stable (resp., initially-unstable) active medium. In each

column there are two panels as follows.

* The upper panel compares the numerical results with theoretical predictions for three fixed val-

ues of t = 200, 500, 1000 with the independent variable z expressed in terms of the similarity

variable x by z = z(x;t) = x?/(2t), plotted as functions of x € [0,20]. Here we expect conver-

gence of suitably renormalized versions of q(t, z), P(t, z), and D(t, z) to limiting PIII functions
whose graphs are shown with thick gray curves. There are therefore three subplots, from top to

bottom:
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FIGURE 6 Numerical study of incident pulse (a) in the transition regime for propagation in an
initially-stable medium D_ = —1 (left) and an initially-unstable medium D_ = 1 (right). See the main text for a
full explanation.

- aplot comparing numerical data for R(te™0q(t, z(x; t))) with its limiting function y(—ix; w)
in the stable-medium case or y(x; w) in the unstable-medium case;

- a plot comparing numerical data for m(%eiNOP(t, z(x;t))) with its limiting function
x~ 1S (s(—ix; w)) in the stable-medium case or x~'s(x; ) in the unstable-medium case;

- a plot comparing numerical data for %(D_ — D(t,z(x;t))) with its limiting function
x1J(U(—ix;w)) in the stable-medium case or x"'U(x; w) in the unstable-medium case.

* The lower panel illustrates the accuracy of Theorem 1.15 in the transition regime of fixed ¢tz and
large t > 0, in a more quantitative fashion than in the upper panel. Here the absolute value of
the difference between the numerical solution g(t,z) and the relevant leading term given in
Theorem 1.15 is plotted as a function of t for 25 different fixed values of x = \/2tz = 8 + %n, n=
0,2, ...,24 on the same log-log axes. The magenta line is a trend line for these errors and its slope
indicates a decay rate proportional to t~2 as is consistent with the prediction O(t=2) + O(¢t'~V)
valid for z = O(¢t™!), given that N is arbitrarily large.

The accuracy on display in the upper panels of Figures 6 and 7 is remarkable even for ¢ = 200,
and it is clear that the accuracy improves as ¢ increases. It might be observed that in the upper
panel there is some deviation from the limiting curves for the largest value of t = 1000; however,
this is occurring for smaller values of x where for large ¢ there is simply insufficient numerical
resolution of the self-similar solution for any accuracy to be expected. In other words, this is a
shortcoming of the numerical method, not of the asymptotic result.
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FIGURE 7 Asin Figure 6 but for pulse (b).

We also investigated pulses (a) and (b) in the medium-bulk regime to make a comparison with
Corollary 1.18. The medium-bulk regime in particular corresponds to bounded z independent of ¢,
soin the left-hand panel of each of Figures 8-11 we first show a grayscale density plot of In(|q(%, z)|)
over a fixed portion of the first quadrant in the (¢, z)-plane. Near the dark curves, the numerical
value of |q(t, z)| is very small (note that for incident pulse (a) the optical field q(t, z) is real-valued
and hence vanishes along curves while for incident pulse (b) the optical field is complex-valued
and has only approximate zeros). Superimposed with red dashed curves are selected hyperbolee
\/Z_tz = x corresponding to exact roots of the relevant approximating function from Theorem 1.15.
These curves would be expected to predict approximate zeros of |q(¢, z)| when ¢ > 0 is large, but
remarkably the agreement is also quite good for small ¢ > 0 and large z > 0. One interesting fea-
ture revealed by these plots is that (comparing Figure 8 with Figure 9, or comparing Figure 10
with Figure 11) the same incident pulse can produce an optical field g(¢, z) within the medium
(z > 0) of dramatically different amplitude depending on whether D_ = +1. Indeed, it appears
that for pulse (a), |q(¢, z)| is an order of magnitude larger for z > 0 in the stable medium than in
the unstable medium. On the other hand, for pulse (b) the effect is reversed and it is less dramatic.
This phenomenon can be explained by the asymptotic formule in Corollary 1.18 which involve an
amplitude factor A (see (1.35)) that for the same incident pulse takes different values in the stable
and unstable cases.

The right-hand panel in each of Figures 8-11 is a quantitative study of the accuracy of
Corollary 1.18. We compare numerical data for q(¢, z), P(t, z), and D(¢, z) with the corresponding
approximations from Corollary 1.18 for fixed z = 1 and increasing ¢ > 0 in three similar log-log
plots. In this situation (fixed z > 0), the error estimates for g, P, and D in Corollary 1.18 simplify
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FIGURE 8 Numerical study of incident pulse (a) in the medium-bulk regime for propagation in an
initially-stable medium (D_ = —1). See the main text for a full explanation.
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FIGURE 9 Asin Figure 8 but for propagation in an initially-unstable medium (D_ = 1).

1 1
to O(t™1), O(t 2) and O(t 2), respectively. The magenta line in each plot is a bound for the
numerically calculated difference between the solution and the leading terms in Corollary 1.18.
The slope of this line suggests that for q(t, z), P(t,z), the estimates in Corollary 1.18 may be
1 1

improved by an additional factor of ¢~ 4, while for D(t, z), an additional factor of t 2 may be
expected. Looking in more detail at the error terms in (1.34) and taking « = 0 as would be correct
for the plots under consideration, we see that the first error term on the right-hand side in each
cases matches the numerically-observed rate of decay, but it is dominated in each case by the
second error term (and the third term may be regarded as beyond-all-orders). This suggests that
the apparently-dominant error term, which originates from the first error term on the right-hand
sides of (1.32) and (1.33) in Theorem 1.15, is not sharp, at least when z > 0 is fixed. This term
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FIGURE 10 Numerical study of incident pulse (b) in the medium-bulk regime for propagation in an
initially-stable medium (D_ = —1). See the main text for a full explanation.
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FIGURE 11 Asin Figure 10, but for propagation in an initially-unstable medium (D_ = 1).

originates from the very last step of our analysis, the solution of a small-norm RHP (see
Section 2.5.2 below).

1.7.2 | A nongeneric pulse

Pulse (c) is also consistent with the assumptions of Theorem 1.8, but it is nongeneric. Being a real-
valued pulse that is odd about ¢ = 3, it follows from (1.14) that ry = 0, and by Remark 1.12 we also
have X = 0. Similarly, from (1.15) we obtain the nonzero value of r(()l) = r/(0) indicated in Table 1,
and hence the index of the first nonzero moment is M = 1. We note that pulse (c) is Schwartz-class
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FIGURE 12 Numerical study of incident pulse (c) in the transition regime for propagation in an
initially-stable medium D_ = —1 (left) and an initially-unstable medium D_ = 1 (right). See the main text for a
full explanation.

(again the apparent corners on the plot in Figure 5 are artifacts of insufficient resolution), and the
fact that it generates no eigenvalues or spectral singularities was confirmed numerically.

Since it is nongeneric, for pulse (c) it is Theorems 1.22 and 1.23 that are applicable (here in
the case M = 1), for propagation in an initially-stable medium and an initially-unstable medium,
respectively. Both of these theorems characterize the solution in the transition regime, so we
may begin by presenting an analogue of Figures 6-7 in Figure 12. Once again, the left-hand
(respectively, right-hand) column corresponds to propagation in an initially-stable (respectively,
initially-unstable) medium. The three sub-plots of the upper panel in each column show numeri-
cal data at the indicated fixed values of t as functions of the similarity variable x = \/Z_tz compared
with the predicted limiting function plotted with a thick gray line:

* the top sub-plot compares R(—2iD_t%e™ q(t,z(x;t))/ |r(()1) |) with the limiting function
x%J,(2x) (x*J,(2ix)) in the stable (unstable) case;

+ the center sub-plot compares R(—ite™ P(¢t, z(x; 1))/ |r(()1)|) with the limiting function xJ;(2x)
(S8(xJ;(2ix))) in the stable (unstable) case;

2
+ the bottom sub-plot compares the quantity 2t%(D(t,z(x;t)) — D_)/ |r(()1)|

function x2J;(2x)” (x27,(2ix)°) in the stable (unstable) case.

with the limiting

At the bottom of each column is a plot of the absolute error between q(t, z) and the leading term
on the right-hand side in (1.37) (stable case) or in (1.40) (unstable case) for numerous fixed values
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FIGURE 13 Numerical study of nongeneric incident pulse (c) in the medium-bulk regime for propagation
in an initially-stable medium (D_ = —1). See the main text for a full explanation.
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FIGURE 14 Asin Figure 13, but for propagation in an initially-unstable medium (D_ = 1).

of x = \/2_tz plotted as functions of t. The magenta trend line in each plot is consistent with a
rate of decay of O(t~3) exactly as predicted in Theorems 1.22 and 1.23 for the transition region
corresponding to choosing @ = —1 in the exponent.

The sub-plots in the upper plot of the right-hand column suggest a nonuniform rate of con-
vergence to the limiting functions, which in this (unstable) case exhibit exponential growth as
X — +oo. This in turn suggests that pulse (c) produces a strong response in the unstable medium
that drives it away from the self-similar behavior that occurs near the edge z = 0 for large ¢t > 0.
To understand the solutions away from the edge, we make plots similar to Figures 8-11 for the
nongeneric pulse (c). In Figures 13 and 14 (for propagation in an initially-stable and unsta-
ble medium respectively), we show in the left-hand panel a density plot of In(|q(t, z)|). In the
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stable case, the leading approximation from Theorem 1.22 has zeros corresponding to fixed val-
uesof x = \/ﬁ and some of these curves are overlaid; however for the unstable case the leading
approximation has no zeros at all, even though the density plot shows some curves along which
the real-valued solution q(¢, z) evidently vanishes. We do not have an explanation for this phe-
nomenon because it occurs in the medium-bulk regime where Theorem 1.23 does not apply;
it is related to the nonuniformity of convergence apparent in the upper right-hand panel of
Figure 12.

The right-hand panel of Figures 13 and 14 is a quantitative study of the behavior of the solution
generated by pulse (c) in the medium-bulk regime where z = 1 is fixed for stable and unstable
media respectively. In the stable case illustrated in Figure 13, we compare with the leading terms
in Theorem 1.22 (we could have expanded the Bessel functions for large arguments using (1.39)
but since it is just as easy to evaluate the Bessel functions numerically, we did not do so here)
and observe that for all three fields the measured rates of decay of the error seem to be faster

7 3 5 3
than predicted: O(t~ ) versus O(t~ 2), O(t " +) versus O(t ), and O(t " 2) versus Ot~ 1) for q(t, z),
P(t,z), and D(t, z), respectively. For the unstable case we have no result to compare with in the
medium-bulk regime of fixed z = 1, so we simply plot the numerical data against ¢ and hence

provide evidence that the nongeneric pulse (c) indeed switches the unstable medium back to the
1

stable state as t — +o0, although the decay is very gradual with D(¢, z) + 1 proportional to ¢ 4.

1.7.3 | A non-Schwartz class pulse

We include pulse (d) as an example to illustrate the applicability of Theorem 1.15 and its corollaries
beyond the technically-convenient assumption that g, € S(R). This pulse is in L'(R), allowing
the numerical computation of the scattering matrix for all 4 € R which shows that there are no
spectral singularities or eigenvalues, and allows the (numerical) calculation of the value of ry # 0
given in Table 1. In particular, this is a generic (M = 0) pulse. Although it is not in the Schwartz
space, one can check that pulse (d) lies in the weighted Sobolev space HN(R) for all N < 3.5, and
by the weighted Sobolev bijection established in [59], as there are no spectral singularities, this
implies that the reflection coefficient lies in HY"!(R). As suggested in Remark 1.5, this is almost
enough for our proofs to go through with N = 3; indeed the only additional requirements would
be that r’(1) and r”'(1) be absolutely integrable on R; we made no attempt to confirm numerically
whether this is the case for pulse (d).

Since r, # 0 for pulse (d), it would make sense to compare it with Theorem 1.15 and its corollar-
ies. Figure 15 is the analogue for pulse (d) of Figures 6-7. Figures 16 and 17 are analogues for pulse
(d) of Figures 8 and 10, showing propagation in the medium-bulk regime of a stable medium, and
of Figures 9 and 11, showing propagation in the same regime of an unstable medium, respectively.
This experiment shows that our results indeed hold for some pulses that do not decay rapidly
enough to lie in the Schwartz space.

2 | ANALYSIS FOR PROPAGATION IN AN INITIALLY-STABLE
MEDIUM

This section concerns the analysis of RHP 1 in the case of an initially-stable medium with D_ =
—1, in the limit that t — +o0o0 with 0 < z = o(t). The whole analysis is driven by the sign structure
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FIGURE 15 Numerical study of incident pulse (d) in the transition regime for propagation in an
initially-stable medium D_ = —1 (left) and an initially-unstable medium D_ = 1 (right). See the main text for a
full explanation.
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FIGURE 16 Numerical study of incident pulse (d) in the medium-bulk regime for propagation in an
initially-stable medium (D_ = —1). See the main text for a full explanation.

of the real part of the exponent i8(4; t, z), for which we have the following specialized notation in
the case D_ = —

Definition 2.1 (the phase for D_ = —1). In the stable case, we denote the phase 6(4;t,z)
appearing in (1.11) as 8(4; t, z) = 65(4;t, z), where

(1) = 65(A;t,z) 1= At + ﬁ (2.1)
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FIGURE 17 Asin Figure 16, but for propagation in an initially-unstable medium (D_ = 1).

FIGURE 18 Fort > 0and z > 0, the sign structure of R(i6(4; t, z)) in the complex plane for an
initially-stable medium D_ = —1 (left), and for an initially-unstable medium D_ = 1 (right). White (gray) shading
corresponds to positive (negative) values of R(16(4; ¢, z)).

The sign chart of R(i65(4; t, z)) is shown for ¢t > 0 and z > 0 in the left-hand panel of Figure 18.
Note that the radius of the circle shown in that plot is

z
=14/ = 2.2
%o =1/ = (2.2)
A key observation going forward is that under the assumption z = o(t), 4, — 0 in the limit ¢t —
+00. This is why the moments and Taylor expansion of r(1) about 4 = 0 are of primary importance
in our analysis.
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2.1 | Setting up a Riemann-Hilbert-3 problem

We begin by taking the arbitrary radius y > 0 in RHP 1 to coincide with 4,. By the sign chart in
the left-hand panel of Figure 18, this effectively ensures that the exponential factors in the jump
matrix satisfy |e£2%:52)| = 1 on the contour Zy.

Next, we remove the jumps across the real intervals (—o0, —4,) U (4., +00) as follows. The
exponential factors e*?%@ can be algebraically separated by the jump matrix factorization:

, 2i6,(1)
WT(A)W(A)=<R(A)e£2iQSm 1) A+ P (1 R(A)i ) 2.3)

where 1 € (—00, —4,) U (Ao, +0), 6,(1) = 6,(4;t,z), W(A) = W(A;t, z), and

r(d)

O e

AER. (2.4)

Lemma 2.2. If an incident pulse q,(t) satisfies Assumption 1 and generates no discrete eigenvalues
or spectral singularities, then

R(A) € S(R), and In(1 + [r(D)]?) € S(R).

Proof. We already know that r(1) € S(R) from Lemma 1.4. Slnce all derivatives of r(1) are con-
tinuous and decay rapidly, by repeated differentiation using |r(/1)| = r(/l)r(/l) and 1+ |r(/1)| >1
one sees that R(1) and In(1 + |r(1)|?) are functions in S(R). O

By the sign chart in the left-hand panel of Figure 18, the factor e*?%®:42) has modulus less
than 1in the part of the exterior region |A| > 4, with £F(4) > 0. It is therefore desirable to make
a substitution to move the triangular factors in (2.3) into the respective half-planes. However,
since R(4) generally has no analytic continuation from the real line, no substitution that accom-
plishes the stated goal can be analytic, so we will adapt the J approach from the works [24,
45, 47]. We identify the complex plane having coordinate A € C with R? having real cartesian
coordinates

u :=RA), =3A). (2.5)

Since by Lemma 2.2 R(1) has any number of continuous derivatives on the real line, for any N > 2,
a continuous extension of R(1) from R to R? can be defined by the formula:

7 (iv)" d"R

N
Qn(u,v) :=nz=‘6 W, ) EeR’. (2.6)

The differentiation here is along the real line v = 0. That Qy(u, v) is an extension of R into the
plane R? is easily seen by setting v = 0 which yields Qy (u, 0) = R(u). In particular, the extension
Q;(u,v)isjust orthogonal projection to v = 0: Q; (i, v) = Q1(u,0) = R(u). The Schwarz reflection
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ON THE MAXWELL-BLOCH SYSTEM IN THE SHARP-LINE LIMIT WITHOUT SOLITONS 491

of Qn(u, V) is defined by

(iv)" d"R
n! dunr

N-2
Qv(w,v) 1= Qy(u,—v) = Y, W), (uv)€R2
n=0

Here R(u) = R(u). While these extensions are not analytic functions, they are nearly so near the
real axis; indeed, recalling the Cauchy-Riemann operator (or Wirtinger derivative)

5i=1 i+ii
2 \du v

(annihilating all analytic functions), one sees by direct computation that dQ(u, v) is a continuous
function R? — C that vanishes to order N — 2 at v = 0:
1 ()" dv-IR

0Qu(u,v) = 3 (N —2)! duN-1

W), (u,v) eR (2.7)

Likewise,

1" VIR

TN -2 W WY ER 238)

3 Qyn(u,v) =

The extensions Qx(u, v) and @(u, v) will be used to remove the triangular factors in (2.3) from the
jump condition on (—oo, —4,) U (4,, +00) at the cost of some non-analyticity measured by (2.7)-

a
(2.8). The central factor (1 + |r(/1)|2) *in (2.3) can be factored into a ratio of functions analytic in
the upper and lower half-planes; recalling the function F(4) defined in (1.18), we set

(1) :=efW, 1eC\R. (2.9)
Then, it is easy to verify that (1) —» 1 as A — oo and

ST~ D) =1+ r()°, 1€R. (2.10)

Remark 2.3. Note that, since the diagonal factor (1 + |r(/1)|2)(73 only appears in the jump matrix in
(2.3) in the complement of the interval (—A4,, 4, ), one could omit this interval from the integration
over R in (1.18) and obtain another function £(1) and from (2.9) a function §(21) that satisfies (2.10)
exactly where (2.3) holds. However, since 4, — 0 as t — 400, it turns out to be more convenient
to keep the interval (—A1,, 4, ) in the integration.

Lemma 2.4. Under the conditions of Lemma 2.2, |6(1)| and |5(/'t)|_1 are uniformly bounded on
their domain of definition C \ R.

Proof. The proof is similar to that in [23, 24, 38]. By Lemma 2.2, there is a constant C > 0 such
that | In(1 + |r(1)]?)| < C. We then see that for 1 = u + iv,

B vl [ In(1 + [r(s)I*) Clv| ds _ .l
|5(/1)|—exp(zﬂ/R—(S_u)2+v2 ds)SeXp< o7 /R(S—u)2+l)2>_e ,
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so we have proved §(1) € L®(C \ R). The definition (2.9) directly yields §(1)6(1) = 1 forall A €

C, where §(1) denotes the Schwarz reflection 6(1). Then, given 1 € C \ R, we have |5(/1)|_1 =
1

16 < e2%,508(1) " € L®(C \ R) as well. O

Let B : R — [0,1] be a “bump” function of class C*°(R) with the additional properties:

* B(-v) = B(v),
* B(v) =0for |v| > 2,and
* B(v) =1for|v| < 1.

Defining a matrix for (u, v) € R? by setting

1 0

TS(U, v) = TS(u! vit,z) = <B(U)QN(M U)efzies(uﬁu;t,z) 1

>, (u,v) € R?

the jump matrix factorization in (2.3) can be rewritten as

WI(DWQ) = Ty(u, 005+ ()8~ (w) T} (u,0),

A=u€ (—00,—4,) U, +0), v=0.

Here, T: (u,v;t,z) denotes the Schwarz reflection Ty(u, —v; ¢, z)T. This motivates one to define a
new matrix function Kq(u, v) = Ks(u, v; t, z) explicitly in terms of the solution M(1) = M(4;t, z)
of RHP 1 by setting

M(u + iv) 6(u + iv)” 7, lu +iv| < 4o,
K (u,v) 1= I M(u + iv)T, (u, U)_lé(u +iv) 7, Ju+4iv| >4, v>0, (2.11)
M(u + i0)Ts(u, v)5(u + iv)” 7, |lu+iv| > 4, v<0.

This definition is shown schematically in the left-hand panel of Figure 19. This definition implies
in particular that Ks(u,v) — l as u + iv — oo because: (i) M(u + iv) — [ according to the condi-
tions of RHP 1; (ii) 6(u + iv) — 1 according to (1.18) and (2.9); and (iii) the off-diagonal entries
of Ts(u,v) and TZ (u, v)_1 decay rapidly at infinity in the corresponding half-planes (and actually
vanish identically for |v| > 2). More generally, it is straightforward to confirm that the conditions
of RHP 1 are equivalent to the following problem for K (u, v). Let X denote the contour shown in
the right-hand panel of Figure 19.

Riemann-Hilbert-0 Problem 1. Given t > 0 and z > 0, seek a 2 X 2 matrix-valued function R?
(u,v) = K (u,v;t, z) that is continuous for (u,v) € R? \ X; that satisfies K; — [ as u + iv — oo;
that takes continuous boundary values on X from each component of the complement related
by the jump conditions K (u, v; t,z) = K (u, v;t, z)Is(u, v; £, z) where J(u, v) = J(u, v; t,z) is
given by

89T (u, V)W(u +iv) '679, |u+iv|=4,, v>0,
J(u,0) 1= 69T (u,0) Wi u+iv)d~%, |u+iv|=4,, v<O0, (2.12)
A+ Ir@?) ", u€ (~1o,A,), V=0,
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I

Ks = MT; T5 SBTIW 157

—Ae Ao ~Ae Ao
[+ (M)

Ks = MT6™ % oBT IWT—

FIGURE 19 Left: The definition of K (u, v; t, z). Right: The jump for K (u, v; t, z) with the jump contour
and its orientation shown in blue.

where & = 6(u + iv), Ty(u,v) = Ty(u,v;t,z), and W) = W(A;t,z); and that satisfies the
following d differential equation

0K (u,v) = K (u, v)Dy(u,v), (u,v) ER?\ =, (2.13)

where the matrix Dy(u, v) = Ds(u, v; t, z) is given by

0 D .
< 5’1’2>, |lu+iv| >21,, v>0,

0 0
D(u,v) :=1 /0 0 (2.14)
< ), lu+iv| >1,, v<O0,
Ds,1 0O
02)(2’ |u+lU| </‘lo,

L

with
D15 = —8(u + iv) eX8@ L3 B(L)Qy (u, v)]

Dy, = 8(u + iv) e 20HULDF [B(0)Qy (1, v)] -

Remark 2.5. A Riemann-Hilbert-0 problem (RHAP) replaces the RHP condition of sectional ana-
lyticity with mere sectional continuity at the cost of an additional d equation of the form (2.13) as
is necessary to restore well-posedness.

Combining Theorem 1.8 with the definition (2.11), one can reconstruct the causal solution of
the Cauchy problem (1.1) for propagation in a stable medium (D_ = —1) from Ky(u, v; ¢, z) by

q(t,z) = =21 lim (u+iv)K;,(u,v;t,2),
u+iv—oo

pt,z) = — lim K(u,v;t,2)03K(u,0;t,2)"" . (215)
u+iv—0
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494 | LI and MILLER

Remark 2.6. Although K (u,v;t, z) has a jump discontinuity across the segment u € (—4,,4,),
v = 0, its jump matrix is diagonal, so while the limit in the formula for p(t, z) in (2.15) is necessary,
it makes no difference whether it is taken from v > 0 or from v < 0.

2.2 | Construction of a parametrix

We now construct a parametrix for Ky(u, v; t, z) by the following steps:

 we neglect the matrix Dy(u,v;t,z) in the d equation (2.13) measuring deviation from ana-
lyticity, that is, the parametrix will be sectionally analytic rather than merely sectionally
continuous;

* we approximate the jump matrix J4(u, v; ¢, ), accounting for the fact that when t — +oo0 with
z = o(t) the whole jump contour X is small of size 4, < 1.

Based on the first point, we will restore the complex variable A = u + iv and denote the parametrix
for the solution of RHAP 1 by K (1) = K (4; ¢, 2).

To accomplish the approximation mentioned in the second point, we begin with the following
Lemma.

Lemma 2.7. Suppose f(-) € CX(R) and 0 < n, < n; < k. Recalling u = R(1) and v = F(1), we
have

()" S
Z = ) — Z‘B mf(n)(()) =O"), 1-0. (2.16)

Lemma 2.7 is proved in Appendix C. Now let a,, denote the Taylor coefficients of r(4):

r(n)
o
a, .= W (217)
and recalling the index M > 0 of the first nonzero moment of r, define
Ay (D) =1+ |ay|?A*M 55—“ = /llin(l) 5(A). (2.18)

+J()>0
—— 1

Note that Ay;(1) = Ay (1) := Ay (). All roots of Ay(2) lie on the circle of fixed radius |ay |~ ¥,
o) AM(/I)_1 is analytic on £ when its radius 4, is sufficiently small.

Lemma 2.8. Suppose that n > M + 2 and that |1| = lu +iv| < A,. Thenas 1, | 0,
1+ r@)|” = Ay (u) + O,
r(A) = ayAM + 0N, S > o0,
5(/1) = (5+) +0O,) = e“NAM(/l)‘ +0,), +£3A)>0,

.M
ay(u + iv)

O@AMH.
Ay (u +iv) +O( )

QN(“" U) =
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Proof. The first equation follows from (real) Taylor expansion of 1 + |r(u)|2 =1+ r(u)m. The
second equation follows also from Taylor expansion and boundedness of M + 1 derivatives of r(1)
down to the real axis from the upper half-plane according to Lemma 1.4.

For the third equation, we note that §’(1) is bounded from each half-plane in a neighbor-
hood of A = 0; this follows because In(1 + |r(s)|?) in (1.18) has a Holder continuous derivative.
This establishes that 5(/1)2 = (58—“)2 + O(4,) for £3(1) > 0. Now the jump condition (2.10) taken
at 1 =0 implies that 58“ /6, =1+ |r0|2. On one hand, if M =0 then this can be written
exactly in the form 5; /8y = Ap(A). On the other hand, if M > 0 then r, =0 and the same
identity can be written &7 /8, =1 = Ap(A) + OA*M) = Ay (1) + O(4,). So regardless of the
index M, 5;/55 = Ap(1) + O(4,). Next, recalling (1.18) and (2.9), and using F, (0) + F_(0) = iN
where N is defined in Definition 1.11, we have §; 6, = e™™™. Therefore (5(?)2 = e A, (1)
O(4o).

In order to derive the last equation, we first apply Lemma 2.7, noting that Qu(u, v) has the form
of the first term on the left-hand side of (2.16):

M n n
Qn(u,v) = Z }‘| 3 5(0)+(9(/1M+1)

M dMR M+1
T gt © + 0.
The reason that only the last term in the sum survives in the second equality is that all of the
lower-order derivatives of R(u) are proportional to derivatives of r(u) of order strictly less than M,
all of which vanish when u = 0 (by definition of the index M). If M = 0, then the desired result
holds. For M > 0, we calculate the surviving term explicitly using (2.4) and the product rule and
r(0) = 0:

-1 M (M)
dMR % <M> }’(n)(O) dM_n(l + Ir(u)lz) — (M) rO (M) ]
n

0= =r
du dutr 1+ 1r@F "

n=0

u=
Again, the reason that all terms except for the last one vanish is that r(()n) =0for0<n<M.
Consequently, for M > 0 we have

M)

0 M M+1 M M+1 M M+1
,0)=——A14 O(A, = ayl O(A, =——7»M° O, 2.19
Qu(w,0) = Jr A+ OGY) = ayd + O = LA H OGN, @19)

which proves the desired statement. (The insertion of Ay;(1) = 1 + ©O(1*M) in the denominator in
the last step may seem artificial, but it is important in maintaining the unit-determinant condition
on the jump matrices, and it is also useful in ensuring their compatibility at self-intersection points
of the jump contour later on.) O

With the results of Lemma 2.8 in hand, we have the following analytic approximation of the
jump matrix Js(u, v; t, z) defined in (2.12):

T (u,v;t,z) = J(u + iv; t, z) + OAMT) (2.20)
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holding uniformly for u + iv € X, where J((1) = J,(1;t, z) is given by

-

Ap( /1)—1 lay| AM g2i6()—idy -
_lanl ™ iy —igy (1) 1 s 1A =1, () >0,
Ay ()
Js(A) =1 1 lay 12 i (4)-iny (2.21)
Ay (D) , Al =4, S1) <0,
— |y | AM =210 Ap( /1)—1
Ay (D)%, re (=2, 0).

Note that arg(ay,) = arg(réM)) from Equation (2.17) implying arg(ay,) + N = arg(r(()M)) +N=
N, from Definition 1.11. Note also that det(J(1)) = 1. We therefore arrive at the following
specification of a parametrix.

Riemann-Hilbert Problem 2 (Parametrix for K). Given t > 0 and z > 0, seek a 2 X 2 matrix-valued
function A = K (1) = K(1;t, z) that is analytic for 1 € C \ Z; that satisfies K, — lasA — oo; and
that takes continuous boundary values on X from each component of the complement related by
the jump conditions K} (1) = K (1)J4(1) where the jump matrix J4(1) is defined on X by (2.21).

While the conditions of RHP 2 have been obtained from those of RHAP 1 by formal unjusti-
fied approximations, it is straightforward to check that for each (¢, z) € R2 witht > 0and z > 0,
the jump matrix J (1) = J4(4;, z) satisfies the necessary Schwarz symmetry J S(/T)_1 = JS(/l)T for
A€ Z\R, that js(/l)TJ () is positive definite for 1 € XN R, and that J (1) satisfies the neces-
sary consistency condition' at the two self-intersection points A = +4, of . Therefore, by Zhou’s
vanishing lemma [58], RHP 2 has a unique solution so the parametrix is well-defined.

Since for 4, sufficiently small, Ay,;(1) is an analytic nonvanishing function on the disk 1| <
A, satisfying Ay;(0) =1 for M > 0 and Ay(0) =1+ |r0|2, we may define on this disk an analytic

1 1

square root A;(1)2 by the condition Ay;(0)2 > 0. Using this function to transfer the jump from
the interval (—A1,, 4, ) to the upper and lower semicircles |1| = 4,, conjugating off some constants,
and rescaling the circle |[1| = A, to a fixed size results in an explicit transformation:

1. 1.

_INM%KS(A ke 2", Ikl > 1,

K(k) := 1NMU3KS(/1 KAy (A, k)“’3 3w, k| <1, S(k) >0, (222)
3R (1 I)Ay (k)2 "“*MC’S, k| <1, S(k) < 0.

Then, since combining (2.1)-(2.2) yields 64(1.k;t,z) = %x(k + k1) where x := /2tz, K (k) =
K,(k;t,z) is the unique solution of the following simplified RHP equivalent to RHP 2 via the
substitution (2.22):

Riemann-Hilbert Problem3 (Modified parametrix for K). Given ¢t >0 and z > 0, seek a 2x2
matrix-valued function k —~ K, (k) = K (k;t, z) that is analytic for |k| # 1; that satisfies K; — [

I That is, that the clockwise product of jump matrices for arcs approaching a self-intersection point is the identity.
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as k — oo; and that takes continuous boundary values on |k| = 1 from the interior and exterior
related by the jump condition

- A lay| i -1
" .. Ap(Ak) 2 Ao laml p M gix(k+k™)
LOES wy(5] R @R ’
— e e D Ay (k)

for |[k| = 1, where A, is defined in terms of (¢, z) by (2.2) and x = 4/2tz.

To prove that the parametrix K (1) is an accurate approximation to K(u, v) when t > 0is large
and z = o(t), we will need to first prove that K (1) is uniformly bounded in this limit; using (2.22)
and the fact that Ay;(1,k) has a positive limit as 4, — 0 for |k| < 1 it is sufficient to show instead
that K (k) is bounded. In a different direction, for the parametrix K (1) to be a useful approxi-
mation of K (u, v), we will need to express it in terms of known functions (or equivalently do the
same for K (k)). We address both of these issues next.

2.3 | Properties of the modified parametrix: M = 0

When M = 0, the jump matrix in RHP 3 becomes simpler because the only dependence on (¢, z)
1

or k enters via the exponential factors e**(k+k™)_ At the same time, the constants |aO|A;E =
1

[rol/v/1+ |rgl? > 0and A(:E =1/4/1 + |ry|? > 0 are respectively the sine and cosine of an angle
7 € (0, %71'). Indeed,

K (k;t,z) = Y(ik; —ix, arctan(|r|)), (2.23)
where Y(A; X, n) is the solution of

Riemann-Hilbert Problem 4 (Painlevé-III). Given X € C and 5 € (0, in), seek a 2 X 2 matrix-
valued function; A — Y(A;X,7) that is analytic for |A| # 1 that satisfies Y — [ as A — oo; and
that takes continuous boundary values on |A| = 1 from the interior and exterior related by the
jump condition

YH(A; X, 1) = Y (A; X, 7)el®@NX3E(7)e - 10NX3
where

0(A,X) = %X(A—A‘l) and E() := ( cos(n) sin(n)>,

—sin(n) cos(n)

and the unit circle |A| = 1 has counterclockwise orientation.

It follows from Liouville’s theorem that for given parameters X and # there is at most one
solution of this problem, and it must have unit determinant. Likewise, given 7 € (0, %n), it
follows from analytic Fredholm theory that if there is a solution for any X € C then the solution
is meromorphic in X. Since K(k;t,z) exists for all t >0 and z > 0, we deduce from (2.23)
existence of Y(A; X, n) for all X on the closed negative imaginary axis.
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RHP 4 can easily be related to a RHP appearing in several recent papers on the topic of high-
order solitons and rogue wave solutions of the focusing nonlinear Schrodinger equation. For
instance, comparing with the RHP satisfied by the matrix denoted B(A; X, T) in [8, Eqn. (4.14)],
one can check that (after making a suitable choice of the arbitrary radius of the circle across which
B(A; X, T) experiences its jump discontinuity)

iarg(c—2>cr ; 2 —iarg<c—2>a

e’ \4 3c73B —EA;X—,0> oze * o \4 ’ Al >1,
Y(A; X, 7) = . X8 D e (2.24)

larg<°_>a L x _larg(:)a
e’ ‘1 3O'3B <—ﬂA; X—,O) oze ? ‘1 3, Al <1,
X 73

and tan(n) = |c,|/|c;|, where (¢1,c,) € C? is a parameter vector for B(A; X, T). The same RHP for
a special case of (¢;, ¢;) appeared also in [9].

2.3.1 | Isomonodromic interpretation of RHP 4

Comparing with [28, Theorem 5.4], one sees that RHP 4 is a special case of the inverse monodromy
problem for the Painlevé-1II equation, where the Stokes matrices are all trivial and the formal
monodromy parameters ®, and O, about A = 0 and A = oo respectively both vanish. Indeed, for
fixed 7, setting W(A, X) := Y(A; X,7)el®X)% one sees easily that the matrices

AN X) = g—l/I:(A,X)II’(A,X)_l and X(A,X) := %I;(A,X)T(A,X)_l (2.25)

are both analytic for A € C \ {0}. Moreover they are Laurent polynomials in A of degrees (0,2) and
(1,1) respectively, and their coefficients can be written explicitly in terms of the matrix function
Y(A; X, n) as follows:

. 1o - .

vX) 0 JA T\ —ise)TTUX)UE) -X) iUX) — %1X
(2.26)
1. . .
i 1/(0 yXxX)\_ 1 51X—1U(X) is(X) 1
X(MX) =500+ % <v(X) 0 ) X <—is(X)_1U(X)(U(X)—X) iUX) — EIX N
(2.27)
where, indexing by the equivalent parameter w = —3 cos(27),
yX) = y(X;w):= —iX lim AY) 5(A; X, 7)
V(X) = y(X;w):=iX lim AY, (A X, 1)
A=eo (2.28)

s(X) = s(X;w):= =XY1,(0;X,7)Y,(0;X,7)
UX) = UX;w):= =XY,(0;,X,1)Y,,:(0; X, 7).

With the forms (2.26) and (2.27) for A(A, X) and X(A, X), the equations (2.25) can be re-interpreted
as a compatible first-order Lax system on the unknown W(A, X). The compatibility condition for
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this Lax pair is equivalent to the statement that the functions (2.28) satisfy the following first-order
nonlinear system:

y'(X) = -2s(X)
V/(X) = 2Xs(X) T UX) — 2s(X) " UX)
Xs'(X) = s(X) — 2Xy(X) + 4y(X)U(X)

XU'(X) = UX) — 2Xs(X) " y(OUX) + 25(X) yXOUX)” + 20(X)s(X).  (2.29)

We note here that our parametrization of the matrices A(A, X) and X(A, X) differs from the Jimbo-
Miwa parametrization used in [28] (Where w(X) = —s(X)/U(X) is used in place of s(X)) as well as
from the parametrization used in [11] (where {(X) = U(X)/s(X) is used in place of U(X)). How-
ever, for the MBE:s it is more natural to work with both U(X) and s(X), which is why we have
interpolated between these two parametrizations.

2.3.2 | Basic symmetries of RHP 4

It is easy to check that, if Y(A;X,#) is the solution of RHP 4 for some X € C and 5 € (0, %n’),

then the matrices Y(—A; X, n)_T = 0,Y(—A; X,n)o, and Y(A; X, n)_T both satisfy the conditions
of RHP 4 and hence by uniqueness are equal to Y(A; X, ). Expanding the identity Y(A; X, %) =
Y(—A; X, n)_T for large A and using (2.28) gives the identity

v(X) = —p(X). (2.30)

— ot
Likewise expanding the identity Y(A; X,7n) = Y(A; X,7n) for large A gives

yX) = —vX) = y(X)
(which also implies s(X) = s(X) since y'(X) = —2s(X)) and evaluating at A = 0 gives

UX)=UX).

These are symmetries for fixed 5 € (0, %n). Another useful symmetry relates solutions of RHP 4
for different values of 7. Indeed, by a similar uniqueness argument, if Y(A; X, 7) is the solution of
RHP 4 for some X and 7, then

-1
0

T3 Y(—iA; X, n)eXA Ty, Al > 1,

. 0
a3 Y(—iA; X, n)eXos (1 > g3, IAl<1

Y (A; —iX,%n'—n) = (2.31)

because the right-hand side satisfies the conditions of RHP 4 with the parameters (X, ) replaced
by (—iX, %n’ — 7). Note that the mapping 5 — %71' — 7 corresponds to |rg| = |ro|~! or in terms of
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the parameter w = —3 cos(27), w — —w. Expanding for small and large A using (2.28), we obtain
from this symmetry the identities (1.26). Since for all € (0, %71'), Y(A; X, n) exists for all X on the
closed negative imaginary axis, it follows from (2.31) that also Y(A; X, n) exists for all positive real
X. In fact, since  — %n — 7 is an involution, iteration of (2.31) yields the identity Y(A; —X,7) =

Y(—A; X, n). Therefore, for n € (0, %71') and Awith |[A| # 1, X — Y(A; X, n) is analytic for X% e R.
Combining Y(A; —X,7n) = Y(—A; X, n) with (2.28) then also shows that

V(=X50) = yXiw), s(-X;w)=-sX;w), U(-X;w)=-UX;w). (2.32)

Using (2.30) to eliminate v(X) from the system (2.29) shows that the functions y(X), s(X), and
U(X) solve the coupled system (1.4) presented in the introduction, and hence also that the function
u(X) = —y(X)/s(X) satisfies the Painlevé-III equation in the form (1.6). Next, we show how that
system can be reduced to the self-similar Maxwell-Bloch system (1.3).

2.3.3 | Expansions of the functions y(X), s(X), U(X), and u(X) near X =0

Since X — Y(A;X,7) is analytic for X? € R, it follows from (2.28) that the functions y(X),
s(X), and U(X) are analytic at the origin X = 0. We now explain how to compute their
Taylor expansions.

In particular, X —» Y(A;X,n) is analytic at X = 0, and moreover RHP 4 is trivial to solve
explicitly when X = 0:

L A>T,

E(m), |Al<1. (2.33)

Y(A;0,m) = {

Then, using (2.28) gives
y(0;w) = U(0; w) = s(0;w) =0.

It is straightforward to compute as many X-derivatives of Y(A;X,n) at X = 0 as desired. These
derivatives satisfy an inhomogeneous form of RHP 4 that we solve recursively as follows. Letting
V(A,X) := el®NX)o3E(5)e"10(AX)9s denote the jump matrix in RHP 4, we introduce the notation
forn=1,2,3,..

n . .
V, (A X) = ZT‘Z(A,X) = sin(n)(i(A — A—l))”ag“el@(“)%ale—l‘a(“)os.
Then also forn =1,2,3,...
V,(A,X)V(A,X) " = sin(n)((A — AT glHLel®X )93, E(n) e i0AX)03, (2.34)

Define a sequence of matrix functions F,,(A; X, ) in terms of derivatives of the solution of RHP 4
by
oY -1
F (A X,m) = o (SXY(As X)) -, n=0,1,2,..,
so in particular Fy(A; X,7n) = 1. For n > 1, A — F,,(A; X, n) is analytic for |A| # 1, satisfies the
normalization condition F,(c0; X, ) = 0, and the jump condition

n
n _ _
B X - FXon = Y (1) Fr (S X )Y (AsX,m VA, VA, X) Y- (as X, )
k=1
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for |A| = 1 with counterclockwise orientation. This immediately leads to a recursive formula for
F,(A; X, n) valid for |A| # 1:

FX =Y % ¢

k=1

_ _ —1¢,— -
F, (X )Y (X )V XV X) Y- (wX,n)" q
u—=A

u.
|ul=1

By (2.33) we have Y~ (u;0,7) = | while V; (u,0)V(u, 0)_1 is given in (2.34). Therefore, for X = 0
and |A| # 1 this simplifies as follows:

n

. -1 k
Fn(A;O,n)=Sm(n)Z(Z) 7{ W= )ikF;_k(y;o,n)dycr?“alE(n)‘l.

i o =1 H—A

It is convenient to rescale by F,(A;0,7) = i"G,(A; 0,7), giving the modified recursion

n

. | k
G (A;0.) = Lo Z <Z> j{w:lw(};—k(“; 0,7)du 0’3‘+101E(n)_1 :

21 = u—-A

So, using G (4;0,7) = F; (u;0,7) = [ gives

sin(n)alE(n)_lA_l, A] > 1,
G1(A;0,m) = .
sin(n)a1E(m) A, Al < 1.

In particular, the boundary value from [u| > 1 is G} (;0,7) = sin(n)alE(n)_l/fl, which then
implies

sin(y)[2sin(p)l — 030, E(m) A2, Al > 1,
GZ(A’ 0) = ~1 _1
2sin(n)[sin(n)l — 030,E(®) | + sin(n)a;0,E(m) A%, |A| < 1.

In particular, G; (4; 0,7) = sin(n)[2 sin(n)l — g30, E(n)_l] 2. Using this and the further identity
-1 -1
E(n) o301 =030,E(m) ,

gives

AMAT +BA™L, Al >1

G3(A50,m) = {
C(mA + DA’ Al <1,

where

B(1):= —6sin’ (7)o, E(7) " + 3sin’(n)os — 6sin°(n)asE() " — 3sin(m)o E() ",
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and A(n), C(n), and D(») are unneeded matrix coefficients. Putting the results together so far, the
Taylor expansion of the first moment at A = oo is

lim ACY(A; X,n) = 1)
A—o0

3 .
10Y .
— 1 . _ -z . J 4 A—1
AgA(Y(A,O,n} |]+j§:1 3 j(A,O,n)X + OX*A ))

2 3
= jim A (50X + T Rs0m) + R0 + o0xa ) )

= isin(p)o,E() X — %B(n)X3 +OXY, X —o0.

In particular, it follows from (2.28) and the even symmetry of y(X; w) in (2.32) that
y(X;w) = —iX/Eim AY (A X,n) = % sin(29)X? + % sin(4n)X* + O(X%), X —= 0,
—00

which matches (1.22) with

2
¥, :=Y"(0;w) =sin(2n) = /1 —cos*(2n) =\/1 — (g) .

Also, evaluating at A = 0, the Taylor expansion of X — Y(0; X, n) reads

3 .
J .
Yo X, = ¥~ 2 (030, + 0(x*)

= Jtox

= E(n) + [sin(n)o;0, — sin”()EM®)]X? + OX*), X — 0.

In particular, it follows from (2.28) and the odd symmetry of s(X;w) and U(X;w) in (2.32)
that

sS(X;w) = =XY11(0;X,n)Y;,(0;X,7) = —% sin(2n)X — %sin(4n)X3 +0(X?), X -0,
and that
UX;w) = =XY1,(0;X,7)Y,,(0;X,5) = sinz(n)X + %sin2(277)X3 +0(X?), X-o.
These match the series (1.23) and (1.24) respectively. Finally, the function u(X;w) =
—y(X; w)/s(X; w) solving the Painlevé-III equation (1.6) is easily seen to be analytic at X = 0 with
the Taylor series (1.20).

We can also use these expansions to evaluate the X-independent first integral J given in (1.5) of
the system (1.4) by computing its value at X = 0:

_UIX )UK w)=X) _ lim UX o) UX;0) =X) _

J 2 X0 2
5(X; ) - S(X; w)

—-1.
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As pointed out in the introduction, the fact that J = —1 makes the system (1.4) equivalent to the
self-similar Maxwell-Bloch system (1.3).

2.3.4 | Boundedness of the solution of RHP 4

Letn € (0, é?‘[) be fixed but arbitrary. By analyticity of X — Y(A; X, n) on the coordinate axes and
the normalization Y — [ as A — o0, it is clear that for every L > 0 however large there is some
constant C = C(L) > 0 such that

sup  sup [[Y(A; X, n)ll < C(L), (2.35)
—[2<X2<12 |Al#1

that is, for X bounded on the real and imaginary axes, Y(A; X, 7) is uniformly bounded on the
complex A-plane. Aside from the expansions for small X described in Section 2.3.3, there is no
further simplification of the Painlevé-III functions y(X; w), s(X; w), and U(X; w) that takes place
for bounded X.

For the purposes of application to the analysis of K (u, v; t, z), it has to be proved that for arbi-
trary fixed 5 € (0, %77.’), Y(A; X, n) is bounded uniformly with respect to X on the whole negative
imaginary axis. In light of the symmetry (2.31), this will automatically imply that the matrix

Y(A; X, )X, Al <1
YA X,n) = (2.36)
Y(A;X,n)e_iXAfl‘%, Al > 1

will, for arbitrary fixed 5 € (0, %7‘[), be bounded uniformly with respect to X on the whole
positive real axis. It is exactly this latter bound that will be needed to analyze an analogous
matrix K, (u,v;t,z) that will be introduced to study the behavior of solutions in an initially-
unstable medium in Section 3 below. Based on the identification (2.24), the following arguments
will generalize the special case of 7 = in or w =0, which was analyzed for large X in [9,
Section 4.1].

Referring to the regions of the complex k-plane indicated in the left-hand panel of Figure 20,
we define a new unknown from Y(A; —ix, %), x > 0, as follows.

ix(k+k~1)
Z(k; x,n) = Y(ik; —ix, ) <(1) tan(n)el > , keR,,
1 0
Z(k; x,n) = Y(ik; —ix,n)cos ()" | 1 sin(2n)e— k™) 1> , kelL,,
2
Z(k; x,n) := Y(ik; —ix,n) cos ()", ke,
_ 2.37
Z(k; x,m) = Y(ik; —ix,n)cos () 7, keQ_, (237)
1 . : -1
_ 1 == 2 ix(k+k=)
206 x.7) 1= YGiki-ix.pcos ) (|72 sin( ”l)e . kel

o 1 0
Z(k, X, 77) = Y(lk’ —1x, 77) (_ tan(}?)e_ix(k_,_kfl) 1> s ke R—s
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FIGURE 20 Left: the definitions of the regions in the substitution (2.37) superimposed on the sign chart of
R(ix(k + k~1)). Right: the arcs of the jump contour for Z(k; x, 7).

and elsewhere we set Z(k; x,n) := Y(ik; —ix,n). This matrix is analytic on the complement of the
contour illustrated in the right-hand panel of Figure 20, and due to the sign structure of R(ix(k +
k1)), Z(k; x, n) is bounded uniformly with respect to x > 0 and k € C if and only if Y(ik; —ix, n)
is. The jump conditions satisfied by Z(k; x, ) across the arcs of its jump contour take the form
Z"(k; x,m) = Z7 (k; x,n)Vz(k; x,1), where the jump matrix Vz(k; x,7) is defined on the various
arcs of jump contour as as follows.

ix(k+k=1)
Vz(k;x,n) = <1 tan(n)e > keck,
0 1
1 0 I
Vz(k;x,m) = 1 sin(zn)e‘ix(k”‘_l) 1) ke (O
2
V,(k; x,n) = cos (n)°, kel,
1 : -1
1 =sin(2n)eixk+k™)
Va(k;x,7) 1= (0 5 sind 77)16 . keck,

(2.38)

1 0
Vz(k;x,n) i= < ixCkk-D) 1>, k € CR.

—tan(n)e

These jump matrices are all exponentially small perturbations of the identity except on the interval
I = [—1,1] and near its endpoints.

We deal with the jumps that are not close to identity by building a parametrix for Z(k; x, n).
For an outer parametrix, we solve the jump on I exactly and satisfy the normalization condition
Z(k;x,n) — las k - oo by defining

ieos
k_1> , £:=—M>O, keC\I. (2.39)

Zow(k;n) = <k_+1 p
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30

i

0 ()

FIGURE 21 Left: the jump contour for P(¢; ) in the ¢-plane. Right: the jump contour X for E,(k; x, ) in
the k-plane.

Here the power function is defined using the principal branch, which is cut precisely in I = [—1, 1]
and yields the desired asymptotic as k — oo.

The endpoints k = +1 of I are the two saddle points of the phase k + k. Let y_; (k) and y, (k)
denote conformal coordinates defined near k = —1 and k = 1 respectively:

1 1
yoi(k) :=(=k)2 = (=k) 2, |k+1]<-=
1 1
nk) =k2-k 2, lk—1| < -,
in which the principal branch square roots are meant, guaranteeing the analyticity of the coor-

dinates. Note that y_;(—1) = y;(1) = 0. Then, the exponent function appearing in (2.38) can be
written in terms of the conformal coordinates as follows:

—2x—¢%, ¢ = \/;y_l(k), lk+1| <

2x+¢%, =k, k-1 <

N =

x(k+ k1) =

The outer parametrix can conveniently be expressed locally near k = F1 in terms of the
coordinates y_; (k) and y; (k) as:

1
—k)2

) icos
xf%(i) —1503 é‘ \/_y l(k) |k+ 1| <
.out(k 77) (2~40)

k+

. )l 1€073
x_5w3<k—21> §‘1503, ¢ = \/;}h(k), lk—1| <

Here, the factors to the left of ¢*€% are analytic nonvanishing functions in the indicated

Fieo
disks taking the values (2 ﬁ)+ *at k = +1. We now assume that the jump contours C; and
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C; are modified if necessary within the disks |k +1| < % to lie along the rays arg(y-(k)) €
{—%n, —iﬂ', iﬂ, %n}. Then, in terms of the rescaled conformal coordinates ¢ = \/zy_l(k) and
¢ = \/}yl(k), the matrices G3eix"3 Z(k; x, n)e_ix°3 o3 and cle_ix"3 Z(k;x, n)eix"3 o, are, within the
respective disks |k + 1| < % and |k —1| < % analytic except on the same four rays along which
they satisfy exactly the same jump conditions. Those jump conditions are in turn the same as
those of a matrix function ¢ — P({; ) that satisfies the following conditions: P(¢; 5) is analytic in
five infinite sectors of the complex {-plane bounded by the rays arg(¢) = ifllﬂ’ arg($) = i%ﬂ, and
arg(—¢) = 0; P(¢{; n) takes continuous boundary values from each sector that are related along the
five excluded rays by the jump conditions

P =P (e 1) wEO=im
P =P ($sm) <(1) tan(nl)e_KZ) , arg($) = —in,
P =2 G Si“(’?)cc’f(”)e_Kz) ,ang@) =,
PH(¢in) = P(C) (Sm(m;m)egz (1’) L) = —im
PH($i7) = P~(¢5m)cos ()7, arg(—{) = 0,

in which all rays are taken to be oriented in the direction of increasing R({) as indicated in the
left-hand panel of Figure 21; and P(¢;%)¢3 —  as ¢ — oo in every direction, where ¢ = (7)) is
given in (2.39). It is well-known that these conditions uniquely determine P({; ), which can be
written explicitly in terms of parabolic cylinder functions; a complete development of the solution
and its properties can be found for instance in [46, Appendix A]. In which the relevant parameters
are 7 = tan(z) and p = ¢ the defining properties of P({;7) listed above in fact also imply that for
each 7 € (0, %7‘[), ¢ = P(¢; ) is uniformly bounded, and that the matrix function ¢ — P(¢; )¢9
has a complete asymptotic expansion as { — oo in descending integer powers of ¢ in which the
leading terms read

P — 14 (o 9>+<<9(§—z) 0(4—3)>, ¢ = oo, (2.41)

2 \é O O¢3) OK¢2)
with
_ _&sin(y) .In(cos(n)) I 1
T Vresn) <1 7 >exp <1 [Z‘zln@)ln(cos(n»]). (2.42)

We use the matrix function P({;7) to define local parametrices for Z(k;x,n) near k = —1,1 as
follows:

ieos

1-—
(—k)2

1' . .
Z_y(k;x,n) 1= x27Pexo o3P(\V/xy_1(k);mose™s, |k +1| < %
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ieos

o P(\/xy, (k); poye ™95, |k —1| <

1

1.
! —=-1€03 i
Zi(k;x,m) :=x 2 e ——

) (2.43)

N =

The outer and local parametrices are combined to define a global parametrix for Z(k; x, n) by
setting:

Z_(k;x,n), |k+1] <2,

2
) . 1
Z(k;x,n) :=1Z(k; x,n), lk—1] < >

Zoui(k;m), |k + 1] >%and|k—1| > %

To compare Z(k; x,n) with its parametrix Z(k; x,7) we define the error by
Ez(k;x,n) 1= Z(k; x,mZ(k:x,n) " (2.44)

wherever both factors are defined. Observe that since both Z(k; x, %) and Z(k; x, ) take contin-
uous boundary values satisfying the same jump, conditions within the disks |k + 1| < é and on
the segment I Ez(k; x,7) may be extended to the latter contours as an analytic function, which we
denote by the same symbol; it is therefore analytic in the domain complementary to the jump con-
tour illustrated in the right-hand panel of Figure 21. Moreover, Ez(k; x,n) — [ as k - oo because
this is true of both factors on the right-hand side of (2.44). By direct computation, the jump con-
ditions satisfied by Ez(k; x, n) take the form E;(k; x,n) = Eg(k; x,n)Vg(k; x,n) where the jump
matrix Vg(k; x,7) is defined on the arcs of its jump contour as follows. Firstly, on all arcs outside
of the two circles |k + 1| = %, we have Vg(k;x,7n) = Zout(k;n)VZ(k;x,n)Zout(k;r;)_l. Note that

Z,u:(k; 1) has unit determinant, is independent of x, and is bounded for |k + 1| > %; since the
exponential factors in the triangular jump matrices defined in (2.38) are uniformly exponentially
decaying as x — +oo by virtue of the sign chart for R(ix(k + k1)), there is some constant ¢ > 0
such that Vg(k; x,n) = [ + O(e %) holds uniformly on these arcs as x — +o0. Secondly, on the
two circles |k + 1| = % taken with counterclockwise orientation, the jump matrix can be written

as Vg(k; x,m) = Zoy (ks n)Z+1 (k; x, 77)_1. Combining (2.40) with (2.43) makes this more precise:

(k)2 (k)2

ieos —ieo;
Lieo 1-k i i -1 i 1-k ~lieo
1
=V, lk+1l=,

(2.45)

1

ieos 1 —ieos
. —liw3 k2 ixo . icoy] ! —ixo k2 11503
Vg(k;x,m) = x 2 — eX%g [P($: )| oo — x27,

k+1 k+1

¢ = V@, k=1 =2,

Due to the fact that y_,(k) is bounded away from zero for |k + 1| = % using (2.41) immedi-
1

ately shows that both of these jump matrices can be written as Vg(k;x,n) =1 + Ogp(x™ 2) +

3
2
g
2
S
B
L
5
S
=
g
z
g
g
£
5
z
=
g
E]
=
)
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508 | LI and MILLER

Op(x~1) uniformly on |k + 1| = % as x — +oo0, where the subscripts on the error terms indicate
off-diagonal and diagonal matrices respectively.

It follows that E,(k; x, n) satisfies the conditions of a small-norm RHP. In particular, the uni-
form estimate on Vg(k; 1x,n) — [ carries over to a uniform estimate on Ez(k; x,n) — [ itself of

the same order, Oop(x 2) + Op(x~1). Hence Ez(k; x,7) is bounded on the whole k-plane, uni-
formly with respect to the limit x — +o0. Since Z(k; x,7) also has this property, the same is also
true of Z(k; x, 1) = Ez(k; x,n)Z(k; x, ). Since the explicit transformation relating Y(ik; —ix; ) to
Z(k; x,n) (see (2.37)) is invertible with bounded inverse, we have finally proven that Y(A; —ix, n)
is bounded on the A-plane, uniformly with respect to x — +co.

Since Y(A;X,n) is uniformly bounded for |A]| # 1 and X on the negative imaginary axis, it
follows that also the matrix Y(A; X, 7) defined in (2.36) is uniformly bounded for |A| # 1 and X
on the positive real axis.

2.3.5 | Asymptotic behavior of y(X; w), s(X;w), and U(X; w)

1
The small-norm theory behind the uniform estimate Ez(k; x,7) — | = Ogp(x™ 2) + Op(x~!) also
produces accurate asymptotic formulae for the functions y(X;w), s(X;w), and U(X;w) that are
valid for large X = —ix on the negative imaginary axis. From the jump condition E“ZL(k; x,n) =
E, (k; x,n)Vg(k; x,1) and the condition Ez(k;x,7) — | as k — oo, the Plemelj formula implies
that
1 E;(s;x,m(VE(s; x,7) =) ds

Ez(k;x,n) =1+ —
z(k; x,7) +27r1 o s—k

1 [ Ve(sx,7) -1

- ds
27 % s—k

=1+

ds, keC\Zg  (246)

27 s—k

1 / (Ez(s;x,m) = D(Vg(s; x,m) — D)
z

where X is the jump contour illustrated in the right-hand panel of Figure 21. From this
1
formula and the uniform estimates Ez(-;x,7) — | = Ogp(x” 2) + Op(x~) and Vg(;x,7) -1 =

1
OOD(.X'_E) + (DD(X_l) we get

By x,m) = 1+ 1B () + O, k= oo,

where
& 1 Y -2
E,'(x,n)=—>= (Ve(s;x,m) =) ds+Op(x™)+Opp | x 2], X = 400,
21 |Sill=%
(2.47)
and that

3
Ez(0;x,n) =101+ %}l{ (Ve(s;x,m) =) s7Hds + Op(x~1) + Ogp <x_5> , X = 4o0.

1
|s£l|==
2

(2.48)
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ON THE MAXWELL-BLOCH SYSTEM IN THE SHARP-LINE LIMIT WITHOUT SOLITONS | 509

In (2.47)-(2.48) we have retained the integration over just the two circles dominating the esti-

mate for Vg(k; x,n) — [, absorbing exponentially small contributions over the remaining arcs of

Yk into the error terms. We evaluate the remaining integrals by combining (2.41) with (2.45); the
3

Op(¢~2) and Opp(¢~3) terms in (2.41) are immediately absorbed into the Op(x~1) and Ogp(x~ 2)
1

error terms respectively, while those proportional to ¢ = = x 2y, (k)_1 are integrated by residues
using the fact that y—, (k) is analytic on the indicated disk and vanishes to first order at k = F1.
Therefore, as x — +o0

ieos . . —ieo
E(Zl)(x’n) = — 1, (2\/;) 3e—1xa3o.3 <? (§;> U3elxa3(2\/)_c) 3
2iy/xy’ (1) ¢

—igoz . ieo
\/;) ?>e1xcr30.1 (;—) g) O.le—lxa3(2\/;) 3

1
+———@2
2iy/xy} (1)

+ (DD(X_I) + OOD <X_%> ,

and

—ieoy

EZ(0§x,77) =1+

( \/;)15036_1)503 os <g g) O.3eixc3 (2\/;)

1
—2
2iy/xy’,(-1)

_ . 1 , (2\/;)_180361)5030-1 <(_) (9)) o.le—ix03(2\/;)1803
2iy/xy] (1) o

3
+ OD(X_l) + OOD <x_5> .

Note that y’ ,(=1)=-T1and y{(l) = 1. Now recalling from (2.28) the definition of y(—ix; w) gives
the following asymptotics as x — +o0

y(—ix;w) = —x/%irn AYq,(A;—ix,m) = —ixl}im kY, ,(ik; —ix, n)
— 00 — 00
= —ix lim kZ; ,(k; x,n)
k—o0 ’

= —ix lim k (Ez,1,106; %, ) Zout1 206 7) + Bz, 2065 X, M Zout.0.2(; 7))

= ~ixE)x,m) = —V/xR ((@0)°e ) +.0 <x-§>
= —|9|\/;sin <2x —¢ln(4x) + %n‘ - arg(e)) +0O <x_§> . (2.49)

Similarly, in the same limit,

s(—ix;w) = ixY;,1(0; —ix,n)Y; ,(0; —ix,n) = ix Ilcing) Zy11(k; x,m)Zy 5 (ks x, 1)
3 (k)#0

=ixEz11(0;x,1m)Ez1,(0;x,1) 11{1&1) Zouta1 (ks 0)Zoye22(ks 1)
3(k)#0
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510 LI and MILLER

i . _!
= ixEz,1,1(0;x,7)E7,1,(0;x,7) = iV/x$ ((4x)lse_2lx9> +0 (x 2)

= i|9|\/;cos <2x —¢lIn(4x) + %71' - arg(g)) +0 <x_%> , (2.50)

and

U(—ix; w) = ixY1,(0; —ix,n)Y,1(0; —ix,n) = ix Ilcin(l) Z 5(k; x,m)Z5 1 (k; x,m)
3(k)#0

= ixEz,12(0;x,m)Ez,1(0;x,7) 11(1_% Zow 2200 Zoye1,1(k5 1)
S(k)£0

. 2
= ixE 203X, DBz, (05 %) = =i[ 8 (@) e 27) | + 0

—i]o|*cos? (Zx —eln(4x) + %7‘[ - arg(g)) +0Ox). (2.51)

In all three of these asymptotic formule, € and ¢ are defined in terms of 5 € (0, %71’) by (2.39) and
(2.42) respectively, and w = —3 cos(27).

The identities (1.26) then allow translation of asymptotic formule for y(X;w), s(X;w), and
U(X; w) valid for large imaginary X into similar formulz valid for large real X. We obtain the
following results in the limit x — +oo:

1
y(x;w) = |¢’| \/;sin (Zx — & In(4x) + %n’ - arg(g’)) +0 <x_5> ,
1
s(x;w) = —|¢'|v/x cos <2x — ¢ In(4x) + %n - arg(g’)) +0 <x_5> ,
) 12 0na2 / 1 ’ -1
U(x;w) = x — |¢'|*cos* | 2x — ¢’ In(4x) + 57— arg(¢’) | + O(x7), (2.52)

where again w = —3 cos(27) and the modified parameters ¢’ and ¢’ are given by

L. _InGinG)
T

fe_ ¢ COS(U) 11'1(511‘1(77)) N 111(2) )
¢ .= \/m r <1 p ) exp <1 [Z - ln(sm(n))]) . (2.53)

2.4 | Properties of the modified parametrix: M > 0

When M > 0 (i.e., ry = 0), the jump matrix in RHP 3 tends uniformly to the identity matrix in

1
the limit t — +oo with z = o(t), because 1, = O((z/t)2). Indeed, for the diagonal entries we have
Ay A0 =1+ 0((z/H)™), and since [e=*+k ™| = 1 for |k| = 1 the off-diagonal elements are
1

O((z/t)EM). This makes RHP 3 a small-norm problem without further approximation when
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M > 0 in the limit t - +o0o with z = o(¢). As in Section 2.3 on boundedness of the solution of

1
RHP 4, it follows that K (k; t,z) = 1 + OOD((z/t)EM) + OD((z/t)M) holds uniformly for |k| # 1 in
this limit. In particular, this establishes the uniform boundedness of K (k; t, z) in this situation.
As in (2.46)—(2.47) we can then write

.. 1.
Ry(kit,2) = 14+ 1R (@,2) + Ok, k= o,
where
. a /1{)\’1 0 M qix(s+s71)
Kél)(t,z)=—| MI' % M ,—ix(s+s71) e ds
27 Is)=1 \ =S € 0
+ Op(A2M) + Opp(AM), 2, -0,
and

,(0:,2) = 14 e 0 et ds
s\Us L, - 27T Is|=1 _SMe—ix(S+S_1) 0 S

+ OD(){'gM) + OOD(/IEM)a Ao - 01 (254)

where we recall that A, := 1/z/(2t) > 0, that a,, is a Taylor coefficient defined by (2.17), and
where the unit circle is oriented in the counterclockwise direction. These formula yield the Bessel
approximations for the solution of the MBE problem when M > 0 appearing in Theorem 1.22.
However first it is necessary to control the error in approximating Ky(u, v;t, z) by K((4;t,z) in
both cases M = 0 and M > 0. We address this next.

2.5 | Comparing K (u, v;t, z) with its parametrix K (4; ¢, z)

Now we return to the study of RHOP 1 and derive conditions on a matrix function defined in terms
of its solution K(u,v) = K(u, v;t, z) and the parametrix K (1) = K (1;1, z) by

F,(u,v;t,z) := K (u,v; t, 2)K(u + iv; t,2) ", (u,v) € R?\ =. (2.55)

This matrix function has jump discontinuities across the arcs of £ because the jump matrices
for the two factors do not exactly agree; see (2.20) in which 4, is small for z/t = o(1). The jump
conditions for Fy(u,v) = Fy(u, v;t,z) when (u,v) € X read

Ff (u,0) = Fy (u, v)K5 (u + iv)I(uw, 0)i @ + iv) Ko (u +iv) (2.56)

where J(u, v) = J(u,v;t, z) and J(1) = J(4;t, z). Fy(u, v) also fails to be analytic in the comple-
ment of the contour X (at least outside of the small circle |u + iv| = A, but within the strip |v] < 2).
It is however continuous on each component of R? \ £, and while the second factor in (2.55) is
sectionally analytic, the first is subject to the d differential equation (2.13). This implies that on
each component of R? \ Z, F(u, v) satsifies its own d equation:

OF,(u,v) = Fy(u, v)K(u + iv)Dy(u, v)Ky(u + i)™, W) eRr? \ Z, (2.57)
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in which the matrix Dy(u, v) = Dg(u, v; t, z) is given by (2.14). We will deal with the non-analyticity
of F,(u, v) measured by (2.57) and its near-identity jumps in two steps.

2.5.1 | A continuous parametrix for F (u, v)
First, we model the non-analyticity of F(u, v) by solving the following pure d-problem (JP):

d Problem 1. Given ¢t > 0 and z > 0, seek a 2 X 2 matrix-valued continuous function R2 5
(u,v) = Fy(u,v) = F(u, v;t, z) that satisfies Fg(u,v) — [ as u +iv — oo and that satisfies the
following d differential equation:

8F (u, v) = Fy(u, 0K (u + iv)Dg(u, )Ku +iv) ', (u,0) € R2. (2.58)

This problem is converted into an integral equation with the help of the solid Cauchy transform:

Fy(u,v) =1+ S, F(u,v), (u,v)€R?, (2.59)

where S; ; is an integral operator defined by

M/, VK (W + iv)Dy@, 0K ' + iv') "
1 / ( VK ( )D( K ( ) dA@',0"),
[RZ

S, ., M(u,v) ;= —— - -
1zM(u, v) T W' +iv') — (u +iv)
in which dA(u’,v") denotes the area differential in R.
Lemma 2.9. S, ; is a bounded operator on L*®(R?) with operator norm IS; 2l o satisfying

N

Lavoy 3_
1S; 2 lle = O(z/1)2 )+0O(t2 ), t— +oo, z=o(t).
t,

Proof. Let|| - || denote the norm on 2 X 2 matrices induced from an arbitrary norm on C?, and for
a matrix function R? 5 (u, v) =~ M(u, v) take as the norm on L®(R?)

Ml := sup [[M(u,v)ll.

(u,v)eER2

Then, since it has been shown that K (1;t, z) is bounded on C? \ £ uniformly with respect to
(t,z)witht >0and 0 <z <t as t - +o0, and since KS(A; t,z) has unit determinant, there is
some constant C > 0 independent of (¢, z) in the indicated regime, such that

~ o IDs(u/, V)| dA(W', V")
15 Ml < 1K lloo 1K I oo sup _ // : -IMl
2
wver? JRr \/(u’—u)2+(v’—v)2

D.(v, V)| dAW v
<C sup // DG INIAG )
(u,0)eR? R2 \/(u,_u)2+(v,_v)2

D/, )| dA@W/, v’
oy [ DDAy
(u,v)ER |u|’1;|12,2|2/1° \/(u’ _ u)2 + (v — v)z
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where the final equality comes from the fact that, according to (2.14), Ds(u, U; t, z) = 04, for |u +
iv] < 4, as well as for |v| > 2 where B(v) = 0 identically. Hence an upper bound for the operator
norm of S, , is

”S ” < C Sup / “Ds(u,, U/; tiz)” dA(ul7 U/) (2 60)
t,zllco = ’ )
5 .
(u,v)ER |L¢|’U-i,—|12!2/lo \/(u, _ u)2 + (U’ _ v)z

Again referring to (2.14) and using Lemma 2.4, the differentiation identities (2.7)—(2.8), and the
properties of the bump function B(v), there is a constant Cy > 0 independent of (¢, z) such that

N-2
_ N-2
anuwmscNOMNDWWnﬂ +mmw®2nmmmw>
n=0
|et2i6s @ +iv) | W +iv'| >4, 0<+v <2, (2.61)

in which R(-) is defined by (2.4). To estimate further, it is useful to split the exterior of the circle
|u’ + iv’| = A, into the union of three regions:

Q : Ao < U +iV| < 24,,
Q, : lu +iv'| >24,, [V]|<1,
Q; : lu +iv'| >24,, 1<|V|<2. (2.62)

Note that for A, sufficiently small, Q, is completely contained in the strip |v'| < 1 and Q; is a
union of two horizontal strips bounded away from the real line. Using this assumption, we can
find simple and useful upper bounds for ||[Dy(u’, v")|| on each of these regions as follows.

* For (u/,v) € Q, with +v’ >0, we will use the inequality |e*%%® +)| <1 and we have
X1,2)(V") = 0. Recall Lemma 2.2 implying that RNV e $(R) c L®(R). Hence from (2.61), we
get

D/, N < Cy'V 2, @ v) ey (2.63)

for some other constant Cy.
* For (u/,v") € Q,, we use the inequality |u’ + iv’|?> > 442 = 2z/t and recall Definition 2.1 to give
for +v’ > 0,

z|V'|

eiziés(u’+iv/) i
[u + iv'|?

1
= exp (—2t|v’| + > < exp <—2t|v’| + 5t|v’|> <e V'l (2.64)

and therefore since again y; (V') = 0 on Q,,

N=2 _
eIVl

D', 0 < Cyy [RV-D@)| 1v') W, V) e, (2.65)
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* For (u/,v") € Q3, we again have the inequality (2.64), but we also have [v’| > 1 so eVl < et
as well as the upper bound |V’ < 2, so for some different constant Cyy > 0,

N-1
ID, V) < Cye™ ) [RWGH|, @, v') € Q5. (2.66)
n=0

Now we use these upper bounds to estimate the double integral in (2.60). From (2.63) and the
fact that Q; C [=24,,24.]° = [<24., 22.] X [=24, 24, ],

ID(u’, V)| dA/, V") [V |[N=2dA®@W/, V)
//Ql \/(u’—u)2+(v’ //M 2] \/(’—u) + @ - )

— CuN-1 // [v"|N=2dAW"”,v") 2.67)
— “N7%o N .
(22 \/(uu 2

—u/A) + " —v/A)

where in the last step we rescaled by (u/, v") = 1,(u”’,v""). Using iterated integration for the result-
ing double integral, we first integrate over u”’ € [—2, 2] and apply the Cauchy-Schwarz inequality:

/ du”
-2 \/ W —u/A,)" + (V" —v/A.)
4du” 2 A
< =4—. (2.68)
</R W’ —uja) + " - v//10)2> [V = v/

Using this in (2.67) gives

// ID/, OIAG V) _ (e [T 0N
N —_—.
N VT

The remaining integral on [—2, 2] is bounded uniformly for v/4, € R, which proves

sup / ”Ds(u,’ U,)“ dA(u,’ U,) — (9(/1{)\]—1) — (9((Z/[)%(N_1)) (269)
(wo)eR? Mo, \/(u’ —u)* + (v —v)’

The contribution to (2.60) from Q, is a bit more involved. From (2.65) we have

// D/, V)|l dA(W', v")
Q, 2 2

\/(u’—u) + @ —v)

|R(N—1)(ul)||U/|N—Ze—[|v’| dA@',v")
.y ’
@ \/ W —w)’ + @ —v)’
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ON THE MAXWELL-BLOCH SYSTEM IN THE SHARP-LINE LIMIT WITHOUT SOLITONS 515

(N=1)(,," !
=Cy / /[N e / 2 e S U3/ L
’ 2_ (v
R @)’ >423—(v") \/(u,_u)z + (v — )2

_ , R(N—l) " du’
scj\,/|v’|N 2e—flvl/ | @oldw 4. (2.70)
R R \/( 2

u — u)2 + @ —-v)

Since RV-D(.) € L3(R) by Lemma 2.2, another application of the Cauchy-Schwarz inequality
gives

(2.71)

/ RN D@)ldu’ VAIRY Dl
\/(u’—u)2+(v/—v)2 VIv' =0l

Using this in (2.70) gives

// D/, V)|l dA(u', v") <C \/_||R(N D“LZ(R)/M (2.72)
%\ -+ v - vy ' |

This upper bound is obviously invariant under v = —v, so without loss of generality we assume
v > 0 and divide up the integral over v’ as follows:

N-=-2,—t|V"] !
/ WP dv = 1,(0) + I3(v) + I (v), 2.73)
R

VIv -l
where

0 |v/|N—ze—t|v/| dv’ v |v/|N—Ze—t|v’| dv’
I4(v) 2=/ —_—, I3(v) I=/ —_—,
—c0 VIV —v] 0 VIV — |

+oo \ IN=2 —t|V| 44,/

v e d

I-(v) :=/ ||—U (2.74)
v [V — |

Firstly, writing v’ = —t~!s, I ,(v) becomes

3 +too N-2_.—s 3 +0o 5 3

2 sV Tee7 S ds 3 3 3. 3_

Lw=t" 2= 2 N/ s st ds = T(N = 5)t> N @)
0

0 VSs+ it

Then, making the substitution v’ = vs, Iz(v) becomes

1 —
etvsSNZ

3 3
) =v""2 | —=—ds=12"ypmw),

0 \1-—s
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516 | LI and MILLER

: . N-2 1o e N—2 ; : ;
with p(w) :=w 2 fo (e™™5s""72/4/1 — 5) ds. Because N > 3, ¢p(w) is a continuous function of

1
w > 0, and it follows from Watson’s Lemma that g(w) = O(w™ 2) as w — +oo. Therefore g (tv)
is bounded uniformly and so

N

L) = O™, - +oo. (2.76)

Similarly, making the substitution v’ = v(1 + s), I-(v) becomes

_3 e e 4 g)N P N
Ie(v) = v" 2/ . O 5= Mo (),
0

Vs

with
3 +00
o) = w" e / (e +5)" 2//5)ds.
0

Clearly ¢-(w) is continuous at least for w > 0 and by Watson’s Lemma ¢-(w) — 0 rapidly as
w — +o0. By the further substitution s = 7/w we obtain

+oo0 _ ¢ N-2
Po(w) =" / e tw) :L/_w) dr
0 T

and by Lebesgue dominated convergence the integral factor has a finite limit as w — 0 and hence
so does P-(w). Therefore ¢p-(w) is again bounded for w > 0 and it follows that

3
I =0t"), t- +c. 2.77)
Combining (2.75), (2.76), and (2.77), and using (2.73) in (2.72) gives

D r’ NI dA /, / 3_
sup // Do N A, o) =0z, t— +oo. (2.78)
wv)eR? 0, \/(u’ —u)’ + (' —v)’

Finally, for the integral over Q;, we use (2.66) to get

// D', O dAW V)
Q \/ 2 2
W —u) + @ —-v)

N-1
R(n) " du'
:CNe_[Z/ / I (u )| u av'.
n=0 7 1<|v/|<2 /R

= \/(u’ —u)’ + @ —v)

N

-1
[R™W@W)| dA@W,v")
z/

3 \/(u’ —u)2 + (@ - v)2

For the inner integral we again appeal to Lemma 2.2 to get R™(-) € L*(R) forn = 0,...,N — 1, so
we conclude that the inequality (2.71) holds with R™N=1) replaced by R". Therefore

N-1
D', )|l dA(W', V') _ dv’
// = < CNe ! Z \/;”R(H)HLZ(R) p——
Q3 \/(u/ _ u)2 + (@ — v)z n=0 1</|<2 y/ |V =V
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ON THE MAXWELL-BLOCH SYSTEM IN THE SHARP-LINE LIMIT WITHOUT SOLITONS | 517

The remaining integral over v’ is obviously bounded independently of v € R, so clearly

D,(u/,v")|| dA/, V'
sup // IDs(u’, V")l dA(u, V") =0("), - +oo. (2.79)
(w)eR? 20, \/(u’ —u)* + (v —v)’

Using (2.69), (2.78), and (2.79) in (2.60) completes the proof. O

It follows that for ¢ > 0 sufficiently large with z/¢ > 0 sufficiently small, the integral equa-
tion (2.59) has a unique solution in L*(R?) given by the uniformly convergent Neumann
series

Fy(u,v) = (id - ;) w,v) = Y, S, v).
n=0
It follows that
1 3
F(u,0)— 1= 0(z/0): Y )+ o ™) (2.80)

holds in the L®(R?) sense.

However more is true. Firstly, (u, v) — F(u, v) is (Holder) continuous on R?, and F(u,v) — |
as u + iv = oo, which proves that F(u, v) is indeed the solution of dP 1. These facts follow from
the integral equation (2.59) viewed as a formula for F¢(u, v) — [ as the solid Cauchy transform §~!
acting on the density Fy(u, v)K,(u + iv)Dg(u, v)Ky(u + iv)"'. We start with the following lemma.

Lemma 2.10 (LP(R?) estimate of Dg(u,v)). The matrix-valued function (u,v) — Dg(u,v) is in
1

LP(R?) for1 < p < o0, and [Ds(, i1 g2y = O(z/0)2") + O Ny ast — +oo with z = o(t).

Proof. Given t > 0 and z/t > 0 small enough, the estimates (2.63), (2.65), and (2.66) show that

[IDg(-, I Leo(r2) < 0. By interpolation, it suffices to control ||Dg(:, -)|| L1(R2)- We use the same three

estimates in turn to calculate the contributions to the L'-norm arising from integration over the
corresponding sub-regions Q;, j = 1,2, 3. Using (2.63) we get

/ 1D, )| A, v) < Cy / oV 2 dAGw, v)
Q

1 (&1
1
<Cy // ¥ dAGu,v) = OAY) = O((z/0)2).
[—240,240 17
Then from (2.65),
| ipeonaam o < cy [ [RED6| et daw,v)
Q, 0}

_ N-2__ _
< IRY D”Ll(R)/ lo]" e Pl dv = o' )
R
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518 | LI and MILLER

where we used the fact again following from Lemma 2.2 that R(u) together with all of its
derivatives are in L'(R). Similarly, from (2.66),

s d MW(w)|d
/03 ID,(u, )1l dAGu, v) < Cye™ 2 // IR (w)] dA(w, v)

<2Cye™ Z IR™ 1) = Oe™).
n=0

Summing these estimates gives the claimed bound for ||Dg(:, )| LI(R2)> which then completes the
proof. O

In particular, since the factors F(-, -), K (+) and I‘{s(-)_1 are all in L®(R?), Lemma 2.10 shows
that Fy(u, v) — [ is the solid Cauchy transform 6! acting on a function lying in LI(R?) n LP(R?)
for a Holder pair of conjugate exponents 1 < g < 2 < p < oo. Then, according to [5, Theorem
4.3.11], (u, v) = F,(u,v) — 1 is a continuous function that tends to zero as u + iv — oo as claimed.
Moreover, [5, Theorem 4.3.13] shows that, since the function acted on by = is in LP(R?) for
arbitrarily large p, (u,v) = Fy(u,v) — 1 lies in C%%(R?) for all a < 1, giving improved Holder
continuity, arbitrarily close to the threshold of Lipschitz continuity.

Secondly, we can prove the existence of the limit

EV(t,2) = Jlim (u +iv) [Fo(u, v5,2) — ] (2.81)
independent of u € R, and obtain the estimate
(1) N
F'(t,2) = O((z/)2") + 01 ™N) (2.82)

valid as t — +o0 with z = o(¢). To this end, we again appeal to (2.59) to write
(u +iv) [Fs(u,v) - 1] = % / B’ +iv';u+iv)H@W ,v")dA(t, z)
R2

where

A

T HW/, V') 1= R/, 0 )K ' + 0Dy, 0K @ +iv)) .

B 2) 1=

Now, the support of H(u/, v") lies in the strip [v'| < 2, so if [v]| > 4 we get

/ sy
. . u +1iv
1B +iv;u+iv)| =1+ - <1+
(u—u)+i(v-0")

(2.83)

Given u € R, this upper bound is in L®(R) with respect to u’. So there is a constant C,, such that
|[v| > 4 implies
sup B +iv';u+iv)| £C,.

(u’ ,v")eR?
[v']<2
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Since also f(u’ + iv’;u +iv) — 1 as v — oo in R pointwise with respect to (1, v") in the support
of H(w/,v'), and since by Lemma 2.10 and the boundedness of the factors F,(u/, v), K,/ + iv’),
and K,(u' + iv’ )" we have H(-, -) € L'(R?), it follows by Lebesgue dominated convergence that
the limit in (2.81) exists, and that

Fgl)(t,z) = l/ H@',v';t,z)dAW/, V).

Then using the L®(R?) bounds ||F,(:, Mooz = OQ), ||KS(~)||LOO(R2) = (1), and a correspond-
ing bound for the inverse following from det(K(u’ + iv’)) = 1, the L'(R?) control of Dy(u,v) in
Lemma 2.10 proves the estimate (2.82).

2.5.2 | Small-norm RHP
Comparing F,(u, v) with its continuous parametrix F(u, v) solving 0P 1, we define
F(u +iv) = F(u + iv; t,z) := Fy(u,v;t, z)Fy(u, v;t, 2", (u,v) eR> (2.84)

Note that this definition makes sense because Fy(u,v) — [ is uniformly small for ¢ > 0 large and
z /¢t sufficiently small. This matrix function tends to the identity as u + iv — oo because this is true
of both factors (by hypothesis for Fy(u, v) and by construction for Fy(u, v)), and foru +iv € C \ £
we have

OF (u + iv) = 0F(u, v)F,(u, v)_1 — Fy(u, v)F(u, v)_laFS(u, V)F,(u, v)_l,

which vanishes identically by using (2.57) and (2.58) (justifying our use of the complex notation
u + iv for the argument). The relation between the boundary values taken by Fy(u + iv) from
opposite sides on the three arcs of £ can be easily computed from the established continuity of
F,(u,v) on the (u, v)-plane and the jump condition (2.56). These facts imply that F (u + iv) is the
solution of the following RHP.

Riemann-Hilbert Problem 5 (Small-norm problem). Given ¢ > 0 and z > 0, seek a 2 X 2 matrix-
valued function A — F (1) = F(1;t,z) that is analytic for A € C \ Z; that satisfies F; — [ as
A — oo0; and that takes continuous boundary values on X from each component of the comple-
ment related by the jump condition Ff (1) = F; (1)G4(u,v), 1 = u + iv, where the jump matrix
G,(u,v) = G4(u,v;t, z) is defined on the arcs of X by

Gy(u, v) = F.(u, 0)KT (u + iv)Is(u, v)I(u + iv) K (u +1iv) Fy(u,v) .

Here F,(u, v) denotes the solution of P 1 analyzed in Section 2.5.1; K (1) denotes the solution of
RHP 2 analyzed (by means of the equivalent RHP 3) in Sections 2.3 and 2.4; and J((1) is a bounded,
unit determinant jump matrix that is explicitly defined in (2.21) and is compared with J4(u, v) in
(2.20).

It follows from the uniform bound (2.80), the uniform bounds for K (1) and its inverse, the
1
boundedness ofjs(l)_l and the estimate (2.20) that Gy(u, v) = I + OAY ) =1 + (9((z/t)5(M+1))
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520 | LI and MILLER

holds uniformly on X as t — +oco with z = o(¢). The jump matrix G4(u, v) is also clearly Holder
continuous on each arc of ¥ with Holder index « as close to 1 as desired, and satisfies the neces-
sary consistency condition at the two self-intersection points to admit a classical solution. By the
theory of RHPs in Holder spaces (see, e.g., [34, Appendix A]), using also the fact that although the
contour X depends on the parameters (¢, z) € R? it does so by scaling which commutes with the
Cauchy integral operators on X hence leaving their norms invariant, RHP 5 is a classical small-
norm problem, having a unique classical solution taking Holder-continuous boundary values on
the arcs of X and satisfying the estimates

1
) =1+ 0(z/02""") (2.85)
holding uniformly for 1 € C \ X, and

FV(,2) := lim 2 [B(2;t,2) -1

1 2.86
= —— LED[G(RA,S@) —1] dA = 0(<z/r>z<M”)> @59

1

both in the limit that ¢ — oo with z = o(t). The extra factor of 1, = (z/t)2 in the estimate (2.86)
comes from the total arc length of X.

Remark 2.11. Based on the numerical experiments reported in Section 1.7, the estimates
(2.85)—(2.86) might not be sharp. The same comment applies to the estimates (3.16)-(3.17)
below.

2.5.3 | Combining the parametrices

From (2.55) and (2.84) we obtain a representation of the solution K (u, v) = K((u, v; t,z) of RHOP 1
in the form

K (u,v) = Fy(u, v)K(u + iv) = F,(u + iv)F(u, v)K(u + iv). (2.87)

2.6 | Asymptotic formulz for q(t, z), P(t,z), and D(t,z)
2.6.1 | Expressing g, P, and D in terms of the modified parametrix K,

Since each of the three factors on the right-hand side of (2.87) tends to [ and has a finite first
moment at A = u + iv = oo for ¢ > 0 sufficiently large and z/t > 0 sufficiently small, combining
(2.15) with (2.81)-(2.82) and (2.86) gives

q(t, Z) = -2i [ lim AFS 1 2(&) + llm (u + iU)FS 1 2(&) + lim AKS 1 2(&)
A—00 7 u+1iv—o00 7 A—00 7
1 : (2.88)
.y . -(M+2) -N 1-N
= —21111m AK1,(A) +0O <(z/t)2 ) +0O <(z/t)2 > + 0O ).
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Likewise, using the fact that the boundary values K(0) are bounded and have unit determinant,
combining (2.15) with (2.80) and (2.85) gives

1 1 3
o(t,z) = —yr%KS(A)@KS(A)‘l +0 <(z/t)5(M+1)> +0O <(z/t)5(N_1)> +0O <t5_N> . (2:89)
Now we calculate the explicit terms in (2.88) and (2.89). From (2.22) we get

—2ilim AK 1 ,(1) = —2id,e ™ lim kK ; ,(k)
A-> ” k— o0 7
, P | ~LiNyos 4 o1 linyo
—/1115)1(1)KS(/1)03KS(/1) =—e 2 "PK(0)g;K (0) e2 M3, (2.90)

To continue the calculation, for the modified parametrix K (k) we need to distinguish the case
M = 0 (see Section 2.3) from M > 0 (see Section 2.4).

2.6.2 | ExpansionsforM =0
If M = 0, we recall ay = r, # 0 and use (2.23) and (2.28) to get

/L,e_moklim kK1 ,(k) = —ixloe_iNOAim AY 5(A; —iy/ 21z, arctan(|rg|))
—00 —>00

= %t‘le‘moy(—i 27, @),

where w = —3 cos(2 arctan(|ry|)) is given equivalently by (1.31). Recalling from (1.7) that P(t,z) =
p1.(t,z) and D(t, z) = py 1 (t, z), we take advantage of the fact that K (k) has unit determinant to
similarly compute

1.
-iRyo3

LR s .. -1
—e 2 K (0)0;K(0) e
12

= 27y 1(0; —iv/2iz, arctan(|ro|))Y 5(0; —iv/2tz, arctan(|r|))
2i

——— e Nog(—iy/2tz; ),
2tz

and

1.
~iRyo3

—LiNgoa s .. -1
—e 2 K (0)o;K(0) ez
11

= —1 — 2Y ,(0; —iv/2tz, arctan(|ry|))Y, 1 (0; —iv/2tz, arctan(|ry|))

2i .
=-1+ —lU(—l 217, ).
2tz
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Using these formule in (2.88)-(2.90) for M = 0 and comparing with Definition 1.13 then gives
(1.32) and proves Theorem 1.15 in the case of propagation in an initially-stable medium. To prove
Corollary 1.18 for this case, we simply use the asymptotic formulee (2.49)—(2.51) in the expressions
(1.29) for the leading self-similar terms in terms of PIII functions on the imaginary axis.

2.6.3 | Expansions for M > 0
For M > 0, we recall a;; = r(()M)/M! and use (2.54) with x = 4/2tz and 1, = /z/(2t) to get

- ZiAOe_iNM lim kKS 1 z(k)
k—oo 7

Yo

1
(M) < z )E(M+1)
=, 1
- 2 }{ sMelV2t7™ 4g 4 @ <(z/t)5(3M+1)>
[s|=1

TM! eiRm
(M) 1
oy g 1z 3D Lam+1
= (%) ~’M+1(2V”Z)+‘9<(Z/”2( )>’

where we used the integral representation of the Bessel function J,(-) given in [49, Eqn. 10.9.2].
Similarly, from (2.54) and det(K (k)) = 1 we get

LRy 4 . -1 lixyo
[—e 2 MBK(0;t,2)03K (05 8,2) ez M 3]
1,2

= Ze_mMKs,m(O; t,2)K1,(0t,2)

(M) iRy 1 3
o (2 v v o <<z/t>5M)

M! 2t
and
“LiRyos g .. -1 Lixyos .. ..
—e 2 K (0)o;K(0) e = —1-2K;;,(0)K;,,(0)
1,1
(M) |2
ro| M 2

=-1+2 (]‘:4')2 (%) Ju(2V2tz) +0 ((z/t)ZM) .

In all three of these formulza, the error terms can be absorbed into those already present in (2.88)-
(2.89) under the condition M > 1 and z = o(t). Also, the condition N > M + 2 allows two of the
error terms in each of (2.88)-(2.89) to be combined. This establishes the asymptotic formulza (1.37)
and completes the proof of Theorem 1.22.

3 | ANALYSIS FOR PROPAGATION IN AN INITIALLY-UNSTABLE
MEDIUM

For propagation in an initially-unstable medium, the coefficient of 1~! in the phase 6(4; ¢, z) has
opposite sign compared to the stable medium case. We make the following definition:
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Definition 3.1 (the phase for D_ = 1). In the unstable case, we denote the phase 6(4;t,z)
appearing in (1.11) as 8(4; t, z) = 6,(4; ¢, z), where
z
0.(1) = 6,(4;t,2) := At — 1 3.1
The analysis is again driven by the sign chart of the real part of i6(4; ¢, z), but this is now changed
compared to the stable case, as seen in the right-hand panel of Figure 18.

3.1 | Setting up a Riemann-Hilbert-d problem

If we directly mimic the transformation from M(4) to K(u, v) as in (2.11) simply replacing 64(4)
with 6,,(4), then the resulting jump matrix on the circle |1| = A, has an exponential rather than
oscillatory character. This problem requires further stabilization of exactly the type that is sup-
plied by the mechanism of a “g-function” in the Deift-Zhou steepest descent theory. Here, the
implementation is particularly simple: we multiply on the right by e'84:-2)9s where

. . _Z/‘L_l’ |/1| > /‘lo
gt 2) = {m, 1Al < A,

A version of this transformation appeared in the paper [22]. Thus, rather than (2.11) we define in
this case (with 6§ = §(u + iv))

M(u + iv) §93¢2il405 | lu +iv| < Ao,
K, (u,0) := 4 M(u + iv)T, (u, v)_16_°3e_iz’1_1°3 , Ju+iv]>A1,, v>0, 3.2)
M(u + iv)Ty(u, )83 #47% | Ju+iv| > A, v<0.

Here the matrix T, (u,v) = Ty(u, v;t, z) is given by

! 0
B(v)Qy (u, v)e 20ulutivitz)

T,(u,v;t,z) := ( > ,  (u,v) e R?,

in which the “bump” function B and the non-analytic extension Qu(u, v) of R(u) are exactly as
defined in Section 2.1. The main point of introducing the g-function in the transformation is that
K, (u, v;t, z) satisfies a RHOP that only involves the stable-medium phase 6(A;t, z), which is real-
valued on the jump contour X. That problem is the following.

Riemann-Hilbert-0 Problem 2. Given t > 0 and z > 0, seek a 2 X 2 matrix-valued function R?
(u,v) = K, (u,v;t, z) that is continuous for (u, v) € R? \ Z; that satisfies K, — l as u + iv — oo;
that takes continuous boundary values on X from each component of the complement related
by the jump conditions K (u, v;t,z) = K (u, v;t, )T, (u, v; t, z) where J,(u, v) = J,(u, v; £, z) is
given by

eizd 03 5O W1 §-032il403 lu+iv|=21,, v>0,
T, (u,v) 1= el#A 10 ST LW 5932itA03 lu+iv|=21,, v<0, (3.3)
—a
a+r’ UE(—Aodo), V=0,
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where § = §(u + iv), T, = Ty(u,v;t,z), and W = W(A; ¢, z); and that satisfies the following d
differential equation

0K, (u,v) = K, (u, v)D(u, v), (u,v) e R?\ =, 3.4

where the matrix Dy(u, v) = Dy(u, v; t, z) is given by (2.14).

Thus, the d equation (3.4) is exactly the same as in the stable-medium case. The jump matrix
J.(u,v) is the same as J(u, v) for —4, < u < 1, and v = 0, while for |u + iv| = 4, it is obtained
from J(u, v) defined in (2.12) by simply omitting the oscillatory exponentials e=2%®+V) from the
off-diagonal elements and instead moving them onto the diagonal elements.

Since e8:42)95 [ as 1 — oo and as 1 — 0, the optical field q(t, z) and density matrix p(t, z)
are obtained from K (u, v; t, z) by formule similar to (2.15) (but accounting for the change of sign
of D_ in the formula for p(t, z)):

q(t,z) = =2i lim (u+iv)K,;,(u,v;t, 2),
Uu+1v— 00
p(t.z) = lim Ky(u,v;t,2)0:K,(w,0;,2) " (3.5)
u+iv—0
3.2 | Construction of a parametrix

To obtain a parametrix, we neglect the matrix Dg(u, v; ¢, z) in the d equation and approximate the
jump matrix J, (1, v; t, z) accurately on X by exactly the same arguments as in Section 2.2 leading
to the uniform approximation

T (u,v;t,2) = F,(u +iv;t,z) + O(A¥+1), u+iv e, (3.6)

where J,(1) = J,(4;t, z) is given by

( AM(/D—leziss(A) lay| AM =Ry

J— (a3

lay12M R o260 | 1A= 4., S(4)>0,
Ap (1)
J,Q) =3 o2i65(20) lan A ity (3.7)
_ A = A =4, S@) <0,
_laM MMelNM AM(/D_ e—2165(/1)
[Ap(D) 7, 1€ (=Ae,Ao),

in which a,; and Ay, (1) are defined in (2.17)—(2.18) and N, is from Definition 1.11. We are therefore
led to consider the following RHP:

Riemann-Hilbert Problem 6 (Parametrix for K;). Given ¢t > 0 and z > 0, seek a 2 X 2 matrix-valued
function A = K (1) = K,(4; 1, z) that is analytic for 2 € C \ Z; that satisfies K, — [ as 1 — oo;
and that takes continuous boundary values on X from each component of the complement related
by the jump conditions K (1) = K (1)J,,(1) where the jump matrix J,(1) is defined on X by (3.7).
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By following the same procedure as indicated for RHP 2 in Section 2.2, one easily checks that
this problem has a unique solution. Then, by the exact same substitution (2.22) replacing K(1)
and K (k) by K, (1) and K, (k) respectively we obtain a simpler RHP equivalent to RHP 6:

Riemann-Hilbert Problem 7 (Modified parametrix for K,). Given ¢t > 0 and z > 0, seek a 2 X 2
matrix-valued function k — K, (k) = K, (k;t, z) that is analytic for |k| # 1; that satisfies K, — |
as k — oo; and that takes continuous boundary values on |k| = 1 from the interior and exterior
related by the jump condition

1 1
Ap(A k) "2k aM g 1Ay (2.k) T2 kM

K (k) =K (k) 1 i (3:8)
— A a1 Ay (Aok) 2 kM Apy(Aok) 2T
for |k| = 1, where 4, is defined in terms of (¢, z) by (2.2) and x = /2tz.
3.3 | Properties of the modified parametrix: M = 0
It is easy to check that when M = 0,
K,(k;t,z) = Y(k; x,arctan(|ro|)), x = /212, (3.9)

where Y(A; X,n) is explicitly defined by (2.36) in terms of the solution Y(A;X,7) of RHP 4
described in detail in Section 2.3. It follows from the discussion in Section 2.3 on the boundedness
of solution of RHP 4 that K, (k) is uniformly bounded for |k| # 1 and x > 0.

3.4 | Properties of the modified parametrix: M > 0

Unlike K (k;t,z), when M > 0, K, (k; t, z) does not satisfy the conditions of a small-norm RHP,
the main obstruction being the oscillatory factors exX(k+k™) o the diagonal elements of the
jump matrix in (3.8). These are easily removed, essentially by reversing the introduction of the
g-function, but the cost is that non-oscillatory (exponentially growing in x) factors e =k Wil
appear on the off-diagonal elements of the jump matrix. However, these potentially-dangerous
exponential factors will be multiplied by A, which is small. More precisely, setting

Ky(k;t,z)e ™93, |k| <1,

.. c 3.10
K, (k;t,z)e™K o3 k| > 1, (3.10)

K, (k;t,z) := {

we see that K, (k) = K, (k; t, z) is analytic for |k| # 1 and tends to the identity as k — co, and that
the jump condition (3.8) on the counterclockwise-oriented unit circle |k| = 1 can be written in
the form K (k) = K (k)V(k), where the elements of V(k) have the following uniformly valid
approximations:

= M .
V() =1+022M), j=1,2,
V1,2(k) = [/12/[|aM|kM + @(AEM)] eiX(k—k_l)’

and
V2,1(k) =—- [/1&/[|aM|kM + (9(/12M)] e—ix(k—k’l)‘
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Since +i(k — k~!) is real-valued for |k| = 1 with maximum value of 2, K, (k) will indeed satisfy
the conditions of a small-norm RHP provided that

* A, issmall, thatis, z = o(t) ast — +o0, and
« AMe2x is small, that is, x = 1/2tz = o(In(t/z)).

For simplicity, we will assume that x = O(1) as t — +co, that is, z = O(t™!). Then, as in

1
Section 2.4, we obtain K (k) =1+ OOD((z/t)EM) + OD((z/t)M) =14 Oop(t™) + Op(t—2M)
uniformly for |k| #1 as t — +oco0 with z = O(t™1). Since the exponential factors in (3.10) are
bounded on their respective domains of the k-plane when x is bounded, it follows that K, (k)
is uniformly bounded and hence so is K, (1). It also follows from the same estimate of K, (k) that
the analogue of (2.54) is:

Ry(k;t,2) = 1 + %K(ll)(t,z) +0(k2), k- oo
where
ay|AM 0 M aix(s—s™1)
271 Isl=1 \—s"€ 0
+ Op3M) + Oop(3M), A, =0,
and

K, (0;t,2) =1 + oy’ 0 sMel =D ds
N B E) i isl=1 —§Me—ix(s—s7") 0 S

+ Op(A2M) + Opp(A3M), 2, — 0, (3.11)

assuming that x = 4/2tz is bounded, where the unit circle has counterclockwise orientation.

3.5 | Comparing K, (u,v;t,z) with its parametrix Ku(/l; t,2)
As in Section 2.5, we have an analogue of (2.87) for the solution K, (u, v) = K, (u, v; t, z) of RHOP 2:
K,(u,v) = F,(u + iv)F,(u, v)K, (u + iv) (3.12)

where F,(u,v) = F,(u,v;t, z) satisfies an analogue of 0P 1 in which the d equation (2.58) is
modified slightly to read

oF,(u,v) = F (u, V)K,(u + iv)Dg(u, v)K, (u + i, (uv) eR? (3.13)

and where F (1) = F,(1;t, z) satisfies an analogue of RHP 5 in which the jump condition reads
Ff (1) = F{ ()G, (u,v), 2 = u + iv, with jump matrix

Gy (1, 0) 1= Fy(u, 0)K; (u + i0)Ty(u, v)Iy(u + iv) " K (u + i), (w,0) "
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Since the conjugating factors K (u + iv) and K (u + iv)_1 in (2.58) played no role whatsoever in
the analysis of F (u,v) in Section 2.5.1 once it was noted that both factors were uniformly bounded,
so also under the conditions that either M = 0 or M > 0 and ¢ > 0 is large while z = O(t™!)
guaranteeing the same properties of K, (u + iv) and K, (u + iv)_1 all of the analysis from that
section applies also to F,(u, v) because the “core” matrix D(u, v) is common to (2.58) and (3.13).
It follows that under these conditions F, (u, v) is Holder continuous and tends to l as u + iv — oo,

1 3
B, 0t,2) — 1= 0(z/t): ) + o ™) (3.14)
uniformly for (u,v) € R?, and
1
FL(,2) 1= lim (u+iv) [Fu(w,038,2) = 1] = 0(z/0)2™) + 061 ) (3.15)

with both estimates (3.14) and (3.15) valid as t — +o0 with z = O() (or z = O@™) if M > 0),
where the limit in (3.15) exists independently of u € R fixed.

One then checks that J,(1) defined by (3.7) has unit determinant and is bounded on X, which
implies via (3.6) that J,(u, v)J,(u + iv)_1 =1+ O(AM*1). Then, under the conditions yielding
the above estimates of F,(u, v) it follows that also G,(u,v) = + OAM*1). Hence, by the same
arguments as given in Section 2.5.2 we obtain also

1
B,(Lt,2)=1+0 <(z/t)5(M+1)> (3.16)
holding uniformly for 1 € C \ %, and

80, 2) = lim 2 [F,(1:1,2) 1] = © <(z/t)%(M”)> : (3.17)

3.6 | Asymptotic formulza for q(t,z), P(t,z), and D(t, z)
Assuming that ¢ — +oco and z > 0 satisfies either z = o(¢) if M =0 or z = O™ ') if M > 0 as

needed to control the factors in (3.12), the calculations in Section 2.6.1 go through in the current
setting, mutatis mutandis. We obtain that

1 1
q(t,z) = —2id,e Nm klim kK, ,(k;t,z) + O <(z/t)5(M+2)> +0 <(z/t)5N> +0OtN) (3.18)

and

1.
-iNp03

1.
ot,z) = e 2 MTR (01, 2)05K, (05, 2) e
1 1 3
+0O <(z/t)5(M+1)> +0O ((z/z)z(N‘”) +0O (tz‘N> . (3.19)

We are primarily concerned with the first row of p(t,z), which gives P(t,z) = p; 5(¢,z) and
D(t,z) = p1,1(t, 2).
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For the case that M = 0, we then use (2.36) and (3.9) together with (2.28) to get
—2il,e ™o klim kK, 15(k;t,z) = —2ixloe_iN0Aim AY5(A; V/2tz, arctan(|ro)))
—00 —00

= —2ixloe_m01ym AY5(A; V/2tz, arctan(|ro)))
—o0

24, . .
= e Noy(y/2tz; ) = t~ e Noy(1/21z; w)
2tz

where w is defined in terms of |ry| by (1.31). Similarly,

—LiRyos 55 . -1 Lingo
[e 2 9K (05t,2)05K, (05 8,2) €2 3]
12

= —2e7 oY, 1(0; V/2tz, arctan(|ry )Y ,(0; /2tz, arctan(|ro|))

2 .
= = e Mog(y/2tz;w) and
V2z

—Lingos 45 . -1 linge
[e 208K (058, 2)03 K, (05 8,2) ez 3]
1,1

=1+ 2Y,,(0; v 2tz, arctan(|ry|))Y; 1 (0; V/2tz, arctan(|ry|))

2
=1—- U2z w).
\/Z_tz( Z; )

Comparing with (1.28) in Definition 1.13 verifies the asymptotic formulee (1.33) and hence finishes
the proof of Theorem 1.15 in the unstable-medium case of D_ = 1. Using the asymptotic formulae
(2.52) with parameters (2.53) and evaluating the error terms in Theorem 1.15 for z = O(t%) with
—1 < a < 1 then proves Corollary 1.18 in the unstable-medium case as well.
For the case M > 0 with the additional assumption that z = ©(t~!) we obtain from (3.10) and
(3.11) that
2il,

ey kh_,rgokku,l,z(k; t,z) = —

2id, .. " 2id
lim kK, 1 5(k;t,z) = —
k—oo ”

i o) (1)
oy o, Nu2(:2)

|r(()M)|e—iNM

— AQ/IH}I{ sMeiV2iz(s—s™) 4g + O+
TM! Is|=1

D" ) L)

. z . LM+
Similarly, from (3.10) and (3.11) we find

N o s .. —1 Ltingo
e 2 MK, (0;t,2)05K,(0;t,z) ez M 3]
1,2

= —2e" MWK, 1 ,(0;t,2)K,1,(0;t,2)
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= —2e" ™K, 1 ,(0;t,2)K,1,(0;t,2)
(M)

M+1 |r0 |e_iNM z %M . M
= 2" —(2) JM(zu/z_tz)+o<(z/t>z )

Ny o s .. -1 Lingo
e 2 MK, (0;t,2)05K,(0;t,z) ez M 3]
11

=1+ 2Ku,1,2(0)Ku,2,1(0)
=1+ ZKu,l,Z(O)Ku,z,l(O)

M)|2 M

(
=1+ 2" "o . (£> Tn(2iV2t2) + 0((z/0)™).
(M)

2t

These computations then establish the asymptotic formule (1.40), which proves Theorem 1.23.
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APPENDIX A: UNIQUENESS OF CAUSAL SOLUTIONS
In this appendix, we prove Theorem 1.3. Let (q'/(t, z), PY)(t, z), DY)(t, z)), j = 1,2 denote two
causal solutions of the same Cauchy problem (1.1). If we introduce the notation

Aq(t,2) = qP(t,2) — gV, 2)

AP(t,z) = PA(t,z) — PU(t, z)

AD(t,z) := DP(t,z) — DW(t,z),
then because the incident pulse gq(-) is the same for both solutions,

Aq(t,z)=0 forz=0andt >0,
and because both solutions are causal,

Aq(t,z) = AP(t,z) = AD(t,z) =0 fort=0andz > 0.

The goal is to show that these boundary conditions on the quarter plane t > 0 and z > 0 imply
that Aq(t, z) = AP(t,z) = AD(t, z) = 0in the interior of the quarter plane. In fact, we will not even
require the condition Ag(0, z) = 0 for z > 0 to prove this result.
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From the Maxwell equation and Bloch subsystem governing (q"/(t, z),PU)(t, z), DY)(t, 2)), j =
1, 2, we deduce equations satisfied by the differences of two solutions:

Aq,(t,z) = —AP(t,z2),
AP,(t,z) = —2[q@(t, z2)DP(t, z) — qV(t, z2)DV(t, 2)]
= —2[DO(t, 2)Aq(t, z) + q(t, z)AD(t, z)],

AD(t,z) = 2R(q(t, z)PA(t, z) — qV(t, 2)PI(t, 2))

= 2R(PA(t,2)Aq(t, z) + q(t, Z)AP(t, 2)).

. . 2
From the conservation law D(f)(t,z)2 + |PUX¢,2)|” =1 and the Maxwell equation governing
q(t, z), we obtain the following a priori estimates:

PO, 2)] <1, IDV(t2) <1, and |gV(t,2)] < |go(t)] +z (A1)
fort >0and z > 0.
Lemma A.1. Suppose that for 0 < t, < t; and 0 < z, < z; it holds that

Aq(t,zy) =0 forty <t <ty and

AP(ty,z) = AD(ty,z) =0 forzy <z < z.

Then, setting

M(ty,2)) i= / 100()] dr + 2261 — to), (A2)

lo

the condition z; — zo + 4(t; — ty) + 4M(t1,z1) < 1 implies that Aq(t,z) = AP(t,z) = AD(t,z) =0
Jorall(t,z) € [to, 1] X [20, 21 ]-

Proof. Whenever (t,z) € [ty, t1] X [20, 211,

Aq(t,z) = —/ AP(t,$)d¢

0

t t
AP(t,z) = —2/ DA, 2)Aq(z,z)dT — 2/ q(r,z)AD(z, z)dr
L, 1

0 0

t t
AD(t,z) = 2/ RPA(r,2)Aq(t, z))dr + 2/ R(gD(z, 2)AP(z, z))dr.
to to
Using (A.1) we then get the inequalities

1Aq(t.2)] < / IAP(t, )] d¢
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t t
AP(t,2)] <2 / |Aq(r, 2)| dr +2 / (196()| + 2)|AD(z, 2)] de
to to

t ¢
|AD(t,z)| < 2/ |Aq(z,z)|dT + 2/ (|go(7)| + 2)|AP(z, )| dr.
to to

If we denote

Sq(t,z) 1= sup [Aq(z, $)
(T.0)€Elto,t1X[20,z]

Sp(t,z) 1= sup |AP(z, )|
(T.0)€lto.t1x[20,2]

Sp(t,z) = sup |AD(z,$)|,

(T.)€ltot1x([20,2]

then for (¢, z) € [ty, t1] X [20, 21] we get

[Aq(t, 2)| < (z — 29)Sp(t, 2) < (21 — 29)Sp(t1,21)
¢
|AP(t, )| < 2(t — £9)S4(t,2) + 2 l/ |qo(T)| dT + z(t — to)] Sp(t,z)
Lo

< 2(ty = t)Sq(t1,21) + 2M(t1,21)Sp(ty,21)

t
AD(t, 2)| < 2t — 1)S(t,2) +2 [ / |qo(®)] dr + 2(t — to)] Sp(t,2)
fo

< 2ty — t9)Sy(t1, 21) + 2M(21, 21)Sp(ty, 21),

where we recall the definition (A.2). Since the final upper bounds are independent of (¢,z) €
[to, t1] X [29, 21 ], taking the supremum in each case over this enclosing rectangle gives

Sq(t1,21) < (21 — 29)Sp(ty, 21)
Sp(t1,21) < 2(8; — £9)Sy(t1,21) + 2M (1, 21)Sp(t1, 21)
Sp(ty,2z1) < 2ty — £9)Sq(ty, 21) + 2M (¢, 21)Sp(ty, Z1). (A3)
Now set
S(t,z) 1= S,4(t,2) + Sp(t, z) + Sp(t, 2).

Then since S,(t, z) < S(¢,2), Sp(t, z) < S(t, 2), and Sp(t, z) < S(¢, z), summing the three inequal-
ities in (A.3) gives

S(t1,21) £ (21 — 2o + 4ty — tp) +4M(t1,21)) S(t1,21).

Suppose that z; — zo + 4(t; — tg) + 4M(ty,2z1) < 1. If S(t1,z1) > 0, then dividing by S(¢;, z;) gives
z1 — Zg + 4(t; — ty) + 4M(t1,z;) > 1, acontradiction. Since S(t;, z;) > 0, it follows that S(¢;,2z;) =
0, which implies that also Sy(¢,,z;) = Sp(t1,21) = Sp(t1,21) = 0, that is, Aq(¢,z), AP(t, z), and
AD(t, z) all vanish identically on [¢y, t;] X [2g, 21 ]- O
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Lemma A.2. Suppose that for 0 < z, < z; it holds that
Aq(t,zy) =0 forallt >0, and
AP(0,z) = AD(0,z) =0 forzy <z < z.

Ifz; —zy < 1then Aq(t,z) = AP(t,z) = AD(t,z) = 0forallt > 0 and z € [zy,2;].

Proof. Since z; — z, < 1, let ¢ > 0 satisfy ¢ < 1 — (z; — z,). Then, since g, € L'(R), there exists
At > 0 such that

(n+1)At

4At + 4/ |qo(7)|dT +4z,At <¢e, Vn € Z,.
nAt

Note that At will depend on z;.

We prove the lemma by showing that given n € Z, Aq(t, z) = AP(t,z) = AD(t,z) = 0 holds
for (t,z) € [nAt, (n + 1)At] X [z, z1]. The base case for induction on n is n = 0. By hypothesis, we
have Aq(t, zy) = 0for 0 <t < At and AP(0,z) = AD(0, z) = 0 for z; < z < z;. Then taking t, = 0
and t; = At,

Z1 — 2o+ 4(t; —tg) +4M(t1,2) <z1—zp+e<1 (A4)

so Lemma A.l implies that Aq(t,z) = AP(t,z) = AD(t,z) =0 for (¢t,z) € [ty,t1] X [29,21] =
[0, At] X [zg, z;], which establishes the n = 0 statement. Taking the inductive hypothesis that
Aq(t,z) = AP(t,z) = AD(t,z) = 0 for (t,z) € [(n — 1)At, nAt] X [zy,2;], we have in particular
that AP(nAt, z) = AD(nAt,z) = 0 for z, < z < z;. We are also given that Aq(t, z,) = 0 for nAt <
t < (n+ 1)At. Taking ty = nAt and t; = (n + 1)At and applying Lemma A.1 shows that since (A.4)
holds, Aq(t,z) = AP(t,z) = AD(t,z) = 0 holds for (¢, z) € [ty,t;] X [z, 21] = [nAL, (n + 1)At] X
[2o,z1]. This completes the induction argument and the proof. O

Now we can give the proof of Theorem 1.3. If (qU(t, z), PU(t, z), DY)(t, 2)), j = 1,2 are two
causal solutions of the MBE Cauchy problem (1.1), then in particular Aq(t,0) =0 for all t > 0
and AP(0,z) = AD(0,z) = 0 for all z > 0. Combining Lemma A.2 with an induction argument
then shows that Aq(t,z) = AP(t,z) = AD(t,z) = 0 holds on any horizontal strip of the form ¢ >
0 and %n <z< %(n +1) for n € Zs,. Therefore the solutions (qV(t, z), PY(t, z), DY)(t, 2)), j =
1,2 agree on the whole quarter plane ¢ > 0 and z > 0, which completes the proof.

APPENDIX B: PROOF OF THEOREM 1.8
This proof that the reconstruction formula (1.12) yields a causal solution of the Cauchy
problem (1.1) consists of three steps:

(i) The Lax pair (1.8) in which the coefficients are expressed in terms of M(4; t, z) via the recon-
struction formula (1.12) is derived directly from RHP 1, implying by compatibility that the
two functions q(t, z) and p(t, z) from the reconstruction formula solve the Maxwell-Bloch
equations;

(ii) The optical field, when evaluated at z = 0, is shown to reproduce the required incident pulse,
that is, q(t,0) = qo(t);

(iii) The density matrix is shown to satisfy the required initial values in the distant past, that is,
lim;_,_,,p(t,z) = D_os. This part will be proved by showing first that the solution is causal.
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The three parts combined prove that the reconstruction formula (1.12) solves the Cauchy
problem (1.1) and is causal (and hence, by Theorem 1.3, unique).

For step (i), one defines in terms of the solution of RHP 1 a new matrix function ¢(¢,z; 1) =
M(4; t,z)eie(’”’z)C’S, which is analytic for 4 € C\ Z; except at the origin, and which has
the asymptotic behavior that ¢(t,z;A)e 4% = [+ A" 'MD(¢,z) + 0(A~!) as 1 — o and that
$(t, z; A)eP-793/( is analytic at A = 0. The jump conditions for ¢(t, z; 1) induced on Zy; are eas-
ily checked to be independent of (¢, z) € C2. Therefore, the matrix function ¢,(t, z; 1)¢(t, z;/l)_1
is analytic in the whole complex plane with the possible exception of 4 = 0, however one eas-
ily checks that the singularity at the origin is removable. Computing the asymptotic behavior
as A - oo shows via Liouville’s theorem that «;zS[(t,z;/l)gé(t,z;/l)_1 is a linear function of the
form ilo; + Q(t, z), where Q(¢, z) has the form shown in (1.7) in which the function q(t, z) is
obtained from M(4;t,z) via the reconstruction formula (1.12). Similarly, the matrix function
@,(t,z; L)g(t, z;/l)_1 is analytic except for a simple pole at the origin, and it vanishes for large 1.
Therefore by Liouville’s theorem again it has the form —ip(t, z)/(24), and the matrix coefficient
p(t, z) is obtained from M(A; ¢, z) by the reconstruction formula (1.12). It follows that ¢(¢t, z; 1) is
a simultaneous fundamental solution matrix of the Lax pair equations (1.8), and by compatibil-
ity, that the matrix coefficients Q(t, z) and p(t, z) extracted from M(4; ¢, z) via (1.12) constitute a
solution of the MBEs in matrix form (1.7).

For step (ii), we start by setting z = 0 in RHP 1, which results in a simplification of the phase:
0(4;t,0) = At. Therefore, the essential singularity at the origin 4 = 0 is removed from the jump
matrices. The analyticity of r(1) for (1) > 0 and continuity for (1) > 0 then allows for a simple
analytic deformation:

M(4;t,0)W(4;¢£,0), A<y, S@ >0,
N ) :={ M@ t,0W(1;4,00", A<y, SA)<o0,
M(4;¢,0), Al > 7.

The new function has the asymptotics N(4;t) — [ as A — o0, and a jump on the real line only:

2 a2
N*(1:0) = N“( ) <1r(+a)'£g?a't e m) , A€R.

This is the classic RHP associated with the non-selfadjoint Zakharov-Shabat scattering problem.
Also, Equation (1.12) yields q(¢,0) = —2ilim,_, ,AM; ,(4;¢,0) = —2ilim;_, AN ,(4;t). Hence,
the well-known Schwartz-space bijection between g, (¢) and r(1) in absence of discrete spectrum
or spectral singularities yields q(¢, 0) = gq(¢).

For step (iii), we will prove that the solution is causal. With ¢t < 0, regardless of the value of
D_ = +1the phase 6(1; t, z) behaves in a similar way for |1| > 1 where the linear term dominates.
The sign structure of R(i6(1; ¢, z)) is shown in Figure B.1 in the case D_ = —1 (left panel) and
D_ =1 (right panel), and in both cases the sign is the same outside the circle |[1] = 4, = \/z/(2¢).
Hence, both stable and unstable cases with ¢ < 0 can be treated in an identical way. In particular,
one notices that e¥294:62) _ 0 as +J(1) — +oo regardless of the sign D_. We also make use of
the following standard result:

Lemma B.1. Ifq, satisfies Assumption 1, then there exists L > 0 such that r(1) is analytic for |1| > L
and 3(4) > 0, continuous for |1| > L and F(A) > 0, and r(1) - 0as A — oo uniformly with (1) >
0.
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FIGURE B.1 Fort <0andz > 0, the sign structure of R(i6(4; t, z)) in the complex plane for an
initially-stable medium D_ = —1 (left) and for an initially-unstable medium D_ = 1 (right). White (gray) shading
corresponds to positive (negative) values of R(16(4; ¢, z)).

Proof. Recall the Jost matrix ¢, (¢; 1) satisfying the Zakharov-Shabat equation in (1.8) and the
boundary condition ¢, (t; 1) = €49 4 o(1) as t — 400 with 1 € R. Setting

u(t; ) 1= ¢y 11D and  v(t;2) 1= ¢y (),
the functions u(-; 1) and v(-; 1) satisty the coupled differential equations
u'(t; 1) = qo(He M u(t; 1) and  V'(54) = —qo(H)e?Mu(t; A), (B.1)

or, building in the boundary conditions, the coupled Volterra equations
+o0 )
u(t; ) =1-— / qo(s)e 2 v(s; 1) ds,
t

+00
v(t; 1) = / qo(s)eX M u(s; 1) ds. (B.2)

Eliminating v(t; A) gives
+o0 w
u(t;A) =1+ / K, w; Du(w; ) dw, K(t,w;1):= —qo(w)/ go(s)e2Hw=s) g,
t t

Noting that Assumption 1 implies that g, € L'(R), the kernel K satisfies the estimate |K (¢, w; 1)| <
llqoll1 - 1go(w)| whenever w > t and (1) > 0. Straightforward analysis of the iterates proves that
foreach t € R, u(t; 1) is analytic for (1) > 0 and continuous for (1) > 0, and that

”u(';/l)”oo < e||QO||%’ I) > o. (B.3)

Using the uniformly-convergent iterates for u(¢; 1) in the integral equation for v(¢;4) in (B.2)
shows that for each t € R, v(t; 1) is also a function analytic for (1) > 0 and continuous for
S@) > 0.
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Now let ¢ > 0 be given, arbitrarily small, and let g.(¢) be an infinitely differentiable function
with compact support for which

llgo — gellh < %e_”%“%- (B.4)

Then using (B.2) we can express e "24v(t; 1) in terms of u(t; 1) in the form e “2*v(t; 1) = I, (t; 1) +
L, (t; A), where

+o0 - -
L(52) = / (406 — )1 ACDu(s; 1) ds,
t

+o0
L= [ @@ uts s
t
Obviously, if (1) > 0, combining (B.3) and (B.4) shows that

1
L1 <119 = golly - luCs Dl < e

For I,, we take advantage of smoothness and compact support of g, to integrate by parts:

+o0
Lt;A) = —ﬁ lqs(t)u(t;/l)+ / ql(s)u(s; 1)e**6=0 ds
t

+o00
+ / q.(s)u' (s; 1)e?A=0 ds] )
t

Using (B.1) to eliminate u/(s; 1) gives

+o00
L(t;4) = —ﬁ [qg(t)u(t;/l)+ / qL(s)u(s; 1)e? 46D ds
t

+00
+ / qc(5)go(s)e™ 25 u(s; 1)e?AG—0 ds] ;
t

Therefore for F(1) > 0,
e u(t D < L (6D + 115 D)

||QU||2

= E o T 1 —2iA(-
< — A
SO

lligoll
- —2iA() €
<1 2|/Hllqsllmllqolh) lle (s A)Ilm_4+ M (||q6||oo+||q£” ).

Therefore, taking S(4) > 0 and |A| > L = L(e) where

L(e) := max { Igelleollqollys = (||qg||oo +llg.l,) el ol }
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538 | LI and MILLER

gives |le=240u(; )|, < e. From (B.2) it then follows that also [|u(-;4) — 1]l , < €liqoll;-
Now, under the cutoff condition on g, in Assumption 1, the reflection coefficient is given by

$421(004) e 2y(t;2)
T ¢112(0:2) ut; ) |’

r(d)

from which the claim follows. O

Now suppose that ¢ < 0. Combining the boundedness of the exponential factors e*219(4::2) jn
appropriate half-planes away from the origin with Lemma B.1, one concludes that W(1) — [ as
A — oo with S(1) > 0 while Wi (1) —» [ as 1 — oo with (1) < 0. Thus, RHP 1 can be solved
exactly for ¢ < 0 as follows,

W), [A| >y and SA) >0,
M(1) = 0, 1l <y,
W)™, 4>y and SQ) <0,

where y > 0 is the radius of the circular component of the jump contour Z;. Assuming further
that t < 0 and using the reconstruction formula (1.12) (taking the limit A - oo for g(¢, z) in any
direction non-tangential to the real axis to exploit the exponential decay of the factors e*2i(4:1,2)
in appropriate half-planes) one gets that

q(t,z)=0,  p(t,z)=D_o3,
forall z € R and t < 0. This proves causality of the solution. In particular, one notes
lim p(t,z) = D_o3, (B.5)
t——o0

which establishes the prescribed initial state of the medium in the limit ¢ - —oo. This finishes
the proof of Theorem 1.8.

APPENDIX C: PROOF OF LEMMA 2.7
We consider the Taylor expansion of f(u) about u = 0, truncated at the derivative of order n;,
forn=0,..,n, — 1:

f(n)(u) — nli_l f(n+j)(0) uj + f(nl)(gn)unl—n
j=0

J! (n, —n)!

ml c(m) (n1)
U SO £

, n=0,..,n -1
e~ (m—n) (ny —n)!

Here £,,n =0,...,n; — 1, are parameters lying between 0 and u on the real line. Then substitut-
ing into the first term in (2.16), exchanging the order of summation, and applying the binomial
formula gives

nm-1,. \n ni—lni—1 rop) o m-n Mol e(ny)
Y W po =y 3 LEOWTEET 5 S s
n=0 :

nl(im — n)! ? nl(n; —n)!

n=0 m=n n=|
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ni—1

-n  m—l n
Z f(m)(o)z (IU) u™ + Z f( )(gn) (iU)nunl_n

—-n)! &~ nl(n; —n)

m=0

n;—1 np—1
1 f(rn)( 0) L f(nl)(gn) . mn
n;() (u +iv)" +nz:: n!(nl—n)!(w)ul .

Relabeling an index and recalling 4 = u + iv we have, for n, < ny,

n—1 np—1 (n)
Z‘, 0 o = )) 2O s ogmy = ¥ L2 o)

n=0

as A — 0. Here we used the fact that f(u) € CX(R) so f")(u) is continuous and therefore
|f(E| < n[lafil]|f(”1)(u)| = O(1). The lemma is proved.
ue|—1,

APPENDIX D: NUMERICAL METHODS

This appendix describes the numerical methods used in this paper. Aside from evaluations of
classical special functions and integration of ordinary differential equations by means of built-in
tools available in many familiar platforms, we need to compute the values of Painlevé-III functions
and to numerically compute causal solutions of the Cauchy problem for the MBEs.

D.1 | Computation of Painlevé-III functions

The functions y(X; w), s(X; w), and U(X; ) are defined by (2.28) in terms of the solution Y(A; X; )
of RHP 4, where w = —3 cos(27). Given X € C and w € (-3, 3), they may therefore be computed
by finding a sufficiently accurate numerical approximation of the solution of RHP 4.

To solve RHP 4 numerically, we use S. Olver’s method [51] as implemented in the Mathematica
package RHPackage [50]. This method takes as input data a parametrization of the jump contour
for the problem and the corresponding jump matrix, and it converts that given data into a system of
singular integral equations which is then solved numerically with high accuracy for “reasonable”
data. In particular, a “reasonable” jump matrix should not have very large elements, so the case
that X € iR is particularly good for applying the method to RHP 4 as the jump matrix is bounded
on the unit circle. When X € R instead, the jump matrix elements grow rapidly with X, so we
may use the relation (2.31) to convert RHP 4 into an equivalent problem with a bounded jump
matrix on the unit circle. Equivalently, it suffices to compute y(X; —w), s(X; —w), and U(X; —w)
for imaginary X and then use (1.26) to obtain y(X; w), s(X; w), and U(X; w) for X on the real axis.

When X € iR becomes large, the jump matrix becomes highly oscillatory, which is another
difficulty in the numerical solution of RHPs that leads to large numerical errors. In this situa-
tion, a strategy that has been used successfully [9, 55, 56] is to follow the lead of the Deift-Zhou
steepest descent method by first introducing suitable contour deformations like the transforma-
tion between Y and Z given in (2.37) and illustrated in Figure 20. Then, the numerical method can
be applied to the deformed RHP which requires more complicated input data but yields superior
results. In our paper, we refrained from computing solutions for large values of X, so we did not
use this modified technique. Indeed for the plots in Section 1.7 of this paper, we took ¢t € [—1, 1000]
and z € [0, 1], implying that x = \/ﬁ € [0, 20\/5] ~ [0,45]. For the plots in Figures 2-3 we only
needed x € [0, 8].
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540 | LI and MILLER

D.2 | A numerical method for causal solutions of the Cauchy problem
The key to developing a numerical method that produces the unique causal solution of the
generally ill-posed Cauchy problem (1.1) is to interpret the Maxwell equation and the Bloch
subsystem as ordinary differential equations (ODESs) in z and ¢ respectively, and to select numer-
ical methods for the initial-value problems of these two ODEs that advance the solution in the
positive z and t directions. Although the causal solution for an incident pulse g,(¢) that van-
ishes for ¢ < 0 is theoretically trivial for ¢ <0 and all z > 0, we test this numerically by solving
the system on a time interval ¢t € [—1,T] and a spatial interval z € [0, Z] for some given T > 0
and Z > 0.

Our numerical method is based on finite differences, so we introduce a grid on the independent
variables (t,z) € [-1,T] x [0, Z] by setting ¢, = —1 + mAt and z, = nAz for integers (m,n) €
72, where At and Az are sufficiently small lattice spacings. We then introduce approximations

>0’
for the causal solution at the grid points:

qam ~ q(tys Z,), D}, = D(t,,,2,,) » Pl =~ P(t,, 2,) -

The asymptotic formule obtained in this paper prove that solutions have a multiscale structure
with slowly-varying envelopes and rapid oscillations. To deal with the stiffness expected on these
grounds and to maintain accuracy for large t to be able to compare with the asymptotics, we need
implicit methods of high order for the two ODEs. We use the backward differentiation formulae
of various orders j = 1,...,4 denoted BDFj [19, 33, 54]. Generally, BDF;j is a rule equating the
right-hand side of a first-order equation evaluated at the current grid point to finite difference
approximation of the derivative that is of order h/ where h = At or h = Az, and it involves the
unknown at the current grid point as well as the j previous grid points relative to the direction of
integration. In particular, BDF1is the well-known backward/implicit Euler scheme. For increased
accuracy for (m, n) sufficiently large, we select BDF3 to integrate the Bloch subsystem and BDF4 to
integrate the Maxwell equation, in the direction of increasing ¢ and z respectively. (These choices
are somewhat arbitrary, but their accuracy is sufficient for our purposes.) The basic scheme for
such (m, n) reads as follows:

1 _ _ - -
=5z (48g)1 —36q)5 % + 16q° — 3q)* — 12Az P}, (D.1)
1
Py =17 (18P, —9P,_, +2P, . —12Atq; D), (D.2)

D}, = = (18]

n=17 (18D, — 9D}, +2D], ,+120R (q;;P;g)) . (D3)

To make the implicit nature of this scheme less daunting, we substitute the right-hand side of
(D.2) for P}}, in the right-hand side of (D.3) which then becomes a linear equation for D}, that is
easily solved. In this way, we replace (D.3) with the explicit update rule

, _ 108D}, —9D] , +2D] )

m

121 + 144A2|q" |*

| 12AtRA8E)qj, - 9P§,’1_2q2’12+ 2P 3 m) (D.4)
121 + 144A22|q". |
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It is clear that for the scheme consisting of (D.1), (D.2), and (D.4), (g%, P}, Dpy,) only depends
on approximations at grid points (¢,,, z,») with m’ < m and n’ < n. This captures precisely the
domain of dependence for the causal solution of the Cauchy problem (1.1), and it is why the
scheme produces a numerical approximation of the unique causal solution.

Even with (D.3) replaced by (D.4), the scheme is still implicit, so we use an iteration to solve it.
For each (m, n) sufficiently large for the values in the domain of dependence to be known, we use
the following algorithm.

1. We use a low-order explicit method for the Maxwell equation g, = —P such as the forward
Euler method to obtain an initial approximation for gy, denoted q;; :

Qo =qm  —AzP

2. Then, set k = 0 and repeat:
2a. setk =k+1;
2b. from (D.4), set

A 11(18D:ln—1 - 9D::1_2 + 2Drnn—3)
mk 2
R S0
121 + 144At |qm,k—1|

Vl I’l n n n
N 120t RA8P) Gy iy = O G jr + 2P 3%yt
121 + 144A221¢" |
2¢. from (D.2), set
1
n o n n n n n .
L= (18Pm_1 —9P"  4+2P" . —12At qm,k_le’k> ;

2d. from (D.1), set

1 _ _
Q) = 3 (48q;’n ' —36qy, > +16q, > —3q;, * — 124z P ) ;

until |q:’nk | <1071, Set (g, Pn,Dp) =

n
- (qm,k’ mi D k)

This scheme assumes that m > 3 and n > 4. For m = 1, 2 (respectively, for n = 1, 2, 3), there is
less data in the domain of dependence, so we use a scheme based on BDFm for the Bloch subsys-
tem (respectively, based on BDFn for the Maxwell equation). The use of lower-order BDFs near
the initial boundaries of the domain [—1, T] X [0, Z] does not contaminate the overall accuracy of
the scheme because

« for integration of the Bloch subsystem near ¢t = —1 the exact solution is trivial until t =0
and the numerical method here is exact to machine precision errors obtained in the iteration,
regardless of the order of the method;

« forintegration of the Maxwell equation near z = 0 any errors introduced by the use of low-order
methods are not given much chance to grow because we always keep Z small compared to T.
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FIGURE D.1 Testof the numerical method for the exact soliton solution (D.5). Left: Density plot of
lq(t, z)|. Right: For all three functions, the absolute errors (black curves) comparing the numerical
approximations (blue curves) with the exact solution formulae (D.5) atz = 1.

The accuracy of the algorithm can be illustrated by taking an initial pulse qy(t) corresponding
to an exact soliton solution of the MBEs:

q(t,z) = isech(t — 2z — 40),
P(t,z) = —2itanh(t — 2z — 40) sech(t — 2z — 40),
D(t,z) = —1 + 2sech’(t — 2z — 40). (D.5)

For this experiment, we choose t € [—1,100], z € [0, 1], At = 0.01, and Az = 0.002. (In fact, we
used the same values of At and Az for all numerical solutions of the MBEs in this paper.) Although
technically this is not a causal solution, causality holds to machine precision in the domain (¢, z) €
[—1,0] x [0, 1] so the numerical method would be expected to reproduce the exact solution with
high accuracy. The results are shown in Figure D.1.
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