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In this paper, we generalize finite depth wavelet scattering transforms, which we formulate as 
𝐋𝑞(R𝑛) norms of a cascade of continuous wavelet transforms (or dyadic wavelet transforms) and 
contractive nonlinearities. We then provide norms for these operators, prove that these operators 
are well-defined, and are Lipschitz continuous to the action of 𝐶2 diffeomorphisms in specific 
cases. Lastly, we extend our results to formulate an operator invariant to the action of rotations 
𝑅 ∈ SO(𝑛) and an operator that is equivariant to the action of rotations of 𝑅 ∈ SO(𝑛).

1. Introduction

In recent years, convolutional neural networks have shown strong performance on various vision tasks like image classification 
[1–4]. The main reason for this is that they are able to capture information at multiple scales through the use of convolutions and 
pooling. However, the exact method in which these networks use this information is not understood very well.

In [5], the author proposed a formulation for a simpler model for a convolutional neural network through the use of handcrafted 
filters, wavelets, and a series of cascading wavelet transforms. This model, called the scattering transform, and its extensions have 
shown success in vision tasks, quantum chemistry, manifold learning, and graph-related tasks [6–10].

We first provide a review of scattering transforms to motivate this paper. Let 𝜙 ∶R𝑛 →R be a low pass filter (𝜙̂(0) ≠ 0), 𝜓 ∶R𝑛 →C

a suitable mother wavelet (𝜓̂(0) = 0), and 𝐺+ be a set of “positive” rotations with determinant 1. Define a set of rotations and dilations 
by

Λ𝐽 ∶= {𝜆 = 2𝑗 𝑟 ∶ 𝑟 ∈𝐺+, 𝑗 > −𝐽} if 𝐽 ≠∞ (1)

and

Λ∞ ∶= {2𝑗 𝑟 ∶ 𝑟 ∈𝐺+, 𝑗 ∈Z}. (2)

Let 𝜆 = 2𝑗 𝑟 ∈ Λ𝐽 . Consider the operator
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𝑈 [𝜆] =
|||||||∫R𝑛 𝑓 (𝑢)2

𝑛𝑗𝜓(2𝑗 𝑟−1(𝑥− 𝑢))𝑑𝑢
||||||| (3)

For a tuple of rotations and dilations in Λ𝐽 , define a path of length 𝑚 as the tuple 𝑝 ∶= (𝜆1, … , 𝜆𝑚) and let 𝐽 be the set of all finite 
paths. The scattering propagator for 𝑓 ∈ 𝐋2(R𝑛) and 𝑝 ∈ 𝐽 is

𝑈 [𝑝]𝑓 ∶=𝑈 [𝜆𝑚]⋯𝑈 [𝜆1]𝑓, (4)

which gathers high frequency information via a cascade of wavelet transforms and nonlinearities. The scattering operator is

𝑆𝑓 (𝑝) = 1
𝜇𝑝 ∫

R𝑛

𝑈 [𝑝]𝑓 (𝑥)𝑑𝑥 (5)

with 𝜇𝑝 ∶= ∫
R𝑛
𝑈 [𝑝]𝛿(𝑥) 𝑑𝑥. Additionally, to aggregate features similar to pooling, the author of [5] define the scattering operator for 

𝑓 ∈ 𝐋2(R𝑛) and 𝑝 ∈ 𝐽 as

𝑆𝐽 [𝑝]𝑓 (𝑥) = ∫
R𝑛

𝑈 [𝑝]𝑓 (𝑢)2−𝑛𝐽 𝜙(2−𝐽 (𝑥− 𝑢))𝑑𝑢. (6)

Additionally, the windowed scattering transform is the set of functions

𝑆𝐽 [𝐽 ]𝑓 = {𝑆𝐽 [𝑝]𝑓}𝑝∈𝐽 . (7)

This operator is similar to a convolution neural network because along each path (analogous to each layer of a convolutional neural 
network) a convolution, a nonlinearity is applied, and feature aggregation occurs via the low pass filter. The scattering norm for any 
set of paths Ω is

‖𝑆𝐽 [Ω]𝑓‖2 =∑
𝑝∈Ω

‖𝑆𝐽 [𝑝]𝑓‖22. (8)

Under very stringent conditions on the mother wavelet, the author of [5] was able to prove an isometry property for the windowed 
scattering transform. However, the problem with the admissibility condition in [5] is that there are very few classes of wavelets that 
are admissible. The author of [5] mentions an analytic cubic spline Battle-Lemarié wavelet is admissible in one dimension, but 
provides no other examples. On a related note, [11] has shown that scattering coefficients have exponential decay for 𝑛 = 1 under 
relatively mild assumptions, but her proof only applies for 𝑛 = 1, which makes the admissibility condition still necessary for 𝑛 ≥ 2. 
Additionally, to our knowledge, there are no examples in the literature of wavelets that satisfy the admissibility condition when 
𝑛 > 1.

The windowed scattering transform has three important properties that are helpful for certain machine learning tasks. The first 
two are the following:

1. The windowed scattering transform is a well-defined mapping on 𝐋2(R𝑛) and nonexpansive. In particular, for all 𝑓, ℎ ∈ 𝐋2(R𝑛),

‖𝑆𝐽 [𝑃𝐽 ]𝑓 −𝑆𝐽 [𝑃𝐽 ]ℎ‖ ≤ ‖𝑓 − ℎ‖2. (9)

2. Let the translation of a function be denoted as 𝐿𝑐𝑓 (𝑢) = 𝑓 (𝑢 − 𝑐). For certain classes of wavelets, we have

lim
𝐽→∞

‖𝑆𝐽 [𝑃𝐽 ]𝑓 −𝑆𝐽 [𝑃𝐽 ]𝐿𝑐𝑓‖ = 0 (10)

for all 𝑐 ∈R𝑛 and for all 𝑓 ∈ 𝐋2(R𝑛). One can think of this as local translation invariance.

Finally, for the last property, the following definition was used in [5] for Lipschitz continuity to the action of 𝐶2 diffeomorphisms. 
Let  be a Hilbert space, 𝜏 ∈ 𝐶2, and define the operator 𝐿𝜏𝑓 (𝑥) = 𝑓 (𝑥 −𝜏(𝑥)). A translation invariant operator Φ is said to be Lipschitz 
continuous to the action of 𝐶2 diffeomorphisms if for any compact Ω ⊂R𝑛, there exists 𝐶Ω such that for all 𝑓 ∈ 𝐋2(R𝑛) supported in 
Ω and all 𝜏 ∈ 𝐶2(R𝑛), we have

‖Φ(𝑓 ) − Φ(𝐿𝜏𝑓 )‖ ≤ 𝐶Ω
(‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞)‖𝑓‖2. (11)

The idea is that the difference in norm is proportional to the size of ‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞, which indicates how much 𝐿𝜏 deforms 𝑓 . In 
particular, the author of [5] show that (11) holds for the windowed scattering transform.

The concept of stability to diffeomorphisms has become a major point of study after the publication of [5]. Based on the definition 
above, there has been a lot of interest in exploring the stability of various operators related to machine learning and data science. 
For example, [7,12] extend the scattering transform and stability of the scattering transform to graphs and compact Riemannian 
manifolds, respectively; the authors in [13] loosen the restriction on the regularity of 𝜏 . Other papers explore stability for different 
operators with desirable properties for machine learning [14–17].

Although much work has appeared in recent years about operators similar to the scattering transform and about generalizations of 
the scattering transform, there are still some loose ends left in [5] that have not been explored yet. First, while the author of [5] does 
2
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explore creating a norm for the nonwindowed scattering transform, he does not actually prove the norm is stable to diffeomorphisms. 
We consider a less stringent definition for stability to diffeomorphisms in the same spirit as the definition in [5] for this paper. Let 
𝑉1 and 𝑉2 be normed vector spaces. Then we say that a translation invariant operator Φ ∶ 𝑉1 → 𝑉2 is said to be Lipschitz continuous 
to the action of 𝐶2 diffeomorphisms if for any compact Ω ⊂ R𝑛, there exists 𝐶Ω,𝜏 such that for all 𝑓 ∈ 𝑉1 supported in Ω and all 
𝜏 ∈ 𝐶2(R𝑛), we have

‖Φ(𝑓 ) − Φ(𝐿𝜏𝑓 )‖𝑉2 ≤ 𝐶Ω,𝜏‖𝑓‖𝑉1 , (12)

where 𝐶Ω,𝜏 → 0 as ‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞ → 0. Like with equation (11), ‖Φ(𝑓 ) −Φ(𝐿𝜏𝑓 )‖𝑉2 depends on ‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞.

Using this definition, we consider a slightly different problem than the author of [5] did for the nonwindowed scattering trans-

form. The scattering transform introduced in [5] was a collection of 𝐋1(R𝑛) norms of various cascades of dyadic wavelet convolutions 
and modulus nonlinearities applied to a signal. Here, we extend the definition of the scattering transform to the continuous wavelet 
transform and for 𝐋𝑞(R𝑛) norms with 𝑞 ∈ [1, 2]. For a continuous dilation parameter 𝜆 ∈R+ we define the dilations of 𝜓 as:

∀𝜆 ∈R+ , 𝜓𝜆(𝑥) ∶= 𝜆−𝑛∕2𝜓(𝜆−1𝑥) ,

which preserves the 𝐋2(R𝑛) norm of 𝜓 :

‖𝜓𝜆‖2 = ‖𝜓‖2 , ∀𝜆 ∈R+ .

For the continuous wavelet transform, the one layer wavelet scattering transform with 𝐋𝑞(R𝑛) norm is the function 𝑆cont,𝑞 ∶R+ →R

defined as:

∀𝜆 ∈R+ , 𝑆cont,𝑞𝑓 (𝜆) ∶= ‖𝑓 ∗ 𝜓𝜆‖𝑞 . (13)

For a dyadic dilation parameter 𝑗 ∈Z we define dilations of 𝜓 as:

∀ 𝑗 ∈Z , 𝜓𝑗 (𝑥) = 2−𝑛𝑗𝜓(2−𝑗𝑥) ,

which preserves the 𝐋1(R𝑛) norm of 𝜓 :

‖𝜓𝑗‖1 = ‖𝜓‖1 , ∀ 𝑗 ∈Z .

The one layer wavelet scattering transform for the dyadic wavelet transform is the function 𝑆dyad,𝑞𝑓 ∶Z →R defined as:

∀ 𝑗 ∈Z , 𝑆dyad,𝑞𝑓 (𝑗) ∶= ‖𝑓 ∗ 𝜓𝑗‖𝑞 . (14)

More generally, the 𝑚-layer wavelet scattering transforms 𝑆𝑚cont,𝑞𝑓 ∶R𝑚
+ →R and 𝑆𝑚

dyad,𝑞
𝑓 ∶Z𝑚 →R are defined as

𝑆𝑚cont,𝑞𝑓 (𝜆1,… , 𝜆𝑚) ∶= ‖||𝑓 ∗ 𝜓𝜆1 | ∗ 𝜓𝜆2 | ∗⋯ | ∗ 𝜓𝜆𝑚‖𝑞 , (15)

𝑆𝑚
dyad,𝑞

𝑓 (𝑗1,… , 𝑗𝑚) ∶= ‖||𝑓 ∗ 𝜓𝑗1 | ∗ 𝜓𝑗2 | ∗⋯ | ∗ 𝜓𝑗𝑚‖𝑞 . (16)

This is similar to working with a windowed scattering transform with a finite number of layers. However, our operator is dif-

ferent from the operator 𝑆𝐽 in [5] because it does not contain the filter 𝐴𝐽 to aggregate low frequency information, so the scale 
parameter in our formulation is not bounded above or below. Additionally, because the averaging filter is replaced 𝐋𝑞 (R𝑛) norms, 
our representation is fully translation invariant rather than translation invariant as 𝐽 →∞.

As for the significance of using 𝐋𝑞(R𝑛) norms to replace the averaging filter, there is one area with direct application: quantum 
energy regression tasks [8], where a representation that is similar to the rotation invariant representation in Section 6.2 has already 
been used for quantum energy regression.

Given a configuration of atoms, we would like to estimate the ground state energy of the configuration. Suppose we have a 
molecule with 𝐾 atoms with nuclear charges 𝑧𝑘 and nuclear positions 𝑝𝑘 with 𝑘 = 1, … , 𝐾 . The state 𝑥 of a molecule is given by

𝑥 = {(𝑝𝑘, 𝑧𝑘) ∈R3 ×R ∶ 𝑘 = 1… ,𝐾}. (17)

Due to how we have defined our state, we would like our representation to have the following properties:

• Permutation Invariance: the energy should not depend on the index of the molecules.

• Deformation Stability: small deformations of the molecule should only lead to small changes in energy of the system.

• Isometry Invariance: the energy should be invariant to group actions such as translations, rotations, and other general isome-

tries.

• Multiscale Interactions: molecules have many interactions terms, and these interaction terms depend on the pairwise distance 
between atoms (i.e. short range covalent bonds and longer range Van Der Waals interactions).

The rotation invariant version of our scattering transform in section 6 satisfies permutation invariance, deformation stability, and 
has multiscale interactions based on the proofs we’ve provided. We do not prove isometry invariance, but the operator is rotation 
and translation invariant.
3
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Motivated by DFT theory, the paper [8] uses a dictionary of one and two layer scattering norms with 𝑞 = 1 and 𝑞 = 2 to get (at the 
time) state-of-the-art results for energy regression tasks for planar molecules. In particular, scattering operators with 𝑞 = 1 scaled with 
the number of atoms in the system and 𝑞 = 2 encoded pairwise interactions. The motivation for using 1 < 𝑞 < 2 comes from [9,10], 
which based on the Thomas–Fermi–Dirac–von Weizsäcker model [18], also use scattering norms with 𝑞 = 4∕3, 5∕3. Later papers, like 
[9,10], use a similar representation, involving spherical harmonics, for 3D quantum energy regression.

Generalizing to stochastic processes, one can also consider scattering moments [5,19], which have similar desirable properties 
as the nonwindowed scattering transform. Applications include, but are not limited to, audio texture synthesis [19] and cosmology 
[20]. The main idea in all these applications is that the nonwindowed scattering transform has desirable mathematical properties 
and provides a small number of relevant descriptors for high dimensional, complicated data.

Remark 1. We can replace all the modulus operators with any contraction mapping (or use different contraction mappings in each 
layer) in the definition above, and all the proofs in the rest of this paper will still work. In particular, the modulus can be replaced 
with a complex version of the rectified linear unit (ReLU) nonlinearity, max(0, Re(𝑎𝑖))𝑖=1,…,𝑛 for 𝑎 ∈C𝑛, which is a popular choice for 
complex neural networks. Nonetheless, we will use the modulus operator throughout this paper without any loss of generality.

We provide a general roadmap for this paper. Section 2 will cover notation, basic properties about wavelets and the wavelet 
scattering operator, and harmonic analysis that will be necessary for the paper. In Section 3, we provide norms for an 𝑚-layer 
wavelet scattering transforms and prove that the operators are well defined mappings into specific spaces when 1 ≤ 𝑞 ≤ 2. For 
Section 4, we explore conditions under which the 𝑚-layer scattering transform is stable to dilations, and we generalize our results 
to diffeomorphisms in Section 5. Lastly, in Section 6, we formulate two new translation invariant operators that are stable to 
diffeomorphisms. The first is rotation equivariant, and the second is rotation invariant. Our contributions include, but are not limited 
to, the following:

• We formulate an extension of the dyadic wavelet scattering operator for a finite, arbitrary number of layers with parameter 
𝑞 ∈ [1, 2] by applying 𝐋𝑞(R𝑛) norms instead of 𝐋1(R𝑛) norms. Additionally, we formulate a wavelet scattering operator with 
𝑞 ∈ [1, 2] that uses a continuous scale parameter, like the continuous wavelet transform.

• We create a new finite depth scattering norm using dyadic and continuous scales in the case when 𝑞 ∈ [1, 2], and prove that 
the mappings are well defined and provide theoretical justification for a broader class of wavelets that make the scattering 
transform Lipchitz continuous to the action of 𝐶2 diffeomorphisms. However, the trade-off is that our stability bound depends 
on the number of layers.

• We provide a condition for norm equivalence in the case of 𝑞 = 2 that is less stringent.

• In the case of 𝑞 ∈ (1, 2], we prove that our norm is stable to diffeomorphisms 𝜏 ∈ 𝐶2(R𝑛) provided that ‖𝜏‖∞ < 1
2𝑛 and the wavelet 

and its first and second partial derivatives have sufficient decay. In the case of 𝑞 = 1, we show stability to dilations.

• We extend our formulation to include invariance or equivariance to the action of rotations 𝑅 ∈ SO(𝑛).

2. Notation and basic properties

We start by providing basic notation that we will use in this paper and proceed to give basic definitions and properties that will 
be necessary for our results.

2.1. Function spaces

Set R+ to be the positive real numbers, i.e. R+ ∶= (0, ∞). The gradient of a function 𝑓 ∶R𝑛 →C is given by ∇𝑓 , the Jacobian of a 
function 𝑓 ∶R𝑛 →R𝑚 is given by 𝐷𝑓 , and the Hessian is given by 𝐷2𝑓 . For 1 ≤ 𝑞 <∞, the 𝐋𝑞(R𝑛) norm of a function 𝑓 ∶R𝑛 →C is ‖𝑓‖𝑞 ∶= [∫R𝑛 |𝑓 (𝑥)|𝑞 𝑑𝑥]1∕𝑞 . When 𝑞 =∞, ‖𝑓‖∞ ∶= ess sup|𝑓 |. We will also use the notation, ‖Δ𝑓‖∞ = sup𝑥,𝑦∈R𝑑 |𝑓 (𝑥) − 𝑓 (𝑦)|, which 
should not be mistaken for applying a Laplacian operator. Greek letters with a vector symbol, such as 𝛼⃗ = (𝛼1, ⋯ , 𝛼𝑛), will be a 
multi-index of nonnegative integers; additionally, we write |𝛼⃗| = 𝛼1 +⋯ + 𝛼𝑛, and the usage will be clear from context. The operator 
𝐷𝛼⃗ is a multi-index of derivatives: 𝐷𝛼⃗𝑓 = 𝜕|𝛼⃗|

𝜕𝑥
𝛼1
1 ⋯𝜕𝑥

𝛼𝑛
𝑛

𝑓 . For integer 𝑠 ≥ 0, we define the function space 𝐇𝑠(R𝑛) = {𝑓 ∈ 𝐋2(R𝑛) ∶𝐷𝛼⃗𝑓 ∈

𝐋2(R𝑛) for |𝛼⃗| ≤ 𝑠}.

The Fourier transform of a function 𝑓 ∈ 𝐋1(R𝑛) is the function 𝑓 ∈ 𝐋∞(R𝑛) defined as:

∀𝜔 ∈R𝑛 , 𝑓 (𝜔) ∶= ∫
R𝑛

𝑓 (𝑥)𝑒−𝑖𝑥⋅𝜔 𝑑𝑥 .

The Hilbert transform of a function 𝑓 ∈ 𝐋1(R) is denoted by 𝐻𝑓 and is defined as:

𝐻𝑓 (𝑥) ∶= lim
𝜖→0 ∫|𝑥−𝑦|>𝜖

𝑓 (𝑦)
𝑥− 𝑦

𝑑𝑦 .

The map 𝐻 is a convolution operator in which 𝑓 is convolved against the function 1∕𝑥. We note that
4
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𝐻 ∶ 𝐋𝑞(R)→ 𝐋𝑞(R) , ∀1 < 𝑞 <∞ ,

however the result is not true for 𝑞 = 1, i.e., if 𝑓 ∈ 𝐋1(R) it is not necessarily true that 𝐻𝑓 ∈ 𝐋1(R). We thus introduce the Hardy 
space. We denote the Hardy space as 𝐇1(R) and it consists of those functions 𝑓 ∈ 𝐋1(R) such that 𝐻𝑓 ∈ 𝐋1(R) as well. For 𝑓 ∈𝐇1(R)
the Hardy space norm is ‖𝑓‖𝐇1(R), which we define as (see Corollary 2.4.7 of [21])

‖𝑓‖𝐇1(R) ∶= ‖𝑓‖1 + ‖𝐻𝑓‖1 . (18)

One can show that if 𝑓 ∈ 𝐇1(R), then 𝑓 must necessarily have zero average. An important property of the Hilbert transform and 
convolution is the following:

𝐻(𝑓 ∗ 𝑔) =𝐻𝑓 ∗ 𝑔 = 𝑓 ∗𝐻𝑔 , 𝑓 ∈ 𝐋𝑝(R) , 𝑔 ∈ 𝐋𝑞(R) , 1 < 1
𝑝
+ 1
𝑞
.

We have a similar definition for Hardy spaces when 𝑛 ≥ 2. For 1 ≤ 𝑗 ≤ 𝑛, define the 𝑗th Riesz transform as

𝑅𝑗𝑓 (𝑥) = lim
𝜀→0 ∫|𝑥−𝑦|>𝜀

𝑥𝑗 − 𝑦𝑗|𝑥− 𝑦|𝑛+1 𝑓 (𝑦)𝑑𝑦 , (19)

where 𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑦 = (𝑦1, … , 𝑦𝑛). The Hardy space 𝑓 ∈𝐇1(R𝑛) consists of functions 𝑓 such that 𝑓 ∈ 𝐋1(R𝑛) and 𝑅𝑗𝑓 ∈ 𝐋1(R𝑛)
for 1 ≤ 𝑗 ≤ 𝑛 as well. For 𝑓 ∈𝐇1(R𝑛) the Hardy space norm is ‖𝑓‖𝐇1(R𝑛), which we define as (see Corollary 2.4.7 of [21])

‖𝑓‖𝐇1(R𝑛) ∶= ‖𝑓‖1 + 𝑛∑
𝑗=1
‖𝑅𝑗𝑓‖1 . (20)

2.2. Wavelets

We let 𝜓 ∈ 𝐋1(R𝑛) ∩𝐋2(R𝑛) be a wavelet, which means it is a function that is localized in both space and frequency and has zero 
average, i.e.,

∫
R𝑛

𝜓(𝑥)𝑑𝑢 = 0 .

Assume 𝑓 ∈ 𝐋2(R𝑛). The continuous wavelet transform 𝑓 ∈ 𝐋2(R𝑛 ×R+) is defined as:

∀ (𝑥,𝜆) ∈R𝑛 ×R+ , 𝑓 (𝑥,𝜆) ∶= 𝑓 ∗ 𝜓𝜆(𝑥) .

Furthermore, if 𝜓 satisfies the following admissibility condition

∞

∫
0

|𝜓̂(𝜆𝜔)|2
𝜆

𝑑𝜆 = 𝜓 , ∀𝜔 ∈R𝑛 ⧵ {0} , (21)

for some 𝜓 > 0, then we will say that 𝜓 is a Littlewood-Paley wavelet for the continuous wavelet transform. If 𝜓 satisfies (21), one 
can show that the norm 𝑓 computed with a weighted measure (𝑑𝑥, 𝑑𝜆∕𝜆𝑛+1) on R𝑛 ×R+ is well defined:

‖𝑓‖2𝐋2(R𝑛×R+)
∶=

∞

∫
0

∫
R𝑛

|𝑓 (𝑥,𝜆)|2 𝑑𝑥 𝑑𝜆

𝜆𝑛+1
=

∞

∫
0

∫
R𝑛

|𝑓 ∗ 𝜓𝜆(𝑥)|2 𝑑𝑥 𝑑𝜆

𝜆𝑛+1
=

∞

∫
0

‖𝑓 ∗ 𝜓𝜆‖22 𝑑𝜆

𝜆𝑛+1
.

We note, in fact, that one can show:

‖𝑓‖2𝐋2(R𝑛×R+)
= 𝛽 ⋅ 𝜓‖𝑓‖22 ,

where

𝛽 =
{

1∕2 if 𝜓 is real valued

1 if 𝜓 is complex valued
. (22)

For a function 𝑓 ∈ 𝐋2(R𝑛) we define the dyadic wavelet transform 𝑊 𝑓 ∈ 𝓁2(𝐋2(R𝑛)) as

𝑊 𝑓 =
(
𝑓 ∗ 𝜓𝑗

)
𝑗∈Z .

If 𝜓 satisfies∑
𝑗∈Z

|𝜓̂(2𝑗𝜔)|2 = 𝐶̂𝜓 , ∀𝜔 ∈R𝑛 ⧵ {0} , (23)

for some 𝐶̂𝜓 > 0, then we will say that 𝜓 is a Littlewood-Paley wavelet for the dyadic wavelet transform. If 𝜓 satisfies (23), one can 
show that the norm 𝑊 𝑓 given below is well defined:
5
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‖𝑊 𝑓‖2
𝓁2(𝐋2(R)) ∶=

∑
𝑗∈Z

‖𝑓 ∗ 𝜓𝑗‖22 .
In fact, we have the following norm equivalence:

‖𝑊 𝑓‖2
𝓁2(𝐋2(R)) = 𝛽 ⋅ 𝐶̂𝜓‖𝑓‖22 ,

where 𝛽 is defined in (22).

2.3. Operator valued spaces

Consider a Banach space . Suppose 𝑓 ∶ R𝑛 →  and 𝑥 → ‖𝑓 (𝑥)‖ is measurable in the Lebesgue sense. Define 𝐋𝑝(R𝑛) for 
1 ≤ 𝑝 <∞ to be

‖𝑓‖𝑝
𝐋𝑝(R𝑛)

= ∫
R𝑛

‖𝑓 (𝑥)‖𝑝 𝑑𝑥 .
Also, for 1 ≤ 𝑝 <∞, define

‖𝑓‖𝐋𝑝,∞ (R𝑛) = sup
𝛿>0

𝛿 ⋅𝑚({𝑥 ∈R𝑛 ∶ ‖𝑓 (𝑥)‖ > 𝛿})1∕𝑝 .
We also have the following relation:

‖𝑓‖𝐋𝑝,∞ (R𝑛) ≤ ‖𝑓‖𝐋𝑝(R𝑛) .
Note that for 𝑓 ∶R𝑛 →R𝑛,

‖𝑓‖𝑝
𝐋𝑝
R𝑛

(R𝑛)
= ∫
R𝑛

‖𝑓 (𝑥)‖𝑝
R𝑛
𝑑𝑥 = ∫

R𝑛

|𝑓 (𝑥)|𝑝 𝑑𝑥 = ‖𝑓‖𝑝𝑝 .
3. Wavelet scattering is a bounded operator

In this section we explore for which 𝑞 > 0 and 𝑚 ≥ 1 the wavelet scattering transforms 𝑆𝑚cont,𝑞𝑓 and 𝑆𝑚
dyad,𝑞

𝑓 are well-defined as 
functions in some Banach space (i.e., have finite norm), and under what circumstances.

Let 𝜓 be a wavelet. We assume that 𝜓 has the following properties:

|𝜓(𝑥)| ≤𝐴(1 + |𝑥|)−𝑛−𝜀 (24)

∫
R𝑛

|𝜓(𝑥− 𝑦) −𝜓(𝑥)|𝑑𝑥 ≤𝐴|𝑦|𝜀′ , (25)

for some constants 𝐴, 𝜀′, 𝜀 > 0 and for all ℎ ≠ 0.

Consider the Littlewood-Paley 𝐺-function

𝐺𝜓 (𝑓 )(𝑥) =
⎛⎜⎜⎝ ∫(0,∞)

|𝑓 ∗ 𝑡−𝑛𝜓(𝑥∕𝑡)|2 𝑑𝑡
𝑡

⎞⎟⎟⎠
1∕2

. (26)

Let  = 𝐋2
(
(0,∞), 𝑑𝑡

𝑡

)
. We can rewrite this as a Bochner integral by considering the function 𝐾(𝑥) = (𝑡−𝑛𝜓(𝑥∕𝑡))𝑡>0. This is a mapping 

𝐾 ∶R𝑛 → and the function 𝑥 → ‖𝐾(𝑥)‖ is measurable. Also, if we let

 (𝑓 )(𝑥) =
⎛⎜⎜⎝∫R𝑛 𝑡−𝑛∕2𝜓𝑡(𝑥− 𝑦)𝑓 (𝑦)𝑑𝑦

⎞⎟⎟⎠𝑡>0 =
(
(𝑡−𝑛∕2𝜓𝑡 ∗ 𝑓 )(𝑥)

)
𝑡>0 ,

we observe that

𝐺𝜓 (𝑓 )(𝑥) = ‖ (𝑓 )(𝑥)‖
and

‖𝐺𝜓 (𝑓 )‖𝑝𝑝 = ‖ (𝑓 )‖𝑝
𝐿
𝑝
(R𝑛)

.

From Problem 6.1.4 of [22], the two properties above for the wavelet 𝜓 imply that

‖𝐾(𝑥)‖ ≤ 𝑐𝑛𝐴|𝑥|𝑛 , (27)

and
6
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sup
𝑦∈R𝑛⧵{0} ∫|𝑥|≥2|𝑦|

‖𝐾(𝑥− 𝑦) −𝐾(𝑥)‖𝑑𝑥 ≤ 𝑐′𝑛𝐴 , (28)

where 𝑐𝑛 and 𝑐′𝑛 depend only on 𝑛, 𝜀, and 𝜀′. We will omit the dependence on 𝜀 and 𝜀′ throughout the rest of this paper, and this will 
have no effect on any of our proofs.

Remark 2. For the rest of this paper, we will write 𝐺 in place of 𝐺𝜓 when referring to the 𝐺-function because the dependence on 
the mother wavelet is clear.

Remark 3. Note that (25) holds under the alternative condition

|∇𝜓(𝑥)| ≤𝐴(1 + |𝑥|)−𝑛−1−𝜖′ . (29)

This is a consequence of Mean Value Theorem.

We have the following result taken from Problem 6.1.4 of [22] and from Chapter V of [23].

Lemma 1 ([22,23]). Assume that 𝜓 is defined as above and satisfies (27) and (28). Then the operator 𝐺 is bounded from 𝐋2(R𝑛) to 𝐋2(R𝑛). 
Also, for 𝑝 ∈ (1, ∞) and  = 𝐋2(R+, 𝑑𝑡∕𝑡), we have

‖ 𝑓‖𝐋𝑝(R𝑛) ≤ 𝐶𝑛𝐴max(𝑝, (𝑝− 1)−1)‖𝑓‖𝐋𝑝(R𝑛) , (30)

for some 𝐶𝑛. For all 𝑓 ∈ 𝐋1(R𝑛), we also have

‖ 𝑓‖𝐋1,∞ (R𝑛) ≤ 𝐶 ′
𝑛𝐴‖𝑓‖𝐋1(R𝑛) (31)

and

‖ 𝑓‖𝐋1(R𝑛) ≤ 𝐶 ′
𝑛𝐴‖𝑓‖𝐇1(R𝑛) , (32)

for some 𝐶 ′
𝑛.

Remark 4. We can also formulate similar bounds for the Littlewod-Paley 𝔤 operator

𝔤(𝑓 )(𝑥) ∶=

[∑
𝑗∈Z

|𝜓𝑗 ∗ 𝑓 (𝑥)|2]1∕2

(33)

using similar arguments.

Remark 5. Let 𝜓 be a wavelet that has properties (24) and (25). Then with the 𝐋2 normalized dilations, the Littlewood-Paley 
𝐺-function can be written as:

𝐺(𝑓 )(𝑥) =
⎡⎢⎢⎣

∞

∫
0

|𝑓 ∗ 𝜓𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1

⎤⎥⎥⎦
1∕2

. (34)

Note that the 𝜆 measure for 𝐺(𝑓 ) matches the measure in defining the norm of 𝑓 .

3.1. The 𝐋2(R𝑛) wavelet scattering transform

In this subsection we prove the 𝐋2(R𝑛) scattering transforms are bounded operators. More specifically, we prove that 𝑆𝑚
cont,2 ∶

𝐋2(R𝑛) → 𝐋2(R𝑚
+), where 𝐋2(R𝑚

+) has the weighted measure defined by

‖𝑆𝑚
cont,2𝑓‖2𝐋2(R𝑚+)

∶=

∞

∫
0

⋯

∞

∫
0

|𝑆𝑚
cont,2𝑓 (𝜆1,… , 𝜆𝑚)|2 𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

and we show that ‖𝑆𝑚
cont,2𝑓‖𝐋2(R𝑚+)

≤ 𝐶‖𝑓‖𝐋2(R𝑛). We also show that 𝑆𝑚
dyad,2 ∶ 𝐋

2(R𝑛) → 𝓁2(Z𝑚), where

‖𝑆𝑚
dyad,2𝑓‖2𝓁2(Z𝑚) ∶= ∑

𝑗𝑚∈Z
…
∑
𝑗1∈Z

|𝑆𝑚
dyad,2𝑓 (𝑗1,… , 𝑗𝑚)|2.

Proposition 2. For any wavelet satisfying (24) and (25), we have 𝑆𝑚 ∶ 𝐋2(R𝑛) → 𝐋2(R𝑚) and 𝑆𝑚 ∶ 𝐋2(R𝑛) → 𝓁2(Z𝑚).

cont,2 + dyad,2

7
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Proof. The proof of the dyadic case is essentially identical to the proof given below and is thus omitted. The case of 𝑚 = 1 follows 
by an application of Fubini’s Theorem:

‖𝑆cont,2𝑓‖2𝐋2(R+)
=

∞

∫
0

‖𝑓 ∗ 𝜓𝜆‖22 𝑑𝜆

𝜆𝑛+1

=

∞

∫
0

∫
R𝑛

|(𝑓 ∗ 𝜓𝜆)(𝑥)|2 𝑑𝑥 𝑑𝜆

𝜆𝑛+1

= ∫
R𝑛

|𝐺(𝑓 )(𝑥)|2 𝑑𝑥
≤ 𝐶‖𝑓‖22

by boundedness of the G-function. Now we proceed by using induction. Assume that we have ‖𝑆𝑚
cont,2𝑓‖2𝐋2(R𝑚+)

≤ 𝐶𝑚‖𝑓‖22. Let 𝑡𝑓 =

𝑓 ∗ 𝜓𝑡, define 𝑀𝑓 = |𝑓 |, and 𝑈𝜆 =𝑀𝑊𝜆 for notational brevity. Then notice that

‖|||𝑓 ∗ 𝜓𝜆1 | ∗ 𝜓𝜆2 | ∗⋯ ∗ 𝜓𝜆𝑚 | ∗ 𝜓𝜆𝑚+1‖22 = ‖𝜆𝑚+1
𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓‖22.

Substituting yields

‖𝑆𝑚+1
cont,2𝑓‖𝐋2(R𝑚+1+ ) =

∞

∫
0

⋯

∞

∫
0

‖𝜆𝑚+1
𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓‖22 𝑑𝜆1𝜆𝑛+11

…
𝑑𝜆𝑚+1

𝜆𝑛+1
𝑚+1

=

∞

∫
0

⋯

∞

∫
0

∞

∫
0

‖(𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1‖22 𝑑𝜆𝑚+1𝜆𝑛+1
𝑚+1

𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

=

∞

∫
0

⋯

∞

∫
0

‖𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓‖2𝐋2(R+)
𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

≤ 𝐶
∞

∫
0

⋯

∞

∫
0

‖𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓‖22 𝑑𝜆1𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

= 𝐶

∞

∫
0

⋯

∞

∫
0

|𝑆𝑚
cont,2(𝜆1,… , 𝜆𝑚)|2 𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

≤ 𝐶𝑚+1‖𝑓‖22,
where we used the induction hypothesis in the last line. This completes the proof. □

Proposition 3. Suppose 𝜓 is a Littlewood-Paley wavelet satisfying (24) and (25). Then 𝑆𝑚
cont,2𝑓 ∶ 𝐋2(R𝑛) → 𝐋2(R𝑚

+) and specifically ‖𝑆𝑚
cont,2𝑓‖1 = 𝐶𝑚𝜓 ‖𝑓‖22. Also, 𝑆𝑚

dyad,2 ∶ 𝐋
2(R𝑛) → 𝓁2(Z𝑚) and ‖𝑆𝑚

dyad,2𝑓‖1 = 𝐶̂𝑚𝜓 ‖𝑓‖22.
Proof. We only provide the proof of the continuous case again. First consider the case 𝑚 = 1. We have:

‖𝑆cont,2𝑓‖2𝐋2(R+)
=

∞

∫
0

‖𝑓 ∗ 𝜓𝜆‖22 𝑑𝜆

𝜆𝑛+1

= 1
(2𝜋)𝑛

∞

∫
0

‖𝑓 ⋅ 𝜓̂𝜆‖22 𝑑𝜆

𝜆𝑛+1

= 1
(2𝜋)𝑛

∞

∫
0

⎛⎜⎜⎝∫R𝑛 |𝑓 (𝜔)|2|𝜓̂𝜆(𝜔)|2 𝑑𝜔
⎞⎟⎟⎠ 𝑑𝜆

𝜆𝑛+1

= 1
(2𝜋)𝑛 ∫

R𝑛

⎛⎜⎜⎝
∞

∫
0

|𝜓̂(𝜆𝜔)|2 𝑑𝜆
𝜆

⎞⎟⎟⎠ |𝑓 (𝜔)|2 𝑑𝜔
= 1

(2𝜋)𝑛 ∫
(
𝐶𝜓 |𝑓 (𝜔)|2) 𝑑𝜔
R𝑛

8
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= 1
(2𝜋)𝑛

𝐶𝜓‖𝑓‖22
= 𝐶𝜓‖𝑓‖22.

Thus the claim holds for 𝑚 = 1. Now assume that it holds through 𝑚. Then by the inductive hypothesis,

‖𝑆𝑚
cont,2𝑓‖2𝐋2(R+)

=

∞

∫
0

⋯

∞

∫
0

‖||𝑓 ∗ 𝜓𝜆1 | ∗ 𝜓𝜆2 | ∗⋯ ∗ 𝜓𝜆𝑚‖22 𝑑𝜆1𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

= 𝐶𝑚𝜓 ‖𝑓‖22.
Now consider the case of 𝑚 + 1. Similar to the previous proposition, we have

‖𝑆𝑚+1
cont,2𝑓‖2𝐋2(R+)

=

∞

∫
0

⋯

∞

∫
0

⎛⎜⎜⎝
∞

∫
0

‖(𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1‖22 𝑑𝜆𝑚+1𝜆𝑛+1
𝑚+1

⎞⎟⎟⎠
𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

= 𝐶𝜓

∞

∫
0

⋯

∞

∫
0

|𝑆𝑚
cont,2𝑓 (𝜆1,… , 𝜆𝑚)|2 𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

= 𝐶𝜓‖𝑆𝑚cont,2𝑓‖2𝐋2(R+)

= 𝐶𝑚+1𝜓 ‖𝑓‖22.
Thus, the claim is proven by induction. □

3.2. The 𝐋1(R𝑛) wavelet scattering transform

Define the notation 𝑡𝑓 = 𝑓 ∗ 𝜓𝑡, 𝑀𝑓 = |𝑓 |, and 𝑈𝑡 =𝑀𝑡. We now try to prove that for 𝑚 ∈N, 𝑆𝑚
cont,1 ∶𝐇

1(R𝑛) → 𝐋2(R𝑚
+). The 

norm for 𝑆𝑚
cont,1𝑓 is:

‖𝑆𝑚
cont,1𝑓‖𝐋2(R𝑚+)

∶=
⎛⎜⎜⎝

∞

∫
0

∞

∫
0

⋯

∞

∫
0

|𝑆𝑚
cont,1𝑓 (𝜆1, 𝜆2,… , 𝜆𝑚)|2 𝑑𝜆1

𝜆𝑛+11

𝑑𝜆2

𝜆𝑛+12

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

=
⎛⎜⎜⎝

∞

∫
0

∞

∫
0

⋯

∞

∫
0

‖‖‖(𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚
‖‖‖21 𝑑𝜆1

𝜆𝑛+11

𝑑𝜆2

𝜆𝑛+12

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

.

An analogous result will also hold for the operator 𝐇1(R𝑛) → 𝓁2(Z𝑚
+) with norm

‖𝑆𝑚
dyad,1𝑓‖𝓁2(Z𝑚) ∶=

(∑
𝑗𝑚∈Z

…
∑
𝑗1∈Z

|𝑆𝑚
dyad,1𝑓 (𝑗1,… , 𝑗𝑚)|2)1∕2

.

Before we begin, we will need an important multiplier property of the individual Riesz Transforms:

𝑅𝑗𝑓 (𝜔) = −𝑖
𝜔𝑗|𝜔|𝑓 (𝜔) . (35)

Let 𝛼⃗ = (𝛼1, … , 𝛼𝑛) be a multi-index with 𝑛-elements, and let 𝑡 = (𝑡1, … , 𝑡𝑛) ∈R𝑛. We say that 𝜓 has 𝑘 vanishing moments if for all |𝛼⃗| < 𝑘, we have

∫
R𝑛

(
Π𝑛
𝑖=1𝑡

𝛼𝑖
𝑖

)
𝜓(𝑡)𝑑𝑡 = 0. (36)

The following lemmas will be necessary.

Lemma 4 ([24]). Suppose that 𝜓 has 𝑁 vanishing moments, let 𝑀 > 1 be an integer, let 𝛼⃗ be defined as before, and let 𝛽 = (𝛽1, … , 𝛽𝑛) be a 
multi-index. Assume that 𝜓 satisfies the following properties:

• 𝜓 ∈𝐇𝑠(R𝑑 ) ∩𝐶(R𝑑 ) for some 𝑠 >𝑀 + 𝑛

2 .

• There exists 𝐴 > 0 and 𝜖 ∈ [0, 1) such that 𝜓 satisfies

|𝐷𝛼⃗𝜓| ≤𝐴(1 + |𝑥|)−𝑛−𝑁−|𝛼⃗|+𝜀 for 0 ≤ |𝛼⃗| ≤𝑀.

• For 0 ≤ |𝛼⃗| ≤𝑀 − 1 and |𝛽| <𝑁 + |𝛼⃗|,
∫ Π𝑛

𝑖=1𝑡
𝛽𝑖
𝑖
𝐷𝛼⃗𝜓(𝑡)𝑑𝑡 = 0.
R𝑛

9
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Then

|𝐷𝛼⃗𝑅𝑖𝜓(𝑥)| = |𝑅𝑖𝐷𝛼⃗𝜓(𝑥)| ≤𝐴(1 + |𝑥|)−𝑛−𝑁−|𝛼⃗|+𝜀+𝛿
for some 0 < 𝛿 < 1 − 𝜀 and 𝐷𝛼⃗𝑅𝑖𝜓 has vanishing moments up to degree 𝑁 − 1 + |𝛼⃗|.

An immediate consequence is the following Lemma, which we will provide without proof.

Lemma 5. Suppose that 𝜓 satisfies the following conditions:

• 𝜓 ∈𝐇𝑠(R𝑑 ) ∩𝐶(R𝑑 ) for some 𝑠 > 2 + 𝑛

2 .

• There exists 𝐴 > 0 and 𝜖 ∈ [0, 1) such that 𝜓 satisfies

|𝐷𝛼⃗𝜓| ≤𝐴(1 + |𝑥|)−𝑛−2−|𝛼⃗|+𝜀 for 0 ≤ |𝛼⃗| ≤ 3.

• For 0 ≤ |𝛼⃗| ≤ 2 and |𝛽| < 2 + |𝛼⃗|,
∫
R𝑛

Π𝑛
𝑖=1𝑡

𝛽𝑖
𝑖
𝐷𝛼⃗𝜓(𝑡)𝑑𝑡 = 0.

Then 𝑅𝑗𝜓 and all of its first and second partial derivatives have 𝑂((1 + |𝑥|)−𝑛−1+𝜂) decay for some 𝜂 ∈ (0, 1).

The first implication to take note of is that 𝑅𝑗𝜓 is a wavelet with “good” decay of itself and all its first and second partial 
derivatives. Note that the strict decay on the partial derivatives is necessary for technical reasons in later proofs, but decay on all 
second partial derivatives can be relaxed for the following theorem.

Theorem 6. Let 𝜓 be a wavelet satisfying Lemma 5 and let 𝑆𝑚
cont,1 be defined as above. Then for 𝑓 ∈ 𝐇1(R𝑛), there exists a constant 𝐶𝑚

such that

‖𝑆𝑚
cont,1𝑓‖𝐋2(R𝑚+)

≤ 𝐶𝑚‖𝑓‖𝐇1(R𝑛) .

Additionally,

‖𝑆𝑚
dyad,1𝑓‖𝓁2(Z𝑚) ≤ 𝐶𝑚‖𝑓‖𝐇1(R𝑛).

Proof. We proceed by induction and only provide a proof for the continuous case because the dyadic case follows by almost identical 
reasoning. Let 𝑓 ∈𝐇1(R𝑛) throughout the proof. By Minkowski’s integral inequality ([25], Theorem 202), we have

‖𝑆cont,1𝑓‖𝐋2(R+) =
⎛⎜⎜⎝

∞

∫
0

‖𝑓 ∗ 𝜓𝜆‖21 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
1∕2

=
⎛⎜⎜⎜⎝

∞

∫
0

⎛⎜⎜⎝∫R𝑛 |𝑓 ∗ 𝜓𝜆(𝑥)| 𝑑𝑥⎞⎟⎟⎠
2
𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎟⎠
1∕2

≤
⎛⎜⎜⎜⎝∫R𝑛

⎛⎜⎜⎝
∞

∫
0

|𝑓 ∗ 𝜓𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
1∕2

𝑑𝑥

⎞⎟⎟⎟⎠
= ∫
R𝑛

𝐺(𝑓 )(𝑥)𝑑𝑥

= ‖𝐺(𝑓 )‖1
≤ 𝐶‖𝑓‖𝐇1(R𝑛) ,

where in the last inequality we used Lemma 1.

Now we assume that there exists some 𝑚 ≥ 1 such that

‖𝑆𝑚
cont,1𝑓‖𝐋2(R𝑚+)

≤ 𝐶𝑚‖𝑓‖𝐇1(R𝑛).

We have
10
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‖𝑆𝑚+1
cont,1𝑓‖𝐋2(R𝑚+1+ )

=
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

‖‖‖(𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1
‖‖‖21 𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚+1

𝜆𝑛+1
𝑚+1

⎞⎟⎟⎠
1∕2

=
⎛⎜⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

⎛⎜⎜⎝∫R𝑛
|||(𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1

||| 𝑑𝑥⎞⎟⎟⎠
2
𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚+1

𝜆𝑛+1
𝑚+1

⎞⎟⎟⎟⎠
1∕2

≤
⎛⎜⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

⎛⎜⎜⎜⎝∫R𝑛
⎡⎢⎢⎣

∞

∫
0

|||(𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1
|||2 𝑑𝜆𝑚+1𝜆𝑛+1

𝑚+1

⎤⎥⎥⎦
1∕2

𝑑𝑥

⎞⎟⎟⎟⎠
2

𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎟⎠
1∕2

=
⎛⎜⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

⎡⎢⎢⎣∫R𝑛 𝐺(𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓 )(𝑥)𝑑𝑥
⎤⎥⎥⎦
2
𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎟⎠
1∕2

=
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

‖𝐺(𝑈𝜆𝑚 ⋯𝑈𝜆1𝑓 )‖21 𝑑𝜆1𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

=
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

‖𝐺(𝜆𝑚
𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓 )‖21 𝑑𝜆1𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

since the 𝐺 function has a modulus already.

It follows that

‖𝑆𝑚
cont,1𝑓‖𝐋2(R𝑚+)

≤ 𝐶
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

‖𝜆𝑚
𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓‖2𝐇1(R𝑛)

𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

.

Now use the definition of the 𝐇1(R𝑛) norm to write

‖𝜆𝑚
𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓‖𝐇1(R𝑛) = ‖𝜆𝑚

𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓‖𝐋1(R𝑛) +
𝑛∑
𝑗=1

‖‖‖‖(𝑅𝑗𝜆𝑚

)
(𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓 )

‖‖‖‖𝐋1(R𝑛)
.

Thus, since 𝑅𝑗𝜆𝑚
ℎ = ℎ ∗

(
𝑅𝑗𝜓𝜆𝑚

)
and 𝑅𝑗𝜓 wavelet, we can use our induction hypothesis and the previous lemma to get

𝐶

⎛⎜⎜⎝
∞

∫
0

⋯

∞

∫
0

‖𝜆𝑚
(𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓 )‖2𝐇1(R𝑛)

𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

≤ 𝐶
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

‖𝜆𝑚
(𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓 )‖2𝐋1(R𝑛)

𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

+𝐶
𝑛∑
𝑗=1

⎛⎜⎜⎝
∞

∫
0

⋯

∞

∫
0

‖‖‖‖(𝑅𝑗𝜆𝑚

)
(𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓 )

‖‖‖‖2𝐋1(R𝑛)

𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

≤ 𝐶𝑚+1‖𝑓‖H1(R𝑛).

Thus, the theorem is proved by induction. □

The case of 𝑛 = 1 is a little trickier. We have the following multiplier property for the Hilbert Transform:

𝐻𝑓 (𝜔) =

{
+𝑖𝑓 (𝜔) 𝜔 < 0
−𝑖𝑓 (𝜔) 𝜔 > 0

(37)

Unfortunately, this yields less regularity for 𝐻𝑓 at the origin without additional assumptions. However, notice that the Hilbert 
transform commutes with dilations, so in particular:

𝐻(𝜓𝜆) =𝐻(𝜓)𝜆 and 𝐻(𝜓𝑗 ) =𝐻(𝜓)𝑗 .

Using the calculation of 𝐻𝑓 in (37) we see that
11
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𝐻𝜓 = −𝑖𝜓 , if 𝜓 is complex analytic.

Thus, we have the following corollary.

Corollary 7. Let 𝜓 be a complex analytic wavelet such that (24) and (25) hold. Then for 𝑓 ∈𝐇1(R), there exists a constant 𝐶𝑚 such that

‖𝑆𝑚
cont,1𝑓‖𝐋2(R𝑚+)

≤ 𝐶𝑚‖𝑓‖𝐇1(R) .

Additionally,

‖𝑆𝑚
dyad,1𝑓‖𝓁2(Z𝑚) ≤ 𝐶𝑚‖𝑓‖𝐇1(R).

3.3. 𝐋𝑞(R𝑛) wavelet scattering transform

In this subsection, assume 1 < 𝑞 < 2. We prove that for 𝑚 ∈N, 𝑆𝑚cont,𝑞 ∶ 𝐋𝑞(R𝑛) → 𝐋2(R𝑚
+). The norm for 𝑆𝑚cont,𝑞𝑓 is:

‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)
∶=
⎛⎜⎜⎝

∞

∫
0

∞

∫
0

⋯

∞

∫
0

|𝑆𝑚cont,𝑞𝑓 (𝜆1, 𝜆2,… , 𝜆𝑚)|2 𝑑𝜆1
𝜆𝑛+11

𝑑𝜆2

𝜆𝑛+12

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
𝑞∕2

=
⎛⎜⎜⎝

∞

∫
0

∞

∫
0

⋯

∞

∫
0

(‖‖‖(𝑈𝜆𝑚−1 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚
‖‖‖𝑞)2 𝑑𝜆1

𝜆𝑛+11

𝑑𝜆2

𝜆𝑛+12

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
𝑞∕2

.

There is also an analogous result for

‖𝑆𝑚
dyad,𝑞

𝑓‖𝑞
𝓁2(Z𝑚)

∶=

(∑
𝑗𝑚∈Z

⋯
∑
𝑗𝑚∈Z

|𝑆𝑚
dyad,𝑞

𝑓 (𝜆1, 𝜆2,… , 𝜆𝑚)|2)𝑞∕2 .
Theorem 8. Let 1 < 𝑞 < 2. Also, let 𝜓 be a wavelet that satisfies properties (24) and (25) and let 𝑆𝑚cont,𝑞 and 𝑆𝑚

dyad,𝑞
be defined as above. Then 

there exists a universal constant 𝐶𝑚 > 0 such that ‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R+)
≤ 𝐶𝑚‖𝑓‖𝑞𝑞 for all 𝑓 ∈ 𝐋𝑞(R𝑛), and furthermore ‖𝑆𝑚

dyad,𝑞
𝑓‖𝑞

𝓁2(Z)
≤ 𝐶𝑚‖𝑓‖𝑞𝑞 .

Proof. We proceed by induction and consider the case of 𝑚 = 1 first. Let 𝑓 ∈ 𝐋𝑞(R𝑛). For the continuous wavelet transform, we apply 
Minkowski’s integral inequality:

‖𝑆cont,𝑞𝑓‖𝑞𝐋2(R+)
=
⎡⎢⎢⎣

∞

∫
0

(‖𝑓 ∗ 𝜓𝜆‖𝑞)𝑞 𝑑𝜆

𝜆𝑛+1

⎤⎥⎥⎦
1∕2

=
⎡⎢⎢⎢⎣

∞

∫
0

⎛⎜⎜⎝∫R𝑛 |𝑓 ∗ 𝜓𝜆(𝑥)|𝑞 𝑑𝑥⎞⎟⎟⎠
2∕𝑞

𝑑𝜆

𝜆𝑛+1

⎤⎥⎥⎥⎦
𝑞∕2

≤ ∫
R𝑛

⎛⎜⎜⎝
∞

∫
0

|𝑓 ∗ 𝜓𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
𝑞∕2

𝑑𝑥

= ‖𝐺(𝑓 )‖𝑞𝑞
≤ 𝐶‖𝑓‖𝑞𝑞 ,

where in the last inequality we used Theorem 1.

Now, let us assume that

‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)
≤ 𝐶𝑚⋅𝑞‖𝑓‖𝑞𝐋𝑞 (R𝑛) .

We apply Minkowski’s Integral inequality [25] to swap and then bound:

‖𝑆𝑚+1cont,𝑞𝑓‖𝑞𝐋2(R𝑚+1+ )

=
⎡⎢⎢

∞

∫ ⋯

∞

∫
(‖‖‖(𝑈𝜆1 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1

‖‖‖𝑞)2∕𝑞 𝑑𝜆1𝜆𝑛+11

…
𝑑𝜆𝑚+1

𝜆𝑛+1
𝑚+1

⎤⎥⎥
𝑞∕2
⎣0 0 ⎦
12
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=
⎡⎢⎢⎢⎣

∞

∫
0

⋯

∞

∫
0

⎛⎜⎜⎝∫R𝑛 |(𝑈𝜆1 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1 (𝑥)|𝑞 𝑑𝑥⎞⎟⎟⎠
2∕𝑞

𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚+1

𝜆𝑛+1
𝑚+1

⎤⎥⎥⎥⎦
𝑞∕2

=

⎡⎢⎢⎢⎢⎣
∞

∫
0

⋯

∞

∫
0

⎡⎢⎢⎢⎣
∞

∫
0

⎛⎜⎜⎝∫R𝑛 |(𝑈𝜆1 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1 (𝑥)|𝑞 𝑑𝑥⎞⎟⎟⎠
2∕𝑞

𝑑𝜆𝑚+1

𝜆𝑛+1
𝑚+1

⎤⎥⎥⎥⎦
𝑞
2 ⋅

2
𝑞

𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎤⎥⎥⎥⎥⎦

𝑞∕2

≤
⎡⎢⎢⎢⎢⎣

∞

∫
0

⋯

∞

∫
0

⎡⎢⎢⎢⎣∫R𝑛
⎛⎜⎜⎝

∞

∫
0

|(𝑈𝜆1 ⋯𝑈𝜆1𝑓 ) ∗ 𝜓𝜆𝑚+1 (𝑥)|2 𝑑𝜆𝑚+1𝜆𝑛+1
𝑚+1

⎞⎟⎟⎠
𝑞∕2

𝑑𝑥

⎤⎥⎥⎥⎦
2
𝑞

𝑑𝜆1

𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎤⎥⎥⎥⎥⎦

𝑞∕2

=
⎡⎢⎢⎣

∞

∫
0

⋯

∞

∫
0

‖𝐺(𝑈𝜆1 ⋯𝑈𝜆1𝑓 )‖2𝑞 𝑑𝜆1𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎤⎥⎥⎦
𝑞∕2

≤ 𝐶𝑞
⎡⎢⎢⎣

∞

∫
0

⋯

∞

∫
0

‖(𝑈𝜆1 ⋯𝑈𝜆1 )𝑓‖2𝑞 𝑑𝜆1𝜆𝑛+11

…
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎤⎥⎥⎦
𝑞∕2

= 𝐶𝑞‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)

≤ 𝐶 (𝑚+1)𝑞‖𝑓‖𝑞𝑞 .
This proves the desired claim. □

4. Stability to dilations

We now consider dilations defined by 𝜏(𝑥) = 𝑐𝑥 for some constant 𝑐, so that 𝐿𝜏𝑓 (𝑥) = 𝑓 ((1 − 𝑐)𝑥). We will start by proving a lemma 
that will be useful for our work.

Lemma 9. Assume 𝐿𝜏 is defined as above. Then

𝐿𝜏𝑓 ∗ 𝜓𝜆(𝑥) = (1 − 𝑐)−𝑛∕2
(
𝑓 ∗ 𝜓(1−𝑐)𝜆

)
((1 − 𝑐)𝑥).

Proof. Notice that

𝐿𝜏𝑓 ∗ 𝜓𝜆(𝑥) = ∫
R𝑛

𝑓 ((1 − 𝑐)𝑦)𝜓𝜆(𝑥− 𝑦)𝑑𝑦.

We make the substitution 𝑧 = (1 − 𝑐)𝑦. Then it follows that

𝐿𝜏𝑓 ∗ 𝜓𝜆(𝑥) = (1 − 𝑐)−𝑛 ∫
R𝑛

𝑓 (𝑧)𝜓𝜆(𝑥− (1 − 𝑐)−1𝑧)𝑑𝑧

= (1 − 𝑐)−𝑛 ∫
R𝑛

𝑓 (𝑧)𝜆−𝑛∕2𝜓
(
𝜆−1(𝑥− (1 − 𝑐)−1𝑧)

)
𝑑𝑧

= (1 − 𝑐)−𝑛∕2 ∫
R𝑛

𝑓 (𝑧)[(1 − 𝑐)𝜆]−𝑛∕2𝜓
(
[(1 − 𝑐)𝜆]−1 ((1 − 𝑐)𝑥− 𝑧)

)
𝑑𝑧

= (1 − 𝑐)−𝑛∕2 ∫
R𝑛

𝑓 (𝑧)𝜓(1−𝑐)𝜆 ((1 − 𝑐)𝑥− 𝑧) 𝑑𝑧

= (1 − 𝑐)−𝑛∕2𝑓 ∗ 𝜓(1−𝑐)𝜆 ((1 − 𝑐)𝑥)

= (1 − 𝑐)−𝑛∕2𝐿𝜏
(
𝑓 ∗ 𝜓(1−𝑐)𝜆

)
(𝑥). □

Remark 6. We also have

𝐿𝜏𝜆𝑓 (𝑥) = (𝑓 ∗ 𝜓𝜆)(𝑥(1 − 𝑐)).
13
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Before we begin the next Lemma, we explain the general idea behind our approach to explain the necessity of Lemma 10. Define

Ψ(𝑥) = (1 − 𝑐)−𝑛∕2𝜓(1−𝑐)(𝑥) −𝜓(𝑥). (38)

We want to prove that Ψ satisfies (24) and (25) with a linear dependence on 𝑐 for future stability lemmas.

Lemma 10. Suppose that 𝜓 is a wavelet that satisfies the following three conditions:

|𝜓(𝑥)| ≤ 𝐴

(1 + |𝑥|)𝑛+1+𝛼 𝑥 ∈R𝑛, (39)

|∇𝜓(𝑥)| ≤ 𝐴

(1 + |𝑥|)𝑛+1+𝛽 𝑥 ∈R𝑛, (40)

‖𝐷2𝜓(𝑥)‖∞ ≤ 𝐴

(1 + |𝑥|)𝑛+1+𝜅 𝑥 ∈R𝑛, (41)

for 𝛼, 𝛽, 𝜅 > 0. Consider

Ψ(𝑥) = (1 − 𝑐)−𝑛∕2𝜓(1−𝑐)(𝑥) −𝜓(𝑥),

for 𝑐 < 1
2𝑛 . Then Ψ is a wavelet satisfying (24) and (25).

Proof. Without loss of generality, assume 𝛼 < 𝛽 < 𝜅 < 1. First, it’s clear that ∫
R𝑛

Ψ = 0. We now just need to verify properties (24)

and (25). Assume 𝑐 > 0. We can modify the proof accordingly if 𝑐 < 0. Then

|Ψ(𝑥)| = |||(1 − 𝑐)−𝑛∕2𝜓(1−𝑐)(𝑥) −𝜓(𝑥)
|||

= (1 − 𝑐)−𝑛
|||||𝜓
(

𝑥

(1 − 𝑐)

)
− (1 − 𝑐)𝑛𝜓 (𝑥)

|||||
≤ (1 − 𝑐)−𝑛

||||𝜓 ( 𝑥

1 − 𝑐

)
−𝜓

(1 − 𝑐
1 − 𝑐

𝑥
)||||+ (1 − 𝑐)−𝑛

𝑛∑
𝑗=1

(
𝑛

𝑗

)
𝑐𝑗 |𝜓 (𝑥)| .

Now use mean value theorem on the first term to choose a point 𝑧 on the segment connecting 𝑥

1−𝑐 and 𝑥 such that

𝑐

1 − 𝑐
|||[∇𝜓(𝑧)]𝑇 𝑥||| = ||||𝜓 ( 𝑥

1 − 𝑐

)
−𝜓

(1 − 𝑐
1 − 𝑐

𝑥
)|||| .

We now use Cauchy-Schwarz to bound the left side:

𝑐

1 − 𝑐
|||[∇𝜓(𝑧)]𝑇 𝑥||| ≤ 𝑐

1 − 𝑐
𝐴|𝑥|

(1 + |𝑧|)𝑛+1+𝛽 .
Since 𝑧 lies on the segment connecting 𝑥

1−𝑐 and 𝑥, we see that for some 𝑡 ∈ [0, 1], we have

𝑧 = (1 − 𝑡) 𝑥

1 − 𝑐
+ 𝑡𝑥

= 1 − 𝑡
1 − 𝑐

𝑥+ 𝑡− 𝑡𝑐
1 − 𝑐

𝑥

= 1 − 𝑡+ 𝑡− 𝑡𝑐
1 − 𝑐

𝑥

= 1 − 𝑡𝑐
1 − 𝑐

𝑥.

Thus, |𝑧| ≥ |𝑥|. It now follows that

𝑐

1 − 𝑐
𝐴|𝑥|

(1 + |𝑧|)𝑛+1+𝛽 ≤ 𝑐

1 − 𝑐
𝐴

(1 + |𝑥|)𝑛+𝛽 .
Finally, we get

|Ψ𝜆(𝑥)| ≤ 𝑐

(1 − 𝑐)𝑛+1
𝐴

(1 + |𝑥|)𝑛+𝛽 +

∑𝑛
𝑗=1
(𝑛
𝑗

)
𝑐𝑗

(1 − 𝑐)𝑛+1
𝐴

(1 + |𝑥|)𝑛+𝛼
≤ 2𝐴

( 2𝑛
2𝑛− 1

)−𝑛−1 ∑𝑛
𝑗=1
(𝑛
𝑗

)
𝑐𝑗

(1 + |𝑥|)𝑛+𝛼
≤ 𝐴𝑛𝑐

(1 + |𝑥|)𝑛+𝛼
for some constant 𝐴𝑛 since we assume 𝛼 < 𝛽 and 𝑐 < 1 . Thus, (24) is satisfied.
2𝑛

14
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We use a similar idea for proving (25) holds. Assume 𝑐 > 0 without loss of generality and further assume that |𝑥| ≥ 2|𝑦|. By Mean 
Value Theorem, there exists 𝑧 on the line segment connecting 𝑥 and 𝑥 − 𝑦 such that

|Ψ(𝑥− 𝑦) − Ψ(𝑥)| = |∇Ψ(𝑧)||𝑦|.
Like before, we notice that

|∇Ψ(𝑧)| = |||(1 − 𝑐)−𝑛∕2∇𝜓(1−𝑐)(𝑧) − ∇𝜓(𝑧)|||
=
||||(1 − 𝑐)−𝑛−1∇𝜓 ( 𝑧

1 − 𝑐

)
−∇𝜓(𝑧)

||||
= (1 − 𝑐)−𝑛−1

||||∇𝜓 ( 𝑧

1 − 𝑐

)
− (1 − 𝑐)𝑛+1∇𝜓(𝑧)

||||
≤ (1 − 𝑐)−𝑛−1

||||∇𝜓 ( 𝑧

1 − 𝑐

)
−∇𝜓

(1 − 𝑐
1 − 𝑐

𝑧
)||||+ (1 − 𝑐)−𝑛−1

𝑛+1∑
𝑗=1

(
𝑛+ 1
𝑗

)
𝑐𝑗 |∇𝜓 (𝑧)| .

Let 𝑆 be the set of points on the segment connecting 𝑧

1−𝑐 and 𝑧. By Mean Value Inequality, since 𝑆 is closed and bounded, we have

||||∇𝜓 ( 𝑧

1 − 𝑐

)
−∇𝜓

(1 − 𝑐
1 − 𝑐

𝑧
)|||| ≤ 𝑐

1 − 𝑐
max
𝑤∈𝑆

‖‖‖𝐷2𝜓(𝑤)‖‖‖∞ |𝑧|.
The maximum for the quantity above is attained in 𝑆, so let us say the maximizer is 𝑤1 = (1 − 𝑡) 𝑧

1−𝑐 + 𝑡𝑧 for some 𝑡 ∈ [0, 1]. Now use 
decay of the Hessian to bound the right side:

𝑐

1 − 𝑐
max
𝑤∈𝑆

‖‖‖𝐷2𝜓(𝑤)‖‖‖∞ |𝑧| ≤ 𝑐

1 − 𝑐
𝐴|𝑧|(

1 + |𝑤1|)𝑛+1+𝜅 .
It follows that

𝑤1 = (1 − 𝑡) 𝑧

1 − 𝑐
+ 𝑡𝑧

= 1 − 𝑡
1 − 𝑐

𝑧+ 𝑡− 𝑡𝑐
1 − 𝑐

𝑧

= 1 − 𝑡+ 𝑡− 𝑡𝑐
1 − 𝑐

𝑧

= 1 − 𝑡𝑐
1 − 𝑐

𝑧.

Thus, |𝑤1| ≥ |𝑧|. We conclude

𝑐

1 − 𝑐
𝐴|𝑧|(

1 + |𝑤1|)𝑛+1+𝜅 ≤ 𝑐

1 − 𝑐
𝐴

(1 + |𝑧|)𝑛+𝜅 .
For bounding |∇Ψ(𝑧)|, we see

|∇Ψ(𝑧)| ≤ 𝑐

(1 − 𝑐)𝑛+2
𝐴

(1 + |𝑧|)𝑛+𝜅 +

∑𝑛+1
𝑗=1
(𝑛+1
𝑗

)
𝑐𝑗

(1 − 𝑐)𝑛+1
𝐴

(1 + |𝑧|)𝑛+1+𝛽
≤𝐴(1 − 𝑐)−𝑛−2 2

∑𝑛+1
𝑗=1
(𝑛+1
𝑗

)
𝑐𝑗

(1 + |𝑧|)𝑛+𝜅
≤ ( 2𝑛

2𝑛− 1

)𝑛+2 2𝐴
∑𝑛+1
𝑗=1
(𝑛+1
𝑗

)
𝑐𝑗

(1 + |𝑧|)𝑛+𝜅 .

Going back to proving (25) holds for Ψ,

|Ψ(𝑥− 𝑦) − Ψ(𝑥)| = |∇Ψ(𝑧)||𝑦| ≤ ( 2𝑛
2𝑛− 1

)𝑛+2 2𝐴
∑𝑛+1
𝑗=1
(𝑛+1
𝑗

)
𝑐𝑗 |𝑦|

(1 + |𝑧|)𝑛+𝜅 ,

since the point 𝑧 lies on the lines on a line segment connecting 𝑥 − 𝑦 and 𝑥 with |𝑥| ≥ 2|𝑦|, we can use an argument similar to above 
to conclude

|Ψ(𝑥− 𝑦) − Ψ(𝑥)| ≤ 2𝑛+1+𝜅
( 2𝑛
2𝑛− 1

)𝑛+2 𝐴∑𝑛+1
𝑗=1
(𝑛+1
𝑗

)
𝑐𝑗

(1 + |𝑥|)𝑛+𝜅 |𝑦|.
Now integrate to get
15
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∫|𝑥|≥2|𝑦|
|Ψ(𝑥− 𝑦) − Ψ(𝑥)|𝑑𝑥 ≤ 2𝑛+1+𝜅

( 2𝑛
2𝑛− 1

)𝑛+2
𝐴

𝑛+1∑
𝑗=1

(
𝑛+ 1
𝑗

)
𝑐𝑗 |𝑦| ∫|𝑥|≥2|𝑦|

𝑑𝑥|𝑥|𝑛+𝜅
= 2𝑛+1+𝜅

( 2𝑛
2𝑛− 1

)𝑛+2
𝐴𝐼𝑛

𝑛+1∑
𝑗=1

(
𝑛+ 1
𝑗

)
𝑐𝑗 |𝑦|1−𝜅 ,

where 𝐼𝑛 is some constant associated with the integration. Finally, we have a bound of

∫|𝑥|≥2|𝑦|
|Ψ(𝑥− 𝑦) − Ψ(𝑥)|𝑑𝑥 ≤ 𝐴̃𝑛𝑐|𝑦|1−𝜅 ,

for some constant 𝐴̃𝑛 only dependent on the dimension 𝑛. Thus, (25) holds with exponent 1 − 𝜅 ∈ (0, 1). Let 𝐴̂𝑛 = max{𝐴𝑛, 𝐴̃𝑛}. It 
follows that

|Ψ𝜆(𝑥)| ≤ 𝐴̂𝑛𝑐

(1 + |𝑥|)𝑛+𝛼
∫|𝑥|≥2|𝑦|

|Ψ(𝑥− 𝑦) − Ψ(𝑥)|𝑑𝑥 ≤ 𝐴̂𝑛𝑐|𝑦|1−𝜅 . □

It follows from Problem 6.1.2 in [22] that the bound in the 𝐺-function depends linearly on the constant 𝐴 from Theorem 1 when 
proving 𝐋2(R𝑛) boundedness. Thus, the following corollaries hold.

Corollary 11. Assume |𝑐| < 1
2𝑛 . For 𝜓 satisfying the conditions of Lemma 10, when 1 < 𝑝 <∞, there exist constants 𝐶𝑛,𝑝 and 𝐶̂𝑛,𝑝 such that

‖‖‖‖‖‖‖
⎛⎜⎜⎝

∞

∫
0

|𝑓 ∗ Ψ𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
1∕2‖‖‖‖‖‖‖𝐋𝑝(R𝑛) ≤ 𝑐 ⋅𝐶𝑛,𝑝max{𝑝, (𝑝− 1)−1}‖𝑓‖𝐋𝑝(R𝑛)

and ‖‖‖‖‖‖
(∑
𝑗∈Z

|𝑓 ∗ Ψ𝑗 (𝑥)|2)1∕2‖‖‖‖‖‖𝐋𝑝(R𝑛) ≤ 𝑐 ⋅ 𝐶̂𝑛max{𝑝, (𝑝− 1)−1}‖𝑓‖𝐋𝑝(R𝑛).
Alternatively, if one of the following holds:

• 𝑛 = 1, 𝜓 is complex analytic and satisfies the conditions of Lemma 10,

• 𝑛 ≥ 2 and 𝜓 satisfies the conditions of Lemma 5,

there exist constants 𝐻𝑛 and 𝐻̂𝑛 such that

‖‖‖‖‖‖‖
⎛⎜⎜⎝

∞

∫
0

|𝑓 ∗ Ψ𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
1∕2‖‖‖‖‖‖‖𝐋1(R𝑛)

≤ 𝑐 ⋅𝐻𝑛‖𝑓‖𝐇1(R𝑛)

and ‖‖‖‖‖‖
(∑
𝑗∈Z

|𝑓 ∗ Ψ𝑗 (𝑥)|2)1∕2‖‖‖‖‖‖𝐋1(R𝑛)

≤ 𝑐 ⋅ 𝐻̂𝑛‖𝑓‖𝐇1(R𝑛).

Now we can use the results above for our main dilation stability results.

Theorem 12. Suppose that 𝜓 is a wavelet that satisfies the conditions of Lemma 10. Then there exists a constants 𝐾𝑛,𝑚 and 𝐾̂𝑛,𝑚 only 
dependent on 𝑛 and 𝑚 such that

‖𝑆𝑚
cont,2𝑓 −𝑆𝑚

cont,2𝐿𝜏𝑓‖𝐋2(R𝑚+)
≤ |𝑐| ⋅𝐾𝑛,𝑚‖𝑓‖2

and

‖𝑆𝑚
dyad,2𝑓 −𝑆𝑚

dyad,2𝐿𝜏𝑓‖𝐋2(R𝑚+)
≤ |𝑐| ⋅ 𝐾̂𝑛,𝑚‖𝑓‖2

for any |𝑐| < 1 .
2𝑛
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Proof. Without loss of generality, assume 𝑐 > 0. Let

𝑡𝑓 = 𝑓 ∗ 𝜓𝑡

𝑀𝑓 = |𝑓 |
𝑈𝑡 =𝑀𝑡

𝐴𝑞𝑓 =
⎛⎜⎜⎝∫R𝑛 𝑓 𝑞(𝑥)𝑑𝑥

⎞⎟⎟⎠
1∕𝑞

.

It follows that 𝑆𝑚
cont,2 = 𝐴2𝑀𝑊𝜆𝑚

𝑈𝜆𝑚−1 ⋯ 𝑈𝜆1 . We will also let 𝑉𝑚−1 = 𝑈𝜆𝑚−1 ⋯ 𝑈𝜆1 , with 𝑉0 being the identity operator, and make a 
slight abuse of notation by denoting 𝜆𝑚

as  . First, we will add and subtract 𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓 and apply triangle inequality:

‖𝑆𝑚
cont,2𝑓 −𝑆𝑚

cont,2𝐿𝜏𝑓‖𝐋2(R𝑚+)
= ‖𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝑉𝑚−1𝐿𝜏𝑓‖𝐋2(R𝑚+)

≤ ‖𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓‖𝐋2(R𝑚+)

+ ‖𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓 −𝐴2𝑀𝑉𝑚−1,𝐿𝜏𝑓‖𝐋2(R𝑚+)
.

We’ll start by bounding the first term. We see that 𝑔 =𝑉𝑚−1𝑓 ∈ 𝐋2(R𝑛). Thus

|𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓 | = ||‖𝑔‖2 − ‖𝐿𝜏𝑔‖2|| .
Now use a change of variables:

‖𝐿𝜏𝑔‖22 = ∫
R𝑛

|𝑔((1 − 𝑐)𝑥)|2 𝑑𝑥 = (1 − 𝑐)−𝑛‖𝑔‖22.
It then follows that

||‖𝐿𝜏𝑔‖2 − ‖𝑔‖2|| = ‖𝑔‖2( 1
(1 − 𝑐)𝑛∕2

− 1
)
≤ ‖𝑔‖2( 1

(1 − 𝑐)𝑛
− 1
)
.

Taking the scattering norm yields

‖𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓‖2𝐋2(R𝑚+)
≤
(

1
(1 − 𝑐)𝑛

− 1
)2 ‖𝑆𝑚

cont,2𝑓‖2𝐋2(R𝑚+)

=
(
1 − (1 − 𝑐)𝑛

(1 − 𝑐)𝑛

)2 ‖𝑆𝑚
cont,2𝑓‖2𝐋2(R𝑚+)

=

(
1

(1 − 𝑐)𝑛

𝑛∑
𝑗=1

(
𝑛

𝑗

)
𝑐𝑗

)2 ‖𝑆𝑚
cont,2𝑓‖2𝐋2(R𝑚+)

≤
[( 2𝑛

2𝑛− 1

)𝑛 𝑛∑
𝑗=1

(
𝑛

𝑗

)
𝑐𝑗

]2 ‖𝑆𝑚
cont,2𝑓‖2𝐋2(R𝑚+)

≤ 𝑐2 ⋅𝐶𝑚,𝑛‖𝑓‖22.
For the second term, apply Minkwoski’s inequality for 2 norms:

‖𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓 −𝐴2𝑀𝑉𝑚−1𝐿𝜏𝑓‖𝐋2(R𝑚+)

=
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

||‖𝐿𝜏𝑉𝑚−1𝑓‖2 − ‖𝐿𝜏𝑉𝑚−1𝑓‖2||2 𝑑𝜆1
𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

≤
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

‖𝐿𝜏𝑉𝑚−1𝑓 −𝐿𝜏𝑉𝑚−1𝑓‖22 𝑑𝜆1
𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

= ‖𝐴2𝑀[𝑉𝑚−1,𝐿𝜏 ]𝑓‖𝐋2(R𝑚+)
.

Now this is a commutator term, and we can now bound:

‖𝐴2𝑀[𝑉𝑚−1,𝐿𝜏 ]𝑓‖2𝐋2(R𝑚+)
=

∞

∫ ⋯

∞

∫ ‖[𝑉𝑚−1,𝐿𝜏 ]𝑓‖22 𝑑𝜆1
𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚
0 0
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= ‖|[𝑉𝑚−1,𝐿𝜏 ]𝑓‖2𝐋2(R𝑚+×R𝑛)

≤ ‖[𝑉𝑚−1,𝐿𝜏 ]‖2𝐋2(R𝑚+×R𝑛)→𝐋2(R𝑛)‖𝑓‖22.
We examine the commutator term more closely. Without a loss of generality, assume 𝑚 ≥ 2. By expanding it, we see that each term 
contains [ , 𝐿𝜏 ]. It follows that

‖[𝑉𝑚−1,𝐿𝜏 ]‖𝐋2(R𝑚+×R𝑛)
≤𝑚‖‖𝑚−1𝐋2(R+×R𝑛)→𝐋2(R𝑛)‖𝑀‖𝑚−1𝐋2(R𝑛)→𝐋2(R𝑛)‖[ ,𝐿𝜏 ]‖𝐋2(R+×R𝑛)→𝐋2(R𝑛)

≤ 𝐶𝑚‖[ ,𝐿𝜏 ]‖𝐋2(R+×R𝑛)→𝐋2(R𝑛).

Thus, once we bound this quantity appropriately, we will finish the proof. We start by writing

‖[ ,𝐿𝜏 ]𝑓‖2𝐋2(R+×R𝑛)
=

∞

∫
0

‖(𝐿𝜏𝑓 ) ∗ 𝜓𝜆 −𝐿𝜏 (𝑓 ∗ 𝜓𝜆
)‖22 𝑑𝜆

𝜆𝑛+1
.

By substitution with 𝑧 = (1 − 𝑐)𝑥 and Lemma 9,

‖(𝐿𝜏𝑓 ) ∗ 𝜓𝜆 −𝐿𝜏 (𝑓 ∗ 𝜓𝜆
)‖22 = ∫

R𝑛

|(𝐿𝜏𝑓 ∗ 𝜓𝜆
)
(𝑥) −𝐿𝜏

(
𝑓 ∗ 𝜓𝜆

)
(𝑥)|||2 𝑑𝑥

= ∫
R𝑛

|||(1 − 𝑐)−𝑛∕2 (𝑓 ∗ 𝜓(1−𝑐)𝜆
)
((1 − 𝑐)𝑥) −

(
𝑓 ∗ 𝜓𝜆

)
((1 − 𝑐)𝑥)|||2 𝑑𝑥

= (1 − 𝑐)−𝑛 ∫
R𝑛

|||(1 − 𝑐)−𝑛∕2 (𝑓 ∗ 𝜓(1−𝑐)𝜆
)
(𝑧) −

(
𝑓 ∗ 𝜓𝜆

)
(𝑧)|||2 𝑑𝑧

= (1 − 𝑐)−𝑛 ∫
R𝑛

|||𝑓 ∗
(
(1 − 𝑐)−𝑛∕2𝜓(1−𝑐)𝜆 −𝜓𝜆

)|||2 𝑑𝑧
= (1 − 𝑐)−𝑛 ∫

R𝑛

|||(𝑓 ∗ Ψ𝜆
)
(𝑧)|||2 𝑑𝑧,

= (1 − 𝑐)−𝑛‖𝑓 ∗ Ψ𝜆‖22 .
Thus, we obtain

∞

∫
0

‖(𝐿𝜏𝑓 ) ∗ 𝜓𝜆 −𝐿𝜏 (𝑓 ∗ 𝜓𝜆
)‖22 𝑑𝜆

𝜆𝑛+1
= (1 − 𝑐)−𝑛

∞

∫
0

‖𝑓 ∗ Ψ𝜆‖22 𝑑𝜆𝜆𝑛+1
= (1 − 𝑐)−𝑛 ∫

R𝑛

∞

∫
0

|𝑓 ∗ Ψ𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1
𝑑𝑥

= (1 − 𝑐)−𝑛
‖‖‖‖‖‖‖
⎛⎜⎜⎝

∞

∫
0

|𝑓 ∗ Ψ𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
1∕2‖‖‖‖‖‖‖

2

2

≤ 𝑐2 ⋅ ( 2𝑛
2𝑛− 1

)𝑛
𝐶𝑛,𝑝‖𝑓‖22.

It follows that

‖𝑆𝑚
cont,2𝑓 −𝑆𝑚

cont,2𝐿𝜏𝑓‖𝐋2(R𝑚+)
≤ |𝑐| ⋅𝐾𝑛,𝑚‖𝑓‖2

for any 𝑐 < 1
2𝑛 . □

As is customary at this point, we have the following corollaries. We start with the case where 1 < 𝑞 < 2.

Corollary 13. Assume |𝑐| < 1
2𝑛 . For 𝑞 ∈ (1, 2), there exists constants 𝐾𝑛,𝑚,𝑞 and 𝐾̂𝑛,𝑚,𝑞 such that

‖𝑆𝑚cont,𝑞𝑓 −𝑆𝑚cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R𝑚+)
≤ |𝑐|𝑞 ⋅𝐾𝑛,𝑚,𝑞‖𝑓‖𝑞𝑞

and

‖𝑆𝑚 𝑓 − 𝑆𝑚 𝐿𝜏𝑓‖𝑞 2 𝑚
≤ |𝑐|𝑞 ⋅ 𝐾̂𝑛,𝑚,𝑞‖𝑓‖𝑞 .
dyad,𝑞 dyad,𝑞 𝓁 (Z ) 𝑞

18
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Proof. Without loss of generality again, assume 𝑐 > 0. First, we will add and subtract 𝐴𝑞𝑀𝐿𝜏𝑉𝑚−1𝑓 and apply triangle inequality:

‖𝑆𝑚cont,𝑞𝑓 − 𝑆𝑚cont,𝑞𝐿𝜏𝑓‖𝐋2(R𝑚+)
= ‖𝐴𝑞𝑀𝑉𝑚−1𝑓 −𝐴𝑞𝑀𝑉𝑚−1𝐿𝜏𝑓‖𝐋2(R𝑚+)

≤ ‖𝐴𝑞𝑀𝑉𝑚−1𝑓 −𝐴𝑞𝑀𝐿𝜏𝑉𝑚−1𝑓‖𝐋2(R𝑚+)

+ ‖𝐴𝑞𝑀𝐿𝜏𝑉𝑚−1𝑓 −𝐴𝑞𝑀𝑉𝑚−1,𝐿𝜏𝑓‖𝐋2(R𝑚+)
.

We’ll start by bounding the first term again. Define 𝑔 =𝑉𝑚−1𝑓 ∈ 𝐋𝑞(R𝑛), and we have

|𝐴𝑞𝑀𝑉𝑚−1𝑓 −𝐴𝑞𝑀𝐿𝜏𝑉𝑚−1𝑓 | = |||‖𝑔‖𝑞 − ‖𝐿𝜏𝑔‖𝑞||| .
By change of variables,|||‖𝑔‖𝑞 − ‖𝐿𝜏𝑔‖𝑞||| = ‖𝑔‖𝑞

(
1

(1 − 𝑐)𝑛∕𝑞
− 1
)
≤ ‖𝑔‖𝑞 ( 1

(1 − 𝑐)𝑛
− 1
)
.

Again, we have

‖𝐴𝑞𝑀𝑉𝑚−1𝑓 −𝐴𝑞𝑀𝐿𝜏𝑉𝑚−1𝑓‖𝑞𝐋2(R𝑚+)
≤
(

1
(1 − 𝑐)𝑛∕𝑞

− 1
)𝑞 ‖𝑆𝑚

cont,2𝑓‖𝑞𝐋2(R𝑚+)

≤
(

1
(1 − 𝑐)𝑛

− 1
)𝑞 ‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)

=
[
1 − (1 − 𝑐)𝑛

(1 − 𝑐)𝑛

]𝑞 ‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)

=

[
1

(1 − 𝑐)𝑛

𝑛∑
𝑗=1

(
𝑛

𝑗

)
𝑐𝑗

]𝑞 ‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)

≤
[( 2𝑛

2𝑛− 1

)𝑛 𝑛∑
𝑗=1

(
𝑛

𝑗

)
𝑐𝑗

]𝑞 ‖𝑆𝑚cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)

≤ |𝑐|𝑞 ⋅𝐶𝑚,𝑛‖𝑓‖𝑞𝑞 .
For the second term, apply Minkoski’s inequality for 𝑞 norms:

‖𝐴𝑞𝑀𝐿𝜏𝑉𝑚−1𝑓 −𝐴𝑞𝑀𝑉𝑚−1,𝐿𝜏𝑓‖𝐋2(R𝑚+)

=
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

|||‖𝐿𝜏𝑉𝑚−1𝑓‖𝑞 − ‖𝐿𝜏𝑉𝑚−1𝑓‖𝑞|||2 𝑑𝜆1𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

≤
⎛⎜⎜⎝

∞

∫
0

⋯

∞

∫
0

‖𝐿𝜏𝑉𝑚−1𝑓 −𝐿𝜏𝑉𝑚−1𝑓‖2𝑞 𝑑𝜆1
𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
1∕2

= ‖𝐴𝑞𝑀[𝑉𝑚−1,𝐿𝜏 ]𝑓‖𝐋2(R𝑚+)
.

Via a similar reduction technique for Theorem 12, we can reduce to a commutator bound ‖𝐴𝑞𝑀[ , 𝐿𝜏 ]𝑓‖𝐋2(R𝑚+)
. Additionally, we 

have

‖(𝐿𝜏𝑓 ) ∗ 𝜓𝜆 −𝐿𝜏 (𝑓 ∗ 𝜓𝜆
)‖𝑞𝑞 = (1 − 𝑐)−𝑛‖𝑓 ∗ Ψ𝜆‖𝑞𝑞 .

Thus,

‖𝐴𝑞𝑀[ ,𝐿𝜏 ]𝑓‖𝑞𝐋2(R𝑚+)
=
⎛⎜⎜⎝

∞

∫
0

‖(𝐿𝜏𝑓 ) ∗ 𝜓𝜆 −𝐿𝜏 (𝑓 ∗ 𝜓𝜆
)‖2𝑞 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
𝑞∕2

= (1 − 𝑐)−𝑛
⎛⎜⎜⎝

∞

∫
0

‖𝑓 ∗ Ψ𝜆‖2𝑞 𝑑𝜆𝜆𝑛+1
⎞⎟⎟⎠
𝑞∕2

≤ (1 − 𝑐)−𝑛
‖‖‖‖‖‖‖
⎛⎜⎜⎝

∞

∫
0

|𝑓 ∗ Ψ𝜆(𝑥)|2 𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎠
1∕2‖‖‖‖‖‖‖

𝑞

𝑞

≤ |𝑐|𝑞 ⋅ 𝐶̃𝑛‖𝑓‖𝑞𝑞 .
It follows that
19
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‖𝑆𝑚cont,𝑞𝑓 − 𝑆𝑚cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R𝑚+)
≤ |𝑐|𝑞 ⋅𝐾𝑛,𝑚‖𝑓‖𝑞𝑞

for any |𝑐| < 1
2𝑛 . □

Additionally, for the case of 𝑞 = 1, we have the following corollaries that we will state, but not prove, since the idea is the same 
as the previous corollary.

Corollary 14. Suppose one of the following holds:

• 𝑛 = 1, 𝜓 is complex analytic and satisfies the conditions of Lemma 10,

• 𝑛 ≥ 2 and 𝜓 satisfies the conditions of Lemma 5,

then there exist constants 𝐾𝐻,𝑚 and 𝐾̂𝐻,𝑚 such that

‖𝑆𝑚
cont,1𝑓 −𝑆𝑚

cont,1𝐿𝜏𝑓‖𝐋2(R𝑚+)
≤ 𝑐 ⋅𝐾𝐻,𝑚‖𝑓‖𝐇1(R𝑛)

and

‖𝑆𝑚
dyad,1𝑓 −𝑆𝑚

dyad,1𝐿𝜏𝑓‖𝓁2(Z𝑚) ≤ 𝑐 ⋅ 𝐾̂𝐻,𝑚‖𝑓‖𝐇1(R𝑛).

5. Stability to diffeomorphisms

We now focus on the stability of 𝑆𝑚cont,𝑞𝑓 for general diffeomorphisms with ‖𝐷𝜏‖∞ < 1
2𝑛 . The corresponding operator for diffeo-

morphisms is defined as 𝐿𝜏𝑓 (𝑥) = 𝑓 (𝑥 − 𝜏(𝑥)).

5.1. Stability to diffeomorphisms when 𝑞 = 2

Proposition 15. Assume 𝜓 and its first and second order derivatives have decay1 in 𝑂((1 + |𝑥|)−𝑛−3), and ∫
R𝑛
𝜓(𝑥) 𝑑𝑥 = 0. Then for every 

𝜏 ∈ 𝐶2(R𝑛) with ‖𝐷𝜏‖∞ ≤ 1
2𝑛 , there exists 𝐶̃𝑛 > 0 such that:

‖[ ,𝐿𝜏 ]‖𝐋2(R+×R𝑛)→𝐋2(R𝑛) ≤ 𝐶̃𝑛
(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1

)
+ ‖𝐷2𝜏‖∞) .

Proof. The argument is a continuous version of Lemma 2.14 in [5]. We will first show how to transform our commutator term into 
an analogous commutator term from [5]. To shorten notation, we will denote ‖[ , 𝐿𝜏 ]‖𝐋2(R+×R𝑛) as ‖[ , 𝐿𝜏 ]‖. We have

‖[ ,𝐿𝜏 ]𝑓‖2𝐋2(R+×R𝑛)
=

∞

∫
0

‖[𝑡,𝐿𝜏 ]𝑓‖22 𝑑𝑡

𝑡𝑛+1

=

∞

∫
0

‖𝜓𝑡 ∗ (𝐿𝜏𝑓 ) −𝐿𝜏 (𝜓𝑡 ∗ 𝑓 )‖22 𝑑𝑡𝑡𝑛+1
=

∞

∫
0

∫
R𝑛

||𝜓𝑡 ∗ (𝐿𝜏𝑓 ) −𝐿𝜏 (𝜓𝑡 ∗ 𝑓 )||2 𝑑𝑥 𝑑𝑡

𝑡𝑛+1
.

Notice that 𝜓 1
𝑡

(𝑥) = 𝑡𝑛∕2𝜓(𝑡𝑥). Use the change of variables 𝑡 = 1
𝜆

to get

‖[ ,𝐿𝜏 ]𝑓‖2𝐋2(R+×R𝑛)
=

∞

∫
0

‖‖‖‖𝜓 1
𝜆

∗ (𝐿𝜏𝑓 ) −𝐿𝜏 (𝜓 1
𝜆

∗ 𝑓 )
‖‖‖‖22 𝜆𝑛−1 𝑑𝜆

=

∞

∫
0

‖‖‖‖𝜆𝑛∕2𝜓 1
𝜆

∗ (𝐿𝜏𝑓 ) −𝐿𝜏 (𝜆𝑛∕2𝜓 1
𝜆

∗ 𝑓 )
‖‖‖‖22 𝑑𝜆𝜆 .

Define W𝜆𝑓 = 𝑓 ∗ 𝜆𝑛∕2𝜓 1
𝜆

with 𝜆𝑛∕2𝜓 1
𝜆

(𝑥) = 𝜆𝑛𝜓(𝜆𝑥). In other words, W𝑡 is a convolution with an 𝐋1 normalized wavelet, which 
matches with the normalization in [5]. Now we have

1 Similar to [13], we have found that there needs to be 𝑂((1 + |𝑥|)−𝑛−2+𝛼 ) decay for some 𝛼 > 0 to bound (E.26) in [5].
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‖[ ,𝐿𝜏 ]𝑓‖2𝐋2(R+×R𝑛)
=

∞

∫
0

‖[W𝜆,𝐿𝜏 ]𝑓‖22 𝑑𝜆𝜆 .
This implies

[ ,𝐿𝜏 ]∗[ ,𝐿𝜏 ] =

∞

∫
0

[W𝜆,𝐿𝜏 ]∗[W𝜆,𝐿𝜏 ]
𝑑𝜆

𝜆

Defining 𝐾𝜆 = W𝜆 −𝐿𝜏W𝜆𝐿
−1
𝜏 so that [W𝜆, 𝐿𝜏 ] =𝐾𝜆𝐿𝜏 , we have:

‖[ ,𝐿𝜏 ]‖ = ‖[ ,𝐿𝜏 ]∗[ ,𝐿𝜏 ]‖1∕2
=
‖‖‖‖‖

∞

∫
0

[W𝜆,𝐿𝜏 ]∗[W𝜆,𝐿𝜏 ]
𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

=
‖‖‖‖‖

∞

∫
0

𝐿∗
𝜏𝐾

∗
𝜆
𝐾𝜆𝐿𝜏

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤ ‖𝐿𝜏‖ ⋅ ‖‖‖‖‖
∞

∫
0

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

.

Since ‖𝐿𝜏𝑓‖22 ≤ ( 1
1−𝑛‖𝐷𝜏‖∞

)‖𝑓‖22,
‖𝐿𝜏‖ ≤ 1

1 − 𝑛‖𝐷𝜏‖∞ ≤ 2

and the problem is reduced to bounding ‖‖‖∫ ∞
0 𝐾∗

𝜆
𝐾𝜆 𝜆

−1 𝑑𝜆
‖‖‖1∕2. Let 𝛾 ≥ 1. The integral is divided into three pieces:

‖‖‖‖‖
∞

∫
0

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤
⎛⎜⎜⎜⎝
‖‖‖‖‖

2−𝛾

∫
0

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖+
‖‖‖‖‖

1

∫
2−𝛾

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖+
‖‖‖‖‖

∞

∫
1

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
⎞⎟⎟⎟⎠
1∕2

≤ ‖‖‖‖‖
2−𝛾

∫
0

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

+
‖‖‖‖‖

1

∫
2−𝛾

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

+
‖‖‖‖‖

∞

∫
1

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

= 𝑃1 + 𝑃2 + 𝑃3.

To bound 𝑃1, we decompose 𝐾𝜆 = 𝐾̃𝜆,1 + 𝐾̃𝜆,2, where the kernels defining 𝐾̃𝜆,1, 𝐾̃𝜆,2 are

𝑘̃𝜆,1(𝑥, 𝑢) ∶= (1 − det(𝐼 −𝐷𝜏(𝑢)))𝜆𝑛𝜓(𝜆(𝑥− 𝑢))

∶= 𝑎(𝑢)𝜆𝑛𝜓(𝜆(𝑥− 𝑢)),

𝑘̃𝜆,2(𝑥, 𝑢) ∶= det(𝐼 −𝐷𝜏(𝑢))(𝜆𝑛𝜓(𝜆(𝑥− 𝑢)) − 𝜆𝑛𝜓(𝜆(𝑥− 𝜏(𝑥) − 𝑢+ 𝜏(𝑢))),

respectively. Since our normalization matches with [5], E.13 implies that there exists a constant 𝐶𝑛 such that

‖𝐾̃𝜆,2‖ ≤ 𝐶𝑛𝜆‖Δ𝜏‖∞.
We want to prove that

‖‖‖‖‖
1

∫
0

𝐾̃∗
𝜆,1𝐾̃𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤ 𝐶𝑛‖𝐷𝜏‖∞.
Let 𝑓 ∈ 𝐋2(R𝑛) be arbitrary and define 𝜓̃(𝑡) = 𝜓∗(−𝑡). Based on [5], the kernel of 𝐾∗

𝜆,1𝐾𝜆,1 is given by

𝑘̃𝜆(𝑦, 𝑧) ∶= 𝑎(𝑦)𝑎(𝑧)𝜆𝑛∕2𝜓̃ 1
𝜆

∗ 𝜆𝑛∕2𝜓̃ 1
𝜆

(𝑧− 𝑦).

Thus, it is sufficient to bound the quantity

1

∫ ‖𝐾∗
𝜆,1𝐾𝜆,1𝑓‖22 𝑑𝜆𝜆 .
0
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We see that ‖𝑎‖∞ ≤ 𝑛‖𝐷𝜏‖∞. Substituting in the kernel and bounding yields

1

∫
0

‖𝐾∗
𝜆,1𝐾𝜆,1𝑓‖22 𝑑𝜆𝜆 =

1

∫
0

∫
R𝑛

|||||||∫R𝑛 𝑎(𝑦)𝑎(𝑧)
(
𝜆𝑛∕2𝜓̃ 1

𝜆

∗ 𝜆𝑛∕2𝜓 1
𝜆

)
(𝑧− 𝑦)𝑓 (𝑦)𝑑𝑦

|||||||
2

𝑑𝑧
𝑑𝜆

𝜆

=

1

∫
0

∫
R𝑛

|𝑎(𝑧)|2 |||||||∫R𝑛 𝑎(𝑦)
(
𝜆𝑛∕2𝜓̃ 1

𝜆

∗ 𝜆𝑛∕2𝜓 1
𝜆

)
(𝑧− 𝑦)𝑓 (𝑦)𝑑𝑦

|||||||
2

𝑑𝑧
𝑑𝜆

𝜆

≤ 𝑛2‖𝐷𝜏‖2∞
1

∫
0

∫
R𝑛

|||||||∫R𝑛 𝑎(𝑦)
(
𝜆𝑛∕2𝜓̃ 1

𝜆

∗ 𝜆𝑛∕2𝜓 1
𝜆

)
(𝑧− 𝑦)𝑓 (𝑦)𝑑𝑦

|||||||
2

𝑑𝑧
𝑑𝜆

𝜆
.

Let 𝐹 (𝑦) = 𝑎(𝑦)𝑓 (𝑦) ∈ 𝐋2(R𝑛) and let  represent taking the Fourier Transform. Then we substitute 𝐹 (𝑦) for 𝑎(𝑦)𝑓 (𝑦) in the last line of 
the inequality above to get

𝑛2‖𝐷𝜏‖2∞
1

∫
0

∫
R𝑛

|||||||∫R𝑛 𝑎(𝑦)
(
𝜆𝑛∕2𝜓̃ 1

𝜆

∗ 𝜆𝑛∕2𝜓 1
𝜆

)
(𝑧− 𝑦)𝑓 (𝑦)𝑑𝑦

|||||||
2

𝑑𝑧
𝑑𝜆

𝜆

= 𝑛2‖𝐷𝜏‖2∞
1

∫
0

∫
R𝑛

|||||||∫R𝑛
(
𝜆𝑛∕2𝜓̃ 1

𝜆

∗ 𝜆𝑛∕2𝜓 1
𝜆

)
(𝑧− 𝑦)𝐹 (𝑦)𝑑𝑦

|||||||
2

𝑑𝑧
𝑑𝜆

𝜆

= 𝑛2‖𝐷𝜏‖2∞
1

∫
0

∫
R𝑛

||||||
(
𝜆𝑛∕2𝜓̃ 1

𝜆

∗ 𝜆𝑛∕2𝜓 1
𝜆

)
(𝜔)𝐹 (𝜔)

||||||
2

𝑑𝑧
𝑑𝜆

𝜆

= 𝑛2‖𝐷𝜏‖2∞ ∫
R𝑛

|𝐹 (𝜔)|2 ⎛⎜⎜⎝
1

∫
0

|𝜓̂(𝜔
𝜆
)|4 𝑑𝜆

𝜆

⎞⎟⎟⎠ 𝑑𝜔.
To finish up the argument, we make a substitution to rewrite

1

∫
0

|𝜓̂(𝜔
𝜆
)|4 𝑑𝜆

𝜆
=

∞

∫
1

|𝜓̂(𝜆𝜔)|4 𝑑𝜆
𝜆
.

Using our decay assumptions on 𝜓 and its partial derivatives, from Problem 6.1.3 in [22], we know that

|𝜓̂(𝜔)| ≤𝑀𝜓min{|𝜔|, |𝜔|−2}
for some constant 𝑀𝜓 . Now, consider the quantity ∫ ∞

0 |𝜓̂(𝜆𝜔)|4 𝑑𝜆
𝜆

. Without loss of generality, assume that |𝜔| = 1 since dilations of 
𝜔 do not change the integral. It follows that

∞

∫
0

|𝜓̂(𝜆𝜔)|4 𝑑𝜆
𝜆

≤𝑀𝜓

1

∫
0

𝜆3𝑑𝜆+𝑀𝜓

∞

∫
1

𝜆−9𝑑𝜆 <∞,

and we conclude that

∞

∫
1

|𝜓̂(𝜆𝜔)|4 𝑑𝜆
𝜆

≤𝐴𝜓

for some constant 𝐴𝜓 . To finish up,

𝑛2‖𝐷𝜏‖2∞ ∫
R𝑛

|𝐹 (𝜔)|2 ⎛⎜⎜⎝
1

∫
0

|𝜓̂(𝜔
𝜆
)|4 𝑑𝜆

𝜆

⎞⎟⎟⎠ 𝑑𝜔 ≤ 𝑛2‖𝐷𝜏‖2∞𝐴𝜓 ∫
R𝑛

|𝐹 (𝜔)|2 𝑑𝜔
≤ 𝑛2‖𝐷𝜏‖2∞𝐴𝜓 ∫

R𝑛

|𝑎(𝑧)𝑓 (𝑧)|2 𝑑𝑧
≤ 𝑛2‖𝐷𝜏‖2∞𝐴𝜓‖𝑓‖22.

Thus, we have the desired bound on 
‖‖‖‖∫ 1

0 𝐾̃
∗
𝜆,1𝐾̃𝜆,1

𝑑𝜆

𝜆

‖‖‖‖1∕2.
‖ ‖
22
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Substituting everything in yields

‖‖‖‖‖
2−𝛾

∫
0

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

=
‖‖‖‖‖

2−𝛾

∫
0

(𝐾̃𝜆,1 + 𝐾̃𝜆,2)∗(𝐾̃𝜆,1 + 𝐾̃𝜆,2)
𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

=
‖‖‖‖‖

2−𝛾

∫
0

(𝐾̃∗
𝜆,1𝐾̃𝜆,1 + 𝐾̃

∗
𝜆,1𝐾̃𝜆,2 + 𝐾̃

∗
𝜆,2𝐾̃𝜆,1 + 𝐾̃

∗
𝜆,2𝐾̃𝜆,2)

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤
⎛⎜⎜⎜⎝
‖‖‖‖‖

2−𝛾

∫
0

𝐾̃∗
𝜆,1𝐾̃𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖+
‖‖‖‖‖

2−𝛾

∫
0

𝐾̃∗
𝜆,1𝐾̃𝜆,2 + 𝐾̃

∗
𝜆,2𝐾̃𝜆,1 + 𝐾̃

∗
𝜆,2𝐾̃𝜆,2

𝑑𝜆

𝜆

‖‖‖‖‖
⎞⎟⎟⎟⎠
1∕2

≤
⎛⎜⎜⎜⎝
‖‖‖‖‖

2−𝛾

∫
0

𝐾̃∗
𝜆,1𝐾̃𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖+
2−𝛾

∫
0

‖𝐾̃𝜆,2‖2 𝑑𝜆𝜆 +

2−𝛾

∫
0

2‖𝐾̃𝜆,1‖‖𝐾̃𝜆,2‖ 𝑑𝜆𝜆
⎞⎟⎟⎟⎠
1∕2

≤ ‖‖‖‖‖
2−𝛾

∫
0

𝐾̃∗
𝜆,1𝐾̃𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

+
⎛⎜⎜⎜⎝
2−𝛾

∫
0

‖𝐾̃𝜆,2‖2 𝑑𝜆𝜆
⎞⎟⎟⎟⎠
1∕2

+
⎛⎜⎜⎜⎝
2−𝛾

∫
0

2‖𝐾̃𝜆,1‖‖𝐾̃𝜆,2‖ 𝑑𝜆𝜆
⎞⎟⎟⎟⎠
1∕2

≤ 2𝐶𝑛

⎛⎜⎜⎜⎝‖𝐷𝜏‖∞ + ‖Δ𝜏‖∞ ⎛⎜⎜⎜⎝
2−𝛾

∫
0

𝜆2
𝑑𝜆

𝜆

⎞⎟⎟⎟⎠
1∕2

+ ‖𝐷𝜏‖1∕2∞ ‖Δ𝜏‖1∕2∞

⎛⎜⎜⎜⎝
2−𝛾

∫
0

2𝜆 𝑑𝜆
𝜆

⎞⎟⎟⎟⎠
1∕2⎞⎟⎟⎟⎠

≤ 2𝐶𝑛
(‖𝐷𝜏‖∞ + 2−𝛾‖Δ𝜏‖∞ + 2−𝛾∕2‖𝐷𝜏‖1∕2∞ ‖Δ𝜏‖1∕2∞

)
≤ 4𝐶𝑛

(‖𝐷𝜏‖∞ + 2−𝛾‖Δ𝜏‖∞) .
To bound 𝑃3, we decompose 𝐾𝜆 =𝐾𝜆,1 +𝐾𝜆,2, where the kernels defining 𝐾𝜆,1, 𝐾𝜆,2 are

𝑘𝜆,1(𝑥, 𝑢) = 𝜆𝑛𝜓(𝜆(𝑥− 𝑢)) − 𝜆𝑛𝜓(𝜆(𝐼 −𝐷𝜏(𝑢))(𝑥− 𝑢)) det(𝐼 −𝐷𝜏(𝑢))

𝑘𝜆,2(𝑥, 𝑢) = det(𝐼 −𝐷𝜏(𝑢))𝜆𝑛𝜓(𝜆(𝐼 −𝐷𝜏(𝑢))(𝑥− 𝑢)) − 𝜆𝑛𝜓(𝜆(𝑥− 𝜏(𝑥) − 𝑢+ 𝜏(𝑢))).

A similar computation to the one for 𝑃1 shows that:

‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤ ‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆,1𝐾𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

+
⎛⎜⎜⎝

∞

∫
1

‖𝐾𝜆,2‖2 𝑑𝜆𝜆 ⎞⎟⎟⎠
1∕2

+
⎛⎜⎜⎝

∞

∫
1

2‖𝐾𝜆,1‖‖𝐾𝜆,2‖ 𝑑𝜆𝜆 ⎞⎟⎟⎠
1∕2

Letting 𝑄𝑗 =𝐾∗
2𝑗 ,1𝐾2𝑗 ,1, it is shown in [5] that:

‖𝐾𝜆,1‖ ≤ 𝐶𝑛‖𝐷𝜏‖∞‖𝐾𝜆,2‖ ≤min{𝜆−𝑛‖𝐷2𝜏‖∞,‖𝐷𝜏‖∞}

‖𝑄𝑗𝑄𝓁‖ ≤ 𝐶2
𝑛2

−|𝑗−𝓁|(‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞)4

so that‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆,1𝐾𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

=
‖‖‖‖‖

∞

∫
0

𝐾∗
2𝑗 ,1𝐾2𝑗 ,1 log(2) 𝑑𝑗

‖‖‖‖‖
1∕2

=
√
log(2)

‖‖‖‖‖
∞

∫
0

𝑄𝑗 𝑑𝑗
‖‖‖‖‖
1∕2

.

We now apply a continuous version of Cotlar’s Lemma (see Ch. 7 of [26], Sec. 5.5 for the continuous extension). We define:

𝛽(𝑗,𝓁) =

{
𝐶𝑛2−|𝑗−𝓁|∕2(‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞)2 𝑗 ≥ 0 and 𝓁 ≥ 0
0 otherwise

.

Defining 𝑄𝑗 = 0 for 𝑗 < 0, we have ‖𝑄∗
𝑗
𝑄𝓁‖ ≤ 𝛽(𝑗, 𝓁)2 and ‖𝑄𝑗𝑄∗

𝓁‖ ≤ 𝛽(𝑗, 𝓁)2 for all 𝑗, 𝓁. Thus by Cotlar’s Lemma:‖‖‖‖‖∫ 𝑄𝑗 𝑑𝑗
‖‖‖‖‖ ≤ sup

𝑗∈R∫ 𝛽(𝑗,𝓁) 𝑑𝓁,

R R
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‖‖‖‖‖
∞

∫
0

𝑄𝑗 𝑑𝑗
‖‖‖‖‖ ≤ sup

𝑗≥0

∞

∫
0

𝛽(𝑗,𝓁) 𝑑𝓁

≤ 𝐶𝑛(‖𝐷𝜏‖∞ + ‖𝐻𝜏‖∞)2
⎛⎜⎜⎝sup𝑗≥0

∞

∫
0

2−|𝑗−𝓁|∕2 𝑑𝓁⎞⎟⎟⎠ .
Now observing that with the change of variable 𝜆1 = 2𝑗 , 𝜆2 = 2𝓁 , we have 2−|𝑗−𝓁|∕2 = 𝜆1

𝜆2
∧ 𝜆2
𝜆1

, we obtain:

sup
𝑗≥0

∞

∫
0

2−|𝑗−𝓁|∕2 𝑑𝓁 = sup
𝜆1≥1

∞

∫
1

(𝜆1 ∧ 𝜆2)√
𝜆1𝜆2

𝑑𝜆2
ln(2)𝜆2

= 1
ln(2)

sup
𝜆1≥1

⎛⎜⎜⎜⎝
𝜆1

∫
1

1√
𝜆1𝜆2

𝑑𝜆2 +

∞

∫
𝜆1

√
𝜆1

𝜆
3∕2
2

𝑑𝜆2

⎞⎟⎟⎟⎠
= 1

ln(2)
sup
𝜆1≥1

(
1√
𝜆1

(2
√
𝜆1 − 2) +

√
𝜆1

(
2√
𝜆1

))

= 1
ln(2)

sup
𝜆1≥1

(
4 − 2√

𝜆1

)
= 4

ln(2)

and conclude that

‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆,1𝐾𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤ 3𝐶𝑛(‖𝐷𝜏‖∞ + ‖𝐻𝜏‖∞).

Thus we have:

‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤ ‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆,1𝐾𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

+
⎛⎜⎜⎝

∞

∫
1

‖𝐾𝜆,2‖2 𝑑𝜆𝜆 ⎞⎟⎟⎠
1∕2

+
⎛⎜⎜⎝

∞

∫
1

2‖𝐾𝜆,1‖‖𝐾𝜆,2‖ 𝑑𝜆𝜆 ⎞⎟⎟⎠
1∕2

.

Now we see that there exists a constant 𝐶𝑛 such that

‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆,1𝐾𝜆,1

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤ 𝐶𝑛(‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞)

⎛⎜⎜⎝
∞

∫
1

‖𝐾𝜆,2‖2 𝑑𝜆𝜆 ⎞⎟⎟⎠
1∕2

≤ 𝐶𝑛‖𝐷2𝜏‖∞ ⎛⎜⎜⎝
∞

∫
1

𝜆−2𝑛
𝑑𝜆

𝜆

⎞⎟⎟⎠
1∕2

⎛⎜⎜⎝
∞

∫
1

2‖𝐾𝜆,1‖‖𝐾𝜆,2‖ 𝑑𝜆𝜆 ⎞⎟⎟⎠
1∕2

≤ 𝐶𝑛‖𝐷𝜏‖1∕2∞ ‖𝐷2𝜏‖1∕2∞

⎛⎜⎜⎝
∞

∫
1

2𝜆−𝑛 𝑑𝜆
𝜆

⎞⎟⎟⎠
1∕2

,

and

‖‖‖‖‖
∞

∫
1

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤ 𝐶𝑛
(‖𝐷𝜏‖∞ + 1

2𝑛
‖𝐷2𝜏‖∞ + 2

𝑛
‖𝐷𝜏‖1∕2∞ ‖𝐷2𝜏‖1∕2∞

)
≤ 𝐶𝑛

(‖𝐷𝜏‖∞ + 1
2𝑛
‖𝐷2𝜏‖∞ + 1

𝑛
‖𝐷𝜏‖∞ + 1

𝑛
‖𝐷2𝜏‖∞)

≤ 2𝐶𝑛(‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞).

Finally, we bound 𝑃2. Note that in the previous section it was observed (shown in [5]) that

‖𝐾𝜆,1‖ ≤ 𝐶𝑛‖𝐷𝜏‖∞‖𝐾𝜆,2‖ ≤min{𝜆−𝑛‖𝐷2𝜏‖∞,‖𝐷𝜏‖∞}.

The above two inequalities imply

‖𝐾𝜆‖ = ‖𝐾𝜆,1 +𝐾𝜆,2‖ ≤ ‖𝐾𝜆,1‖+ ‖𝐾𝜆,2‖ ≤ 2𝐶𝑛‖𝐷𝜏‖∞
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so that

‖‖‖‖‖
1

∫
2−𝛾

𝐾∗
𝜆
𝐾𝜆

𝑑𝜆

𝜆

‖‖‖‖‖
1∕2

≤
⎛⎜⎜⎝

1

∫
2−𝛾

‖𝐾𝜆‖2 𝑑𝜆𝜆 ⎞⎟⎟⎠
1∕2

≤ 2𝐶𝑛‖𝐷𝜏‖∞ ⎛⎜⎜⎝
1

∫
2−𝛾

𝑑𝜆

𝜆

⎞⎟⎟⎠
1∕2

≤ 2𝐶𝑛‖𝐷𝜏‖∞ (− ln(2−𝛾 ))1∕2

≤ 2𝐶𝑛𝛾1∕2‖𝐷𝜏‖∞.
Putting everything together and since 𝛾 ≥ 1, we obtain:

‖[ ,𝐿𝜏 ]‖ ≤ 2(𝑃1 + 𝑃2 + 𝑃3)

≤ 4𝐶𝑛
(‖𝐷𝜏‖∞ + 2−𝛾‖Δ𝜏‖∞)+ 2𝐶𝑛𝛾1∕2‖𝐷𝜏‖∞ + 3𝐶𝑛(‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞)

≤ 𝐶̃𝑛 (𝛾‖𝐷𝜏‖∞ + 2−𝛾‖Δ𝜏‖∞ + ‖𝐷2𝜏‖∞) .
Choosing 𝛾 =

(
log ‖Δ𝜏‖∞‖𝐷𝜏‖∞

)
∨ 1 gives

‖[ ,𝐿𝜏 ]‖ ≤ 𝐶̃𝑛((log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)‖𝐷𝜏‖∞ + ‖𝐷2𝜏‖∞) ,

and the lemma is proved. □

Theorem 16. Assume 𝜓 and its first and second order derivatives have decay in 𝑂((1 + |𝑥|)−𝑛−3) and ∫
R𝑛
𝜓(𝑥) 𝑑𝑥 = 0. Then for every 

𝜏 ∈ 𝐶2(R𝑛) with ‖𝐷𝜏‖∞ ≤ 1
2𝑛 , there exists 𝐶𝑚,𝑛 > 0 and 𝐶̂𝑚,𝑛 > 0 such that

‖𝑆𝑚
cont,2𝑓 −𝑆𝑚

cont,2𝐿𝜏𝑓‖2𝐋2(R𝑚+)
≤ 𝐶𝑚,𝑛

(‖𝐷𝜏‖2∞ +
(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1

)
+ ‖𝐷2𝜏‖∞)2

)‖𝑓‖22,
and

‖𝑆𝑚
dyad,2𝑓 −𝑆𝑚

dyad,2𝐿𝜏𝑓‖2𝓁2(Z𝑚) ≤ 𝐶̂𝑚,𝑛
(‖𝐷𝜏‖2∞ +

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)2

)‖𝑓‖22.
Proof. The proof is only provided for the continuous case. We have the following bound for some 𝐶𝑚 :

‖𝑆𝑚
cont,2𝑓 −𝑆𝑚

cont,2𝐿𝜏𝑓‖𝐋2(R𝑚+)

≤ ‖𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓‖𝐋2(R𝑚+)
+ ‖𝐴2𝑀[𝑉𝑚−1,𝐿𝜏 ]𝑓‖𝐋2(R𝑚+)

≤ ‖𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓‖𝐋2(R𝑚+)
+𝐶2

𝑚‖[ ,𝐿𝜏 ]‖2𝐋2(R𝑚+×R𝑛)→𝐋2(R𝑛)‖𝑓‖22.
For the first term, we can mimic the dilation argument to get

|𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓 | = ||‖𝑔‖2 − ‖𝐿𝜏𝑔‖2|| .
The difference is the term with the diffeomorphism. Let 𝑦 = 𝛾(𝑥) = 𝑥 − 𝜏(𝑥). Then it follows that 𝛾−1(𝑦) = 𝑥 and change of variables 
implies that

‖𝐿𝜏𝑓‖22 = ∫
R𝑛

|𝑓 (𝑥− 𝜏(𝑥))|2 𝑑𝑥= ∫
R𝑛

|𝑓 (𝑦)|2 𝑑𝑦|det(𝐼 −𝐷𝜏(𝛾−1(𝑦)))| .
We also have

1 − 𝑛‖𝐷𝜏‖∞ ≤ |det(𝐼 −𝐷𝜏(𝛾−1(𝑦)))| ≤ 1 + 𝑛‖𝐷𝜏‖∞.
Thus, we obtain

1
1 + 𝑛‖𝐷𝜏‖∞ ∫

R𝑛

|𝑓 (𝑦)|2 𝑑𝑦 ≤ ‖𝐿𝜏𝑓‖22 ≤ 1
1 − 𝑛‖𝐷𝜏‖∞ ∫

R𝑛

|𝑓 (𝑦)|2 𝑑𝑦,
1

1 + 𝑛‖𝐷𝜏‖∞ ‖𝑓‖22 ≤ ‖𝐿𝜏𝑓‖22 ≤ 1
1 − 𝑛‖𝐷𝜏‖∞ ‖𝑓‖22.
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Since we have a bound on ‖𝐷𝜏‖∞, we see that

1
1 + 𝑛‖𝐷𝜏‖∞ =

1 − 𝑛‖𝐷𝜏‖∞
1 − 𝑛2‖𝐷𝜏‖2∞ ≥ 1 − 𝑛‖𝐷𝜏‖∞

since 1 > 1 − 𝑛2‖𝐷𝜏‖2∞ > 0. Similarly,

1
1 − 𝑛‖𝐷𝜏‖∞ =

1 + 2𝑛‖𝐷𝜏‖∞
1 + 𝑛‖𝐷𝜏‖∞ − 2𝑛2‖𝐷𝜏‖2∞

and

1 + 𝑛‖𝐷𝜏‖∞ − 2𝑛2‖𝐷𝜏‖2∞ ≥ 1 + 𝑛‖𝐷𝜏‖∞ − 2𝑛2
2𝑛
‖𝐷𝜏‖∞ = 1

since ‖𝐷𝜏‖∞ ≤ 1
2𝑛 . It follows that 1

1−𝑛‖𝐷𝜏‖∞ ≤ 1 + 2𝑛‖𝐷𝜏‖∞ and

(1 − 𝑛‖𝐷𝜏‖∞)1∕2‖𝑓‖2 ≤ ‖𝐿𝜏𝑓‖2 ≤ (1 + 2𝑛‖𝐷𝜏‖∞)1∕2‖𝑓‖2.
Since 1 − 𝑛‖𝐷𝜏‖∞ < 1 and 1 + 2𝑛‖𝐷𝜏‖∞ > 1. Use the lower bound on ‖𝐿𝜏𝑓‖2 to get

‖𝑓‖2 − ‖𝐿𝜏𝑓‖2 = ‖𝑓‖2 (1 − (1 − 𝑛‖𝐷𝜏‖∞)1∕2
)

≤ ‖𝑓‖2 (1 − (1 − 𝑛‖𝐷𝜏‖∞)
)

= 𝑛‖𝐷𝜏‖∞‖𝑓‖2,
and the upper bound to get

‖𝐿𝜏𝑓‖2 − ‖𝑓‖2 = ‖𝑓‖2 ((1 + 2𝑛‖𝐷𝜏‖∞)1∕2 − 1
)

≤ ‖𝑓‖2 ((1 + 2𝑛‖𝐷𝜏‖∞) − 1
)

= 2𝑛‖𝐷𝜏‖∞‖𝑓‖2.
Finally, we have

||‖𝑓‖2 − ‖𝐿𝜏𝑓‖2|| ≤ 2𝑛‖𝐷𝜏‖∞‖𝑓‖2
for any 𝑓 ∈ 𝐋2(R𝑛). Now we mimic the argument given for dilation stability to get

‖𝐴2𝑀𝑉𝑚−1𝑓 −𝐴2𝑀𝐿𝜏𝑉𝑚−1𝑓‖2𝐋2(R𝑚+)
≤ 𝐶‖𝐷𝜏‖2∞‖𝑓‖22

for some constant 𝐶 . For the second term, we have

𝐶2
𝑚‖[ ,𝐿𝜏 ]‖2𝐋2(R𝑚+×R𝑛)→𝐋2(R𝑛)‖𝑓‖22 ≤ 𝐶 ′

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)2 ‖𝑓‖22

for some constant 𝐶 ′. We now choose 𝐶𝑛,𝑚 =max{𝐶 ′, 𝐶} to get the desired bound. □

5.2. Stability to diffeomorphisms when 1 < 𝑞 < 2

Lemma 17. Let 𝛾(𝑧) = 𝑧 − 𝜏(𝑧), 𝑔(𝑧) = 𝑓 (𝛾(𝑧)), and

𝐾𝜆(𝑥, 𝑧) = det(𝐷𝛾(𝑧))𝜓𝜆(𝛾(𝑥) − 𝛾(𝑧)) −𝜓𝜆(𝑥− 𝑧).

Additionally, define

𝑇𝜆𝑔(𝑥) = ∫
R𝑛

𝑔(𝑧)𝐾𝜆(𝑥, 𝑧)𝑑𝑧

and consider 𝑇 𝑔 ∶R𝑛 → 𝐋2(R+, 
𝑑𝜆

𝜆𝑛+1
) defined by 𝑇 𝑔(𝑥) = (𝑇𝜆𝑔(𝑥))𝜆∈R+

. Then for the Banach space  = 𝐋2(R+, 
𝑑𝜆

𝜆𝑛+1
),

‖𝑇 𝑔‖2
𝐋2 (R𝑛)

≤ 𝐶𝑛,𝑚
(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1

)
+ ‖𝐷2𝜏‖∞)2 ‖𝑓‖2

for some constant 𝐶𝑛,𝑚 > 0.
26



A. Chua, M. Hirn and A. Little Applied and Computational Harmonic Analysis 68 (2024) 101597
Proof. Notice that

‖𝑇 𝑔‖2
𝐋2
𝑋
(R𝑛)

= ∫
R𝑛

∞

∫
0

|𝑇𝜆𝑔(𝑥)|2 𝑑𝜆
𝜆𝑛+1

𝑑𝑥

= ∫
R𝑛

∞

∫
0

|||||||∫R𝑛 𝐾𝜆(𝑥, 𝑧)𝑔(𝑧)𝑑𝑧
|||||||
2

𝑑𝜆

𝜆𝑛+1
𝑑𝑥

= ∫
R𝑛

∞

∫
0

|||||||∫R𝑛 𝑓 (𝛾(𝑧))[det(𝐷𝛾(𝑧))𝜓𝜆(𝛾(𝑥) − 𝛾(𝑧)) −𝜓𝜆(𝑥− 𝑧)]𝑑𝑧
|||||||
2

𝑑𝜆

𝜆𝑛+1
𝑑𝑥

= ∫
R𝑛

∞

∫
0

|||||||∫R𝑛 det(𝐷𝛾(𝑧))𝑓 (𝛾(𝑧))𝜓𝜆(𝛾(𝑥) − 𝛾(𝑧))𝑑𝑧− ∫
R𝑛

𝑓 (𝛾(𝑧))𝜓𝜆(𝑥− 𝑧)𝑑𝑧
|||||||
2

𝑑𝜆

𝜆𝑛+1
𝑑𝑥.

Using the change of variables 𝑢 = 𝛾(𝑧), we get

‖𝑇 𝑔‖2
𝐿2
𝑋
(R𝑛)

= ∫
R𝑛

∞

∫
0

||𝐿𝜏 (𝑓 ∗ 𝜓𝜆)(𝑥) − (𝐿𝜏𝑓 ∗ 𝜓𝜆)(𝑥)||2 𝑑𝜆

𝜆𝑛+1
𝑑𝑥

= ∫
R𝑛

∞

∫
0

||[𝜆,𝐿𝜏 ]𝑓 (𝑥)||2 𝑑𝜆

𝜆𝑛+1
𝑑𝑥

=

∞

∫
0

∫
R𝑛

||[𝜆,𝐿𝜏 ]𝑓 (𝑥)||2 𝑑𝑥 𝑑𝜆

𝜆𝑛+1

=

∞

∫
0

‖‖[𝜆,𝐿𝜏 ]𝑓‖‖22 𝑑𝜆

𝜆𝑛+1

= ‖[ ,𝐿𝜏 ]𝑓‖2𝐋2(R+×R𝑛)

≤ 𝐶𝑛,𝑚
(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1

)
+ ‖𝐷2𝜏‖∞)‖𝑓‖22,

where the last inequality follows from the 𝑞 = 2 case. □

Lemma 18 ([23], Marcinkiewicz Interpolation). Let  and  be Banach spaces and let 𝑇 ∶ →  be a quasilinear operator defined on 
𝐋𝑝0 (R𝑛) and 𝐋𝑝1 (R𝑛) with 0 < 𝑝0 < 𝑝1. Furthermore, if 𝑇 satisfies

‖𝑇𝑓‖𝐋𝑝𝑖,∞ (R𝑛) ≤𝑀𝑖‖𝑓‖𝐋𝑝𝑖 (R𝑛)

for 𝑖 = 0, 1, then for all 𝑝 ∈ (𝑝0, 𝑝1),

‖𝑇𝑓‖𝐋𝑝(R𝑛) ≤𝑁𝑝‖𝑓‖𝐋𝑝(R𝑛),

where 𝑁𝑝 only depends on 𝑀0, 𝑀1, and 𝑝.

Remark 7. Like with the scalar valued estimate, it can be shown that 𝑁𝑝 = 𝜂𝑀𝛿
0𝑀

1−𝛿
1 , where

𝛿 =
⎧⎪⎨⎪⎩
𝑝0(𝑝1 − 𝑝)
𝑝(𝑝1 − 𝑝0)

𝑝1 <∞,

𝑝0
𝑝

𝑝1 =∞

and

𝜂 =

⎧⎪⎪⎨⎪⎪
2
(

𝑝(𝑝1 − 𝑝0)
(𝑝− 𝑝0)(𝑝1 − 𝑝)

)1∕𝑝
𝑝1 <∞,

2
(

𝑝0
𝑝− 𝑝

)1∕𝑝
𝑝1 =∞.
⎩ 0
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Lemma 19. Let 𝑇 be the operator defined in Lemma 17. Let 𝑞 ∈ (1, 2) and 𝑟 ∈ (1, 𝑞). Then 𝑇 satisfies

‖𝑇 𝑔‖𝐋𝑟,∞ (R𝑛) ≤𝑀𝑟‖𝑓‖𝐋𝑟(R𝑛)
for some constant 𝑀𝑟 > 0, which is independent of ‖𝐷𝜏‖∞ and ‖𝐷2𝜏‖∞. Furthermore, 𝑇 also satisfies

‖𝑇 𝑔‖2
𝐋2,∞ (R𝑛)

≤ 𝐶̃𝑛
(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1

)
+ ‖𝐷2𝜏‖∞)2 ‖𝑓‖2𝐋2(R𝑛)

for some constant 𝐶̃𝑛 > 0.

Proof. The second inequality obviously follows from strong boundedness of the operator, so we will omit the proof. For the first 
inequality, the norm satisfies

‖𝑇 𝑔(𝑥)‖2 =

∞

∫
0

|||||||∫R𝑛 det(𝐷𝛾(𝑧))𝑓 (𝛾(𝑧))𝜓𝜆(𝛾(𝑥) − 𝛾(𝑧))𝑑𝑧− ∫
R𝑛

𝑓 (𝛾(𝑧))𝜓𝜆(𝑥− 𝑧)𝑑𝑧
|||||||
2

𝑑𝜆

𝜆𝑛+1

=

∞

∫
0

|||||||∫R𝑛 𝑓 (𝑧)𝜓𝜆(𝛾(𝑥) − 𝑧)𝑑𝑧− ∫
R𝑛

𝑓 (𝛾(𝑧))𝜓𝜆(𝑥− 𝑧)𝑑𝑧
|||||||
2

𝑑𝜆

𝜆𝑛+1

≤ 4

∞

∫
0

|||||||∫R𝑛 𝑓 (𝑧)𝜓𝜆(𝛾(𝑥) − 𝑧)𝑑𝑧
|||||||
2

𝑑𝜆

𝜆2
+ 4

∞

∫
0

|||||||∫R𝑛 𝑓 (𝛾(𝑧))𝜓𝜆(𝑥− 𝑧)𝑑𝑧
|||||||
2

𝑑𝜆

𝜆𝑛+1

= 4|(𝐺𝑓 )(𝛾(𝑥))|2 + 4|𝐺𝐿𝜏𝑓 (𝑥)|2.
We see

‖𝑇 𝑔(𝑥)‖ ≤
√

4|(𝐺𝑓 )(𝛾(𝑥))|2 + 4|𝐺𝐿𝜏𝑓 (𝑥)|2 ≤ 2|(𝐺𝑓 )(𝛾(𝑥))|+ 2|𝐺𝐿𝜏𝑓 (𝑥)|.
For 𝛿 > 0, Chebyshev’s inequality implies that there exists 𝐴𝑟 such that

𝑚{‖𝑇 𝑔(𝑥)‖ > 𝛿} ≤𝑚{2|(𝐺𝑓 )(𝛾(𝑥))|+ 2|𝐺𝐿𝜏𝑓 (𝑥)| > 𝛿}
≤ 𝐴𝑟
𝛿𝑟

(‖(𝐺𝑓 )(𝛾(⋅))‖𝑟𝐋𝑟(R𝑛) + ‖𝐺𝐿𝜏𝑓‖𝑟𝐋𝑟(R𝑛)).
We want to now ensure that ‖(𝐺𝑓 )(𝛾(⋅))‖𝑟𝐋𝑟(R𝑛) can be bounded above by a constant multiple of ‖𝐺𝑓‖𝑟𝐋𝑟(R𝑛). Since 𝛾 is a diffeomor-

phism, we can use change of variables to get

‖(𝐺𝑓 )(𝛾(⋅))‖𝑟𝐋𝑟(R𝑛) = ∫
R𝑛

|𝐺𝑓 (𝛾(𝑥))|𝑟 𝑑𝑥
= ∫
R𝑛

|𝐺𝑓 (𝑢)|𝑟 𝑑𝑢

det
[
(𝐷𝛾)(𝛾−1(𝑢))

]
≤ 2∫

R𝑛

|𝐺𝑓 (𝑥)|𝑟 𝑑𝑥
= 2‖𝐺𝑓‖𝑟𝐋𝑟(R𝑛).

By Theorem 1, we get

‖𝐺𝐿𝜏𝑓‖𝑟𝐋𝑟(R𝑛) ≤ 𝐶𝑟‖𝐿𝜏𝑓‖𝑟𝐋𝑟(R𝑛) ≤ 2𝐶𝑟‖𝑓‖𝑟𝐋𝑟(R𝑛)
for some constant 𝐶𝑟 dependent on 𝑟. Thus, we have

𝑚{‖𝑇 𝑔(𝑥)‖ > 𝛿}1∕𝑟 ≤ 𝑀𝑟

𝛿
‖𝑓‖𝐋𝑟(R𝑛)

for some constant 𝑀𝑟 > 0. □

Lemma 20. Fix 𝑟 = 1+𝑞
2 so that 𝑟 ∈ (1, 𝑞). For some constant 𝐶𝑛,𝑞 > 0, the operator 𝑇 defined in Lemma 17 satisfies the estimate

‖𝑇 𝑔‖𝑞
𝐋𝑞 (R𝑛)

≤ 𝐶𝑛,𝑞𝜂𝑞𝑀𝑞𝛿
𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿) ‖𝑓‖𝑞𝑞 ,

where 𝜂 and 𝛿 come from interpolation, and 𝑀𝑟 comes from the constant for weak boundedness in Lemma 19.
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Proof. Since 𝑇 is an integral operator, it is clear that is quasilinear. Using the 𝐋𝑟(R𝑛) and 𝐋2(R𝑛) estimates from the previous Lemma, 
we interpolate using Marcinkiewicz since ‖𝑔‖𝑟 ≤ 2‖𝑓‖𝑟 ≤ 4‖𝑔‖𝑟. □

Theorem 21. Let 1 < 𝑞 < 2. Assume 𝜓 and its first and second order derivatives have decay in 𝑂((1 + |𝑥|)−𝑛−3), and ∫
R𝑛
𝜓(𝑥) 𝑑𝑥 = 0. Then 

for every 𝜏 ∈ 𝐶2(R𝑛) with ‖𝐷𝜏‖∞ < 1
2𝑛 , there exists 𝐶𝑛,𝑞 > 0 such that

‖𝑆cont,𝑞𝑓 −𝑆cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R+)

≤ 𝐶𝑛,𝑞
[‖𝐷𝜏‖𝑞∞ + 𝜂𝑞𝑀𝑞𝛿

𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿)]‖𝑓‖𝑞𝑞 .

Proof. We use the same notation as Theorem 12. Using a nearly identical argument to Corollary 13, we get

‖𝑆cont,𝑞𝑓 − 𝑆cont,𝑞𝐿𝜏𝑓‖𝐋2(R+) = ‖𝐴𝑞𝑀𝑓 −𝐴𝑞𝑀𝐿𝜏𝑓‖𝐋2(R+)

= ‖𝐴𝑞𝑀𝑓 −𝐴𝑞𝑀𝐿𝜏𝑓 +𝐴𝑞𝑀𝐿𝜏𝑊 𝑓 −𝐴𝑞𝑀𝐿𝜏𝑓‖𝐋2(R+)

≤ ‖𝐴𝑞𝑀𝑓 −𝐴𝑞𝑀𝐿𝜏𝑓‖𝐋2(R+) + ‖𝐴𝑞𝑀𝐿𝜏𝑓 −𝐴𝑞𝑀𝐿𝜏𝑓‖𝐋2(R+)

≤ ‖(𝐴𝑞𝑀 −𝐴𝑞𝑀𝐿𝜏 )𝑓‖𝐋2(R+) + ‖𝐴𝑞𝑀[ ,𝐿𝜏 ]𝑓‖𝐋2(R+).

The first term, ‖(𝐴𝑞𝑀 − 𝐴𝑞𝑀𝐿𝜏 )𝑓‖𝐋2(R+), can be bounded using an argument identical to the 𝑞 = 2 case. In particular, we can 
prove that

(1 − 𝑛‖𝐷𝜏‖∞)‖𝑓‖𝑞 ≤ (1 − 𝑛‖𝐷𝜏‖∞)1∕𝑞‖𝑓‖𝑞 ≤ ‖𝐿𝜏𝑓‖𝑞
and

‖𝐿𝜏𝑓‖𝑞 ≤ (1 + 2𝑛‖𝐷𝜏‖∞)1∕𝑞‖𝑓‖𝑞 ≤ (1 + 2𝑛‖𝐷𝜏‖∞)‖𝑓‖𝑞 ,
which means

‖(𝐴𝑞𝑀 −𝐴𝑞𝑀𝐿𝜏 )𝑓‖𝑞
𝐋2(R+)

≤ 𝐶‖𝐷𝜏‖𝑞∞‖𝑓‖𝑞𝑞 .
For the other term,

‖𝐴𝑞𝑀[ ,𝐿𝜏 ]𝑓‖𝑞𝐋2(R+)
=
⎛⎜⎜⎜⎝

∞

∫
0

⎡⎢⎢⎣∫R𝑛 |(𝐿𝜏𝑓 ∗ 𝜓𝜆)(𝑥) −𝐿𝜏 (𝑓 ∗ 𝜓𝜆)(𝑥)|𝑞 𝑑𝑥⎤⎥⎥⎦
2∕𝑞

𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎟⎠
𝑞∕2

.

Now, expand convolution and then use change of variables to get

‖𝐴𝑞𝑀[ ,𝐿𝜏 ]𝑓‖𝑞𝐋2(R+)

=
⎛⎜⎜⎜⎝

∞

∫
0

⎡⎢⎢⎣∫R𝑛
|||||||∫R𝑛 𝑓 (𝛾(𝑧))(det(𝐷𝛾(𝑧))𝜓𝜆(𝛾(𝑥) − 𝛾(𝑧)) −𝜓𝜆(𝑥− 𝑧))𝑑𝑧

|||||||
𝑞

𝑑𝑥

⎤⎥⎥⎦
2∕𝑞

𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎟⎠
𝑞∕2

=
⎛⎜⎜⎜⎝

∞

∫
0

⎡⎢⎢⎣∫R𝑛
|||||||∫R𝑛 𝑔(𝑧)𝐾𝜆(𝑥, 𝑧)𝑑𝑧

|||||||
𝑞

𝑑𝑥

⎤⎥⎥⎦
2∕𝑞

𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎟⎠
𝑞∕2

=
⎛⎜⎜⎜⎝

∞

∫
0

⎡⎢⎢⎣∫R𝑛 ||𝑇𝜆𝑔(𝑥)||
𝑞
𝑑𝑥

⎤⎥⎥⎦
2∕𝑞

𝑑𝜆

𝜆𝑛+1

⎞⎟⎟⎟⎠
𝑞∕2

≤ ∫
R𝑛

⎡⎢⎢⎣
∞

∫
0

||𝑇𝜆𝑔(𝑥)||𝑞 𝑑𝜆

𝜆𝑛+1

⎤⎥⎥⎦
𝑞∕2

𝑑𝑥

= ∫
R𝑛

⎡⎢⎢⎣
∞

∫
0

||𝑇𝜆𝑔(𝑥)||2 𝑑𝜆

𝜆𝑛+1

⎤⎥⎥⎦
𝑞∕2

𝑑𝑥

= ∫
𝑛

‖𝑇 𝑔(𝑥)‖𝑞
𝐋2
(
R+ ,

𝑑𝜆
𝑛+1

) 𝑑𝑥

R 𝜆

29



A. Chua, M. Hirn and A. Little Applied and Computational Harmonic Analysis 68 (2024) 101597
= ‖𝑇 𝑔‖𝑞
𝐋𝑞 (R𝑛)

≤ 𝐶𝑛𝜂𝑞𝑀𝑞𝛿
𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿) ‖𝑓‖𝑞𝑞 .

Thus, the proof is complete. □

Corollary 22. Let 1 < 𝑞 < 2. Assume 𝜓 and its first and second order derivatives have decay in 𝑂((1 + |𝑥|)−𝑛−3), and ∫
R𝑛
𝜓(𝑥) 𝑑𝑥 = 0. Then 

for every 𝜏 ∈ 𝐶2(R𝑛) with ‖𝐷𝜏‖∞ < 1
2𝑛 , there exist constants 𝐶𝑛,𝑚, 𝐶̂𝑛,𝑚 > 0 such that

‖𝑆𝑚cont,𝑞𝑓 −𝑆𝑚cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R𝑚+)

≤ 𝐶𝑛,𝑚
[‖𝐷𝜏‖𝑞∞ + 𝜂𝑞𝑀𝑞𝛿

𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿)]‖𝑓‖𝑞𝑞

and

‖𝑆𝑚
dyad,𝑞

𝑓 − 𝑆𝑚
dyad,𝑞

𝐿𝜏𝑓‖𝑞𝓁2(Z𝑚)
≤ 𝐶̂𝑛,𝑚

[‖𝐷𝜏‖𝑞∞ + 𝜂𝑞𝑀𝑞𝛿
𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿)]‖𝑓‖𝑞𝑞 .

Remark 8. This bound is not exactly the same as the definition for stability to diffeomorphisms in [5], but the idea is similar. Since 
𝑟 is fixed, so is 𝛿. It is easy to confirm that 𝛿 = 1

1+𝑞 ∈
(
1
3 ,

1
2

)
when using Marcinkiewicz interpolation in Lemma 20, so

𝐶𝑛,𝑞𝜂
𝑞𝑀𝑞𝛿

𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿) → 0

when ‖𝐷𝜏‖∞ → 0 and ‖𝐷2𝜏‖∞ → 0.

6. Equivariance and invariance to rotations

We now consider adding group actions to our scattering transform and prove invariance to rotations. Let SO(𝑛) be the group of 
𝑛 × 𝑛 rotation matrices. Since SO(𝑛) is a compact Lie group, we can define a Haar measure, say 𝜇, with 𝜇(SO(𝑛)) <∞. We say that 
𝑓 ∈ 𝐋2(SO(𝑛)) if and only if 𝑓 is 𝜇-measurable and ∫SO(𝑛) |𝑓 (𝑟)|2 𝑑𝜇(𝑟) <∞.

6.1. Rotation equivariant representations

Let 𝜓 ∶R𝑛 →R be a wavelet. Define

𝜓𝜆,𝑅(𝑥) = 𝜆−𝑛∕2𝜓(𝜆−1𝑅−1𝑥),

where 𝑅 ∈ SO(𝑛) is a 𝑛 × 𝑛 rotation matrix. The continuous and dyadic wavelet transforms of 𝑓 are given by

Rot𝑓 ∶= {𝑓 ∗ 𝜓𝜆,𝑅(𝑥) ∶ 𝑥 ∈R𝑛, 𝜆 ∈ (0,∞),𝑅 ∈ SO(𝑛)},

𝑊Rot𝑓 ∶= {𝑓 ∗ 𝜓𝑗,𝑅(𝑥) ∶ 𝑥 ∈R𝑛, 𝑗 ∈Z,𝑅 ∈ SO(𝑛)}.

We will first consider a translation invariant and rotation equivariant formulation of continuous and dyadic one-layer scattering 
using

𝔖cont,𝑞𝑓 (𝜆,𝑅) ∶= ‖𝑓 ∗ 𝜓𝜆,𝑅‖𝑞 ,
𝔖dyad,𝑞𝑓 (𝑗,𝑅) ∶= ‖𝑓 ∗ 𝜓𝑗,𝑅‖𝑞 .

The translation invariance of our representation follows from translation invariance of the norm. For rotation equivariance, notice 
that if 𝑓𝑅̃(𝑥) ∶= 𝑓 (𝑅̃−1𝑥), then we have

𝔖cont,𝑞𝑓𝑅̃(𝜆,𝑅) =𝔖cont,𝑞𝑓 (𝜆, 𝑅̃−1𝑅),

𝔖dyad,𝑞𝑓𝑅̃(𝑗,𝑅) =𝔖dyad,𝑞𝑓 (𝑗, 𝑅̃−1𝑅).

Now suppose we have 𝑚 layers again. Then we define our 𝑚 layer transforms by

𝔖𝑚
cont,𝑞𝑓 (𝜆1,… , 𝜆𝑚,𝑅1,… ,𝑅𝑚) ∶= ‖|𝑓 ∗ 𝜓𝜆1 ,𝑅1

| ∗… | ∗ 𝜓𝜆𝑚,𝑅𝑚‖𝑞 ,
𝔖𝑚

dyad,𝑞
𝑓 (𝑗1,… , 𝑗𝑚,𝑅1,… ,𝑅𝑚) ∶= ‖|𝑓 ∗ 𝜓𝑗1 ,𝑅1

| ∗… | ∗ 𝜓𝑗𝑚,𝑅𝑚‖𝑞 ,
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and rotation equivariance implies

𝔖𝑚
cont,𝑞𝑓𝑅̃(𝜆1,… , 𝜆𝑚,𝑅1,… ,𝑅𝑚) =𝔖𝑚

cont,𝑞𝑓 (𝜆1,… , 𝜆𝑚, 𝑅̃
−1𝑅1,… , 𝑅̃−1𝑅𝑚),

𝔖𝑚
dyad,𝑞

𝑓𝑅̃(𝑗1,… , 𝑗𝑚,𝑅1,… ,𝑅𝑚) =𝔖𝑚
dyad,𝑞

𝑓 (𝑗1,… , 𝑗𝑚, 𝑅̃
−1𝑅1,… , 𝑅̃−1𝑅𝑚).

The norm we will use is similar to our previous formulations. Denote the scattering norm for the continuous transform as

‖𝔖𝑚
cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)×SO(𝑛)𝑚

∶=
⎛⎜⎜⎝

∞

∫
0

∫
SO(𝑛)

⋯

∞

∫
0

∫
SO(𝑛)

‖|𝑓 ∗ 𝜓𝑗1 ,𝑅1
| ∗… | ∗ 𝜓𝑗𝑚,𝑅𝑚‖2𝑞𝑑𝜇1(𝑅1)

𝑑𝜆1

𝜆𝑛+11

…𝑑𝜇𝑚(𝑅𝑛)
𝑑𝜆𝑚

𝜆𝑛+1𝑚

.

⎞⎟⎟⎠
𝑞∕2

For the dyadic transform, we denote the norm using

‖𝔖𝑚
dyad,𝑞

𝑓‖𝑞
𝓁2(Z𝑚)×SO(𝑛)𝑚

∶=
⎛⎜⎜⎝
∑
𝑗𝑚∈Z

∫
SO(𝑛)

⋯
∑
𝑗1∈Z

∫
SO(𝑛)

‖|𝑓 ∗ 𝜓𝑗1 ,𝑅1
| ∗… | ∗ 𝜓𝑗𝑚,𝑅𝑚‖2𝑞𝑑𝜇1(𝑅1) …𝑑𝜇𝑚(𝑅𝑛)

⎞⎟⎟⎠
𝑞∕2

.

We will start by proving that these formulations of the scattering transform are well defined, and prove properties about stability to 
diffeomorphisms like in previous sections.

Lemma 23. Let 𝜓 be a wavelet that satisfies properties (24) and (25).

• If 1 < 𝑞 ≤ 2, we have 𝔖𝑚
cont,𝑞 ∶ 𝐋

𝑞(R𝑛) → 𝐋2(R𝑚
+) × SO(𝑛)𝑚 and 𝔖𝑚

dyad,𝑞
∶ 𝐋𝑞(R𝑛) → 𝓁2(Z𝑚) × SO(𝑛)𝑚.

• If 𝑞 = 1 and one of the following holds:

– 𝑛 = 1 and 𝜓 is complex analytic,

– 𝑛 ≥ 2 and 𝜓 satisfies the conditions of Lemma 5,

then 𝔖𝑚
cont,1 ∶ 𝐋

1(R𝑛) → 𝐋2(R𝑚
+) × SO(𝑛)𝑚 and 𝔖𝑚

dyad,1 ∶ 𝐋
1(R𝑛) → 𝓁2(Z𝑚) × SO(𝑛)𝑚.

• If 𝜓 is also a Littlewood-Paley wavelet, we have

‖𝔖𝑚
cont,2𝑓‖2𝐋2(R𝑚+)×SO(𝑛)𝑚 = 𝜇(SO(𝑛))𝑚𝐶𝑚𝜓 ‖𝑓‖22,‖𝔖𝑚
dyad,𝑞

𝑓‖2
𝓁2(Z𝑚)×SO(𝑛)𝑚 = 𝜇(SO(𝑛))𝑚𝐶̂𝑚𝜓 ‖𝑓‖22.

Proof. We prove the first and third claim. The second claim is almost identical to the first claim, so the proof will be omitted for 
brevity. Note that we will only provide arguments for the continuous scattering transform since the proofs for the dyadic transform 
are very similar. By Fubini Theorem and boundedness of the 𝑚-layer scattering transform, there exists a constant 𝐶𝑞 > 0, which is 
dependent on 𝑞, such that

‖𝔖𝑚
cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)×SO(𝑛)𝑚

=
⎡⎢⎢⎣

∞

∫
0

∫
SO(𝑛)

⋯

∞

∫
0

∫
SO(𝑛)

‖|𝑓 ∗ 𝜓𝜆1 ,𝑅1
| ∗… | ∗ 𝜓𝜆𝑚,𝑅𝑚‖2𝑞𝑑𝜇(𝑅𝑚) 𝑑𝜆1𝜆𝑛+11

⋯𝑑𝜇(𝑅1)
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎤⎥⎥⎦
𝑞∕2

=
⎡⎢⎢⎢⎣ ∫SO(𝑛)

⋯ ∫
SO(𝑛)

⎛⎜⎜⎝
∞

∫
0

⋯

∞

∫
0

‖|𝑓 ∗ 𝜓𝜆1 ,𝑅1
| ∗… | ∗ 𝜓𝜆𝑚,𝑅𝑚‖2𝑞 𝑑𝜆1𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
𝑞
2 ⋅

2
𝑞

𝑑𝜇(𝑅1) ⋯𝑑𝜇(𝑅𝑚)
⎤⎥⎥⎥⎦
𝑞∕2

≤
⎡⎢⎢⎣ ∫SO(𝑛)

⋯ ∫
SO(𝑛)

(𝐶𝑚𝑞𝑞 ‖𝑓‖𝑞𝑞)2∕𝑞 𝑑𝜇(𝑅1)⋯𝑑𝜇(𝑅𝑚)
⎤⎥⎥⎦
𝑞∕2

= 𝐶𝑚𝑞𝑞 𝜇(SO(𝑛))𝑚𝑞∕2‖𝑓‖𝑞𝑞
because each 𝜓𝜆𝑖,𝑅𝑖 is still a wavelet with sufficient decay even if the rotation is applied. For the third claim, we see that

‖𝔖𝑚
cont,2𝑓‖2𝐋2(R𝑚+)×SO(𝑛)𝑚

= ∫ ⋯ ∫
⎛⎜⎜⎝

∞

∫ ⋯

∞

∫ ‖|𝑓 ∗ 𝜓𝜆1 ,𝑅1
| ∗… | ∗ 𝜓𝜆𝑚,𝑅𝑚‖2𝐋2(R𝑛)

𝑑𝜆1

𝜆𝑛+11

⋯
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠𝑑𝜇(𝑅1)⋯𝑑𝜇(𝑅𝑛)

SO(𝑛) SO(𝑛) 0 0
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= ∫
SO(𝑛)

⋯ ∫
SO(𝑛)

𝐶𝑚𝜓 ‖𝑓‖22 𝑑𝜇(𝑅1)⋯𝑑𝜇(𝑅𝑚)

= 𝜇(SO(𝑛))𝑚𝐶𝑚𝜓 ‖𝑓‖22. □

Theorem 24. Assume |𝑐| < 1
2𝑛 . Let 𝜏(𝑥) = 𝑐𝑥 and 𝐿𝜏𝑓 (𝑥) = 𝑓 ((1 −𝑐)𝑥). Suppose that 𝜓 is a wavelet that satisfies the conditions of Lemma 10. 

Then there exist constants 𝐾̃𝑛,𝑚,𝑞 and 𝐾̃ ′
𝑛,𝑚,𝑞 dependent only on 𝑛, 𝑚, and 𝑞 such that

‖𝔖𝑚
cont,𝑞𝑓 −𝔖𝑚

cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R𝑚+)×SO(𝑛)𝑚
≤ |𝑐|𝑞 ⋅ 𝐾̃𝑛,𝑚,𝑞‖𝑓‖𝑞𝑞

and

‖𝔖𝑚
dyad,𝑞

𝑓 −𝔖𝑚
dyad,𝑞

𝐿𝜏𝑓‖𝑞𝓁2(Z𝑚)×SO(𝑛)𝑚
≤ |𝑐|𝑞 ⋅ 𝐾̃ ′

𝑛,𝑚,𝑞‖𝑓‖𝑞𝑞 .
Alternatively, if one of the following holds:

• 𝑛 = 1, 𝜓 is complex analytic and satisfies the conditions of Lemma 10,

• 𝑛 ≥ 2 and 𝜓 satisfies the conditions of Lemma 5,

there exist 𝐻̃𝑚,𝑛 and 𝐻̃ ′
𝑚,𝑛 such that

‖𝔖𝑚
cont,1𝑓 −𝔖𝑚

cont,1𝐿𝜏𝑓‖𝐋2(R𝑚+)×SO(𝑛)𝑚 ≤ |𝑐| ⋅ 𝐻̃𝑚,𝑛‖𝑓‖H1(R𝑛),

and

‖𝔖𝑚
dyad,1𝑓 −𝔖𝑚

dyad,1𝐿𝜏𝑓‖𝓁2(Z𝑚)×SO(𝑛)𝑚 ≤ |𝑐| ⋅ 𝐻̃ ′
𝑚,𝑛‖𝑓‖H1(R𝑛)

Theorem 25. Let 𝜏 ∈ 𝐶2(R𝑛), and let 𝐿𝜏𝑓 (𝑥) = 𝑓 (𝑥 − 𝜏(𝑥)). Suppose that 𝜓 is a wavelet such that the wavelet and all its first and second 
partial derivatives have 𝑂((1 + |𝑥|)−𝑛−3) decay. When 𝑞 ∈ (1, 2), there exists a constant 𝐶𝑛,𝑚,𝑞 dependent on 𝜇(SO(𝑛)), 𝑛, 𝑚, and 𝑞 such that

‖𝔖𝑚
cont,𝑞𝑓 −𝔖𝑚

cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R𝑚+)×SO(𝑛)𝑚

≤ 𝐶𝑛,𝑚,𝑞
[‖𝐷𝜏‖𝑞∞ + 𝜂𝑞𝑀𝑞𝛿

𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿)]‖𝑓‖𝑞𝑞 ,

‖𝔖𝑚
dyad,𝑞

𝑓 −𝔖𝑚
dyad,𝑞

𝐿𝜏𝑓‖𝑞𝓁2(Z𝑚)×SO(𝑛)𝑚

≤ 𝐶̃𝑛,𝑚,𝑞
[‖𝐷𝜏‖𝑞∞ + 𝜂𝑞𝑀𝑞𝛿

𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿)]‖𝑓‖𝑞𝑞 ,

‖𝔖𝑚
cont,2𝑓 −𝔖𝑚

cont,2𝐿𝜏𝑓‖2𝐋2(R𝑚+)×SO(𝑛)𝑚

≤ 𝐶𝑛,𝑚
[‖𝐷𝜏‖2∞ +

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)2

]‖𝑓‖22,
‖𝔖𝑚

dyad,2𝑓 −𝔖𝑚
dyad,2𝐿𝜏𝑓‖2𝓁2(Z𝑚)×SO(𝑛)𝑚

≤ 𝐶̃𝑛,𝑚
[‖𝐷𝜏‖2∞ +

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)2

]‖𝑓‖22.
6.2. Rotation invariant representations

The representation before was rotation equivariant, but in some tasks, we would rather have rotation invariance. In [5], the 
authors choose to integrate over each group action in a group of transformations. However, this will remove the information the 
relative angles between each action if we have multiple layers in our transform.

In the case of one layer, since there is only one angle, we use a similar formulation to [5] and define continuous and dyadic 
scattering transforms for rotation invariance as

Scont,𝑞𝑓 (𝜆) = ∫
SO(𝑛)

‖𝑓 ∗ 𝜓𝜆,𝑅‖𝑞𝐋𝑞 (R𝑛)𝑑𝜇(𝑅),
Sdyad,𝑞𝑓 (𝑗) = ∫

SO(𝑛)

‖𝑓 ∗ 𝜓𝑗,𝑅‖𝑞𝐋𝑞 (R𝑛)𝑑𝜇(𝑅).
The corresponding norms are given by
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‖Scont,𝑞𝑓‖𝑞𝐋2(R+)
∶=
⎡⎢⎢⎢⎣

∞

∫
0

⎡⎢⎢⎣ ∫SO(𝑛)

‖𝑓 ∗ 𝜓𝜆,𝑅‖𝑞𝜇(𝑅)⎤⎥⎥⎦
2∕𝑞

𝑑𝜆

𝜆𝑛+1

⎤⎥⎥⎥⎦
𝑞∕2

,

‖Sdyad,𝑞𝑓‖𝑞𝓁2(Z)
∶=
⎡⎢⎢⎢⎣
∑
𝑗∈Z

⎡⎢⎢⎣ ∫SO(𝑛)

‖𝑓 ∗ 𝜓𝑗,𝑅‖𝑞𝜇(𝑅)⎤⎥⎥⎦
2∕𝑞⎤⎥⎥⎥⎦

𝑞∕2

.

Now we generalize to the case where 𝑚 ≥ 2. Let 𝑅1, … , 𝑅𝑚 ∈ SO(𝑛). Define

S 𝑚
cont,𝑞𝑓 (𝜆1,… , 𝜆𝑚,𝑅2,… ,𝑅𝑚) ∶= ∫

SO(𝑛)

‖|𝑓 ∗ 𝜓𝜆1 ,𝑅2𝑅1
| ∗⋯ ∗ |𝜓𝜆𝑚,𝑅𝑚𝑅1

‖2𝑞 𝑑𝜇(𝑅1),

S 𝑚
dyad,𝑞

𝑓 (𝑗1,… , 𝑗𝑚,𝑅2,… ,𝑅𝑚) ∶= ∫
SO(𝑛)

‖|𝑓 ∗ 𝜓𝑗1 ,𝑅2𝑅1
| ∗… | ∗ 𝜓𝑗𝑚,𝑅𝑚𝑅1

‖2𝑞 𝑑𝜇(𝑅1).

The norm for the continuous transform, the norm ‖S 𝑚
cont,𝑞𝑓‖𝑞𝐋2(R𝑚+)×SO(𝑛)𝑚−1

, is given by

⎛⎜⎜⎝
∞

∫
0

∫
SO(𝑛)

⋯

∞

∫
0

∫
SO(𝑛)

∞

∫
0

S 𝑚
cont,𝑞𝑓 (𝜆1,… , 𝜆𝑚,𝑅2,… ,𝑅𝑚)

𝑑𝜆1

𝜆𝑛+11

𝑑𝜇2(𝑅2)
𝑑𝜆2

𝜆𝑛+12

…𝑑𝜇𝑚(𝑅𝑚)
𝑑𝜆𝑚

𝜆𝑛+1𝑚

⎞⎟⎟⎠
𝑞∕2

For the dyadic transform, the norm ‖S 𝑚
dyad,𝑞

𝑓‖𝑞
𝓁2(Z)×SO(𝑛)𝑚−1

is given by

⎛⎜⎜⎝
∑
𝑗𝑚∈Z

∫
SO(𝑛)

⋯
∑
𝑗2∈Z

∫
SO(𝑛)

∑
𝑗1∈Z

S 𝑚
dyad,𝑞

𝑓 (𝜆1,… , 𝜆𝑚,𝑅2,… ,𝑅𝑚)𝑑𝜇1(𝑅1)𝑑𝜇2(𝑅2) …𝑑𝜇𝑚(𝑅𝑚)
⎞⎟⎟⎠
𝑞∕2

.

Like before, we will discuss the well-definedness and stability of these operators to diffeomorphisms. The proofs will be omitted since 
they follow directly from the previous sections with minor modifications.

Lemma 26. Let 𝜓 be a wavelet that satisfies properties (24) and (25).

• If 1 < 𝑞 ≤ 2, we have S 𝑚
cont,𝑞 ∶ 𝐋

𝑞(R𝑛) → 𝐋2(R𝑚
+) × SO(𝑛)𝑚−1 and S 𝑚

dyad,𝑞
∶ 𝐋𝑞(R𝑛) → 𝓁2(Z𝑚) × SO(𝑛)𝑚−1.

• If 𝑞 = 1 and one of the following holds:

– 𝑛 = 1 and 𝜓 is complex analytic,

– 𝑛 ≥ 2 and 𝜓 satisfies the conditions of Lemma 5,

then S 𝑚
cont,1 ∶ 𝐋

1(R𝑛) → 𝐋2(R𝑚
+) × SO(𝑛)𝑚−1 and S 𝑚

dyad,1 ∶ 𝐋
1(R𝑛) → 𝓁2(Z𝑚) × SO(𝑛)𝑚−1.

• If 𝑞=2 and 𝜓 is also a littlewood paley wavelet, we have ‖S 𝑚
dyad,2𝑓‖𝓁1(Z𝑚)×SO(𝑛)𝑚−1 =𝜇(SO(𝑛))𝑚−1𝐶𝑚𝜓 ‖𝑓‖22 and ‖S 𝑚

cont,2𝑓‖𝐋1(R𝑚+)×SO(𝑛)𝑚−1=
𝜇(SO(𝑛))𝑚−1𝐶̂𝑚𝜓 ‖𝑓‖22.

Theorem 27. Assume |𝑐| < 1
2𝑛 and 1 < 𝑞 < 2. Let 𝜏(𝑥) = 𝑐𝑥 and let 𝐿𝜏𝑓 (𝑥) = 𝑓 ((1 − 𝑐)𝑥). Suppose that 𝜓 is a wavelet that satisfies the 

conditions of Lemma 10. Then there exist constants 𝐾̂𝑛,𝑚,𝑞 and 𝐾̂ ′
𝑛,𝑚,𝑞 dependent only on 𝑛, 𝑚, and 𝑞 such that

‖S 𝑚
cont,𝑞𝑓 −S 𝑚

cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R𝑚+)×SO(𝑛)𝑚−1
≤ |𝑐|𝑞 ⋅ 𝐾̂𝑛,𝑚,𝑞‖𝑓‖𝑞𝑞

and

‖S 𝑚
dyad,𝑞

𝑓 −S 𝑚
dyad,𝑞

𝐿𝜏𝑓‖𝑞𝓁2(Z𝑚)×SO(𝑛)𝑚−1
≤ |𝑐|𝑞 ⋅ 𝐾̂ ′

𝑛,𝑚,𝑞‖𝑓‖𝑞𝑞 .
Additionally, if 𝑞 = 1 and one of the following holds:

• 𝑛 = 1, 𝜓 is complex analytic and satisfies the conditions of Lemma 10,

• 𝑛 ≥ 2 and 𝜓 satisfies the conditions of Lemma 5,

there exist 𝐻̂𝑚,𝑛 and 𝐻̂ ′
𝑚,𝑛 such that

‖S 𝑚
cont,1𝑓 −S 𝑚

cont,1𝐿𝜏𝑓‖𝐋2(R𝑚+)×SO(𝑛)𝑚−1 ≤ |𝑐| ⋅ 𝐻̂𝑚,𝑛‖𝑓‖H1(R𝑛)

and

‖S 𝑚 𝑓 −S 𝑚 𝐿𝜏𝑓‖𝓁2(Z𝑚)×SO(𝑛)𝑚−1 ≤ |𝑐| ⋅ 𝐻̂ ′ ‖𝑓‖H1(R𝑛).
dyad,1 dyad,1 𝑚,𝑛
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Theorem 28. Let 𝜏 ∈ 𝐶2(R𝑛) and define 𝐿𝜏𝑓 (𝑥) = 𝑓 (𝑥 − 𝜏(𝑥)) with ‖𝐷𝜏‖∞ < 1
2𝑛 . Suppose that 𝜓 is a wavelet such that the wavelet and all 

its first and second partial derivatives have 𝑂((1 + |𝑥|)−𝑛−3) decay. For 𝑞 ∈ (1, 2], there exist constants 𝐶𝑚,𝑛, 𝐶̂𝑚,𝑛, 𝐶𝑚,𝑛,𝑞 , and 𝐶̂𝑚,𝑛,𝑞 such that

‖S 𝑚
cont,2𝑓 −S 𝑚

cont,2𝐿𝜏𝑓‖2𝐋2(R𝑚+)×SO(𝑛)𝑚−1

≤ 𝐶𝑚,𝑛
(‖𝐷𝜏‖2∞ +

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)2

)‖𝑓‖22,
‖S 𝑚

dyad,2𝑓 −S 𝑚
dyad,2𝐿𝜏𝑓‖2𝓁2(Z𝑚)×SO(𝑛)𝑚−1

≤ 𝐶̂𝑚,𝑛
(‖𝐷𝜏‖2∞ +

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)2

)‖𝑓‖22,
‖Scont,𝑞𝑓 −S 𝑚

cont,𝑞𝐿𝜏𝑓‖𝑞𝐋2(R𝑚+)×SO(𝑛)𝑚−1

≤ 𝐶𝑚,𝑛,𝑞
[‖𝐷𝜏‖𝑞∞ + 𝜂𝑞𝑀𝑞𝛿

𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿)]‖𝑓‖𝑞𝑞 ,

‖S 𝑚
dyad,𝑞

𝑓 −S 𝑚
dyad,𝑞

𝐿𝜏𝑓‖𝑞𝓁2(Z𝑚)×SO(𝑛)𝑚−1

≤ 𝐶̂𝑚,𝑛,𝑞
[‖𝐷𝜏‖𝑞∞ + 𝜂𝑞𝑀𝑞𝛿

𝑟

(‖𝐷𝜏‖∞(log ‖Δ𝜏‖∞‖𝐷𝜏‖∞ ∨ 1
)
+ ‖𝐷2𝜏‖∞)𝑞(1−𝛿)]‖𝑓‖𝑞𝑞 .

7. Conclusion

We have formulated operators that are translation invariant in 𝐋𝑞(R𝑛), proven these operators are Lipschitz continuous to the 
action of 𝐶2 diffeomorphisms when 1 < 𝑞 ≤ 2 with respect to certain norms, and used these results to formulate rotation invari-

ant/equivariant operators on 𝐋𝑞(R𝑛) that are Lipschitz continuous to the action of 𝐶2 diffeomorphisms. One question that was left 
unanswered was if Lipschitz continuity holds for general diffeomorphisms when 𝑞 = 1. This question is harder to answer because 
𝑓 ∈ 𝐇1(R𝑛) does not necessarily imply that 𝐿𝜏𝑓 ∈ 𝐇1(R𝑛). The kernel for the commutator is also singular, which would mean one 
cannot use extension theorems for Hardy spaces. The answer is most likely no, but we did not construct a counterexample.
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