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ARTICLE INFO ABSTRACT

Communicated by Radu Balan In this paper, we generalize finite depth wavelet scattering transforms, which we formulate as
L9(R") norms of a cascade of continuous wavelet transforms (or dyadic wavelet transforms) and
contractive nonlinearities. We then provide norms for these operators, prove that these operators
are well-defined, and are Lipschitz continuous to the action of C? diffeomorphisms in specific
cases. Lastly, we extend our results to formulate an operator invariant to the action of rotations
R € SO(n) and an operator that is equivariant to the action of rotations of R € SO(n).
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1. Introduction

In recent years, convolutional neural networks have shown strong performance on various vision tasks like image classification
[1-4]. The main reason for this is that they are able to capture information at multiple scales through the use of convolutions and
pooling. However, the exact method in which these networks use this information is not understood very well.

In [5], the author proposed a formulation for a simpler model for a convolutional neural network through the use of handcrafted
filters, wavelets, and a series of cascading wavelet transforms. This model, called the scattering transform, and its extensions have
shown success in vision tasks, quantum chemistry, manifold learning, and graph-related tasks [6-10].

We first provide a review of scattering transforms to motivate this paper. Let ¢ : R” — R be a low pass filter ($(0) £ 0), y : R" = C
a suitable mother wavelet ((0) = 0), and G* be a set of “positive” rotations with determinant 1. Define a set of rotations and dilations
by

Ay i={A=2r:reGtj>-J}ifJ £ @)

and

Ay :={2r:reGt, jez). 2)

Let A=2/r € A;. Consider the operator
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Ul = /f(u)2"jw(2’r_l(x—u))du 3

For a tuple of rotations and dilations in A, define a path of length m as the tuple p :=(4,,..., 4,,) and let P, be the set of all finite
paths. The scattering propagator for f € L>(R") and p € P, is

Ulplf :=Ul4,]--Ul41f, (C))
which gathers high frequency information via a cascade of wavelet transforms and nonlinearities. The scattering operator is
< 1
Sfp) = w / Ulplf(x)dx )]
P
R

with p, 1= f]R,1 U[plé(x)dx. Additionally, to aggregate features similar to pooling, the author of [5] define the scattering operator for
f€L?(R") and pe P, as

S;lplf(x) = / Ulplf 2™ ¢~ (x —w)) du. (6)
]Rn

Additionally, the windowed scattering transform is the set of functions

Sy[P;1f ={S;1p)f } pep, - -

This operator is similar to a convolution neural network because along each path (analogous to each layer of a convolutional neural
network) a convolution, a nonlinearity is applied, and feature aggregation occurs via the low pass filter. The scattering norm for any
set of paths Q is

IS, 1117 =Y, 1S, 1Pl 13- (®)
pEQ
Under very stringent conditions on the mother wavelet, the author of [5] was able to prove an isometry property for the windowed
scattering transform. However, the problem with the admissibility condition in [5] is that there are very few classes of wavelets that
are admissible. The author of [5] mentions an analytic cubic spline Battle-Lemarié wavelet is admissible in one dimension, but
provides no other examples. On a related note, [11] has shown that scattering coefficients have exponential decay for » = 1 under
relatively mild assumptions, but her proof only applies for » = 1, which makes the admissibility condition still necessary for n > 2.
Additionally, to our knowledge, there are no examples in the literature of wavelets that satisfy the admissibility condition when
n>1.
The windowed scattering transform has three important properties that are helpful for certain machine learning tasks. The first
two are the following:

1. The windowed scattering transform is a well-defined mapping on L?(R") and nonexpansive. In particular, for all f, h € L>(R"),

ISy LPs1f = SyLPs IR < |1 = Alla- 9

2. Let the translation of a function be denoted as L, f(u) = f(u — ¢). For certain classes of wavelets, we have
}EEOHSJ[PJ]f_S.I[PJ]LCf”=0 (10)
for all ¢ € R” and for all f € L2(R"). One can think of this as local translation invariance.

Finally, for the last property, the following definition was used in [5] for Lipschitz continuity to the action of C? diffeomorphisms.
Let H be a Hilbert space, = € C2, and define the operator L, f(x) = f(x —7(x)). A translation invariant operator ® is said to be Lipschitz
continuous to the action of C? diffeomorphisms if for any compact Q c R”, there exists Cq, such that for all f € L>(R") supported in
Q and all 7 € C2(R"), we have

D) = DL, NIz < Ca (I1D7llo + 1D 7o) 11/ l2- (1)

The idea is that the difference in norm is proportional to the size of || Dz||, + || D*7||,, which indicates how much L, deforms f. In
particular, the author of [5] show that (11) holds for the windowed scattering transform.

The concept of stability to diffeomorphisms has become a major point of study after the publication of [5]. Based on the definition
above, there has been a lot of interest in exploring the stability of various operators related to machine learning and data science.
For example, [7,12] extend the scattering transform and stability of the scattering transform to graphs and compact Riemannian
manifolds, respectively; the authors in [13] loosen the restriction on the regularity of z. Other papers explore stability for different
operators with desirable properties for machine learning [14-17].

Although much work has appeared in recent years about operators similar to the scattering transform and about generalizations of
the scattering transform, there are still some loose ends left in [5] that have not been explored yet. First, while the author of [5] does
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explore creating a norm for the nonwindowed scattering transform, he does not actually prove the norm is stable to diffeomorphisms.
We consider a less stringent definition for stability to diffeomorphisms in the same spirit as the definition in [5] for this paper. Let
V|, and V, be normed vector spaces. Then we say that a translation invariant operator ® : V; — V, is said to be Lipschitz continuous
to the action of C? diffeomorphisms if for any compact Q c R”, there exists Cq, such that for all f € V| supported in Q and all
7 € C3(R"), we have

0(/) — BL, /)y, < CarllFlly, (12)

where C, ; — 0 as || Dzl + || D*z]|, — 0. Like with equation (11), [|®(f) — (L. f)lly, depends on || Dz||y, + |1 D?7|| -

Using this definition, we consider a slightly different problem than the author of [5] did for the nonwindowed scattering trans-
form. The scattering transform introduced in [5] was a collection of L! (IR”") norms of various cascades of dyadic wavelet convolutions
and modulus nonlinearities applied to a signal. Here, we extend the definition of the scattering transform to the continuous wavelet
transform and for L4(IR") norms with ¢ € [1,2]. For a continuous dilation parameter 1 € R, we define the dilations of y as:

VieR,, w,(x):=1"2p( %),

which preserves the L2(IR") norm of y:

il =llvl,. VAER,.

For the continuous wavelet transform, the one layer wavelet scattering transform with L¢(R") norm is the function S¢ope, : Ry = R
defined as:
VAER,, Scontgf (D =1 *wlly- (13)
For a dyadic dilation parameter j € Z we define dilations of y as:
Vi€Z, wi(x)=2""y(2x),
which preserves the L' (IR") norm of y:
il =lwlly, VieZ.
The one layer wavelet scattering transform for the dyadic wavelet transform is the function Sgyaq,/f : Z — R defined as:
Vi€Z, Syadqf )= *wll,- a4
More generally, the m-layer wavelet scattering transforms Sge,, ./ : R} — R and Sé”ya g f :Z" - R are defined as
S g Greeee ) 2= IS 5w, L w5 5w (15)
St aag LUt esdm) = NI vy Lewy L Lewy (16)

This is similar to working with a windowed scattering transform with a finite number of layers. However, our operator is dif-
ferent from the operator S; in [5] because it does not contain the filter A; to aggregate low frequency information, so the scale
parameter in our formulation is not bounded above or below. Additionally, because the averaging filter is replaced L(IR") norms,
our representation is fully translation invariant rather than translation invariant as J — co.

As for the significance of using L4(IR") norms to replace the averaging filter, there is one area with direct application: quantum
energy regression tasks [8], where a representation that is similar to the rotation invariant representation in Section 6.2 has already
been used for quantum energy regression.

Given a configuration of atoms, we would like to estimate the ground state energy of the configuration. Suppose we have a
molecule with K atoms with nuclear charges z, and nuclear positions p, with k=1, ..., K. The state x of a molecule is given by

x={(pzr) ER*xR : k=1...,K}. a7

Due to how we have defined our state, we would like our representation to have the following properties:

« Permutation Invariance: the energy should not depend on the index of the molecules.

» Deformation Stability: small deformations of the molecule should only lead to small changes in energy of the system.

+ Isometry Invariance: the energy should be invariant to group actions such as translations, rotations, and other general isome-
tries.

+ Multiscale Interactions: molecules have many interactions terms, and these interaction terms depend on the pairwise distance
between atoms (i.e. short range covalent bonds and longer range Van Der Waals interactions).

The rotation invariant version of our scattering transform in section 6 satisfies permutation invariance, deformation stability, and
has multiscale interactions based on the proofs we’ve provided. We do not prove isometry invariance, but the operator is rotation
and translation invariant.
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Motivated by DFT theory, the paper [8] uses a dictionary of one and two layer scattering norms with ¢ =1 and ¢ =2 to get (at the
time) state-of-the-art results for energy regression tasks for planar molecules. In particular, scattering operators with g = 1 scaled with
the number of atoms in the system and g =2 encoded pairwise interactions. The motivation for using 1 < g <2 comes from [9,10],
which based on the Thomas-Fermi-Dirac-von Weizsiacker model [18], also use scattering norms with ¢ =4/3,5/3. Later papers, like
[9,10], use a similar representation, involving spherical harmonics, for 3D quantum energy regression.

Generalizing to stochastic processes, one can also consider scattering moments [5,19], which have similar desirable properties
as the nonwindowed scattering transform. Applications include, but are not limited to, audio texture synthesis [19] and cosmology
[20]. The main idea in all these applications is that the nonwindowed scattering transform has desirable mathematical properties
and provides a small number of relevant descriptors for high dimensional, complicated data.

Remark 1. We can replace all the modulus operators with any contraction mapping (or use different contraction mappings in each
layer) in the definition above, and all the proofs in the rest of this paper will still work. In particular, the modulus can be replaced

complex neural networks. Nonetheless, we will use the modulus operator throughout this paper without any loss of generality.

We provide a general roadmap for this paper. Section 2 will cover notation, basic properties about wavelets and the wavelet
scattering operator, and harmonic analysis that will be necessary for the paper. In Section 3, we provide norms for an m-layer
wavelet scattering transforms and prove that the operators are well defined mappings into specific spaces when 1 < g < 2. For
Section 4, we explore conditions under which the m-layer scattering transform is stable to dilations, and we generalize our results
to diffeomorphisms in Section 5. Lastly, in Section 6, we formulate two new translation invariant operators that are stable to
diffeomorphisms. The first is rotation equivariant, and the second is rotation invariant. Our contributions include, but are not limited
to, the following:

We formulate an extension of the dyadic wavelet scattering operator for a finite, arbitrary number of layers with parameter
g € [1,2] by applying L(R") norms instead of L!(IR”) norms. Additionally, we formulate a wavelet scattering operator with
q €[1,2] that uses a continuous scale parameter, like the continuous wavelet transform.

We create a new finite depth scattering norm using dyadic and continuous scales in the case when ¢ € [1,2], and prove that
the mappings are well defined and provide theoretical justification for a broader class of wavelets that make the scattering
transform Lipchitz continuous to the action of C? diffeomorphisms. However, the trade-off is that our stability bound depends
on the number of layers.

We provide a condition for norm equivalence in the case of g =2 that is less stringent.

In the case of g € (1,2], we prove that our norm is stable to diffeomorphisms = € C2(R") provided that ||z]|, < i and the wavelet
and its first and second partial derivatives have sufficient decay. In the case of ¢ = 1, we show stability to dilations.

We extend our formulation to include invariance or equivariance to the action of rotations R € SO(n).

2. Notation and basic properties

We start by providing basic notation that we will use in this paper and proceed to give basic definitions and properties that will
be necessary for our results.

2.1. Function spaces

Set R, to be the positive real numbers, i.e. R, :=(0, ). The gradient of a function f : R" — C is given by V f, the Jacobian of a
function f : R” — R™ is given by Df, and the Hessian is given by D?f. For 1 < ¢ < oo, the L(R”) norm of a function f : R" - C is
171, =[S 17 COI dx]l/q. When ¢ = oo, || 1l :=ess sup|f|. We will also use the notation, [|Af |l = sup, ,ere |/ (x) = ()|, which
should not be mistaken for applying a Laplacian operator. Greek letters with a vector symbol, such as @ = (a;,---,a,), will be a
multi-index of nonnegative integers; additionally, we write |a| = «; + --- + ,,, and the usage will be clear from context. The operator

DY is a multi-index of derivatives: D% f = oal‘)liu‘ f. For integer s >0, we define the function space H*(R") = { f € L>(R") : Dif e
X

.. o
L2(R") for |&| < s}.
The Fourier transform of a function f € L'(R") is the function f € L®(R") defined as:

VoeR", flo) ::/f(x)e_ix'w dx.
]R”
The Hilbert transform of a function f € L'(R) is denoted by H f and is defined as:

&dy.

arw =iy [ I

|x=yl>e

The map H is a convolution operator in which f is convolved against the function 1/x. We note that
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H:LY(R)->LIR), Vi<g<oo,

however the result is not true for ¢ = 1, i.e., if f € LI(R) it is not necessarily true that H f € L'(R). We thus introduce the Hardy
space. We denote the Hardy space as H'(IR) and it consists of those functions f € L!(R) such that H f € L!(R) as well. For f € H'(R)
the Hardy space norm is || f||g1(g), Which we define as (see Corollary 2.4.7 of [21])

1 ey == NN+ HH S 18)

One can show that if f € H'(R), then f must necessarily have zero average. An important property of the Hilbert transform and
convolution is the following:

H(f+g)=Hfxg=f+Hg, feL/(R),geLi(R), 1<%+$.

We have a similar definition for Hardy spaces when n > 2. For 1 < j < n, define the j Riesz transform as

X
R;f(x)=lim / Wf(y)dy, 19)

|x=yl>e

where x = (xy,...,x,) and y=(yy,...,y,). The Hardy space f € H'(R") consists of functions f such that f € L'(R") and R; f € L'(R")
for 1 < j <n as well. For f € H'(R") the Hardy space norm is || f Ilgg1 gny> Which we define as (see Corollary 2.4.7 of [21])

I gt ey == £+ D IR £ - (20)

j=1
2.2. Wavelets

We let w € LI(R") n L>(IR") be a wavelet, which means it is a function that is localized in both space and frequency and has zero
average, i.e.,

/u/(x)du=0

R7

Assume f € L2(R"). The continuous wavelet transform W/ € L2(R" x R, +) is defined as:

Vx,DeR"XR,, Wf(x,A) = fxy,(x).

Furthermore, if y satisfies the following admissibility condition
¢ 2
@ (A
/Mw:c‘,, Vo eR"\ {0}, 1)
0

for some C,, > 0, then we will say that y is a Littlewood-Paley wavelet for the continuous wavelet transform. If y satisfies (21), one
can show that the norm Wy computed with a weighted measure (dx,dA/4"*!) on R" x R, is well defined:

di
LT E //IWf(x WP a2 —//If*w(X)lzdxF Jureviz 2.
0

We note, in fact, that one can show:

IWrIE =p8-C, 113,

L2(R"xR.)

where

(22)

p= 1/2 if y is real valued
1 if y is complex valued -

For a function f € L?2(R") we define the dyadic wavelet transform W f € £2(L?(R")) as

W= *v)ez -

If y satisfies
Y g o) =C,, VoeR"\ {0}, (23)
JEZ

for some C‘W > 0, then we will say that y is a Littlewood-Paley wavelet for the dyadic wavelet transform. If y satisfies (23), one can
show that the norm W f given below is well defined:
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2 o 2
W 1 g2y, 2= 20 1S w3
jez
In fact, we have the following norm equivalence:

2 . O 2
W Sy, = B Coll /5.

where g is defined in (22).

2.3. Operator valued spaces

Consider a Banach space B. Suppose f : R" —» B and x — || f(x)||z is measurable in the Lebesgue sense. Define L%(IR") for
1<p<ootobe

L}®Rm

71 = [ 17CON .
R’l

Also, for 1 < p < o0, define
£ Il gny =sups - m({x € R" : || f(0)ll 5> 617
B 5>0
We also have the following relation:

||f||L2°°(]Rn) < ||f||L"B(]Rn)~

Note that for f : R" - R",

17, (]Rn)=/||f(X)||”ndX=/If(X)I”dX=|If||§~
R"
]Rn

R"

3. Wavelet scattering is a bounded operator

In this section we explore for which ¢ >0 and m > 1 the wavelet scattering transforms Sy o and S:l"ya dg f are well-defined as

functions in some Banach space (i.e., have finite norm), and under what circumstances.
Let v be a wavelet. We assume that y has the following properties:

WOl < AL+ [x]) " 24)
/ w(x = ) — w() dx < Al (25)
]Rﬂ

for some constants A,&’,e > 0 and for all 2 #0.
Consider the Littlewood-Paley G-function
172

G, (fHx)= / |f #t"w(x/1) (26)

0,00)

P
t

Let B=L2 ((0, 00), %) We can rewrite this as a Bochner integral by considering the function K(x) = (t "w(x/1)),»(. This is a mapping
K : R" - B and the function x — ||K(x)|| 3 is measurable. Also, if we let

T(f)x)= / Ty = fdy| = (" Py ) g »

% >0

we observe that

G, (N =T D5

and

G, (OIE =T (NI

L@
From Problem 6.1.4 of [22], the two properties above for the wavelet y imply that

c,A

1K@l < 72

> 27)

and
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sup / IKGx =)= K|l gdx <A, (28)
yeR™M\(0}
IxI221y]

where ¢, and ¢/ depend only on n, ¢, and &’. We will omit the dependence on ¢ and ¢’ throughout the rest of this paper, and this will
have no effect on any of our proofs.

Remark 2. For the rest of this paper, we will write G in place of G,, when referring to the G-function because the dependence on
the mother wavelet is clear.

Remark 3. Note that (25) holds under the alternative condition
IVy ()] < A+ [x)) ™1 (29)
This is a consequence of Mean Value Theorem.

We have the following result taken from Problem 6.1.4 of [22] and from Chapter V of [23].

Lemma 1 ([22,23]). Assume that y is defined as above and satisfies (27) and (28). Then the operator G is bounded from L>(IR") to L*>(R").
Also, for p € (1,00) and B=L12(R,,dt/t), we have

17 f s gy < CuAmax(p, (0= D7OIS Lo - (30)
for some C,. For dll f € L'(R"), we also have

0T Fll sy < Ch AN iy 31)
and

”Tf“LlB(lR”) < C,’,A”fllﬂl(]Rn) 5 (32)

for some C/.

Remark 4. We can also formulate similar bounds for the Littlewod-Paley g operator

1/2
a(N)x) = [Z ly; * f(x>|2] (33)

€

using similar arguments.

Remark 5. Let y be a wavelet that has properties (24) and (25). Then with the L? normalized dilations, the Littlewood-Paley
G-function can be written as:
1/2
) dA
/1n+l

60 =| [ 1f <) 34)
0
Note that the 1 measure for G(f) matches the measure in defining the norm of Wy.

3.1. The L2(R") wavelet scattering transform

In this subsection we prove the L?(IR”) scattering transforms are bounded operators. More specifically, we prove that S
L2(R") —» L2(R™), where L?(R"™) has the weighted measure defined by

5 -

di di

2 P 2 1 m
||SC'Znt’2f||L2(RT) '_/"'/|S£nont,2f(/11""’/1’")| T
0 0 1 "

and we show that lS%,

m 2 . m . . 2
1Spaan azm = 2 2 1Siaand Groeee i)l

in€Z  J|EZ

nea/ 2y < ClLf llpzgmy- We also show that Sg'yad,z : L2(R") — ¢£%(Z™), where

Proposition 2. For any wavelet satisfying (24) and (25), we have S™  : L2(R") - L2(R") and

cont,2

m .72 2(ym
S o P LR = 2227,

7
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Proof. The proof of the dyadic case is essentially identical to the proof given below and is thus omitted. The case of m =1 follows
by an application of Fubini’s Theorem:

dA
Seomaf W, = / R

// I * v dx 2 F

0

= / IG(f)x)I* dx
]er
<ClIfI3

by boundedness of the G-function. Now we proceed by using induction. Assume that we have ||Scont2 flI? <C,lf ||§. Let W, f =

L2RT) =
f *y,, define M f =|f|, and U, = MW, for notational brevity. Then notice that

§ 2 _ 2
WL s, Lo ws, L5y 2wy 2= W, Uy U, FIE

Substituting yields
dA dA
+1 2 2 m+1
”Sﬁmﬂf””([{”’“) ”W'imﬂ Ui = Un Il A"*l o ntl
m+1

gy dA, di,
/|(U/1 U D xwa, 15 T el
0 1 "

m+1

dil di,
/thIZ(R )/ln+1 T
m

I
0\8 0\8 0\8
0\8 0\8 0\18

1U,, -

o0 o0
di dA
2 1 m
SC</ /”UM mU}»lfHZ gl gl
0o 0 1 "
di, dA
= 1S a (s es A "
/ / con /17+1 A
< C'”“Ilflli,

where we used the induction hypothesis in the last line. This completes the proof. []

Proposition 3. Suppose y is a Littlewood-Paley wavelet satisfying (24) and (25). Then Swm2 f : LAR") — LZ(IR’J:’) and specifically

ISz o f 1l = CRIf1I3. Also, Sieqn | PR = £2(Z™) and |, dyad2f||1=C$||f||2.

Proof. We only provide the proof of the continuous case again. First consider the case m = 1. We have:

2 dA
”Scontzf”Lz(R ) /llf*lll/1||2 A"Jrl
0

1 o dh
-k / TR

, | aa
- o / / F@P @ do| 42

- o [| [ vor 2 i@ ao
0

R

1
- o [ (Cli@r) do

R
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(2 =G

=C, I
Thus the claim holds for m = 1. Now assume that it holds through m. Then by the inductive hypothesis,

, dA,

ST W, = [ [ W7 w w18 220 s
0

Now consider the case of m + 1. Similar to the previous proposition, we have

= =Crlf N5

2
¢ 1S, ontzf(ﬂl’ Al L g
m

l

Lo oo oS
”SS:;:Zf”Lz(R ) -/ / /”(U’1 U’I‘f)*w’lnrH”Zd;nSl jn/}-ll jirn;
0010 mt1 1 m
J s 2
0 0

=CyllSeona 2w,
=1

Thus, the claim is proven by induction. [J

3.2. The L'(R") wavelet scattering transform
Define the notation W, f = f *y,, M f =|f|, and U, = MW,. We now try to prove that for m € N, Sé’(’mt] :H!(R") - LZ(R’J:'). The

norm for S tlf is:

o 0 1/2
dAy dA dA
- 2 1 2 m
”S:(l,nt,]f”Lz(R”’ = // /| cont,lf(/ll’iZ""’Am)l e g
00 0 1 2 "
o o0 o0 1/2
2 day di,  di,
// /‘(UA Ufllf) l,/’”m 1 /1n+l An+1 An+1
0 1 "2 m

An analogous result will also hold for the operator H' (R") — fz(Zf) with norm

1/2
I1SGyaa1 S ll2czm) :=( 22 |Sg1yad,1f(j‘""’jm)|2> .

im€Z  1EZ
Before we begin, we will need an important multiplier property of the individual Riesz Transforms:
— TN
R;f(w)=—i— f(®). (35)

2]
t,) € R". We say that y has k vanishing moments if for all

Let @ =(aj,...,a,) be a multi-index with n-elements, and let t = (7, ....t,
|a| < k, we have
/ (T, 1) w(ndt =0. (36)
Rn
The following lemmas will be necessary.
.,B,) bea

Lemma 4 ([24]). Suppose that w has N vanishing moments, let M > 1 be an integer, let a be defined as before, and let p = (§;,
multi-index. Assume that y satisfies the following properties:

« y e H*(RY) n C(RY) for some s > M + %
+ There exists A> 0 and e € [0, 1) such that y satisfies

[D%y| < A(1 + |x|)™""N-IEl+e for 0 < |3 < M.

« For0<|a|<M—1and |f]| <N +|@l,

/ /¥ D¥y (1) d1 =0.

Rn
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Then
|D¥ Ry (x)] = | R, Dy ()] < A(1 + ||y N le+ess
or some 0 < 6 < 1 —e and D% R,y has vanishing moments up to degree N — 1 + |a|.
0<6<1 d D*R;y h hing ts up to degree N — 1

An immediate consequence is the following Lemma, which we will provide without proof.

Lemma 5. Suppose that y satisfies the following conditions:

« y e H*(RY) n C(RY) for some s >2 + 5
« There exists A> 0 and ¢ € [0, 1) such that y satisfies

| D%y | < A(1 + |x|)™"" 2718+ for 0 < |@| < 3.
« For0<|a| <2 and |f] <2+ |al,
/ 7, % DRy (1) d1 = 0.
R
Then R W and all of its first and second partial derivatives have O((1 + |x|)™"~'+1) decay for some 5 € (0, 1).
The first implication to take note of is that R;y is a wavelet with “good” decay of itself and all its first and second partial

derivatives. Note that the strict decay on the partial derivatives is necessary for technical reasons in later proofs, but decay on all
second partial derivatives can be relaxed for the following theorem.

Theorem 6. Let y be a wavelet satisfying Lemma 5 and let S | be defined as above. Then for f € H!(R"), there exists a constant C,,
such that '

”S::,m,]f”Lz(]ij) < Cm”f”Hl(]Rn)-

Additionally,
||Sg;,ad'1f||[2(zm) < Cm||f||Hl(]R,n)~

Proof. We proceed by induction and only provide a proof for the continuous case because the dyadic case follows by almost identical
reasoning. Let f € H'(R") throughout the proof. By Minkowski’s integral inequality ([25], Theorem 202), we have

1/2

(s
5 dA
Seomi iz, =| [ 17 5wl 22
0

1/2
© 2 /

-\ /|15 swieorax| 2

0

172

dA
< / /If*vq(x)lz prendl IR
0

R

/ G(N)(x)dx
R’1

=GNy

Scllf“]-[l(lan),

where in the last inequality we used Lemma 1.
Now we assume that there exists some m > 1 such that

”Sc'zmt,lf”Lz(R'f) < Cm”f”Hl(RN)-

We have

10
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m+1
”Scont lf”LZ(R’f”)

" N 1/2
2ddy dgy
- /"'/H(Uﬂm"’Uﬂlf)*W’"“ 1 el T
A A
/ " m+1
0 Ey ’
ddy  dipy
- // /’(U/lm Uy Nxwy, | dx g
/ 7\ 1 m+1
- . . 1/2
2dA
< / / /|(U/1m U/llf) L An'ﬂ—l
) 212 m+1
i B 5 1/2
diy  dh,
— G(Uim"'Uilf)(x)dx /111+1 A""’l
0 0 IR : "
. . 1/2
di dA
— es e 2 l e m
=| [~ [ 16w, v R S
0o 0 1 !
N 1/2
da dA
~ . 227l
_ / / 1GOY,, Uspy U DI
0 : "

since the G function has a modulus already.
It follows that

0

di,

||S$mt’1f||Lz(RT)SC / /Ilwl U, Uhfllﬂl(m /1"+1

0

Now use the definition of the H'(R”) norm to write

Wy, U, Uy Fllwi s = 1V, U,

m—1

1/2

U Fllin + Y H(ij,lm)(UAm_]
=1

Applied and Computational Harmonic Analysis 68 (2024) 101597

dA

m

n+l n+l
A A

dA
}.:’;‘1

m

~U, f)

LI(R") ’

Thus, since R;W, h=hx <R jll/}“m) and R;y wavelet, we can use our induction hypothesis and the previous lemma to get

) ) 1/2
di,  da,
c Iw, U, Uﬂlf)llﬂl(w)ﬂ+1 -
0 0 "
o0 oo 1/2
di di,
<cC w, W, Ujlf)llll(w) e T
0 0 "
[se] o0
e n / /H(R - )(U f) dA,  di
=1V / Y A Am=1 /11 LI@®") /1"+| iﬁ"

< Copt LS st gy

Thus, the theorem is proved by induction. []

The case of n =1 is a little trickier. We have the following multiplier property for the Hilbert Transform:

— | +ifw »<0
Hf(w)_{—if(w) >0

(37)

Unfortunately, this yields less regularity for Hf at the origin without additional assumptions. However, notice that the Hilbert

transform commutes with dilations, so in particular:

H(y,)=H(y), and H(y;)=H(y);.

Using the calculation of 1/17 in (37) we see that

11
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Hy =—iy, ify is complex analytic.

Thus, we have the following corollary.

Corollary 7. Let y be a complex analytic wavelet such that (24) and (25) hold. Then for f € H'(R), there exists a constant C,, such that

||S£nont’1f||L2(]R$) < Cm”f”}{l(]R)-
Additionally,

||Sg;,ad'1f||f2(zm) < Cm||f||Hl(]R)~
3.3. LY(R") wavelet scattering transform

In this subsection, assume 1 < g < 2. We prove that for m€ N, .S’ :LY(R") — L2(1R'”) The norm for S  f is:

contq cont,q
0 o q/2
di, dA dA
= m 27 772 Zim
2 Wy = [ [ [ 1St B S 2% e S
00 0 1 2 "
0 o0 0 q/2
B U U 2 dA di,  di,
- (”( o U ) 2w, q) F ot i+
00 0 1 2 "
There is also an analogous result for
q/2
— m 2
I dyadqf”fZ(Zm) _( Z z |t ad g (A1 A2 ee s ) > .
in€Z el
Theorem 8. Let 1 < g < 2. Also, let y be a wavelet that satisfies properties (24) and (25) and let S’ omq and S"i’; adg be defined as above. Then
q
there exists a universal constant C,, > 0 such that || mmqf”LZ(]R )< < lelflquor all f € L4(R"), and furthermore || é"yadqfuﬂ(z) <Cullfllg

Proof. We proceed by induction and consider the case of m =1 first. Let f € LY(R"). For the continuous wavelet transform, we apply
Minkowski’s integral inequality:

- o 12
. di
Seomea Mg, =| [ (0F *vill)* 22
LO
[ 2/4 9/2
di
- / /If*w(X)l"dx o
v
© q/2
dA
< [|[irswmewr 2|
R” \0O
~ IG(Ile
<clsie,

where in the last inequality we used Theorem 1.
Now, let us assume that

m-q q
” Contqf”LZ(]Rm <cC “f“L‘/(]R")'

We apply Minkowski’s Integral inequality [25] to swap and then bound:

m+l
” cont, qf”L7(]R’"+l)

_ /...'/(”(Uﬂ U Dxw,|,
0 0

)Z/q di,  diy
+1 7 +1
AT AL

12
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[ & 2/4 "2
di d Ay
=| [ [ 1 v p s, orax| S S
A A
0 0 n m+1
_ _4.2 9/2
di dA di
_ q m+1 1 m
- / / / /l(U/h U/hf)*wflmﬂ(x)l dx Jntl At T et
0 o |0 n m+1 1 m
r _ 2 q/2
o0 o0 q/2 q
di di
2 m+l 1 m
< // /l(UAl “.UAlf)*WflmH(x)l n+l dx n+l 7 an+l
o o |&e \0o At A o
[ © ) q/2
dA
—_— 2 m
= / /”G(Uh Uilf)“q n+1 ot
m
[0 0
q/2

0 0
da
2 m
<c /'"/”(Uﬂ] "'Uil)f“q n+] e
0o 0 "

— 1
= CONS g M

< pje,

This proves the desired claim. []

4. Stability to dilations

We now consider dilations defined by 7(x) = cx for some constant ¢, so that L_ f(x) = f((1 —c)x). We will start by proving a lemma
that will be useful for our work.

Lemma 9. Assume L, is defined as above. Then
Lof ;== (f % yq_ez) (1= 0)x).
Proof. Notice that

er*w(X)=/f((1 — oy, (x —y)dy.
]Rn

We make the substitution z = (1 — ¢)y. Then it follows that

Lfxy0)=(1- c)‘"/f(zm(x ~(1-0"2)dz

=(1-¢)" / F@Ay (A7 x -1 -0)'2) dz
]Rn

=(1-c¢)™? / S@IA =A™y ([ - A (1 - o)x - 2)) dz
Rn

==y / F @MW (1 - Ox —2) dz

=1 =)™ f xy_p; (1= 0)x)

==L, (f *Wa_e;) ). O
Remark 6. We also have

LW, f(x)=(f*y)x(1l=c).

13
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Before we begin the next Lemma, we explain the general idea behind our approach to explain the necessity of Lemma 10. Define
Y0 = (1= )"y (x) —w(x). (38)

We want to prove that ¥ satisfies (24) and (25) with a linear dependence on ¢ for future stability lemmas.

Lemma 10. Suppose that y is a wavelet that satisfies the following three conditions:

A
<—— eR”, 39
Wl s i 39)
A n
|V (x)] < W xeR”, (40)
DY)l €~ xeR", (41)

(1 + |x|)n+l+l(

for a, B,k > 0. Consider
() = (1= )™y (x) — w(x),

for e < ﬁ Then ¥ is a wavelet satisfying (24) and (25).

Proof. Without loss of generality, assume a < § < k < 1. First, it’s clear that /]R,, ¥ = (0. We now just need to verify properties (24)
and (25). Assume ¢ > 0. We can modify the proof accordingly if ¢ < 0. Then

9ol =1 = 7y (x) — w)|

=(-c)"

W<L>—(1—C)”W(X)

(I-0)
W(1i6>_w(i:2x) +(1_C)_"§<;’>C’|w(x)l.

Now use mean value theorem on the first term to choose a point z on the segment connecting 1—: and x such that
(=) v (325
ATZe) Y=Y
We now use Cauchy-Schwarz to bound the left side:

¢ Al
[ IVw( x| < = TP

<d-9™

C

|tvy x| =

1-c¢

C
1-—

Since z lies on the segment connecting ﬁ and x, we see that for some 7 € [0, 1], we have

z=(1—-1)— +1x
1-c

1—1¢ t—1tc

= l—cx l—cx
1—t+t—tc
=—x
1-c¢
1—tc
= —x.
1-c

Thus, |z| > |x|. It now follows that

c Alx| < ¢ A
L=c (1440 7 T=c (14 |x|y™*P’

Finally, we get

¢ A i (;)cj A
+
L=y (14 x|y (L—c)™! (1 + |x])™*®
—n—1 Z”= (’,’)Cj
S2A< 2n ) j=1\;
21 (1+ x|
< A,c
T+ X

[, < (

for some constant A, since we assume a < # and ¢ < i Thus, (24) is satisfied.

14
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We use a similar idea for proving (25) holds. Assume ¢ > 0 without loss of generality and further assume that |x| > 2|y|. By Mean
Value Theorem, there exists z on the line segment connecting x and x — y such that

[¥(x—y) - )| = V¥l

Like before, we notice that
V)] = |(1 =)™ Vyi_o(2) = V()

- ‘(1 —0™ Wy (1) - Ve

)= (=1 Vy(2)

=(1-¢)™! |Vy/ ( 7 z

=R =

n+1
+A-o 'y (”*. 1>cf' IVy (2]
=N
Let S be the set of points on the segment connecting l—fc and z. By Mean Value Inequality, since .S is closed and bounded, we have

v (75) - (709)| s T mm v =

C

The maximum for the quantity above is attained in .S, so let us say the maximizer is w, = (1 — t)lz: +tz for some ¢ € [0, 1]. Now use
decay of the Hessian to bound the right side:

Alz|
ntl4x
)

c

max|| D2y )| 121 <~
1—c wes o 1—c<1+|w1

It follows that
w=(1-)—2— +1z
1-c¢

11t t—1c
z+ z

:1—c 1-c¢
1—t+t—1c
=7
1-c¢
_1—tc
1-c¢

Thus, |w,| > |z|. We conclude

c Alz| < ¢ A
T (a7 = T W7

)n+l+x
For bounding |V¥(z)|, we see
+1 (n+1\ i
¢ A i ("; )¢/ A
T—oy2 (L+ |z (=)™ (1 + |2y

235 ()¢

IV¥(2)] < C

<A(l-c¢)"?
(=9 (1+ 2"
1+l
<< n )n+2 2A Z;L (";r )c/
T \2n-1 A+ |z

Going back to proving (25) holds for ¥,
2 24370 (") eyl
(1+|z])™**
since the point z lies on the lines on a line segment connecting x — y and x with |x| > 2|y|, we can use an argument similar to above
to conclude

[¥0x =) = ¥ = [VH@IIY < (5 )

n+l (n+1 J

on 2 AXTI (" )e
P(x — y) — P(x)| <21 J )
[P(x—y) =P < (2n—1> T [yl

Now integrate to get

15
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m A\ S n+1\ ; dx
Y(x — — d <2n+l+x<—) A J / _ar
[W(x - y) - P(x)| dx < o ; ;)< PG

%1221yl %1221yl

1
2n \"*? © (n+1\ e
:2n+1+K( ) Alnz ] leyll K’
2n—1 ot Jj

where I, is some constant associated with the integration. Finally, we have a bound of

[P(x = y) = ()| dx < A,elyl'™*,
|x[=2y]

for some constant A~n only dependent on the dimension n. Thus, (25) holds with exponent 1 — « € (0, 1). Let An =max{A,,4,}. It
follows that
TSP
x)| < — 1
AT e

[P(x — y) =) dx < Aelyl'™. O

[x[=2]y|

It follows from Problem 6.1.2 in [22] that the bound in the G-function depends linearly on the constant A from Theorem 1 when
proving L(R") boundedness. Thus, the following corollaries hold.

Corollary 11. Assume |c| < ﬁ For y satisfying the conditions of Lemma 10, when 1 < p < oo, there exist constants C, , and CA,,’p such that
1/2

dA _
/ |f W0 <c-C,,max{p,(p— "}/ llrsrn)
0

Antl
LP(R")

and

1/2
(Z Ve W,(x>|2> <c-Cymax{p.(p— "I f lLogn)-

JEZ L2(R™)

Alternatively, if one of the following holds:
* n=1, y is complex analytic and satisfies the conditions of Lemma 10,
* n>?2 and y satisfies the conditions of Lemma 5,

there exist constants H, and H,, such that

1/2

o0

di

/IJ"*‘PA(X)I2 pree e Hyllf g e
0

LI(R")
and

12

JEZ LI(R")
Now we can use the results above for our main dilation stability results.

Theorem 12. Suppose that y is a wavelet that satisfies the conditions of Lemma 10. Then there exists a constants K, ,, and K,,Ym only
dependent on n and m such that

1Scone 2t = Seonea Lo f lL2em < lel - Kyl £

and
||Sényad’2f - S;nyadszTf”LZ(RT) <lel- Kyl £l
1
for any |c| < 7.

16
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Proof. Without loss of generality, assume ¢ > 0. Let

er:f*Wr
Mf=|fl
U=MWwW,

1/q

Af= /f"(x)dx

It follows that S7 =A,MW, U, U, .Wewill alsoletV,_,=U,  --U,, with V; being the identity operator, and make a
slight abuse of notation by denoting W, ~as W. First, we will add and subtract A,M L, WV,,_, f and apply triangle inequality:

1Scont2f = Sconta Lefllizam = 1A MWV, f = A, MWV, Lo flli 2
S|WAMWYV,,_f - AZMLTWVm_lflle(]RT)
+ A ML WY, _f—AMWY,_,, L,flle(RT).
We'll start by bounding the first term. We see that g = WV,,_, f € L2(R”"). Thus
[A MWV, f = A, ML WY, f1=lIglls = IL.glla]-
Now use a change of variables:

1L, gl = / I8 — )P dx = (1 - &) "llgl.

It then follows that

1 1
[IIL: gl = lgllz] =gl (m - 1) <llgll (m - 1) :

Taking the scattering norm yields

| A MWV, f = A ML WV, lf”LZ(]Rm <

[ A

1-(1-o"\’
W) I Seon 2 e

n 2
1 n
=<<1-c)n 2 ,) > 1S conta 132y

2
2n " n\
= (2n—l) 2<]>C:| ”SC()nth“LZ(]Rm

J
2
Gl F113-

For the second term, apply Minkwoski’s inequality for 2 norms:

A ML WY, f = A MWV, Lo f llizam

© o0 1/2
»dd,  di,
=| [ [ LWVl Fll = WLV, f1lo| g
0 0 1 "
,d dA,
< LWV, f = WLV, fl;
AVH—] An+1
0 m
= ||A2M[W L ]f||L2(]Rm)
Now this is a commutator term, and we can now bound:
(o) o
2 dﬂm
||A2M[WVm,1,LTJf||L2(M) = [ - [ WV, L, Jf||2 n+1 e
0 0 A "

17
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= MOVVinete Ll

2
< “[W —1> L ]”LZ(IR'”X]R")*LZ(]R" ”f”2

We examine the commutator term more closely. Without a loss of generality, assume m > 2. By expanding it, we see that each term
contains [W, L_]. It follows that
”[WVm_ls LT]”LZ(]RTXR" mllwl Lz(]R xIPJ’)—>L2(IR”)”M”LZ(IR")—>L2(IR")”[W’ LT]lle(]R+><]R")—’L2(]R")
< Cm ||[W, LT]Ile(]R+X]R”)—>L2(]R”)'
Thus, once we bound this quantity appropriately, we will finish the proof. We start by writing

2 dA
2 Antl :

9. Ly ey = [ LD 203~ Lo (£ 5w
0
By substitution with z= (1 — ¢)x and Lemma 9,

L) s wy = Lo (f w3) I =/|<Lff )0 =Ly (£ o) ) dx

2
:/|<1—c)‘"/2 (f #Wa-02) (A =10 = (£ +y3) (A =) dx

Rn
—n —n/2 2
=(-0) /|<1—c) (f * W) @ = (£ +) ()] dz

Rn

2
:(1—6‘)7’1/|f*((1—6)7n/21I/(]—c)},_W1)‘ dz

=(1—c)_"/|(f*‘l‘,1)(z)|2 dz,

]Rn
=(L—o)"|If =¥, 113.

Thus, we obtain

2 ntl 2 pn+l

(- "//|f*%<x>|21+1

—-o /If*‘l‘ o L4

2 2n "
< (575) CullrI

/u(L,f)*w—Lf () 12 44 =<1—c>-"/||f*‘Iu||2 d
0

17212

2

It follows that

1S cont2 Sénontz rf”LZ(]R’") <lel- nm“f”z

foranyc<2—1n. O

As is customary at this point, we have the following corollaries. We start with the case where 1 < g < 2.

Corollary 13. Assume |c| < ﬁ For g € (1,2), there exists constants K,, ,, , and I?,,’,,,,q such that
” Contq contq Tf”LZ(]Rm < Iclq : Kn,m,q”f”?,
and
m 9. K q
” dyadq deaquTf”/Z(Zm) < |C| Kn,m,q”f”q'

18
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Proof. Without loss of generality again, assume ¢ > 0. First, we will add and subtract A;M L, WV,,_, f and apply triangle inequality:

I1Seontg/ = Seontq Lo/ M2m = NAGMWY,,_i [ = A, MWV, Lo fli2ae)
< ||AqMWVm_|f - AqMLrWVm—If”LZ(]Rf)
N AGMLIWY,, 1 f = A MWV, 1 Lo f 2.
We’'ll start by bounding the first term again. Define g = WV,,_, f € L/(R"), and we have
A MWV, [ =AML WY, f1=ligll, = IL gl |-
By change of variables,

lglly = 1Legll| = lill, <m - 1) <lell, <ﬁ - 1) :

Again, we have

i ™ ) [y

1
< (G =1) WSt W

1-(1-co]?
|\ T _ “ cont. f” 2(R™)
(1=c)y -4 TLA(RY)

n
- |1t AW,
B (1_c)"j§(/>c] Seinta Mizwey
[ m e (1)
< <2n—1> Z(J')Cj] I °°““'f”L2<1Rm
L j=1

<lel? - Cpall F12.

For the second term, apply Minkoski’s inequality for ¢ norms:

1
|4, MWV, _, f - A,MLWY, 1f||12(]Rm)5<(

4, ML WV, f = AMWV, 1, L f e,

) ) 1/2
2diy di,
= / [ vt =Ly, i, i
0 0 m
12

,diy  di,
”LrWmelf_WLTmelf”q/vH_l /1”_‘_1
0o 0 "

IN

= ||AqM[WVm_[ L 1f ”LZ(]Rf)'

Via a similar reduction technique for Theorem 12, we can reduce to a commutator bound ||[A,M[W, L,]f Il 2 Additionally, we
+

have
WL #ws = Lo (£ % w) 19 == )7L =, 9.
Thus,
q/2
1AMV, LA g = / WL ws = L (F ) 124
a2
—-o /Ilf* v
124
sa=o |l [1r-vp 2
0

q
<lel?- G719,

It follows that
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m q. q
”Scontq conth f”LZ(]R"’)< lel nm”f”q

1
for any |c| < 7 O

Additionally, for the case of ¢ = 1, we have the following corollaries that we will state, but not prove, since the idea is the same
as the previous corollary.

Corollary 14. Suppose one of the following holds:

« n=1, y is complex analytic and satisfies the conditions of Lemma 10,
* n>?2 and y satisfies the conditions of Lemma 5,

then there exist constants Ky ,, and Ky, such that

IS eone1 /= Sconet Le S Mz < € - Kl f et gy

and
||Sg;,ad’1f— dyadlL f||f2(zm) <c: KHm”f”Hl(Rn
5. Stability to diffeomorphisms

We now focus on the stability of Sg;,, / for general diffeomorphisms with || Dz]|,, < zin The corresponding operator for diffeo-
morphisms is defined as L, f(x) = f(x — 7(x)).

5.1. Stability to diffeomorphisms when g =2

Proposition 15. Assume V/ and its first and second order derivatives have decay' in O((1 + |x|)™"~3), and fRn y(x) dx =0. Then for every
7 € CX(R") with || Dz||, < 5, there exists C,, > 0 such that:

00—2;

. ATl
||[w,L,1||L2<R+xmmz(w>scn(nmnw <log v1)+(D%l, ).
D7l

Proof. The argument is a continuous version of Lemma 2.14 in [5]. We will first show how to transform our commutator term into
an analogous commutator term from [5]. To shorten notation, we will denote ||[W, Lr]lle(R+x]R,,) as |[[W, L.1||. We have

b dt
2 tn+1

IOV LI g e / DY, L/

dt

h+l

/II%*(L )= L, # NI

//Iw,*(L D= Lot P dx 2L

0

Notice that y; (x) = "/?y(tx). Use the change of variables 7 = % to get
1

2
i
2

9. L ey = | s+ e -
0

"/

Define #,f = f * A"/ 21//1 with A7/ 214/1 (x) = "w(Ax). In other words, #, is a convolution with an L' normalized wavelet, which

n/2 w2 2 da
WPy x (Lo f) = LMy = )] 22
7 7 2 A

matches with the normahzatlon in [5] Now we have

1 Similar to [13], we have found that there needs to be O((1 + |x|)~"~>*%) decay for some a > 0 to bound (E.26) in [5].

20



A. Chua, M. Hirn and A. Little
d}»
(RN RTIE / 075, L1715 %
This implies
# . . di
(W, L] [W,LT]=/[%,LT] [%,LT]T
0

Defining K, = %, — L, %, L so that [

0w, LI = 110w, L1, L2

172

% dAi
= /[%,LT] [%,LT]T
0

.
= /LjKZKALT
0
© 1/2
/K;‘KA a4
0
since IIL, /1 < (=5 ) 1715,

1
LS 7 <2
T I=alDrll

1/2
d/l/

<ILA-

2
and the problem is reduced to bounding H Jo KK, A7 d/lnl/

1
dA dA
H/K*KA 2 K:KA 7 + /K;KA 7
—-r
; dA 2 1 dA
Kk, & /K*K,l
A A
=Y
=P + P+ P,

#,,L.]1=K,L,, we have:

Applied and Computational Harmonic Analysis 68 (2024) 101597

. Let y > 1. The integral is divided into three pieces:

1/2
0
dA
+ KK, —
[ %]
1

172

di
/K*KA -
1

To bound P, we decompose K, = K, | + K, ,, where the kernels defining K, |, K, , are

I}A,l(x, u) 1= (1 —det(I — Dr(w))A"w(A(x —u))

1= a(u) A"y (A(x — u)),

I~c“(x, u) :=det(I — Dr(w))(A"w(Ax —u)) — A"w(A(x — 7(x) — u + 7(u))),

respectively. Since our normalization matches with [5], E.13 implies that there exists a constant C, such that

1Kol < CpallAtlg
We want to prove that

/K K“—

1/2
<GlID7|l -

Let f € L?(R") be arbitrary and define (1) = w*(—1). Based on [5], the kernel of K: Ko is given by

ky(v.2) 1= a(a(2) A" 2y w22 (2 - ).
i A

Thus, it is sufficient to bound the quantity

1
dll
/uK Imfn2
0
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We see that ||al|, <nl||D7||. Substituting in the kernel and bounding yields

2

1
/uK K /132 = // /a(y)a(z)(z"/zn */1”/2!//1>(z—y)f(y)dy az 22
0

A

2

/ / la(z)|? / a(y)</1"/ZW1 *i"/2w1>(z—y)f(y)dy dzd—j
A i

1 2
n/2 - n di
Snzllorlli// /a(y)(z /zwl*iﬂwl)(z—y)f(y)dy dz ==
A A
0 Rn n

Let F(y)=a(y)f(y) € L(R") and let F represent taking the Fourier Transform. Then we substitute F(y) for a(y)f(y) in the last line of
the inequality above to get

2

|| Dz, // /a(y)(ﬂ"ﬂw */1"/2W1>(z—y)f(y)dy az 2

2

=n?||Dz|?, // /<A"/2 1*1"/21;/1)@— VFE)dy dzﬂ
A

2

di

=n ||Df||2 dzT

<W2w] w My ) (@) F(w)

1

~ N di
=n2||Dr||§°/|F<w)|2 /Iw(“;f)|47 do.
R” 0

To finish up the argument, we make a substitution to rewrite

1

L wyadA . di
[ = [ipcor L2,
1

0

Using our decay assumptions on y and its partial derivatives, from Problem 6.1.3 in [22], we know that
9 ()| < M, min{|e], || )

for some constant M,,. Now, consider the quantity /an |y7(/1a>)|4d—;. Without loss of generality, assume that |w| =1 since dilations of
 do not change the integral. It follows that

0 1 0
. dA _
/|1,;(,1w)|47 SMW//13d/1+Mw//L %d A< o0,
0 0 1
and we conclude that

|4dﬂ <

[@(Aw) A,

._-\8

for some constant 4,,. To finish up,

1
£ . di .
#1oeil, [1F@p| [ lao <itipaia, [1FoPdo
Rn 0 Rn
<IDel, A, / la()f () dz
Rn
<Dl A1
1/2

Thus, we have the desired bound on f K IZA 1 7
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Substituting everything in yields

1/2
. . . o d
/K*KA 2 = /(K/u + K" (K +Kyo) 7
0
b a7
- / (B3, Ry + Ky Ry + KK, + K3, ) 2
0
27 -7 1/2
72 72 72 72 720 72 72 I 72 di
< KMK/II 7 + KA,1K1,2+K,1,2K/L1+K/1,2K/1,27
0 0
277 2~ 2~ 172
2 dAi
< K; K/n ||K/12|| —+ 201K 1 MK I =
0 0
- . e - y 1/2 - . 1/2
<\ Rk 2l e| [ukarr L1 | [k, i, £
A A A
0 0 0
- 1/2 - 1/2
dAi 1/2 1/2 di
<2GC, | ID7ll + 1ATl //12 o [N VN /2/1 T
0 0
- _ 1/2 1/2
<2C, (D7l +27 1Al + 2721 De )l LA
<4C, (1Dl +277 A7) -
To bound P;, we decompose K, = K, | + K, ,, where the kernels defining K} |, K , are
k1 Ge,u) = A"y (A0x —w) — A"w (AU — Dr(W))(x —u))det(I — Dr(w))
k3 2(x,u) = det(I — Dr(u)) A"y (AT — Dr(w)(x — u)) — A"y (A(x — 7(x) — u + 7())).
A similar computation to the one for P, shows that:
© 1/2

‘ dA dA dA
H/K;*Ka7 <| [ kK2 /nK”n2 +| [ 20K 22
1 1 1

Letting Q; = K;/ lejyl, it is shown in [5] that:

1Ky 11l < Cull D7l oo
1K, 21l < min{ A" D*7l|, [ Dl oo }

10,0/ < C227 = I(| Dz, + | D*7]l )

/KMKM )

so that

172 1/2

”/sz Ko 1og(2) dj
0

Jou

0

172

= ylog(2)

We now apply a continuous version of Cotlar’s Lemma (see Ch. 7 of [26], Sec. 5.5 for the continuous extension). We define:

BG.O)=

C,270=A12(| D), + |1 D*7|l,)* j>0and £ >0
otherwise '

Defining Q; =0 for j <0, we have ||Q;Qf|| < B(j,¢)* and ||QjQ;;|| < P(j,¢)? for all j,#. Thus by Cotlar’s Lemma:

H/Ql dj
R

<§up/ﬂ(} ) de,

23



A. Chua, M. Hirn and A. Little Applied and Computational Harmonic Analysis 68 (2024) 101597

oo
0

(8]
< sup/ﬁ(j,f) 14
7204

)

<GPl + el sup / 2712 g |.
J>!
0

Now observing that with the change of variable 1, =2/, A, =27, we have 274172 = j—’ A j—z, we obtain:
2 1

[se]
sup / A2 g = / Ui Ad) _diy
/11>1

i In(2)A
j=0 s VArd 2

A 0
VA

=%sup / ! d,12+/3—/21d,12
n(2) ;> RVZIPS P

1 1 2
_ sup [ — @A, -2+ Vi, | —
1n(2)§f‘§<\/71( Vi )H/_](\/Tl))

1 2
——sup | 4— —
T In® 42 < \/z)

-4
“ In(2)

and conclude that

/K K“

Thus we have:
1/2 o 1/2

di d)» dA
K;K; — K} K/u ||K/12||2 +| [ 2K KNl —
A /1 A

1 1 1

Now we see that there exists a constant C, such that

1/2
<3G, (1Dl + 1 H7lloo)-

172

1/2
/K K“ ﬁ <C(ID7ll + 1 D*7]l )

1/2

di _
/nKuuZT <G, 1D, N"

0 1/2

/ 20K, 1Ko

1

/K*KA -

172

~[&

o0
1/2 1/2 _
<, | Dell! 2| D<) /u "
1
and

1 2 1/2 1/2
", (1Dl + 51Dl + = D2l D127 )

1 5 1 1.2
Gy (IDell + - 1Dl + D7l + 1% )
<2C, (1Dl + 10?7l )
Finally, we bound P,. Note that in the previous section it was observed (shown in [5]) that
1K), 1l < C,lI D7l o
1K 21l < min{A™"| D*z|| . [| D7]l o }

The above two inequalities imply

KA = 11Ky 1 + Kol S TKG I+ 1K1l < 2C, [ D7l
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so that
1/2

l di 2 l dA
2
VK:KAT <| [k, 22
e

e
. 1/2

di
<2¢pel| [ &

e
<2C, 1Dl (—In@ 7))
<2C,7'?|ID7 |l

Putting everything together and since y > 1, we obtain:

[I0W, LIl <2(P, + Py + P;)
<4C, (IID7ll + 27 |ATll o) +2C, 7 /2Dl +3C, (I D7ll + 1 D7l
<C, (rIDtll + 277 ATl + 1Dzl ) -

lAzlle

Choosing y = <log D

) v 1 gives

llaz]lo
1Dl

ow. Ll <€, <<log v1> ||Dr||m+||D2r||m>,

and the lemma is proved. []

Theorem 16. Assume and its first and second order derivatives have decay in O((1 + |x|)™"3) and ./]R” y(x) dx =0. Then for every
7 € CX(R") with || Dz||, < 2 , there exists C,,,, > 0 and C,,, > 0 such that

Azl ’
IS nf = StoneaLe f||L2(]Rm < m,n<||or||§o+<||m||w <log Dl V1) + D%l 713

2
IS L7I2 1Dl + (1Delly (1og 2% o 1) 4 yp2eg ) Vs
dyad dyadz T fZ(Zm) mJl Tl Tlleo g ”DT”ac Tlleo 2"

Proof. The proof is only provided for the continuous case. We have the following bound for some C,,:

and

”Sconth cont2L f”Lz(]Rm

SNALMWY,_y f =AMLY, fllggn + 1 A MDYV, 1 Lo f e
2 2 2

<AL MWV, f =AMLV iz + ColOV L g2 115

For the first term, we can mimic the dilation argument to get

A MWY,,_ [ =AML WY, f1=llgll, = IL.gll]-
The difference is the term with the diffeomorphism. Let y = y(x) = x — 7(x). Then it follows that y~!(y) = x and change of variables
implies that

2 _ _ 2 dx = 2 dy
||LTf||2—]é/|f(x G0l dx—]R/If(y)l T

- Dyt
We also have

1= n|| D1l < |det( = D' ()| < 1 +nll Dl

Thus, we obtain

1 2 2 1 / 2
_ dy<|L <— dy,
1_'_n”DT”m/n|f(y)| YL fI3 < Tl Dele J [fDI” dy

115 < IL A3 < = /13-

L+n IID lleo IID 7l
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Since we have a bound on || Dz||,, we see that

1—-n|| Dt
1 _ I D7l > 1Dl
l+}'l||D‘r||oo l—nz||D1'||gc

. 5 5 -
since 1> 1 —n*||Dz||Z, > 0. Similarly,

1 3 1 +2n|| D7l
1-n||D7llq  1+n|Dzlly — 202 D72,

and
2 2 2n?
140 Drlle, =2n7[| Dl 2 1+ 0| D7l = - |1 D7ll oo = 1
n

since || Dzl < 5-. It follows that <1+2n|D7||,, and

S S
= -nlDrlly
(1 =nllD7ll) I f Nl S WL fll2 < (14200 Dell) 21 £ 1l
Since 1 —n||D7||, <1 and 1+ 2n||Dz||, > 1. Use the lower bound on || L, f]|, to get
1Al = L flla =11l (1= (1 = n||Dr||°°)1/2)
SISl (1= =nlDzll,))
=n| Dz I fll2,
and the upper bound to get
L flly =11l = 11712 (A +2n|| Dzl )" /* - 1)
<N/l (1 +2n)1 D7l ) - 1)
=2n||Dr|l 1 £ Il

Finally, we have

[l =1L fll2] < 200 D7l Il £ 1l

for any f € L>(R”). Now we mimic the argument given for dilation stability to get

1A, MWV, 1 f = A ML WY, fI oy < CIDTIL NI
+

for some constant C. For the second term, we have

Azl
1Dzl

2
v 1) + ||D21||m> 17112

for some constant C’. We now choose C, ,, =max{C’,C} to get the desired bound. [

2 2 2 !
CallOW, Ll i quny 2o 112 < € <||Dr||m <log

5.2. Stability to diffeomorphisms when 1 < g <2

Lemma 17. Let y(z) = z — ©(z), g(z) = f(y(z)), and

K (x,2) = det(Dy(2))y, (y(x) — 7(2)) — w(x — 2).
Additionally, define

T,8(x)= / g(2)K,(x,z)dz
RII

di
an+l

and consider Tg : R" — L>(R,, =57 ) defined by Tg(x) = (T;g(x)) seR, - Then for the Banach space X = L*(R,, %),

2
2 llAz]lo 2
178l gy < Com | 1Dl log||Dr|| V1) +ID%lle ) Ifl2
X e

for some constant C, ,, > 0.
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Proof. Notice that

2 _ 2 dA
T, g, = | [ e
R" 0
oo 2
dA
=// /Kl(x,z)g(z)dz de
R* 0 [R”?

= / /f(}’(Z))[det(D7(Z))W,1(J/(X)—7(2))—1114(36—Z)]dz L
0

An+1
Rﬂ Rn
0 2
= / / / det(Dy(2) f (1 (2D (7 (x) — 7(2)) dz — / Fo@w,(x—2)dz %dx.
R"” 0 [R? R”

Using the change of variables u = y(z), we get

1T = [ [ L5000 = (s v 2 an
R" 0

2
12 ("

[

- / / W, L1f )|
R" 0O

dA
=//|[WAer]f(X)|2 de
0 R»

= [ 1w, s 22
0

2 di

dx
Antl

2 An+l
_ 2
= I09: LS W2 g

lAat]lo
1Dzl

<Cyp (nDrum <1og v 1) + ||D2r||°o> 113

where the last inequality follows from the ¢ =2 case. []

Lemma 18 ([23], Marcinkiewicz Interpolation). Let A and B be Banach spaces and let T : A — B be a quasilinear operator defined on
Lﬁ’(R") and L’;t‘ (R™) with 0 < py < p,. Furthermore, if T satisfies

||Tf”L",’3'°°(Rn) < MI”f”Li((]R”)

for i=0,1, then for all p € (py,p;),

”Tf”Lf’;(]R,n) < Np”f”LfQ(IR”)’

where N, only depends on M,,, M,, and p.

Remark 7. Like with the scalar valued estimate, it can be shown that N, =nM M, where

po(pL —p)
—— p <o,
5=4 P(P1=ro)
Po
- Py =
p
and
— 1/p
5 (M) Py <o,
n= (P =po)py —p)

1/p
2( o ) pp = oo.
P—Po
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Lemma 19. Let T be the operator defined in Lemma 17. Let q € (1,2) and r € (1,q). Then T satisfies

ITgllLr ey < Ml ey
for some constant M, > 0, which is independent of || Dz||., and || D*t||,. Furthermore, T also satisfies

A7)l ST
1 D
1De V) Il ) 11,

IITgIIiL,,(RH) <G, (IIDTIIoo (10g
X

for some constant C,, > 0.

Proof. The second inequality obviously follows from strong boundedness of the operator, so we will omit the proof. For the first
inequality, the norm satisfies

o 2

ITgl2 = / / det(Dy () f (r (2w (r(6) — () dz / FO@w, (- 2)dz
0 R»

n

dA
Antl

2

=/ /f(z)w(y(x)—z)dz—/f(y(Z))w(x—z)dz /ldnfl
0 [R” R"
oo 2 o 2
54/ /f(z)w(y(x)—z)dz %+4/ /f(y(Z))w(x—z)dz ﬁfl
0 R 0 [R"

= 4G CN? +4|GL, f(0)]*.

We see

ITg()lp < \/ArI(Gf)(J/(X))l2 +4|GL, f(0)12 L2[( G| +2|GL, f(x)].
For 6 > 0, Chebyshev’s inequality implies that there exists A, such that
m{{|ITgX)|lx > 6} <m{2[(G /)y +2|GL, f(x)| > 5}
A
< ZEAGHTO rany + IGL S )

We want to now ensure that ||(Gf YOIl &’ Since y is a diffeomor-

phism, we can use change of variables to get

can be bounded above by a constant multiple of |G f Iy, B

GGy = / |G/ (r(x)]"dx
Rﬂ

du
= [1Grwr —— 2
R[ 1 e [(onGTw)]

52/ |Gf(x)|"dx
RH

= 201G I -

By Theorem 1, we get

NGL £y eny < G L f W ggny < 2CA I e

for some constant C, dependent on r. Thus, we have

1/r M"
m{||[Tgx)|lx>6}/" < THf”Lr(]R")

for some constant M, >0. []

Lemma 20. Fix r = % so that r € (1, q). For some constant C, , > 0, the operator T defined in Lemma 17 satisfies the estimate

1-6
ITel?, . <C,n"M% (||Dr|, (1o 137l | +1D%]| " )Ilfll"
Sl = T =\"**1pell,, = v

where n and 5 come from interpolation, and M, comes from the constant for weak boundedness in Lemma 19.
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Proof. Since T is an integral operator, it is clear that is quasilinear. Using the L”(R") and L2(IR") estimates from the previous Lemma,
we interpolate using Marcinkiewicz since || g, <2| I, <4ligll,. O

Theorem 21. Let 1 < g < 2. Assume  and its first and second order derivatives have decay in O((1 + |x|)™"3), and f]R,1 w(x) dx=0. Then
for every = € C2(R") with || Dz||, < zl—ﬂ, there exists C, , > 0 such that

”Scont,qf - Scont,quf”:z(]RJr)

o s oaras A7)l > N
<Cy [IDENG + "M (1Dl (log 5o V1) + 1Dl 1.

Proof. We use the same notation as Theorem 12. Using a nearly identical argument to Corollary 13, we get

1Scont g/ = ScontgLe SN2,y = 1A MWf — A MWL, flii2g,)
=AMWf-AMLWf+AMLWf— AqMWLTf||Lz(]R+)
SNAMWS = AMLWS 2w, +IIAMLWS —A MWL, flli2g,)
<NAM = AMLIWS o,y + 1A MIW. L1 ll2w,)-

The first term, [|((A,M — A, M L)W S ||Lz(R+), can be bounded using an argument identical to the ¢ = 2 case. In particular, we can
prove that

(L= nl Dl SN, < =nl DTl )Y A1, < L A1,

and

L flly <A+ 20l DTl )N fll < (L + 20l DTN N

which means

1AM = AMLYWIIIL, < CIDTIL NI

For the other term,

o 2/q a2
dA
1A MOV LAf 1 =| [ [ 1€ 2 w0 - Lo swacorax| 22
0 R
Now, expand convolution and then use change of variables to get
q
1AMV LS
oo ¢ Pl a/2
dA
= / / /f(J/(Z))(det(D}’(Z))w(V(X)—V(Z))—l//,l(x—z))dz dx pr
0 [R" R»
oo a /e a/2
= / / /g(z)K,l(x,z)dz dx /ldnfl
0 lrR" R~
oo 2/q 92
dA
= / /|Tig(x)|q dx pres
0 lr~

9/2

di
S/ /|T4g(x)|q gy dx
R L0
[se]

n
9/2

di dx

An+l

= / / IT,500
R* LO

- / ITeCl dx
L

di
R" <R+’ antl )
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=78y

o e Al o Y
<CnM? (107l (log 5 V1) + 1%l 1712,
0

Thus, the proof is complete. []

Corollary 22. Let 1 < g <2. Assume W and its first and second order derivatives have decay in O((1 + |x|)™"~3), and f]Rn w(x) dx=0. Then
for every T € C2(R") with || Dr||, < 5-, there exist constants C,,,,,C,,, > 0 such that

ll contqf_ conth f”Lz(]R”‘

0 oarras A7)l o Y
< Cpp |IDTNL +77M% (|| D7l ( log V1) +11D%7ll, 70

D7l
and
m
15, dyadq deaqu f”f”(Zm)
Ar q(1-6)
<¢ [nmnq +on’15<||Dr||m <log ”D |||| v1>+||D2 ||W) g,

Remark 8. This bound is not exactly the same as the definition for stability to diffeomorphisms in [5], but the idea is similar. Since
r is fixed, so is 6. It is easy to confirm that § = — € (3 2) when using Marcinkiewicz interpolation in Lemma 20, so

o ras Al e\
Cogt" M (I1D7 o (log (5 V1) + 1Dl -0
(o]

when || Dz||,, = 0 and || D?z||, — 0.

6. Equivariance and invariance to rotations

We now consider adding group actions to our scattering transform and prove invariance to rotations. Let SO(n) be the group of
n X n rotation matrices. Since SO(n) is a compact Lie group, we can define a Haar measure, say u, with x(SO(n)) < co. We say that
f €L%(SO(n)) if and only if f is y-measurable and fsow) | f(M2dur) < .

6.1. Rotation equivariant representations

Let y : R” - R be a wavelet. Define

vir() =27y (7 R,

where R € SO(n) is a n X n rotation matrix. The continuous and dyadic wavelet transforms of f are given by
Wrot/ 1= {f *w, g(x) : x€R", 1€ (0,0), R € SO(n)},
Waotf :=1{f *w; g(x) : x€R",j € Z, R€ SO(n)}.

We will first consider a translation invariant and rotation equivariant formulation of continuous and dyadic one-layer scattering
using

Seontg/ (4R = 11f = w; gllgs

@dyad,qf(js R):= ”f * Vlj,R”q'

The translation invariance of our representation follows from translation invariance of the norm. For rotation equivariance, notice
that if fz(x) := f(R™'x), then we have

gcont,qffi(’t R)= ©cont,qf(}‘v R R),
Ggyad,g/RU: B) = GBgyaq ¢S U R7'R).
Now suppose we have m layers again. Then we define our m layer transforms by
& ol At A Ri o Ry = W 5y, o 1% 12w gl

@lyadg/ Utseesdms Ris oo s Ry) t= M 5wy, gy 1 Ly g s
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and rotation equivariance implies
_ 51 sl
génom,qfﬂ(}‘l’ ceis A Ry, R = @'cnom,qf(}‘l’ veisdys RTRy,...,RT'R,),

. . . p—1 p—1
dyadquUl’""jm’R“'”’R”’)zggyad,qf(]l"“’jm’R R],...,R Rm)

The norm we will use is similar to our previous formulations. Denote the scattering norm for the continuous transform as

1 ¢oncq/ ”L’ (R™)XSO(m)™
o ) q/2
dA dA

- 2 1 m
- / / / / 17 w2, I (R 2 (R T8

0 SO(m) 0 SO(n) 1 mn

For the dyadic transform, we denote the norm using

”@dyﬂd qf ||f’2(Z"’)><SO(n)”'

q/2

|2 [T [ 0 v e v g B R e di (R
In€2giy €50

We will start by proving that these formulations of the scattering transform are well defined, and prove properties about stability to
diffeomorphisms like in previous sections.

Lemma 23. Let y be a wavelet that satisfies properties (24) and (25).

* If1<q<2, wehave &,
« If ¢ =1 and one of the following holds:

- n=1 and y is complex analytic,

- n>2 and y satisfies the conditions of Lemma 5,

then@ | : : L'(R") - L>(R™) X SO(n)" and @ -
« If y is also a Littlewood-Paley wavelet, we have

LI(R") - Lz(]Rz) X SO(n)" and @Z’yad : LAR") — £2(Z) x SO(n)™.

: LY(R") - ¢2(Z™) x SO(n)".

2
1S one 2/ IILZ(W)XSO(”)W uSomY"Crlf13,

mAm 2
10122 s = HEOWN" LS.

Proof. We prove the first and third claim. The second claim is almost identical to the first claim, so the proof will be omitted for
brevity. Note that we will only provide arguments for the continuous scattering transform since the proofs for the dyadic transform
are very similar. By Fubini Theorem and boundedness of the m-layer scattering transform, there exists a constant C, > 0, which is
dependent on ¢, such that

”@C()nt‘If”L2(IR”‘)><SO(n)"‘

o0 q/2

/ dA
= / / / / |||f*lI//1| Rll* |*I[//1 R, || du(R,, ) - du(R)) m

A"‘H
m
L0 SO(n) 0 SO(n)
q/2

(ST
S

[se] o0
, dAy da,
= WS v, r L vy, Rl /1”“ JYes du(Ry) - du(R,,)
S0 50 \0 0 "

r q/2
<| [+ [ cpnrigeanry - aur,)
SO sOm)

= C u(SOm)Y" || 114

because each y; g, is still a wavelet with sufficient decay even if the rotation is applied. For the third claim, we see that

”@contzf”L’(]R’”)xSO(n)”‘
di,  da,
= |||f"‘llf/11 Rl * =y R, ||L2(]R") 2 a7 du(Ry) - du(R,)
SOm)  SO(m) \0 m
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_ / / I IE dp(Ry) -+ du(R,,)
SO(n) SO(n)

= uSOm)"Cylfllz O

Theorem 24. Assume |c| < 21_n Let t(x)=cx and L, f(x) = f((1 —c)x). Suppose that y is a wavelet that satisfies the conditions of Lemma 10.
Then there exist constants I?nquq and K ,/, mg dependent only on n, m, and q such that

”@contqf @conth f”LZ(IRm)xSO(n)m - |C| nmq”f”
and
< ' q
125ad.q/ ~ Syady ,fllﬂ(Zm)Xso(n)m lel?- K}, L7112

Alternatively, if one of the following holds:

* n=1, y is complex analytic and satisfies the conditions of Lemma 10,
* n>2 and y satisfies the conditions of Lemma 5,

there exist H,, , and H,,  such that

1S%0ne.1 S =~ Stones Le S Izamxsomn < lel - Huull Sl ey,

and
7/
1€5yad1/ ~ @ayaar LS Nezzmusomm < lel - Hy S i ey

Theorem 25. Let € C2(R"), and let L, f(x) = f(x — 7(x)). Suppose that y is a wavelet such that the wavelet and dll its first and second
partial derivatives have O((1 + |x|)™"3) decay. When g € (1,2), there exists a constant C,mq dependent on u(SO(n)), n, m, and q such that

cm
ll@contq ContqLTf“LZ(]RM)XSO(,,)m

o oanras A7l o N
< Comg (1D + 1M (1Dl (log 7= V1) + D%l 1712,

e dyadqf @dyaqu f ”ﬂ(ZM)xSO(n)m

o oanras A7l > N
<oy | 10718 + M (1Dl (log g5 V1) + 107l 1714,
(o]

e

2
cont, 2f @contZ LTf”LZ(]Rﬁ)xSO(n)"'

Azl z
<Cppm [||Dr||;+<nurnm (log D7 ”°° V1) +ID%l, ) [ 112

m
Il @dyad 2 dyad 2L f ”ﬂ(Z"‘)XSO(n)”‘

<G, [ID7I + <||Dr||°o <log 1Azlle, v1> +||Dzrllm)2 113
D7l

6.2. Rotation invariant representations

The representation before was rotation equivariant, but in some tasks, we would rather have rotation invariance. In [5], the
authors choose to integrate over each group action in a group of transformations. However, this will remove the information the
relative angles between each action if we have multiple layers in our transform.

In the case of one layer, since there is only one angle, we use a similar formulation to [5] and define continuous and dyadic
scattering transforms for rotation invariance as

ycont,qf(l) = / [If = WA,R“Zq(]Rn)dﬂ(R),

SOm)

& 2 — q

Fagaaal D= [ 140,10y g (R
SO(n)

The corresponding norms are given by
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[ 24 q/2
I Seoneq F 1%, 1= If vy gllu(R)| 22
cont,q LZ(]R) = YiRrllgH prrs! B
0 [som)
2/a q/2
1 apnial Wiy i=| T [ 17+ sl
T€Z |50

Now we generalize to the case where m > 2. Let R, ..., R,, € SO(n). Define

. 2
FeontgS 1o dm: Ry Ry 1= / IS wa, ror, |5 Wy, R, R, Iy dH(Ry),
SO(n)

. . ) 2
Zivadgd Urs o sms Ras oo s Ry) 2= / IS wj ryr, | T Wy gory Il du(Ry).
SO(n)

The norm for the continuous transform, the norm || . i ||L2(W,)>< SO is given by

) q/2
di di,
Contqf(il,...,ﬁm,Rz,..,,R )A duy(R 2) n+1 .dﬂm(Rm)F
0 SO(m) 0 SO(m) 0 1 A m
For the dyadic transform, the norm ||.¥ dyad qf 1 P TISO(=) is given by
q/2
Yo D | aad Greeee s A R Ry (R) dpiy(Ry) .ty (R)

In€Zgy 12255, N1EL

Like before, we will discuss the well-definedness and stability of these operators to diffeomorphisms. The proofs will be omitted since
they follow directly from the previous sections with minor modifications.

Lemma 26. Let y be a wavelet that satisfies properties (24) and (25).

« If1<q<2, wehave " :LI(R") —>L*R")xSO(n)""! and yé;a iq - LR — 22y x SO(ny"=.

cont,q

« If ¢ =1 and one of the following holds:
- n=1 and y is complex analytic,
- n>2 and y satisfies the conditions of Lemma 5,
then 7™ LY(R") » L*(R™) X SO(m)"~" and .7, /vad : LI - £2(Z") x SOy 1.
< Ifg=2 and v is also a littlewood paley wavelet, we have ||.7 yadzfllfl(z,,.)xso(,,)m 1 = u(SO(n))y"~ Icm ”f”z and ||/Crsmzf”L‘(RT)XSO("Y”" =
u(SOm)™ 1C,:,"||f||§~

Theorem 27. Assume |c| < ﬁ and 1< g<?2. Let 7(x) =cx and let L, f(x) = f((1 — ¢)x). Suppose that y is a wavelet that satisfies the
conditions of Lemma 10. Then there exist constants K, ,, , and K|, ma dependent only on n, m, and ¢ such that
I~ contq contq ff”Lz(]R”‘)xSO(n)m—l <Jel?- Kn,lmyq”fllz

and

a.R q
” dyadq dyudq Tf”ﬂ(Z"‘)xSO(n)m 1= |C| Knmq”f”q'
Additionally, if g =1 and one of the following holds:

« n=1, y is complex analytic and satisfies the conditions of Lemma 10,
* n>2 and y satisfies the conditions of Lemma 5,

there exist H,, , and H,,  such that

-7 coner = cone Le Fllzarmxsomyn-t < 1€l Hopll f it gy

and

y/!
1-7dyad1/ = 7 dyaa.1 Lo S N 2zmwsomm-1 <Nl Hy I i gy
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Theorem 28. Let 7 € C2(R") and define L, f(x) = f(x — 7(x)) with || Dz||, < zl_n Suppose that y is a wavelet such that the wavelet and all

its first and second partial derivatives have O((1 + |x|)~"3) decay. For q € (1,2], there exist constants Crins Conps Cungr and C‘m such that

n.q

2
”‘ycrgnt,zf _‘Sﬂcﬁnt,zl‘ff ||L2(]R$)><so(n)m—l
2
[lAz|]
<Cp [ 1D7I2 + (171l (log 7=t v 1) + D72l ) ) 112,
I1D7l o

m _ om 2
ll ydyad,zf ydyad,Z LAl £2(ZmyxSO(nym=1

1A7 ]l

2
T V1 +I|D21|Im> 1713,
1D7l oo )

<G, | ND7I% + (umnm <log

”Zunt,qf _Z'gm,quf”q

L2(R")xSO(nym=!
o g Al o0 Y e
S Chng | IDTIL +0MP | D7l | log 7=—=— V1 | + I D77l s,
I1D7ll o a
m _ m q
”ydyadyqf ydyad,qLTf ”ﬂ(Zm)st(n)m—l

, s oarras ATl o Y e
< Chung |IDZNL +10IM° | || D7l ( log 1Dl V1) +IID 7|l L1
[se]

7. Conclusion

We have formulated operators that are translation invariant in LY(IR"), proven these operators are Lipschitz continuous to the
action of C? diffeomorphisms when 1 < g <2 with respect to certain norms, and used these results to formulate rotation invari-
ant/equivariant operators on L4(R") that are Lipschitz continuous to the action of C? diffeomorphisms. One question that was left
unanswered was if Lipschitz continuity holds for general diffeomorphisms when g = 1. This question is harder to answer because
f € H(R") does not necessarily imply that L, f € H'(R"). The kernel for the commutator is also singular, which would mean one
cannot use extension theorems for Hardy spaces. The answer is most likely no, but we did not construct a counterexample.
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